

# **Geotechnical & Environmental Engineers**

# PHASE II SITE INVESTIGATION REPORT STOCKING LANE, SHENINGTON

Carried Out For:

ELAN HOMES LIMITED

November 2021

Report Reference: 21076J-02



Carried Out For: Elan Homes Limited

**Discovery CE Limited** The Granary Broadwell House Farm Broadwell, Rugby Warwickshire CV23 8HF

Tel:01926 813909Fax:01926 814909Email:discovery@dce-services.co.ukWeb:www.dce-services.co.uk



#### **EXECUTIVE SUMMARY**

#### INTRODUCTION

Discovery CE (DCE) was instructed by Elan Homes to carry out a Ground Investigation at the site known as Stocking Lane, Shenington.

#### OBJECTIVES

The overall objectives presented in this report were to recover geotechnical and geo-environmental data to allow assessment of the underlying ground conditions at the site with respect to geotechnical and contaminated land issues relevant to the proposed development

#### SITE

The site is located off Stocking Lane, Shenington centred approximately at National Grid reference 436889, 242743 and occupies an area of approximately 2.75 hectares. The site is irregular in shape, and at the time of investigation was an open field used for animal grazing.

#### **DEVELOPMENT PROPOSALS**

It is understood that the site will comprise a housing development consisting of semi-detached and detached houses, small apartments and bungalows with gardens and public open spaces.

#### **GEOLOGY AND HYDROGEOLOGY**

British Geological Survey (BGS) maps indicate that the solid geology at the site comprises the Marlstone Rock formation – composed of Ferruginous Limestone and Ironstone. No superficial or drift deposits are indicated to lie stratigraphically above this at the site.

The Environment Agency (EA) indicates the Marlstone Rock formation is classified as a Secondary A aquifer.

#### FIELDWORK AND LABORATORY TESTING

The fieldwork was undertaken in general accordance with BS5930 (2015) and comprised: excavation of 7 no trial pits with follow on Soakaway Infiltration Testing in 2 No. pits, excavation of 7 No. hand dug trial pits, 7 No. Dynamic Sample boreholes, installation of 4 No. gas and groundwater monitoring wells.

Geotechnical laboratory was undertaken on a total of 6 No. samples, chemical testing on 36 No. soil samples.

#### **GROUND CONDITIONS**

The ground conditions at the site where in general accordance with those anticipated from the geological mapping and included grass overlying topsoil comprising brown, orange-brown, yellow-orange-brown sandy clayey GRAVEL and sandy gravelly CLAY with occasional fine rootlets (< 5 mm). This was in turn underlain by the Marlstone Rock formation which comprised medium dense and dense becoming very dense orange-brown slightly clayey sandy GRAVEL, becoming orange-brown and dark brown occasionally dark grey thinly laminated SANDSTONE with regular iron staining and iron deposits. The Marlstone Rock formation was not fully penetrated.

In DS101 and DS102 loose and very loose orange-brown slightly gravelly clayey SAND was encountered from 3.00 m below ground level (bgl).

No groundwater was encountered during the fieldworks or the subsequent monitoring visits to date.

#### HUMAN HEALTH ASSESSMENT

The results of the chemical testing on the soils were compared to the published Generic Assessment Criteria (GAC). Exceedances of arsenic, nickel and vanadium were recorded. It is recommended that a suitable thickness (recommendation for a minimum of 0.60 m) of clean cover is provided in garden or landscaped areas across the site.

It is recommended that a remediation strategy be compiled for the site and submitted to the relevant local authority.

#### CONTROLLED WATERS RISK ASSESSMENT

No viable pollutant linkage has been identified at the site and the risk to controlled waters is considered VERY LOW / NEGLIGIBLE

#### GROUND GAS ASSESSMENT

4 no. visits have been undertaken for gas and groundwater monitoring to date, with 2 further visits scheduled and to be reported on once complete. To date, the results show volumetric flow rates at or below 0.1 l/hr with low or absent readings for methane and carbon dioxide. As such the site is classified as a Characteristic Situation 1.

The site is in a Radon affected area with 30% of dwellings exceeding Radon Action Level. As a result, **FULL RADON PROTECTION MEASURES** will be required for all new dwellings.



#### 5

#### **GEOTECHNICAL ASSESSMENT**

| Ground Strength                                                                                                        | Ground strength was generally found to be increasing in strength with depth. In general, SPT testing revealed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Profile                                                                                                                | "N" values between 14 - 60. An average of 31 was calculated. Cohesive material, where present, has been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                        | classified as 'firm'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                        | Two areas in the north of the site (DS101 and DS102) exhibited SPT values that lend to a description of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                        | loose and very loose, these areas will require further investigation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                        | Interpretation of refusal suggests bands of sandstone and siltstone approaching rockhead or at Marlstone Rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                                        | formation as seen in nearby trial pits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Clay Volume                                                                                                            | The cohesive material underlying the site, where present, have high and very high plasticity. However, due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Change Potential                                                                                                       | the limited fines content (< 35 %) it is considered as non-shrinkable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Spread                                                                                                                 | An allowable bearing capacity of 125 kN/m <sup>2</sup> is considered appropriate for strip foundations up to 0.9 m wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Foundations                                                                                                            | placed at a minimum depth of 0.75 m below ground level. Total settlement would then be limited to 25 mm. It                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                                                                        | is recommended that additional investigation is carried out in the north of the site prior to further design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                        | development to further assess the locally very loose materials identified in DS101 and DS102 below around 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                                                                        | m depth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Pile Foundations                                                                                                       | Pile foundations are not considered necessary for the proposed development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Pile Foundations                                                                                                       | Pile foundations are not considered necessary for the proposed development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Pile Foundations<br>Ground                                                                                             | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Pile Foundations<br>Ground<br>Improvement                                                                              | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Pile Foundations<br>Ground<br>Improvement<br>Floor                                                                     | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.<br>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Pile Foundations<br>Ground<br>Improvement<br>Floor<br>Slab/Pavement                                                    | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.<br>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the site are not considered to be frost susceptible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Pile Foundations<br>Ground<br>Improvement<br>Floor<br>Slab/Pavement<br>Design                                          | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.<br>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the<br>site are not considered to be frost susceptible.<br>Following proof rolling and removal of soft spots a design equilibrium CBR of 5% is considered appropriate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Pile Foundations<br>Ground<br>Improvement<br>Floor<br>Slab/Pavement<br>Design                                          | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.<br>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the<br>site are not considered to be frost susceptible.<br>Following proof rolling and removal of soft spots a design equilibrium CBR of 5% is considered appropriate.<br>Ground bearing floor slabs may be considered appropriate for the site. In area vulnerable to heave, suspended                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Pile Foundations<br>Ground<br>Improvement<br>Floor<br>Slab/Pavement<br>Design                                          | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.<br>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the<br>site are not considered to be frost susceptible.<br>Following proof rolling and removal of soft spots a design equilibrium CBR of 5% is considered appropriate.<br>Ground bearing floor slabs may be considered appropriate for the site. In area vulnerable to heave, suspended<br>floor slabs should be adopted.                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Pile Foundations<br>Ground<br>Improvement<br>Floor<br>Slab/Pavement<br>Design<br>Infiltration                          | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.<br>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the<br>site are not considered to be frost susceptible.<br>Following proof rolling and removal of soft spots a design equilibrium CBR of 5% is considered appropriate.<br>Ground bearing floor slabs may be considered appropriate for the site. In area vulnerable to heave, suspended<br>floor slabs should be adopted.<br>Soakaways are considered feasible in parts of the site, a preliminary infiltration rate of 1.01 x10 <sup>-3</sup> is considered                                                                                                                                                                                                                                                                         |  |  |  |  |
| Pile Foundations<br>Ground<br>Improvement<br>Floor<br>Slab/Pavement<br>Design<br>Infiltration<br>Properties            | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.<br>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the site are not considered to be frost susceptible.<br>Following proof rolling and removal of soft spots a design equilibrium CBR of 5% is considered appropriate.<br>Ground bearing floor slabs may be considered appropriate for the site. In area vulnerable to heave, suspended floor slabs should be adopted.<br>Soakaways are considered feasible in parts of the site, a preliminary infiltration rate of 1.01 x10 <sup>-3</sup> is considered appropriate for the Marlstone Rock formation. Further investigation is recommended once detailed                                                                                                                                                                              |  |  |  |  |
| Pile Foundations<br>Ground<br>Improvement<br>Floor<br>Slab/Pavement<br>Design<br>Infiltration<br>Properties            | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.<br>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the site are not considered to be frost susceptible.<br>Following proof rolling and removal of soft spots a design equilibrium CBR of 5% is considered appropriate.<br>Ground bearing floor slabs may be considered appropriate for the site. In area vulnerable to heave, suspended floor slabs should be adopted.<br>Soakaways are considered feasible in parts of the site, a preliminary infiltration rate of 1.01 x10 <sup>-3</sup> is considered appropriate for the site.                                                                                                                                                                                                                                                     |  |  |  |  |
| Pile Foundations Ground Improvement Floor Slab/Pavement Design Infiltration Properties Excavations                     | Pile foundations are not considered necessary for the proposed development.<br>Ground improvement is not considered necessary for the proposed development.<br>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the site are not considered to be frost susceptible.<br>Following proof rolling and removal of soft spots a design equilibrium CBR of 5% is considered appropriate.<br>Ground bearing floor slabs may be considered appropriate for the site. In area vulnerable to heave, suspended floor slabs should be adopted.<br>Soakaways are considered feasible in parts of the site, a preliminary infiltration rate of 1.01 x10 <sup>-3</sup> is considered appropriate for the site. No special precautions required.                                                                                                                                                                                                                    |  |  |  |  |
| Pile Foundations Ground Improvement Floor Slab/Pavement Design Infiltration Properties Excavations Sulphate            | <ul> <li>Pile foundations are not considered necessary for the proposed development.</li> <li>Ground improvement is not considered necessary for the proposed development.</li> <li>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the site are not considered to be frost susceptible.</li> <li>Following proof rolling and removal of soft spots a design equilibrium CBR of 5% is considered appropriate. Ground bearing floor slabs may be considered appropriate for the site. In area vulnerable to heave, suspended floor slabs should be adopted.</li> <li>Soakaways are considered feasible in parts of the site, a preliminary infiltration rate of 1.01 x10<sup>-3</sup> is considered appropriate for the site. No special precautions required.</li> <li>No special precautions required.</li> </ul>                                                                                                                                  |  |  |  |  |
| Pile Foundations Ground Improvement Floor Slab/Pavement Design Infiltration Properties Excavations Sulphate Assessment | <ul> <li>Pile foundations are not considered necessary for the proposed development.</li> <li>Ground improvement is not considered necessary for the proposed development.</li> <li>Particle size distribution testing and Atterberg limit determinations indicate that near surface clay soils at the site are not considered to be frost susceptible.</li> <li>Following proof rolling and removal of soft spots a design equilibrium CBR of 5% is considered appropriate. Ground bearing floor slabs may be considered appropriate for the site. In area vulnerable to heave, suspended floor slabs should be adopted.</li> <li>Soakaways are considered feasible in parts of the site, a preliminary infiltration rate of 1.01 x10<sup>-3</sup> is considered appropriate for the site.</li> <li>No special precautions required.</li> <li>Chemical assessment indicates soils from the topsoil and Marlstone Rock formation are classified as DS – 1, AC – 1. No special precautions are required.</li> </ul> |  |  |  |  |



# CONTENTS

| EXEC | UTIVE       | E SUMMARY                                                  | iii           |
|------|-------------|------------------------------------------------------------|---------------|
| REPC | )RT         |                                                            | 1             |
| PHAS | SE II S     | ITE INVESTIGATION REPORT                                   | 1             |
| стос | KING        | LANE, SHENINGTON                                           | 1             |
| 1    | INTR        | ODUCTION                                                   | 1             |
| •    | 1.1         | ENGAGEMENT OF DISCOVERY CE LIMITED                         | 1             |
|      | 1.2         | OBJECTIVES AND LIMITATIONS                                 | 1             |
|      | 1.3         | SOURCES OF INFORMATION                                     | 2             |
| 2    | SITE        | DESCRIPTION                                                | 3             |
|      | 2.1         | ON SITE                                                    | 3             |
|      | 2.2         | SITE SURROUNDINGS                                          | 4             |
| 3    | GEOI        | LOGY, HYDROLOGY & HYDROGEOLOGY                             | 5             |
|      | 3.1         | GEOLOGY                                                    | 5             |
|      | 3.2         |                                                            | 5<br>5        |
|      | 5.5         |                                                            | 5             |
| 4    | FIEL        | DWORK & LABORATORY TESTING                                 | 6             |
|      | 4.1         |                                                            | 66            |
|      | 4.2         | CHEMICAL LABORATORY TESTING                                | 0<br>6        |
| F    |             |                                                            | 0             |
| 5    | 5 1         | GOLIND CONDITIONS AND MATERIAL PRODERTIES                  | <b>ס</b><br>פ |
|      | 5.1         | 5.1.1 Topsoil                                              | 8             |
|      |             | 5.1.2 Marlstone Rock Formation                             | 8             |
|      | 5.2         | GROUNDWATER CONDITIONS                                     | 9             |
|      | 5.3         | INFILTRATION TESTING                                       | 9             |
| 6    | CON         | TAMINATED LAND ASSESSMENT                                  | 11            |
|      | 6.1         | LEGISLATION AND APPROACH                                   | 11            |
|      | 6.2         | CONCEPTUAL SITE MODEL                                      | 13            |
|      |             | 6.2.1 Sources                                              | 13<br>12      |
|      |             | 6.2.3 Pathways                                             | 13            |
|      |             | 6.2.4 Pollutant Linkages                                   | 14            |
|      | 6.3         | GENERIC HUMAN HEALTH QUANTITATIVE RISK ASSESSMENT          | 14            |
|      |             | 6.3.1 Human Health                                         | 14            |
|      | 6.4         | GENERIC HUMAN HEALTH ASSESSMENT DISCUSSION AND CONCLUSIONS | 15            |
|      | 65          | GAS ASSESSMENT                                             | נו<br>15      |
| _    | 0.0         |                                                            |               |
| 7    | GEO         | TECHNICAL ENGINEERING ASSESSMENT                           | 17            |
|      | 7.1         | SPREAD FOUNDATIONS                                         | /<br>17       |
|      | 7.3         | PILE FOUNDATIONS                                           |               |
|      | 7.4         | FLOOR SLAB                                                 | . 18          |
|      | 7.5         | GROUND IMPROVEMENT                                         | 18            |
|      | 7.6         | PAVEMENT DESIGN                                            | 18            |
|      | 7.7         |                                                            | 18            |
|      | <i>i</i> .o | JULMAIE DESIGN GLASSIFIGATION                              | 10            |



# TABLES

| Table 1 | Fieldwork Objectives                                          | 6  |
|---------|---------------------------------------------------------------|----|
| Table 2 | Geotechnical Laboratory Testing                               | 6  |
| Table 3 | Summary of Ground Conditions                                  | 8  |
| Table 4 | Summary of Geotechnical Testing                               | 9  |
| Table 5 | Summary of Infiltration Testing                               | 10 |
| Table 6 | Soils Results Exceeding Human Health Screening Values         | 14 |
| Table 7 | Summary of Gas Monitoring                                     |    |
| Table 8 | Summary of Gas Monitoring                                     |    |
| Table 9 | Characteristic soil chemistry results for soil classification |    |
|         | •                                                             |    |

#### APPENDICES

- **APPENDIX A FIGURES**
- APPENDIX B DRAWINGS
- APPENDIX C FIELDWORK METHODOLOGY
- APPENDIX D FIELDWORK RECORDS
- **APPENDIX E GEOTECHNICAL TEST RESULTS**
- APPENDIX F CHEMICAL TEST RESULTS
- APPENDIX G CHEMICAL SCREENING CRITERIA



#### 1 INTRODUCTION

#### 1.1 Engagement of Discovery CE Limited

Discovery CE Limited (DCE) was instructed by Elan Homes Ltd to carry out a Ground Investigation at a site known as Stocking Lane, Shenington.

The offer to carry out the works is contained in DCE proposal reference 21076J-QLO01 dated 7<sup>th</sup> July 2021 and the instruction to proceed with the work was contained in an email from Elan Homes Limited dated 2<sup>nd</sup> August 2021 (order reference ERE16077).

#### 1.2 Objectives and Limitations

This report follows on from a Phase 1 Geo-environmental Desk Study (see DCE report reference 21076J "Desk Study and Preliminary Risk Assessment") which has been used to facilitate the planning and execution of the Ground Investigation. The overall objectives of the work presented in this report were to carry out a ground investigation to gather geological, geotechnical and environmental data to allow assessment of the underlying ground conditions at the site with respect to Geotechnical and Contaminated Land issues relevant to the proposed development. Specifically the objectives were as follows:

- to carry out intrusive investigation to identify the general near surface geological conditions beneath the subject site;
- 2. to carry out in-situ and laboratory testing to allow assessment of the geotechnical conditions beneath the site;
- to assess the likely magnitude and extent of potential Contaminants of Concern identified in the Phase 1 Desk Study or from field observations in both soil and groundwater;
- 4. to recover hydrogeological data to allow refinement of the Conceptual Site Model;
- 5. to provide and interpretation of the geotechnical data recovered and present recommendations for potential foundation design and conditions with respect to chemical attack on buried concrete;

- 6. to carry out a Human Health Risk assessment using generic assessment criteria and further detailed Human Health Risk assessment if necessary;
- 7. with respect to controlled waters to assess the significance of the Contaminants of Concern recorded at the site through screening against generic assessment criteria and if required detailed quantitative risk assessment;
- 8. to provide conclusions and recommendations for further work if considered necessary.

The conclusions and recommendations provided in this report are based on the conditions encountered at the exploratory hole locations and intrusive work has been restricted to the level of detail considered necessary to achieve the stated objectives. The possibility of significant variations occurring between exploratory holes cannot be discounted and additional assessment may be necessary should such variation be revealed subsequent to preparation of this report.

## 1.3 Sources of Information

The following sources of information have been used in the preparation of this report.

- Discovery CE Limited report reference 21076J-01 "Desk Study and Preliminary Risk Assessment" 26<sup>th</sup> August 2021
- 2. Topographical site survey drawing by AD Horner LTD reference 5942-21JAN20-01-02-03 provided by the client.



## 2 SITE DESCRIPTION

#### 2.1 On site

The site is situated off of Stocking Lane (to the north of the site), in Shenington at approximate National Grid Reference 436889, 242743 as shown in Figure 1 and site occupies an area of approximately 2.75 Ha.



#### Figure 1 Site location and area of development

The boundaries of the site are formed predominantly by thick hedgerows, combined with fencing and a line of Oak trees to the south-west. Beyond the northern most border is Stocking Lane, to the northeast and east there are domestic properties and Rattlecombe Road, the southern border meets the agricultural land of Quarry Farm, the Shenington Church of England Primary School is beyond the western border.



Currently the site has no buildings or current occupants. Horses, use the northern half of the site as pasture. The flat grassland is surrounded by electric fencing. The southern half is dense Wild Flower Shrubland which is also currently not in use. The site topography is flat and level compared to the surroundings.

#### 2.2 Site surroundings

The site boundaries are formed by hedgerows with some mature trees present along the southern and south-western sections.

Two off-site substations are present, one 24m to the south east, the other 4m to the north, northeast. The 'Old Quarry Farm' is present to the south west of the site as well as Selecto Part UK LTD to the east.

A primary school is located approximately 20 m north-west of the site.

The Phase 1 report identified through the Groundsure report that a former petrol station was located 11 m south-east of the site.

A former quarry was located south and south-west of the site.



# **3 GEOLOGY, HYDROLOGY & HYDROGEOLOGY**

#### 3.1 Geology

British Geological Survey (BGS) sheet no 201 (1:50 000, New Series) indicates that the solid geology at the site comprises the Marlstone Rock formation – composed of Ferruginous Limestone and Ironstone. No superficial or drift deposits are indicated to lie stratigraphically above this at the site.

## 3.2 Hydrology

The nearest surface water course identified is an inland river located 129 m south of the site, with records suggesting that it contains water all year round. No chemical data is available for this water course.

Records from the EA have recorded the local groundwater body (The Banbury Jurassic) and was given an overall and chemical rating of 'Poor' in 2015.

#### 3.3 Hydrogeology

The Environment Agency classifies the bedrock geology at the site as a Secondary-A Aquifer. This is defined by the EA as:

"Secondary-A – Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers."

Monitoring to date has encountered no groundwater in any of the monitoring standpipes, with no groundwater encountered in any exploratory holes during the intrusive fieldwork.



# 4 FIELDWORK & LABORATORY TESTING

#### 4.1 Fieldwork

The fieldwork was carried out in general accordance with BS5930 (2015) and comprised the following works. Details of the fieldworks methodology is presented in Appendix D.

| Works                                                                                                           | Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installation of 4 no. dynamic<br>sampler boreholes with<br>groundwater and ground gas<br>monitoring standpipes: | To provide detailed rock descriptions to aid the geological succession underlying the site, and to<br>identify ground gas conditions and any potential shallow groundwater at the site. To allow rock<br>strength determinations to be made to aid on the geotechnical understanding of the site.                                                                                                                                                                         |
| Installation of 3 no. dynamic sampler boreholes:                                                                | To provide detailed rock descriptions to aid the geological succession underlying the site. To allow rock strength determinations to be made to aid on the geotechnical understanding of the site. Furthermore, to install groundwater monitoring wells in <b>the MarIstone Rock Formation</b> . Holes to be placed across the site to allow for as much coverage as possible. To carry out in-situ testing to characterise the geotechnical conditions beneath the site. |
| 3 no. dynamic probes                                                                                            | To provide further information regarding rock strengths across the site.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Excavation of 5 no. Trial Pits:<br>TP101, TP103, TP104, TP106<br>and TP107                                      | To investigate specific areas likely to contain Contaminants of Concern identified in the Phase 1<br>Desk study and site walkover survey and to provided information on the general geology beneath<br>the site                                                                                                                                                                                                                                                           |
| Excavation of 6 no Trial pits<br>with hand tools                                                                | To provide additional coverage across the site at shallow depths.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Excavation of 2 no. Trial Pits:<br>TP102 and TP105                                                              | To provide additional coverage across the site to facilitate BRE 365 infiltration testing.                                                                                                                                                                                                                                                                                                                                                                                |
| Gas and Groundwater monitoring and sampling                                                                     | Monitoring of boreholes including groundwater sampling over a 3 month period to provide data to characterise contaminant status and its variation over time and spatially and allow gas conditions to be characterized.                                                                                                                                                                                                                                                   |

Table 1Fieldwork Objectives

# 4.2 Geotechnical Laboratory Testing

A programme of geotechnical laboratory testing has been carried out in accordance with BS1377 (1990) "Methods of Tests for Soils for Civil Engineering Purposes" at a UKAS registered testing laboratory. The tests listed below were carried out at the results are presented in Appendix E.

 Table 2
 Geotechnical Laboratory Testing

| BS1377 Ref            | Test Description              | Number of tests |
|-----------------------|-------------------------------|-----------------|
| Part 2 section 3      | Moisture Content              | 3               |
| Part 2 Sections 4 & 5 | Atterberg Limit Determination | 3               |
| Part 2 Section 9      | Particle Size Distribution    | 3               |

## 4.3 Chemical Laboratory Testing

Chemical testing has been carried out on selected samples for determinants based on the identified Contaminants of Concern listed below. Note that the suite of testing varies according to the COCs relevant for the particular exploratory hole location.

The list of CoCs identified includes arsenic, boron, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium zinc, total petroleum hydrocarbons criteria working group (TPH CWG),



speciated polycyclic aromatic hydrocarbons (PAHs), herbicides and pesticides and sulphate testing in line with BRE SD1. Furthermore, PBET testing for arsenic was undertaken on two samples following receipt of the initial chemical testing results.

Soil samples and samples for leachate testing were recovered in amber glass jars and/or 1 - 2 kg plastic tubs as advised by the testing laboratory. All samples were stored in temperature controlled conditions (<4°C) once collected and during despatch to the laboratory

Chemical Laboratory testing for soils was carried out using MCERTS accredited tests whenever possible failing this UKAS and/or ISO17025 accredited tests were used. For water samples UKAS and/or ISO17025 accredited tests were used. Details of the accreditation status for specific tests are presented on the laboratory analysis report sheets.

A total of 36 soil samples have been chemically analysed during this investigation, the results of which are presented in Appendix F



#### 5 GROUND AND GROUNDWATER CONDITIONS

#### 5.1 Ground Conditions and Material Properties

The ground conditions at the site where in general accordance with those anticipated from the geological mapping and included grass overlying topsoil which in turn were found to overlie the Marlstone Rock Formation. A summary of the ground conditions encountered in presented in Table 3 below with further discussion presented in the following sections.

| Table 3 Summary | of Ground Conditions |
|-----------------|----------------------|
|-----------------|----------------------|

| Strata & General Description                                                                                                                                                                                                                                                                                                                                              | Depth Encountered<br>(m bgl) | Thickness Range (m) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|
| 1 TOPSOIL<br>Grass overlying brown, orange-brown, yellow-orange-brown sandy<br>clayey GRAVEL, and sandy gravelly CLAY with occasional fine<br>rootlets (< 5mm diameter). Gravel is brown sub-rounded fine to<br>medium quartzite and brown becoming dark brown sub-angular<br>fine to medium sandstone with occasional iron staining.<br>(All exploratory hole locations) | Ground Level – 0.75          | 0.15 – 0.75         |
| 2 MARLSTONE ROCK FORMATION<br>Medium dense and dense becoming very dense orange-brown<br>slightly clayey sandy GRAVEL. Gravel is orange-brown<br>occasionally black sub-angular occasionally tabular, fine to<br>medium, becoming medium to coarse sandstone with iron staining<br>and occasional iron deposits.<br>(DS102 to DS107 inclusive)                            | 0.15 – 4.25                  | 1.90 – 6.25+        |
| Loose and very loose orange-brown slightly gravelly clayey SAND.<br>Gravel is orange-brown occasionally black sub-angular, fine to<br>medium, becoming medium to coarse sandstone with iron staining<br>and occasional iron deposits. (DS101 and DS102 only)                                                                                                              | 3.00 - 6.45+                 | 1.15 – 6.25+        |
| Firm orange-brown very sandy CLAY<br>(DS102 to DS106 inclusive)                                                                                                                                                                                                                                                                                                           | 0.50 – 1.90                  | 0.30 – 1.15         |
| Orange-brown and dark brown occasionally dark grey thinly<br>laminated SANDSTONE with regular iron staining and iron<br>deposits. Occasional bands of fine to medium orange sand.<br>(TP101 to TP107 inclusive)                                                                                                                                                           | 1.75 – 3.00                  | 0.50 – 1.05         |

## 5.1.1 Topsoil

Topsoil was encountered in all exploratory hole locations across the site and was found from ground level underlying grass to vary randomly in thickness from between 0.15 to 0.40 m. The stratum varied from a sandy clayey gravel to sandy gravelly clay.

#### 5.1.2 Marlstone Rock Formation

The Marlstone Rock Formation was encountered in all exploratory hole locations across the site, underlying the topsoil. The top of the stratum was found between 0.15 and 0.75 m bgl and extended to a maximum proven depth of 6.45 m bgl (achieved in DS101).



SPT testing revealed SPT 'N' values of varying between 1 and 60, with an average of 31. In general SPTs were greater than or equal to 20. 4 tests (3 from DS101 and 1 from DS102) returned results of 4 or less, together with less recovery than what is expected from the dynamic sampler. The in-situ testing confirms that the cohesive material (where present) is firm.

Dynamic probing undertaken adjacent to DS101 (at location DP101) achieved a maximum penetration of 3.20 m before refusal, whilst probing undertaken adjacent to TP101 and DS107 achieved a maximum penetration of 1.80 and 1.90 m (respectively) before achieving refusal.

Atterberg limit determinations carried out on samples of the cohesive material encountered revealed moisture contents of between 17 and 26 %, liquid limits of 57 to 79 %, plastic limits of 37 to 42 % and plasticity index values of between 15 and 42 % indicating that the material is of high and very high plasticity but due to limited fines content (< 35 %) are non-shrinkable.

Table 4 below gives a summary of the testing undertaken.

| -                                       | lest .           | Result                                             |
|-----------------------------------------|------------------|----------------------------------------------------|
| SPT test                                | No. of tests     | 18                                                 |
| SPTiesi                                 | Result Range     | 1 to 60 (generally 20 to 50 increasing with depth) |
|                                         | No. of tests     | 3                                                  |
|                                         | Moisture Content | 17 to 26 %                                         |
| Atterberg Limit (%)                     | Liquid Limit     | 57 to 79%                                          |
|                                         | Plastic Limit    | 37 to 42%                                          |
|                                         | Plasticity Index | 15 to 42%                                          |
|                                         | No. of tests     | 3                                                  |
|                                         | Very Coarse      | 0 to 6%                                            |
| Particle Size Distribution (% Dry Mass) | Gravel           | 32 to 66%                                          |
|                                         | Sand             | 14 to 36%                                          |
|                                         | Fines            | 16 to 32%                                          |

#### Table 4 Summary of Geotechnical Testing

## 5.2 Groundwater Conditions

Groundwater was not encountered during the fieldwork.

Groundwater monitoring wells were installed across the site determine if shallow groundwater exists over the long term at the site. To date no groundwater has been encountered during any of the monitoring visits (4 no. undertaken to date at the issue of this report).

As such, it is deemed that the groundwater table is at greater depth than the depths to which the intrusive works were able to be achieve.

## 5.3 Infiltration Testing

A total of six infiltration tests were undertaken at the site, 3 each within TP102 and TP105. Once excavated, 1m<sup>3</sup> of water was added to the excavation and allowed to drain in accordance with BRE 365.



All tests undertaken achieved full drainage. Rates were then calculated, with a minimum rate of 1.01 x  $10^{-3}$  m/s recorded in TP105. Full details of the infiltration testing are given in Figures A2 – A7 inclusive, while table 5 provides a summary of the results.

| Table 5 | Summary | of Infiltration | Testing |
|---------|---------|-----------------|---------|
|---------|---------|-----------------|---------|

| Trial Pit Location | First Fill (m/s)        | Second Fill (m/s)       | Third Fill (m/s)        |
|--------------------|-------------------------|-------------------------|-------------------------|
| TP102              | 2.20 x 10 <sup>-3</sup> | 2.29 x 10 <sup>-3</sup> | 1.58 x 10 <sup>-3</sup> |
| TP105              | 1.58 x 10⁻³             | 1.32 x 10 <sup>-3</sup> | 1.01 x 10 <sup>-3</sup> |



#### 6 CONTAMINATED LAND ASSESSMENT

#### 6.1 Legislation And Approach

Contaminated Land is defined in Part 2A of the Environmental Protection Act 1990 as "any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that:

- (a) significant harm is being caused or there is a significant possibility of such harm being caused; or
- (b) pollution of controlled waters is being, or is likely to be, caused".

It should be noted that under the Water Act 2003, part (b) of the above definition is to be amended to also include the word "significant".

Land contamination and its risk to human health is a material consideration under the planning regime as it applies to the intended use of a site which requires that risk assessment for planning purposes should be consistent with the requirements under Part 2A and that as a minimum, after carrying out the development and commencement of its use, the land should not be capable of being determined as *Contaminated Land* under Part 2A of the EPA 1990.

The National Planning Policy Framework (NPPF - 2012) puts the onus on local planning authorities to develop their own guidance and processes for dealing with potentially contaminated land under planning.

The key paragraphs from NPPF - 2012 relating to planning and dealing with land contamination are listed below.

