

ENVIRONMENT

Richborough Estates Limited and Lone Star Land Heyford Park Upper Heyford, Oxfordshire Sustainable Drainage Statement

ENVIRONMENT

Richborough Estates Limited and Lone Star Land Heyford Park Upper Heyford, Oxfordshire Sustainable Drainage Statement

Birmingham Livery Place, 35 Livery Street, Colmore Business District, Birmingham, B3 2PB T: 0121 233 3322

> Cambridge 14-16 High Street, Histon, Cambridge CB24 9JD T: 01223 235 173

Leeds Whitehall Waterfront, 2 Riverside Way, Leeds LS1 4EH T: 0113 233 8000

> London 11 Borough High Street London, SE1 9SE T: 0207 407 3879

Manchester 11 Portland Street, Manchester, M1 3HU 0161 233 4260

Market Harborough 12a Woodcock House, Compass Point Market Harborough, Leicestershire, LE16 9HW T: 01858 455020

> Nottingham Waterfront House, Station Street, Nottingham NG2 3DQ T: 0115 924 1100

> > January 2022

DOCUMENT ISSUE RECORD

Document Number:	UHO-BWB-ZZ-XX-RP-CD-0001_SDS
BWB Reference:	BMW-3171-SDS

Revision	Date of Issue	Status	Author:	Checked:	Approved:
P01	20/12/21	SO	K. Alger BSc (Hons) MSc	Lucy Reeves BSc (Hons)	Catherine Thorpe BSc (Hons) MCInstCES
P02	21/01/22	S2	K. Alger BSc (Hons) MSc	Matthew Bailey BSc (Hons)	Catherine Thorpe BSc (Hons) MCInstCES

Notice

All comments and proposals contained in this report, including any conclusions, are based on information available to BWB Consulting during investigations. The conclusions drawn by BWB Consulting could therefore differ if the information is found to be inaccurate or misleading. BWB Consulting accepts no liability should this be the case, nor if additional information exists or becomes available with respect to this scheme.

Except as otherwise requested by the client, BWB Consulting is not obliged to and disclaims any obligation to update the report for events taking place after: -

- (i) The date on which this assessment was undertaken, and
- (ii) The date on which the final report is delivered

BWB Consulting makes no representation whatsoever concerning the legal significance of its findings or the legal matters referred to in the following report.

All Environment Agency mapping data used under special license. Data is current as of January 2022 and is subject to change.

The information presented, and conclusions drawn, are based on statistical data and are for guidance purposes only. The study provides no guarantee against flooding of the study site or elsewhere, nor of the absolute accuracy of water levels, flow rates and associated probabilities.

This document has been prepared for the sole use of the Client in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this document by any third party. No part of this document shall be copied or reproduced in any form without the prior written permission of BWB

CONTENTS

1.	INTRODUCTION
	Sustainable Drainage Guidance
	Local Drainage and Planning Policy
2.	EXISTING CONDITIONS
	Existing Runoff Rates
	Existing Runoff Volume
3.	SURFACE WATER DRAINAGE STRATEGY
	Drainage Hierarchy
	Storage Requirements
	Northern and Central Catchments10
	Storage Volume
	Southern Catchment
	Peak Flow Control
	Storage Volume
	Runoff Volume Control
	Long Term Storage
	Sustainable Drainage Systems
	Residual Risk and Designing for Exceedance
4.	FOUL WATER DRAINAGE
5.	MAINTENANCE
6.	SUMMARY

FIGURES

Figure 1.1: Site Location Figure 3.1: Trial Pit Locations Figure 3.2: Proposed Catchments

TABLES

Table 1.1: Site DetailsTable 2.1: Infiltration Test ResultsTable 2.2: Equivalent Greenfield Runoff Rates per HectareTable 3.1: Outline Attenuated Storage Requirements- Northern CatchmentTable 3.2: Outline Storage Requirements- Central CatchmentTable 3.3: Existing & Proposed Runoff Rates per HectareTable 3.4: Outline Attenuated Storage Requirements- Southern CatchmentTable 3.5: Runoff Volume Comparison for Southern Catchment

APPENDICES

Appendix 1: Proposed Layout

Appendix 2: Topographical Survey

Appendix 3: Thames water Sewer Records

Appendix 4: Greenfield Runoff Rate and Volume

Appendix 5: Soakaway Results

Appendix 6: MicroDrainage Calculations

Appendix 7: Surface Water Drainage Drawing

Appendix 8: Thames water Pre-development Enquiry Response

1. INTRODUCTION

- 1.1 A Sustainable Drainage Statement (SDS) sets out the principles of drainage design for a development and summarises the reasoning behind the chosen design. This includes consideration of national and local guidance, justification of specific flow rates, volumes of attenuated storage, as well as the appropriate level of treatment to be provided to surface water runoff.
- 1.2 This SDS has been produced by BWB Consulting on behalf of Richborough Estates Limited and Lone Star Land, in respect of an outline planning application for the erection of up to 230 dwellings, creation of new vehicular access from Camp Road and all associated work. A proposed site development plan is included as **Appendix 1**.
- 1.3 A Flood Risk Assessment (FRA) has been produced for the site (reference UHO-BWB-ZZ-XX-RP-YE-0001_FRA) and this SDS accompanies this overarching document.
- 1.4 The location of the site is illustrated within **Figure 1.1**, with contextual information provided within **Table 1.1**.

Figure 1.1: Site Location

Table 1.1: Site Details

Site Name	Heyford Park
Location	Upper Heyford, Oxfordshire
NGR (approx.)	SP520259
Application Site Area (ha)	11.6
Development Area (ha)	6.19
Development Type	Residential
Lead Local Flood Authority	Oxfordshire County Council
Local Planning Authority	Cherwell District Council
Environment Agency Area	Thames

Sewerage Undertaker

Thames Water

Sustainable Drainage Guidance

- 1.5 Sustainable Drainage Systems (SuDS) aim to reduce the impact of development by replicating the natural runoff regime in a sustainable, cost-effective manner whilst protecting water quality and reducing pollution. The four key objectives of SuDS design are to achieve improvements in water quantity, water quality, amenity provision and biodiversity.
- 1.6 In addition to the Lead Local Flood Authority (LLFA) guidance, as summarised below, the Non-Statutory Technical Standards for Sustainable Drainage Systems¹ as published by DEFRA have been utilised to inform the strategy.

Local Drainage and Planning Policy

- 1.7 Oxfordshire County Council Local Standards and Guidance² has been reviewed in the preparation of this SDS and the following points are considered relevant:
 - Runoff from greenfield sites up to and including the 1 in 100 year event (including climate change allowances) is to be restricted to the calculated QBAR rate or 2l/s/ha, whichever is greater, and 1 in 1 year event to the corresponding greenfield event.
 - All drainage schemes must suitably demonstrate that flooding will not occur to any habitable building for the worst case 1 in 100yr +40% climate change event.
 - All surface water storage features should provide a 300mm freeboard.
 - At least one surface feature should be deployed within the drainage system for water quality purposes, or more features for runoff which may contain higher levels of pollutants in accordance with the CIRIA SUDS Manual C753.
 - An allowance of 10% to account for urban creep should be applied across all proposed residential developments.

¹ 2015 DEFRA. Non-statutory technical standards for sustainable drainage systems

² Local Standards and Guidance for Surface Water Drainage on Major Development in Oxfordshire V1 November 2018.

2. EXISTING CONDITIONS

- 2.1 The site is located approximately 3.15km from the M40 and approximately 5km from Bicester. The site is bound on the east by Chilgrove Drive, to the south by Camp Road and mixed-use development on the west. To the north of the site is the former Upper Heyford Airfield, now disused.
- 2.2 The site has remained undeveloped since at least the mid-19th century and is currently comprised of agricultural greenfield land.
- 2.3 The topographical survey of the site, included as **Appendix 2**, demonstrates that the land generally falls from north to south. Levels are shown to range from approximately 121m Above Ordnance Datum (AOD) in the north east to 115m AOD within the south west corner of the site.
- 2.4 The Gallos Brook, with minor subsidiary channels, is shown to pass through the site before passing beneath Camp Road via a culvert.
- 2.5 The site is identified as being in Flood Zone 1, however medium to high pluvial water risk is shown to be association with the Gallos Brook. A watercourse capacity assessment undertaken as part of the FRA has identified the watercourse to have sufficient capacity for the expected flows, based upon the cross section data available.
- 2.6 Thames Water sewer records, **Appendix 3**, record no public sewers within the immediate vicinity of the site. Private assets are understood to be present to the north and west of the site.
- 2.7 British Geological Survey (BGS) mapping shows that the site is underlain by White Limestone Formation, which is designated by the Environment Agency (EA) as a Principal Aquifer. Principal Aquifers are layers of rock or drift deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. There are no superficial deposits recorded at the site.
- 2.8 A Phase 1 report has been undertaken for the site, reference: HPO-BWB-ZZ-XX-RP-YE-0001_Ph1, along with soakaway tests, reference: UHO-BWB-ZZ-XX-RP-YE-0002. The Phase 1 report identified the general risk posed from the various ground based sources to be low. Ground investigations identified limestone in various forms.
- 2.9 The ground investigation report shows the underlying geology of the site to comprise of limestone. A total of five trial pits were excavated across the site, as shown in Figure 3.1. A summary of the rates across the site are outlined within Table 2.1. For soakaway 3, the lowest result has been selected.

Table	2.1	:	Infiltration	Test	Results
IGNIC	~ •••	٠	IIIIIII MIIVII	1031	NC JOILJ

Test Location	Lowest Infiltration Rate (m/s)
SA01	3.35x10 ⁻⁰⁶
SA02	5.33x10 ⁻⁰⁵
SA03B	1.19x10 ⁻⁰⁵

2.10 Given the greenfield nature of the existing site, it is likely that the existing drainage regime initially consists of infiltration into the ground, followed by rapid surface water runoff which will follow existing topography and flow towards the west into the watercourse when the infiltration potential is exceeded.

Existing Runoff Rates

- 2.11 An assessment of the equivalent greenfield surface water runoff per hectare has been undertaken and is summarised within **Table 2.2**.
- 2.12 The runoff rates have been estimated using the IH124 method, with appropriate prorated adjustments for a site of less than 50ha, as recommended in Interim Code of Practice for Sustainable Drainage³. This was undertaken within Micro Drainage, which makes the necessary adjustments for small sites automatically.
- 2.13 With infiltration rates being identified as being within the region of 3x10-4m/s and 2x10-5m/s, it is considered that the Soil value of 0.45 (identified through the ICP SuDS methodology) is not representative of the specific site situation. The soil value has therefore been changed to 0.3 in order to represent the ground conditions and the infiltration rates identified across the site. A summary of the runoff rate per hectare is outlined below as Table 2.2. The MicroDrainage calculations are included as Appendix 4.

Return Period (Yrs.)	Runoff Rate (l/s/ha)
1	1.5
Mean Annual Flow Rate (QBAR)	1.8
30	3.5
100	4.6

³ The National SUDS Working Group (2004) Interim Code of Practice for Sustainable Drainage

Existing Runoff Volume

- 2.14 An assessment of the existing surface water runoff rates from the area proposed for development has been made for a 1 in 100-year, 6 hour storm.
- 2.15 As the existing site is permeable, the runoff volume has been calculated using the Source Control module within Micro Drainage to be 207m³, based upon the FEH methodology. The full results are included within **Appendix 4**.

3. SURFACE WATER DRAINAGE STRATEGY

Drainage Hierarchy

- 3.1 The Planning Policy Guidance⁴ and the SuDS Manual⁵ identify that surface water runoff from a development should be disposed of as high up the following hierarchy as reasonably practicable:
 - i. into the ground (infiltration);
 - ii. to a surface water body;
 - iii. to a surface water sewer, highway drain, or another drainage system;
 - iv. to a combined sewer.
- 3.2 The aim of this is approach is to manage surface water runoff close to where it falls and mimic natural drainage as closely as possible.
- 3.3 Groundwater at a depth of 1.2m below ground level (bgl) was identified within trial pit SA03. Traces of hydrocarbons were also identified in this area, with staining of the soil and a mild hydrocarbon sheen on the surface. The other trial pits did not record any groundwater or contamination.
- 3.4 The infiltration rates calculated are considered suitable for the use of soakaway features, however, the presence of hydrocarbons and shallow groundwater level at SA03B means that infiltration is not viable in this area.

⁴ Planning Practice Guidance. http://planningguidance.planningportal.gov.uk/.
⁵ The SuDS Manual (C753), CIRIA 2015.

Figure 3.1: Trial Pit Locations

3.5 It is therefore proposed that the northern and central portion of the site will utilise infiltration whilst the southern portion of the site will outfall to the watercourse, in line with the drainage hierarchy. The proposed catchment division is shown in **Figure 3.2**.

Figure 3.2: Proposed Catchments

Storage Requirements

- 3.6 Surface water storage should be located within the site in a position where it can receive runoff from the development and discharge from the site by gravity, and also in a position where it is hydraulically isolated from any fluvial floodplain or external surface water floodplain/overland flow route that may be present in the site. Further information on flood extents within the site boundary can be found in the accompanying FRA. At this stage all basins have been located outside of the Environment Agency pluvial extents.
- 3.7 Sufficient storage for events up to the 1 in 100-year storm with a 40% allowance for climate change should be provided, and a 10% allowance should be applied to the current proposed development area to allow for urban creep over the lifetime of the development.
- 3.8 For the purpose of this outline assessment, it has been assumed that the basins will accommodate all of the necessary storage, but it may be possible to redistribute a portion of the storage within other drainage components during the detailed design of the development (e.g.: in the pipe network, swales, filter drains, etc).
- 3.9 It is envisaged that the final required attenuated storage volume will be determined during the detailed design stage, once the development layout and drainage areas are fixed.

Northern and Central Catchments

- 3.10 The Northern Catchment measures 1.33ha. It is estimated that 65% will be impermeable and a further 10% allowance should be included in the storage calculations to account for urban creep over the lifetime of the development. Therefore, adequate storage should be provided for an impermeable area of 0.95ha.
- 3.11 The Central Catchment measures 3.71ha and therefore, based upon these same parameters, adequate storage should be provided for an impermeable area of 2.65ha.

<u>Storage Volume</u>

3.12 A simulation has been run using Micro Drainage 'Source Control' to identify the necessary storage provision. Using the corresponding infiltration rate and the impermeable area outlined above, the storage requirement for each catchment has been calculated for storm events up to the 100 year + 40% storm. The results are summarised in Table 3.1 and Table 3.2. Calculations are included as Appendix 6.

Rainfall Method	Critical Storm	Impermeable Area (ha)	Maximum Volume (m ³)
FSR	1440 min Winter	0.05	756
FEH	960 min Winter	0.95	747

Table 3.1: Outline Attenuated Storage Requirements- Northern Catchment

Table 3.2: Outline	Storage	Requirements-	Central	Catchment
	Jonage	Requirements-	Comu	Culchinen

Rainfall Method	Critical Storm	Impermeable Area (ha)	Maximum Volume (m³)
FSR	120 min Winter	0.45	1191
FEH	180 min Winter	2.65	1206

3.13 The modelling of the basin associated with the Northern Catchment has identified a half drain down time that exceeds 24hrs, however the basin has capacity to accommodate a subsequent 1 in 10 year 30 minute storm, which is deemed an intense storm event.

Southern Catchment

3.14 The Southern Catchment measures 1.15ha. It is estimated that 65% will be impermeable and a further 10% allowance should be included in the storage calculations to account for urban creep over the lifetime of the development. Therefore, adequate storage should be provided for an impermeable area of 0.82ha.

Peak Flow Control

- 3.15 In order to comply with the Non-Statutory Technical Standards for Sustainable Drainage Systems S2-S3⁶, runoff from greenfield developments should not exceed the equivalent greenfield rates for the 1 and 100-year return period events.
- 3.16 The local guidance states that runoff from greenfield sites up to and including the 1 in 100 year event (including climate change allowances) is to be restricted to the calculated QBAR rate or 2l/s/ha, whichever is greater, and 1 in 1 year event to the corresponding greenfield event.
- 3.17 Therefore, where an outfall to the watercourse is utilised in the Southern Catchment, the following restricted rates should be applied:

⁶ 2015 DEFRA. Non-statutory technical standards for sustainable drainage systems

Return Period (Yr.)	Existing Runoff Rate (I/s/ha)	Proposed Discharge Rate (l/s/ha)
1	1.5	1.5
QBAR	1.8	
30	3.5	2.0
100	5.6	2.0
100 + 40%	-	

3.18 This equates to a total maximum runoff rate of 2.31/s for the 1.15ha Southern Catchment.

<u>Storage Volume</u>

3.19 A simulation has been run using Micro Drainage 'Source Control' to identify the necessary storage provision. Using a restriction of 2.3 I/s and an impermeable area of 0.82ha the volume of attenuated storage required for the catchment has been calculated for storm events up to the 100 year + 40% storm. The results are summarised in Table 3.4 and calculations are included as Appendix 6.

Rainfall Method	Critical Storm	Impermeable Area (ha)	Maximum Volume (m³)
FSR	1440 min Winter	0.82	641
FEH	960 min Winter		634

Table 3.4: Outline Attenuated Storage Requirements- Southern Catchment

Runoff Volume Control

- 3.20 The Non-Statutory Technical Standards for Sustainable Drainage Systems S4-S6⁷ states that where reasonably practical the runoff volume from a development for the 1 in 100year 6 hour rainfall event should not exceed the runoff volume prior to development or redevelopment. Where it is not reasonably practicable to constrain the volume of runoff from a development at or below the existing volume, then the runoff must be discharged in a manner that does not adversely affect flood risk, i.e.:
 - i. The additional runoff volume resulting from the development (the 'long term storage volume') should be discharged separately from the site at a rate of 2l/s/ha or less. Or,
 - ii. All the runoff volume from the development should be discharged at a rate equivalent to the mean annual flow rate (QBAR) rate under greenfield conditions or less. Or,

⁷ 2015 DEFRA. Non-statutory technical standards for sustainable drainage systems

- iii. All the runoff volume from the development should be discharged at a rate of 21/s/ha or less.
- 3.21 An estimate of the post-development runoff volume from the 1 in 100-year 6 hour storm can be derived from the Micro Drainage calculations, as provided within **Appendix 3**. The existing and post-development runoff volumes are compared within **Table 3.5**.

Table 3.5: Runoff Volume Comparison for Southern Catchment

Existing Volume (m ³)	Proposed Volume (m ³)	Difference (m ³)
207	399	+192

3.22 The 1 in 100-year 6 hour storm runoff volume from the site has been shown to increase as a result of the proposed development. However, as the runoff volume from the development will be discharged at a rate equivalent to the mean annual flow rate (QBAR) rate under greenfield conditions, the volume control criteria will be met.

Long Term Storage

3.23 It is proposed to discharge the runoff from the development at a rate deemed to be equivalent to the mean annual flow rate (QBAR) rate, as outlined by the criteria set out by the LLFA guidance, when the calculated QBAR rate is less than 2 l/s/ha. Therefore, provision for long term storage is not required.

Sustainable Drainage Systems

- 3.24 In all catchments, surface water runoff will be captured via a combination of drains, gullies, and downpipes before being conveyed through the site via a beneath ground pipe system into the storage features.
- 3.25 The basins should be appropriately planted to encourage treatment and biodiversity, as well as being landscaped into the public open space to provide an amenity value. The basin banks should not exceed a 1:4 gradient. It is recommended that forebays are included at the inlets.
- 3.26 The roof derived runoff is considered clean and therefore requires no additional treatment however the drainage for trafficked areas should be designed to have a minimum two stage treatment train. This could be achieved via methods such as silt traps, permeable paving, swales or bioretention areas (to be confirmed at detailed design).
- 3.27 The interception value (the first 5mm of runoff in a rainfall event) should be appropriately treated prior to release into the downstream network to prevent contamination from high pollutant concentrations. As the drainage system has been specifically designed for infiltration, the interception value will be delivered, particularly if forebays are provided at the inlets.

3.28 An Outline Surface Water Drainage Strategy is included in **Appendix 7** (reference UHO-BWB-ZZ-XX-DR-CD-0001) and demonstrates how the required storage volume can be achieved within the site boundary.

Residual Risk and Designing for Exceedance

- 3.29 A 300mm freeboard has been applied to the proposed SuDS features, which will provide an element of additional storage in an extreme event.
- 3.30 It is recommended that the final layout uses the proposed road infrastructure to provide drainage exceedance (overland flood flow) routes through the development and towards the storage for events in excess of the capacity of the drainage system.
- 3.31 If the capacity of the storage is exceeded, ground levels should be profiled to direct overland flows towards car parking and public open space, and away from vulnerable infrastructure.
- 3.32 In addition to the volume of storage provided within the main storage and attenuation, there will be capacity within upstream pipe, manholes and additional SuDS features which has not been accounted for at this stage and a further level of redundancy to the network will therefore be provided.