<sup>120.</sup> To prevent unacceptable risks from pollution and land instability, planning policies and decisions should ensure that new development is appropriate for its location. The effects (including cumulative effects) of pollution on health, the natural environment or general amenity, and the potential sensitivity of the area or proposed development to adverse effects from pollution, should be taken into account. Where a site is affected by contamination or land stability issues, responsibility for securing a safe development rests with the developer and/or landowner. 121. Planning policies and decisions should also ensure that: the site is suitable for its new use taking account of ground conditions and land instability, including from natural hazards or former activities such as mining, pollution arising from previous uses and any proposals for mitigation including land remediation or impacts on the natural environment arising from that remediation; after remediation, as a minimum, land should not be capable of being determined as contaminated land under Part IIA of the Environmental Protection Act 1990; and adequate site investigation information, prepared by a competent person, is presented.



122. In doing so, local planning authorities should focus on whether the development itself is an acceptable use of the land, and the impact of the use, rather than the control of processes or emissions themselves where these are subject to approval under pollution control regimes. Local planning authorities should assume that these regimes will operate effectively. Equally, where a planning decision has been made on a particular development, the planning issues should not be revisited through the permitting regimes operated by pollution control authorities.

Therefore, early engagement with the local authority and their environmental health/pollution control staff is advised.

A risk based approached is taken in the assessment of contaminated land which takes account of the proposed (or existing) use of a site. The key stages are as follows:

- 1. **Development of a Site Conceptual Model** This is key to the establishment of viable pollutant linkages from a hazardous source (e.g. hydrocarbon contamination) to a sensitive receptor (e.g. a river) through a viable pathway (e.g., groundwater flow) which allows the hazard to reach the receptor. On some occasions the lack of a viable pollutant linkage will result in no further assessment being necessary
- 2. Generic Quantitative Risk Assessment -This comprises a screening exercise comparing measured chemical data against published data which are based on numerous assumptions regarding the nature of the source, pathway and receptor which are valid or err on the side of safety for the current site in question. Typically for human health risk assessment this involves comparing chemical data with published Generic Assessment Criteria. For controlled waters assessment this typically comprises the direct comparison of chemical tests on leachate or groundwater with Environmental Quality Standards (EQS) or other suitable assessment criteria.
- 3. Detailed Quantitative Risk Assessment Should contaminants of concern be present at the site at concentrations exceeding the Generic Assessment Criteria, further detailed quantitative assessment can be carried out which accounts for the specific exposure conditions at the site (with respect to human health assessment) or models the degradation, dilution and attenuation of contaminants during transport from source to receptors.
- 4. Evaluation The final stage in the process is to appraise the findings of the Risk Assessment and determine the need or otherwise for additional assessment or remediation.



## 6.2 Conceptual Site Model

A preliminary conceptual model was presented in the Phase 1 Desk Study report which included a preliminary qualitative risk assessment that has guided the ground investigation work. That model has been refined and updated based on the information obtained during the ground investigation presented herein and is discussed in the following sections.

#### 6.2.1 Sources

The desk study had previously identified several potential sources of contamination to the site. Upon completion of the ground investigation the following have been confirmed as potential sources of contamination:

- 1. Arsenic, nickel and vanadium from the natural local geology; (COCs heavy metals);
- 2. Radon gas;

#### 6.2.2 Receptors

The site is to be redeveloped for residential housing with private gardens. Potential receptors identified during through the desk study, and updated following the ground investigation, include:

Human Health;

- 1. Current and future site users;
- 2. Site development and maintenance workers;

Environmental;

1. No shallow groundwater has been encountered at the site during the investigation. However, the underlying geology is Secondary-A aquifer.

#### 6.2.3 Pathways

The following pathways have been identified and are considered viable for the site

Human Health;

- 1. Ingestion of source soils;
- 2. Inhalation of source dusts, vapours and gases;
- 3. Direct skin exposure (dermal contact) with soils.



## 6.2.4 Pollutant Linkages

Several viable pollutant linkages have been identified for the site affecting human receptors, including ingestion, inhalation and dermal contact of end users and site soils and inhalation of Radon Gas.

#### 6.3 Generic Human Health Quantitative Risk Assessment

#### 6.3.1 Human Health

The results of the chemical testing on soils have been compared with published Soil Guideline Values (S4UL) as an initial screen to determine if more detailed assessment is required. Full details of the screening exercise are presented in Appendix F. The results that exceeded their relevant screening criteria are summarised in Table 6 below.

| Contaminant of Concern | Screening<br>Value<br>(mg/kg) | Exceedances Recorded                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arsenic                | 37                            | 190 mg/kg in TP101 at 0.70 m bgl<br>64 mg/kg in TP101 at 1.60 m bgl<br>200 mg/kg in TP102 at 0.30 m bgl<br>130 mg/kg in TP102 at 0.90 m bgl<br>130 mg/kg in TP102 at 1.00 m bgl<br>200 mg/kg in TP103 at 0.80 m bgl<br>240 mg/kg in TP104 at 0.60 m bgl<br>130 mg/kg in TP105 at 0.50 m bgl<br>260 mg/kg in TP105 at 1.20 m bgl<br>150 mg/kg in TP106 at 0.70 m bgl | 290 mg/kg in TP107 at 0.40 m bgl<br>200 mg/kg in TP107 at 1.40 m bgl<br>250 mg/kg in DS101 at 0.20 m bgl<br>500 mg/kg in DS101 at 0.75 m bgl<br>320 mg/kg in DS102 at 0.30 m bgl<br>320 mg/kg in DS103 at 0.15 m bgl<br>480 mg/kg in DS103 at 0.90 m bgl<br>470 mg/kg in DS104 at 0.40 m bgl<br>500 mg/kg in DS105 at 0.50 m bgl<br>550 mg/kg in DS106 at 0.10 m bgl<br>430 mg/kg in DS106 at 0.80 m bgl |
| Nickel                 | 180                           | 200 mg/kg in TP105 at 0.50 m bgl<br>230 mg/kg in DS103 at 0.90 m bgl<br>240 mg/kg in DS104 at 0.40 m bgl<br>290 mg/kg in DS105 at 0.50 m bgl<br>270 mg/kg in DS106 at 0.10 m bgl<br>260 mg/kg in DS106 at 0.80 m bgl                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vanadium               | 410                           | 530 mg/kg in TP105 at 0.50 m bgl<br>440 mg/kg in TP107 at 1.40 m bgl<br>480 mg/kg in DS102 at 0.30 m bgl<br>470 mg/kg in DS103 at 0.15 m bgl<br>660 mg/kg in DS103 at 0.90 m bgl<br>670 mg/kg in DS104 at 0.40 m bgl<br>800 mg/kg in DS105 at 0.50 m bgl<br>790 mg/kg in DS106 at 0.10 m bgl<br>630 mg/kg in DS106 at 0.80 m bgl                                    |                                                                                                                                                                                                                                                                                                                                                                                                          |

| Table 6 Soils Results Exceeding Human Health Screening Va | alues |
|-----------------------------------------------------------|-------|
|-----------------------------------------------------------|-------|

#### <u>Arsenic</u>

All twenty-two samples that were tested for arsenic recorded exceedances in excess of the guideline value of 37 mg/kg. Values ranged between 64 mg/kg and 550 mg/kg.

PBET testing was undertaken on the two highest values recorded (500 mg/kg and 550 mg/kg). Using the criteria gained from the testing, a site-specific screening value could be calculated using the CLEA version 1.071 spreadsheet. A new value of 99.5 mg/kg was calculated. When using this site-



specific screening value, only one of the previous results become acceptable to the criteria: sample from TP101 at 1.60 m bgl recording 64 mg/kg.

#### Nickel and Vanadium

Nickel was found in 6 no. samples to exceed the guideline value of 180 mg/kg, with a maximum value of 290 mg/kg recorded in DS105 at 0.50 m bgl.

Vanadium was found in 9 no. samples to exceed the guideline value of 410 mg/kg with a maximum value of 800 mg/kg recorded in DS105 at 0.50 m bgl.

No Made Ground was encountered at the site, with all soils encountered being natural.

#### 6.4 Generic Human Health Assessment Discussion and Conclusions

The underlying natural geology at the site contains concentrations of arsenic, nickel and vanadium that exceeds the corresponding GAC for the proposed housing end us. <u>It is recommended that a suitable thickness (recommendation for a minimum of 0.60 m) of clean cover is provided in garden or landscaped areas across the site.</u>

It is recommended that a remediation strategy be compiled for the site and submitted to the relevant local authority.

#### 6.4.1 Controlled Waters - Groundwater

No groundwater has been recorded during the investigation and no Made Ground or anthropogenic contamination identified at the site. As a consequence the risk to controlled waters is very low.

#### 6.5 Gas Assessment

A ground gas assessment has been undertaken to assess risks associated with carbon dioxide and methane to new buildings and their users. 4 No. gas monitoring visits have been undertaken to date the site between the 30<sup>th</sup> September and 11<sup>th</sup> November 2021, with two further visits scheduled. This section will be updated following completion of the ongoing monitoring.

Atmospheric pressures recorded over the duration the monitoring visits were recorded to range between 984mb and 999mb. The results of the gas monitoring are summarised in Table 7 below and full details are presented in Appendix D.



#### Table 7 Summary of Gas Monitoring

| .Well | Range of Measurements Recorded |                                               |                                     |                   |
|-------|--------------------------------|-----------------------------------------------|-------------------------------------|-------------------|
|       | Methane<br>(CH₄)<br>% v/v      | Carbon Dioxide<br>(CO <sub>2</sub> )<br>% v/v | Oxygen<br>(O <sub>2</sub> )<br>%v/v | Flow Rate<br>I/hr |
| DS101 | 0.0                            | 0.1 – 0.7                                     | 19.9 – 20.9                         | 0                 |
| DS103 | 0.0                            | 0.0 - 0.4                                     | 19.9 – 21.0                         | 0                 |
| DS104 | 0.0                            | 0.0 - 0.6                                     | 19.5 – 20.9                         | 0                 |
| DS106 | 0.0                            | 0.0 - 0.4                                     | 20.0 - 20.9                         | 0 – 0.5           |

Interpretation of gas monitoring has been carried out in accordance with the recommendations contained within CIRIA 665 (2007) 'Assessing risks posed by hazardous ground gases to buildings'. This guidance includes the calculation of volumetric flow rates of ground based on maximum recorded gas concentrations and maximum recorded gas flow rates. Limiting factors are applied to the gas monitoring results and a characteristic situation is then applied to the site. The worst-case volumetric flow rates are presented in Table 8 below.

| Well  | Maximum CH₄<br>%v/v | Maximum CO₂<br>%v/v | Maximum Flow Rate<br>(I/hr) | Volumetric Flow<br>Rate (I/hr) |
|-------|---------------------|---------------------|-----------------------------|--------------------------------|
| DS101 | 0.0                 | 0.7                 | < 0.1*                      | < 0.0007                       |
| DS103 | 0.0                 | 0.4                 | < 0.1*                      | < 0.0004                       |
| DS104 | 0.0                 | 0.6                 | < 0.1*                      | < 0.006                        |
| DS106 | 0.0                 | 0.4                 | 0.5                         | 0.002                          |

| Table 8 | Summary of Gas Monitoring |
|---------|---------------------------|
|---------|---------------------------|

\* Actual maximum flow rate recorded was 0.0 l/hr. Accuracy of monitoring equipment is to +/- 0.1 l/hr

The gas monitoring indicates that the site may be classified as Characteristic Situation 1 using a modified Wilson and Card classification scheme defined in CIRIA C665. As such no special precautions are necessary as given in Table 8.6 of Ciria C665 with regards to methane and carbon dioxide.

Notwithstanding the above assessment the site is in a Radon affected area with 30% of dwellings exceeding Radon Action Level. As a result, **FULL RADON PROTECTION MEASURES** will be required for all new dwellings.



## 7 GEOTECHNICAL ENGINEERING ASSESSMENT

#### 7.1 Development Proposals

It is understood that the site is to be redeveloped as residential housing with private gardens. No details have been supplied with respect to the development details but based on our knowledge of similar developments it is likely that bearing capacities in the region of 150 kN/m<sup>2</sup>. The development will include associated hardstanding, infrastructure and parking.

## 7.2 Spread Foundations

Ground conditions at the site were found to comprise Topsoil overlying Marlstone rock formation. The Marlstone rock formation has been encountered as generally dense or very dense GRAVEL with varying cobble content. Sandstone beds were encountered at the base of the trial pits. Locally layers of CLAY were encountered, particularly in the upper 1 m which were generally found to be firm. Locally loose and very loose deposits were encountered below a depth of 3 m in the northern section of the site.

Based on the ground conditions encountered (and in consideration of the local variability encountered in the Marlstone rock formation deposits) an allowable bearing capacity of 125 kN/m<sup>2</sup> is considered appropriate for strip foundations up to 0.9 m wide placed at a minimum depth of 0.75 m below ground level. Total settlement would then be limited to 25 mm. It is recommended that additional investigation is carried out in the north of the site prior to further design development to further assess the locally very loose materials identified in DS101 and DS102 below around 3 m depth.

Note that the Marlstone Rock deposits have been found to be generally coarse and laboratory testing indicates that the finer materials encountered are non-shrinkable in accordance with NHBC guidelines. Should shrinkable materials be encountered during subsequent works, NHBC guidelines should be followed for any plots within the influence of existing or proposed trees.

All foundation excavations should be inspected by a suitable qualified engineer prior to blinding and any loose or soft spots removed and replaced with lean mix concrete.

## 7.3 Pile Foundations

Based on the conditions encountered at the site, pile foundations are not considered necessary. Should pile foundations be considered further, addition ground investigation will be required.



#### 7.4 Floor Slab

Full radon protection will need to be incorporated into building construction and consequently a suspended ground floor slab will be required.

#### 7.5 Ground Improvement

Ground improvement is not considered necessary at this stage subject to the findings of additional ground investigation recommended in section 7.2.

#### 7.6 Pavement Design

Particle size distribution testing and Atterberg limit determinations indicate that the near surface materials at the site may be considered to be frost susceptible. The near surface Marlstone Rock deposits were found to be mixtures of fine and coarse soils. Plasticity index testing carried out in the cohesive soils indicates that an equilibrium CBR of 5 % would be appropriate for this material following proof rolling and removal of soft spots.

#### 7.7 Excavations

Groundwater monitoring has recorded no groundwater at shallow depth at the site. Excavation sides were found to be generally stable in the short term during trial pitting, but given the coarse nature of these materials, some side instability should be anticipated. Side support should be provided for deep excavations and any excavations carried out in the vicinity of existing buildings, infrastructure or services or where person entry is required.

#### 7.8 Sulphate Design Classification

The classification of the site in terms of concrete in aggressive ground is based on the guidance provided within the BRE Special Digest 1 (BRE SD1). The characteristic chemical laboratory test results for the eight soil samples testing are presented in Table 9.

| Table 9 | Characteristic soil chemistry results for soil classification |
|---------|---------------------------------------------------------------|
|---------|---------------------------------------------------------------|

| Determinant                                      | Units    | Marlstone Rock Formation   |
|--------------------------------------------------|----------|----------------------------|
| рН                                               | pH Units | 7.6 – 8.2 (average of 8.0) |
| Water Soluble Sulphate (2:1 Leachate Equivalent) | mg/l     | < 10                       |

Chemical testing of samples recovered from soils underlying the site indicates a Design Sulphate class DS-1 with corresponding Aggressive Chemical Environment for Concrete AC-1 is appropriate for any buried concrete at the site.



## For Discovery CE Limited



Edward Tainsh BSc Assistant Geo-environmental Engineer

Cathal Gillege

Cathal Gillespie BEng MSc (Eng) Director



**APPENDIX A - FIGURES** 

Report Number: 21076J-02





| Time Elapsed (t) mins | Depth below Ground<br>level at time t (m) |
|-----------------------|-------------------------------------------|
| 0                     | 2.2                                       |
| 0.25                  | 2.3                                       |
| 0.5                   | 2.42                                      |
| 0.75                  | 2.47                                      |
| 1                     | 2.5                                       |
| 1.25                  | 2.57                                      |
| 1.5                   | 2.6                                       |
|                       |                                           |
|                       |                                           |
|                       |                                           |
|                       |                                           |
|                       |                                           |
|                       |                                           |
|                       |                                           |
|                       |                                           |
|                       |                                           |
|                       |                                           |
|                       |                                           |
|                       |                                           |

| TP102 Test 1     |
|------------------|
| 22/09/2021       |
|                  |
| 3<br>0.45<br>2.6 |
|                  |
| 2.2              |
| 0.27             |
|                  |
| 0.75             |
| 2.73             |
|                  |

2.20E-03

| Soakaway Test                     | Project       | Contract |
|-----------------------------------|---------------|----------|
|                                   | Stocking Lane | 21076J   |
| Discovery C                       | Shenington    | Figure   |
| Geotechnical & Environmental Engi | neers         | A2       |



| Time Elapsed (t) mins | Depth below Ground  |
|-----------------------|---------------------|
|                       | level at time t (m) |
| 0                     | 2.15                |
| 0.25                  | 2.26                |
| 0.5                   | 2.35                |
| 0.75                  | 2.4                 |
| 1                     | 2.48                |
| 1.25                  | 2.58                |
| 1.5                   | 2.6                 |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |

| Trial Pit No:                                                                                             | TP102 Test 2     |
|-----------------------------------------------------------------------------------------------------------|------------------|
| Date:                                                                                                     | 22/09/2021       |
| Test Details                                                                                              |                  |
| Length of Trial Pit <b>a</b> (m):<br>Width of Trial Pit <b>b</b> (m):<br>Depth of Trial Pit <b>D</b> (m): | 3<br>0.45<br>2.6 |
| Test Strata:                                                                                              |                  |
| Maximum Effective Depth (m)                                                                               | 2.15             |
| Volume Outflow between<br>75% and 25% effective<br>depth ((Vp75-25)m3)                                    | 0.30375          |
| Time for water to fall from<br>75% to 25% effective depth<br>((Tp75-25)mins)                              | 0.761805556      |
| Outflow Area ((Ap50) m2)                                                                                  | 2.9025           |
|                                                                                                           |                  |

2.29E-03

 

 Remarks: total of 1000 litres added to test location

 Soakaway Test
 Project Stocking Lane
 Contract 21076J

 Discovery Correct Geotechnical & Environmental Engineers
 Shenington
 Figure A3



| Time Elapsed (t) mins | Depth below Ground  |
|-----------------------|---------------------|
|                       | level at time t (m) |
| 0                     | 2                   |
| 0.25                  | 2.15                |
| 0.5                   | 2.27                |
| 0.75                  | 2.32                |
| 1                     | 2.36                |
| 1.25                  | 2.38                |
| 1.5                   | 2.45                |
| 2                     | 2.5                 |
| 2.5                   | 2.6                 |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |
|                       |                     |

| Trial Pit No:                                                                                             | TP102 Test 3 |                  |
|-----------------------------------------------------------------------------------------------------------|--------------|------------------|
| Date:                                                                                                     | 22/09/2021   |                  |
| Test Details                                                                                              |              |                  |
| Length of Trial Pit <b>a</b> (m):<br>Width of Trial Pit <b>b</b> (m):<br>Depth of Trial Pit <b>D</b> (m): | ,            | 3<br>0.45<br>2.6 |
| Test Strata:                                                                                              |              |                  |
| Maximum Effective Depth (m)                                                                               |              | 2                |
| Volume Outflow between<br>75% and 25% effective<br>depth ((Vp75-25)m3)                                    | 0.           | .405             |
| Time for water to fall from                                                                               |              |                  |
| 75% to 25% effective depth<br>((Tp75-25)mins)                                                             |              | 1.25             |
| Outflow Area ((Ap50) m2)                                                                                  | :            | 3.42             |
|                                                                                                           |              |                  |

1.58E-03

 

 Remarks: total of 1000 litres added to test location

 Soakaway Test
 Project Stocking Lane
 Contract 21076J

 Discovery Cepe Geotechnical & Environmental Engineers
 Shenington
 Figure A4



| Trial Pit No:                                                                                             | TP105 Test 1   |
|-----------------------------------------------------------------------------------------------------------|----------------|
| Date:                                                                                                     | 22/09/2021     |
| Test Details                                                                                              |                |
| Length of Trial Pit <b>a</b> (m):<br>Width of Trial Pit <b>b</b> (m):<br>Depth of Trial Pit <b>D</b> (m): | 3<br>0.45<br>2 |
| Test Strata:                                                                                              |                |
| Maximum Effective Depth (m)                                                                               | 1.4            |
| Volume Outflow between<br>75% and 25% effective<br>depth ((Vp75-25)m3)                                    | 0.405          |
| Time for water to fall from 75% to 25% effective depth                                                    | 4.05           |
| ((Tp75-25)mins)                                                                                           | 1.25           |
| Outflow Area ((Ap50) m2)                                                                                  | 3.42           |

1.58E-03

Remarks: total of 1000 litres added to test location

| Soakaway Test                          | Project       | Contract |
|----------------------------------------|---------------|----------|
|                                        | Stocking Lane | 21076J   |
| Discovery CD                           | Shenington    | Figure   |
| Geotechnical & Environmental Engineers |               | A5       |



| Trial Pit No:                                                                                             | TP105 Test 2   |
|-----------------------------------------------------------------------------------------------------------|----------------|
| Date:                                                                                                     | 22/09/2021     |
| Test Details                                                                                              |                |
| Length of Trial Pit <b>a</b> (m):<br>Width of Trial Pit <b>b</b> (m):<br>Depth of Trial Pit <b>D</b> (m): | 3<br>0.45<br>2 |
| Test Strata:                                                                                              |                |
| Maximum Effective Depth (m)                                                                               | 1.4            |
| Volume Outflow between<br>75% and 25% effective<br>depth ((Vp75-25)m3)                                    | 0.405          |
| Time for water to fall from<br>75% to 25% effective depth<br>((Tp75-25)mins)                              | 1.5            |
| Outflow Area ((Ap50) m2)                                                                                  | 3.42           |
|                                                                                                           |                |
|                                                                                                           |                |
|                                                                                                           |                |

1.32E-03

Remarks: total of 1000 litres added to test location

| Soakaway Test                          | Project       | Contract |
|----------------------------------------|---------------|----------|
|                                        | Stocking Lane | 21076J   |
| Discovery CD                           | Shenington    | Figure   |
| Geotechnical & Environmental Engineers |               | A6       |





**APPENDIX B - DRAWINGS** 

Report Number: 21076J-02



| ~~             | NORTHINCS |         |             |               | General notes     |                    |  |
|----------------|-----------|---------|-------------|---------------|-------------------|--------------------|--|
| 65             | NORTHINGS |         |             |               |                   |                    |  |
| 62             | 242885.95 |         |             |               |                   |                    |  |
| 22             | 242820.32 |         |             |               |                   |                    |  |
| 35             | 242690 92 |         |             |               |                   |                    |  |
| 00             | 242747.21 |         |             |               |                   |                    |  |
| 00             | 242141.21 |         |             |               |                   |                    |  |
| 28             | 242727.02 |         |             |               |                   |                    |  |
| 37             | 242740.61 |         |             |               |                   |                    |  |
| 10             | 242712.44 |         |             |               |                   |                    |  |
|                |           |         |             |               |                   |                    |  |
| 86             | 242884.99 |         |             |               |                   |                    |  |
| 58             | 242820 77 |         |             |               |                   |                    |  |
| 72             | 242691 28 |         |             |               |                   |                    |  |
| 12             | 242031.20 |         |             |               |                   |                    |  |
| 40             | 242740.42 |         |             |               |                   |                    |  |
| 31             | 242725.73 |         |             |               |                   |                    |  |
| 58             | 242741.48 |         |             |               |                   |                    |  |
|                |           |         |             |               |                   |                    |  |
| 20             | 242794.84 |         |             |               |                   |                    |  |
| 02             | 242774.42 |         |             |               |                   |                    |  |
| 04             | 242780.97 |         |             |               |                   |                    |  |
| 48             | 242735.29 |         |             |               |                   |                    |  |
| 01             | 242739 85 |         |             |               |                   |                    |  |
| 15             | 242600 53 |         |             |               |                   |                    |  |
| 40             | 242090.55 |         |             | L             | egend to symbol   | s                  |  |
| 66             | 242/30.11 |         |             |               |                   |                    |  |
| 50             | 242005 05 |         |             |               | Dynomi            | - Prohe            |  |
| 50             | 242885.95 |         | -           |               | Locati            | on                 |  |
| 00             | 242800.00 |         |             |               |                   |                    |  |
| 00             | 242712.44 |         |             |               |                   |                    |  |
|                |           |         | L (         |               | Uynami<br>Locati  | c Sampler          |  |
|                |           |         |             | $\mathcal{V}$ |                   |                    |  |
|                |           |         |             |               |                   |                    |  |
|                |           |         |             | -             |                   |                    |  |
|                |           |         |             |               | Dynami            | c Sampler          |  |
|                |           |         |             |               | Locati<br>(monito | on<br>pring point) |  |
|                |           |         |             |               |                   | 0,                 |  |
|                |           |         |             |               |                   |                    |  |
|                |           |         |             |               | Trial F           | it Location        |  |
|                | Т         | Т       |             |               |                   |                    |  |
|                | 1         | 1       |             | $\square$     | Hand I            | Dug Trial          |  |
|                |           |         | Revision    | Desc          | ription           | Cation             |  |
|                |           |         |             |               |                   |                    |  |
|                | م         |         | IR1         |               |                   |                    |  |
|                | +         | +       | T141 -      |               |                   |                    |  |
| $\sim$         |           |         | The         |               |                   |                    |  |
| -              | 1 - Al 1  |         | E           | xplora        | tory Hole Locatio | n Plan             |  |
|                |           |         |             |               |                   |                    |  |
| <u>i   </u>    |           |         | Project     |               |                   |                    |  |
|                |           | $\perp$ |             | Stock         | ing Lane Shenin   | raton              |  |
| 11             | Τ 、       | Т       |             | SLUCK         | ang Lane, Shenin  | gion               |  |
| 1              |           |         |             |               |                   |                    |  |
| 11             |           |         | Client      |               |                   |                    |  |
| 11             |           |         |             | El            | an Homes Limite   | d                  |  |
| M.             | 1         |         |             |               |                   |                    |  |
| A CARLES       | +         | +       |             |               |                   |                    |  |
| <b>W</b>       |           |         | Die         | 00            | VOPU              |                    |  |
| Geotechnical & |           |         | iscovery CP |               |                   |                    |  |
|                |           |         | Geotech     | nica          | & Environmer      | ital Engineers     |  |
|                |           |         | Date        |               | Drawing No.       | Scale              |  |
|                | +         | +       | 09-11-20    | 021           | 21076J-DR02       | NTS                |  |
|                |           | •       | Drawn By    | ,             | Checked by        | Sheet Size         |  |
|                |           |         | ,<br>гт     |               | CG                | Δ3                 |  |
|                |           |         |             |               |                   | ~~                 |  |
|                |           | _       |             |               | •                 |                    |  |

Elan Shenington/Drawings/21076-DR02 Exploratory Hole Location



APPENDIX C - FIELDWORK METHODOLOGY

Report Number: 21076J-02


## **Dynamic Continuous Sampling Boreholes**

If carried out the locations of the Dynamic continuous sampling boreholes are shown on the exploratory hole location plan. They are put down using a Competitor Dart Drilling rig (Figure C2).

Figure C2: Competitor Dart Rig



The sampling is progressed by driving a hollow steel tube with a plastic inner liner into the ground. Both cohesive and granular soils are "wedged" into the tubing, relying on the friction between the soil and liner to retain the sample on withdrawal of the tubing. Sample can be lost, particularly in loose granular soils if frictional resistance is not sufficient. The technique can be used in the absence of casing in cohesive soils, although the diameter of tubing is progressively reduced from 101 mm, through 92, 79, 70, 57 and 47 mm dia to ensure that frictional resistance on the sides of the sampling tubing does not exceed the capacity of the equipment to pull the tubing from the hole. Small diameter 115 mm diameter casing can be driven simultaneously with the sampling tube in soft or loose soils to a maximum depth of around 7 m. Standard penetration testing and recovery of "undisturbed" samples is possible in the correct conditions.

Full details of the dynamic continuous sampling holes including soil descriptions to BS 5930, SPT test results and samples recovered are presented on the exploratory hole location plan.

# **Dynamic Probing**



Dynamic Probing holes are carried out using a Competitor Dart Drilling rig (Figure C2). Two variants of dynamic probing are commonly carried out as detailed in BS1377 Part 9 section 3.2, 1998 including Dynamic Probing Heavy (DPH) and Dynamic Probing Super Heavy (DPSH), details are given in Table C1 below.

| Part                  | Heavy (DPH) | Super Heavy(DPSH) |
|-----------------------|-------------|-------------------|
| Drive Weight (kg)     | 50 ± 0.5    | 63.5 ± 0.5        |
| Drop Height (mm)      | 500 ± 10    | 750 ± 20          |
| Nom. Cone Area (cm2)  | 15          | 20                |
| Cone Diameter (mm)    | 43.7 ± 0.3  | 50.5 ± 0.5        |
| Cone Mantle Length    |             |                   |
| (mm)                  | 43.7 ± 1    | 50.5 ± 2          |
| Cone Tip Length (mm)  | 21.9 ± 0.1  | 55.3 ± 0.4        |
| Drive Rod Diameter    |             |                   |
| (mm)                  | 35          | 35                |
| Drive Rod Mass (kg/m) | 6           | 8                 |

Table C1: Dynamic Probing Summary

The test is carried out by driving 1 m long drive rods, marked up with 100 mm graduations into the ground and counting the number of blow required for each 100 mm of penetration. Where very soft or loose deposits are encountered, the rods can penetrate more than 100 mm for a single blow in which case the penetration for that blow (to the nearest 100 mm) is recorded on the results sheet.

If dynamic probing was carried out for this project, full details will be included in Appendix D.

# **Trial Pitting**

Trial pits are typically machine excavated using a JCB 3CX type mechanical excavator. Where hard surfacing is present at the trial pit locations, a hydraulic breaker attachment is used to penetrate the layer and allow subsequent excavation using either a 600 mm or 900 mm wide toothed excavator bucket. Excavation is progressed slowly to allow inspection of the geology revealed and samples were recovered at the discretion of the supervising engineer for subsequent laboratory analysis.

Excavations are typically taken to a maximum depth of 4 m bgl or in the event of obstructions or shallow groundwater being present, excavations are terminated at shallower depth. On completion, the trial pits are backfilled with lightly compacted arisings, tamped into place using the knuckle of the excavator bucket.



Full details of the trial pitting including soil descriptions to BS 5930 including details of samples recovered are presented in Appendix D

## Gas and Groundwater Monitoring

Gas monitoring is carried out using a Gas Data GFM430 infra-red gas analyser to record concentrations of Carbon Dioxide, Oxygen, Methane and record atmospheric and downhole pressures together with borehole gas flow rates.

Prior to groundwater sampling, each borehole is purged, and in-situ readings recovered for pH, temperature, electrical conductivity, dissolved oxygen and redox potential. Samples are recovered once the parameters measured had stabilised.

Rising head permeability testing is commonly carried out in the boreholes on a return visit to site.

Details of any gas and groundwater monitoring or permeability testing is presented in Appendix D.

## **Topographical Survey**

On completion of the fieldwork a topographical survey is usually carried out to determine the location and elevation of the boreholes and trial pits. Exploratory holes are surveyed to a Local Grid/ Ordnance Survey National Grid and the details are presented on the exploratory hole log drawing and on the exploratory hole logs.

Report Number: 21076J-02



APPENDIX D - FIELDWORK RECORDS



| F                | Project      |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           | BOREH                                  | IOLE       | No                   |
|------------------|--------------|------------|---------------|--------|------------------|-------------------|---------------------------|------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------|------------|----------------------|
|                  | Stoc         | king       | Lane, S       | Shenin | gton             |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        | 101        |                      |
| J                | ob No        |            |               | Date 2 | 29-09-21         |                   | Ground L                  | evel (n                      | n)                                                     | Co-Ordir                                                 | nates ()                                         |                                                    |                                           | 03                                     | 101        |                      |
|                  | 210          | )76J       |               | 2      | 29-09-21         |                   | 1                         | 79.98                        |                                                        | E 4                                                      | 36,911.                                          | 0 N 24                                             | 2,885.0                                   |                                        |            |                      |
| (                | Contractor   |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           | Sheet                                  |            |                      |
|                  | Dise         | covery     | y CE          |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           | 1 0                                    | of 1       |                      |
|                  | SAMPL        | ES &       | TEST          | S L    |                  |                   |                           |                              |                                                        | STRAT                                                    | 4                                                |                                                    |                                           |                                        |            | ent/                 |
|                  | Depth        | Type<br>No | Test<br>Resul | Mate   | Reduced<br>Level | Legend            | Depth<br>(Thick-<br>ness) |                              |                                                        |                                                          | DESCR                                            | IPTION                                             |                                           |                                        | Geology    | Instrume<br>Backfill |
| - (              | 0.20         | ES         |               |        | 179.38           |                   | (0.60)                    | Gras<br>CLA<br>sub-a<br>fine | s overlyin<br>Y. Gravel<br>angular fin<br>rootlets (le | g firm ligh<br>is brown s<br>ne to mediu<br>ess than 5 i | t orange-l<br>sub-round<br>um sandst<br>mm diame | brown slig<br>led fine to<br>cone with i<br>eter). | htly gravell<br>medium qu<br>ron staining | y sandy<br>artzite and<br>. Occasional |            |                      |
| Ē                | ).75         | ES         |               |        |                  |                   |                           | TOP                          | SOIL                                                   |                                                          |                                                  |                                                    |                                           | /                                      | 1          |                      |
| F                | 1.00         | D          |               |        |                  |                   | · [                       | Med                          | ium dense                                              | becoming                                                 | very den                                         | se orange                                          | brown sligh                               | tly gravelly                           |            |                      |
| <u>†</u> 1       | 1.00         |            | N46           |        |                  |                   | <br>                      | very<br>sub-a                | clayey SA<br>angular fii                               | AND. Grav<br>ne to mediu                                 | el 1s orang<br>um sandst                         | ge-brown<br>one with i                             | occasionally<br>ron staining              | / black                                |            |                      |
|                  | 1.50         | В          | 12,13,1       | 3,8    |                  |                   | (2.40)                    | MAI                          | RLSTONI                                                | E ROCK F                                                 | ORMATI                                           | ION                                                | c                                         |                                        |            |                      |
| E                | 2 00         |            | N40           |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| ļ                | 2.00         |            | 7,10          |        |                  | [                 | -<br>-<br>-<br>-          |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| Ē                |              |            | 13,3,4,       | ,20    |                  | <u> </u>          | ·                         |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| F                |              |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| Ę.               | 2 00         |            | N4            |        | 176.98           |                   | 3.00                      | Laga                         | a and yam                                              | 10000 hos                                                | omina to                                         | mi danca c                                         | manga huan                                | n aliahtlu                             | <u> </u>   |                      |
| Ē                | 5.00         |            | 10,4          | /      |                  | - · · · · · · · · | <br>                      | grav                         | elly claye                                             | y ISAND. C                                               | Gravel is o                                      | ry dense c<br>range-bro                            | wn occasion                               | n slightly<br>nally black              |            |                      |
| ŧ                |              |            | 1,1,1,        | ,1     |                  |                   |                           | sub-a                        | angular m                                              | edium iron                                               | stained s                                        | andstone.                                          |                                           |                                        |            |                      |
| Ē                |              |            |               |        |                  | . · <u> </u>      | <del>.</del>              | MAI                          | RLSTONI                                                | E ROCK F                                                 | ORMATI                                           | ION                                                |                                           |                                        |            |                      |
| E                |              |            |               |        |                  | · · · · ·         | · [<br>· [<br>· [-        |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| +4               | 4.00         |            | N4            | ,      |                  |                   | ··-<br>.=                 |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| E                |              |            | 1,1,1,        | ,1     |                  | [                 |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| ŧ                |              |            |               |        |                  | . <u></u> a -     | (3.45)                    |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| Ē                |              |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
|                  | 5.00<br>5.00 | D          | NI            |        |                  |                   | , <u>-</u><br>            |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| Ē                |              |            | 1,0/          | 1      |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            | <b>Rest</b>          |
| 5                |              |            | 0,0,0,        | ,1     |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
|                  | 5.80         | D          |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| <u> </u>         | 5.00         |            | N50           | )      |                  |                   | · -<br>· -                |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| -<br>-<br>-      |              |            | 3,15,17       | ,15    | 173.53           |                   | 6.45                      |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
|                  |              |            |               |        |                  |                   | -                         |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
|                  |              |            |               |        |                  |                   | -                         |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| z E              |              |            |               |        |                  |                   | -                         |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| 5                |              |            |               |        |                  |                   | -                         |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| ל <u>ל</u><br>וו |              |            |               |        |                  |                   | -                         |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
| SE               |              |            |               |        |                  |                   | -                         |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
|                  |              |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           | CED H                                  |            |                      |
| NO- N            |              |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           | GENE<br>REMA                           | KAL<br>RKS |                      |
|                  |              |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           | No groundwat                           | er         |                      |
|                  |              |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           | encountered. S                         | PT refi    | usal at              |
| D<br>NIN<br>N    |              |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           | groundwater a                          | nd grou    | ind                  |
|                  |              |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           | gas standpipe                          | o 5.0 n    | n.                   |
|                  |              |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
|                  |              |            |               |        |                  |                   |                           |                              |                                                        |                                                          |                                                  |                                                    |                                           |                                        |            |                      |
|                  | All dimens   | ions in    | metres        | Clien  | t Elan           | Homes             | Limited                   |                              | Method/                                                |                                                          |                                                  |                                                    |                                           | Logged By                              |            |                      |
| AGN              | Sca          | le 1:50    |               |        | 21011            |                   |                           |                              | Plant Us                                               | ed Co                                                    | mpetito                                          | r DART                                             |                                           | E                                      | Г          |                      |



| Project                                      |                       |              |                 |       |                  |                                         |                       |                                   |                                                      |                                                             |                                    |                                   |                                          | BOREH                                                                                  | OLE                              | No                   |
|----------------------------------------------|-----------------------|--------------|-----------------|-------|------------------|-----------------------------------------|-----------------------|-----------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------|----------------------|
| Sto                                          | ocking                | Lane,        | She             | ning  | ton              |                                         |                       |                                   |                                                      |                                                             |                                    |                                   |                                          | 90                                                                                     | 102                              |                      |
| Job No                                       |                       |              | Date            | e 2   | 9-09-21          |                                         | Ground L              | evel (m                           | 1)                                                   | Co-Ordinat                                                  | tes ()                             |                                   |                                          | 03                                                                                     | 102                              | I                    |
| 21                                           | 076J                  |              |                 | 2     | 9-09-21          |                                         | 1                     | 79.17                             |                                                      | E 430                                                       | 6,943.0                            | N 242                             | ,820.0                                   |                                                                                        |                                  |                      |
| Contractor                                   |                       |              |                 |       |                  |                                         |                       |                                   |                                                      |                                                             |                                    |                                   |                                          | Sheet                                                                                  |                                  |                      |
| Dis                                          | scover                | y CE         |                 |       |                  |                                         |                       |                                   |                                                      |                                                             |                                    |                                   |                                          | 1 0                                                                                    | ot I                             | 1.                   |
| SAMPI                                        | LES &                 | TEST         | ſS              | er    |                  |                                         |                       | 1                                 | 5                                                    | STRATA                                                      |                                    |                                   |                                          |                                                                                        | - Xî                             | nent<br>11           |
| Depth                                        | Type<br>No            | Tes<br>Resi  | st<br>ult       | Wat   | Reduced<br>Level | Legend                                  | (Thick-<br>ness)      |                                   |                                                      | I                                                           | DESCRI                             | PTION                             |                                          |                                                                                        | Geolog                           | Instrur<br>Backfi    |
| 0.30                                         | ES                    |              |                 |       | 178.42           |                                         | (0.75)<br>0.75        | Grass<br>Grave<br>fine t<br>(less | s overlying<br>el is brown<br>to medium<br>than 5 mn | g light orang<br>n sub-round<br>sandstone v<br>n diameter). | e-brown<br>ed fine to<br>vith iron | slightly g<br>medium<br>staining. | ravelly san<br>quartzite a<br>Occasional | dy CLAY.<br>nd sub-angular<br>fine rootlets                                            |                                  |                      |
| 1.00                                         |                       | N2<br>4,5    | 24<br>5/<br>7.7 |       | 177.67           |                                         | (0.75)                | Stiff<br>dark<br>with             | orange-br<br>brown sub<br>iron staini                | own slightly<br>o-rounded ar<br>ng.                         | gravelly<br>nd sub-ar              | sandy Cl<br>ngular fine           | LAY. Grav<br>e to mediur                 | el is brown and<br>n sandstone                                                         |                                  |                      |
| 1.50                                         | D                     | 5,5,         | ,,,             |       | 1//.0/           |                                         | $\frac{1.30}{1.040}$  | MAR                               | RLSTONE                                              | ROCK FO                                                     | RMATIC                             | DN.                               |                                          | /                                                                                      |                                  |                      |
| -                                            |                       |              |                 |       | 177.27           | <br>                                    | 1.90                  | Firm                              | orange-br                                            | own very sa                                                 | ndy CLA                            | AY.                               |                                          |                                                                                        |                                  |                      |
| $\begin{bmatrix} 2.00 \\ 2.00 \end{bmatrix}$ | В                     | NI           | 4               |       |                  |                                         |                       | MAR                               | RLSTONE                                              | ROCK FO                                                     | RMATIC                             | DN                                |                                          |                                                                                        |                                  |                      |
| -                                            |                       | 8,5<br>3,3,3 | 5/<br>3,5       |       |                  |                                         | (1.10)                | dark<br>sands                     | um dense<br>brown and<br>stone with                  | orange-brov<br>l brown ang<br>iron stainin                  | vn slight<br>jular and<br>g.       | ly clayey<br>sub-angu             | gravelly SA<br>lar fine to r             | AND. Gravel 1s<br>nedium                                                               |                                  |                      |
| E an                                         |                       |              |                 |       | 176.17           | · • · ·                                 | 3.00                  | MAR                               | RESTONE                                              | ROCK FO                                                     | RMATIC                             | DN                                |                                          |                                                                                        |                                  |                      |
| - 3.00                                       |                       | N<br>10,     | 1<br>2/         |       |                  | - · · · · · · · · · · · · · · · · · · · |                       | NOF                               | RECOVER                                              | ζΥ<br>                                                      |                                    |                                   |                                          |                                                                                        |                                  |                      |
| -                                            |                       | 1,0,0        | 0,0             |       |                  | -· · <u>-</u>                           | (0.80)                | Possi<br>SAN                      | ibly very l<br>D. Gravel                             | oose becomi<br>is angular a                                 | ing very on nd sub-ar              | dense ora<br>ngular me            | nge-brown<br>dium sand                   | clayey gravelly stone with iron                                                        |                                  |                      |
| 3.80                                         |                       | NI50/2/      | 10              |       | 175.37           |                                         | - 3.80                | staini                            | ing.                                                 | -                                                           |                                    | -                                 |                                          | ,                                                                                      |                                  |                      |
| - 5.80                                       |                       | 20,          | 5/<br>5/        | 1     | 174.02           |                                         | (0.45)                | MAR                               | RECOVE                                               | ROCK FO                                                     | RMATIC                             | DN                                |                                          | /                                                                                      |                                  |                      |
| -<br>-<br>-<br>-                             |                       | 3,20,2       | 20,7            |       | 1/4.92           |                                         | - 4.23<br>-<br>-<br>- | Very                              | dense ora                                            | nge-brown o<br>r medium sr                                  | clayey gr<br>adstone               | avelly SA<br>with iron            | ND. Grave<br>staining.                   | el is angular                                                                          |                                  | 10024                |
|                                              |                       |              |                 |       |                  |                                         | -                     | MAR                               | LSTONE                                               | ROCK FO                                                     | RMATIC                             | N                                 | 0                                        |                                                                                        |                                  |                      |
| -                                            |                       |              |                 |       |                  |                                         | -                     | [112 LI                           | LEFICITE                                             | ROCKIO                                                      |                                    |                                   |                                          |                                                                                        |                                  |                      |
| -                                            |                       |              |                 |       |                  |                                         | E                     |                                   |                                                      |                                                             |                                    |                                   |                                          |                                                                                        |                                  |                      |
| -                                            |                       |              |                 |       |                  |                                         | Ę                     |                                   |                                                      |                                                             |                                    |                                   |                                          |                                                                                        |                                  |                      |
| [<br>]                                       |                       |              |                 |       |                  |                                         | -                     |                                   |                                                      |                                                             |                                    |                                   |                                          |                                                                                        |                                  |                      |
|                                              |                       |              |                 |       |                  |                                         | Ē                     |                                   |                                                      |                                                             |                                    |                                   |                                          |                                                                                        |                                  |                      |
|                                              |                       |              |                 |       |                  |                                         | E                     |                                   |                                                      |                                                             |                                    |                                   |                                          |                                                                                        |                                  |                      |
|                                              |                       |              |                 |       |                  |                                         | -                     |                                   |                                                      |                                                             |                                    |                                   |                                          |                                                                                        |                                  |                      |
|                                              |                       |              |                 |       |                  |                                         | -                     |                                   |                                                      |                                                             |                                    |                                   |                                          |                                                                                        |                                  |                      |
|                                              |                       |              |                 |       |                  |                                         | È                     |                                   |                                                      |                                                             |                                    |                                   |                                          |                                                                                        |                                  |                      |
| -                                            |                       |              |                 |       |                  |                                         | Ę                     |                                   |                                                      |                                                             |                                    |                                   |                                          |                                                                                        |                                  |                      |
| -                                            |                       |              |                 |       |                  |                                         | Ę                     |                                   |                                                      |                                                             |                                    |                                   |                                          |                                                                                        |                                  |                      |
|                                              | 1                     | 1            |                 |       | 1                | L                                       |                       | 1                                 |                                                      |                                                             |                                    |                                   |                                          | GENE<br>REMA                                                                           | RAL<br>RKS                       | ,<br>,               |
|                                              |                       |              |                 |       |                  |                                         |                       |                                   |                                                      |                                                             |                                    |                                   |                                          | No groundwate<br>encountered. To<br>early due to SP<br>4.25 m. Backfi<br>clean gravel. | r<br>ermina<br>T refu<br>lled wi | ated<br>sal at<br>th |
| All dimen Sc                                 | isions in<br>ale 1:50 | metres       | C               | lient | Elan             | Homes                                   | Limited               |                                   | Method/<br>Plant Use                                 | ed Corr                                                     | petitor                            | DART                              |                                          | Logged By<br>ET                                                                        | -<br>-                           |                      |



| Project                   |                      |              |          |       |                  |        |                           |                      |                                         |                               |                                           |                              |                                      |                                      |                                         | BOR                                                                 | EH                                                | OLE                                          | No                        |
|---------------------------|----------------------|--------------|----------|-------|------------------|--------|---------------------------|----------------------|-----------------------------------------|-------------------------------|-------------------------------------------|------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------|
| Sto                       | cking                | Lane,        | Shei     | ning  | ton              |        |                           |                      |                                         |                               |                                           |                              |                                      |                                      |                                         | П                                                                   |                                                   | 102                                          |                           |
| Job No                    |                      |              | Date     | ° 29  | 9-09-21          |        | Ground L                  | evel (n              | n)                                      | Co-O                          | ordinates ()                              | )                            |                                      |                                      |                                         | U                                                                   | 3                                                 | 103                                          |                           |
| 21                        | 076J                 |              |          | 29    | 9-09-21          |        | 1                         | 77.93                |                                         | ]                             | E 436,97                                  | 4.0                          | N 242,                               | 690.0                                |                                         |                                                                     |                                                   |                                              |                           |
| Contractor                |                      |              |          |       |                  |        |                           |                      |                                         |                               |                                           |                              |                                      |                                      |                                         | Sheet                                                               |                                                   |                                              |                           |
| Dis                       | covery               | y CE         |          |       |                  |        |                           |                      |                                         |                               |                                           |                              |                                      |                                      |                                         | ]                                                                   | 1 0                                               | f 1                                          | -                         |
| SAMPL                     | ES &                 | TEST         | `S       | r     |                  |        |                           |                      | S                                       | STRA                          | ATA                                       |                              |                                      |                                      |                                         |                                                                     |                                                   | y                                            | lent/                     |
| Depth                     | Type<br>No           | Tes<br>Resu  | t<br>ılt | Wate  | Reduced<br>Level | Legend | Depth<br>(Thick-<br>ness) |                      |                                         |                               | DESC                                      | CRIPT                        | TION                                 |                                      |                                         |                                                                     |                                                   | Geolog                                       | Instrum<br>Backfil        |
| 0.15                      | ES                   |              |          |       |                  |        | (0.60)                    | Gras<br>Grav<br>fine | s overlying<br>el is brown<br>to medium | g light<br>n sub-i<br>i sands | orange-bro<br>rounded fir<br>stone with i | own sl<br>ne to r<br>iron st | lightly gra<br>nedium q<br>aining. C | avelly sar<br>uartzite a<br>ccasiona | ndy C<br>and su<br>I fine               | LAY.<br>b-angula<br>rootlets                                        | ar                                                |                                              |                           |
| 0.50                      | D                    |              |          |       | 177.33<br>177.03 |        | 0.60<br>0.90              | (less                | than 5 mn<br>SOIL                       | n diam                        | eter).                                    |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
| -0.90<br>- 1.00<br>- 1.00 | ES<br>D              | N50/20       | Jmm      |       | 176.48           | 0000   | (0.55)                    | Firm<br>dark<br>with | orange-br<br>brown sub<br>iron staini   | own s<br>o-roun<br>ng.        | lightly grav<br>ded and su                | velly s<br>ıb-ang            | andy CL<br>ular fine                 | AY. Grav<br>to mediu                 | vel is l<br>m san                       | orown ai<br>dstone                                                  | nd                                                |                                              |                           |
| -                         |                      | 6,8<br>13,20 | ,17      |       | 170.40           | 000    | - 1.43                    | MAF                  | RESTONE                                 | ROC                           | K FORMA                                   | ATION                        | J.                                   |                                      |                                         |                                                                     |                                                   |                                              |                           |
|                           |                      |              | -        |       |                  |        | -                         | Very<br>brow         | dense ora<br>n and oran                 | nge-bi                        | rown-yello<br>gular and s                 | w san<br>sub-an              | dy GRAV<br>Igular me                 | /EL. Gra<br>dium to c                | vel is<br>coarse                        | dark                                                                |                                                   |                                              |                           |
| -                         |                      |              |          |       |                  |        | -                         | MAI                  | RLSTONE                                 | ROC                           | K FORMA                                   | ATION                        | V                                    |                                      |                                         |                                                                     |                                                   |                                              |                           |
| -                         |                      |              |          |       |                  |        | -<br>-<br>-               |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
| -<br>-<br>-               |                      |              |          |       |                  |        | -<br>-<br>-               |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
|                           |                      |              |          |       |                  |        | -<br>-<br>-               |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
| -<br>-<br>-               |                      |              |          |       |                  |        | -<br><br>-                |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
| -                         |                      |              |          |       |                  |        | -<br>-<br>-               |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
|                           |                      |              |          |       |                  |        | -<br>-<br>-               |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
|                           |                      |              |          |       |                  |        |                           |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
| 11/21                     |                      |              |          |       |                  |        | -                         |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
| .6DT 22                   |                      |              |          |       |                  |        | <br>-<br>-                |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
| AGS 3_1                   |                      |              |          |       |                  |        | -<br>-<br>-               |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
|                           |                      |              |          |       |                  |        | -<br>-<br>-               |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
|                           |                      |              |          |       |                  |        | -                         |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
|                           |                      |              |          |       |                  |        | -                         |                      |                                         |                               |                                           |                              |                                      |                                      |                                         |                                                                     |                                                   |                                              |                           |
|                           |                      |              |          |       |                  |        |                           |                      |                                         |                               |                                           |                              |                                      |                                      |                                         | GEI<br>REN                                                          | NEI<br>MA                                         | RAL<br>RKS                                   |                           |
| 076J SHENINGTON LOG       |                      |              |          |       |                  |        |                           |                      |                                         |                               |                                           |                              |                                      |                                      | No<br>enc<br>earl<br>1.4:<br>gro<br>gas | groundw<br>ountered<br>y due to<br>5 m. Inst<br>undwate<br>standpip | vater<br>I. Te<br>SPT<br>called<br>r and<br>pe to | rmina<br>Frefus<br>1 with<br>d grou<br>1.0 m | ted<br>sal at<br>nd<br>1. |
|                           |                      |              |          |       |                  |        | <b>T</b> • • •            |                      | 26.1.1                                  |                               |                                           |                              |                                      |                                      |                                         | 1.0                                                                 |                                                   |                                              |                           |
| All dimen                 | sions in<br>ale 1:50 | metres       |          | lient | Elan l           | Homes  | Limited                   |                      | Method/<br>Plant Use                    | ed                            | Competi                                   | itor E                       | DART                                 |                                      | Log                                     | ged By                                                              | ΕT                                                |                                              |                           |



| Pro                                        | ject             |                    |                         |                  |       |                                                 |        |                                                      |                                                                                     |                                                                                                                                                     |                                                                                                  |                                                       |                                                                                       |                                                                                   |                                                                        | BORE                                                                                        | HOLE                                           | E No                    |
|--------------------------------------------|------------------|--------------------|-------------------------|------------------|-------|-------------------------------------------------|--------|------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------|
|                                            | Stoc             | king               | Lane,                   | Sher             | ning  | ton                                             |        |                                                      |                                                                                     |                                                                                                                                                     |                                                                                                  |                                                       |                                                                                       |                                                                                   |                                                                        |                                                                                             | 240/                                           |                         |
| Job                                        | No               |                    |                         | Date             | 20    | 9-09-21                                         |        | Ground L                                             | evel (n                                                                             | n)                                                                                                                                                  | Co-O                                                                                             | rdinates ()                                           |                                                                                       |                                                                                   |                                                                        |                                                                                             | 5104                                           | ŀ                       |
|                                            | 210              | )76J               |                         |                  | 29    | 9-09-21                                         |        | 1                                                    | 78.78                                                                               | 3                                                                                                                                                   | I                                                                                                | E 436,922                                             | .0 N                                                                                  | 1 242,74                                                                          | 7.0                                                                    |                                                                                             |                                                |                         |
| Co                                         | ntractor         |                    |                         |                  |       |                                                 |        |                                                      |                                                                                     |                                                                                                                                                     |                                                                                                  |                                                       |                                                                                       |                                                                                   |                                                                        | Sheet                                                                                       |                                                |                         |
|                                            | Dise             | covery             | / CE                    |                  |       |                                                 |        |                                                      |                                                                                     |                                                                                                                                                     |                                                                                                  |                                                       |                                                                                       |                                                                                   |                                                                        | 1                                                                                           | of 1                                           |                         |
| S                                          | AMPL             | ES &               | TEST                    | `S               | 'n    | _                                               |        |                                                      |                                                                                     | S                                                                                                                                                   | STRA                                                                                             | TA                                                    |                                                                                       |                                                                                   |                                                                        |                                                                                             |                                                | ent/                    |
| Г                                          | Depth            | Type<br>No         | Tes<br>Resi             | t<br>ılt         | Wate  | Reduced<br>Level                                | Legend | Depth<br>(Thick-<br>ness)                            |                                                                                     |                                                                                                                                                     |                                                                                                  | DESCF                                                 | RIPTIO                                                                                | ON                                                                                |                                                                        |                                                                                             | Geolog                                         | Instrum<br>Backfill     |
| THIS ONE.GPJ GINT STD AGS 3_1.GDT 22/11/21 | 0                | ES                 | N60/22<br>6,1(<br>15,16 | 5mn<br>)/<br>,29 | 1     | <u>178.28</u><br><u>177.78</u><br><u>177.33</u> |        | (0.50)<br>0.50<br>(0.50)<br>(0.50)<br>(0.45)<br>1.45 | Gras<br>Grav<br>fine<br>(less<br>TOP<br>Med<br>and c<br>sand<br>Very<br>medi<br>MAI | ss overlying<br>vel is brow<br>to medium<br>than 5 mm<br><u>PSOIL</u><br>fium dense<br>dark brown<br>stone with<br><u>RLSTONE</u><br><u>RLSTONE</u> | g light<br>n sub-r<br>sands<br>orange<br>n sub-r<br>iron st<br>ROCI<br>low-br<br>rse san<br>ROCI | orange-brow<br>ounded fine<br>tone with irc<br>eter). | wn slig<br>e to me<br>on stai<br>yey sar<br>sub-a<br>fION.<br>sandy<br>iron s<br>ΓΙΟΝ | htly gravd<br>dium qua<br>ning. Occ<br>ndy GRA<br>ngular fin<br>GRAVE<br>taining. | elly sand<br>rtzite an<br>asional f<br>VEL. Gr<br>e to med<br>L. Grave | y CLAY.<br>d sub-angular<br>ine rootlets<br>avel is brown<br>ium                            |                                                |                         |
| ENINGTON LOGS - USE                        |                  |                    |                         |                  |       |                                                 |        |                                                      |                                                                                     |                                                                                                                                                     |                                                                                                  |                                                       |                                                                                       |                                                                                   |                                                                        | GEN<br>REM<br>No groundwa<br>encountered.<br>early due to S<br>1.45 m. Back<br>clean gravel | ERAI<br>ARKS<br>Termin<br>SPT refu<br>filled w | ated<br>usal at<br>rith |
| DS 21076J SH                               |                  |                    |                         |                  |       |                                                 |        |                                                      |                                                                                     |                                                                                                                                                     |                                                                                                  |                                                       |                                                                                       |                                                                                   |                                                                        | ereari gravel.                                                                              |                                                |                         |
|                                            | ll dimens<br>Sca | ions in<br>le 1:50 | metres                  | Cl               | lient | Elan                                            | Homes  | Limited                                              |                                                                                     | Method/<br>Plant Use                                                                                                                                | ed                                                                                               | Competito                                             | or DA                                                                                 | ART                                                                               |                                                                        | Logged By                                                                                   | ET                                             |                         |



| Project    |                      |                                   |                        |      |                                                                  |        |                                                             |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                      |                                                                                                                         |                                                                                 | BOREH                                              | OLE               | No                 |
|------------|----------------------|-----------------------------------|------------------------|------|------------------------------------------------------------------|--------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|-------------------|--------------------|
| Sto        | cking                | Lane, S                           | Shen                   | ning | ton                                                              |        |                                                             |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                      |                                                                                                                         |                                                                                 |                                                    | 4 N E             |                    |
| Job No     |                      |                                   | Date                   | 20   | 9-09-21                                                          |        | Ground L                                                    | evel (m)                                                                                                                                             | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Co-Ordina                                             | ates ()                              |                                                                                                                         |                                                                                 | 0                                                  | 105               |                    |
| 210        | )76J                 |                                   |                        | 2    | 9-09-21                                                          |        | 1                                                           | 77.84                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E 43                                                  | 7,020.0                              | N 242                                                                                                                   | 727.0                                                                           |                                                    |                   |                    |
| Contractor |                      |                                   |                        |      |                                                                  |        |                                                             |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                      |                                                                                                                         |                                                                                 | Sheet                                              |                   |                    |
| Dis        | covery               | / CE                              |                        |      |                                                                  |        |                                                             |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                      |                                                                                                                         |                                                                                 | 1 0                                                | of 1              |                    |
| SAMPL      | ES &                 | TEST                              | S                      | SI.  |                                                                  |        |                                                             |                                                                                                                                                      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRATA                                                 |                                      |                                                                                                                         |                                                                                 |                                                    |                   | lent/              |
| Depth      | Type<br>No           | Tes<br>Resu                       | t<br>ılt               | Wat  | Reduced<br>Level                                                 | Legend | Depth<br>(Thick-<br>ness)                                   |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | DESCRI                               | PTION                                                                                                                   |                                                                                 |                                                    | Geolog            | Instrun<br>Backfil |
|            | D                    | N20<br>4,3<br>5,5,5<br>15,1<br>50 | 0<br>/;;5<br>5mm<br>0/ |      | <u>177.19</u><br><u>176.84</u><br><u>176.34</u><br><u>175.39</u> |        | (0.65)<br>0.65<br>1.00<br>(0.50)<br>1.50<br>-(0.95)<br>2.45 | Grass<br>Grave<br>fine to<br>(less ti<br>TOPS<br>Orang<br>dark b<br>with in<br>MARI<br>Stiff b<br>brown<br>MARI<br>Dense<br>Grave<br>with in<br>MARI | OVERIGING<br>1 is brown<br>1 is brown<br>is brown shown<br>OIL<br>ge-brown sub-<br>prown sub-<br>prown-oral-<br>torange a<br>LSTONE<br>becoming<br>1 is orange<br>1 is orang | Alight orange<br>sub-round<br>sandstone<br>diameter). | ge-brown<br>led fine to<br>with iron | dy CLAY.<br>ngular fine<br><u>DN.</u><br>very sand<br>ium sands<br><u>DN</u><br>slightly cla<br>d sub-angu<br><u>DN</u> | Gravel is i<br>ccasional<br>Gravel is i<br>to medium<br>y CLAY. O<br>tone grave | Gravel is<br>GRAVEL.<br>n sandstone                |                   |                    |
|            |                      |                                   |                        |      |                                                                  |        |                                                             |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                      |                                                                                                                         |                                                                                 | GENE<br>REMA<br>No groudwater<br>encountered. T    | RAL<br>RKS        | ited               |
|            |                      |                                   |                        |      |                                                                  |        |                                                             |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                      |                                                                                                                         |                                                                                 | early due to SP<br>2.45 m. Backfi<br>clean gravel. | T refu<br>lled wi | sal at<br>ith      |
| All dimens | sions in<br>ile 1:50 | metres                            | Cl                     | ient | Elan                                                             | Homes  | Limited                                                     |                                                                                                                                                      | Method/<br>Plant Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d Cor                                                 | npetitor                             | DART                                                                                                                    |                                                                                 | Logged By<br>E                                     | <br>[             |                    |



| Project          |                      |                     |                    |                |                  |        |                           |                               |                                                     |                                                                                   |                                                |                                              | BOREH                                                                                                                       | OLE                                                                    | No                        |
|------------------|----------------------|---------------------|--------------------|----------------|------------------|--------|---------------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------|
| Sto              | ocking               | Lane,               | She                | ning           | ton              |        |                           |                               |                                                     |                                                                                   |                                                |                                              | פח                                                                                                                          | 106                                                                    |                           |
| Job No           |                      |                     | Dat                | <sup>e</sup> 2 | 9-09-21          |        | Ground L                  | evel (n                       | n)                                                  | Co-Ordinates ()                                                                   |                                                |                                              | 03                                                                                                                          | 100                                                                    |                           |
| 21               | 076J                 |                     |                    | 2              | 9-09-21          |        | 1                         | 79.34                         | -                                                   | E 436,827                                                                         | 7.0 N 242                                      | ,740.0                                       |                                                                                                                             |                                                                        |                           |
| Contractor       | •                    |                     |                    |                |                  |        |                           |                               |                                                     |                                                                                   |                                                |                                              | Sheet                                                                                                                       | <b>.</b> .                                                             |                           |
| Dis              | scover               | y CE                |                    |                |                  |        |                           |                               |                                                     |                                                                                   |                                                |                                              | 1 0                                                                                                                         | of 1                                                                   |                           |
| SAMPI            | LES &                | TEST                | ΓS                 | er             |                  |        |                           |                               |                                                     | STRATA                                                                            |                                                |                                              |                                                                                                                             | 23                                                                     | nent/<br>II               |
| Depth            | Type<br>No           | Tes<br>Res          | st<br>ult          | Wat            | Reduced<br>Level | Legend | Depth<br>(Thick-<br>ness) |                               |                                                     | DESC                                                                              | RIPTION                                        |                                              |                                                                                                                             | Geolog                                                                 | Instrun<br>Backfi         |
| 0.10             | ES                   |                     |                    |                | 178.69           |        | (0.65)<br>0.65            | Gras<br>Grav<br>fine<br>(less | s overlyin<br>rel is brow<br>to medium<br>than 5 mr | g light orange-brown<br>n sub-rounded find<br>n sandstone with ir<br>n diameter). | wn slightly g<br>e to medium<br>on staining. ( | avelly sand<br>quartzite and<br>Occasional f | y CLAY.<br>d sub-angular<br>ĭne rootlets                                                                                    |                                                                        |                           |
| 0.80             | ES                   |                     |                    |                | 178.39           |        | 0.95                      | TOP                           | SOIL                                                | 1 1                                                                               | 1 0                                            |                                              | /                                                                                                                           |                                                                        |                           |
| 1.00             |                      | N3<br>10,1<br>12,12 | 33<br>10/<br>2,6,3 |                | 177.89           |        | (0.50)<br>1.45            | and and sand                  | ium dense<br>dark brow<br>stone with                | orange-brown cla<br>n sub-rounded and<br>iron staining.                           | yey sandy Gl<br>l sub-angular                  | RAVEL. Gra<br>fine to med                    | avel is brown<br>ium                                                                                                        |                                                                        |                           |
| 1.40             | D                    |                     |                    |                |                  |        |                           | MAI                           | RLSTONE                                             | E ROCK FORMA                                                                      | TION.                                          |                                              |                                                                                                                             |                                                                        |                           |
| 2.00             |                      | N2                  | 20                 |                |                  |        | 7_<br>                    | Dens<br>angu<br>depo          | se orange-<br>lar medius<br>sits.                   | yellow-brown slig<br>m and coarse sand                                            | htly clayey sa<br>stone with iro               | ndy GRAV                                     | EL. Gravel is<br>and rare iron                                                                                              |                                                                        |                           |
| -                |                      | 13,                 | 5/<br>.3.3         |                |                  |        |                           | MAR                           | 21 STONE                                            | FROCK FORMA                                                                       | TION                                           |                                              |                                                                                                                             |                                                                        |                           |
|                  |                      |                     | ,- ,-              |                |                  |        | (2.00)                    | Med                           | ium dense<br>elly clayey                            | becoming very de<br>SAND. Gravel is                                               | ense orange-b<br>orange-brow                   | rown-yellov<br>m angular fi                  | v slightly<br>ne to medium                                                                                                  |                                                                        |                           |
| - 2.80<br>- 3.00 | D                    | N50/16              | 50mn               | n              |                  |        | 1<br>                     | sand                          | stone with                                          | iron staining.                                                                    | TON                                            |                                              |                                                                                                                             |                                                                        |                           |
|                  |                      | 10,1<br>3,22        | 10/<br>,25         |                | 175.89           |        | 3.45                      | MA                            | RESTONE                                             | E ROCK FORMA                                                                      | TION                                           |                                              |                                                                                                                             |                                                                        |                           |
|                  |                      |                     |                    |                |                  |        |                           |                               |                                                     |                                                                                   |                                                |                                              |                                                                                                                             |                                                                        |                           |
|                  |                      |                     |                    |                |                  |        |                           |                               |                                                     |                                                                                   |                                                |                                              | GENE<br>REMA<br>No groundwate<br>encountered. T<br>early due to SP<br>3.45 m. Installe<br>groundwater ar<br>gas standpipe t | RAL<br>RKS<br>err<br>ermina<br>T refus<br>ed with<br>ad grou<br>o 3.00 | ted<br>sal at<br>md<br>m. |
| All dimer<br>Sc  | sions in<br>ale 1:50 | metres              | C                  | lient          | Elan             | Homes  | Limited                   |                               | Method/<br>Plant Us                                 | ed Competit                                                                       | or DART                                        |                                              | Logged By<br>E7                                                                                                             |                                                                        |                           |