4. FOUL WATER DRAINAGE

- 4.1 It is proposed to drain used water from the development separately to surface water. As the site is currently undeveloped, a new connection will be required.
- 4.2 The Thames Water pre-development enquiry, **Appendix 8**, confirms there is sufficient capacity in their existing infrastructure to discharge foul flows from the proposed development; the proposed point of connection (Manhole ref: MH9901) is advised approximately 2.2km west of the proposed site development (at the junction of Camp Road and Station Road).
- 4.3 Thames Water have recommended further investigation into the privately owned sewers and treatment works shown near the southern boundary may be required as this foul water network may offer a more financially viable option. It is understood this treatment works is owned and maintained by Severn Trent Connect.
- 4.4 In the event that the two options above are not possible, an onsite treatment works with direct outfall to the Gallos Brook, could be investigated. The implementation of such a proposal would be subject to the necessary consents and approvals from the EA.
- 4.5 It is expected that the 230 units proposed will generate a peak flow of approximately 10 I/s, based upon the rate of 4,000 I/24hrs/dwelling.
- 4.6 Further information on foul drainage can be found in the Utilities Assessment, reference: UHO-BWB-VUT-ZZ-RP-G-002 - Utilities Assessment.

5. MAINTENANCE

- 5.1 The drainage network should be designed and constructed in accordance with the Design and Construction Guidance and ideally proposed for adoption by Thames Water. If any parts of the drainage network remain unadopted, or until the point that they are, an appropriate maintenance company should be appointed. Any drainage features within private curtilage will be the responsibility of the homeowner.
- 5.2 Requirements for ongoing maintenance of the drainage network should form part of the Operation and Maintenance manual for the site and should be undertaken by the site management. Any specialist or proprietary products that are specified at detailed design should have a manufacturer specific maintenance regime which should be included within the document.
- 5.3 It is envisaged that the Operation and Maintenance manual will be developed at the detailed design stage, but some examples are included below.
 - i. All drainage features should be located in open areas which are readily accessible.
 - ii. Gullies should be inspected and de-silted at least once a year, where necessary.
 - iii. Pipes, manholes and silt traps should be inspected and de-silted at least once a year, where necessary.
 - iv. If permeable paving is incorporated within the layout, it should be swept a minimum of every 6 months to maintain flow capacity of the joints between blocks.
 - v. The surface water attenuation areas will be predominantly dry and the base will be seeded with a wildflower grass seed mix that can tolerate wet ground conditions.
 - vi. Regular inspections of the basins should be undertaken to remove litter/debris, invasive/colonising vegetation and silt build up as necessary.
 - vii. Inlet structures to be regularly inspected, with remedial work as required to maintain water flows and prevent silt/vegetation build up.
 - viii. Vegetation/grass with the infiltration basins should be maintained appropriately to allow establishment and promote habitat formation, without impeding the operation of the inlet structures.
 - ix. Flow controls should be inspected every 6 months, litter/debris and silt build up should be removed as necessary.

6. SUMMARY

- 6.1 This statement and supporting appendices demonstrate that the drainage design for the development will comply with the relevant local and national standards, specifically the hierarchy of discharge, runoff rate and volume criterion.
- 6.2 This SDS is intended to support an outline planning application and as such the level of detail included is commensurate and subject to the nature of the proposals.
- 6.3 It is proposed that surface water runoff from the proposed development is managed by both infiltration methods and restricted discharge.
- 6.4 Infiltration basins are proposed within the northern and central catchments following positive BRE365 soakaway tests.
- 6.5 The traces of hydrocarbons during the excavation of the southern trail pits are such that it proposed to restrict discharge from the southern catchment, based upon a rate of 21/s/ha. The outfall from the catchment is proposed to be to the Gallos Brook, located on the western boundary of the site.
- 6.6 The basins should be appropriately planted to encourage treatment and biodiversity, as well as being landscaped into the public open space to provide an amenity value. The basins should be maintained in accordance with the Operation and Maintenance manual for the site, in order to ensure continued effective operation of the features.
- 6.7 Following consultation with Thames Water it has been identified that there is capacity within their network for foul flows, with the nearest point of connection being *MH9901*, located approximately 2.2km to the west of the site, at the junction of Station Road and Camp Road.
- 6.8 Thames Water have recommended that further investigation be undertaken into the potential to connect into a privately owned treatment works and network, located to the south, as this may a be a more financially viable option.
- 6.9 It is envisaged that the final drainage strategy will be determined during the detailed design stage, as the development layout is finalised.

APPENDICES

Appendix 1: Proposed Layout

Appendix 2: Topographical Survey

Appendix 3: Thames water Sewer Records

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

abea on the orananoe our ey map mar the ourbaidh of the oont oner or rith. Oradonery onloc, Electioe no. Tood too too to on oopynght reserved.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 **T** 0845 070 9148 **E** <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u> NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
n/a	n/a	n/a
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.		

Appendix 4: Greenfield Runoff Rate and Volume

BWB Consulting Ltd		Page 1
5th Floor, Waterfront House		
35 Station Street		Second Second
Nottingham, NG2 3DQ		Micro
Date 17/12/2021 13:28	Designed by Keith.Alger	Drainago
File S Catchment_Q100_40_FSR	Checked by	Drainage
Innovyze	Source Control 2020.1	•

ICP SUDS Mean Annual Flood

Input

Return Period (years)2Soil0.300Area (ha)1.000Urban0.000SAAR (mm)693RegionNumberRegion

Results 1/s

QBAR Rural 1.8 QBAR Urban 1.8 Q2 years 1.6 Q1 year 1.5 Q30 years 3.5 Q100 years 4.6

Return Period (year Storm Duration (min FEH Rainfall Versi	Designed by Keith.Alger Checked by Source Control 2020.1 ield Runoff Volume FEH Data s) 100	Page 1 Micro Drainage
Station Street tingham, NG2 3DQ te 21/01/2022 10:53 le novyze Greenf. Return Period (year Storm Duration (min FEH Rainfall Versio	Checked by Source Control 2020.1 ield Runoff Volume FEH Data	
ce 21/01/2022 10:53 Le novyze <u>Greenf</u> Return Period (year Storm Duration (min FEH Rainfall Versi	Checked by Source Control 2020.1 ield Runoff Volume FEH Data	
ce 21/01/2022 10:53 Le novyze <u>Greenf</u> Return Period (year Storm Duration (min FEH Rainfall Versi	Checked by Source Control 2020.1 ield Runoff Volume FEH Data	
le novyze <u>Greenf</u> Return Period (year Storm Duration (min FEH Rainfall Versi	Checked by Source Control 2020.1 ield Runoff Volume FEH Data	Urainage
novyze <u>Greenf</u> Return Period (year Storm Duration (min FEH Rainfall Versi	Source Control 2020.1 ield Runoff Volume FEH Data	
<u>Greenf</u> Return Period (year Storm Duration (min FEH Rainfall Versi	ield Runoff Volume FEH Data	
Return Period (year Storm Duration (min FEH Rainfall Versi	FEH Data	
Storm Duration (min FEH Rainfall Versi		
Storm Duration (min FEH Rainfall Versi	s) 100	
Storm Duration (min FEH Rainfall Versi)
	on GB 451900 225600 SP 51900 25600 pe Catchment	
Data Ty Areal Reduction Fact		
Area (h		
SAAR (m	m) 675	
	WI 100.500	
SPR HO		
URBEXT (199		,
	Results	
	centage Runoff (%) 5.26 Runoff Volume (m³) 207.561	
@1 ዓ ደ	2-2020 Innovyze	

Appendix 5: Soakaway Results

Richborough Estates Ltd Sixth Floor Waterloo House Waterloo Street Birmingham B2 5TB

Our Ref: UHO-BWB-ZZ-XX-RP-YE-0002 Contact: Olivier Sanga Direct Dial: 07867 474576

Date: 26th November 2021

Dear Sir/Madam

SOAKAWAY TEST INVESTIGATION - UPPER HEYFORD

BWB were instructed by Richborough Estates Ltd (the Client) to undertake permeability tests at the site known as Upper Heyford. The testing was required to determine the suitability of the underlying geology at the site to support soakaway drainage for a proposed residential development.

The site comprises two agricultural fields divided by a north to south hedgerow and wire fence. The western area has a track that runs through the site to the north parallel to a minor watercourse, leading to a recently landscaped area with ponds, various trees, vegetation, recreational facilities, and an open field to the north with livestock. The eastern parcel of land consists of grassland.

Scope of Works

The investigation was undertaken on 28th October 2021 and comprised of the completion of soakaway testing at three locations in accordance with 'BRE365: Soakaway Design 2007' to assess the permeability characteristics of the soils present on site. The locations, named SA01, SA02 and SA03B are depicted on the exploratory hole location plan presented within **Drawing 1**.

SA03B was previously attempted twice (SA03 and SA03A), but on both occasions visual and /or olfactory evidence of hydrocarbon contamination was observed, and the tests relocated. Grab samples of the impacted soils were obtained from SA03 and SA03A and chemical analysis (TPH CWG) was undertaken to determine the magnitude of the hydrocarbon contamination at these locations. The locations of SA03 and SA03A are presented within **Drawing 1**.

5th Floor Waterfront House Station Street Nottingham NG2 3DQ

Tel: 0115 924 1100

nottingham@bwbconsulting.com www.bwbconsulting.com

Registered office address: 5th Roor, Waterhant House, 35 Station Street, Notfingham NG2 3DQ Registered in England and Wates Company No. 5265863

Encountered Ground Conditions

Ground conditions were found to comprise of firm brown sandy clay with occasional rootlets (topsoil) to a maximum depth of 0.35m below ground level (bgl). Gravelly, sandy clay was recorded in the topsoil in two locations (SA02 and SA03B). The topsoil directly overlay the White Limestone Formation encountered initially as a cohesive layer described as firm light brown very sandy clay to a maximum depth of 0.75m. This cohesive layer overlay granular material described as white and light brown/orangish brown clayey sandy gravel of limestone.

Groundwater was detected at 1.20m bgl in SA03. Groundwater was not encountered in any of the other exploratory hole locations during the investigation.

A mild hydrocarbon odour was detected below 0.95m bgl in borehole SA03A and below 1.15m bgl in borehole SA03. Rare black staining was also detected in SA03 and a mild hydrocarbon sheen on the water surface was detected below 1.20m bgl.

The exploratory hole logs are presented within the factual ground investigation report presented as **Appendix 1**.

Soakaway Test Results

Results of the soakaway tests are presented within the factual ground investigation report presented as **Appendix 1** and a summary of the results are presented below in **Table 1**.

The test was terminated at location SA01 due to time constraints. Test 1 at location SA03B was terminated due to a collapse of the pit. In both these instances the final data point was extrapolated to provide an infiltration calculation.

Location	Test No.	Permeability Rate (m/s)	Drainage Characteristic	Permeability Classification
SA01	1	3.35x10 ^{-06*}	Good to poor	Low
SA02	1	5.49x10 ⁻⁰⁵	Good	Medium to low
SA02	2	5.33x10 ⁻⁰⁵	Good	Medium to low
SA02	3	5.37x10 ⁻⁰⁵	Good	Medium to low
SA03B	1	1.19x10 ^{-05*}	Good	Medium to low
SA03B	2	2.0x10 ⁻⁰⁵	Good	Medium to low

Table 1: Summary of Soakaway Test Results

* Data extrapolated to provide an infiltration calculation.

The soakaway test results have identified good drainage characteristics and a medium to low permeability classification for the tests undertaken at locations SA02 and SA03B.

Good to poor drainage characteristics and a low permeability classification has been identified for the test undertaken at location SA01.

Chemical Analysis

Samples from the White Limestone Formation at locations SA03 and SA03A have been analysed to assess the significance of the hydrocarbon contamination at these locations. The soil chemical laboratory results are presented within the factual ground investigation report presented as **Appendix 1**.

The concentrations of BTEXs were recorded below the limits of detection in all samples. Marginally elevated concentrations of TPH were recorded within both soil samples. At SA03, very low concentrations of long chain Aromatic hydrocarbons were recorded (22mg/kg EC21-35). At SA03A, very low concentrations of medium chain Aliphatic hydrocarbons were recorded (0.23mg/kg EC8-10, 3.1mg/kg EC10-12, and 20mg/kg EC12-16).

Whilst the reported hydrocarbon impact is not considered to represent a significant risk to controlled waters or human health, the observed staining suggests that there is possibly a wider issue within the area. It is hypothesised that, given that the depth of the impact correlates with the localised groundwater strike, the impact has originated from the watercourse (which is feeding the local groundwater at this location).

Further investigation is required to delineate the area of impact and inform where the source is. Until this is undertaken, it is considered that soakaway drainage in the vicinity of SA03/3A is not viable as it could further mobilise contaminants within the underlying aquifer.

Conclusions

The drainage characteristics of the White Limestone Formation are indicated to be good in the south and the centre of the site, and good to poor in the north-east of the site.

The hydrocarbon concentrations reported within the soils at locations SA03 and SA03A are very low, however, until the area of impact is delineated, soakaway drainage in this area is not recommended.

I trust that the above provides you with a suitable summary of the BRE365 Soakaway Assessment.

Yours sincerely,

Olivier Sanga Graduate Environmental Consultant

Page 3 of 6

Enc.

Drawing 1 – Exploratory Hole Location Plan Appendix 1 – Factual Ground Investigation Report

DRAWING 1

EXPLORATORY HOLE LOCATION PLAN

Page 5 of 6

X:\BMW\BMW3171_Upper Heyford, Oxfordshire\02. Project Delivery\01. W P\Drawings\GS\EHLP.dwg

Notes			
 Do not scale this drawing. All dimensions m checked/ verified on site. If in doubt ask. 	ust be		
2. This drawing is to be read in conjunction with			
relevant architects, engineers and specialis and specifications.			
 All dimensions in millimetres unless noted or levels in metres unless noted otherwise. 	therwi	se. A	NI.
4. Any discrepancies noted on site are to be re	eported	l to	
the engineer immediately.			
Key Plan			
Legend			
P1 01.01.00 PRELIMINARY ISSUE Rev Date Details of issue / revision		AJ Drw	JB Rev
Issues & Revisions		0.0	THE
Birmingham 0	121 233	3 332	2
Leeds 0113 23			
Manchester 0	61 233	426	
Nottingham 01 www.bwbconsultin		110	D
Client			
Richborough Estates			
Project Title			
Upper Heyford			
opper negiora			
Drawing Title			
Exploratory Hole Loca	tio	n	
Plan			
Drawn CR Reviewed OS			
BWB Ref BMW3171 Date 21/10/21 Scale	ga3	NTS	
BWB Ref BMW3171 Dale 21/10/21 Scale Drawing Status	@A3	NTS	
BWB Ref BMW3171 Date 21/10/21 Scale Drawing Status Final			90"
BWB Ref BMW3171 Dale 21/10/21 Scale Drawing Status	@A3 Stah	15 F	Rev V1

•...

APPENDIX 1

FACTUAL GROUND INVESTIGATION REPORT

Page 6 of 6

Factual Ground Investigation Report

Upper Heyford, Oxfordshire

BWB Consulting Limited

November 2021

Factual Ground Investigation Report

Upper Heyford, Oxfordshire

Contract: C10194 Reference: C10194-FGIR-01

BWB Consulting Limited
5 th Floor
Waterfront House
Station Street
Nottingham
NG2 3DQ

Exploration & Testing Associates Limited 'number three' Siskin Drive, Middlemarch Business Park Coventry, CV3 4FJ

T: 024 7688 0452, E: enquiries@explorationtesting.uk

Prepare	ed by:		Checked by:	Approved by:
	v Howells		Laura Westoby	Anthony Owen
BSc(Ho	ons), PG Di	p, FGS	MGeol(Hons), CGeol, FGS,	MESci(Hons), MRes, FGS
Issue:	Date:	Descriptior	n:	
01	22/11/21	First issue		

EXECUTIVE SUMMARY

Site Address	The site is located to the north of Camp Road, Upper Heyford, Oxfordshire and is centred at National Grid co-ordinates 452066, 225896.
Proposed Development	Information on the proposed development has not been provided by the Client.
Current Site Use	The site comprises a mix of undeveloped grassland and agricultural land. Several ponds were present within the grassland.
Published Geology	The published geology for the site indicates the site to be underlain directly by bedrock of the White Limestone Formation, comprising pale grey to off-white or yellowish limestone. Superficial deposits are not recorded on or in the vicinity of the site. There are no faults on or in the vicinity of the site. Made Ground is unlikely to be widespread across the site, however may be encountered locally in the vicinity of the track.
Intrusive Works	Intrusive works comprised service clearance of all locations, five machine excavated trial pits with chemical sampling of soil with visual or olfactory evidence of contamination, soakaway testing at three locations, Unexploded Ordnance (UXO) supervision and chemical laboratory testing.
Sampling and Testing	Chemical laboratory testing was carried out on selected samples as scheduled by the Client.
	ive Summary should be read in conjunction with Exploration & Testing ctual Ground Investigation Report, reference C10194-FGIR-01, of which it

TABLE OF CONTENTS

INTRODUCTION	3
Introduction	3
Scope of Work	3
SITE DESCRIPTION	4
Site Location	4
Site Description	4
Published Geology	4
GROUND INVESTIGATION	5
Intrusive Investigation	5
Sampling Strategy	5
LABORATORY TESTING	6
Testing Strategy	6
Chemical Laboratory Testing	6
	Introduction Scope of Work SITE DESCRIPTION Site Location Site Description Published Geology GROUND INVESTIGATION Intrusive Investigation Sampling Strategy LABORATORY TESTING

APPENDICES

APPENDIX 1: Drawings
APPENDIX 2: Engineering Records
APPENDIX 3: Soakaway Results
APPENDIX 4: Chemical Testing

1.0 INTRODUCTION

1.1 Introduction

Exploration & Testing Associates Limited (Exploration) were instructed by BWB Consulting Limited (the Client), to undertake an investigation to establish ground conditions and drainage characteristics of the site at Camp Road, Upper Heyford. Proposed development plans have not been provided to Exploration at the time of writing.

This report has been prepared for the sole use of the Client for the purposes set out above. No third-party duty of care or reliance on this document is offered and the use of information within this report by any third party is at their own risk. This document shall not be reproduced in any form without the prior written permission of Exploration.

The information contained within this report is based on conditions at the time of investigation and there may be site factors which have not been disclosed within this document. It should be noted that groundwater levels may vary due to seasonal or other conditions.

1.2 Scope of Work

The scope of work was set out by the Client at tender stage and comprised the following:

- Three machine excavated trial pits;
- Soakaway testing at each location; and
- Unexploded Ordnance (UXO) supervision.

This document is intended to provide a factual account of the work undertaken and present the data obtained during the ground investigation.

2.0 SITE DESCRIPTION

2.1 Site Location

The site is located to the east of the village of Upper Heyford, Oxfordshire and is centred at National Grid co-ordinates 452066, 225896. A Site Location Plan, reference C10194.SLP_1, is presented in Appendix 1.

2.2 Site Description

The site is irregular in shape with generally flat topography and covers an areas of approximately 10 hectares.

At the time of the investigation the site comprised an agricultural field and undeveloped land comprising grass and mature trees, with several ponds present in the north. The two areas were separated by a hedge.

The site was bounded by a field to the north, fields to the east beyond Chilgrove Drive, fields and residential properties to the south beyond Camp Road and fields to the west beyond which was Larsen Road. The site was accessed via a track off Camp Road.

2.3 Published Geology

The published geology for the site, based on records provided by the British Geological Survey (BGS), indicates the site to be underlain directly by bedrock of the White Limestone Formation, comprising pale grey to off-white or yellowish limestone. Superficial deposits are not recorded on or in the vicinity of the site. There are no faults on or in the vicinity of the site.

Made Ground is unlikely to be widespread across the site, however may be encountered locally in the vicinity of the track.

Historical boreholes, located within 200m of the site, generally indicate localised Made Ground of between 0.15m and 0.80m bgl underlain by weathered limestone gravel overlying bedrock of the Great Oolite Limestone from approximately 1.50m bgl.

3.0 GROUND INVESTIGATION

3.1 Intrusive Investigation

The intrusive investigation was carried out on 28th October 2021 and was undertaken in general accordance with published guidance BS 5930:2015+A1:2020 and BS 10175:2011+A2:2017. The work comprised the following:

- Service clearance of all locations;
- Five machine excavated trial pits with chemical sampling of soil with visual or olfactory evidence of contamination;
- Soakaway testing at three locations (SA01, SA03 and SA03B);
- Unexploded Ordnance (UXO) supervision; and
- Chemical laboratory testing.

SA03 was moved to SA03A and subsequently to SA03B due to visual and olfactory evidence of hydrocarbon contamination. Although not originally part of the scope of works, chemical testing was undertaken on samples identified during the ground investigation to be impacted by hydrocarbons. Samples for contamination testing were collected in appropriate containers and retained in cool boxes prior to dispatch to the laboratory.

The exploratory hole locations were set out based on an indicative plan issued in advance by the Client. An Exploratory Hole Location Plan is provided in Appendix 1 as drawing reference C10194.EHLP_1.

The depths of the exploratory holes, descriptions of strata encountered and comments on groundwater conditions are provided in Appendix 2. The soakaway results are presented in Appendix 3.

3.2 Sampling Strategy

Samples were obtained from SA03 and SA03A where visual and olfactory evidence of hydrocarbon contamination was noted by the site engineer.

4.0 LABORATORY TESTING

4.1 Testing Strategy

The chemical laboratory testing was scheduled by the Client.

4.2 Chemical Laboratory Testing

The soil testing was carried out by a UKAS accredited laboratory, in accordance with the MCERTS performance standard, with representative sub-samples taken for testing as necessary.