Project

Job No

-1.00



| Rugby, Wa  | rwicksh    | ire, CV23 8                     | HF              |                  | D      | YNAM                      | IIC SAMI                                                                                                                   | PLING LOG                                                                                                                                                                 | Geotechnical                                                                           | & Environment                                                                           | al Eng                             | ineers              |
|------------|------------|---------------------------------|-----------------|------------------|--------|---------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------|---------------------|
| Project    |            |                                 |                 |                  |        |                           |                                                                                                                            |                                                                                                                                                                           |                                                                                        | BOREH                                                                                   | OLE                                | No                  |
| Sto        | ocking     | Lane, She                       | ning            | gton             |        |                           |                                                                                                                            |                                                                                                                                                                           |                                                                                        |                                                                                         | 107                                |                     |
| Job No     |            | Da                              | <sup>te</sup> 2 | 9-09-21          |        | Ground L                  | evel (m)                                                                                                                   | Co-Ordinates ()                                                                                                                                                           |                                                                                        | 03'                                                                                     | 107                                |                     |
| 21         | 076J       |                                 | 2               | 9-09-21          |        | 1                         | 78.47                                                                                                                      | E 436,922.0                                                                                                                                                               | N 242,712.0                                                                            |                                                                                         |                                    |                     |
| Contractor | r          |                                 |                 |                  |        |                           |                                                                                                                            |                                                                                                                                                                           |                                                                                        | Sheet                                                                                   |                                    |                     |
| Di         | scover     | y CE                            |                 |                  |        |                           |                                                                                                                            |                                                                                                                                                                           |                                                                                        | 1 0                                                                                     | f 1                                |                     |
| SAMPI      | LES &      | TESTS                           |                 |                  |        |                           |                                                                                                                            | STRATA                                                                                                                                                                    |                                                                                        |                                                                                         | y                                  | ent/                |
| Depth      | Type<br>No | Test<br>Result                  | Wate            | Reduced<br>Level | Legend | Depth<br>(Thick-<br>ness) |                                                                                                                            | DESCRIPT                                                                                                                                                                  | ION                                                                                    |                                                                                         | Geolog                             | Instrum<br>Backfill |
| 0.20       | ES         | N50/295mi<br>5,6/<br>6,14,15,15 |                 | 178.17           |        | 0.30                      | Grass overlyii<br>orange-brown<br>sandstone wit<br>TOPSOIL<br>Very dense or<br>is orange-darl<br>sandstone wit<br>MARLSTON | ng orange-brown-yellow<br>-yellow angular and sub<br>h iron staining.<br>ange-brown occasionall<br>c brown angular and sub<br>h iron staining.<br><u>E ROCK FORMATION</u> | gravelly SAND. C<br>-angular fine to m<br>y yellow sandy GR<br>-angular fine to m<br>( | Gravel is<br>edium                                                                      |                                    |                     |
|            |            |                                 | <u> </u>        |                  |        | <u> </u>                  |                                                                                                                            |                                                                                                                                                                           |                                                                                        | GENE                                                                                    | RAL                                |                     |
|            |            |                                 |                 |                  |        |                           |                                                                                                                            |                                                                                                                                                                           |                                                                                        | No groundwater<br>encountered. Te<br>early due to SP<br>1.45 m. Backfil<br>clean gravel | r<br>erminat<br>Γ refus<br>led wit | ted<br>al at<br>th  |

AGS3 UK DS 21076J SHENINGTON LOGS - USE THIS ONE. GPJ GINT STD AGS 3\_1.GDT 22/11/21 All dimensions in metres Scale 1:50 Method/ Plant Used Client Elan Homes Limited Logged By Competitor DART ΕT

**TRIAL PIT LOG** 



| Project                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                 |                                                   | TF                                                                                      | RIAL PIT No                                                                                                                                               |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stocking                                                  | g Lane,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Shenington                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                 |                                                   |                                                                                         | TD101                                                                                                                                                     |
| Job No                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date 22-09-21                                                                                                                                                                                                                                                                              | Ground Level (n                                                                                                                                                                                           | n) Co-Or                                                                                                                                                         | dinates ()                                                                                      |                                                   |                                                                                         |                                                                                                                                                           |
| 21076J                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22-09-21                                                                                                                                                                                                                                                                                   | 179.86                                                                                                                                                                                                    | 5 E                                                                                                                                                              | 436,855.0 N 242,79                                                                              | 94.0                                              |                                                                                         |                                                                                                                                                           |
| Contractor                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                 |                                                   | Sheet                                                                                   |                                                                                                                                                           |
| Discove                                                   | ry CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                 |                                                   |                                                                                         | 1 of 1                                                                                                                                                    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            | STRATA                                                                                                                                                                                                    |                                                                                                                                                                  |                                                                                                 | SAN                                               | <b>MPLE</b>                                                                             | S & TESTS                                                                                                                                                 |
| ļ                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                 | Depth                                             | No                                                                                      | Remarks/Tests                                                                                                                                             |
| Depth<br>0.00-0.25<br>0.25-0.70<br>0.70-0.80<br>0.80-1.50 | $M_{1}$ $M_{2}$ $M_{2$ | ass overlying light orang<br>p-rounded fine to mediu<br>ining. Occasional fine r<br><u>OPSOIL</u><br>ange-brown gravelly ve<br>d sub-angular fine to me<br><u>ARLSTONE ROCK FO</u><br>m orange-brown slightl<br>gular medium sandstone<br><u>ARLSTONE ROCK FO</u><br>ange-brown sandy cobb | DESC<br>ge-brown slightly gra<br>m quartzite and sub-a<br>ootlets (less than 5 m<br>ry sandy CLAY. Grav<br>dium sandstone with<br>PRMATION.<br>y gravelly very sandy<br>with occasional iron<br>PRMATION. | RIPTION<br>velly clayey SANI<br>ingular fine to mee<br>m diameter).<br>vel is brown and d<br>iron staining.<br>CLAY. Gravel is<br>staining.<br>is dark brown ang | D. Gravel is brown<br>lium sandstone with iron<br>ark brown sub-rounded<br>brown and dark brown | 0.70                                              | ES                                                                                      |                                                                                                                                                           |
| 1.50-1.60<br>1.60-2.00                                    | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m orange-brown-yellow<br>o-angular fine to mediur<br>ARLSTONE ROCK FO<br>ange-brown sandy cobb                                                                                                                                                                                             | with iron staining.<br>PRMATION<br>v gravelly sandy CLA<br>n sandstone with iron<br>PRMATION<br>Ily GRAVEL. Gravel                                                                                        | Y. Gravel is dark<br>staining.                                                                                                                                   | brown angular and                                                                               | 1.60                                              | ES                                                                                      |                                                                                                                                                           |
| 2.00-2.50                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARLSTONE ROCK FO<br>ange-brown and dark bi<br>d iron deposits. Occasio<br>ARLSTONE ROCK FO                                                                                                                                                                                                 | PRMATION<br>rown thinly laminated<br>nal bands of fine oran<br>PRMATION.                                                                                                                                  | SANDSTONE w                                                                                                                                                      | /<br>ith regular iron staining                                                                  | -                                                 |                                                                                         |                                                                                                                                                           |
|                                                           | out: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                 |                                                   |                                                                                         |                                                                                                                                                           |
| Shoring/Support                                           | ort: No<br>ble<br>3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 0.45                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                 | N<br>er<br>2.<br>di<br>g<br>p<br>j<br>z<br>z<br>B | G<br>o grour<br>counte<br>50 m b<br>gging.<br>oundw<br>pe insta<br>one 0.00<br>ackfille | ENERAL<br>EMARKS<br>Indwater<br>red. Terminated at<br>gl due to hard<br>Gas and<br>ater monitoring<br>alled, response<br>0 - 2.50 m.<br>id with arisings. |
| All dimensions<br>Scale 1:2                               | in metres<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client Elan Hor                                                                                                                                                                                                                                                                            | mes Limited                                                                                                                                                                                               | Method/<br>Plant Used                                                                                                                                            | JCB 3CX                                                                                         |                                                   | ogged I                                                                                 | <sup>3</sup> y<br>ET                                                                                                                                      |



**TRIAL PIT LOG** 



Geotechnical & Environmental Engineers

| Project                 |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           |       | TR                       | RIAL PIT No                     |
|-------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|-------|--------------------------|---------------------------------|
| Sto                     | cking Lane                                                                      | , Shenington                                                                          |                                                                                 |                                                                |                                           |       |                          | TP102                           |
| Job No                  |                                                                                 | Date 22-09-21                                                                         | Ground Level (m                                                                 | n) Co-O                                                        | rdinates ()                               |       |                          |                                 |
| 210                     | )76J                                                                            | 22-09-21                                                                              | 178.88                                                                          | ŀ                                                              | E 436,918.0 N 242,7'                      | 74.0  |                          |                                 |
| Contractor              | <b>a F</b>                                                                      |                                                                                       |                                                                                 |                                                                |                                           |       | Sheet                    | 1 0 1                           |
| Dis                     | covery CE                                                                       |                                                                                       |                                                                                 |                                                                |                                           |       |                          | 1 of 1                          |
|                         |                                                                                 | S                                                                                     | STRATA                                                                          |                                                                |                                           | SA    | MPLE                     | S & TESTS                       |
|                         |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           | Depth | n No                     | Remarks/Tests                   |
| Depth<br>0.00-0.25      | No $\frac{ \underline{x} _{\ell}}{l_{\ell} + \underline{x}^{1}/l} = \mathbf{G}$ | rass overlying orange-brow<br>b-rounded fine to medium<br>aining. Occasional fine roo | DESC<br>vn slightly gravelly s<br>quartzite and sub-a<br>otlets (less than 5 mr | RIPTION<br>sandy CLAY. Gr<br>ngular fine to me<br>n diameter). | avel is brown<br>dium sandstone with iron |       |                          |                                 |
| 0.25-0.60               |                                                                                 | OPSOIL<br>Drange-brown gravelly very                                                  | sandy CLAY. Grav                                                                | el is brown and o                                              | /<br>dark brown sub-rounded               | 0.30  | ES                       |                                 |
| 0.60-1.60               |                                                                                 | Ind sub-angular fine to med                                                           | ium sandstone with                                                              | iron staining.                                                 | ,                                         |       |                          |                                 |
|                         |                                                                                 | Drange-brown sandy GRAV                                                               | EL. Gravel is brown<br>ndstone with occasion                                    | n and dark brown<br>onal iron staining                         | angular occasionally and iron deposits.   |       |                          |                                 |
|                         |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           | 0.90  | ES                       |                                 |
|                         | 0 0 0 0<br>0 0 0<br>0 0 0                                                       | 1ARLSTONE ROCK FOR                                                                    | MATION.                                                                         |                                                                |                                           | 1.00  | ES                       |                                 |
|                         | 00                                                                              |                                                                                       |                                                                                 |                                                                |                                           | 1.50  |                          |                                 |
| 1.60-2.00               | o o<br>con                                                                      | Prange-brown sandy cobbly<br>nedium to coarse sandstone                               | GRAVEL. Gravel i with iron staining.                                            | s dark brown an                                                | gular occasionally tabular                | 1.50  | D                        |                                 |
|                         |                                                                                 | IARLSTONE ROCK FOR                                                                    | MATION                                                                          |                                                                |                                           | 1.80  | В                        |                                 |
| 2.00-2.60               | C an                                                                            | Prange-brown and dark bro<br>nd iron deposits. Occasiona                              | wn thinly laminated<br>al bands of fine to m                                    | SANDSTONE v<br>edium orange sa                                 | vith regular iron staining nd.            |       |                          |                                 |
|                         | N                                                                               | IARLSTONE ROCK FOR                                                                    | MATION.                                                                         |                                                                |                                           |       |                          |                                 |
|                         |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           | 2.40  | В                        |                                 |
|                         |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           |       |                          |                                 |
|                         |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           |       |                          |                                 |
|                         |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           |       |                          |                                 |
|                         |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           |       |                          |                                 |
|                         |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           |       |                          |                                 |
|                         |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           |       |                          |                                 |
| Shoring/S<br>Stability: | Support: No<br>Stable                                                           | one                                                                                   |                                                                                 |                                                                |                                           |       | G                        | ENERAL<br>EMARKS                |
|                         |                                                                                 |                                                                                       |                                                                                 |                                                                |                                           |       | No grour                 | ndwater<br>red. Terminated at   |
|                         | — 3.00 —<br>A                                                                   |                                                                                       |                                                                                 |                                                                |                                           |       | 2.60 m b<br>digging.     | gl due to hard<br>Used for      |
| D                       |                                                                                 | ■ 0.45                                                                                |                                                                                 |                                                                |                                           |       | infiltratic<br>Backfille | on testing.<br>d with arisings. |
|                         | С                                                                               | <b>I</b>                                                                              |                                                                                 |                                                                |                                           |       |                          |                                 |
| All dimens              | sions in metre<br>ile 1:25                                                      | s Client Elan Home                                                                    | es Limited                                                                      | Method/<br>Plant Used                                          | JCB 3CX                                   |       | Logged F                 | By ET                           |

- USE THIS ONE GPJ GINT STD AGS 3 1.GDT 15/11/21 AGS3 UK TP 21076.1 SHENINGTON LOGS -



No groundwater encountered. Terminated at 2.40 m due to hard digging. Used for infiltration testing. Backfilled with arisings.

**TRIAL PIT LOG** 



| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                       |                                                                      |                                                                       |                           | TR                                                                   | IAL PIT No                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Stocking Lane,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shenington                                                                                            |                                                                      |                                                                       |                           |                                                                      | TD103                                                                                 |
| Job No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date 22-09-21                                                                                         | Ground Level (m)                                                     | Co-Ordinates ()                                                       |                           |                                                                      | 11103                                                                                 |
| 21076J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22-09-21                                                                                              | 178.49                                                               | E 436,984.0 N 242,7                                                   | 80.0                      |                                                                      |                                                                                       |
| Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                                                                      |                                                                       |                           | Sheet                                                                |                                                                                       |
| Discovery CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       |                                                                      |                                                                       |                           |                                                                      | 1 of 1                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       | STRATA                                                               |                                                                       | SAN                       | MPLE                                                                 | S & TESTS                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |                                                                      |                                                                       | Depth                     | No                                                                   | Remarks/Tests                                                                         |
| Depth No<br>0.00-0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rass overlying light orang<br>b-rounded fine to medium<br>ameter).                                    | DESCRIPT<br>ge-brown slightly gravelly<br>m quartzite and sandstone. | ION<br>sandy CLAY. Gravel is brown<br>Fine rootlets (less than 5 mm   |                           |                                                                      |                                                                                       |
| $\begin{array}{c c} 0.35 - 1.40 & \xrightarrow{-} & Tt \\ & & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\ & & & 0 \\$ | DPSOIL<br>range-brown sandy GRA<br>bular medium to coarse a<br>ccasional cobbles.<br>ARLSTONE ROCK FO | VEL. Gravel is brown and<br>ingular sandstone with iron<br>RMATION.  | dark brown angular occasionally<br>n staining and rare iron deposits. | 0.80                      | ES                                                                   |                                                                                       |
| 1.40-1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | range-brown sandy cobb<br>edium to coarse sandston<br>ARLSTONE ROCK FO                                | ly GRAVEL. Gravel is dat<br>e with iron staining.<br>RMATION         | k brown angular occasionally tabular                                  | 1.50                      | D                                                                    |                                                                                       |
| 1.90-3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | range-brown and dark br<br>ANDSTONE with regula<br>edium orange sand.<br>ARLSTONE ROCK FO             | own occasionally very dar<br>r iron staining and iron de<br>RMATION. | k grey thinly laminated<br>posits. Occasional bands of fine to        | 2.10                      | В                                                                    |                                                                                       |
| Shoring/Support: No<br>Stability: Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B 0.45                                                                                                |                                                                      |                                                                       | N<br>er<br>3.<br>di<br>ar | G<br>RI<br>to groun<br>necounter<br>00 m ba<br>igging. I<br>risings. | ENERAL<br>EMARKS<br>dwater<br>red. Terminated at<br>gl due to hard<br>Backfilled with |
| All dimensions in metres<br>Scale 1:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S Client Elan Hon                                                                                     | nes Limited Met<br>Plan                                              | hod/<br>nt Used JCB 3CX                                               |                           | ogged E                                                              | By ET                                                                                 |



**General Notes** No groundwater encountered. Terminated at 3.00 m. Backfilled with arisings.

**TRIAL PIT LOG** 



| Project            |                                                                    |                                                                                            |                                                                                      |                                               |                                              |       | TR      | RIAL PIT No          |  |  |  |  |
|--------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|-------|---------|----------------------|--|--|--|--|
| Sto                | cking Lane,                                                        | , Shenington                                                                               |                                                                                      |                                               |                                              |       |         |                      |  |  |  |  |
| Job No             |                                                                    | Date 22-09-21                                                                              | Ground Level (m)                                                                     | Co-Ordi                                       | nates ()                                     |       |         | 19104                |  |  |  |  |
| 21                 | )76J                                                               | 22-09-21                                                                                   | 178.02                                                                               | E 4                                           | 37,004.0 N 242,7                             | 35.0  |         |                      |  |  |  |  |
| Contractor         |                                                                    |                                                                                            |                                                                                      |                                               |                                              |       | Sheet   |                      |  |  |  |  |
| Dis                | covery CE                                                          |                                                                                            |                                                                                      |                                               |                                              |       |         | 1 of 1               |  |  |  |  |
|                    |                                                                    | S                                                                                          | STRATA                                                                               |                                               |                                              | SAI   | MPLE    | S & TESTS            |  |  |  |  |
|                    |                                                                    |                                                                                            |                                                                                      |                                               |                                              | Depth | No      | Remarks/Tests        |  |  |  |  |
| Depth<br>0.00-0.35 | No Gr                                                              | rass overlying light orange-<br>ib-rounded fine to medium<br>ccasional fine rootlets (less | DESCRIP<br>brown slightly gravelly<br>quartzite and sub-angu<br>than 5 mm diameter). | TION<br>y very sandy CL<br>llar fine to mediu | AY. Gravel is brown<br>um sandstone.         |       |         |                      |  |  |  |  |
| 0.35-1.50          |                                                                    | OPSOIL<br>range-brown sandy GRAV<br>ccasionally tabular medium<br>ccasional cobbles        | EL. Gravel is brown be<br>to coarse sandstone wi                                     | ecoming dark bro<br>ith iron staining         | own angular<br>and rare iron deposits.       |       |         |                      |  |  |  |  |
|                    |                                                                    | IARLSTONE ROCK FOR                                                                         | MATION.                                                                              |                                               |                                              | 0.60  | ES      |                      |  |  |  |  |
|                    |                                                                    |                                                                                            |                                                                                      |                                               |                                              | 1.00  | ES      |                      |  |  |  |  |
| 1.50-2.20          |                                                                    | range-brown and dark brov<br>Indstone. Cobbles are angul<br>ccasional fine to medium or    | vn gravelly COBBLES<br>lar and tabular if sandst<br>range sand.                      | . Gravel is angul<br>tone. Occasiona          | ar and tabular coarse<br>l iron staining and | 1.50  | В       |                      |  |  |  |  |
|                    |                                                                    |                                                                                            |                                                                                      |                                               |                                              |       |         |                      |  |  |  |  |
| 2.20-2.40          |                                                                    | range-brown and dark brow<br>nd iron deposits. Occasiona                                   | vn thinly laminated SA<br>l bands of fine orange                                     | NDSTONE with sand.                            | n regular iron staining                      | 2.30  | D       |                      |  |  |  |  |
|                    |                                                                    | IARLSTONE ROCK FORI                                                                        | MATION.                                                                              |                                               | /                                            |       |         |                      |  |  |  |  |
| Shoring/S          | Support: No                                                        | one                                                                                        |                                                                                      |                                               |                                              |       | G       | ENERAL               |  |  |  |  |
| Stability:         | Stability: Stable REMARKS No groundwater accountered Tempineted at |                                                                                            |                                                                                      |                                               |                                              |       |         |                      |  |  |  |  |
| D                  | A<br>D<br>B 0.45<br>B 0.45                                         |                                                                                            |                                                                                      |                                               |                                              |       |         |                      |  |  |  |  |
|                    | С                                                                  |                                                                                            |                                                                                      |                                               |                                              |       |         |                      |  |  |  |  |
| All dimen<br>Sca   | sions in metres<br>ale 1:25                                        | s Client Elan Home                                                                         | es Limited Ma<br>Pla                                                                 | ethod/<br>ant Used                            | JCB 3CX                                      | L     | ogged H | <sup>3</sup> y<br>ET |  |  |  |  |



**TRIAL PIT LOG** 



| Project                         |                         |                                                                                                                                                                 |                                                                                                                                          |                                                                                    |                                          |                                 | TR                                                                          | IAL PIT No                                                                                   |
|---------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Sto                             | cking La                | ne, Shenington                                                                                                                                                  |                                                                                                                                          |                                                                                    |                                          |                                 |                                                                             |                                                                                              |
| Job No                          |                         | Date 22-09-21                                                                                                                                                   | Ground Level (r                                                                                                                          | n) Co-Oi                                                                           | dinates ()                               |                                 |                                                                             | 1 - 105                                                                                      |
| 21                              | 076J                    | 22-09-21                                                                                                                                                        | 178.30                                                                                                                                   | ) I                                                                                | E 436,973.0 N 242,7                      | 39.0                            |                                                                             |                                                                                              |
| Contractor                      |                         |                                                                                                                                                                 |                                                                                                                                          |                                                                                    |                                          |                                 | Sheet                                                                       |                                                                                              |
| Dis                             | covery (                | CE                                                                                                                                                              |                                                                                                                                          |                                                                                    |                                          |                                 |                                                                             | 1 of 1                                                                                       |
|                                 |                         |                                                                                                                                                                 | STRATA                                                                                                                                   |                                                                                    |                                          | SA                              | MPLE                                                                        | S & TESTS                                                                                    |
|                                 | <u> </u>                | I                                                                                                                                                               |                                                                                                                                          |                                                                                    |                                          | Depth                           | No                                                                          | Remarks/Tests                                                                                |
| Depth<br>0.00-0.20<br>0.20-1.60 |                         | Grass overlying light or<br>sub-rounded fine to mec<br>Occasional fine rootlets<br>TOPSOIL<br>Orange-brown sandy G<br>sandstone. Occasional c<br>MARLSTONE ROCK | DESC<br>ange-brown slightly gra<br>dium quartzite and sub-a<br>(less than 5 mm diamet<br>RAVEL. Gravel is angu<br>cobbles.<br>FORMATION. | RIPTION<br>velly very sandy (<br>angular fine to me<br>er).<br>lar occasionally ta | CLAY. Gravel is brown<br>dium sandstone. | 0.50                            | ES                                                                          |                                                                                              |
| 1.60-1.75                       |                         | Orange-brown and dark                                                                                                                                           | brown angular occasio                                                                                                                    | nally tabular coar                                                                 | se sandstone GRAVEL                      | 1.20                            | ES                                                                          |                                                                                              |
| 1 75-2 00                       | 0                       | with cobbles, occasiona                                                                                                                                         | l iron staining and occas                                                                                                                | sional medium or                                                                   | inge sand.                               |                                 |                                                                             |                                                                                              |
|                                 | 30                      | MARLSTONE ROCK                                                                                                                                                  | FORMATION.                                                                                                                               | ES Crevelia en                                                                     | ,                                        | / 1.80                          | D                                                                           |                                                                                              |
|                                 |                         | sandstone. Cobbles are<br>occasional fine to mediu<br>MARLSTONE ROCK                                                                                            | angular and tabular if sa<br>ım orange sand.<br>FORMATION.                                                                               | ndstone. Occasio                                                                   | nal iron staining and                    | 2.00                            | BD                                                                          |                                                                                              |
| Shoring/S                       | Support:<br>Stable      | None                                                                                                                                                            |                                                                                                                                          |                                                                                    |                                          |                                 | G                                                                           | ENERAL                                                                                       |
| D                               | 3.00<br>AC              | B 0.45                                                                                                                                                          |                                                                                                                                          |                                                                                    |                                          | P<br>e<br>2<br>c<br>i<br>i<br>H | No groun<br>incounter<br>2.50 m by<br>ligging. I<br>nfiltratio<br>Backfille | dwater<br>red. Terminated at<br>gl due to hard<br>Used for<br>n testing.<br>d with arisings. |
| All dimen                       | sions in me<br>ale 1:25 | etres   Client Elan H                                                                                                                                           | lomes Limited                                                                                                                            | Method/<br>Plant Used                                                              | JCB 3CX                                  | I                               | .ogged B                                                                    | By<br>ET                                                                                     |



**TRIAL PIT LOG** 



| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                               |                                                                         |                                  | TF                                                                        | RIAL PIT No                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Stocking Lane,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shenington                                                                                                                               |                                                                                               |                                                                         |                                  |                                                                           | TD106                                                                                                |
| Job No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date 22-09-21                                                                                                                            | Ground Level (m)                                                                              | Co-Ordinates ()                                                         |                                  |                                                                           | 1 - 100                                                                                              |
| 21076J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22-09-21                                                                                                                                 | 178.10                                                                                        | E 436,898.0 N 242,69                                                    | 90.0                             |                                                                           |                                                                                                      |
| Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                          |                                                                                               |                                                                         |                                  | Sheet                                                                     | :                                                                                                    |
| Discovery CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                                                               |                                                                         |                                  |                                                                           | 1 of 1                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                                                                                                                                        | ΓRATA                                                                                         |                                                                         | SAN                              | MPLE                                                                      | S & TESTS                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                               |                                                                         | Depth                            | No                                                                        | Remarks/Tests                                                                                        |
| Depth<br>0.00-0.15<br>0.15-0.50<br>0.15-0.50<br>0.15-0.50<br>0.15-0.50<br>0.15-0.50<br>0.15-0.50<br>0.15-0.50<br>0.15-0.50<br>0.15-0.50<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00-0.15<br>0.00 | ass overlying light orange-te<br>to medium quartzite and s<br>ccasional fine rootlets (less to<br>DPSOIL<br>ange-brown slightly gravelly | DESCRIPTIC<br>prown slightly gravelly SA<br>sub-angular fine to mediu<br>than 5 mm diameter). | N<br>ND. Gravel is brown sub-rounded<br>m sandstone with iron staining. |                                  |                                                                           |                                                                                                      |
| $\begin{array}{c c} 0.50\text{-}1.65 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ARLSTONE ROCK FORM<br>ange-brown sandy GRAVE<br>casionally tabular medium t<br>casional cobbles.                                         | ATION.<br>CL. Gravel is brown become<br>to coarse sandstone with i                            | ning dark brown angular<br>ron staining and rare iron deposits.         | 0.70                             | ES<br>D                                                                   |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALD FOIL ROCK FORM                                                                                                                       |                                                                                               |                                                                         | 1.50                             | D                                                                         |                                                                                                      |
| $1.65-2.10$ $\begin{array}{c c}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | range-brown and dark brow<br>ndstone. Cobbles are angula<br>casional fine to medium ora<br>ARLSTONE ROCK FORM                            | n gravelly COBBLES. Gr<br>ır and tabular if sandstone<br>ınge sand.<br>IATION.                | avel is angular and tabular coarse<br>e. Occasional iron staining and   |                                  |                                                                           |                                                                                                      |
| 2.10-2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ange-brown and dark brow<br>d iron deposits. Occasional<br>ARLSTONE ROCK FORM                                                            | n thinly laminated SAND<br>bands of fine orange sand<br>IATION.                               | STONE with regular iron staining<br>l.                                  | 2.30                             | D                                                                         |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                               |                                                                         |                                  |                                                                           |                                                                                                      |
| Shoring/Support: No<br>Stability: Stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ne                                                                                                                                       |                                                                                               |                                                                         | N                                | G<br>R                                                                    | ENERAL<br>EMARKS                                                                                     |
| A 3.15 — A D C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B 0.45                                                                                                                                   |                                                                                               |                                                                         | er<br>2.<br>di<br>gr<br>pi<br>zc | 150 m b<br>150 m b<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>19 | red. Terminated at<br>gl due to hard<br>Gas and<br>ater monitoring<br>alled, response<br>0 - 2.50 m. |
| All dimensions in metres<br>Scale 1:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Client Elan Homes                                                                                                                        | s Limited Metho<br>Plant                                                                      | d/<br>Used JCB 3CX                                                      | L                                | ogged H                                                                   | <sup>Зу</sup> ЕТ                                                                                     |