The following tests were carried out:

• Two total petroleum hydrocarbon tests to the Criteria Working Group, including BTEX.

The results are provided in Appendix 4 as test report 21-20596.

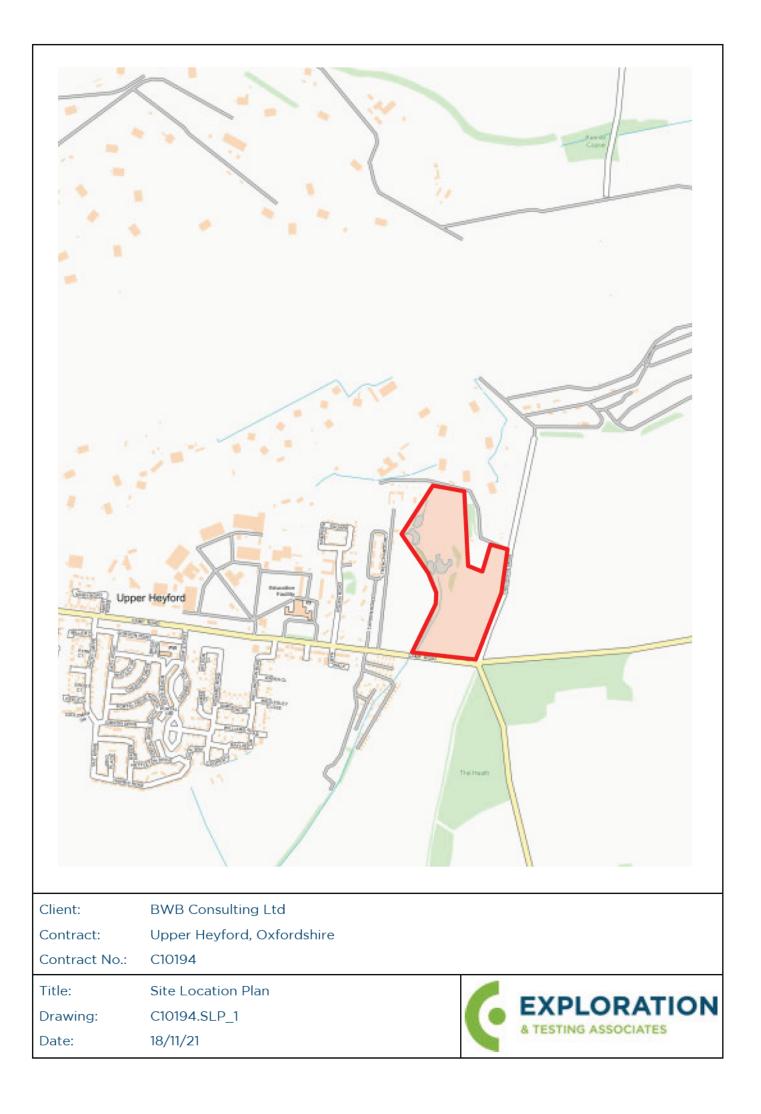
REFERENCES

BRE 365 'Soakaway Design' British Research Establishment, 2016.

BS 5930:2015+A1:2020 'Code of practice for ground investigations.' British Standards Institute, 2020.

BS 10175:2011+A2:2017 'Investigation of potentially contaminated sites. Code of practice', British Standards Institute, 2017.

BS 1377-1:2016, '*Methods of test for soils for civil engineering purposes – Part 1: General requirements and sample preparation*', British Standards Institute, 2016.


British Geological Survey, Sheet No. 218, 'Chipping Norton', solid, 1:63,600 scale, published 1968.

APPENDIX 1: DRAWINGS

APPENDIX 2: ENGINEERING RECORDS

oject	Name: I	Jpper He	eyford	1	Client:	BWB Con	sulting L	td		Date: 28/10/2021	l		
catio	n: Oxfor	dshire		1	Contra	ctor: Explo	oration &	Testing		Co-ords: E45207	3.42 N22	6057.96	
oject	No. : C1	0194			Crew N	ame: T&/	A Cox			Equipment: JCB	3CX		
Loca	tion Nur SA01	nber	Locatio T	n Type P	11	Level 8.55m Ao	D	Logge TY		Scale 1:25		Status FINAL	
ackfill	Water Str kes	San Depth	-	Situ Testin Result	_	Depth (m)	Level (m)	Legend		Stratum Des	scription		
			()			0.25	118.30		occasion	L: Firm brown very sa al rootlets. t brown very sandy C		with	_
						0.60	117.95		subangul a low cot limestone	d orangish brown cla lar fine to coarse GR oble content. Cobble e. <u>bgl: Slightly clayey.</u>	AVEL of lin	nestone with	
						1.50	117.05			End of Trial Pit	at 1.50m		
Pit Le	Dimer	nsions Pit W 0.5		ti Stability Stable	Shorin	Trench S g Used	Support ar	nd Commer F	nt Remarks		Wate Depth Strik	r Stike Gene se Date	ral e Time

roject	Name: l	Jpper H	eyford		Client	: BWB Cor	nsulting L	td		Date: 28/10/202	21		
ocatio	n: Oxfor	dshire			Contra	actor: Expl	oration &	Testing		Co-ords: E4520	90.90 N225	872.87	
oject	No. : C1	10194			Crew	Name: T&	A Cox			Equipment: JCE	3 3CX		
Loca	tion Nur SA02	mber		ion Type TP	1	Level 17.39m Ac	D	Logge TY		Scale 1:25		Status FINAL	
ackfill	Water Str kes	San Depth	-	In Situ Testin	-	Depth (m)	Level (m)	Legend		Stratum De	escription		
						0.35 0.70	117.04 116.69 115.64		With occa subround Firm ligh White an and suba with a mo	L: Firm brown sligh sional rootlets. Gra led fine to coarse of t brown very sandy d light brown slight ingular fine to coars oderate cobble con lar limestone. End of Trial P	avel is subang juartzite. CLAY. ly clayey sand se GRAVEL o tent. Cobbles	ular and iy angular f limestone	
	Dimer ength 45	isions Pit W 0.5		Pit Stability Stable	Shor	Trench ing Used No	Support ar	nd Commen F	t temarks		Water Depth Strike	Stike Genera	

oject	Name: l	Jpper ⊦	leyford		(Client:	BWB Cor	nsulting L	td		Date: 28/10/2021		
catio	n: Oxfor	dshire			(Contra	actor: Expl	oration &	Testing		Co-ords: E452008	.11 N2257	55.20
	No. : C1				(Crew I	Name: T&	A Cox			Equipment: JCB 3	СХ	
Loca	tion Nur SA03	mber	Lo	ocation TP		1'	Level 15.48m Ac	D	Logge TY		Scale 1:25		Status FINAL
ickfill	Water	Sai	mple a		Situ Testin		Depth	Level	Legend		Stratum Desc	ription	
	Str kes	Depth	n (m)	Туре	Results	s	(m)	(m)		TOPSOIL	.: Firm brown very sa		ith
							0.20	115.28		occasion Firm light White an	al rootlets. brown very sandy CL d orangish brown clay ar fine to coarse GRA	.AY. 'ey sandy ar	ngular and
	◄	1.2	20	ES1			1.30	114.18		Below 1.15m l	ogl: Medium grey with a mild up to 3mm in size. <u>gl: Mild hydrocarbon sheen</u> End of Trial Pit a	hydrocarbon od on water surface	our and rare
	Dimer							Support ar	nd Commer	nt			tike General
Pit Le	ength	Pit V	Vidth 55		Stability Stable	Shori	ng Used ^{No}		F	Remarks		Depth Strike 1 20	Date Til 28/10/20 09:00 0
													09:00 (

oject	Name: l	Jpper H	Heyford			Clier	t: BWB Cor	nsulting L	td		Date: 28/10/2021			
ocatio	n: Oxfor	dshire			(Cont	ractor: Expl	oration &	Testing		Co-ords: E452018	3.16 N225	770.94	
oject	No. : C1	0194			(Crew	/ Name: T&	A Cox			Equipment: JCB 3	BCX		
Loca	tion Nur	nber	Lo	cation			Level	_	Logge		Scale		Status	
	SA03A Water	Sa	mple a	TP nd In S	Situ Testing		115.60m Ao Depth	Level	רד 	r	1:25		FINAL	
ackfill	Str kes	Depti		Туре	Results		(m)	(m)	Legend		Stratum Desc			
										TOPSC occasio	DIL: Firm brown very sa mal rootlets.	ndy CLAY v	with	
							0.20	115.40		Firm lig	ht brown very sandy C	LAY.		
							0.65	114.95			nd orangish brown cla ular fine to coarse GRA			_
										subang			estone.	
		1.(05	ES1			1.05	114.55		Below 0.95r	n bgl: Medium grey with a mild	-	odour.	
											End of Trial Pit a	at 1.05m		
Pit L	Dimer ength	Pit \	Width	Pit	Stability	Shc	ring Used	Support a	nd Commer F	nt Remarks		Water Depth Strike	Stike Genera	
2.	50	0	.55		Stable		No							
mar														

rojeci	Name: L	Jpper H	eyford	0	Client	BWB Cor	nsulting L	td		Date: 28/10/202	21		
ocatio	n: Oxfor	dshire		(Contra	actor: Expl	oration &	Testing		Co-ords: E4520)39.24 N225	751.66	
roject	No. : C1	0194			Crew	Name: T&/	A Cox			Equipment: JCI	3 3CX		
Loca	tion Nun	nber		on Type ГР	1	Level 16.82m Ao		Logge		Scale 1:25		Status FINAL	
	SA03B Water	San		n Situ Testing		Depth	Level	TY				FINAL	Τ
lackfill	Str kes	Depth				(m)	(m)	Legend		Stratum De			
						0.35 0.75 1.90	116.47 116.07 114.92		low cob subangu subangu Firm ligi subangu White a and sub with a m	IL: Firm brown grav ble content and occ. Jar fine to coarse lin Jar limestone. In brown sandy grav Jar fine to coarse lin angular fine to coarse oderate cobble con Jar limestone. End of Trial F	asional rootlet mestone. Cob relly CLAY. Gra mestone. ly clayey sand se GRAVEL o tent. Cobbles	s. Gravel is ble is avel is dy angular f limestone	
	Dimen	sions				Trench	Support a	nd Commen	t		Water	Stike Genera	4 al
Pit L 2.		Pit W 0.5	/idth I i5 Unsi	Pit Stability table below 1.50m bgl.	Shori	ng Used No		R	lemarks		Depth Strike		

Photo 1: SA01 downhole view.

Contract:	Upper Heyford, Oxfordshire	
Contract No.:	C10194	
Client:	BWB Consulting Ltd	
Title:	Site Photographs	
Title: Drawing:	Site Photographs C10194.SP_1	

Photo 4: SA02 arisings.

Contract:	Upper Heyford, Oxfordshire	
Contract No.:	C10194	
Client:	BWB Consulting Ltd	
Title:	Site Photographs	
Drawing:	C10194.SP_1	EXPLORATION & TESTING ASSOCIATES
Date:	18/11/21	a resting Associates

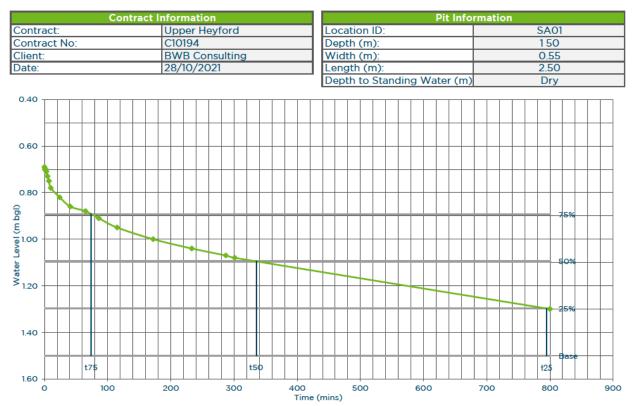
Contract:Upper Heyford, OxfordshireContract No.:C10194Client:BWB Consulting LtdTitle:Site PhotographsDrawing:C10194.SP_1Date:18/11/21

Photo 7: SA03A downhole view.

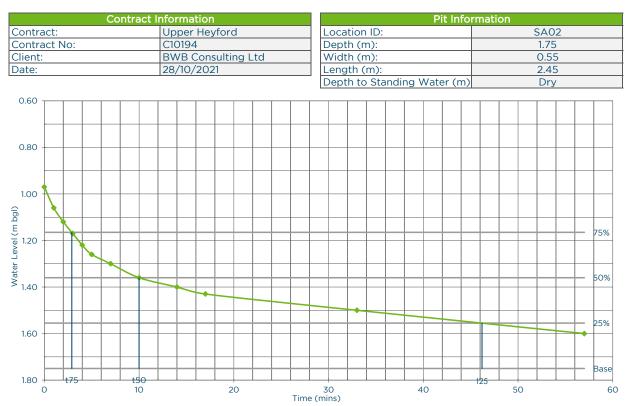
Photo 8: SA03A arisings.

Contract:	Upper Heyford, Oxfordshire	
Contract No.:	C10194	
Client:	BWB Consulting Ltd	
Title:	Site Photographs	
Description	C1010 / CD 1	EXPLORATION
Drawing:	C10194.SP_1	& TESTING ASSOCIATES

Photo 9: SA03B downhole view.

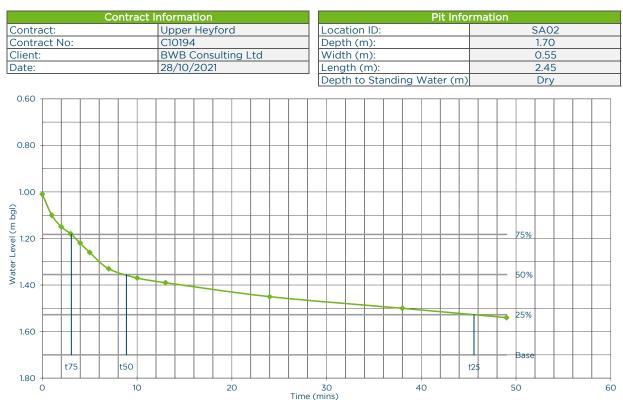

Contract:	Upper Heyford, Oxfordshire	
Contract No.:	C10194	
Client:	BWB Consulting Ltd	
Title:	Site Photographs	
Drawing:	C10194.SP 1	EXPLORATION
		& TESTING ASSOCIATES

APPENDIX 3: SOAKAWAY RESULTS



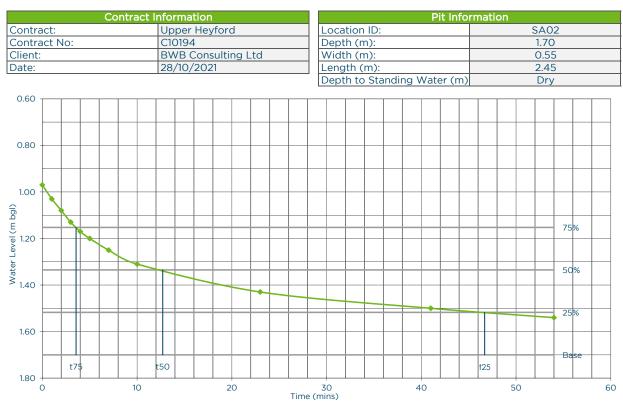
Time (min)	Depth (m)	
0.0	0.69	Test
05	0.70	Test
1.0	0.70	Met
1.5	0.70	Pit 0
2.0	0.70	Max
3.0	0.71	Effe
5.0	0.73	Effe
7.0	0.75	75%
10.0	0.78	50%
24.0	0.82	25%
41.0	0.86	t ₇₅ (
65.0	0.88	t ₅₀ (
86.0	0.91	t ₂₅ (
115.0	0.95	V _{p75}
172.0	1.00	Adju
233.0	1.04	a _{s50}
287.0	1.07	t _{p75-2}
301.0	1.08	
800.0	1.30	Soil
		Soil
		BRE
		Rep
		1986
		Test
		extr
		with

Test Reference/Number:	1
Test Start Time:	10:00
Method of Calculation	BRF365
Pit Gravel Filled?	No
Max. Depth (m)	150
Effective Storage Depth (m)	0.69
Effective Drop (m)	0.81
75% Effective Depth (m)	0.89
50% Effective Depth (m)	1.10
25% Effective Depth (m)	1 30
t ₇₅ (min)	73.75
t₅o (min)	335.02
t ₂₅ (min)	794.33
V _{p75-25}	0.56
Adjusted V _p for Gravel Fill	0.56
a _{s50}	3.85
t _{p75-25}	720.58
Re	sults
Soil Infiltration Rate (m/s)	3 35E-06
Soil Infiltration Rate (mm/hr)	1.21E+01
Refe	rences
BRE 365 Soakaway design , 2 Report 113 Control of ground 1986.	-
Com	ments
Test terminated due to time of extrapolated to enable calcul with the appropriate caution.	ation which should be treated



Time (min)	Depth (m)
0.0	0.97
1.0	1.06
2.0	1.12
3.0	1.17
4.0	122
5.0	1.26
7.0	1.30
10.0	1.36
14.0	1.40
17.0	1.43
33.0	1.50
57.0	1.60

	and Calculation
Test Reference/Number:	1
Test Start Time:	10:45
Method of Calculation	BRE365
Pit Gravel Filled?	No
Max. Depth (m)	1.75
Effective Storage Depth (m)	0.97
Effective Drop (m)	0.78
75% Effective Depth (m)	1.17
50% Effective Depth (m)	1.36
25% Effective Depth (m)	1.56
t ₇₅ (min)	2.90
t ₅₀ (min)	10.00
t ₂₅ (min)	46.20
V _{p75-25}	0.53
Adjusted V _p for Gravel Fill	0.53
a _{s50}	3.69
t _{p75-25}	43.30
Res	sults
Soil Infiltration Rate (m/s)	5.49E-05
Soil Infiltration Rate (mm/hr)	1.97E+02
Refer	ences
BRE 365 <i>Soakaway design</i> , 2 Report 113 <i>Control of ground</i> 1986.	
	ments



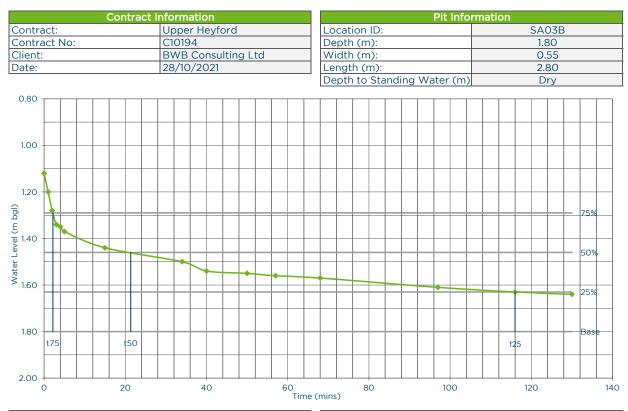
Time (min)	Depth (m)
0.0	1.01
1.0	1.10
2.0	1.15
3.0	1.18
4.0	122
5.0	1.26
7.0	1.33
10.0	1.37
13.0	1.39
24.0	1.45
38.0	1.50
49.0	1.54

Test Informatior	n and Calculation
Test Reference/Number:	2
Test Start Time:	11:45
Method of Calculation	BRE365
Pit Gravel Filled?	No
Max. Depth (m)	1.70
Effective Storage Depth (m)	1.01
Effective Drop (m)	0.69
75% Effective Depth (m)	1.18
50% Effective Depth (m)	1.36
25% Effective Depth (m)	1.53
t ₇₅ (min)	3.06
t ₅₀ (min)	8.87
t ₂₅ (min)	45.56
V _{p75-25}	0.46
Adjusted V _p for Gravel Fill	0.46
a _{s50}	3.42
t _{p75-25}	42.50
Res	ults
Soil Infiltration Rate (m/s)	5.33E-05
Soil Infiltration Rate (mm/hr)	1.92E+02
Refer	ences
BRE 365 <i>Soakaway design</i> , 2 Report 113 <i>Control of ground</i> 1986.	
Com	ments



Time (min)	Depth (m)
0.0	0.97
1.0	1.03
2.0	1.08
3.0	1.13
4.0	1.17
5.0	1.20
7.0	1.25
10.0	1.31
23.0	1.43
41.0	1.50
54.0	1.54

Test Information	n and Calculation
Test Reference/Number:	3
Test Start Time:	12:45
Method of Calculation	BRE365
Pit Gravel Filled?	No
Max. Depth (m)	1.70
Effective Storage Depth (m)	0.97
Effective Drop (m)	0.73
75% Effective Depth (m)	1.15
50% Effective Depth (m)	1.34
25% Effective Depth (m)	1.52
t ₇₅ (min)	3.56
t ₅₀ (min)	12.71
t ₂₅ (min)	46.69
V _{p75-25}	0.49
Adjusted V _p for Gravel Fill	0.49
a _{s50}	3.54
t _{p75-25}	43.13
Res	sults
Soil Infiltration Rate (m/s)	5.37E-05
Soil Infiltration Rate (mm/hr)	1.93E+02
Refe	rences
BRE 365 <i>Soakaway design</i> , 2 Report 113 <i>Control of ground</i> 1986.	
	ments



Time (min)	Depth (m)	
0.0	1.32	
1.0	1.37	ŀ
2.0	1.40	
3.0	1.42	
4.0	1.44	
5.0	1.45	
9.0	1.48	
13.0	1.50	
17.0	1.50	1
27.0	1.52	
33.0	1.53	
68.0	1.59	1
99.0	1.63	1
115.0	1.66	
190.0	1.76	1
		ľ
		ŀ

Test Information and Calculation		
Test Reference/Number:	1	
Test Start Time:	11:30	
Method of Calculation	BRE365	
Pit Gravel Filled?	No	
Max. Depth (m)	1.90	
Effective Storage Depth (m)	1.32	
Effective Drop (m)	0.58	
75% Effective Depth (m)	1.47	
50% Effective Depth (m)	1.61	
25% Effective Depth (m)	1.76	
t ₇₅ (min)	7.00	
t₅o (min)	83.50	
t ₂₅ (min)	186.25	
V _{p75-25}	0.45	
Adjusted V _p for Gravel Fill	0.45	
a _{s50}	3.48	
t _{p75-25}	179.25	
Re	sults	
Soil Infiltration Rate (m/s)	1.19E-05	
Soil Infiltration Rate (mm/hr)	4.29E+01	
Refe	rences	
BRE 365 <i>Soakaway design</i> , 2 Report 113 <i>Control of ground</i> 1986.	-	
Com	ments	
Test terminated due to collar	ose Final data point	

Test terminated due to collapse. Final data point extrapolated to enable calculation which should be treated with the appropriate caution.

Time (min)	Depth (m)
0.0	1.12
1.0	1.20
2.0	1.28
3.0	1.34
4.0	1.35
5.0	1.37
15.0	1.44
34.0	1.50
40.0	1.54
50.0	1.55
57.0	1.56
68.0	1.57
97.0	1.61
116.0	1.63
130.0	1.64

Test Information and Calculation		
Test Reference/Number:	2	
Test Start Time:	14:00	
Method of Calculation	BRE365	
Pit Gravel Filled?	No	
Max. Depth (m)	1.80	
Effective Storage Depth (m)	1.12	
Effective Drop (m)	0.68	
75% Effective Depth (m)	1.29	
50% Effective Depth (m)	1.46	
25% Effective Depth (m)	1.63	
t ₇₅ (min)	2.17	
t ₅₀ (min)	21.33	
t ₂₅ (min)	116.00	
V _{p75-25}	0.52	
Adjusted V_p for Gravel Fill	0.52	
a _{s50}	3.82	
t _{p75-25}	113.83	
Re	sults	
Soil Infiltration Rate (m/s)	2.01E-05	
Soil Infiltration Rate (mm/hr)	7.23E+01	
Refe	rences	
BRE 365 <i>Soakaway design</i> , 2016, with reference to CIRIA Report 113 <i>Control of groundwater for temporary works</i> , 1986.		
Comments		
Test terminated due to time constraints. Final data point extrapolated to enable calculation which should be treated with the appropriate caution.		

APPENDIX 4: CHEMICAL TESTING

Results Exploration & Testing Associates Limited 3 Siskin Drive Middlemarch Business Park Coventry CV3 4FJ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

e: results@explorationtesting.uk

Analytical Report Number : 21-20596

Project / Site name:	Upper Heyford	Samples received on:	03/11/2021
Your job number:	C10194	Samples instructed on/ Analysis started on:	03/11/2021
Your order number:	PO 1697	Analysis completed by:	10/11/2021
Report Issue Number:	1	Report issued on:	10/11/2021
Samples Analysed:	2 soil samples		

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-20596 Project / Site name: Upper Heyford Your Order No: PO 1697

Lab Sample Number	2070640	2070641			
Sample Reference	SA03	SA03A			
Sample Number	1	1			
Depth (m)	1.20	1.05			
Date Sampled	28/10/2021	28/10/2021			
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	53	< 0.1
Moisture Content	%	0.01	NONE	10	14
Total mass of sample received	kg	0.001	NONE	10	10

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	< 10	< 10
Toluene	µg/kg	1	MCERTS	< 1 0	< 1 0
Ethylbenzene	µg/kg	1	MCERTS	< 10	< 10
p & m-xylene	µg/kg	1	MCERTS	< 10	< 10
o-xylene	µg/kg	1	MCERTS	< 1 0	< 1 0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 10	< 10

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0 001	< 0 001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0 001	< 0 001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0 001	0.23
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 10	3.1
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2 0	20
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8 0	< 8 0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8 0	< 8 0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	26

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0 001	< 0 001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0 001	< 0 001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0 001	< 0 001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 10	< 1 0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2 0	< 2 0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	22	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	31	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Test Name Moisture Content	Analytical Method Description Moisture content, determined gravimetrically. (30 oC)	Analytical Method Reference In house method.	Method number L019-UK/PL	Wet / Dry Analysis W	Accreditation Status NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction facto determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

DURHAM

T. 0191 3896543
 E. enquiries@explorationtesting.uk
 Unit 8B, Bowburn South Industrial
 Estate, Durham,
 DH6 5AD.

COVENTRY

 T. 02476 880452
 E. enquiries⊛explorationtesting.uk 'number three' Siskin Drive, Middlemarch Business Park, Coventry, CV3 4FJ.

explorationtesting.uk

Registered in England and Wales No. 11803869. Registered Office. Unit 88, Bowburn South Industrial Estate, Durham. DH6 5AD

Appendix 6: MicroDrainage Calculations

BWB Consult	ing Ltd						Page 1
5th Floor, W	Waterfront House						
35 Station §	Street						-
Nottingham,	NG2 3DQ						Mirco
Date 20/01/2	2022 10:47		Designed	by Keith	n.Alger		MILIU
	nment Q100 40 FE		Checked	-	<u>-</u>		Urainago
Innovyze				ontrol 20)20.1		
111101120			bource o	ondror 20	20.1		
	Summary of Resul	lts fo	r 100 ve	ar Retur	n Period	1 (+40%)	
	i						
	Ha	lf Drai	n Time :	196 minute:	5.		
	Storm	Max	Max	Max	Max	Status	
	Event			nfiltratio	n Volume		
		(m)	(m)	(l/s)	(m³)		
	15 min Summer	115 00	0 2 0 2 0 2	50	5 639.8	ок	
	30 min Summer				0 820.0		
	60 min Summer				9 962.7		
	120 min Summer				9 1034.7		
	180 min Summer	116.11	15 0.615	55.	9 1035.2	ОК	
	240 min Summer				7 1019.0		
	360 min Summer			55.		ОК	
	480 min Summer			54.		ОК	
	600 min Summer				4 853.4		
	720 min Summer 960 min Summer				7 796.9 1 687.9		
	1440 min Summer				5 501.0		
	2160 min Summer			45.			
	2880 min Summer				6 166.6		
	4320 min Summer	115.54	47 0.047	39.	9 73.7	о к	
	5760 min Summer	115.53	38 0.038	31.	8 58.9	O K	
	7200 min Summer				1 49.9		
	8640 min Summer				8 43.6		
	10080 min Summer 15 min Winter				2 38.9 6 722.4		
	IS MIN WINCE	115.5	55 0.455	51.	0 722.4	0 R	
	Sto	rm	Rain	Flooded T:	ime-Peak		
	Eve	nt	(mm/hr)	Volume	(mins)		
				(m³)			
	15 min	n Summe	r 141.680	0.0	28		
		n Summe		0.0	41		
	60 min	n Summe	r 57.120	0.0	68		
	120 mir			0.0	122		
	180 mir			0.0	162		
	240 min 260 min			0.0	194		
		n Summe n Summe		0.0	260 328		
		n Summe		0.0	328 396		
		n Summe		0.0	464		
		n Summe		0.0	598		
	1440 min	n Summe		0.0	852		
	2160 mir	n Summe	r 3.331	0.0	1212		
	2880 min			0.0	1540		
	4320 min			0.0	2204		
			r 1.477	0.0	2936		
	5760 min			~ ~	0.000		
	7200 min	n Summe	r 1.244	0.0	3672		
	7200 min 8640 min	n Summe n Summe	r 1.244 r 1.086	0.0	4376		
	7200 mir 8640 mir 10080 mir	n Summe n Summe n Summe	r 1.244 r 1.086				
	7200 mir 8640 mir 10080 mir	n Summe n Summe n Summe	r 1.244 r 1.086 r 0.973	0.0 0.0	4376 5056		

BWB Consulting Ltd						Page 2
5th Floor, Waterfront	House					(i)
35 Station Street						Sec
Nottingham, NG2 3DQ						A DECK AND
-		Decima i	br. 77-14	h 71		MICLO
Date 20/01/2022 10:47		-	by Keit	h.Alger		Drainage
File C Catchment_Q100	_40_FEH	Checked	by			brainage
Innovyze		Source C	ontrol 2	020.1		
Summary of	f Results fo	or 100 ve	ar Retur	n Perio	od (+40%)	
<u>Dunandi y Di</u>	1 10000100 10	1 100 /0	di nobul		<u>, 1007</u>	
Storm		Max	Max	Max	Status	
Event		-	iltration			
	(m)	(m)	(l/s)	(m³)		
30 min W	Minter 116.056	0.556	54.5	927.7	ок	
60 min W	Minter 116.149	0.649	56.7	1096.1	ОК	
120 min W	Minter 116.202	0.702	58.0	1193.9	Flood Risk	
180 min W	Minter 116.208	0.708	58.2	1205.8	Flood Risk	
	Minter 116.195			1182.3	ОК	
	Minter 116.160			1117.1	ОК	
	Minter 116.117			1037.4		
	linter 116.070			953.8	ОК	
	Ninter 116.024			871.0	ОК	
	Ninter 115.934			712.9		
	Ninter 115.779			448.6		
	Winter 115.614 Winter 115.548		43.8 40.8	179.2 74.9	ОК	
	Ninter 115.535		29.3		OK	
	Ninter 115.528		23.3		0 K	
	Ninter 115.523		19.5			
	Minter 115.520		17.0		ОК	
10080 min W	inter 115.518	0.018	15.3		ОК	
	Storm Event		Flooded T Volume	'ime-Peak (mins)	5	
	Event 30 min Winte	(mm/hr) r 92.400	Volume			
	Event 30 min Winte 60 min Winte	(mm/hr) r 92.400 r 57.120	Volume (m ³) 0.0 0.0	(mins) 42 68	2	
	Event 30 min Winte 60 min Winte 120 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230	Volume (m ³) 0.0 0.0 0.0	(mins) 42 68 122	2 3 2	
	Event 30 min Winte 60 min Winte 120 min Winte 180 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318	Volume (m ³) 0.0 0.0 0.0 0.0	(mins) 42 68 122 176	2	
	Event 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	(mins) 42 68 122 176 206	2	
	Event 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 42 68 122 176 206 278	2 3 2 5 3	
	Event 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 42 68 122 176 206 278 356	2	
	Event 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 42 68 122 176 206 278 356 430	2	
	Event 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 42 68 122 176 206 278 356	2 3 2 5 5 5 6 2 2	
1	Event 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502		
	Event 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 276 356 430 502 642	2 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
2	Event 30 min Winte 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900	2 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184		
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862 r 1.477	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184 2896	2 3 2 5 5 3 5 5 9 2 2 2 9 5 3 4 5	
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte 720 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862 r 1.477 r 1.244	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184 2896 3608	2 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte 8640 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862 r 1.477 r 1.244 r 1.086	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184 2896 3608 4496	2 3 2 5 5 5 3 5 9 2 2 9 5 3 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte 720 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862 r 1.477 r 1.244 r 1.086	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184 2896 3608	2 3 2 5 5 5 3 5 9 2 2 9 5 3 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte 8640 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862 r 1.477 r 1.244 r 1.086	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184 2896 3608 4496	2 3 2 5 5 5 3 5 9 2 2 9 5 3 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte 8640 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862 r 1.477 r 1.244 r 1.086	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184 2896 3608 4496	2 3 2 5 5 5 3 5 9 2 2 9 5 3 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte 8640 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862 r 1.477 r 1.244 r 1.086	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184 2896 3608 4496	2 3 2 5 5 5 3 5 9 2 2 9 5 3 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte 8640 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862 r 1.477 r 1.244 r 1.086	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184 2896 3608 4496	2 3 2 5 5 5 3 5 9 2 2 9 5 3 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte 8640 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862 r 1.477 r 1.244 r 1.086	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184 2896 3608 4496	2 3 2 5 5 5 3 5 9 2 2 9 5 3 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	Event 30 min Winte 60 min Winte 120 min Winte 120 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte 5760 min Winte 8640 min Winte 8640 min Winte	(mm/hr) r 92.400 r 57.120 r 34.230 r 25.318 r 20.370 r 14.863 r 11.825 r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.607 r 1.862 r 1.477 r 1.244 r 1.086	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 42 68 122 176 206 278 356 430 502 642 900 1236 1468 2184 2896 3608 4496	2 3 2 5 5 5 3 5 9 2 2 9 5 3 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

BWB Consulting Ltd							:	Page 3
5th Floor, Waterfront	House							-
35 Station Street								·
Nottingham, NG2 3DQ								Minu
Date 20/01/2022 10:47	1	Desig	ned by	/ Keith	n. Alge	r		MICIO
File C Catchment Q100			ed by	110101	·····ge	· -		Drainac
Innovyze	_40_FEII.		_	rol 20	120 1			
тшотуге		Sourc	e cont	.101 20	520.1			
		<u>Rainfall</u>	Deta	ils				
	Rainfall M	Model				FE	H	
	Period (ye					100		
FEH Ra	ainfall Ver	rsion ation GB 4	E1000 2	25600 0	D 5100	2013		
	Data		21900 2	23000 5		tchment		
	Summer St					Ye		
	Winter St					Yes		
	Cv (Sun Cv (Wir					0.75		
Shorte	st Storm (n					0.840		
	st Storm (n	,				1008		
C:	limate Char	nge %				+40	C	
	:	Time Are	a Diaq	ram				
	ſ	Total Area	(ha) 2	.651				
Time (mins) Area From: To: (ha)	-	ns) Area o: (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)
0 4 0.662	4	8 0.662	8	12	0.663	12	16	0.664

BWB Consulting Ltd		Page 4
5th Floor, Waterfront House		
35 Station Street		1
Nottingham, NG2 3DQ		Mirro
Date 20/01/2022 10:47	Designed by Keith.Alger	Drainage
File C Catchment_Q100_40_FEH	Checked by	Drainage
Innovyze	Source Control 2020.1	

Storage is Online Cover Level (m) 116.500

Infiltration Basin Structure

Invert Level (m) 115.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.19100 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.19100

0.000	1550.0	1.000	1997.0	1.001	1997.4
-------	--------	-------	--------	-------	--------

BWB Consulting Ltd						Page 1
5th Floor, Waterfront House						
35 Station Street						The second second
Nottingham, NG2 3DQ						Mirro
Date 20/01/2022 10:48	1	Designed	by Keit	h.Alger		Drainago
File C Catchment_Q100_40_FS	R (Checked	by			Drainage
Innovyze		Source C	ontrol 2	020.1		
<u>Summary of Resul</u>	lts io	<u>r 100 y</u> e	ar Retur	n Period	1 (+40%)	
Ha	lf Drai	n Time :	190 minute	s.		
Storm	Max	Max	Мах	Max	Status	
Event	(m)	(m)	nfiltratio (l/s)	(m ³)		
15 min Summer	115.88	34 0.384	50	.3 626.7	ок	
30 min Summer	115.98	37 0.487		.8 806.4		
60 min Summer				.8 954.9		
120 min Summer 180 min Summer				.9 1031.7 .7 1021.0		
240 min Summer				.4 993.7		
360 min Summer				.6 934.8		
480 min Summer	116.02	29 0.529	53	.8 879.3	ОК	
600 min Summer				.1 826.5		
720 min Summer				.4 775.7		
960 min Summer 1440 min Summer				.0 680.6 .7 515.0	ок ок	
2160 min Summer			46.			
2880 min Summer	115.62	23 0.123	44	.0 194.1	ОК	
4320 min Summer			42			
5760 min Summer			33.			
7200 min Summer 8640 min Summer				.0 51.5 .2 44.4		
10080 min Summer				.2 39.0		
15 min Winter	115.93	81 0.431	51	.4 707.9	ОК	
Sto			Flooded T			
Eve	nt	(mm/hr)	Volume (m³)	(mins)		
15 mii	n Summer	r 138.993	0.0	28		
	n Summer		0.0	41		
	n Summer		0.0	68		
	n Summer		0.0	122		
	n Summen n Summen		0.0	162 192		
	n Summei n Summei		0.0	258		
	n Summer		0.0	328		
	n Summer	r 9.655	0.0	396		
	n Summer		0.0	464		
960 mir 1440 mir	n Summer		0.0	596		
2160 mir			0.0	852 1216		
2880 mir			0.0	1560		
4320 mir	n Summer		0.0	2204		
5760 mir			0.0	2912		
7200 mir			0.0	3640		
8640 mir 10080 mir			0.0	4392 5088		
		r 138.993	0.0	28		
TT UT		1 100.000				
13 MII		2-2020 II				

BWB Consultin	ng Ltd						Page 2
	aterfront House						I Ggo I
35 Station St							
							and standing to the
Nottingham,							Micro
Date 20/01/20	022 10:48	I	Designed	l by Keit	h.Alger		Drainago
File C Catchr	ment_Q100_40_FSB	R C	Checked	by			Dramage
Innovyze		5	Source C	control 2	020.1		
-							
2	Summary of Resul	ts for	r 100 ye	ear Retur	n Period	1 (+40%)	
-							
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth 1	Infiltratio	on Volume		
		(m)	(m)	(l/s)	(m³)		
	20 min Minter	110 04	7 0 547	F 4	2 012 4	0 7	
	30 min Winter 60 min Winter				.3 912.4 .6 1087.4		
	120 min Winter				.0 1190.5		
	180 min Winter				.0 1189.2		
	240 min Winter				.5 1152.9		
	360 min Winter				.5 1078.2		
	480 min Winter	116.09	6 0.596	55.	.4 999.7	ОК	
	600 min Winter				.4 921.5		
	720 min Winter				.3 845.8		
	960 min Winter				.4 704.3		
	1440 min Winter 2160 min Winter				.0 464.6 .2 207.6		
	2880 min Winter				.2 207.6		
	4320 min Winter				.5 56.5		
	5760 min Winter				.2 44.7		
	7200 min Winter	115.52	4 0.024	20.	.4 37.4	ОК	
	8640 min Winter	115.52	1 0.021		.4 32.0	ΟK	
	10080 min Winter	115.51	8 0.018	15	.3 28.1	ОК	
				15.	.5 20.1	0 R	
	Sto: Eve		Rain			U K	
			Rain	Flooded T	'ime-Peak	U K	
	Eve	nt	Rain (mm/hr)	Flooded T Volume (m³)	'ime-Peak (mins)	U K	
	Even 30 min	nt Winter	Rain (mm/hr) 2 90.986	Flooded T Volume (m ³) 0.0	'ime-Peak (mins) 42	U K	
	Even 30 min 60 min	nt Winter Winter	Rain (mm/hr) 2 90.986 2 56.713	Flooded T Volume (m ³) 0.0 0.0	'ime-Peak (mins) 42 68	U K	
	30 min 60 min 120 min	nt Winter	Rain (mm/hr) 90.986 56.713 34.148	Flooded T Volume (m ³) 0.0 0.0 0.0	'ime-Peak (mins) 42	U K	
	30 min 60 min 120 min 180 min	nt Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0	time-Peak (mins) 42 68 122	U K	
	30 min 60 min 120 min 180 min 240 min	nt Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	time-Peak (mins) 42 68 122 176		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min	nt Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min	nt Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min	nt Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min	nt Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min 1440 min	nt Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min	nt Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min 1440 min 2160 min	nt Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min	winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248 1480		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 5.1289	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248 1480 2208		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248 1480 2208 2936 3664 4304		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248 1480 2208 2936 3664		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248 1480 2208 2936 3664 4304		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248 1480 2208 2936 3664 4304		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248 1480 2208 2936 3664 4304		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248 1480 2208 2936 3664 4304		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248 1480 2208 2936 3664 4304		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	Rain (mm/hr) 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 42 68 122 176 204 278 354 428 502 640 902 1248 1480 2208 2936 3664 4304		

th Floor,		td									Page 3
	. Water	front	House								
5 Station	ı Stree	et									1
ottinghar	n, NG2	3DQ									Micro
ate 20/01	L/2022	10:48			Desig	ned by	y Keitł	n.Alge	er		Drainar
ile C Cat	chment	_Q100_	40_FS		Check	_					Drainac
nnovyze					Source	e Cont	crol 20	020.1			
				Rai	nfall	Deta	ils				
		Rainfal				FSR		Winte			
	Return 1	Period		Engla	nd and	100 Wales			-	r) 0.75 r) 0.84	
		M5-	бО (mm)				Shortes				
			Ratio R							s) 1008	
		Summer	Storms	5		Yes	CI	imate	Change	응 +4	0
				<u>Tim</u>	e Area	a Diag	<u>ram</u>				
				Tota	l Area	(ha) 2	.651				
Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:		Area (ha)	Time From:	(mins) To:	Area (ha)
C) 4	0.662	4	8	0.662	8	12	0.663	12	16	0.664

BWB Consulting Ltd		Page 4
5th Floor, Waterfront House		
35 Station Street		Constant in the
Nottingham, NG2 3DQ		Mirro
Date 20/01/2022 10:48	Designed by Keith.Alger	Drainage
File C Catchment_Q100_40_FSR	Checked by	Drainage
Innovyze	Source Control 2020.1	