**TRIAL PIT LOG** 



| Stocking Lanc, Sherington     TP107       Job N     Discovery CE     Silent       Discovery CE     Silent       Discovery CE     Silent       Discovery CE     Silent       Conservery CE     Silent       Discovery CE     Silent       Depth     No     Remarks Test       Openh     No     Remarks Test       Depth     No     Case overlying light comacy-brown slightly gravelly very sandy CLAY. Gravel is brown brown brown and and arbs angular fine to medium sandstone.     Openh     No     Remarks Test       Openh     No     Remarks Test       Openh     No     Remarks Test       Openh     No     Remarks Test       Openh work and order down slightly gravelly very sandy CLAY. Gravel is brown brown brown and and brown angular occasionality thrown any GLAY CLAY. Gravel is brown brown brown and and brown angular cocasionality thrown any GLAY CLAY. Gravel is brown brown brown and and brown angular cocasionality and tabular core or one colspan="2">Into and any CLAY. Gravel is brown brown brown angular cocasionality and tabulary core or one colspan="2">Into angular cocasionality and tabular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Project                 |                                                                                                                          |                                |                                                                                       |                                                                        |                                                    |                            |                                       |       | Т                                                       | RIAL PIT No                                                                                           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|----------------------------|---------------------------------------|-------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| Job No     Date     22-09-21     Ground Level (m)     Co-Ordinates ()     FT UT       Contractor     Discovery CE     Ites 1     178.90     E 436,880.0 N 242,730.0     Sheet     1 of 1       Discovery CE     STRATA     SAMPLESS STESTS     Sheet     1 of 1       Outo.30     No     Consolvery made first to mailing startly startly (LAY, Gavel is brown sub-mandel first to mailing startly startly startly (LAY, Gavel is brown sub-mandel first to mailing startly startly startly (LAY, Gavel is brown sub-mandel first to mailing startly startly startly cLAY. Gravel is brown for an adminer.     0.40     ES       0.300.80     TOPSOIL     Orange-brown and drik brown slightly gravelly very startly CLAY. Gravel is brown from start and start angular first to mailian startstore.     0.40     ES       0.300.81     TOPSOIL     Orange-brown and drik brown slightly gravelly very startly CLAY. Gravel is brown from start and start angular first to mailian startstore.     0.40     ES       0.300.82     TOPSOIL     Orange-brown and drik brown sight first of mailian startstore.     0.40     ES       0.300.83     TOPSOIL     Orange-brown and drik brown sight and tabular if antidoxic. Coccessional to bular if and start angular and tabular corne startstore.     0.40     ES       1.40     Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sto                     | Stocking Lane, Shenington     TP107       Ob No     Date     22.00.21     Ground Level (m)     Co-Ordinates ()     TP107 |                                |                                                                                       |                                                                        |                                                    |                            |                                       |       |                                                         |                                                                                                       |  |  |
| 21076J     22-09-21     178.90     E 436,880.0     N 242,730.0       Contractor     Steet     1 of 1       STRATA       SAMPLES & TESTS       Dopth     No     Crass overlying light onnego-toron slightly gravelly sandy CLAY. Cravel is brown side-outable files to motivin uncrited and sub-negular files to motivin surfactore.     0.40     FS       0.00-0.30     Crass overlying light onnego-toron slightly gravelly sandy CLAY. Cravel is brown sub-could file throws sub-could file throws sub-could and and sub-negular file to motivin uncrite and sub-negular files to motivin uncrite and sub-negular files to motivin sandstone.     0.40     FS       0.30-0.80     Crass overlying light onnego-toron slightly gravelly variably CLAY. Cravel is brown becoming draw from sandsore with rare incommunicational cobles.     0.40     FS       0.30-0.80     Crass overlying independent and sub-negular files to motivin sandsore with rare incommunicational cobles.     0.40     FS       0.30-1.75     Crass overlying independent and sub-negular overly sands/CLAY. Cravel is advance. Coccasional file to motive and core sandsore.     1.40     FS       1.75-2.00     Comme-torown and dark brown gravelly COBBLES. Gravel is angular and tolular coreare sandsore. Coccasional file notabular coreare in a sandsore.     1.80     B       2.00-2.70     Orange-torown and dark brown file on doti in uncoreas sandsore.     1.80     B       3.05     C     Crass overlying in the towen file on doti in uncoreas sandsore.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Job No                  |                                                                                                                          |                                | Date 22-09-21                                                                         | Ground Level (r                                                        | n) C                                               | o-Ordinate                 | es ()                                 |       |                                                         | 1 1 107                                                                                               |  |  |
| Outractor     1 of 1       I of 1       STRATA     SAMPLES & TESTS       Depth     No     I of 1       Depth     No     I of 1       Depth     No     Depth     No     Depth     No       Outraction and dark hown slightly gavely sandy CLAY. Carvel is bown     Outraction and dark hown slightly gavely wardy CLAY. Carvel is bown       0.300.080     The Orange-Stream and dark hown slightly gavely wardy CLAY. Carvel is bown     0.40     ES       0.300.080     The Orange-Stream and dark hown slightly gavely wardy CLAY. Carvel is bown     0.40     ES       0.300.080     The Orange-Stream and dark hown signal fraction colspan="2">Intervent saturation.       0.300.080     The Orange-Stream and dark hown signal gavely wardy CLAY. Carvel is bown on stating and the orange and the orange and the orange and the orange and the own signal fraction.     0.40     ES       1.55.200     Ge     Samge-Stream and dark hown signal gavely wardy and the corange and tabular fractional models.     1.40     FS       2.00-2.70     MARLSTONE ROCK FORMATION.     1.40     FS     1.40     B       2.00-2.70     MARLSTONE ROCK FORMATION.     1.40 <t< td=""><td>21</td><td>076J</td><td></td><td>22-09-21</td><td>178.90</td><td>)</td><td>E 436</td><td>,880.0 N 242,7</td><td>730.0</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                      | 076J                                                                                                                     |                                | 22-09-21                                                                              | 178.90                                                                 | )                                                  | E 436                      | ,880.0 N 242,7                        | 730.0 |                                                         |                                                                                                       |  |  |
| Discovery CE     I of 1       STRATA       SAMPLES & TESTS       Depth     No     Emmission in control       Out-0.30     Image: Strand Colspan="2">Strand Colspan= Colspan= Colspan="2"       Ostrand Forop S                                                                                                                 | Contractor              |                                                                                                                          |                                |                                                                                       |                                                                        |                                                    |                            |                                       |       | She                                                     | et                                                                                                    |  |  |
| STRATA     SAMPLES & TESTS       Depth     No     Emails/Test       0.00-0.30     Crass overlying light canges-brown slightly gravelly sandy CLAY. Cravel is brown sub-counded fine to medium quantize and sub-angular fine to medium sandstone. Occasional time routes (GENERAL STONE ROCK FORMATION.     0.40     ES       0.80-1.75     Corage-brown and dark brown gravelly COBBLES. Gravel is angular and tabular occasional time ordinal magnetize and cobbles.     1.40     FS       0.40     Corage-brown and dark brown gravelly COBBLES. Gravel is angular and tabular occasional time ordinal magnetize gravelly cobbles.     1.40     FS       0.40     Gravel for the ordinal quantity framework in angular occasional time to medium magnetize gravelly cobbles.     1.40     FS       1.75-2.00     Gorage-brown and dark brown gravelly COBBLES. Gravel is angular and tabular occare and the local time ordinal cobbles.     1.40     FS       2.00-2.70     MARLSTONE ROCK FORMATION.     1.40     FS     1.80     B       2.00-2.70     MARLSTONE ROCK FORMATION.     1.40     FS     1.80     B       3.05     T     T     T     T     T       3.05     T     T     T     T     T       3.05     T     T     T     T     T       3.05     T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dis                     | covery                                                                                                                   | / CE                           |                                                                                       |                                                                        |                                                    |                            |                                       |       |                                                         | 1 of 1                                                                                                |  |  |
| Depth     No     Default STOR       0.000.030     Image: Starting light energies/hourn elightly gravelly sendy CLAY. Gravel is hown and source of the number of time of mandations.     0.40     ES       0.300.080     Image: Starting light energies/hourn elightly gravelly very sandy CLAY. Gravel is hown and source of the number of the                                          |                         |                                                                                                                          |                                | S                                                                                     | STRATA                                                                 |                                                    |                            |                                       | SA    | AMPL                                                    | ES & TESTS                                                                                            |  |  |
| Depth<br>0.000-030       No       The second fine to medium quartitie and sub-angular fine to medium sandstone.<br>Consistent fine rootlets (less that 5 mm diameter).       0.40       ES         0.30-0.80       The second fine to medium quartitie and sub-angular fine to medium sandstone.<br>Consistent fine rootlets (less that 5 mm diameter).       0.40       ES         0.30-0.80       The second fine to medium sandstone.       0.40       ES         0.30-0.80       The second fine to medium sandstone.       0.40       ES         0.30-0.80       The second fine to medium sandstone.       0.40       ES         0.30-1.75       The second fine to medium sandstone.       0.40       ES         0.30-1.75       The second fine to medium sandstone.       0.40       ES         0.30-1.75       The second fine to medium to constantion.       0.40       ES         1.52.200       The second fine to medium constanting fine to medium sandstone.       1.40       ES         1.52.200       The second fine to medium constanting fine to medium sandstone.       1.80       B         2.00-2.70       MARLSTONE ROCK FORMATION.       1.80       B         2.00-2.70       MARLSTONE ROCK FORMATION.       2.10       B         MARLSTONE ROCK FORMATION.       Second fine to medium conge sand.       1.80       B         Soboring/Support: </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Dept</td> <td>h No</td> <td>Remarks/Tests</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                          |                                |                                                                                       |                                                                        |                                                    |                            |                                       | Dept  | h No                                                    | Remarks/Tests                                                                                         |  |  |
| 0.30-0.80       2       Orongs-brown and dark brown slightly gravelly very sndy CLAV. Gravel is brown for staining.       0.40       ES         0.80-1.75       3       0.40       ES         0.80-1.75       0.40       ES       1.40       ES         1.75-2.00       Orange-brown and dark brown gravelly COBBLES. Gravel is angular and tabular coarse standstone. Coessional buda if standstone. Occasional into staining and coarse castone mage and.       1.40       ES         1.75-2.00       Orange-brown and dark brown angular databalari if standstone. Occasional into staining and ion deposits. Occasional bands of fine orange stand.       1.80       B         2.00-2.70       MARLSTONE ROCK FORMATION.       2.10       B         MARLSTONE ROCK FORMATION.       0       0       0       0         MARLSTONE ROCK FORMATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth<br>0.00-0.30      | No No                                                                                                                    | Gra<br>Gra<br>Sub<br>Oct       | nss overlying light orange<br>-rounded fine to medium<br>casional fine rootlets (less | DESC<br>y-brown slightly gr<br>quartzite and sub-a<br>than 5 mm diamet | RIPTION<br>avelly sandy<br>angular fine to<br>er). | CLAY. Gr                   | avel is brown<br>sandstone.           |       |                                                         |                                                                                                       |  |  |
| 0.80-1.75     The Direction of AVEL Convel is dark brown angular occasionally tabular medium to coarse sandstone. Occasional cobbles.     1.40     ES       1.75-2.00     The performance of the periference of the performance of the performance of the performance | 0.30-0.80               |                                                                                                                          | TO<br>TO<br>Dra<br>bec<br>iron | PSOIL.<br>inge-brown and dark brow<br>oming dark brown sub-rc<br>1 staining.          | vn slightly gravelly<br>punded and sub-ang                             | v very sandy C<br>gular fine to n                  | CLAY. Gra<br>nedium sar    | avel is brown<br>adstone with rare    | 0.40  | ES                                                      |                                                                                                       |  |  |
| 1.75-2.00       Orange-brown and dark brown gravelly COBBLES. Gravel is angular and tabular coarse casional fine to medium orange sand.       1.40       ES         2.00-2.70       MARLSTONE ROCK FORMATION.       1.80       B         Orange-brown and dark brown thinly laminated SANDSTONE with regular iron staining and iron deposits. Occasional bands of fine orange sand.       2.10       B         MARLSTONE ROCK FORMATION.       Orange-brown and dark brown thinly laminated SANDSTONE with regular iron staining and iron deposits. Occasional bands of fine orange sand.       2.10       B         MARLSTONE ROCK FORMATION.       Orange-brown and dark brown thinly laminated SANDSTONE with regular iron staining and iron deposits. Occasional bands of fine orange sand.       2.10       B         MARLSTONE ROCK FORMATION.       Market fine orange sand.       2.10       B         MARLSTONE ROCK FORMATION.       Market fine orange sand.       2.10       B         Market fine orange sand.       Market fine orange sand.       2.10       B         Market fine or collapse on eastern face       Market fine orange sand.       No groundwater fine mainted fine or here the fine or here there the fine or here there the fine or her                                                                                                                                                                                                                                                                                                                                                                                                      | 0.80-1.75               |                                                                                                                          |                                |                                                                                       |                                                                        |                                                    |                            |                                       |       |                                                         |                                                                                                       |  |  |
| 1.75-2.00       Orange-brown and dark brown gravelly COBBLES. Gravel is angular and tabular coarse acquar and tabular is sandstone. Occasional iron staining and accasional fine to medium orange sand.       1.80       B         2.00-2.70       MARLSTONE ROCK FORMATION.       Dampe brown and dark brown thinly laminated SANDSTONE with regular iron staining and iron deposits. Occasional bands of fine orange sand.       2.10       B         MARLSTONE ROCK FORMATION.       MARLSTONE ROCK FORMATION.       2.10       B         MARLSTONE ROCK FORMATION.       MARLSTONE ROCK FORMATION.       2.10       B         Shoring/Support: None       Stability: Minor collapse on eastern face       EEMERAL REMARKS         No groundwater encountered. Terminated Science of the state of th                                                                                                                                                                                                                              |                         | ES                                                                                                                       |                                |                                                                                       |                                                                        |                                                    |                            |                                       |       |                                                         |                                                                                                       |  |  |
| 2.00-2.70       MARLSTONE ROCK FORMATION.         Orange-brown and dark bown thinly laminated SANDSTONE with regular iron staining and iron deposits. Occasional bands of fine orange sand.       2.10       B         MARLSTONE ROCK FORMATION.       MARLSTONE ROCK FORMATION.       2.10       B         Shoring/Support: None Stability: Minor collapse on eastern face       EEMARKS       REMARKS         More and the second secon                                                                                                                                     | 1.75-2.00               | 0000                                                                                                                     | Ora<br>San                     | ange-brown and dark brow<br>dstone. Cobbles are angu<br>asional fine to medium or     | vn gravelly COBB<br>lar and tabular if sa<br>range sand.               | LES. Gravel i<br>indstone. Oce                     | s angular a<br>casional ir | and tabular coarse<br>on staining and | 1.80  | В                                                       |                                                                                                       |  |  |
| Shoring/Support: None     GENERAL       Stability: Minor collapse on eastern face     GENERAL       Image: Collapse on eastern face     No groundwater       Image: Collapse on eastern face     REMARKS       No groundwater     encountered. Terminated       Image: Collapse on eastern face     Remarks       Image: Collapse on eastern face     Remarks <t< td=""><td>2.00-2.70</td><td>В</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00-2.70               | В                                                                                                                        |                                |                                                                                       |                                                                        |                                                    |                            |                                       |       |                                                         |                                                                                                       |  |  |
| Shoring/Support: None       GENERAL         Stability: Minor collapse on eastern face       REMARKS         A       No groundwater         A       Image: Collapse on eastern face         All dimensions in metres       Client         Elan Homes Limited       Method/<br>Plant Used       ICB 3CX         Logged By       FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                                                                                          |                                |                                                                                       |                                                                        |                                                    |                            |                                       |       |                                                         |                                                                                                       |  |  |
| All dimensions in metres<br>Scale 1:25 Client Elan Homes Limited Method/<br>Plant Used ICB 3CX FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Shoring/S<br>Stability: | Suppor<br>Mino<br>— 3.(<br>A                                                                                             | t: Nor<br>r colla              | ne<br>pse on eastern face<br>B 0.45                                                   |                                                                        |                                                    |                            |                                       |       | I<br>No grou<br>encoun<br>2.70 m<br>digging<br>arisings | GENERAL<br>REMARKS<br>undwater<br>tered. Terminated at<br>bgl due to hard<br>g. Backfilled with<br>s. |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | All dimen               | sions in                                                                                                                 | metres                         | Client Elan Home                                                                      | es Limited                                                             | Method/<br>Plant Used                              |                            | ICB 3CX                               |       | Logged                                                  | By<br>FT                                                                                              |  |  |



**TRIAL PIT LOG** 



| Project            |                                          |                                                                                               |                                                                                         |                                                                                                |                            | TRIAL PIT No                                                                                                                                   |
|--------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Sto                | cking La                                 | ane, Shenington                                                                               | Crown d Lowel (m                                                                        | ) Co Ordinates ()                                                                              |                            | HP101                                                                                                                                          |
| JOB NO 21          | 0761                                     | 13-10-21                                                                                      | 179 98                                                                                  | F 436 910.0                                                                                    | N 242 885 0                |                                                                                                                                                |
| Contractor         |                                          | 15 10 21                                                                                      | 177.90                                                                                  | L 130,910.0                                                                                    | 11 2-12,005.0              | Sheet                                                                                                                                          |
| Dis                | scovery (                                | CE                                                                                            |                                                                                         |                                                                                                |                            | 1 of 1                                                                                                                                         |
|                    |                                          |                                                                                               | STRATA                                                                                  |                                                                                                | SA                         | AMPLES & TESTS                                                                                                                                 |
|                    |                                          | 1                                                                                             |                                                                                         |                                                                                                | Dept                       | h No Remarks/Tests                                                                                                                             |
| Depth<br>0.00-0.60 | No   - - - - - - - - - - - - - - - - - - | Grass overlying firm ligh<br>sub-rounded fine to medi<br>staining. Occasional fine<br>TOPSOIL | DESCI<br>t orange-brown slightly<br>um quartzite and sub-ar<br>rootlets (less than 5 mm | RIPTION<br>y gravelly sandy CLAY. Gravel is<br>ngular fine to medium sandstone<br>n diameter). | brown<br>with iron<br>0.50 | в                                                                                                                                              |
| 0.60-0.75          |                                          | Medium dense orange-br<br>dark brown sub-rounded<br>MARLSTONE ROCK F                          | own slightly gravelly vo<br>and sub-angular fine to<br>ORMATION.                        | ery clayey SAND. Gravel is brow<br>medium sandstone with iron stai                             | n and<br>ning. 0.75        | D                                                                                                                                              |
| Shoring/3          | Support:                                 |                                                                                               |                                                                                         |                                                                                                |                            | GENERAL                                                                                                                                        |
| Stability:         | —— 0.45<br>A                             | B 0.45                                                                                        |                                                                                         |                                                                                                |                            | REMARKS<br>No groundwater<br>encountered. Hand dug trial<br>pit. Terminated at 0.75 m<br>bgl due to hard digging.<br>Backfilled with arisings. |
|                    | C                                        |                                                                                               |                                                                                         |                                                                                                |                            | 15                                                                                                                                             |
| All dimen<br>Sc    | sions in m<br>ale 1:25                   | etres Client Elan Ho                                                                          | omes Limited                                                                            | Method/<br>Plant Used                                                                          |                            | Logged By<br>ET                                                                                                                                |

**TRIAL PIT LOG** 



| Project                         |                        | ·                                                                                                                        |                                                                                                     |                                                                                                                            |                                                                                   |                                                                                                                   |       | TF                                                                    | RIAL PIT No                                                                                                     |
|---------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Sto                             | cking L                | ane, Shenington                                                                                                          | l                                                                                                   | ~                                                                                                                          | <u> </u>                                                                          |                                                                                                                   |       |                                                                       | HP102                                                                                                           |
| Job No                          |                        | Date 13-1                                                                                                                | 0-21                                                                                                | Ground Level (n                                                                                                            | n)                                                                                | Co-Ordinates ()                                                                                                   |       |                                                                       | 111 102                                                                                                         |
| Contractor                      | J76J                   | 13-1                                                                                                                     | 0-21                                                                                                | 1/9.1/                                                                                                                     |                                                                                   | E 436,942.0 N 242,82                                                                                              | 20.0  | Sheet                                                                 |                                                                                                                 |
| Dis                             | coverv                 | CE                                                                                                                       |                                                                                                     |                                                                                                                            |                                                                                   |                                                                                                                   |       | Sheet                                                                 | 1 of 1                                                                                                          |
| 210                             |                        |                                                                                                                          | S                                                                                                   | ΓΡΔΤΔ                                                                                                                      |                                                                                   |                                                                                                                   | SA    | MPI F                                                                 | S & TESTS                                                                                                       |
|                                 |                        |                                                                                                                          |                                                                                                     |                                                                                                                            |                                                                                   |                                                                                                                   | Deptl | n No                                                                  | Remarks/Tests                                                                                                   |
| Depth<br>0.00-0.75<br>0.75-1.00 | No 0                   | Grass overlying<br>sub-rounded fine<br>staining. Occasio<br>TOPSOIL<br>Firm orange-bro<br>sub-rounded and<br>MARLSTONE 1 | firm light oran<br>e to medium q<br>onal fine rootl<br>wn slightly gr<br>l sub-angular<br>ROCK FORM | DESC<br>nge-brown slightly<br>uartzite and sub-a<br>ets (less than 5 m<br>avelly sandy CLA<br>fine to medium sa<br>IATION. | RIPTION<br>/ gravelly s<br>ngular fine<br>n diameter<br>Y. Gravel i<br>ndstone wi | andy CLAY. Gravel is brown<br>to medium sandstone with iron<br>).<br>is brown and dark brown<br>th iron staining. | 0.40  | B                                                                     |                                                                                                                 |
|                                 |                        |                                                                                                                          |                                                                                                     |                                                                                                                            |                                                                                   |                                                                                                                   |       |                                                                       |                                                                                                                 |
| Shoring/S<br>Stability:         | Support<br>0.45<br>    | 5                                                                                                                        | 5                                                                                                   |                                                                                                                            |                                                                                   |                                                                                                                   |       | G<br>R<br>No groun<br>encounte<br>pit. Term<br>bgl due t<br>Backfille | ENERAL<br>EMARKS<br>ndwater<br>red. Hand dug trial<br>ninated at 1.00 m<br>o hard digging.<br>ed with arisings. |
| All dimen<br>Sca                | sions in r<br>ale 1:25 | netres Client I                                                                                                          | Elan Homes                                                                                          | Limited                                                                                                                    | Method/<br>Plant Use                                                              | d                                                                                                                 |       | Logged I                                                              | By<br>ET                                                                                                        |

**TRIAL PIT LOG** 



| Project                 |                      |                                              |                                                                            |                                                                                   |                                                       |                                                                   |       | TF                                              | RIAL PIT No                                                                    |
|-------------------------|----------------------|----------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|-------|-------------------------------------------------|--------------------------------------------------------------------------------|
| Sto                     | cking                | Lane, S                                      | henington                                                                  |                                                                                   |                                                       |                                                                   |       |                                                 | HP103                                                                          |
| Job No                  |                      | 1                                            | Date 13-10-21                                                              | Ground Level (n                                                                   | n)                                                    | Co-Ordinates ()                                                   |       |                                                 |                                                                                |
| 21                      | 076J                 |                                              | 13-10-21                                                                   | 177.93                                                                            | 5                                                     | E 436,973.0 N 242,6                                               | 90.0  | <u> </u>                                        |                                                                                |
| Contractor              |                      | TH CE                                        |                                                                            |                                                                                   |                                                       |                                                                   |       | Sneet                                           | 1 of 1                                                                         |
| Dis                     | scover               | YCE                                          |                                                                            |                                                                                   |                                                       |                                                                   |       |                                                 | 1 01 1                                                                         |
|                         |                      |                                              |                                                                            | STRATA                                                                            |                                                       |                                                                   | SA    | MPLE                                            | S & TESTS                                                                      |
|                         | N                    |                                              |                                                                            | DEGG                                                                              | DIDTION                                               |                                                                   | Depth | No                                              | Remarks/Tests                                                                  |
| Depth<br>0.00-0.60      | No                   | Gras                                         | s overlying firm light<br>rounded fine to mediu<br>ing. Occasional fine ro | DESC<br>orange-brown slightly<br>m quartzite and sub-a<br>ootlets (less than 5 mi | RIPTION<br>y gravelly s<br>ingular fine<br>m diameter | andy CLAY. Gravel is brown<br>to medium sandstone with iron<br>). | 0.30  | в                                               |                                                                                |
|                         |                      |                                              | SOIL                                                                       |                                                                                   |                                                       |                                                                   | 0.50  |                                                 |                                                                                |
| 0.60-0.90               |                      | ○ Firm<br>sub-                               | orange-brown slightly<br>rounded and sub-angu                              | y gravelly sandy CLA<br>lar fine to medium sa                                     | Y. Gravel<br>ndstone wi                               | is brown and dark brown<br>th iron staining.                      |       | П                                               |                                                                                |
|                         |                      | <u>•                                    </u> | RLSTONE ROCK FO                                                            | RMATION.                                                                          |                                                       |                                                                   | 0.80  |                                                 |                                                                                |
| Shoring                 |                      |                                              |                                                                            |                                                                                   |                                                       |                                                                   |       |                                                 | ENIEDAI                                                                        |
| Snoring/S<br>Stability: | Suppo                | rt:                                          |                                                                            |                                                                                   |                                                       |                                                                   | 1     | R<br>R<br>No grour                              | ENEKAL<br>EMARKS<br>ndwater                                                    |
|                         | 0                    | .45 ——<br>A                                  | →<br>B 0.45                                                                |                                                                                   |                                                       |                                                                   |       | encounte<br>oit. Term<br>ogl due t<br>Backfille | red. Hand dug trial<br>inated at 0.90 m<br>o hard digging.<br>d with arisings. |
|                         |                      | С                                            | <b>Y</b>                                                                   |                                                                                   |                                                       |                                                                   |       |                                                 |                                                                                |
| All dimen               | sions in<br>ale 1:2: | n metres<br>5                                | Client Elan Hor                                                            | nes Limited                                                                       | Method/<br>Plant Use                                  | d                                                                 |       | Logged I                                        | <sup>3</sup> y<br>ET                                                           |

**TRIAL PIT LOG** 



| Project            |                         |                              |                                                                                         |                                                                            |                                                   |                                                                       |              | T                                     | RIAL PIT No                                                              |
|--------------------|-------------------------|------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|--------------|---------------------------------------|--------------------------------------------------------------------------|
| Sto                | cking La                | ne, S                        | henington                                                                               |                                                                            |                                                   |                                                                       |              |                                       |                                                                          |
| Job No             |                         | I                            | Date 13-10-21                                                                           | Ground Level (n                                                            | n)                                                | Co-Ordinates ()                                                       |              |                                       | NF 104                                                                   |
| 21                 | 076J                    |                              | 13-10-21                                                                                | 178.78                                                                     | 3                                                 | E 436,921.0 N 242,7                                                   | 47.0         |                                       |                                                                          |
| Contractor         |                         |                              |                                                                                         |                                                                            |                                                   |                                                                       |              | Shee                                  | t                                                                        |
| Dis                | scovery C               | CE                           |                                                                                         |                                                                            |                                                   |                                                                       |              |                                       | 1 of 1                                                                   |
|                    |                         |                              | S                                                                                       | TRATA                                                                      |                                                   |                                                                       | SA           | MPLE                                  | ES & TESTS                                                               |
|                    |                         |                              |                                                                                         |                                                                            |                                                   |                                                                       | Deptl        | n No                                  | Remarks/Tests                                                            |
| Depth<br>0.00-0.50 | No                      | Gras<br>sub-<br>stain<br>TOP | s overlying firm light or<br>rounded fine to medium<br>ing. Occasional fine roo<br>SOIL | DESC<br>ange-brown slightly<br>quartzite and sub-a<br>tlets (less than 5 m | RIPTION<br>y gravelly<br>angular fin<br>m diamete | sandy CLAY. Gravel is brown<br>e to medium sandstone with iron<br>r). |              |                                       |                                                                          |
| 0.50-1.00          |                         | Med<br>sub-<br>MAI           | ium dense orange-browr<br>rounded and sub-angular<br>RLSTONE ROCK FOR                   | n clayey sandy GRA<br>r fine to medium sa<br>MATION.                       | AVEL. Gra<br>ndstone w                            | avel is brown and dark brown<br>ith iron staining.                    | 0.60<br>0.60 | B<br>D                                |                                                                          |
|                    |                         |                              |                                                                                         |                                                                            |                                                   |                                                                       |              |                                       |                                                                          |
| Shoring/Stability: | Support:<br>0.45        |                              | <b>⊳</b>                                                                                |                                                                            |                                                   |                                                                       | -            | R<br>No grou<br>encounte<br>pit. Terr | ENERAL<br>EMARKS<br>ndwater<br>ered. Hand dug trial<br>ninated at 1.00 m |
| D                  | A<br>C                  |                              | B 0.45                                                                                  |                                                                            |                                                   |                                                                       |              | bgl due<br>Backfill                   | to hard digging.<br>ed with arisings.                                    |
| All dimer          | sions in me<br>ale 1:25 | etres                        | Client Elan Home                                                                        | es Limited                                                                 | Method/<br>Plant Us                               | ed                                                                    |              | Logged                                | By<br>ET                                                                 |