Storage is Online Cover Level (m) 116.500

Infiltration Basin Structure

Invert Level (m) 115.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.19100 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.19100

0.000	1550.0	1.000	1997.0	1.001	1997.4
-------	--------	-------	--------	-------	--------

Event Level (m) Depth (m) Infilitation (l/s) Volume (m ³) 15 min Summer 117.114 0.114 1.7 106.5 30 min Summer 117.1145 0.145 1.7 136.6 60 min Summer 117.176 0.176 1.8 167.2 120 min Summer 117.224 0.224 1.9 214.7 240 min Summer 117.257 0.257 1.9 226.0 360 min Summer 117.265 0.262 1.9 253.4 720 min Summer 117.265 0.265 1.9 256.0 960 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.255 0.2251 1.9 253.3 2160 min Summer 117.255 0.2251 1.9 253.3 2160 min Summer 117.255 0.2251 1.9 215.9	iod Status O K O K O K O K	licro rainac	
35 Station Street Nottingham, NG2 3DQ Date 20/01/2022 10:49 File N Catchment_Q10_FSR.SRCX Innovyze Source Control 2020.1 Summary of Results for 10 year Return Peril Half Drain Time : 1323 minutes. Storm Max Max Max Max Max Max (m ³) Storm Max Max Max Max Max (m ³) Storm Max Max Max Max (m ³) 15 min summer 117.114 0.114 1.7 min summer 117.145 0.145 10 min summer 117.145 0.145 10 min summer 117.245 0.176 1.8 min summer 117.245 0.224 1.9 214.7 240 min summer 117.224 0.224 1.9 248.6 600 min summer 117.249 0.244 1.9 248.6 600 min summer 117.265 0.265 1.9 255.0 1.9 256.0 <td col<="" td=""><td>5tatus 0 K 0 K 0 K 0 K</td><td>licro rainag</td></td>	<td>5tatus 0 K 0 K 0 K 0 K</td> <td>licro rainag</td>	5 tatus 0 K 0 K 0 K 0 K	licro rainag
Nottingham, NG2 3DQ Designed by Keith.Alger Checked by File N Catchment_Ql0_FSR.SRCX Designed by Keith.Alger Checked by Innovyze Source Control 2020.1 Source Control 2020.1 Summary of Results for 10 year Return Peri Half Drain Time : 1323 minutes. Storm Max Max Max Max Max Set Event Level Depth Infiltration Volume (m) (n) (1/s) (n ³) 15 min Summer 117.114 0.114 1.7 106.5 30 min Summer 117.125 0.145 1.7 136.6 60 min Summer 117.207 0.207 1.8 197.6 180 min Summer 117.224 0.224 1.9 214.7 240 min Summer 117.225 0.235 1.9 240.3 480 min Summer 117.245 0.265 1.9 256.0 960 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.265 0.265 1.9 256.7 <t< td=""><td>5tatus 0 K 0 K 0 K 0 K</td><td>licro rainag</td></t<>	5 tatus 0 K 0 K 0 K 0 K	licro rainag	
Date 20/01/2022 10:49 Designed by Keith.Alger Checked by File N Catchment_Q10_FSR.SRCX Source Control 2020.1 Mark Max Max Max Max S Source Control 2020.1 Mark Max Max Max Max Sectors Storm Max Max Max Max 10.10 Storm Max Max Max Max 10.10 Mark Max Max Max Max 10.10 Storm Max Max Max Max 10.10 Mark Max Max Max 10.10.10 Storm Summer 117.114 0.114 1.17 min Summer 117.224 0.224 1.9 258.7 1.9 258.7<	5 tatus 0 K 0 K 0 K 0 K	iicro rainag	
File N Catchment_Q10_FSR.SRCX Checked by Source Control 2020.1 Half Drain Time : 1323 minutes. Storm Max Max <th< td=""><td>5tatus 0 K 0 K 0 K 0 K</td><td>rainag</td></th<>	5 tatus 0 K 0 K 0 K 0 K	rainag	
Innovyze Source Control 2020.1 Half Drain Time : 1323 minutes. Event Level Depth Infiltration Volume (m) Level Depth Infiltration Volume (m) 15 min Summer 117.144 0.114 1.7 106.5 30 min Summer 117.145 0.145 1.7 136.6 60 min Summer 117.207 0.207 1.8 167.2 120 min Summer 117.224 0.224 1.9 214.7 240 min Summer 117.225 0.235 1.9 226.0 360 min Summer 117.240 0.249 1.9 240.3 480 min Summer 117.257 0.257 1.9 240.3 480 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.254 0.264 1.9 245.5 2800 min Summer 117.254 0.265 1.9 256.7 1440 min Summer 117.254 0.245 1.9 255.9 2800 min Summer 117.254 0.254 1.9 245.5	5 tatus 0 K 0 K 0 K 0 K		
Jummary of Results for 10 year Return Peri Half Drain Time : 1323 minutes. Storm Max Max Max Max Max Max Max Max Max Storm Event Level Depth Infiltration Volume (m*) 15 min Summer 117.114 0.114 1.7 106.5 30 min Summer 117.145 0.145 1.7 136.6 60 min Summer 117.207 0.207 1.8 197.6 120 min Summer 117.224 0.224 1.9 214.7 240 min Summer 117.255 0.235 1.9 226.0 360 min Summer 117.257 0.257 1.9 248.6 600 min Summer 117.265 0.262 1.9 253.4 720 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.254 0.242 1.9 245.5 2800 min Summer 117.255 0.265 1.9 256.1 4320 min Summer 117.254 0.245 1.9 236.1 4320 min Summer 117.254 0.245 1.9 236.1	5 tatus 0 K 0 K 0 K 0 K		
Storn Max Max <th< td=""><td>5tatus 0 K 0 K 0 K 0 K</td><td></td></th<>	5 tatus 0 K 0 K 0 K 0 K		
Storn Event Max Level (n) Max Peth (n) Max Infiltration (l/s) Max Volume (n) 15 min Winter 10.32 0.32 0.32 0.32 0.32 10.3 10 min Summer 117.265 0.2	0 K 0 K 0 K		
EventLavel (m)Opth (m)Infiltration (l/s)Volume (m)15 min Summer117.1140.1141.7106.530 min Summer117.1450.1451.7136.660 min Summer117.1760.1761.8167.2120 min Summer117.2070.2071.8197.6180 min Summer117.2450.2241.9214.7240 min Summer117.2450.2551.9226.0360 min Summer117.2450.2491.9240.3480 min Summer117.2450.2621.9253.4720 min Summer117.2650.2651.9256.0960 min Summer117.2450.2451.9256.71440 min Summer117.2450.2451.9253.32160 min Summer117.2450.2451.9253.32160 min Summer117.2450.2451.9236.14320 min Summer117.2450.2451.9236.14320 min Summer117.2450.2451.9235.15760 min Summer117.1270.1571.8144.815 min Winter117.1270.1541.8144.815 min Winter117.1270.1541.8144.815 min Winter117.1270.1541.8144.815 min Winter117.1270.1541.8144.815 min Winter117.1270.1271.7119.5	0 K 0 K 0 K		
(m) (m) (1/s) (m³) 15 min Summer 117.114 0.114 1.7 106.5 30 min Summer 117.145 0.145 1.7 136.6 60 min Summer 117.176 0.176 1.8 167.2 120 min Summer 117.207 0.207 1.8 197.6 180 min Summer 117.224 0.224 1.9 214.7 240 min Summer 117.249 0.249 1.9 240.3 480 min Summer 117.262 0.262 1.9 253.4 720 min Summer 117.265 0.265 1.9 256.0 960 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.265 0.245 1.9 245.5 2800 min Summer 117.265 0.245 1.9 245.5 2800 min Summer 117.265 0.245 1.9 245.5 2800 min Summer 117.265 0.206 1.8 196.2 7200 min Summer 117.167<	0 K		
15 min Summer 117.114 0.114 1.7 106.5 30 min Summer 117.145 0.145 1.7 136.6 60 min Summer 117.207 0.207 1.8 197.6 120 min Summer 117.224 0.224 1.9 214.7 240 min Summer 117.235 0.235 1.9 226.0 360 min Summer 117.267 0.262 1.9 240.3 480 min Summer 117.265 0.265 1.9 256.7 140 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.265 0.262 1.9 253.3 2160 min Summer 117.265 0.262 1.9 253.3 2160 min Summer 117.264 0.244 1.9 245.5 2880 min Summer 117.265 0.262 1.9 253.3 2160 min Summer 117.266 0.206 1.8 196.2 7000 min Summer 117.170 0.18 177.8 8640 1.9 215.9 5760 min Summer 117.170 0.18 177.8 160.6 10080 min Summer 117.127 0.17 1.8 177.8 8640 min Summer 117.127 0.127 1.7 119.5	0 K		
30 min Summer 117.145 0.145 1.7 136.6 60 min Summer 117.207 0.207 1.8 197.6 120 min Summer 117.224 0.224 1.9 214.7 240 min Summer 117.235 0.235 1.9 226.0 360 min Summer 117.249 0.249 1.9 240.3 480 min Summer 117.257 0.257 1.9 248.6 600 min Summer 117.262 0.262 1.9 253.4 720 min Summer 117.265 0.265 1.9 256.0 960 min Summer 117.265 0.262 1.9 253.3 2160 min Summer 117.265 0.262 1.9 254.5 2880 min Summer 117.254 0.254 1.9 245.5 2880 min Summer 117.255 0.225 1.9 215.9 5760 min Summer 117.260 0.206 1.8 196.2 7200 min Summer 117.187 0.187 1.8 177.8 8640 min Summer 117.187 0.187 1.8 160.6 10080 min Summer 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak (mins) (m³) (m³)	0 K		
60 min Summer 117.176 0.176 1.8 167.2 120 min Summer 117.207 0.207 1.8 197.6 180 min Summer 117.224 0.224 1.9 214.7 240 min Summer 117.235 0.235 1.9 226.0 360 min Summer 117.249 0.249 1.9 240.3 480 min Summer 117.257 0.257 1.9 248.6 600 min Summer 117.265 0.262 1.9 256.0 960 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.262 0.262 1.9 253.3 2160 min Summer 117.254 0.254 1.9 245.5 2880 min Summer 117.255 0.265 1.9 236.1 4320 min Summer 117.265 0.225 1.9 215.9 5760 min Summer 117.187 0.187 1.8 196.2 7200 min Summer 117.187 0.187 1.8 144.8 15 min Winter 117.127 0.127 1.7 119.5	ОК		
120 min Summer 117.207 0.207 1.8 197.6 180 min Summer 117.224 0.224 1.9 214.7 240 min Summer 117.235 0.235 1.9 226.0 360 min Summer 117.249 0.249 1.9 240.3 480 min Summer 117.257 0.257 1.9 248.6 600 min Summer 117.265 0.265 1.9 253.4 720 min Summer 117.265 0.265 1.9 256.0 960 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.264 0.254 1.9 245.5 280 min Summer 117.265 0.265 1.9 245.5 280 min Summer 117.254 0.254 1.9 245.5 280 min Summer 117.265 0.265 1.9 245.5 280 min Summer 117.265 0.265 1.9 245.5 280 min Summer 117.254 0.254 1.9 245.5 280 min Summer 117.266 0.206 1.8 196.2 7200 min Summer 117.187 0.187 1.8 196.2 7200 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.174 0.154 1.8 144.8 15 min Winter 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak (mn/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27			
180 min Summer 117.224 0.224 1.9 214.7 240 min Summer 117.235 0.235 1.9 226.0 360 min Summer 117.249 0.249 1.9 240.3 480 min Summer 117.257 0.257 1.9 248.6 600 min Summer 117.262 0.262 1.9 253.4 720 min Summer 117.265 0.265 1.9 256.0 960 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.265 0.265 1.9 253.3 2160 min Summer 117.264 0.254 1.9 245.5 2880 min Summer 117.254 0.254 1.9 245.5 2880 min Summer 117.255 0.225 1.9 236.1 4320 min Summer 117.265 0.266 1.9 236.1 4320 min Summer 117.255 0.225 1.9 236.1 4320 min Summer 117.266 0.206 1.8 196.2 7200 min Summer 117.127 0.187 1.8 177.8 8640 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak Event (ma/hr) (m³) 15 min Summer 60.327 0.0 27	ΟK		
240 min Summer 117.235 0.235 1.9 226.0 360 min Summer 117.249 0.249 1.9 240.3 480 min Summer 117.257 0.257 1.9 248.6 600 min Summer 117.262 0.262 1.9 253.4 720 min Summer 117.265 0.265 1.9 256.0 960 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.262 0.262 1.9 256.7 1440 min Summer 117.264 0.264 1.9 245.5 2880 min Summer 117.254 0.254 1.9 245.5 2880 min Summer 117.265 0.225 1.9 215.9 95760 min Summer 117.267 0.225 1.9 215.9 95760 min Summer 117.187 0.187 1.8 196.2 7200 min Summer 117.187 0.187 1.8 177.8 8640 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak Kvent (mm/hr) Volume (mins) J 15 min Summer 60.327			
360 min Summer 117.249 0.249 1.9 240.3 480 min Summer 117.257 0.257 1.9 248.6 600 min Summer 117.262 0.262 1.9 253.4 720 min Summer 117.265 0.265 1.9 256.0 960 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.265 0.262 1.9 253.3 2160 min Summer 117.254 0.254 1.9 245.5 2880 min Summer 117.245 0.245 1.9 236.1 4320 min Summer 117.255 0.225 1.9 215.9 5760 min Summer 117.187 0.187 1.8 196.2 7200 min Summer 117.187 0.187 1.8 160.6 10080 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak Event (ms) (ms) (m³) 15 min Summer 60.327 0.0 27	O K		
480 min Summer 117.257 0.257 1.9 248.6 600 min Summer 117.262 0.262 1.9 253.4 720 min Summer 117.265 0.265 1.9 256.0 960 min Summer 117.265 0.262 1.9 253.3 2160 min Summer 117.262 0.262 1.9 253.3 2160 min Summer 117.254 0.254 1.9 245.5 2880 min Summer 117.255 0.245 1.9 236.1 4320 min Summer 117.256 0.225 1.9 215.9 5760 min Summer 117.266 0.206 1.8 196.2 7200 min Summer 117.187 0.187 1.8 177.8 8640 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak Event (mn/hr) Volume (mins) (m3) 15 min Summer 60.327 0.0 27	OK		
600 min Summer 117.262 0.262 1.9 253.4 720 min Summer 117.265 0.265 1.9 256.0 960 min Summer 117.265 0.262 1.9 253.3 2160 min Summer 117.264 0.254 1.9 245.5 2880 min Summer 117.254 0.245 1.9 245.5 2880 min Summer 117.255 0.225 1.9 236.1 4320 min Summer 117.266 0.206 1.8 196.2 7200 min Summer 117.187 0.187 1.8 196.2 7200 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak (mm/hr) Volume (mins) (m³) I5 min Summer 60.327 0.0 27	O K		
720 min Summer 117.265 0.265 1.9 256.0 960 min Summer 117.265 0.262 1.9 253.3 2160 min Summer 117.254 0.254 1.9 245.5 2880 min Summer 117.255 0.225 1.9 236.1 4320 min Summer 117.266 0.206 1.8 196.2 760 min Summer 117.266 0.206 1.8 196.2 7200 min Summer 117.170 0.187 1.8 196.2 7200 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak (mm/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27	OK		
960 min Summer 117.265 0.265 1.9 256.7 1440 min Summer 117.262 0.262 1.9 253.3 2160 min Summer 117.254 0.254 1.9 245.5 2880 min Summer 117.255 0.245 1.9 236.1 4320 min Summer 117.266 0.206 1.8 196.2 7200 min Summer 117.187 0.187 1.8 196.2 7200 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.154 0.154 1.8 144.8 15 min Winter 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak (mm/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27	OK		
1440 min Summer 117.262 0.262 1.9 253.3 2160 min Summer 117.254 0.254 1.9 245.5 2880 min Summer 117.245 0.245 1.9 236.1 4320 min Summer 117.255 0.225 1.9 215.9 5760 min Summer 117.266 0.206 1.8 196.2 7200 min Summer 117.187 0.187 1.8 177.8 8640 min Summer 117.154 0.154 1.8 160.6 10080 min Summer 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak Fevent (mm/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27	OK		
2160 min Summer 117.254 0.254 1.9 245.5 2880 min Summer 117.245 0.245 1.9 236.1 4320 min Summer 117.225 0.225 1.9 215.9 5760 min Summer 117.206 0.206 1.8 196.2 7200 min Summer 117.187 0.187 1.8 177.8 8640 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.127 0.154 1.8 144.8 15 min Winter 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak (mm/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27	OK		
2880 min Summer 117.245 0.245 1.9 236.1 4320 min Summer 117.225 0.225 1.9 215.9 5760 min Summer 117.206 0.206 1.8 196.2 7200 min Summer 117.187 0.187 1.8 177.8 8640 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.154 0.154 1.8 144.8 15 min Winter 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak (mm/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27	ОК		
4320 min Summer 117.225 0.225 1.9 215.9 5760 min Summer 117.206 0.206 1.8 196.2 7200 min Summer 117.187 0.187 1.8 177.8 8640 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.154 0.154 1.8 144.8 15 min Winter 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak (mm/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27	ок ок		
5760 min Summer 117.206 0.206 1.8 196.2 7200 min Summer 117.187 0.187 1.8 177.8 8640 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.154 0.154 1.8 144.8 15 min Winter 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak Event (mm/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27	OK		
7200 min Summer 117.187 0.187 1.8 177.8 8640 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.154 0.154 1.8 144.8 15 min Winter 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak Event (mm/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27	OK		
8640 min Summer 117.170 0.170 1.8 160.6 10080 min Summer 117.154 0.154 1.8 144.8 15 min Winter 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak Event (mm/hr) Volume (mins) (m ³) 15 min Summer 60.327 0.0 27	0 K		
10080 min Summer 117.154 0.154 1.8 144.8 15 min Winter 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak Event (mm/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27	0 K		
15 min Winter 117.127 0.127 1.7 119.5 Storm Rain Flooded Time-Peak Event (mm/hr) Volume (mins) (m ³) 15 min Summer 60.327 0.0 27	0 K		
Event (mm/hr) Volume (mins) (m³) 15 min Summer 60.327 0.0 27	ОК		
Event (mm/hr) Volume (mins) (m ³) 15 min Summer 60.327 0.0 27			
(m³) 15 min Summer 60.327 0.0 27			
30 min Summer 38.848 0.0 41			
60 min Summer 24.003 0.0 70			
120 min Summer 14.459 0.0 130			
180 min Summer 10.665 0.0 190			
240 min Summer 8.570 0.0 248 360 min Summer 6.284 0.0 366			
360 min Summer 6.284 0.0 366 480 min Summer 5.039 0.0 486			
600 min Summer 4.244 0.0 604			
720 min Summer 3.687 0.0 722			
960 min Summer 2.953 0.0 954			
1440 min Summer 2.157 0.0 1170			
2160 min Summer 1.575 0.0 1556			
2880 min Summer 1.260 0.0 1964			
4320 min Summer 0.919 0.0 2772			
5760 min Summer 0.734 0.0 3584			
7200 min Summer 0.617 0.0 4400			
8640 min Summer 0.535 0.0 5184			
10080 min Summer 0.474 0.0 5944			
15 min Winter 60.327 0.0 26			

BWB Consulting Ltd							Page 2
5th Floor, Waterfront House							B
35 Station Street							a second second
Nottingham, NG2 3DQ							Micco
Date 20/01/2022 10:49		Designe	d by Kei	th.	Alger		- MILLO
File N Catchment Q10 FSR.SRC	cx	Checked	-		2		Drainage
Innovyze			Control	202	0.1		
1		Douroo	00110101	202			
<u>Summary of R</u>	Result	s for 1	0 year F	Retu	rn Per	riod	
Storm	Max	Max	Max		Max	Status	
Event	Leve	l Depth	Infiltrat	ion	Volume		
	(m)	(m)	(l/s)		(m³)		
30 min Winter	117 1	62 0 162		1 8	153.3	ок	
60 min Winter					187.7		
120 min Winter					222.3		
180 min Winter	117.2	51 0.251		1.9	242.0	ОК	
240 min Winter					255.2		
360 min Winter					272.2		
480 min Winter					282.6		
600 min Winter 720 min Winter					289.0 293.0		
960 min Winter					293.0		
1440 min Winter					292.0		
2160 min Winter	117.2	89 0.289			281.1		
2880 min Winter	117.2	76 0.276		1.9	267.8	ОК	
4320 min Winter					237.8		
5760 min Winter					208.0		
7200 min Winter 8640 min Winter					180.2 154.7		
10080 min Winter					134.7		
Stor	rm	Rain					
Ever	nt	(mm/hr)) Volume (m³)	(1	nins)		
30 min	Winte	er 38.84	в 0.0		41		
50 Min 60 min					70		
120 min					128		
180 min			5 0.0		186		
240 min					244		
360 min					360		
480 min 600 min					476 590		
720 min					704		
960 min					926		
1440 min	Winte				1340		
2160 min					1668		
2880 min					2132		
4320 min 5760 min					3028		
5760 min 7200 min					3872 4688		
7200 Min 8640 min					5528		
10080 min					6256		
	@100	2-2020 1	Innovyze				

BWB Consulting Ltd									Page 3	
5th Floor, Waterfr	ont Hou	ıse								
35 Station Street									-	
Nottingham, NG2 3	DQ								Micco	1
Date 20/01/2022 10	:49		Des	igned	by Ke	eith.A	lger		Desina	-
File N Catchment_Q	10_FSR	SRCX	Che	cked 1	у				Digitic	ιJι
Innovyze			Sou	rce Co	ontro	L 2020	.1		I	
		Ī	Rainfa	all De	tails					
Rai	nfall Mo	odel		F	SR	W	inter St	orms	Yes	
Return Per					LO		Cv (Sur	-		
		gion Eng	gland a				Cv (Wir			
	M5-60 (Rati	lo R					Storm (r Storm (r			
Su	mmer Sto				es		ate Char			
		<u>T</u>	ime A	rea Di	agram	<u>1</u>				
		Т	otal Ar	rea (ha	0.95	7				
Time From:	(mins) To [:]		Time From:		Area (ha)					
0	4	0.300	4	8	0.300	8	12	0.357		

©1982-2020 Innovyze

BWB Consulting Ltd		Page 4
5th Floor, Waterfront House		
35 Station Street		Constant in
Nottingham, NG2 3DQ		Mirro
Date 20/01/2022 10:49	Designed by Keith.Alger	Drainage
File N Catchment_Q10_FSR.SRCX	Checked by	Drainage
Innovyze	Source Control 2020.1	

Storage is Online Cover Level (m) 118.000

Infiltration Basin Structure

Invert Level (m) 117.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.01200 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01200

0.000	910.0	1.000	1388.0	1.001	1388.5
-------	-------	-------	--------	-------	--------

BWB Consulting Ltd	1						Page 1
5th Floor, Waterfr	cont House						
35 Station Street							· · · · · · · · · · · · · · · · · · ·
Nottingham, NG2 3	300						A DECK
<u> </u>			Decise	l h	-h		MICLO
Date 20/01/2022 10			-	-	th.Alger		Drainage
File N Catchment_Ç	2100_40_FE	н	Checked	by			brainage
Innovyze			Source (Control 3	2020.1		-
Summar	y of Resu	lts fo	r 100 ye	ear Retu	rn Perio	d (+40%)	
	Hai	f Drai	n Time : :	2649 minut	tes.		
	Storm	Max	Max	Мах	Мах	Status	
	Event	Leve:			ion Volume		
		(m)	(m)	(l/s)	(m³)		
11		117 0	c1 0 0 c1		1 0 050 1	0.77	
	5 min Summer) min Summer				1.9 252.1 2.0 328.1		
) min Summer) min Summer				2.0 328.1 2.1 403.4		
) min Summer) min Summer				2.1 403.4 2.3 478.4		
) min Summer) min Summer				2.3 470.4 2.3 525.6		
) min Summer			-	2.3 JZJ.0 2.4 558.4		
) min Summer				2.4 550.4 2.4 600.0		
) min Summer				2.5 625.0		
) min Summer				2.5 640.5		
) min Summer				2.5 649.8		
) min Summer				2.5 656.7		
1440) min Summer	117.63	19 0.619	:	2.5 649.2	ск ок	
2160) min Summer	117.59	94 0.594	:	2.5 619.8	ок 🛛	
2880) min Summer	117.5	73 0.573	:	2.4 594.6	ОК	
4320) min Summer	117.54	40 0.540	:	2.4 555.9	ок	
5760) min Summer	117.5	14 0.514	:	2.3 526.4	OK	
7200) min Summer	117.49	94 0.494		2.3 503.9		
) min Summer				2.3 485.7		
) min Summer				2.2 470.5		
15	5 min Winter	117.29	90 0.290	:	2.0 282.5	ок	
	Sto	rm	Rain	Flooded	Time-Peak		
	Eve	nt	(mm/hr)	Volume	(mins)		
				(m³)			
	15 mi	n Summe	r 141.680	0.0	27		
		n Summe			42		
		n Summe			72		
		n Summe			130		
		n Summe			190		
	240 mi	n Summe	r 20.370	0.0	250		
	360 mi	n Summe	r 14.863	0.0	370		
	000 1111		. 11 000	0.0	488		
		n Summe	r 11.825	0.0	400		
	480 mi	n Summe n Summe			608		
	480 mi 600 mi 720 mi	n Summe n Summe	r 9.868 r 8.493	0.0	608 726		
	480 mi 600 mi 720 mi 960 mi	n Summe n Summe n Summe	r 9.868 r 8.493 r 6.670	0.0 0.0	608		
	480 mi 600 mi 720 mi	n Summe n Summe n Summe	r 9.868 r 8.493 r 6.670	0.0 0.0 0.0	608 726		
	480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi	n Summe n Summe n Summe n Summe n Summe	r 9.868 r 8.493 r 6.670 r 4.719 r 3.331	0.0 0.0 0.0 0.0	608 726 966 1442 1936		
	480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi	n Summe n Summe n Summe n Summe n Summe n Summe	r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.608	0.0 0.0 0.0 0.0 0.0	608 726 966 1442 1936 2284		
	480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi	n Summe n Summe n Summe n Summe n Summe n Summe n Summe	r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.608 r 1.862	0.0 0.0 0.0 0.0 0.0 0.0 0.0	608 726 966 1442 1936 2284 3068		
	480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi 5760 mi	n Summe n Summe n Summe n Summe n Summe n Summe n Summe n Summe	r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.608 r 1.862 r 1.477	0.0 0.0 0.0 0.0 0.0 0.0 0.0	608 726 966 1442 1936 2284		
	480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi	n Summe n Summe n Summe n Summe n Summe n Summe n Summe n Summe	r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.608 r 1.862 r 1.477	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	608 726 966 1442 1936 2284 3068		
	480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi 5760 mi 7200 mi 8640 mi	n Summe n Summe n Summe n Summe n Summe n Summe n Summe n Summe n Summe n Summe	r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.608 r 1.862 r 1.477 r 1.244 r 1.086	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	608 726 966 1442 1936 2284 3068 3872 4688 5536		
	480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi 5760 mi 7200 mi 8640 mi	n Summe n Summe	r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.608 r 1.862 r 1.477 r 1.244 r 1.086 r 0.973	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	608 726 966 1442 1936 2284 3068 3872 4688 5536 6360		
	480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi 5760 mi 7200 mi 8640 mi	n Summe n Summe	r 9.868 r 8.493 r 6.670 r 4.719 r 3.331 r 2.608 r 1.862 r 1.477 r 1.244 r 1.086	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	608 726 966 1442 1936 2284 3068 3872 4688 5536		

BWB Consulting Ltd						Page 2
5th Floor, Waterfront Hou	ıse					-
35 Station Street						
						and the second
Nottingham, NG2 3DQ						Micro
Date 20/01/2022 10:52	I	Designed	d by Keit	ch.Alger		Drainago
File N Catchment_Q100_40	FEH C	Checked	by			Diamage
Innovyze	2	Source (Control 2	2020.1		
Summary of Re	sults for	r 100 ye	ear Retu	rn Period	업 (+40%)	
Storm	Max	Max	Max	Max	Status	
Event		-		on Volume		
	(m)	(m)	(l/s)	(m ³)		
30 min Wir	ter 117.37	1 0 371	2	2.1 367.8	ок	
	ter 117.44			2.2 452.5		
120 min Win				2.3 537.1		
180 min Win				2.4 590.7		
240 min Win				2.5 628.2		
360 min Win				2.5 676.2		
480 min Win			2	2.6 705.7		
600 min Win	ter 117.68	1 0.681	2	2.6 724.4	ОК	
720 min Win	ter 117.69	1 0.691	2	2.6 736.3	ОК	
960 min Win				2.6 746.9		
1440 min Win			2	2.6 744.5	ОК	
2160 min Win				2.6 718.9		
2880 min Win				2.5 686.6		
4320 min Win				2.5 640.2		
5760 min Win 7200 min Win				2.4 600.3		
7200 min Win 8640 min Win				2.4 566.7 2.3 537.7		
10080 min Win				2.3 512.5		
	Storm Event		Flooded Volume	Time-Peak (mins)		
			(m³)			
30	min Winter	r 92.400	0.0	41		
	min Winter			70		
120	min Winter			130		
180	min Winter	r 25.318	0.0	188		
	min Winter			246		
	min Winter			364		
	min Winter			480		
	min Winter			598		
	min Winter			714 946		
	min Winter			946 1402		
	min Winter			2056		
	min Winter			2620		
	min Winter			3284		
5760	min Winter			4208		
7200	min Winter	r 1.244	0.0	5120		
	min Winter			5976		
10080	min Winter	r 0.973	0.0	6864		

BWB Consulting Ltd		Page 3
5th Floor, Waterfront House		raye J
35 Station Street		
		and the second
Nottingham, NG2 3DQ		Micro
Date 20/01/2022 10:52	Designed by Keith.Alger	Drainage
File N Catchment_Q100_40_FEH	Checked by	brainage
Innovyze	Source Control 2020.1	
Ra	infall Details	
Rainfall Mode		
Return Period (years FEH Rainfall Versio		
	on GB 451900 225600 SP 51900 25600	
Data Typ		
Summer Storm		
Winter Storm		
Cv (Summer		
Cv (Winter Shortest Storm (mins	,	
Shortest Storm (mins Longest Storm (mins		
Climate Change		
Tim	ne Area Diagram	
	al Area (ha) 0.957	
	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.300	4 8 0.300 8 12 0.357	
· · · · · · · · · · · · · · · · · · ·	I.	
<u>ها ۵۵</u>	2-2020 Innovyze	
0190	2 ZUZU IMMUVYZC	

BWB Consulting Ltd		Page 4
5th Floor, Waterfront House		
35 Station Street		1
Nottingham, NG2 3DQ		Mirro
Date 20/01/2022 10:52	Designed by Keith.Alger	Drainago
File N Catchment_Q100_40_FEH	Checked by	Drainage
Innovyze	Source Control 2020.1	

Storage is Online Cover Level (m) 118.000

Infiltration Basin Structure

Invert Level (m) 117.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.01200 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01200

0.000	910.0	1.000	1388.0	1.001	1388.5
-------	-------	-------	--------	-------	--------

BWB Consult:	ing Ltd						Page 1
5th Floor, W	Waterfront House						
35 Station s	Street						
Nottingham,							No.
Date 20/01/2	14		asianad	by Keit	h Alaon		MICIO
			-	-	.n.Aiger		Drainado
File N Catch	hment_Q100_40_FS		hecked	-			
Innovyze		S	ource C	ontrol 2	2020.1		
	Summary of Resu	lts for	100 ye	ar Retui	rn Period	(+40%)	
	Hal	f Drain	Time : 2	665 minut	es.		
	Storm	Max	Max	Max	Max	Status	
	Event				on Volume	Doubub	
		(m)	(m)	(1/s)	(m ³)		
	15 min Summer				.9 247.3	ОК	
	30 min Summer				.0 323.0	ОК	
	60 min Summer				.1 400.5	ОК	
	120 min Summer				.3 477.2	OK	
	180 min Summer			_	.3 519.7 .4 547.3		
	240 min Summer 360 min Summer				.4 547.3		
	480 min Summer				.4 584.1		
	600 min Summer				.5 625.6		
	720 min Summer				.5 637.7		
	960 min Summer				.5 652.2		
	1440 min Summer				.5 659.5		
	2160 min Summer	117.616	0.616	2	.5 645.8	ок	
	2880 min Summer	117.602	0.602	2	.5 628.7	ОК	
	4320 min Summer	117.572	0.572	2	.4 593.8	ОК	
	5760 min Summer	117.543	0.543	2	.4 560.4	ОК	
	7200 min Summer				.3 529.3		
	8640 min Summer				.3 500.6		
	10080 min Summer				.3 473.5		
	15 min Winter	117.285	0.285	2	.0 277.1	ОК	
	sto	770	Rain	Flooded	Time-Peak		
	Eve			Volume	(mins)		
				(m³)			
		~	100 000				
			138.993	0.0	27		
	30 mir	n Summer	90.986	U_U	42		
	60	Cummor.	56 710				
		n Summer	56.713 34 148	0.0	72		
	120 mir	n Summer	34.148	0.0 0.0	72 130		
	120 mir 180 mir	n Summer n Summer	34.148 25.042	0.0 0.0 0.0	72 130 190		
	120 mir 180 mir 240 mir	n Summer	34.148 25.042 19.977	0.0 0.0	72 130		
	120 mir 180 mir 240 mir 360 mir	n Summer n Summer n Summer	34.148 25.042	0.0 0.0 0.0 0.0	72 130 190 250		
	120 mir 180 mir 240 mir 360 mir 480 mir	n Summer n Summer n Summer n Summer	34.148 25.042 19.977 14.486	0.0 0.0 0.0 0.0 0.0	72 130 190 250 370		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir	Summer Summer Summer Summer Summer	34.148 25.042 19.977 14.486 11.532	0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir	h Summer h Summer h Summer h Summer h Summer h Summer	34.148 25.042 19.977 14.486 11.532 9.655	0.0 0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488 608		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir	h Summer h Summer h Summer h Summer h Summer h Summer h Summer h Summer	34.148 25.042 19.977 14.486 11.532 9.655 8.347	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488 608 726		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir	 Summer 	34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488 608 726 966 1442 1976		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir	 Summer 	34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488 608 726 966 1442 1976 2312		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir	 Summer 	34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488 608 726 966 1442 1976 2312 3076		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir	 Summer 	34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488 608 726 966 1442 1976 2312 3076 3920		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir	 Summer 	34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488 608 726 966 1442 1976 2312 3076 3920 4752		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	 Summer 	34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488 608 726 966 1442 1976 2312 3076 3920 4752 5536		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	 Summer 	34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110 0.977	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488 608 726 966 1442 1976 2312 3076 3920 4752 5536 6360		
	120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	 Summer 	34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	72 130 190 250 370 488 608 726 966 1442 1976 2312 3076 3920 4752 5536		

BWB Consulting Ltd						Page 2
-						raye 2
5th Floor, Waterfront Ho	ouse					S . 1
35 Station Street						
Nottingham, NG2 3DQ						Micro
Date 20/01/2022 10:52	:	Designed	by Keit	h.Algei	n -	Desinance
File N Catchment Q100 40		Checked	-	2		Digitige
	_		ontrol 2	020 1		
Innovyze		Source c	ONCION 2	020.1		
2		. 100	D -+			
<u>Summary of F</u>	Results IO	r 100 ye	ar Retur	n Perio	od (+40%)	
Storm	Max	Max	Max	Max	Status	
Event			iltration		Status	
	(m)	(m)	(1/s)	(m ³)		
	(/	(/	(_/_/	(/		
30 min Wint	ter 117.366	0.366	2.1	362.1	ОК	
	ter 117.445			449.2	ОК	
120 min Wint				535.8	ОК	
180 min Wint				584.1	ОК	
240 min Wint				615.8		
360 min Wint				658.3	ОК	
480 min Wint				687.3	OK	
600 min Wint 720 min Wint				707.8 722.7	ОК	
720 min Wint 960 min Wint				741.8	ОК	
960 Min Wint 1440 min Wint					Flood Risk	
2160 min Wint					Flood Risk	
2880 min Wint				726.7	O K	
4320 min Wint				684.4		
5760 min Wint	ter 117.612	0.612		640.3	ок	
7200 min Wint	ter 117.575	0.575	2.4	596.8	ОК	
8640 min Wint	ter 117.539	0.539	2.4	555.2	ОК	
10080 min Wint	ter 117.505	0.505	2.3	516.0	ОК	
	Storm	Rain	Flooded T	'ime-Peal	c .	
	Event	(mm/hr)	Volume	(mins)		
			(m³)			
c.	0 min Winte	r 90 986	0.0	41	1	
-	50 min Winte: 50 min Winte:		0.0			
	0 min Winte:		0.0	130		
	0 min Winte		0.0	188		
	0 min Winte		0.0	240		
36	0 min Winte	r 14.486	0.0	364	1	
4.0	0 min Winte	r 11.532				
48	o min wince.	1 11.332	0.0	480)	
60	0 min Winte	r 9.655	0.0	480 598		
60 72	0 min Winte 0 min Winte	r 9.655 r 8.347			3	
60 72 96	00 min Winte: 20 min Winte: 50 min Winte:	r 9.655 r 8.347 r 6.629	0.0 0.0 0.0	598 714 940	3 1 5	
60 72 96 144	00 min Winte: 20 min Winte: 50 min Winte: 20 min Winte:	r 9.655 r 8.347 r 6.629 r 4.783	0.0 0.0 0.0 0.0	598 714 940 1402	3 1 5 2	
60 72 96 144 216	00 min Winte 20 min Winte 50 min Winte 20 min Winte 50 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446	0.0 0.0 0.0 0.0 0.0	598 714 940 1402 2060	3 4 5 2 0	
60 72 96 144 216 288	00 min Winte 00 min Winte 00 min Winte 00 min Winte 00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728	0.0 0.0 0.0 0.0 0.0 0.0	598 714 946 1402 2060 2652	3 1 5 2 0	
60 72 96 144 216 288 432	00 min Winte 00 min Winte 00 min Winte 00 min Winte 00 min Winte 00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960	0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 946 1402 2060 2652 3292	3 1 5 2 0 2 2	
60 72 96 144 216 288 432 576	00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960 r 1.549	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 946 1402 2060 2652 3292 4216	3 1 5 2 0 2 2 5	
60 72 96 144 216 288 432 576 720	00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960 r 1.549 r 1.289	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 940 2060 2652 3292 4210 5120	3 4 5 2 0 2 2 5 0	
60 72 96 144 216 288 432 576 720 864	00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960 r 1.549 r 1.289 r 1.110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 940 1402 2060 2652 3292 4210 5120 5984	3 5 2 0 2 2 5 0 1	
60 72 96 144 216 288 432 576 720 864	00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960 r 1.549 r 1.289 r 1.110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 940 2060 2652 3292 4210 5120	3 5 2 0 2 2 5 0 1	
60 72 96 144 216 288 432 576 720 864	00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960 r 1.549 r 1.289 r 1.110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 940 1402 2060 2652 3292 4210 5120 5984	3 5 2 0 2 2 5 0 1	
60 72 96 144 216 288 432 576 720 864	00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960 r 1.549 r 1.289 r 1.110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 940 1402 2060 2652 3292 4210 5120 5984	3 5 2 0 2 2 5 0 1	
60 72 96 144 216 288 432 576 720 864	00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960 r 1.549 r 1.289 r 1.110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 940 1402 2060 2652 3292 4210 5120 5984	3 5 2 0 2 2 5 0 1	
60 72 96 144 216 288 432 576 720 864	00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960 r 1.549 r 1.289 r 1.110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 940 1402 2060 2652 3292 4210 5120 5984	3 5 2 0 2 2 5 0 1	
60 72 96 144 216 288 432 576 720 864	00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960 r 1.549 r 1.289 r 1.110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 940 1402 2060 2652 3292 4210 5120 5984	3 5 2 0 2 2 5 0 1	
60 72 96 144 216 288 432 576 720 864	00 min Winte 00 min Winte	r 9.655 r 8.347 r 6.629 r 4.783 r 3.446 r 2.728 r 1.960 r 1.549 r 1.289 r 1.110	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	598 714 940 1402 2060 2652 3292 4210 5120 5984	3 5 2 0 2 2 5 0 1	

DWD Conquiting Itd	Da	je 3
BWB Consulting Ltd	Pag	je s
5th Floor, Waterfront House		
35 Station Street		-
Nottingham, NG2 3DQ	M	icro
Date 20/01/2022 10:52	Designed by Keith.Alger	ainage
File N Catchment_Q100_40_FSR	checked by	uninge
Innovyze	Source Control 2020.1	
<u>Ra:</u>	<u>infall Details</u>	
Rainfall Model Return Period (years)	FSR Winter Storms Yes 100 Cv (Summer) 0.750	
	and and Wales Cv (Winter) 0.840	
M5-60 (mm)	20.000 Shortest Storm (mins) 15	
Ratio R	0.407 Longest Storm (mins) 10080	
Summer Storms	Yes Climate Change % +40	
Tim	ne Area Diagram	
Tota	al Area (ha) 0.957	
	ime (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.300	4 8 0.300 8 12 0.357	
0 40.300	4 0 0.300 0 12 0.337	
	2. 2020 Transmiss	
©198	32-2020 Innovyze	

BWB Consulting Ltd		Page 4
5th Floor, Waterfront House		
35 Station Street		Second Internet
Nottingham, NG2 3DQ		Mirro
Date 20/01/2022 10:52	Designed by Keith.Alger	Drainago
File N Catchment_Q100_40_FSR	Checked by	Drainage
Innovyze	Source Control 2020.1	

Storage is Online Cover Level (m) 118.000

Infiltration Basin Structure

Invert Level (m) 117.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.01200 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01200

0.000	910.0	1.000	1388.0	1.001	1388.5
-------	-------	-------	--------	-------	--------