**TRIAL PIT LOG** 



| Project            |                          |                                                                                                   |                                                                                     |                                                           |                                                           |                    | TF                                                       | RIAL PIT No                                                                                               |
|--------------------|--------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Sto                | cking Lan                | e, Shenington                                                                                     |                                                                                     |                                                           |                                                           |                    |                                                          |                                                                                                           |
| Job No             |                          | Date 13-10-21                                                                                     | Ground Level (n                                                                     | n) C                                                      | Co-Ordinates ()                                           |                    |                                                          |                                                                                                           |
| 21                 | 076J                     | 13-10-21                                                                                          | 177.84                                                                              | -                                                         | E 437,019.0 N 242,72                                      | 27.0               |                                                          |                                                                                                           |
| Contractor         |                          |                                                                                                   |                                                                                     |                                                           |                                                           |                    | Sheet                                                    | t                                                                                                         |
| Dis                | covery CI                | 3                                                                                                 |                                                                                     |                                                           |                                                           |                    |                                                          | 1 of 1                                                                                                    |
|                    |                          |                                                                                                   | STRATA                                                                              |                                                           |                                                           | SAI                | MPLE                                                     | S & TESTS                                                                                                 |
|                    |                          |                                                                                                   |                                                                                     |                                                           |                                                           | Depth              | No                                                       | Remarks/Tests                                                                                             |
| Depth<br>0.00-0.65 | No                       | Grass overlying firm light<br>sub-rounded fine to mediu<br>staining. Occasional fine r<br>TOPSOIL | DESC<br>orange-brown slightly<br>um quartzite and sub-a<br>rootlets (less than 5 mi | RIPTION<br>y gravelly sa<br>ngular fine t<br>m diameter). | ndy CLAY. Gravel is brown<br>o medium sandstone with iron |                    |                                                          |                                                                                                           |
|                    |                          |                                                                                                   |                                                                                     |                                                           |                                                           | 0.50               | D                                                        |                                                                                                           |
| 0.65-1.00          |                          | Firm orange-brown gravel<br>and sub-angular fine to me<br>MARLSTONE ROCK FC                       | lly sandy CLAY. Grav<br>edium sandstone with<br>DRMATION.                           | vel is brown a<br>iron staining                           | and dark brown sub-rounded<br>3.                          | 0.75               | в                                                        |                                                                                                           |
| Shoring/S          | Support:                 |                                                                                                   |                                                                                     |                                                           |                                                           |                    |                                                          | ENERAL                                                                                                    |
| Stability:         | 0.45<br>A<br>C           | ■<br>B 0.45                                                                                       |                                                                                     |                                                           |                                                           | N<br>er<br>bj<br>B | to groun<br>ncounter<br>it. Term<br>gl due t<br>ackfille | EMARKS<br>indwater<br>bred. Hand dug trial<br>initiated at 1.00 m<br>o hard digging.<br>ed with arisings. |
| All dimen<br>Sc    | sions in met<br>ale 1:25 | res Client Elan Hor                                                                               | mes Limited                                                                         | Method/<br>Plant Used                                     |                                                           | L                  | ogged I                                                  | <sup>By</sup> ET                                                                                          |

**TRIAL PIT LOG** 



| Project            |                        |                                                                                                   |                                                                                       |                                                                                      |                                        | TR                                               | RIAL PIT No                                                                    |
|--------------------|------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------|
| Sto                | cking La               | ne, Shenington                                                                                    |                                                                                       |                                                                                      |                                        |                                                  |                                                                                |
| Job No             |                        | Date 13-10-21                                                                                     | Ground Level (m                                                                       | ) Co-Ordinates ()                                                                    |                                        |                                                  |                                                                                |
| 21                 | 076J                   | 13-10-21                                                                                          | 179.34                                                                                | E 436,826                                                                            | .0 N 242,740.0                         |                                                  |                                                                                |
| Contractor         |                        |                                                                                                   |                                                                                       |                                                                                      |                                        | Sheet                                            |                                                                                |
| Dis                | covery (               | CE                                                                                                |                                                                                       |                                                                                      |                                        |                                                  | 1 of 1                                                                         |
|                    |                        |                                                                                                   | STRATA                                                                                |                                                                                      | SA                                     | MPLE                                             | S & TESTS                                                                      |
|                    |                        | 1                                                                                                 |                                                                                       |                                                                                      | Dept                                   | n No                                             | Remarks/Tests                                                                  |
| Depth<br>0.00-0.65 | No                     | Grass overlying firm light<br>sub-rounded fine to mediu<br>staining. Occasional fine r<br>TOPSOIL | DESCI<br>orange-brown slightly<br>um quartzite and sub-ar<br>pootlets (less than 5 mm | RIPTION<br>gravelly sandy CLAY. Grav<br>ngular fine to medium sandst<br>n diameter). | vel is brown<br>tone with iron<br>0.40 | D                                                |                                                                                |
| 0.65-0.95          |                        | Orange-brown clayey sand<br>sub-angular fine to mediu                                             | dy GRAVEL. Gravel is<br>m sandstone with iron                                         | s brown and dark brown sub<br>staining.                                              | -rounded and 0.80                      | в                                                |                                                                                |
|                    |                        |                                                                                                   |                                                                                       |                                                                                      |                                        |                                                  |                                                                                |
| Stability:         | 0.45<br>A              | <b>⊳</b> I                                                                                        |                                                                                       |                                                                                      |                                        | No groun<br>encounter<br>pit. Term<br>bgl due to | EMARKS<br>dwater<br>red. Hand dug trial<br>inated at 0.95 m<br>o hard digging. |
| D                  | C                      | B 0.45                                                                                            |                                                                                       |                                                                                      |                                        | Backfille                                        | d with arisings.                                                               |
| All dimen<br>Sc    | sions in m<br>ale 1:25 | etres Client Elan Hor                                                                             | mes Limited                                                                           | Method/<br>Plant Used                                                                |                                        | Logged F                                         | <sup>3y</sup> ET                                                               |



SITE

### **Geotechnical & Environmental Engineers** Shenington PROJECT No. 21076J Atmospheric & Ground Conditions Ground Surface Conditions Atmospheric Pressure Variations During Visit SH Carried Out by: 994 -995 mb Wet Date: 30-Sep-21 Weather Conditions Atmospheric Pressure Trend Over Previous 24hrs Instrument GFM-430 & Dip Meter Wind Details CH4 (% v/v) Well No. Cover Well Flow Rate Differential Flow Rate Differential Flow Rate Differential CH4 CO2 (% v/v) O2 (% v/v) H2S (ppm) CO (ppm) Duration Flow Rate Differential PID (ppm) Atmospheric Water Depth of COMMENTS Height (l/hr) Initial Pressure (Pa) (l/hr) 15 s ressure (Pa Pressure (Pa Pressure (mb) Diameter Pressure (l/hr) Steady (secs)^ (l/hr) Level Pipe (m LEL (%) Min Peak Peak Steady (m bgl) (m agl) (mm) Initial (Pa) 15 s Steady Steady Peak Steady Peak Steady Steady Steady Peak Steady bgl) NR TP101 0.50 42 NR DRY 2.00 TP107 42 NR DRY 1.73 0.71 DS101 0.0 0.0 19.9 20.1 0.0 0.0 2.0 0.0 180 0.0 NR NR 994 DRY 4.26 0.44 42 0 0 0 0 0 0 0.0 0.0 0.1 0.0 DS103 0.48 42 0 0 0 0 0 0 0.0 0.0 0.0 0.4 0.4 19.9 20.0 0.0 0.0 2.0 0.0 180 0.0 0.0 NR NR 994 DRY 1.15 42 0 0 0 0.0 NR DS104 0.42 0 0 0 0.0 0.0 0.6 0.6 19.5 19.8 0.0 0.0 7.0 0.0 180 0.0 0.0 NR 995 DRY 1.24 DS106 0.40 42 0.5 0 0 0 0.0 0.0 0.0 0.3 0.3 20.0 20.0 0.0 0.0 2.0 2.0 180 0.0 0.0 NR NR 995 DRY 3.35 1 0

NR = Not Recorded Notes:

^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken GL = Ground Level



SITE

### **Geotechnical & Environmental Engineers** Shenington PROJECT No. 21076J **Atmospheric & Ground Conditions** Ground Surface Conditions Atmospheric Pressure Variations During Visit EW Carried Out by: Ranged from 987-990mb during visit Dry Date: 21-Oct-21 Atmospheric Pressure Trend Over Previous 24hrs Weather Conditions Instrument GFM-430 & Dip Meter Cloudy and sunny Details CH4 (% v/v) Well No. Cover Well Flow Rate Differential Flow Rate Differential Flow Rate Differential CH4 CO2 (% v/v) O2 (% v/v) H2S (ppm) CO (ppm) Duration Flow Rate Differential PID (ppm) Atmospheric Water Depth of COMMENTS Height (l/hr) Initial Pressure (Pa) (l/hr) 15 s ressure (Pa (l/hr) Pressure (Pa Pressure (mb) Level Diameter Pressure (l/hr) Steady (secs)^ Pipe (m Peak LEL (%) Min Peak Peak Peak Steady (m bgl) (m agl) (mm) Initial (Pa) 15 s Steady Steady Steady Peak Steady Steady Steady Steady bgl) NR TP101 0.50 42 NR TP107 42 NR 0.71 DS101 0.44 0.0 0.6 20.4 20.2 0.0 0.0 0.0 0.0 180 0.0 0.0 990 Dry 5.04 42 0 0 0 0 0 0 0.0 0.0 0.7 0.0 0.0 Dry DS103 0.48 42 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 20.7 20.8 0.0 0.0 0.0 0.0 180 0.0 0.0 0.0 0.0 990 Dry 2.45 Dry 0 42 0 0 0.0 DS104 0.42 0 0 0 0.0 0.0 0.5 0.4 20.4 20.6 0.0 0.0 0.0 0.0 180 0.0 0.0 0.0 0.0 988 Dry 2.01 Dry DS106 0.40 42 0 0 0 0 0 0.0 0.0 0.0 0.4 0.0 20.7 20.7 0.0 0.0 0.0 0.0 180 0.0 0.0 0.0 0.0 987 Dry 3.07 Drv 0

NR = Not Recorded Notes:

^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken GL = Ground Level



**Geotechnical & Environmental Engineers** 

SITE Shenington

| PROJECT N   | о.        | 21076J    |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          | Atmos      | pheric & G | Fround Cond   | itions |        |               |           |           |              |
|-------------|-----------|-----------|----------------|---------------|-------------|---------------|-----------|---------------|------|----------|---------|------|---------|------|---------|----------|-----------|----------|----------|------------|------------|---------------|--------|--------|---------------|-----------|-----------|--------------|
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      | Atmos   | pheric F | ressure   | Variati  | ons Duri | ing Visit  |            |               |        |        | Ground        | I Surfac  | e Condit  | ions         |
| Carried Out | by:       | EW        |                |               |             |               |           |               |      |          |         |      |         |      |         | R        | anged fro | om 984-  | 986      |            |            |               |        |        |               | Dry       | ,         |              |
| Date:       |           | 28-Oct-21 |                |               |             |               |           |               |      |          |         |      |         |      |         |          | - J       |          |          |            |            |               |        |        |               |           |           |              |
| Instrument  |           |           |                |               |             |               | -         |               |      |          |         |      |         |      | Atmosph | eric Pre | ssure I   | rend Ov  | er Previ | ious 24hrs | 5          |               |        |        | We            | ather Co  | onditions | 6            |
| Details     |           |           |                |               | GFIVI-4     |               | er        |               |      |          |         |      |         |      | Vari    | es from  | 1003 to 9 | 968 over | the last | 24hrs      |            |               |        |        | Ove           | ercast, D | ry, Wind  | /            |
| Well No.    | Cover     | Well      | Flow Rate      | Differential  | Flow Rate   | Differential  | Flow Rate | Differential  | CH4  | (% v/v)  | CH4     | CO2  | (% v/v) | 02 ( | % v/v)  | H2S      | (ppm)     | CO       | (ppm)    | Duration   | Flow Rate  | Differential  | PID    | (ppm)  | Atmospheric   | Water     | Depth of  | COMMENTS     |
|             | Height    | Diameter  | (I/hr) Initial | Pressure (Pa) | (l/hr) 15 s | Pressure (Pa) | (l/hr)    | Pressure (Pa) |      |          | Steady  |      |         |      |         |          |           |          |          | (secs)^    | (l/hr)     | Pressure (Pa) |        |        | Pressure (mb) | Level     | Pipe (m   |              |
|             | (iii agi) | (11111)   |                | mua           |             | 15 5          | Sleady    | Sleady        | Deak | Chandler | LEL (%) | Deek | Chandy  | Min  | Chandy  | Beek     | Chandy    | Deak     | Chandre  |            |            |               | Deek   | Steady |               | (in bgi)  | bgi)      |              |
| TD101       | 0.50      | 40        | ND             | ND            | ND          | ND            | ND        | ND            | ND   | Sleady   | ND      | ND   | Sleady  | MIN  | Steady  | ND       | ND        | ND       | Steauy   | ND         | ND         | ND            | ND     | Steady | ND            | /         | 2.01      | Dry No bung  |
| TP107       | 0.50      | 42        | NR             | NR            |             | NR            |           | NR            |      |          |         | NR   |         | NR   |         |          |           |          | NR       |            |            | NR            | NR     |        | NR            | /         | 2.91      | Dry- No bung |
| DS101       | 0.44      | 42        | 0              | 0             | 0           | 0             | 0         | 0             | 0    | 0        | 0       | 0.5  | 0.4     | 20.7 | 20.8    | 0        | 0         | 0        | 0        | 180        | 0          | 0             | NR     | NR     | 986           | /         | 5.04      | Dry          |
| DS103       | 0.48      | 42        | 0              | 0             | 0           | 0             | 0         | 0             | 0    | 0        | 0       | 0.0  | 0       | 20.9 | 21.0    | 0        | 0         | 0        | 0        | 180        | 0          | 0             | NR     | NR     | 985           | /         | 2.01      | Dry          |
| DS104       | 0.42      | 42        | 0              | 0             | 0           | 0             | 0         | 0             | 0    | 0        | 0       | 0.7  | 0.6     | 20.9 | 20.9    | 0        | 0         | 0        | 0        | 180        | 0          | 0             | NR     | NR     | 985           | /         | 2.03      | Dry          |
| DS106       | 0.40      | 42        | 0              | 0             | 0           | 0             | 0         | 0             | 0    | 0        | 0       | 0.4  | 0       | 20.9 | 20.9    | 0        | 0         | 0        | 0        | 180        | 0          | 0             | NR     | NR     | 984           | /         | 3.06      | Dry          |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               | -         |           |              |
|             |           |           |                |               |             | -             |           | -             |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           | İ              |               | 1           |               | 1         |               |      |          |         |      |         |      |         |          |           |          | 1        | l I        |            |               |        | İ 👘    |               |           | İ 👘       |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               | L           | l             | L         | l             |      |          |         |      |         |      |         |          |           |          | ļ        |            |            |               |        | L      |               |           | L         |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |
|             |           |           |                |               |             |               |           |               |      |          |         |      |         |      |         |          |           |          |          |            |            |               |        |        |               |           |           |              |

Notes: NR = Not Recorded

^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken

GL = Ground Level



| SITE        |         | Sheningto | ton            |               |             |              |           |               |      |         |         |      |         | Geotechnical & Environmental Engineers |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|-------------|---------|-----------|----------------|---------------|-------------|--------------|-----------|---------------|------|---------|---------|------|---------|----------------------------------------|--------|----------|---------|----------|----------|-----------|------------|---------------|---------|--------|---------------|----------|----------|----------|
| PROJECT N   | lo.     | 21076J    |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          | Atmos     | pheric & G | iround Cond   | litions |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        | Atmos  | pheric F | ressure | Variatio | ons Duri | ng Visit  |            |               |         |        | Groun         | d Surfac | e Condi  | tions    |
| Carried Out | by:     | CT        |                |               |             |              |           |               |      |         |         |      |         |                                        |        | Fall     | ng from | 999 - 99 | 7 mb     |           |            |               |         |        |               | Wet ope  | en field |          |
| Date:       |         | 11-Nov-2  | 1              |               |             |              |           |               |      |         |         |      |         |                                        |        |          | -       |          |          |           |            |               |         |        |               |          |          |          |
| Instrument  |         |           |                |               | OFM 420     |              |           |               |      |         |         |      |         | A                                      | tmosph | eric Pre | ssure I | rend Ov  | er Previ | ous 24hrs | 5          |               |         |        | W             | eather C | ondition | S        |
| Details     |         |           |                |               | GFIN-430    | a Dip iviete | 31        |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               | Light    | rain     |          |
| Well No.    | Cover   | Well      | Flow Rate      | Differential  | Flow Rate   | Differential | Flow Rate | Differential  | CH4  | (% v/v) | CH4     | CO2  | (% v/v) | 02 (                                   | % v/v) | H2S      | (ppm)   | CO       | (ppm)    | Duration  | Flow Rate  | Differential  | PID     | (ppm)  | Atmospheric   | Water    | Depth of | COMMENTS |
|             | Height  | Diameter  | (l/hr) Initial | Pressure (Pa) | (l/hr) 15 s | Pressure     | (l/hr)    | Pressure (Pa) |      |         | Steady  |      |         |                                        |        |          |         |          |          | (secs)^   | (l/hr)     | Pressure (Pa) |         |        | Pressure (mb) | Level    | Pipe (m  |          |
|             | (m agl) | (mm)      |                | Initial       |             | (Pa) 15 s    | Steady    | Steady        | Peak | Steady  | LEL (%) | Peak | Steady  | Min                                    | Steady | Peak     | Steady  | Peak     | Steady   |           |            |               | Peak    | Steady |               | (m bgl)  | bgl)     |          |
| TP101       | 0.50    | 42        | NR             | NR            | NR          | NR           | NR        | NR            | NR   | NR      | NR      | NR   | NR      | NR                                     | NR     | NR       | NR      | NR       | NR       | NR        | NR         | NR            | NR      | NR     | NR            | DRY      | 2.44     |          |
| TP107       | 0.71    | 42        | NR             | NR            | NR          | NR           | NR        | NR            | NR   | NR      | NR      | NR   | NR      | NR                                     | NR     | NR       | NR      | NR       | NR       | NR        | NR         | NR            | NR      | NR     | NR            | DRY      | 2.22     |          |
| DS101       | 0.44    | 42        | 0              | 0             | NR          | NR           | 0         | 0             | 0.0  | 0.0     | 0.0     | 0.0  | 0.0     | 20.9                                   | 20.9   | 0.0      | 0.0     | 0.0      | 0.0      | 180       | 0.0        | 0.0           | NR      | NR     | 997           | DRY      | 4.63     |          |
| DS103       | 0.48    | 42        | 0              | 0             | NR          | NR           | 0         | 0             | 0.0  | 0.0     | 0.0     | 0.0  | 0.0     | 20.7                                   | 20.7   | 0.0      | 0.0     | 0.0      | 0.0      | 180       | 0.0        | 0.0           | NR      | NR     | 999           | DRY      | 1.55     |          |
| DS104       | 0.42    | 42        | 0              | 0             | NR          | NR           | 0         | 0             | 0.0  | 0.0     | 0.0     | 0.3  | 0.3     | 20.5                                   | 20.5   | 0.0      | 0.0     | 0.0      | 0.0      | 180       | 0.0        | 0.0           | NR      | NR     | 998           | DRY      | 1.64     |          |
| DS106       | 0.40    | 42        | 0              | 0             | NR          | NR           | 0         | 0             | 0.0  | 0.0     | 0.0     | 0.2  | 0.2     | 20.7                                   | 20.7   | 0.0      | 0.0     | 0.0      | 0.0      | 180       | 0.0        | 0.0           | NR      | NR     | 997           | DRY      | 2.70     |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      | -       |                                        | -      |          |         |          |          |           |            |               |         |        |               | -        |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      | -       |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      | -       |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        | ļ        |         |          |          |           |            |               |         |        |               |          |          |          |
| I           | L       |           |                |               |             |              | l         |               |      |         | l       | L    | L       |                                        |        | ļ        |         | l        |          |           |            | l             |         | l      |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
|             |         |           |                |               |             |              |           |               |      |         |         |      |         |                                        |        |          |         |          |          |           |            |               |         |        |               |          |          |          |
| I           |         |           |                |               |             |              |           |               | -    |         |         |      |         |                                        |        |          |         |          | +        |           |            |               | -       |        |               |          |          |          |
|             |         | 1         | 1              |               |             | 1            | 1         |               |      |         |         |      |         |                                        |        |          |         |          |          | 1         |            | 1             |         |        | I             |          | 1        |          |

Notes: NR = Not Recorded ^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken

GL = Ground Level



**APPENDIX E - GEOTECHNICAL TEST RESULTS**




Qty

3

3

3

3

1

# **Contract Number: 56235**

Client Ref: **21076J** Client PO:

Laboratory Report

Report Date: 29-10-2021

Client Discovery CE Geotechncial & Enviromental Engineers The Granary Broadwell House Farm, Broadwell, Rugby, Warwickshire CV23 8HF 01926 813909

Contract Title: Shenington - Hand Pits For the attention of: Edward Tainsh

Date Received: **14-10-2021** Date Completed: **29-10-2021** 

#### **Test Description**

### Moisture Content

BS 1377:1990 - Part 2 : 3.2 - \* UKAS

#### **4 Point Liquid & Plastic Limit**

BS 1377:1990 - Part 2 : 4.3 & 5.3 - \* UKAS

#### PSD Wet Sieve method

BS 1377:1990 - Part 2 : 9.2 - \* UKAS

#### **Samples Received**

- @ Non Accredited Test

Disposal of samples for job

Notes: Observations and Interpretations are outside the UKAS Accreditation

- \* denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Emma Sharp (Business Support Manager) - Paul Evans (Director) - Richard John (Quality/Technical Manager) Shaun Jones (Laboratory manager) - Shaun Thomas (Site Manager) - Wayne Honey (Quality Assistant / Administrator / Health and Safety Coordinator)

GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk











APPENDIX F - CHEMICAL TEST RESULTS

# 😵 eurofins

### Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

| Final Report           |                                                                                       |                     | Email: info@chemtest.co |
|------------------------|---------------------------------------------------------------------------------------|---------------------|-------------------------|
| Report No.:            | 21-33783-1                                                                            |                     |                         |
| Initial Date of Issue: | 04-Oct-2021                                                                           |                     |                         |
| Client                 | Discovery CE Ltd                                                                      |                     |                         |
| Client Address:        | The Granary<br>Broadwell House Farm<br>Broadwell<br>Rugby<br>Warwickshire<br>CV23 8HF |                     |                         |
| Contact(s):            | Discovery<br>Ed Tainsh                                                                |                     |                         |
| Project                | 21076J Shenington                                                                     |                     |                         |
| Quotation No.:         |                                                                                       | Date Received:      | 29-Sep-2021             |
| Order No.:             |                                                                                       | Date Instructed     | : 29-Sep-2021           |
| No. of Samples:        | 21                                                                                    |                     |                         |
| Turnaround (Wkdays):   | 5                                                                                     | <b>Results Due:</b> | 05-Oct-2021             |
| Date Approved:         | 04-Oct-2021                                                                           |                     |                         |
| Approved By:           |                                                                                       |                     |                         |
|                        |                                                                                       |                     |                         |
| Details:               | Glynn Harvey, Technical Manager                                                       |                     |                         |

mc

2183

CY'S

| Client: Discovery CE Ltd            | Chemtest Job No.: |        | 21-33783 | 21-33783 | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    |             |             |
|-------------------------------------|-------------------|--------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:                      | 0                 | Chemte | est Sam  | ple ID.: | 1288356     | 1288357     | 1288358     | 1288359     | 1288360     | 1288361     | 1288362     | 1288363     | 1288364     |
|                                     |                   | Sa     | ample L  | ocation: | TP101       | TP101       | TP102       | TP102       | TP102       | TP103       | TP104       | TP104       | TP105       |
|                                     |                   |        | Sampl    | e Type:  | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |
|                                     |                   |        | Top De   | pth (m): | 0.70        | 1.60        | 0.30        | 0.90        | 1.00        | 0.80        | 0.60        | 1.00        | 0.50        |
|                                     |                   | Bot    | ttom De  | pth (m): | 0.70        | 1.60        | 0.30        | 0.90        | 1.00        | 0.80        | 0.60        | 1.00        | 0.50        |
|                                     |                   |        | Date Sa  | ampled:  | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 |
| Determinand                         | Accred.           | SOP    | Units    | LOD      |             |             |             |             |             |             |             |             |             |
| Moisture                            | N                 | 2030   | %        | 0.020    | 18          | 21          | 18          | 25          | 20          | 21          | 21          | 22          | 18          |
| Soil Colour                         | N                 | 2040   |          | N/A      | Brown       |
| Other Material                      | N                 | 2040   |          | N/A      | Stones      |
| Soil Texture                        | N                 | 2040   |          | N/A      | Sand        |
| рН                                  | М                 | 2010   |          | 4.0      | 7.2         | 7.4         | 7.1         | 8.6         | 8.3         | 7.5         | 7.2         | 7.5         | 7.2         |
| Boron (Hot Water Soluble)           | М                 | 2120   | mg/kg    | 0.40     | 0.78        | 0.40        | 0.77        | < 0.40      | < 0.40      | < 0.40      | < 0.40      | < 0.40      | 0.96        |
| Sulphate (2:1 Water Soluble) as SO4 | М                 | 2120   | g/l      | 0.010    |             |             |             |             |             |             |             |             |             |
| Arsenic                             | M                 | 2450   | mg/kg    | 1.0      | 190         | 64          | 200         | 130         | 130         | 200         | 240         | 130         | 360         |
| Cadmium                             | M                 | 2450   | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | 0.10        | < 0.10      | 0.13        |
| Chromium                            | M                 | 2450   | mg/kg    | 1.0      | 180         | 160         | 180         | 300         | 190         | 280         | 210         | 310         | 340         |
| Copper                              | M                 | 2450   | mg/kg    | 0.50     | 9.5         | 3.1         | 10          | 6.0         | 5.9         | 6.8         | 12          | 5.0         | 18          |
| Mercury                             | M                 | 2450   | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | 0.10        |
| Nickel                              | M                 | 2450   | mg/kg    | 0.50     | 110         | 83          | 100         | 140         | 100         | 150         | 130         | 160         | 200         |
| Lead                                | M                 | 2450   | mg/kg    | 0.50     | 33          | 1/          | 38          | 33          | 23          | 35          | 54          | 27          | 85          |
| Selenium                            | M                 | 2450   | mg/kg    | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
|                                     | U                 | 2450   | mg/kg    | 5.0      | 280         | 180         | 270         | 340         | 240         | 380         | 350         | 370         | 530         |
|                                     | M                 | 2450   | mg/kg    | 0.50     | 210         | 120         | 230         | 200         | 150         | 180         | 260         | 160         | 420         |
| Chromium (Hexavalent)               | N N               | 2490   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      | < 0.50      |
|                                     | IVI<br>M          | 2700   | mg/kg    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Acenaphthylene                      | IVI<br>N4         | 2700   | mg/kg    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Acenaphtnene                        | IVI<br>M          | 2700   | mg/kg    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Phoponthropo                        | IVI<br>M          | 2700   | mg/kg    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Anthracene                          | M                 | 2700   | mg/kg    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Fluoranthene                        | M                 | 2700   | mg/kg    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Pyrene                              | M                 | 2700   | mg/kg    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Renzo[a]anthracene                  | M                 | 2700   | ma/ka    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Chrysene                            | M                 | 2700   | ma/ka    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Benzo[b]fluoranthene                | M                 | 2700   | ma/ka    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Benzo[k]fluoranthene                | M                 | 2700   | ma/ka    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Benzolalpyrene                      | M                 | 2700   | ma/ka    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Indeno(1.2.3-c.d)Pvrene             | M                 | 2700   | ma/ka    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Dibenz(a,h)Anthracene               | М                 | 2700   | mg/ka    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Benzo[g,h,i]perylene                | M                 | 2700   | ma/ka    | 0.10     | < 0.10      |             | < 0.10      |             |             |             |             | < 0.10      | < 0.10      |
| Total Of 16 PAH's                   | М                 | 2700   | mg/kg    | 2.0      | < 2.0       |             | < 2.0       |             |             |             |             | < 2.0       | < 2.0       |
| Demeton-O                           | N                 | 2820   | mg/ka    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Phorate                             | N                 | 2820   | mg/ka    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Demeton-S                           | N                 | 2820   | mg/ka    | 0.20     |             |             | < 0.20      |             |             |             |             |             | i           |
| Disulfoton                          | Ν                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |

| Client: Discovery CE Ltd | Chemtest Job No.: |        | 21-33783 | 21-33783 | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    |             |             |
|--------------------------|-------------------|--------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:           | (                 | Chemte | est Sam  | ple ID.: | 1288356     | 1288357     | 1288358     | 1288359     | 1288360     | 1288361     | 1288362     | 1288363     | 1288364     |
|                          |                   | Sa     | ample Lo | ocation: | TP101       | TP101       | TP102       | TP102       | TP102       | TP103       | TP104       | TP104       | TP105       |
|                          |                   |        | Sampl    | e Type:  | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |
|                          |                   |        | Top De   | oth (m): | 0.70        | 1.60        | 0.30        | 0.90        | 1.00        | 0.80        | 0.60        | 1.00        | 0.50        |
|                          |                   | Bot    | ttom De  | oth (m): | 0.70        | 1.60        | 0.30        | 0.90        | 1.00        | 0.80        | 0.60        | 1.00        | 0.50        |
|                          |                   |        | Date Sa  | ampled:  | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 |
| Determinand              | Accred.           | SOP    | Units    | LOD      |             |             |             |             |             |             |             |             |             |
| Fenthion                 | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Trichloronate            | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Prothiofos               | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Fensulphothion           | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Sulprofos                | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Azinphos-Methyl          | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Coumaphos                | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Atraton                  | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Prometon                 | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Simazine                 | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Atrazine                 | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Propazine                | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Terbuthylazine           | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Secbumeton               | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Simetryn                 | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Ametryn                  | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Prometryn                | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Terbutryn                | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Alpha-HCH                | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Gamma-HCH (Lindane)      | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Beta-HCH                 | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Delta-HCH                | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Heptachlor               | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Aldrin                   | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Heptachlor Epoxide       | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Gamma-Chlordane          | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Alpha-Chlordane          | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endosulfan I             | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| 4,4-DDE                  | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Dieldrin                 | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endrin                   | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| 4,4-DDD                  | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endosulfan II            | Ν                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endrin Aldehyde          | Ν                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| 4,4-DDT                  | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endosulfan Sulphate      | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             | l           |             | l           |             |             |
| Methoxychlor             | Ν                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endrin Ketone            | Ν                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |

| Client: Discovery CE Ltd            | Chemtest Job No.: |        | 21-33783 | 21-33783 | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    |             |             |
|-------------------------------------|-------------------|--------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:                      | (                 | Chemte | est Sam  | ple ID.: | 1288365     | 1288366     | 1288367     | 1288368     | 1288369     | 1288370     | 1288371     | 1288372     | 1288373     |
|                                     |                   | Sa     | ample Lo | ocation: | TP105       | TP106       | TP107       | TP107       | TP102       | TP103       | TP104       | TP105       | TP105       |
|                                     |                   |        | Sampl    | е Туре:  | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |
|                                     |                   |        | Top De   | pth (m): | 1.20        | 0.70        | 0.40        | 1.40        | 1.50        | 1.50        | 2.30        | 1.80        | 2.00        |
|                                     |                   | Bot    | ttom De  | pth (m): | 1.20        | 0.70        | 0.40        | 1.40        | 1.50        | 1.50        | 2.30        | 1.80        | 2.00        |
|                                     |                   |        | Date Sa  | ampled:  | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 |
| Determinand                         | Accred.           | SOP    | Units    | LOD      |             |             |             |             |             |             |             |             |             |
| Moisture                            | N                 | 2030   | %        | 0.020    | 21          | 21          | 20          | 21          | 18          | 19          | 14          | 21          | 13          |
| Soil Colour                         | N                 | 2040   |          | N/A      | Brown       |
| Other Material                      | N                 | 2040   |          | N/A      | Stones      |
| Soil Texture                        | N                 | 2040   |          | N/A      | Sand        |
| рН                                  | М                 | 2010   |          | 4.0      | 7.3         | 7.9         | 7.6         | 7.6         | 7.6         | 8.2         | 8.1         | 8.1         | 8.0         |
| Boron (Hot Water Soluble)           | М                 | 2120   | mg/kg    | 0.40     | < 0.40      | < 0.40      | < 0.40      | < 0.40      |             |             |             |             |             |
| Sulphate (2:1 Water Soluble) as SO4 | М                 | 2120   | g/l      | 0.010    |             |             |             |             | < 0.010     | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| Arsenic                             | М                 | 2450   | mg/kg    | 1.0      | 210         | 150         | 290         | 200         |             |             |             |             |             |
| Cadmium                             | М                 | 2450   | mg/kg    | 0.10     | < 0.10      | < 0.10      | 0.13        | < 0.10      |             |             |             |             |             |
| Chromium                            | М                 | 2450   | mg/kg    | 1.0      | 210         | 340         | 280         | 330         |             |             |             |             |             |
| Copper                              | М                 | 2450   | mg/kg    | 0.50     | 12          | 6.3         | 15          | 6.8         |             |             |             |             |             |
| Mercury                             | М                 | 2450   | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      |             |             |             |             |             |
| Nickel                              | М                 | 2450   | mg/kg    | 0.50     | 110         | 160         | 160         | 150         |             |             |             |             |             |
| Lead                                | М                 | 2450   | mg/kg    | 0.50     | 42          | 35          | 58          | 32          |             |             |             |             |             |
| Selenium                            | М                 | 2450   | mg/kg    | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      |             |             |             |             |             |
| Vanadium                            | U                 | 2450   | mg/kg    | 5.0      | 320         | 400         | 440         | 390         |             |             |             |             |             |
| Zinc                                | М                 | 2450   | mg/kg    | 0.50     | 240         | 190         | 280         | 180         |             |             |             |             |             |
| Chromium (Hexavalent)               | N                 | 2490   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      | < 0.50      |             |             |             |             |             |
| Naphthalene                         | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Acenaphthylene                      | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Acenaphthene                        | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Fluorene                            | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Phenanthrene                        | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Anthracene                          | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Fluoranthene                        | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Pyrene                              | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Benzo[a]anthracene                  | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Chrysene                            | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Benzo[b]fluoranthene                | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Benzo[k]fluoranthene                | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Benzo[a]pyrene                      | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Indeno(1,2,3-c,d)Pyrene             | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Dibenz(a,h)Anthracene               | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Benzo[g,h,i]perylene                | М                 | 2700   | mg/kg    | 0.10     |             | < 0.10      |             | < 0.10      |             |             |             |             |             |
| Total Of 16 PAH's                   | М                 | 2700   | mg/kg    | 2.0      |             | < 2.0       |             | < 2.0       |             |             |             |             |             |
| Demeton-O                           | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Phorate                             | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Demeton-S                           | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Disulfoton                          | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |

| Client: Discovery CE Ltd | Chemtest Job No.: |        | 21-33783 | 21-33783 | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    | 21-33783    |             |             |
|--------------------------|-------------------|--------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:           | (                 | Chemte | est Sam  | ple ID.: | 1288365     | 1288366     | 1288367     | 1288368     | 1288369     | 1288370     | 1288371     | 1288372     | 1288373     |
|                          |                   | Sa     | ample Lo | ocation: | TP105       | TP106       | TP107       | TP107       | TP102       | TP103       | TP104       | TP105       | TP105       |
|                          |                   |        | Sampl    | e Type:  | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |
|                          |                   |        | Top De   | oth (m): | 1.20        | 0.70        | 0.40        | 1.40        | 1.50        | 1.50        | 2.30        | 1.80        | 2.00        |
|                          |                   | Bot    | ttom De  | oth (m): | 1.20        | 0.70        | 0.40        | 1.40        | 1.50        | 1.50        | 2.30        | 1.80        | 2.00        |
|                          |                   |        | Date Sa  | ampled:  | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 |
| Determinand              | Accred.           | SOP    | Units    | LOD      |             |             |             |             |             |             |             |             |             |
| Fenthion                 | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Trichloronate            | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Prothiofos               | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Fensulphothion           | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Sulprofos                | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Azinphos-Methyl          | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Coumaphos                | N                 | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Atraton                  | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Prometon                 | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Simazine                 | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Atrazine                 | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Propazine                | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Terbuthylazine           | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Secbumeton               | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Simetryn                 | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Ametryn                  | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Prometryn                | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Terbutryn                | N                 | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Alpha-HCH                | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Gamma-HCH (Lindane)      | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Beta-HCH                 | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Delta-HCH                | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Heptachlor               | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Aldrin                   | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Heptachlor Epoxide       | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Gamma-Chlordane          | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Alpha-Chlordane          | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endosulfan I             | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| 4,4-DDE                  | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Dieldrin                 | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endrin                   | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| 4,4-DDD                  | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endosulfan II            | Ν                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endrin Aldehyde          | Ν                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| 4,4-DDT                  | Ν                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endosulfan Sulphate      | N                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             | l           |             | l           |             |             |
| Methoxychlor             | Ν                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |
| Endrin Ketone            | Ν                 | 2840   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |             |             |             |

| Client: Discovery CE Ltd            |         | Che    | ntest Jo | ob No.:  | 21-33783    | 21-33783    | 21-33783    |
|-------------------------------------|---------|--------|----------|----------|-------------|-------------|-------------|
| Quotation No.:                      | (       | Chemte | st Sam   | ole ID.: | 1288374     | 1288375     | 1288376     |
|                                     |         | Sa     | ample Lo | ocation: | TP106       | TP106       | TP106       |
|                                     |         |        | Sample   | e Type:  | SOIL        | SOIL        | SOIL        |
|                                     |         |        | Тор Dep  | oth (m): | 1.00        | 1.50        | 2.30        |
|                                     |         | Bot    | tom Dep  | oth (m): | 1.00        | 1.50        | 2.30        |
|                                     |         |        | Date Sa  | mpled:   | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 |
| Determinand                         | Accred. | SOP    | Units    | LOD      |             |             |             |
| Moisture                            | Ν       | 2030   | %        | 0.020    | 18          | 16          | 13          |
| Soil Colour                         | Ν       | 2040   |          | N/A      | Brown       | Brown       | Brown       |
| Other Material                      | Ν       | 2040   |          | N/A      | Stones      | Stones      | Stones      |
| Soil Texture                        | N       | 2040   |          | N/A      | Sand        | Sand        | Sand        |
| рН                                  | М       | 2010   |          | 4.0      | 8.1         | 8.0         | 8.1         |
| Boron (Hot Water Soluble)           | М       | 2120   | mg/kg    | 0.40     |             |             |             |
| Sulphate (2:1 Water Soluble) as SO4 | М       | 2120   | g/l      | 0.010    | < 0.010     | < 0.010     | < 0.010     |
| Arsenic                             | М       | 2450   | mg/kg    | 1.0      |             |             |             |
| Cadmium                             | М       | 2450   | mg/kg    | 0.10     |             |             |             |
| Chromium                            | М       | 2450   | mg/kg    | 1.0      |             |             |             |
| Copper                              | М       | 2450   | mg/kg    | 0.50     |             |             |             |
| Mercury                             | М       | 2450   | mg/kg    | 0.10     |             |             |             |
| Nickel                              | М       | 2450   | mg/kg    | 0.50     |             |             |             |
| Lead                                | М       | 2450   | mg/kg    | 0.50     |             |             |             |
| Selenium                            | М       | 2450   | mg/kg    | 0.20     |             |             |             |
| Vanadium                            | U       | 2450   | mg/kg    | 5.0      |             |             |             |
| Zinc                                | М       | 2450   | mg/kg    | 0.50     |             |             |             |
| Chromium (Hexavalent)               | Ν       | 2490   | mg/kg    | 0.50     |             |             |             |
| Naphthalene                         | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Acenaphthylene                      | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Acenaphthene                        | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Fluorene                            | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Phenanthrene                        | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Anthracene                          | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Fluoranthene                        | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Pyrene                              | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Benzo[a]anthracene                  | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Chrysene                            | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Benzo[b]fluoranthene                | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Benzo[k]fluoranthene                | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Benzo[a]pyrene                      | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Indeno(1,2,3-c,d)Pyrene             | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Dibenz(a,h)Anthracene               | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Benzo[g,h,i]perylene                | М       | 2700   | mg/kg    | 0.10     |             |             |             |
| Total Of 16 PAH's                   | М       | 2700   | mg/kg    | 2.0      |             |             |             |
| Demeton-O                           | N       | 2820   | mg/kg    | 0.20     |             |             |             |
| Phorate                             | N       | 2820   | mg/kg    | 0.20     |             |             |             |
| Demeton-S                           | N       | 2820   | mg/kg    | 0.20     |             |             |             |
| Disulfoton                          | N       | 2820   | mg/kg    | 0.20     |             |             |             |

| Client: Discovery CE Ltd |         | Che    | ntest Jo | b No.:   | 21-33783    | 21-33783    | 21-33783    |
|--------------------------|---------|--------|----------|----------|-------------|-------------|-------------|
| Quotation No.:           | (       | Chemte | st Sam   | ole ID.: | 1288374     | 1288375     | 1288376     |
|                          |         | Sa     | ample Lo | cation:  | TP106       | TP106       | TP106       |
|                          |         |        | Sample   | e Type:  | SOIL        | SOIL        | SOIL        |
|                          |         |        | Тор Dep  | oth (m): | 1.00        | 1.50        | 2.30        |
|                          |         | Bot    | tom Dep  | oth (m): | 1.00        | 1.50        | 2.30        |
|                          |         |        | Date Sa  | mpled:   | 22-Sep-2021 | 22-Sep-2021 | 22-Sep-2021 |
| Determinand              | Accred. | SOP    | Units    | LOD      |             |             |             |
| Fenthion                 | N       | 2820   | mg/kg    | 0.20     |             |             |             |
| Trichloronate            | N       | 2820   | mg/kg    | 0.20     |             |             |             |
| Prothiofos               | N       | 2820   | mg/kg    | 0.20     |             |             |             |
| Fensulphothion           | N       | 2820   | mg/kg    | 0.20     |             |             |             |
| Sulprofos                | N       | 2820   | mg/kg    | 0.20     |             |             |             |
| Azinphos-Methyl          | N       | 2820   | mg/kg    | 0.20     |             |             |             |
| Coumaphos                | N       | 2820   | mg/kg    | 0.20     |             |             |             |
| Atraton                  | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Prometon                 | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Simazine                 | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Atrazine                 | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Propazine                | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Terbuthylazine           | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Secbumeton               | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Simetryn                 | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Ametryn                  | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Prometryn                | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Terbutryn                | N       | 2830   | mg/kg    | 0.20     |             |             |             |
| Alpha-HCH                | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Gamma-HCH (Lindane)      | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Beta-HCH                 | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Delta-HCH                | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Heptachlor               | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Aldrin                   | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Heptachlor Epoxide       | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Gamma-Chlordane          | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Alpha-Chlordane          | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Endosulfan I             | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| 4,4-DDE                  | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Dieldrin                 | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Endrin                   | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| 4,4-DDD                  | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Endosulfan II            | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Endrin Aldehyde          | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| 4,4-DDT                  | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Endosulfan Sulphate      | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Methoxychlor             | N       | 2840   | mg/kg    | 0.20     |             |             |             |
| Endrin Ketone            | N       | 2840   | mg/kg    | 0.20     |             |             |             |

# Test Methods

| SOP  | Title                                                                     | Parameters included                                                                                                                                                                                                                                                            | Method summary                                                                                                                                                                                  |
|------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                         | рН                                                                                                                                                                                                                                                                             | pH Meter                                                                                                                                                                                        |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)          | Moisture content                                                                                                                                                                                                                                                               | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                            |
| 2040 | Soil Description(Requirement of<br>MCERTS)                                | Soil description                                                                                                                                                                                                                                                               | As received soil is described based upon<br>BS5930                                                                                                                                              |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                    | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                           | Aqueous extraction / ICP-OES                                                                                                                                                                    |
| 2450 | Acid Soluble Metals in Soils                                              | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                              | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                                        |
| 2490 | Hexavalent Chromium in Soils                                              | Chromium [VI]                                                                                                                                                                                                                                                                  | Soil extracts are prepared by extracting dried<br>and ground soil samples into boiling water.<br>Chromium [VI] is determined by 'Aquakem 600'<br>Discrete Analyser using 1,5-diphenylcarbazide. |
| 2700 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-FID | Acenaphthene; Acenaphthylene; Anthracene;<br>Benzo[a]Anthracene; Benzo[a]Pyrene;<br>Benzo[b]Fluoranthene; Benzo[ghi]Perylene;<br>Benzo[k]Fluoranthene; Chrysene;<br>Dibenz[ah]Anthracene; Fluoranthene; Fluorene;<br>Indeno[123cd]Pyrene; Naphthalene;<br>Phenanthrene; Pyrene | Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)                                                            |
| 2820 | Organophosphorus (O-P)<br>Pesticides in Soils by GC-MS                    | Organophosphorus pesticide representative<br>suite including Parathion, Malathion etc, plus<br>client specific determinands                                                                                                                                                    | Dichloromethane extraction / GC-MS                                                                                                                                                              |
| 2830 | Organonitrogen (O-N)<br>Pesticides in Soils by GC-MS                      | Organonitrogen pesticide representative suite<br>including Triazines etc, plus client specific<br>determinands                                                                                                                                                                 | Dichloromethane extraction / GC-MS                                                                                                                                                              |
| 2840 | Organochlorine (O-Cl)<br>Pesticides in Soils by GC-MS                     | Organochlorine pesticide representative suite including DDT and its metabolites, 'drins' and HCH etc, plus client specific determinands                                                                                                                                        | Dichloromethane extraction / GC-MS                                                                                                                                                              |

### **Report Information**

| Кеу |                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------|
| U   | UKAS accredited                                                                                               |
| Μ   | MCERTS and UKAS accredited                                                                                    |
| Ν   | Unaccredited                                                                                                  |
| S   | This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis     |
| SN  | This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis |
| Т   | This analysis has been subcontracted to an unaccredited laboratory                                            |
| I/S | Insufficient Sample                                                                                           |
| U/S | Unsuitable Sample                                                                                             |
| N/E | not evaluated                                                                                                 |
| <   | "less than"                                                                                                   |
| >   | "greater than"                                                                                                |
| SOP | Standard operating procedure                                                                                  |
| LOD | Limit of detection                                                                                            |
|     |                                                                                                               |

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

😵 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com



# **Amended Report**

| Report No.:                                                                             | 21-34396-2                                                                            |                                  |                            |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------|----------------------------|
| Initial Date of Issue:                                                                  | 08-Oct-2021                                                                           | Date of Re-Issue:                | 15-Oct-2021                |
| Client                                                                                  | Discovery CE Ltd                                                                      |                                  |                            |
| Client Address:                                                                         | The Granary<br>Broadwell House Farm<br>Broadwell<br>Rugby<br>Warwickshire<br>CV23 8HF |                                  |                            |
| Contact(s):                                                                             | Discovery<br>Ed Tainsh                                                                |                                  |                            |
| Project                                                                                 | 21076J Shennington                                                                    |                                  |                            |
| Quotation No :                                                                          |                                                                                       | Date Received:                   | 04-Oct-2021                |
|                                                                                         |                                                                                       | Date Neceiveu.                   | 04-001-2021                |
| Order No.:                                                                              |                                                                                       | Date Instructed:                 | 04-Oct-2021                |
| Order No.:<br>No. of Samples:                                                           | 15                                                                                    | Date Instructed:                 | 04-Oct-2021                |
| Order No.:<br>No. of Samples:<br>Turnaround (Wkdays):                                   | 15<br>10                                                                              | Date Instructed:<br>Results Due: | 04-Oct-2021<br>15-Oct-2021 |
| Order No.:<br>No. of Samples:<br>Turnaround (Wkdays):<br>Date Approved:                 | 15<br>10<br>15-Oct-2021                                                               | Date Instructed:<br>Results Due: | 04-Oct-2021<br>15-Oct-2021 |
| Order No.:<br>No. of Samples:<br>Turnaround (Wkdays):<br>Date Approved:<br>Approved By: | 15<br>10<br>15-Oct-2021                                                               | Date Instructed:<br>Results Due: | 04-Oct-2021<br>15-Oct-2021 |
| Order No.:<br>No. of Samples:<br>Turnaround (Wkdays):<br>Date Approved:<br>Approved By: | 15<br>10<br>15-Oct-2021                                                               | Date Instructed:<br>Results Due: | 04-Oct-2021<br>15-Oct-2021 |

| Client: Discovery CE Ltd         |         | Che    | mtest J | ob No.:  | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    |
|----------------------------------|---------|--------|---------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:                   | C       | Chemte | st Sam  | ple ID.: | 1291437     | 1291438     | 1291440     | 1291441     | 1291442     | 1291444     | 1291445     | 1291446     | 1291447     |
| Order No.:                       |         | Clie   | nt Samp | le Ref.: | ES1         | ES2         | D2          | D3          | ES1         | ES1         | ES2         | D1          | D2          |
|                                  |         | Sa     | ample L | ocation: | DS101       | DS101       | DS101       | DS101       | DS102       | DS103       | DS103       | DS103       | DS103       |
|                                  |         |        | Sampl   | e Type:  | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |
|                                  |         |        | Top De  | pth (m): | 0.20        | 0.75        | 5.00        | 5.80        | 0.30        | 0.15        | 0.90        | 0.50        | 1.00        |
|                                  |         | Bot    | tom De  | pth (m): | 0.20        | 0.75        | 5.00        | 6.00        | 0.30        | 0.15        | 0.90        | 0.50        | 1.00        |
|                                  |         |        | Date Sa | ampled:  | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 |
| Determinand                      | Accred. | SOP    | Units   | LOD      |             |             |             |             |             |             |             |             |             |
| Moisture                         | N       | 2030   | %       | 0.020    | 21          | 18          | 27          | 24          | 21          | 23          | 19          | 20          | 22          |
| Soil Colour                      | N       | 2040   |         | N/A      | Brown       |
| Other Material                   | N       | 2040   |         | N/A      | None        | None        | Stones      | Stones      | Stones      | None        | None        | None        | Stones      |
| Soil Texture                     | N       | 2040   |         | N/A      | Loam        | Loam        | Gravel      | Clay        | Loam        | Loam        | Loam        | Loam        | Loam        |
| рН                               | М       | 2010   |         | 4.0      | 7.8         | 8.2         | 8.3         | 7.4         | 7.8         | 8.1         | 7.6         |             | 7.6         |
| Boron (Hot Water Soluble)        | М       | 2120   | mg/kg   | 0.40     | 2.5         | 1.5         |             |             | 2.1         | 2.1         | 1.0         |             |             |
| Sulphate (2:1 Extract)           | М       | 2120   | mg/kg   | 20       |             |             | < 20        | < 20        |             |             |             |             | < 20        |
| Arsenic                          | М       | 2450   | mg/kg   | 1.0      | 250         | 500         |             |             | 320         | 320         | 480         |             |             |
| Cadmium                          | М       | 2450   | mg/kg   | 0.10     | 0.35        | 0.21        |             |             | 0.40        | 0.37        | 0.25        |             |             |
| Chromium                         | М       | 2450   | mg/kg   | 1.0      | 210         | 240         |             |             | 290         | 270         | 400         |             |             |
| Copper                           | М       | 2450   | mg/kg   | 0.50     | 17          | 10          |             |             | 17          | 18          | 12          |             |             |
| Mercury                          | М       | 2450   | mg/kg   | 0.10     | 0.12        | < 0.10      |             |             | 0.11        | 0.12        | < 0.10      |             |             |
| Nickel                           | М       | 2450   | mg/kg   | 0.50     | 130         | 170         |             |             | 160         | 150         | 230         |             |             |
| Lead                             | М       | 2450   | mg/kg   | 0.50     | 52          | 37          |             |             | 120         | 77          | 58          |             |             |
| Selenium                         | М       | 2450   | mg/kg   | 0.20     | 0.73        | 0.57        |             |             | 0.56        | 0.61        | 0.48        |             |             |
| Vanadium                         | U       | 2450   | mg/kg   | 5.0      | 360         | 350         |             |             | 480         | 470         | 660         |             |             |
| Zinc                             | М       | 2450   | mg/kg   | 0.50     | 290         | 120         |             |             | 370         | 360         | 390         |             |             |
| Chromium (Hexavalent)            | Ν       | 2490   | mg/kg   | 0.50     | < 0.50      | < 0.50      |             |             | < 0.50      | < 0.50      | < 0.50      |             |             |
| Organic Matter                   | М       | 2625   | %       | 0.40     | 3.6         |             |             |             |             | 5.3         | 1.7         |             |             |
| As Stomach Bioaccessibility      | N       | 2630   | mg/kg   | 0.20     |             | 3.8         |             |             |             |             |             |             |             |
| As Intestinal Bioaccessibility 1 | Ν       | 2630   | mg/kg   | 0.20     |             | 6.6         |             |             |             |             |             |             |             |
| As Intestinal Bioaccessibility 2 | N       | 2630   | mg/kg   | 0.20     |             | 7.4         |             |             |             |             |             |             |             |
| As Bioaccessible Fraction        | Ν       | 2630   | %       | 0.10     |             | 1.5         |             |             |             |             |             |             |             |
| Aliphatic TPH >C5-C6             | Ν       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aliphatic TPH >C6-C8             | Ν       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aliphatic TPH >C8-C10            | М       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aliphatic TPH >C10-C12           | М       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aliphatic TPH >C12-C16           | М       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aliphatic TPH >C16-C21           | М       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aliphatic TPH >C21-C35           | М       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aliphatic TPH >C35-C44           | Ν       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Total Aliphatic Hydrocarbons     | Ν       | 2680   | mg/kg   | 5.0      |             |             |             |             |             | < 5.0       | < 5.0       |             |             |
| Aromatic TPH >C5-C7              | N       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aromatic TPH >C7-C8              | Ν       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aromatic TPH >C8-C10             | М       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aromatic TPH >C10-C12            | М       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aromatic TPH >C12-C16            | М       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aromatic TPH >C16-C21            | U       | 2680   | mg/kg   | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |

| Client: Discovery CE Ltd     | Chemtest Job No.: |        | 21-34396 | 21-34396 | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    |             |             |
|------------------------------|-------------------|--------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:               | (                 | Chemte | est Sam  | ple ID.: | 1291437     | 1291438     | 1291440     | 1291441     | 1291442     | 1291444     | 1291445     | 1291446     | 1291447     |
| Order No.:                   |                   | Clie   | nt Samp  | le Ref.: | ES1         | ES2         | D2          | D3          | ES1         | ES1         | ES2         | D1          | D2          |
|                              |                   | Sa     | ample Lo | ocation: | DS101       | DS101       | DS101       | DS101       | DS102       | DS103       | DS103       | DS103       | DS103       |
|                              |                   |        | Sampl    | e Type:  | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |
|                              |                   |        | Тор Dep  | oth (m): | 0.20        | 0.75        | 5.00        | 5.80        | 0.30        | 0.15        | 0.90        | 0.50        | 1.00        |
|                              |                   | Bot    | tom Dep  | oth (m): | 0.20        | 0.75        | 5.00        | 6.00        | 0.30        | 0.15        | 0.90        | 0.50        | 1.00        |
|                              |                   |        | Date Sa  | ampled:  | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 |
| Determinand                  | Accred.           | SOP    | Units    | LOD      |             |             |             |             |             |             |             |             |             |
| Aromatic TPH >C21-C35        | М                 | 2680   | mg/kg    | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Aromatic TPH >C35-C44        | N                 | 2680   | mg/kg    | 1.0      |             |             |             |             |             | < 1.0       | < 1.0       |             |             |
| Total Aromatic Hydrocarbons  | N                 | 2680   | mg/kg    | 5.0      |             |             |             |             |             | < 5.0       | < 5.0       |             |             |
| Total Petroleum Hydrocarbons | N                 | 2680   | mg/kg    | 10.0     |             |             |             |             |             | < 10        | < 10        |             |             |
| Naphthalene                  | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Acenaphthylene               | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Acenaphthene                 | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Fluorene                     | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Phenanthrene                 | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Anthracene                   | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Fluoranthene                 | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Pyrene                       | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Benzo[a]anthracene           | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Chrysene                     | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Benzo[b]fluoranthene         | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Benzo[k]fluoranthene         | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Benzo[a]pyrene               | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Indeno(1,2,3-c,d)Pyrene      | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Dibenz(a,h)Anthracene        | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Benzo[g,h,i]perylene         | М                 | 2700   | mg/kg    | 0.10     | < 0.10      |             |             |             | < 0.10      | < 0.10      | < 0.10      |             |             |
| Total Of 16 PAH's            | М                 | 2700   | mg/kg    | 2.0      | < 2.0       |             |             |             | < 2.0       | < 2.0       | < 2.0       |             |             |
| Demeton-O                    | Ν                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Phorate                      | Ν                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Demeton-S                    | Ν                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Disulfoton                   | Ν                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Fenthion                     | Ν                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Trichloronate                | Ν                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Prothiofos                   | Ν                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Fensulphothion               | Ν                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Sulprofos                    | Ν                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Azinphos-Methyl              | Ν                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Coumaphos                    | N                 | 2820   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Atraton                      | Ν                 | 2830   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Prometon                     | N                 | 2830   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Simazine                     | Ν                 | 2830   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Atrazine                     | Ν                 | 2830   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Propazine                    | Ν                 | 2830   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |
| Terbuthylazine               | Ν                 | 2830   | mg/kg    | 0.20     |             |             |             |             |             |             |             | < 0.20      |             |

| Client: Discovery CE Ltd |         | Che    | mtest J | ob No.:   | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    |
|--------------------------|---------|--------|---------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:           | (       | Chemte | est Sam | ple ID.:  | 1291437     | 1291438     | 1291440     | 1291441     | 1291442     | 1291444     | 1291445     | 1291446     | 1291447     |
| Order No.:               |         | Clie   | nt Samp | ole Ref.: | ES1         | ES2         | D2          | D3          | ES1         | ES1         | ES2         | D1          | D2          |
|                          |         | Sa     | ample L | ocation:  | DS101       | DS101       | DS101       | DS101       | DS102       | DS103       | DS103       | DS103       | DS103       |
|                          |         |        | Samp    | le Type:  | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |
|                          |         |        | Top De  | pth (m):  | 0.20        | 0.75        | 5.00        | 5.80        | 0.30        | 0.15        | 0.90        | 0.50        | 1.00        |
|                          |         | Bo     | ttom De | pth (m):  | 0.20        | 0.75        | 5.00        | 6.00        | 0.30        | 0.15        | 0.90        | 0.50        | 1.00        |
|                          |         |        | Date Sa | ampled:   | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 |
| Determinand              | Accred. | SOP    | Units   | LOD       |             |             |             |             |             |             |             |             |             |
| Secbumeton               | N       | 2830   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Simetryn                 | N       | 2830   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Ametryn                  | N       | 2830   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Prometryn                | Ν       | 2830   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Terbutryn                | Ν       | 2830   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Alpha-HCH                | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Gamma-HCH (Lindane)      | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Beta-HCH                 | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Delta-HCH                | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Heptachlor               | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Aldrin                   | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Heptachlor Epoxide       | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Gamma-Chlordane          | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Alpha-Chlordane          | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Endosulfan I             | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| 4,4-DDE                  | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Dieldrin                 | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Endrin                   | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| 4,4-DDD                  | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Endosulfan II            | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Endrin Aldehyde          | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| 4,4-DDT                  | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Endosulfan Sulphate      | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Methoxychlor             | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |
| Endrin Ketone            | N       | 2840   | mg/kg   | 0.20      |             |             |             |             |             |             |             | < 0.20      |             |

| Client: Discovery CE Ltd         |         | Che    | mtest Jo | ob No.:  | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    |
|----------------------------------|---------|--------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:                   | (       | Chemte | est Sam  | ple ID.: | 1291448     | 1291449     | 1291451     | 1291452     | 1291453     | 1291454     |
| Order No.:                       |         | Clie   | nt Samp  | le Ref.: | ES1         | ES1         | ES1         | ES2         | D1          | D2          |
|                                  |         | Sa     | ample Lo | ocation: | DS104       | DS105       | DS106       | DS106       | DS106       | DS106       |
|                                  |         |        | Sampl    | e Type:  | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |
|                                  |         |        | Top Dep  | oth (m): | 0.40        | 0.50        | 0.10        | 0.80        | 1.40        | 2.80        |
|                                  |         | Bo     | ttom Dep | oth (m): | 0.40        | 0.50        | 0.10        | 0.80        | 2.80        | 1.40        |
|                                  |         |        | Date Sa  | ampled:  | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 |
| Determinand                      | Accred. | SOP    | Units    | LOD      |             |             |             | İ           | İ. İ.       | i i         |
| Moisture                         | N       | 2030   | %        | 0.020    | 18          | 17          | 14          | 19          | 19          | 26          |
| Soil Colour                      | N       | 2040   |          | N/A      | Brown       | Brown       | Brown       | Brown       | Brown       | Brown       |
| Other Material                   | N       | 2040   |          | N/A      | None        | Roots       | Roots       | None        | Stones      | None        |
| Soil Texture                     | N       | 2040   |          | N/A      | Loam        | Loam        | Loam        | Loam        | Loam        | Loam        |
| рН                               | М       | 2010   |          | 4.0      | 7.4         | 7.4         | 7.9         | 7.8         | 8.4         | 8.4         |
| Boron (Hot Water Soluble)        | М       | 2120   | mg/kg    | 0.40     | 1.6         | 1.6         | 1.7         | 0.94        |             |             |
| Sulphate (2:1 Extract)           | М       | 2120   | mg/kg    | 20       |             |             |             |             | < 20        | < 20        |
| Arsenic                          | М       | 2450   | mg/kg    | 1.0      | 470         | 500         | 550         | 430         |             |             |
| Cadmium                          | М       | 2450   | mg/kg    | 0.10     | 0.11        | 0.10        | 0.37        | 0.12        |             |             |
| Chromium                         | М       | 2450   | mg/kg    | 1.0      | 420         | 500         | 470         | 500         |             |             |
| Copper                           | М       | 2450   | mg/kg    | 0.50     | 17          | 18          | 25          | 10          |             |             |
| Mercury                          | М       | 2450   | mg/kg    | 0.10     | 0.16        | 0.11        | 0.19        | < 0.10      |             |             |
| Nickel                           | М       | 2450   | mg/kg    | 0.50     | 240         | 290         | 270         | 260         |             |             |
| Lead                             | М       | 2450   | mg/kg    | 0.50     | 83          | 74          | 110         | 47          |             |             |
| Selenium                         | М       | 2450   | mg/kg    | 0.20     | 0.77        | 0.71        | 0.57        | < 0.20      |             |             |
| Vanadium                         | U       | 2450   | mg/kg    | 5.0      | 670         | 800         | 790         | 630         |             |             |
| Zinc                             | М       | 2450   | mg/kg    | 0.50     | 630         | 480         | 530         | 160         |             |             |
| Chromium (Hexavalent)            | N       | 2490   | mg/kg    | 0.50     | < 0.50      | < 0.50      | < 0.50      | < 0.50      |             |             |
| Organic Matter                   | М       | 2625   | %        | 0.40     |             |             | 3.8         |             |             |             |
| As Stomach Bioaccessibility      | N       | 2630   | mg/kg    | 0.20     |             |             | 0.85        |             |             |             |
| As Intestinal Bioaccessibility 1 | N       | 2630   | mg/kg    | 0.20     |             |             | 1.8         |             |             |             |
| As Intestinal Bioaccessibility 2 | N       | 2630   | mg/kg    | 0.20     |             |             | 2.7         |             |             |             |
| As Bioaccessible Fraction        | N       | 2630   | %        | 0.10     |             |             | 0.49        |             |             |             |
| Aliphatic TPH >C5-C6             | N       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aliphatic TPH >C6-C8             | N       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aliphatic TPH >C8-C10            | М       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aliphatic TPH >C10-C12           | М       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aliphatic TPH >C12-C16           | М       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aliphatic TPH >C16-C21           | М       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aliphatic TPH >C21-C35           | М       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aliphatic TPH >C35-C44           | Ν       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Total Aliphatic Hydrocarbons     | N       | 2680   | mg/kg    | 5.0      |             |             |             |             |             |             |
| Aromatic TPH >C5-C7              | Ν       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aromatic TPH >C7-C8              | N       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aromatic TPH >C8-C10             | М       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aromatic TPH >C10-C12            | М       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aromatic TPH >C12-C16            | М       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aromatic TPH >C16-C21            | U       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |

| Client: Discovery CE Ltd     |         | Che    | mtest Jo | ob No.:  | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    |
|------------------------------|---------|--------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:               | (       | Chemte | est Sam  | ple ID.: | 1291448     | 1291449     | 1291451     | 1291452     | 1291453     | 1291454     |
| Order No.:                   |         | Clie   | nt Samp  | le Ref.: | ES1         | ES1         | ES1         | ES2         | D1          | D2          |
|                              |         | Sa     | ample Lo | ocation: | DS104       | DS105       | DS106       | DS106       | DS106       | DS106       |
|                              |         |        | Sample   | e Type:  | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |
|                              |         |        | Top Dep  | oth (m): | 0.40        | 0.50        | 0.10        | 0.80        | 1.40        | 2.80        |
|                              |         | Bo     | ttom Dep | oth (m): | 0.40        | 0.50        | 0.10        | 0.80        | 2.80        | 1.40        |
|                              |         |        | Date Sa  | mpled:   | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 |
| Determinand                  | Accred. | SOP    | Units    | LOD      |             |             |             |             |             |             |
| Aromatic TPH >C21-C35        | М       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Aromatic TPH >C35-C44        | Ν       | 2680   | mg/kg    | 1.0      |             |             |             |             |             |             |
| Total Aromatic Hydrocarbons  | Ν       | 2680   | mg/kg    | 5.0      |             |             |             |             |             |             |
| Total Petroleum Hydrocarbons | Ν       | 2680   | mg/kg    | 10.0     |             |             |             |             |             |             |
| Naphthalene                  | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Acenaphthylene               | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Acenaphthene                 | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Fluorene                     | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Phenanthrene                 | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Anthracene                   | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Fluoranthene                 | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Pyrene                       | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Benzo[a]anthracene           | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Chrysene                     | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Benzo[b]fluoranthene         | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Benzo[k]fluoranthene         | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Benzo[a]pyrene               | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Indeno(1,2,3-c,d)Pyrene      | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Dibenz(a,h)Anthracene        | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Benzo[g,h,i]perylene         | М       | 2700   | mg/kg    | 0.10     |             |             | < 0.10      |             |             |             |
| Total Of 16 PAH's            | М       | 2700   | mg/kg    | 2.0      |             |             | < 2.0       |             |             |             |
| Demeton-O                    | N       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Phorate                      | Ν       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Demeton-S                    | N       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Disulfoton                   | N       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Fenthion                     | N       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Trichloronate                | Ν       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Prothiofos                   | Ν       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Fensulphothion               | Ν       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Sulprofos                    | N       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Azinphos-Methyl              | Ν       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Coumaphos                    | Ν       | 2820   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Atraton                      | Ν       | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Prometon                     | Ν       | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Simazine                     | Ν       | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Atrazine                     | Ν       | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Propazine                    | Ν       | 2830   | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Terbuthylazine               | N       | 2830   | mg/ka    | 0.20     |             |             | < 0.20      |             |             |             |

| Client: Discovery CE Ltd |         | Che          | mtest Jo | ob No.:  | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    | 21-34396    |
|--------------------------|---------|--------------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:           | (       | Chemte       | est Sam  | ple ID.: | 1291448     | 1291449     | 1291451     | 1291452     | 1291453     | 1291454     |
| Order No.:               |         | Clie         | nt Samp  | le Ref.: | ES1         | ES1         | ES1         | ES2         | D1          | D2          |
|                          |         | Sa           | ample Lo | ocation: | DS104       | DS105       | DS106       | DS106       | DS106       | DS106       |
|                          |         | Sample Type: |          | SOIL     | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |             |
|                          |         |              | Top Dep  | oth (m): | 0.40        | 0.50        | 0.10        | 0.80        | 1.40        | 2.80        |
|                          |         | Bo           | ttom Dep | oth (m): | 0.40        | 0.50        | 0.10        | 0.80        | 2.80        | 1.40        |
|                          |         |              | Date Sa  | mpled:   | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 | 29-Sep-2021 |
| Determinand              | Accred. | SOP          | Units    | LOD      |             |             |             |             |             |             |
| Secbumeton               | N       | 2830         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Simetryn                 | N       | 2830         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Ametryn                  | N       | 2830         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Prometryn                | N       | 2830         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Terbutryn                | N       | 2830         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Alpha-HCH                | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Gamma-HCH (Lindane)      | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Beta-HCH                 | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Delta-HCH                | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Heptachlor               | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Aldrin                   | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Heptachlor Epoxide       | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Gamma-Chlordane          | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Alpha-Chlordane          | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Endosulfan I             | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| 4,4-DDE                  | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Dieldrin                 | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Endrin                   | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| 4,4-DDD                  | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Endosulfan II            | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Endrin Aldehyde          | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| 4,4-DDT                  | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Endosulfan Sulphate      | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Methoxychlor             | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |
| Endrin Ketone            | N       | 2840         | mg/kg    | 0.20     |             |             | < 0.20      |             |             |             |

# Test Methods

| SOP  | Title                                                                     | Parameters included                                                                                                                                                                                                                                                            | Method summary                                                                                                                                                                                  |
|------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                         | рН                                                                                                                                                                                                                                                                             | pH Meter                                                                                                                                                                                        |
| 2030 | Moisture and Stone Content of<br>Soils(Requirement of<br>MCERTS)          | Moisture content                                                                                                                                                                                                                                                               | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                            |
| 2040 | Soil Description(Requirement of MCERTS)                                   | Soil description                                                                                                                                                                                                                                                               | As received soil is described based upon<br>BS5930                                                                                                                                              |
| 2120 | Water Soluble Boron, Sulphate,<br>Magnesium & Chromium                    | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                           | Aqueous extraction / ICP-OES                                                                                                                                                                    |
| 2450 | Acid Soluble Metals in Soils                                              | Metals, including: Arsenic; Barium; Beryllium;<br>Cadmium; Chromium; Cobalt; Copper; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                                                                                                              | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                                        |
| 2490 | Hexavalent Chromium in Soils                                              | Chromium [VI]                                                                                                                                                                                                                                                                  | Soil extracts are prepared by extracting dried<br>and ground soil samples into boiling water.<br>Chromium [VI] is determined by 'Aquakem 600'<br>Discrete Analyser using 1,5-diphenylcarbazide. |
| 2625 | Total Organic Carbon in Soils                                             | Total organic Carbon (TOC)                                                                                                                                                                                                                                                     | Determined by high temperature combustion<br>under oxygen, using an Eltra elemental<br>analyser.                                                                                                |
| 2630 | PBET                                                                      | РВЕТ                                                                                                                                                                                                                                                                           | Extraction at 37C / ICP-MS                                                                                                                                                                      |
| 2680 | TPH A/A Split                                                             | Aliphatics: >C5–C6, >C6–C8,>C8–C10,<br>>C10–C12, >C12–C16, >C16–C21, >C21–<br>C35, >C35–C44Aromatics: >C5–C7, >C7–C8,<br>>C8–C10, >C10–C12, >C12–C16, >C16–C21,<br>>C21–C35, >C35–C44                                                                                          | Dichloromethane extraction / GCxGC FID detection                                                                                                                                                |
| 2700 | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-FID | Acenaphthene; Acenaphthylene; Anthracene;<br>Benzo[a]Anthracene; Benzo[a]Pyrene;<br>Benzo[b]Fluoranthene; Benzo[ghi]Perylene;<br>Benzo[k]Fluoranthene; Chrysene;<br>Dibenz[ah]Anthracene; Fluoranthene; Fluorene;<br>Indeno[123cd]Pyrene; Naphthalene;<br>Phenanthrene; Pyrene | Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)                                                            |
| 2820 | Organophosphorus (O-P)<br>Pesticides in Soils by GC-MS                    | Organophosphorus pesticide representative<br>suite including Parathion, Malathion etc, plus<br>client specific determinands                                                                                                                                                    | Dichloromethane extraction / GC-MS                                                                                                                                                              |
| 2830 | Organonitrogen (O-N)<br>Pesticides in Soils by GC-MS                      | Organonitrogen pesticide representative suite<br>including Triazines etc, plus client specific<br>determinands                                                                                                                                                                 | Dichloromethane extraction / GC-MS                                                                                                                                                              |
| 2840 | Organochlorine (O-Cl)<br>Pesticides in Soils by GC-MS                     | Organochlorine pesticide representative suite including DDT and its metabolites, 'drins' and HCH etc, plus client specific determinands                                                                                                                                        | Dichloromethane extraction / GC-MS                                                                                                                                                              |

### **Report Information**

| Кеу |                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------|
| U   | UKAS accredited                                                                                               |
| Μ   | MCERTS and UKAS accredited                                                                                    |
| Ν   | Unaccredited                                                                                                  |
| S   | This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis     |
| SN  | This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis |
| Т   | This analysis has been subcontracted to an unaccredited laboratory                                            |
| I/S | Insufficient Sample                                                                                           |
| U/S | Unsuitable Sample                                                                                             |
| N/E | not evaluated                                                                                                 |
| <   | "less than"                                                                                                   |
| >   | "greater than"                                                                                                |
| SOP | Standard operating procedure                                                                                  |
| LOD | Limit of detection                                                                                            |
|     |                                                                                                               |

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>



APPENDIX G - CHEMICAL SCREENING CRITERIA



### CHEMICAL SCREENING CRITERIA

### Rationale

For the protection of human health, screening criteria were selected from published generic assessment criteria (GACs) as published by DEFRA/CL:AIRE, LQM/CIEH and/or EIC/AGS/CL:AIRE. Generic values are selected based on the soil organic matter (SOM) content of the soils concerned. Currently generic criteria are published for SOM of 1, 2.5 or 6 %. In order to retain a degree of conservatism, screening criteria based on an SOM value of 1 % were adopted for the generic screening assessment. The possible generic end use scenario considered in the assessment of risks to long term human health was for a Residential with Homegrown Produce end use (RWHP), as an initial screen to determine if more detailed assessment is required.

The RWHP scenario is defined as a standard end use for GACs based on the Human Health Risk Assessment guidance developed in line with the CLEA model.

This assessment used Suitable for Use levels (S4ULs) as published by LQM/CIEH whenever possible as the most up to date GACs. The S4ULs were used under licence, (Copyright Land Quality Management Limited, reproduced with permission; publication number S4UL3396. All rights reserved). It should be noted that S4UL values calculated for threshold substances represent a concentration in soils below which the risk to human health is **NEGLIGIBLE**. For non-threshold substances concentrations in soil less than the S4UL values represent a **MINIMAL** risk.

In addition, Category 4 Screening Levels (C4SLs) were used as published by DEFRA/CL:AIRE, in this case for lead (Pb). In the absence of S4ULs or C4SLs, EIC/AGS/CL:AIRE GACs and/or in house calculated values were used (using the CLEA spreadsheet) or values from the USEPA Region 9 criteria were used.

The site has been considered as a single averaging area for the human health screening process. This is based on the size and proposed use of the site.

If exceedences were recorded, the relevant data sets were reassessed using the statistical methods as set out in "Guidance on Comparing Soil Contamination Data with a Critical Concentration", CL:AIRE/CIEH, May 2008.

The investigation has confirmed that there is no viable pollutant linkage regarding controlled waters, as such water screening values are not relevant to the study site.

It may become evident following further investigation and analysis that additional COCs come to light that are not present in the current list which may require screening criteria to be applied. If this becomes the case additional criteria shall be selected/derived and submitted to the regulators for comment and agreement.



The screening criteria for human health assessment are presented below in Table G1 (Residential With Homegrown Produce), with the respective summary shown in Table G2.

### HUMAN HEALTH SCREENING

| Determinand                        | Units    | Screen (RWHP @1% SOM) | Screen Source            |
|------------------------------------|----------|-----------------------|--------------------------|
| Asbestos in Soil                   | Type     | Presence              | CAR 2012                 |
| pH - Automated                     | pH Units | <5 or >10             | Professional Judgement   |
| Naphthalene                        | mg/kg    | 2.3                   | S4UL                     |
| Acenaphthylene                     | mg/kg    | 170                   | S4UL                     |
| Acenaphthene                       | mg/kg    | 210                   | S4UL                     |
| Fluorene                           | mg/kg    | 170                   | S4UL                     |
| Phenanthrene                       | mg/kg    | 95                    | S4UL                     |
| Anthracene                         | mg/kg    | 2400                  | S4UL                     |
| Fluoranthene                       | mg/kg    | 280                   | S4UL                     |
| Pyrene                             | mg/kg    | 620                   | S4UL                     |
| Benzo(a)anthracene                 | mg/kg    | 7.2                   | S4UL                     |
| Chrysene                           | mg/kg    | 15                    | S4UL                     |
| Benzo(b)fluoranthene               | mg/kg    | 2.6                   | S4UL                     |
| Benzo(k)fluoranthene               | mg/kg    | 77                    | S4UL                     |
| Benzo(a)pyrene                     | mg/kg    | 2.2                   | S4UL                     |
| Indeno(1,2,3-cd)pyrene             | mg/kg    | 27                    | S4UL                     |
| Dibenz(a,h)anthracene              | mg/kg    | 0.24                  | S4UL                     |
| Benzo(ghi)perylene                 | mg/kg    | 320                   | S4UL                     |
| Arsenic (aqua regia extractable)   | mg/kg    | 37                    | S4UL                     |
| Boron (aqua regia extractable)     | mg/kg    | 290                   | S4UL                     |
| Cadmium (aqua regia extractable)   | mg/kg    | 11                    | S4UL                     |
| Chromium (hexavalent)              | mg/kg    | 6                     | S4UL                     |
| Chromium (aqua regia extractable)  | mg/kg    | 910                   | S4UL                     |
| Copper (aqua regia extractable)    | mg/kg    | 2400                  | S4UL                     |
| Lead (aqua regia extractable)      | mg/kg    | 200                   | C4SL                     |
| Mercury (aqua regia extractable)   | mg/kg    | 1.2                   | S4UL                     |
| Nickel (aqua regia extractable)    | mg/kg    | 130                   | S4UL                     |
| Selenium (aqua regia extractable)  | mg/kg    | 250                   | S4UL                     |
| Vanadium (aqua regia extractable)  | mg/kg    | 410                   | S4UL                     |
| Zinc (aqua regia extractable)      | mg/kg    | 3700                  | S4UL                     |
| Benzene                            | µg/kg    | 87                    | S4UL                     |
| Toluene                            | µg/kg    | 130000                | S4UL                     |
| Ethylbenzene                       | µg/kg    | 47000                 | S4UL                     |
| p & m-xylene                       | µg/kg    | 56000                 | S4UL                     |
| o-xylene                           | µg/kg    | 60000                 | S4UL                     |
| MTBE (Methyl Tertiary Butyl Ether) | µg/kg    | 4900                  | EIC/CL:AIRE              |
| TPH-CWG - Aliphatic >EC5 - EC6     | mg/kg    | 42                    | S4UL                     |
| TPH-CWG - Aliphatic >EC6 - EC8     | mg/kg    | 100                   | S4UL                     |
| TPH-CWG - Aliphatic >EC8 - EC10    | mg/kg    | 27                    | S4UL                     |
| TPH-CWG - Aliphatic >EC10 - EC12   | mg/kg    | 130                   |                          |
| TPH-CWG - Aliphatic >EC12 - EC16   | mg/kg    | 1100                  | S4UL                     |
| TPH-CWG - Aliphatic >EC16 - EC21   | mg/kg    | 65000                 | S4UL Aliphatic EC >16-35 |
| TPH-CWG - Aliphatic >EC21 - EC35   | mg/kg    | 65000                 | 54UL Aliphatic EC >16-35 |
| TPH-CWG - Aromatic >EC5 - EC7      | mg/kg    | 70                    |                          |
| TPH-CWG - Aromatic >EC/ - EC8      | mg/kg    | 130                   | 54UL                     |
| TPH-CWG - Aromatic >EC8 - EC10     | mg/Kg    | 34                    | 54UL                     |
| TPH CWG Aromatics EC12 EC16        | mg/kg    | 14                    | 54UL<br>\$4UU            |
| TPH CWG Aromatics EC16 EC24        | mg/kg    | 140                   | 04UL<br>04UU             |
| TPH CWG Aromatics EC21 EC25        | mg/kg    | 200                   | 04UL<br>04UU             |
| 1FIT-GWG - AIOMAIIC >EG21 - EG35   | mg/kg    | 1100                  | 34UL                     |

### Table G1: Human Health Soil Screening Criteria for a RWHP End Use (1% SOM)



### Geotechnical & Environmental Engineers

### Table G2: Human Health Soil Screening Summary

| Determinand                                   | Units | Limit of detection | Minimum | Mean | Maximum | Count    | Screen (RWHP<br>@1% SOM) | Screen Source   | No. of<br>Exceedences |
|-----------------------------------------------|-------|--------------------|---------|------|---------|----------|--------------------------|-----------------|-----------------------|
| Asbestos in Soil                              | Туре  | NA                 | NA      | NA   | 0       |          | Presence                 | CAR 2012        | 0                     |
| Naphthalene                                   | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 2.3                      | S4UL            | 0                     |
| Acenaphthylene                                | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 170                      | S4UL            | 0                     |
| Acenaphthene                                  | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 210                      | S4UL            | 0                     |
| Fluorene                                      | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 1/0                      | S4UL            | 0                     |
| Anthracene                                    | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 95<br>2400               | S4UL<br>S4UI    | 0                     |
| Fluoranthene                                  | ma/ka | 0.1                | 0.1     | 0.1  | 11      |          | 2400                     | S4UL            | 0                     |
| Pyrene                                        | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 620                      | S4UL            | 0                     |
| Benzo(a)anthracene                            | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 7.2                      | S4UL            | 0                     |
| Chrysene                                      | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 15                       | S4UL            | 0                     |
| Benzo(b)fluoranthene                          | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 2.6                      | S4UL            | 0                     |
| Benzo(k)fluoranthene                          | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 77                       | S4UL            | 0                     |
| Benzo(a)pyrene                                | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 2.2                      | S4UL            | 0                     |
| Dibenz(a b)anthracene                         | mg/kg | 0.1                | 0.1     | 0.1  | 11      |          | 0.24                     | S4UL<br>S4UI    | 0                     |
| Benzo(ghi)pervlene                            | ma/ka | 0.1                | 0.1     | 0.1  | 11      |          | 320                      | S4UI            | 0                     |
| Arsenic                                       | mg/kg | 64                 | 287     | 550  | 22      |          | 37                       | S4UL            | 22                    |
| Boron (water soluble)                         | mg/kg | 0.4                | 0.9795  | 2.5  | 22      |          | 290                      | S4UL            | 0                     |
| Cadmium                                       | mg/kg | 0.1                | 0.1655  | 0.4  | 22      |          | 11                       | S4UL            | 0                     |
| Chromium (hexavalent)                         | mg/kg | 0.5                | 0.5     | 0.5  | 22      |          | 6                        | S4UL            | 0                     |
| Chromium                                      | mg/kg | 160                | 300.45  | 500  | 22      |          | 910                      | S4UL            | 0                     |
| Copper                                        | mg/kg | 3.1                | 11.836  | 25   | 22      |          | 2400                     | S4UL<br>C4SL    | 0                     |
| Mercury                                       | mg/kg | 0.1                | 0 1095  | 0.19 | 22      |          | 200                      | S4U             | 0                     |
| Nickel                                        | ma/ka | 83                 | 166.05  | 290  | 22      |          | 180                      | S4UI            | 6                     |
| Selenium                                      | mg/kg | 0.2                | 0.3545  | 0.77 | 22      |          | 250                      | S4UL            | 0                     |
| Vanadium                                      | mg/kg | 180                | 440.91  | 800  | 22      |          | 410                      | S4UL            | 9                     |
| Zinc                                          | mg/kg | 120                | 279.55  | 630  | 22      |          | 3700                     | S4UL            | 0                     |
| Benzene                                       | µg/kg | 0                  | 0       | 0    | 0       |          | 87                       | S4UL            | 0                     |
| Toluene                                       | µg/kg | 0                  | 0       | 0    | 0       |          | 130000                   | S4UL            | 0                     |
|                                               | µg/kg | 0                  | 0       | 0    | 0       |          | 47000                    | S4UL            | 0                     |
|                                               | µg/kg | 0                  | 0       | 0    | 0       |          | 60000                    | S4UL<br>S4UI    | 0                     |
| MTBF (Methyl Tertiary Butyl Ether)            | ua/ka | 0                  | 0       | 0    | 0       |          | 49000                    | FIC/AGS/CL:AIRE | 0                     |
| Aliphatic >EC5 - EC6                          | mg/kg | 0                  | 0       | 0    | 0       |          | 42                       | S4UL            | 0                     |
| Aliphatic >EC6 - EC8                          | mg/kg | 0                  | 0       | 0    | 0       |          | 100                      | S4UL            | 0                     |
| Aliphatic >EC8 - EC10                         | mg/kg | 0                  | 0       | 0    | 0       |          | 27                       | S4UL            | 0                     |
| Aliphatic >EC10 - EC12                        | mg/kg | 0                  | 0       | 0    | 0       |          | 130                      | S4UL            | 0                     |
| Aliphatic >EC12 - EC16                        | mg/kg | 0                  | 0       | 0    | 0       |          | 1100                     | S4UL            | 0                     |
| Aliphatic >EC16 - EC21                        | mg/kg | 0                  | 0       | 0    | 0       |          | 65000                    | S4UL            | 0                     |
| Aniphalic >EC21 - EC35<br>Aromatic >EC5 - EC7 | mg/kg | 0                  | 0       | 0    | 0       |          | 00000<br>70              | S4UL<br>S4UI    | 0                     |
| Aromatic >EC3 - EC7                           | ma/ka | 0                  | 0       | 0    | 0       |          | 130                      | S4UI            | 0                     |
| Aromatic >EC8 - EC10                          | mg/kg | 0                  | 0       | 0    | 0       |          | 34                       | S4UL            | 0                     |
| Aromatic >EC10 - EC12                         | mg/kg | 0                  | 0       | 0    | 0       |          | 74                       | S4UL            | 0                     |
| Aromatic >EC12 - EC16                         | mg/kg | 0                  | 0       | 0    | 0       |          | 140                      | S4UL            | 0                     |
| Aromatic >EC16 - EC21                         | mg/kg | 0                  | 0       | 0    | 0       |          | 260                      | S4UL            | 0                     |
| Aromatic >EC21 - EC35                         | mg/kg | 0                  | 0       | 0    | 0       |          | 1100                     | S4UL            | 0                     |
| Aliphatic >EC5 - EC6                          | mg/kg | 1                  | 1       | 1    | 2       |          | 42                       | S4UL            | 0                     |
| Aliphatic > EC8 EC10                          | mg/kg | 1                  | 1       | 1    | 2       |          | 27                       | 540L            | 0                     |
| Aliphatic >EC0 - EC12                         | ma/ka | 1                  | 1       | 1    | 2       |          | 130                      | S4UL            | 0                     |
| Aliphatic >EC12 - EC16                        | ma/ka | 1                  | 1       | 1    | 2       |          | 1100                     | S4UL            | 0                     |
| Aliphatic >EC16 - EC21                        | mg/kg | 1                  | 1       | 1    | 2       | 1        | 65000                    | S4UL            | 0                     |
| Aliphatic >EC21 - EC35                        | mg/kg | 1                  | 1       | 1    | 2       |          | 65000                    | S4UL            | 0                     |
| Aliphatic >EC35 - EC44                        | mg/kg | 1                  | 1       | 1    | 2       |          | 65000                    | S4UL            | 0                     |
| Aromatic >EC5 - EC7                           | mg/kg | 1                  | 1       | 1    | 2       | <u> </u> | 70                       | S4UL            | 0                     |
| Aromatic >EC7 - EC8                           | mg/kg | 1                  | 1       | 1    | 2       | <u> </u> | 130                      | S4UL            | 0                     |
| Aromatic >EC30 $=$ EC10                       | mg/kg | 1                  | 1       | 1    | 2       |          | 34                       | 54UL            | 0                     |
| Aromatic >EC10 - EC12                         | ma/ka | 1                  | 1       | 1    | 2       |          | 14                       | S40L<br>S4111   | 0                     |
| Aromatic >EC16 - EC21                         | ma/ka | 1                  | 1       | 1    | 2       |          | 260                      | S4UL            | 0                     |
| Aromatic >EC21 - EC35                         | mg/kg | 1                  | 1       | 1    | 2       |          | 1100                     | S4UL            | Ũ                     |
| Aromatic >EC35 - EC44                         | mg/kg | 1                  | 1       | 1    | 2       |          | 1100                     | S4UL            | 0                     |



### **Geotechnical & Environmental Engineers**

| Determinand   | Units | Limit of detection | Minimum | Mean | Maximum | Count | Screen (RWHP<br>@1% SOM) | Screen Source                             | No. of<br>Exceedences |
|---------------|-------|--------------------|---------|------|---------|-------|--------------------------|-------------------------------------------|-----------------------|
| TPH >C6-C8.   | mg/kg | 0                  | 0       | 0    | 0       |       | 70                       | S4UL (Aro C5 to<br>C7 or Ali C6 to<br>C8) | 0                     |
| TPH >C8-C10.  | mg/kg | 0                  | 0       | 0    | 0       |       | 27                       | S4UL (Aro or Ali<br>C8 to C10)            | 0                     |
| TPH >C10-C12. | mg/kg | 0                  | 0       | 0    | 0       |       | 74                       | S4UL                                      | 0                     |
| TPH >C12-C16. | mg/kg | 0                  | 0       | 0    | 0       |       | 140                      | S4UL (Aro or Ali<br>C12 to C16)           | 0                     |
| TPH >C16-C21. | mg/kg | 0                  | 0       | 0    | 0       |       | 260                      | S4UL (Aro C16 to<br>C21)                  | 0                     |
| TPH >C21-C25. | mg/kg | 0                  | 0       | 0    | 0       |       | 1100                     | S4UL (Aro C21 to<br>C35)                  | 0                     |
| TPH >C25-C35. | mg/kg | 0                  | 0       | 0    | 0       |       | 1100                     | S4UL (Aro C21 to<br>C35)                  | 0                     |
| TPH >C35-C40. | mg/kg | 0                  | 0       | 0    | 0       |       | 1100                     | S4UL (Aro C35 to<br>C44)                  | 0                     |

Note: Exceedances highlighted in red text on yellow fill.

There were some exceedances which are summarised in Table G2a below.

### Table G2a: Human Health Soil Screening Exceedences

| Location       | Determinand | Value | Screen | Units |
|----------------|-------------|-------|--------|-------|
| TP101 @ 0.70 m | Arsenic     | 37    | 190    | mg/kg |
| TP101 @ 1.60 m | Arsenic     | 37    | 64     | mg/kg |
| TP102 @ 0.30 m | Arsenic     | 37    | 200    | mg/kg |
| TP102 @ 0.90 m | Arsenic     | 37    | 130    | mg/kg |
| TP102 @ 0.90 m | Nickel      | 130   | 140    | mg/kg |
| TP102 @ 1.00 m | Arsenic     | 37    | 130    | mg/kg |
| TP103 @ 0.80 m | Arsenic     | 37    | 200    | mg/kg |
| TP103 @ 0.80 m | Nickel      | 130   | 150    | mg/kg |
| TP104 @ 0.60 m | Arsenic     | 37    | 340    | mg/kg |
| TP104 @ 0.60 m | Nickel      | 130   | 160    | mg/kg |
| TP104 @ 1.00 m | Arsenic     | 37    | 130    | mg/kg |
| TP105 @ 0.50 m | Arsenic     | 37    | 360    | mg/kg |
| TP105 @ 0.50 m | Nickel      | 130   | 200    | mg/kg |
| TP105 @ 0.50 m | Vanadium    | 410   | 530    | mg/kg |
| TP105 @ 1.20 m | Arsenic     | 37    | 210    | mg/kg |
| TP105 @ 1.40 m | Nickel      | 130   | 160    | mg/kg |
| TP106 @ 0.70 m | Arsenic     | 37    | 150    | mg/kg |
| TP106 @ 0.70 m | Nickel      | 130   | 160    | mg/kg |
| TP107 @ 0.40 m | Arsenic     | 37    | 290    | mg/kg |
| TP107 @ 0.40 m | Nickel      | 130   | 150    | mg/kg |
| TP107 @ 1.40 m | Arsenic     | 37    | 200    | mg/kg |
| TP107 @ 1.40 m | Vanadium    | 410   | 440    | mg/kg |
| DS101 @ 0.20 m | Arsenic     | 37    | 250    | mg/kg |
| DS101 @ 0.75 m | Arsenic     | 37    | 500    | mg/kg |
| DS101 @ 0.75 m | Nickel      | 130   | 170    | mg/kg |
| DS102 @ 0.30 m | Arsenic     | 37    | 320    | mg/kg |
| DS102 @ 0.30 m | Nickel      | 130   | 160    | mg/kg |
| DS102 @ 0.30 m | Vanadium    | 410   | 480    | mg/kg |
| DS103 @ 0.15 m | Arsenic     | 37    | 320    | mg/kg |
| DS103 @ 0.15 m | Nickel      | 130   | 150    | mg/kg |
| DS103 @ 0.15 m | Vanadium    | 410   | 470    | mg/kg |
| DS103 @ 0.90 m | Arsenic     | 37    | 480    | mg/kg |
| DS103 @ 0.90 m | Nickel      | 130   | 230    | mg/kg |
| DS103 @ 0.90 m | Vanadium    | 410   | 660    | mg/kg |
| DS104 @ 0.40 m | Arsenic     | 37    | 470    | mg/kg |
| DS104 @ 0.40 m | Nickel      | 130   | 240    | mg/kg |
| DS104 @ 0.40 m | Vanadium    | 410   | 670    | mg/kg |



### **Geotechnical & Environmental Engineers**

| DS105 @ 0.50 m | Arsenic  | 37  | 500 | mg/kg |
|----------------|----------|-----|-----|-------|
| DS105 @ 0.50 m | Nickel   | 130 | 290 | mg/kg |
| DS105 @ 0.50 m | Vanadium | 410 | 800 | mg/kg |
| DS106 @ 0.10 m | Arsenic  | 37  | 550 | mg/kg |
| DS106 @ 0.10 m | Nickel   | 130 | 270 | mg/kg |
| DS106 @ 0.10 m | Vanadium | 410 | 790 | mg/kg |
| DS106 @ 0.80 m | Arsenic  | 37  | 430 | mg/kg |
| DS106 @ 0.80 m | Nickel   | 130 | 260 | mg/kg |
| DS106 @ 0.80 m | Vanadium | 410 | 630 | mg/kg |

All twenty-two samples that were tested for arsenic recorded exceedances in excess of the guideline value of 37 mg/kg. Values ranged between 64 mg/kg and 550 mg/kg.

PBET testing was undertaken on the two highest values recorded (500 mg/kg and 550 mg/kg). Using the criteria gained from the testing, a site-specific screening value could be calculated using the CLEA version 1.071 spreadsheet. A new value of 99.5 mg/kg was calculated. When using this site-specific screening value, only one of the previous results become acceptable to the criteria: sample from TP101 at 1.60 m bgl recording 64 mg/kg.

Nickel was found in 15 no. samples to exceed the guideline value of 130 mg/kg, with a maximum value of 290 mg/kg recorded in DS105 at 0.50 m bgl.

Vanadium was found in 9 no. samples to exceed the guideline value of 410 mg/kg with a maximum value of 800 mg/kg recorded in DS105 at 0.50 m bgl.

### **CONTROLLED WATERS SCREENING**

No groundwater has been recorded during the investigation and no Made Ground or anthropogenic contamination identified at the site. As a consequence the risk to controlled waters is very low.