BWB Consulting Ltd								Page 1
5th Floor, Waterfr	ont. F	louse						
35 Station Street								1
	0							A REAL PROPERTY AND
Nottingham, NG2 3	~					1 - 7		Micro
Date 20/01/2022 10				-	by Keit	n.Alc	Jer	Drainago
File S Catchment_Q	L00_E	'EH.SRCX	Cheo	cked b	У			brannage
Innovyze			Sou	rce Co	ntrol 2	2020.1	L	
Sum	mary	of Res	ults fo	or 100	year R	eturn	Period	
	Sto		Max	Max	Max	Max	Status	
	Eve	ent	Level	-	Control		e	
			(m)	(m)	(1/s)	(m³)		
	15 mi	n Summer	115.196	0.196	2.2	152.	2 ок	
	30 mi	n Summer	115.251	0.251	2.3	197.	9 ок	
	60 mi	n Summer	115.304	0.304		242.		
		n Summer				286.		
		n Summer				313.		
		n Summer				331. 353.		
		n Summer n Summer				353. 364.		
		n Summer				370.		
		n Summer				372.		
<u>c</u>	60 mi	n Summer	115.446	0.446	2.3	369.	8 ОК	
		n Summer				353.		
		n Summer				329.		
		n Summer				309.		
		n Summer n Summer				275.		
		n Summer				247. 224.		
		n Summer				205.		
		n Summer				189.		
	15 mi	n Winter	115.218	0.218	2.3	170.	7 ОК	
	30 mi	n Winter	115.279	0.279	2.3	222.	0 ОК	
	Sto	rm	Rain	Floode	d Discha	arge T	ime-Peak	
	Eve	ent	(mm/hr)			-	(mins)	
				(m³)	(m ³)		
	15 mi	n Summer	101.200	0.	0 1	30.5	30	
		n Summer	66.000			64.0	45	
		n Summer	40.800			36.3	74	
		n Summer	24.450	0.	0 24	81.6	134	
		n Summer	18.084			09.8	192	
		n Summer	14.550			28.8	252	
		n Summer	10.617			50.4	370	
		n Summer n Summer	8.446 7.049			59.3 61.3	488 606	
		n Summer	6.067			60.1	726	
		n Summer	4.765			54.8	962	
		n Summer	3.371			39.8	1250	
21	60 mi	n Summer	2.379			12.7	1592	
		n Summer	1.863			32.7	1984	
		n Summer	1.330			58.7	2776	
		n Summer				15.8	3584	
		n Summer n Summer				47.6	4392	
		u summer	0.776	0.	0 0	77.5	5112	
86			0 605	0	0 7	05 0	5856	
86	80 mi	n Summer	0.695			05.0 44.9	5856 30	
86	80 mi 15 mi			0.	0 14	05.0 44.9 76.5	5856 30 45	
86	80 mi 15 mi	n Summer n Winter n Winter	101.200	0. 0.	0 1	44.9	30	

5th Floor, Wa	ıg Ltd						Page 2
	terfront House						
35 Station St	reet						14 million 10 million
Nottingham,	NG2 3DQ						A COLOR
Date 20/01/20	~	Doci	anod by	. Voith			MICrO
			gned by	Y KEIU	I.AIGe	;L	Drainac
	ent_Q100_FEH.SRC		ked by				
Innovyze		Sour	ce Cont	trol 20	20.1		
	Cummany of Dog	ulte fo	m 100 t	oor Bo	turn	Doriod	
	<u>Summary of Res</u>	uits io	<u>1 100 y</u>	eal ne	LULII	Periou	
	Storm	Max	Max	Max	Max	Status	
	Event	Level	-				
		(m)	(m)	(l/s)	(m³)		
	60 min Winter	115.338	0.338	2.3	272.6	ОК	
	120 min Winter				322.3		
	180 min Winter	115.428	0.428	2.3	353.0	ОК	
	240 min Winter	115.451	0.451	2.3	374.1	ΟK	
	360 min Winter				399.7		
	480 min Winter				414.1		
	600 min Winter				422.0		
	720 min Winter				425.8		
	960 min Winter				425.3		
	1440 min Winter				410.1		
	2160 min Winter				378.1		
	2880 min Winter 4320 min Winter				351.5 302.7		
	5760 min Winter				260.5		
	7200 min Winter				225.5		
	8640 min Winter				196.4		
	10080 min Winter				172.4		
	Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Dischar Volum (m³)	e (me-Peak mins)	
			()	(
	60 min Winter				4.1	74	
	120 min Winter		0.0		2.9	132	
	180 min Winter	18.084	0.0	34.	1.1	190	
	240 min Winton	14 550	0.0	25	75	248	
	240 min Winter 360 min Winter		0.0	35 369		248 364	
		10.617	0.0	369	9.3	248 364 480	
	360 min Winter	10.617 8.446	0.0 0.0	369 369		364	
	360 min Winter 480 min Winter	10.617 8.446 7.049	0.0 0.0	369 369 367	9.3 9.8	364 480	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	10.617 8.446 7.049 6.067 4.765	0.0 0.0 0.0	369 369 367 <mark>364</mark> 357	9.3 9.8 7.7 4.7 7.7	364 480 596 712 940	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter	10.617 8.446 7.049 6.067 4.765 3.371	0.0 0.0 0.0 0.0 0.0	369 369 367 364 357 342	9.3 9.8 7.7 4.7 7.7 2.7	364 480 596 712 940 1376	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379	0.0 0.0 0.0 0.0 0.0 0.0	369 369 364 357 342 572	9.3 9.8 7.7 4.7 7.7 2.7 2.3	364 480 596 712 940 1376 1720	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863	0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 369 364 357 342 572 593	9.3 9.8 7.7 4.7 7.7 2.7 2.3 3.4	364 480 596 712 940 1376 1720 2164	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 364 357 342 572 593 612	9.3 9.8 7.7 4.7 7.7 2.7 2.3 3.4 1.8	364 480 596 712 940 1376 1720 2164 3036	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330 1.055	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 364 357 342 572 593 612	9.3 9.8 7.7 4.7 7.7 2.7 2.3 3.4 1.8 9.9	364 480 596 712 940 1376 1720 2164 3036 3872	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330 1.055 0.888	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 367 364 357 342 572 593 611 689 725	9.3 9.8 7.7 7.7 2.7 2.3 3.4 1.8 9.9 5.6	364 480 596 712 940 1376 1720 2164 3036 3872 4688	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330 1.055 0.888 0.776	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 367 364 357 342 572 612 689 729 759	9.3 9.8 7.7 7.7 2.7 2.3 3.4 1.8 9.9 5.6 9.5	364 480 596 712 940 1376 1720 2164 3036 3872 4688 5448	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330 1.055 0.888 0.776	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 367 364 357 342 572 612 689 729 759	9.3 9.8 7.7 7.7 2.7 2.3 3.4 1.8 9.9 5.6	364 480 596 712 940 1376 1720 2164 3036 3872 4688	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330 1.055 0.888 0.776	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 367 364 357 342 572 612 689 729 759	9.3 9.8 7.7 7.7 2.7 2.3 3.4 1.8 9.9 5.6 9.5	364 480 596 712 940 1376 1720 2164 3036 3872 4688 5448	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330 1.055 0.888 0.776	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 367 364 357 342 572 612 689 729 759	9.3 9.8 7.7 7.7 2.7 2.3 3.4 1.8 9.9 5.6 9.5	364 480 596 712 940 1376 1720 2164 3036 3872 4688 5448	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330 1.055 0.888 0.776	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 367 364 357 342 572 612 689 729 759	9.3 9.8 7.7 7.7 2.7 2.3 3.4 1.8 9.9 5.6 9.5	364 480 596 712 940 1376 1720 2164 3036 3872 4688 5448	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330 1.055 0.888 0.776	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 367 364 357 342 572 612 689 729 759	9.3 9.8 7.7 7.7 2.7 2.3 3.4 1.8 9.9 5.6 9.5	364 480 596 712 940 1376 1720 2164 3036 3872 4688 5448	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330 1.055 0.888 0.776	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 367 364 357 342 572 612 689 729 759	9.3 9.8 7.7 7.7 2.7 2.3 3.4 1.8 9.9 5.6 9.5	364 480 596 712 940 1376 1720 2164 3036 3872 4688 5448	
	360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	10.617 8.446 7.049 6.067 4.765 3.371 2.379 1.863 1.330 1.055 0.888 0.776	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	369 367 364 357 342 572 612 689 729 759	9.3 9.8 7.7 7.7 2.7 2.3 3.4 1.8 9.9 5.6 9.5	364 480 596 712 940 1376 1720 2164 3036 3872 4688 5448	

BWB Consulting Ltd								Page 3	
5th Floor, Waterfront	House							C	
35 Station Street								1	
Nottingham, NG2 3DQ								MIR	1
Date 20/01/2022 10:55	5	Desig	ned by	y Keitł	n.Alae	r		MICLO	
File S Catchment_Q100			ed by	y nerei		<i>,</i> ,		Draina	ade
Innovyze			_	trol 20	120 1				-
тшотуге		Sourc	e com	CIOI 20	520.1				
	Ra	infall	. Deta	<u>ils</u>					
	Rainfall Mode	-1				FEI	н		
Return	Period (years					10			
FEH R	ainfall Versio					201			
	Site Locatio Data Typ		51900 2	225600 S		0 2560 tchmeni			
	Summer Storn				cu	Ye			
	Winter Storm					Ye			
	Cv (Summer Cv (Winter					0.75			
Shorte	st Storm (mins					1			
	st Storm (mins					1008			
C	limate Change	olo				+(0		
	Tin	le Are	a Diac	gram					
	Tota	al Area	(ha) (.815					
Time (mins) Area From: To: (ha)	Time (mins) From: To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	
0 4 0.200	4 8	0.200	8	12	0.200	12	16	0.215	
			0 Innc						

BWB Consulting Ltd					Page 4
5th Floor, Waterfront House					
35 Station Street					Second 10
Nottingham, NG2 3DQ					Micro
Date 20/01/2022 10:55	Designe	ed by Ke	ith.Alger		Drainago
File S Catchment_Q100_FEH.SRCX	Checked	d by			Drainage
Innovyze	Source	Control	2020.1		•
-	Model De	etails			
Storage is On	line Cove	er Level (m) 116.000		
<u>Tank</u>	or Pond	Structu	ire		
Inve	rt Level	(m) 115.00	00		
Depth (m) Ar	ea (m²) D	epth (m)	Area (m²)		
0.000	740.0	1.000	1176.0		
<u>Hydro-Brake@</u>) Optimu	m Outflo	w Control		
			-0072-2300-3		
	gn Head (r Flow (l/s			1.000	
Design	Flush-Flo		Ca	alculated	
	-		ise upstream	-	
	Application Availabl			Surface Yes	
	ameter (mr			72	
	: Level (r	•		115.000	
Minimum Outlet Pipe Dia Suggested Manhole Dia				100 1200	
Control Po	oints	Head (m) Flow (l/s)	
Design Point (C				3	
		™ 0.30			
Mean Flow over		® 0.62	5 1. - 2.		
	-				
The hydrological calculations have b Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	Should an	nother typ	pe of contro	ol device o	other than a
Depth (m) Flow (1/s) Depth (m) Flo	w (l/s) D)epth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100 1.9 1.200	1				5.7
	2.5	3.000	3.8	7.000	
0.200 2.2 1.400	2.7	3.500	4.1	7.500	5.9
0.200 2.2 1.400 0.300 2.3 1.600	2.7 2.9	3.500 4.000	4.1 4.4	7.500 8.000	5.9 6.0
0.200 2.2 1.400	2.7	3.500	4.1	7.500	5.9
0.200 2.2 1.400 0.300 2.3 1.600 0.400 2.3 1.800 0.500 2.2 2.000 0.600 2.0 2.200	2.7 2.9 3.0 3.2 3.3	3.500 4.000 4.500 5.000 5.500	4.1 4.4 4.6 4.8 5.1	7.500 8.000 8.500	5.9 6.0 6.2
0.200 2.2 1.400 0.300 2.3 1.600 0.400 2.3 1.800 0.500 2.2 2.000 0.600 2.0 2.200 0.800 2.1 2.400	2.7 2.9 3.0 3.2 3.3 3.4	3.500 4.000 4.500 5.000 5.500 6.000	4.1 4.4 4.6 4.8 5.1 5.3	7.500 8.000 8.500 9.000	5.9 6.0 6.2 6.4
0.200 2.2 1.400 0.300 2.3 1.600 0.400 2.3 1.800 0.500 2.2 2.000 0.600 2.0 2.200	2.7 2.9 3.0 3.2 3.3	3.500 4.000 4.500 5.000 5.500	4.1 4.4 4.6 4.8 5.1	7.500 8.000 8.500 9.000	5.9 6.0 6.2 6.4
0.200 2.2 1.400 0.300 2.3 1.600 0.400 2.3 1.800 0.500 2.2 2.000 0.600 2.0 2.200 0.800 2.1 2.400	2.7 2.9 3.0 3.2 3.3 3.4	3.500 4.000 4.500 5.000 5.500 6.000	4.1 4.4 4.6 4.8 5.1 5.3	7.500 8.000 8.500 9.000	5.9 6.0 6.2 6.4
0.200 2.2 1.400 0.300 2.3 1.600 0.400 2.3 1.800 0.500 2.2 2.000 0.600 2.0 2.200 0.800 2.1 2.400	2.7 2.9 3.0 3.2 3.3 3.4	3.500 4.000 4.500 5.000 5.500 6.000	4.1 4.4 4.6 4.8 5.1 5.3	7.500 8.000 8.500 9.000	5.9 6.0 6.2 6.4
0.200 2.2 1.400 0.300 2.3 1.600 0.400 2.3 1.800 0.500 2.2 2.000 0.600 2.0 2.200 0.800 2.1 2.400	2.7 2.9 3.0 3.2 3.3 3.4	3.500 4.000 4.500 5.000 5.500 6.000	4.1 4.4 4.6 4.8 5.1 5.3	7.500 8.000 8.500 9.000	5.9 6.0 6.2 6.4
0.200 2.2 1.400 0.300 2.3 1.600 0.400 2.3 1.800 0.500 2.2 2.000 0.600 2.0 2.200 0.800 2.1 2.400	2.7 2.9 3.0 3.2 3.3 3.4	3.500 4.000 4.500 5.000 5.500 6.000	4.1 4.4 4.6 4.8 5.1 5.3	7.500 8.000 8.500 9.000	5.9 6.0 6.2 6.4
0.200 2.2 1.400 0.300 2.3 1.600 0.400 2.3 1.800 0.500 2.2 2.000 0.600 2.0 2.200 0.800 2.1 2.400	2.7 2.9 3.0 3.2 3.3 3.4	3.500 4.000 4.500 5.000 5.500 6.000	4.1 4.4 4.6 4.8 5.1 5.3	7.500 8.000 8.500 9.000	5.9 6.0 6.2 6.4

BWB Consulting	ſ Ltd								Page 1
5th Floor, Wat	erfront	: Ho	use						
, 35 Station Str									14 A.
									A DESCRIPTION AND
,	IG2 3DQ								Micro
Date 20/01/202					-	by Keit	h.Alge	er	Drainag
File S Catchme	ent_Q100	_40	_FEH	. Chec	ked by	/			Diamag
Innovyze				Sour	ce Cor	ntrol 2	020.1		
Su	.mmary c	fR	esults	for 10	00 yea	r Retur	n Per	iod (+40%)	_
									-
	:	Stor	m	Max	Max	Max	Max	Status	
	1	Even	t	Level	Depth	Control	Volume		
				(m)	(m)	(l/s)	(m³)		
	4.5		~	115 050			010 0		
				115.270			213.8		
				115.344 115.416			278.3 342.1		
				115.416			405.5		
				115.526			445.2		
				115.555			473.0		
				115.591			508.1		
	480	min	Summer	115.612	0.612	2.3	529.4	ОК	
				115.626			542.7		
				115.634			550.7		
				115.639			556.5		
				115.632			549.1		
				115.601 115.571			517.6 488.5		
				115.527			400.5		
				115.491			412.0		
				115.462			385.0		
	8640	min	Summer	115.437	0.437	2.3	361.9	ОК	
	10080	min	Summer	115.415	0.415	2.3	341.9	ОК	
				115.300			239.7		
	30	min	Winter	115.382	0.382	2.3	312.1	0 K	
		Stor	_	Rain	F leada	d Discha		ma Daah	
		Even		(mm/hr)			-	(mins)	
		Lven		(1111)	(m ³)	(m ³		(11113)	
	15	min	Summer						
				141.680	0.	0 17	72.5	31	
	30	min	Summer	92.400			72.5 90.3	31 45	
			Summer Summer		0.	0 19			
	60 120	min min	Summer Summer	92.400	0. 0.	0 19 0 32 0 36	90.3 25.1 59.0	45	
	60 120 180	min min min	Summer Summer Summer	92.400 57.120 34.230 25.318	0. 0. 0.	0 19 0 32 0 36 0 37	90.3 25.1 59.0 77.5	45 74 134 194	
	60 120 180 240	min min min min	Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370	0. 0. 0. 0.	0 19 0 32 0 36 0 37 0 37	90.3 25.1 59.0 77.5 76.8	45 74 134 194 254	
	60 120 180 240 360	min min min min min	Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863	0. 0. 0. 0.	0 19 0 32 0 36 0 37 0 37 0 37	90.3 25.1 59.0 77.5 76.8 70.0	45 74 134 194 254 372	
	60 120 180 240 360 480	min min min min min min	Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825	0. 0. 0. 0. 0. 0.	0 19 0 32 0 36 0 37 0 37 0 37 0 36	90.3 25.1 59.0 77.5 76.8 70.0 51.9	45 74 134 194 254 372 492	
	60 120 180 240 360 480 600	min min min min min min	Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868	0. 0. 0. 0. 0. 0.	0 19 0 32 0 36 0 37 0 37 0 37 0 36 0 36 0 38	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2	45 74 134 194 254 372 492 610	
	60 120 180 240 360 480 600 720	min min min min min min min	Summer Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868 8.493	0. 0. 0. 0. 0. 0. 0.	0 19 0 32 0 36 0 37 0 37 0 37 0 36 0 36 0 36 0 36	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2 47.7	45 74 134 194 254 372 492 610 730	
	60 120 180 240 360 480 600 720 960	min min min min min min min min	Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 19 0 32 0 36 0 37 0 37 0 36 0 36 0 36 0 36 0 36 0 36 0 36 0 36	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2	45 74 134 194 254 372 492 610	
	60 120 180 240 360 480 600 720 960 1440	min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868 8.493 6.670	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 19 0 32 0 36 0 37 0 37 0 37 0 37 0 36 0 36 0 36 0 36 0 36 0 36 0 36 0 36	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2 47.7 37.3	45 74 134 194 254 372 492 610 730 968	
	60 120 180 240 360 480 600 720 960 1440 2160	min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868 8.493 6.670 4.719	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 19 0 32 0 36 0 37 0 37 0 37 0 37 0 36 0 36 0 36 0 32 0 68	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2 47.7 37.3 21.4	45 74 134 254 372 492 610 730 968 1444	
	60 120 180 240 360 480 600 720 960 1440 2160 2880	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868 8.493 6.670 4.719 3.331	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 19 0 32 0 36 0 37 0 37 0 37 0 37 0 36 0 36 0 36 0 36 0 36 0 6 0 6 0 6 0 6 0 6	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2 47.7 37.3 21.4 30.1 72.5 32.6	45 74 134 194 254 372 492 610 730 968 1444 2060	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868 8.493 6.670 4.719 3.331 2.608 1.862 1.477	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 19 0 32 0 36 0 37 0 37 0 37 0 37 0 36 0 36 0 36 0 36 0 6 0 6 0 6 0 6 0 86	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2 47.7 37.3 21.4 30.1 72.5 32.6 52.1	45 74 134 194 254 372 492 610 730 968 1444 2060 2292 3024 3808	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868 8.493 6.670 4.719 3.331 2.608 1.862 1.477 1.244	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 19 0 32 0 36 0 37 0 37 0 37 0 37 0 36 0 36 0 36 0 36 0 6 0 6 0 6 0 6 0 86 0 90	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2 47.7 37.3 21.4 30.1 72.5 32.6 52.1 06.5	45 74 134 194 254 372 492 610 730 968 1444 2060 2292 3024 3808 4616	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868 8.493 6.670 4.719 3.331 2.608 1.862 1.477 1.244 1.086	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 19 0 32 0 36 0 37 0 37 0 37 0 36 0 36 0 36 0 36 0 36 0 36 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 90 0 90	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2 47.7 37.3 21.4 30.1 72.5 32.6 52.1 06.5 48.5	45 74 134 194 254 372 492 610 730 968 1444 2060 2292 3024 3808 4616 5440	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868 8.493 6.670 4.719 3.331 2.608 1.862 1.477 1.244 1.086 0.973	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 19 0 32 0 36 0 37 0 37 0 37 0 37 0 36 0 36 0 36 0 36 0 36 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 90 0 96 0 96	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2 47.7 37.3 21.4 30.1 72.5 32.6 52.1 06.5 48.5 37.7	45 74 134 194 254 372 492 610 730 968 1444 2060 2292 3024 3808 4616 5440 6168	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868 8.493 6.670 4.719 3.331 2.608 1.862 1.477 1.244 1.086 0.973 141.680	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 19 0 32 0 36 0 37 0 37 0 37 0 37 0 36 0 36 0 36 0 36 0 36 0 36 0 6 0 6 0 6 0 6 0 6 0 6 0 90 0 96 0 96	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2 47.7 37.3 21.4 30.1 72.5 32.6 52.1 06.5 48.5 37.7 33.1	45 74 134 194 254 372 492 610 730 968 1444 2060 2292 3024 3808 4616 5440 6168 30	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	92.400 57.120 34.230 25.318 20.370 14.863 11.825 9.868 8.493 6.670 4.719 3.331 2.608 1.862 1.477 1.244 1.086 0.973	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0 19 0 32 0 36 0 37 0 37 0 37 0 37 0 36 0 36 0 36 0 36 0 36 0 36 0 6 0 6 0 6 0 6 0 6 0 6 0 90 0 96 0 96	90.3 25.1 59.0 77.5 76.8 70.0 51.9 54.2 47.7 37.3 21.4 30.1 72.5 32.6 52.1 06.5 48.5 37.7	45 74 134 194 254 372 492 610 730 968 1444 2060 2292 3024 3808 4616 5440 6168	

BWB CONSULT	ting Ltd					Page 2
oth Floor,	Waterfront House					
35 Station						-
Nottingham,						A REAL A
	/2022 10:53	Dog	igned by	. Koith N	laon	MICrO
				y Keith.A	liger	Drainac
	chment_Q100_40_FEH		cked by			
Innovyze		Sou	irce Cont	trol 2020	.1	
	<u>Summary of Resul</u>	ts for 1	100 year	Return H	eriod (+40%)
	Storm	Max	Max M	ax Max	Status	
	Event			trol Volum		
		(m)	-	/s) (m ³)	-	
	60 min Winter			2.3 384.		
	120 min Winter			2.3 455.		
	180 min Winter 240 min Winter			2.3 501. 2.3 533.		
	360 min Winter			2.3 533.		
	480 min Winter			2.3 574.		
	600 min Winter			2.3 615.		
	720 min Winter				1 Flood Risk	
	960 min Winter	115.715	0.715		8 Flood Risk	
	1440 min Winter				7 Flood Risk	
	2160 min Winter			2.3 606.		
	2880 min Winter			2.3 575.		
	4320 min Winter 5760 min Winter			2.3 515. 2.3 465.		
	7200 min Winter					
	8640 min Winter					
	10080 min Winter	115.425	0.425			
	Storm Event) Volume	Volume	Time-Peak (mins)	
				-		
	Event 60 min Winte	(mm/hr)) Volume (m ³) 0 0.0	Volume (m³)	(mins) 74	
	Event 60 min Winte 120 min Winte	(mm/hr) er 57.12 er 34.23) Volume (m ³) 0 0.0 0 0.0	Volume (m ³) 355.8 379.4	(mins) 74 132	
	Event 60 min Winte 120 min Winte 180 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31	<pre>) Volume (m³) 0 0.0 0 0.0 8 0.0</pre>	Volume (m ³) 355.8 379.4 377.0	(mins) 74 132 190	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37	<pre>) Volume (m³) 0 0.0 0 0.0 8 0.0 0 0.0</pre>	Volume (m ³) 355.8 379.4 377.0 370.1	(mins) 74 132 190 250	
	Event 60 min Winte 120 min Winte 180 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86	<pre>) Volume (m³) 0 0.0 0 0.0 8 0.0 0 0.0 3 0.0</pre>	Volume (m ³) 355.8 379.4 377.0 370.1 356.6	(mins) 74 132 190 250 366	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82	<pre>) Volume (m³) 0 0.0 0 0.0 8 0.0 0 0.0 3 0.0 5 0.0</pre>	Volume (m ³) 355.8 379.4 377.0 370.1 356.6	(mins) 74 132 190 250 366 484	
	60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49	<pre>) Volume (m³) 0 0.0 0 0.0 8 0.0 0 0.0 3 0.0 5 0.0 8 0.0 3 0.0</pre>	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6	(mins) 74 132 190 250 366 484 600	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67	<pre>) Volume (m³) 0 0.0 0 0.0 8 0.0 0 0.0 3 0.0 5 0.0 8 0.0 0 3 0.0 5 0.0 8 0.0 0 3 0.0 0 0.0</pre>	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3	(mins) 74 132 190 250 366 484 600 718 950	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 720 min Winte 960 min Winte 1440 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71	Volume (m ³) 0 0.0 0 0.0 0 0.0 8 0.0 0 0.0 3 0.0 5 0.0 8 0.0 9 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7	(mins) 74 132 190 250 366 484 600 718 950 1410	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 720 min Winte 960 min Winte 1440 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33	<pre>) Volume (m³) 0 0.0 0 0.0 8 0.0 0 0.0 3 0.0 5 0.0 8 0.0 3 0.0 0 0.0 9 0.0 1 0.0</pre>	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5	(mins) 74 132 190 250 366 484 600 718 950 1410 2080	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 720 min Winte 960 min Winte 2160 min Winte 2880 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60	<pre>) Volume (m³) 0 0.0 0 0.0 8 0.0 0 0.0 3 0.0 5 0.0 8 0.0 3 0.0 0 0.0 9 0.0 1 0.0 7 0.0</pre>	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 720 min Winte 960 min Winte 1440 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86	Volume (m³) 0 0.0 0 0.0 8 0.0 0 0.0 3 0.0 5 0.0 3 0.0 0 0.0 1 0.0 7 0.0 2 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 720 min Winte 960 min Winte 2160 min Winte 2880 min Winte 4320 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86 er 1.47	Volume (m³) 0 0.0 0 0.0 8 0.0 0 0.0 3 0.0 5 0.0 3 0.0 0 0.0 1 0.0 2 0.0 7 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9 627.5 965.2	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332 4208	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86 er 1.47 er 1.24 er 1.08	Volume (m³) 0 0.0 0 0.0 8 0.0 3 0.0 5 0.0 3 0.0 9 0.0 1 0.0 7 0.0 2 0.0 4 0.0 6 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9 627.5 965.2 1014.7 1061.2	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332 4208 5048 5048 5880	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 7200 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86 er 1.47 er 1.24 er 1.08	Volume (m³) 0 0.0 0 0.0 8 0.0 3 0.0 5 0.0 3 0.0 9 0.0 1 0.0 7 0.0 2 0.0 4 0.0 6 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9 627.5 965.2 1014.7 1061.2	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332 4208 5048 5048 5880	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86 er 1.47 er 1.24 er 1.08	Volume (m³) 0 0.0 0 0.0 8 0.0 3 0.0 5 0.0 3 0.0 9 0.0 1 0.0 7 0.0 2 0.0 4 0.0 6 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9 627.5 965.2 1014.7 1061.2	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332 4208 5048 5048 5880	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86 er 1.47 er 1.24 er 1.08	Volume (m³) 0 0.0 0 0.0 8 0.0 3 0.0 5 0.0 3 0.0 9 0.0 1 0.0 7 0.0 2 0.0 4 0.0 6 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9 627.5 965.2 1014.7 1061.2	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332 4208 5048 5048 5880	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86 er 1.47 er 1.24 er 1.08	Volume (m³) 0 0.0 0 0.0 8 0.0 3 0.0 5 0.0 3 0.0 9 0.0 1 0.0 7 0.0 2 0.0 4 0.0 6 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9 627.5 965.2 1014.7 1061.2	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332 4208 5048 5048 5880	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86 er 1.47 er 1.24 er 1.08	Volume (m³) 0 0.0 0 0.0 8 0.0 3 0.0 5 0.0 3 0.0 9 0.0 1 0.0 7 0.0 2 0.0 4 0.0 6 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9 627.5 965.2 1014.7 1061.2	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332 4208 5048 5048 5880	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86 er 1.47 er 1.24 er 1.08	Volume (m³) 0 0.0 0 0.0 8 0.0 3 0.0 5 0.0 3 0.0 9 0.0 1 0.0 7 0.0 2 0.0 4 0.0 6 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9 627.5 965.2 1014.7 1061.2	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332 4208 5048 5048 5880	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86 er 1.47 er 1.24 er 1.08	Volume (m³) 0 0.0 0 0.0 8 0.0 3 0.0 5 0.0 3 0.0 9 0.0 1 0.0 7 0.0 2 0.0 4 0.0 6 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9 627.5 965.2 1014.7 1061.2	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332 4208 5048 5048 5880	
	Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	(mm/hr) er 57.12 er 34.23 er 25.31 er 20.37 er 14.86 er 11.82 er 9.86 er 8.49 er 6.67 er 4.71 er 3.33 er 2.60 er 1.86 er 1.47 er 1.24 er 1.08	Volume (m³) 0 0.0 0 0.0 8 0.0 3 0.0 5 0.0 3 0.0 9 0.0 1 0.0 7 0.0 2 0.0 4 0.0 6 0.0	Volume (m ³) 355.8 379.4 377.0 370.1 356.6 347.6 340.9 335.6 327.3 314.7 681.5 660.9 627.5 965.2 1014.7 1061.2	(mins) 74 132 190 250 366 484 600 718 950 1410 2080 2712 3332 4208 5048 5048 5880	

BWB Consulting Ltd								Page 3	3
5th Floor, Waterfront	t House								
35 Station Street								100	
Nottingham, NG2 3DQ								11111	-
Date 20/01/2022 10:53	3	Desig	ned by	/ Keitł	1.Alae	r		MICIO	J
File S Catchment_Q100		Check	-	, nerei	I.ALGC	, L		Drain	aqe
Innovyze			-	crol 20	120 1				
Innovyze		Sourc	e com	.101 20	20.1				
	Ra	infall	Deta	ils					
	Rainfall Mode	-1				FEI	H		
Return	Period (years					100			
FEH R	ainfall Versio					2013			
	Site Locatio Data Typ		51900 2	25600 S		0 2560(tchment			
	Summer Storn				ca	Ye			
	Winter Storm					Yes			
	Cv (Summer Cv (Winter					0.75			
Shorte	est Storm (mins					0.84			
	st Storm (mins					1008			
C	limate Change	010				+4(C		
	Tin	ne Area	a Diag	ram					
	Tota	al Area	(ha) 0	.815					
Time (mins) Area From: To: (ha)		Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	
0 4 0.200	0 4 8	0.200	8	12	0.200	12	16	0.215	

BWB Consulting Ltd			Page 4
5th Floor, Waterfront House			
35 Station Street			The second se
Nottingham, NG2 3DQ			Micro
Date 20/01/2022 10:53	Designed by Kei	th.Alger	Drainage
File S Catchment_Q100_40_FEH	Checked by		bidinidge
Innovyze	Source Control	2020.1	
	Model Details		
	MODEL DECAILS		
Storage is On	line Cover Level (m) 116.000	
Tank	or Pond Structur	<u>e</u>	
Inve	rt Level (m) 115.000)	
Depth (m) An	ea (m²) Depth (m) A	rea (m²)	
0.000	740.0 1.000	1176.0	
<u>Hydro-Brake</u>) Optimum Outflow	Control	
Uni	Reference MD-SHE-0	072-2300-1000-230	0
Desi	yn Head (m)	1.00	
Design	Flow (l/s) Flush-Flo™	2. Calculate	-
	Objective Minimis		
	Application	Surfac	
) Available ameter (mm)	Ye	s 2
	: Level (m)	115.00	-
Minimum Outlet Pipe Di		10	-
Suggested Manhole Di	ameter (mm)	120	0
Control P	oints Head (m)	Flow (l/s)	
Design Point (0	alculated) 1.000		
	Flush-Flo™ 0.307 Kick-Flo® 0.625		
Mean Flow over		2.0	
The hydrological calculations have Hydro-Brake® Optimum as specified.			
Hydro-Brake Optimum® be utilised th			
invalidated			
Depth (m) Flow (1/s) Depth (m) Flo	w (l/s) Depth (m) F	low (l/s) Depth (m) Flow (l/s)
0.100 1.9 1.200	2.5 3.000	3.8 7.0	
0.200 2.2 1.400 0.300 2.3 1.600	2.7 3.500 2.9 4.000	4.1 7.5 4.4 8.0	
0.400 2.3 1.800	3.0 4.500	4.6 8.5	
0.500 2.2 2.000	3.2 5.000	4.8 9.0	00 6.4
0.600 2.0 2.200	3.3 5.500	5.1 9.5	00 6.6
0.800 2.1 2.400 1.000 2.3 2.600	3.4 6.000 3.6 6.500	5.3 5.5	
	1	1	
©19	82-2020 Innovyze		

	g Ltd								Page 1
5th Floor, Wat	terfron	t Ho	use						
35 Station St									100
									A COLOR
· ·	NG2 3DQ								Micro
Date 20/01/202					-	oy Keit	h.Alg	er	Drainag
File S Catchme	ent_Q100	0_40	_FSR	. Chec	ked by	7			brainag
Innovyze				Sour	ce Cor	trol 2	020.1		
St	ummary o	of R	esults	for 10	00 year	r Retur	n Per	iod (+40%)	
		Stor	m	Max	Max	Max	Max	Status	
		Even	t	Level	Depth	Control	Volume	•	
				(m)	(m)	(l/s)	(m³)		
	4.5		-	115 065	0.065				
				115.265			209.7		
				115.339 115.413			274.0 339.7		
				115.483			404.5		
				115.521			440.2		
				115.545			463.4		
				115.577			494.2		
	480	min	Summer	115.598	0.598	2.3	514.9	ок	
				115.612			529.4		
				115.623			539.7		
				115.635			552.4		
				115.642			558.7		
				115.628 115.605			545.1 522.0		
				115.563			480.6		
				115.524			442.9		
				115.487			407.8		
	8640	min	Summer	115.452	0.452	2.3	375.2	ОК	
	10080	min	Summer	115.418	0.418	2.3	344.5	о к	
				115.295			235.1		
			Winter	115 377	0 3777			в ок	
	30	11111		110.077	0.577	2.3	307.3		
	30	10111		115.577	0.377	2.3	307.3		
		Stor		Rain				me-Peak	
			m		Floode	d Discha	arge Ti		
		Stor	m	Rain	Floode	d Discha	arge Ti me	me-Peak	
		Stor Even	m t	Rain	Floode Volume (m³)	d Discha Volu (m ³	arge Ti me	me-Peak	
	15	Stor Even min	m t	Rain (mm/hr)	Floode Volume (m ³)	d Discha volu (m ³	arge Ti me)	me-Peak (mins)	
	15 30 60	Stor Even min min min	m t Summer Summer Summer	Rain (mm/hr) 138.993	Flooded Volume (m ³) 0. 0.	d Discha • Volu (m ³ 0 1 ⁷ 0 1{	arge Ti me) 70.4	me-Peak (mins) 31	
	15 30 60 120	Stor Even min min min	m t Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148	Floode Volume (m ³) 0. 0. 0. 0.	d Discha volu (m ³ 0 1 0 1 0 3 0 3 0 3 0 3 0 3	arge Ti me) 70.4 39.8 23.1 58.6	me-Peak (mins) 31 45 74 134	
	15 30 60 120 180	Stor Even min min min min	m t Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042	Floode Volume (m ³) 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 0 1 0 3 0 3 0 3 0 3 0 3	arge Ti me) 70.4 39.8 23.1 58.6 77.1	me-Peak (mins) 31 45 74 134 194	
	15 30 60 120 180 240	Stor Even min min min min min min	m t Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 0 3 0 3 0 3 0 3 0 3	arge Ti me) 70.4 39.8 23.1 58.6 77.1 77.0	me-Peak (mins) 31 45 74 134 194 254	
	15 30 60 120 180 240 360	Stor Even min min min min min min	n t Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 0 3 0 3 0 3 0 3 0 3 0 3 3	arge Ti me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8	me-Peak (mins) 31 45 74 134 194 254 372	
	15 30 60 120 180 240 360 480	Stor Even min min min min min min min	n t Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3	arge Ti me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8 54.7	me-Peak (mins) 31 45 74 134 194 254 372 492	
	15 30 60 120 180 240 360 480 600	Stor Even min min min min min min min	n t Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3	arge Ti me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8 54.7 57.4	ime-Peak (mins) 31 45 74 134 194 254 372 492 610	
	15 30 60 120 180 240 360 480 600 720	Stor Even min min min min min min min min min	m t Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3	arge Ti me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8 54.7	me-Peak (mins) 31 45 74 134 194 254 372 492	
	15 30 60 120 180 240 360 480 600 720 960	Stor Even min min min min min min min min min	m t Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3	arge Ti me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8 54.7 57.4 50.5	me-Peak (mins) 31 45 74 134 194 254 372 492 610 730	
	15 30 60 120 180 240 360 480 600 720 960 1440	Stor Even min min min min min min min min min mi	n Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3	arge Ti me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8 54.7 57.4 50.5 38.2	ime-Peak (mins) 31 45 74 134 194 254 372 492 610 730 968	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160	stor even min min min min min min min min min mi	n t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 17 0 18 0 37 0 37 0 37 0 37 0 37 0 37 0 37 0 37	arge Ti me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8 54.7 57.4 50.5 38.2 19.4 30.7 56.9	me-Peak (mins) 31 45 74 134 194 254 372 492 610 730 968 1444	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	Stor Even min min min min min min min min min mi	n Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3	arge Ti me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8 54.7 57.4 50.5 38.2 19.4 30.7 56.9 27.9	ime-Peak (mins) 31 45 74 134 194 254 372 492 610 730 968 1444 2160 2424 3080	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	stor even min min min min min min min min min mi	n Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 ⁷ 0 3	arge T3 me) 70.4 39.8 23.1 58.6 77.1 57.4 50.5 38.2 19.4 30.7 56.9 27.9 03.7	me-Peak (mins) 31 45 74 134 194 254 372 492 610 730 968 1444 2160 2424 3080 3864	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Stor Even min min min min min min min min min mi	n Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 ⁷ 0 3	arge T3 me) 70.4 39.8 23.1 58.6 77.1 57.4 50.5 38.2 19.4 30.7 57.9 27.9 27.9 23.7 39.6	ime-Peak (mins) 31 45 74 134 194 254 372 492 610 730 968 1444 2160 2424 3080 3864 4624	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	Stor Even min min min min min min min min min mi	n Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 ⁷ 0 3	arge T3 me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8 54.7 57.4 50.5 38.2 19.4 30.7 57.9 27.9 27.9 23.7 39.6 58.7	ime-Peak (mins) 31 45 74 134 194 254 372 492 610 730 968 1444 2160 2424 3080 3864 4624 5448	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Stor Even min min min min min min min min min mi	n t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110 0.977	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 ⁷ 0 3	arge Ti me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8 54.7 57.4 50.5 38.2 19.4 30.7 57.9 27.9 23.7 39.6 58.7 91.8	me-Peak (mins) 31 45 74 134 194 254 372 492 610 730 968 1444 2160 2424 3080 3864 4624 5448 6248	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	stor even min min min min min min min min min mi	n t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 138.993 90.986 56.713 34.148 25.042 19.977 14.486 11.532 9.655 8.347 6.629 4.783 3.446 2.728 1.960 1.549 1.289 1.110	Flooder Volume (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	d Discha volu (m ³ 0 1 ⁷ 0 3	arge T3 me) 70.4 39.8 23.1 58.6 77.1 77.0 71.8 54.7 57.4 50.5 38.2 19.4 30.7 57.9 27.9 27.9 23.7 39.6 58.7	ime-Peak (mins) 31 45 74 134 194 254 372 492 610 730 968 1444 2160 2424 3080 3864 4624 5448	

	ing Ltd						Page 2
5th Floor,	Waterfront House						
35 Station	Street						-
Nottingham,							A COLOR OF
5 .		Der			- 71		MICLO
Date 20/01/			signed by	y keiti	n.Al	ger	Drainagr
File S Cato	chment_Q100_40_FSR	Che	ecked by				brannage
Innovyze		Soi	urce Con	trol 20	020.	1	
	Summary of Result	ts for 3	100 year	Retur	n Pe	riod (+40%)	_
	Storm	Max			lax	Status	
	Event		-				
		(m)	(m) (l	./s) (:	m³)		
	60 min Winter	115.458	0.458	2.3 3	81.2	ОК	
	120 min Winter			2.3 4			
	180 min Winter	115.578	0.578	2.3 4	95.4	ОК	
	240 min Winter			2.3 5			
	360 min Winter			2.3 5			
	480 min Winter			2.3 5		ОК	
	600 min Winter			2.3 6 2.3 6			
	720 min Winter 960 min Winter					O K Flood Risk	
	1440 min Winter					Flood Risk	
	2160 min Winter					Flood Risk	
	2880 min Winter	115.694	0.694	2.3 6	12.0	ОК	
	4320 min Winter			2.3 5			
	5760 min Winter			2.3 5			
	7200 min Winter			2.3 4			
	8640 min Winter 10080 min Winter						
	Storm Event	Rain (mm/hr	Flooded :) Volume (m³)		ne	Time-Peak (mins)	
			(m-)	(m-)			
	60 min Winte	er 56.71	.3 0.0	35	4.0	74	
	120 min Winte	er 34.14	18 0.0	37	9.4	132	
	120 min Winte 180 min Winte	er 34.14 er 25.04	18 0.0 12 0.0	37 37	9.4 7.5	132 190	
	120 min Winte 180 min Winte 240 min Winte	er 34.14 er 25.04 er 19.97	18 0.0 12 0.0 77 0.0	37 37 37	9.4 7.5 2.1	132 190 250	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte	er 34.14 er 25.04 er 19.97 er 14.48	18 0.0 12 0.0 77 0.0 86 0.0	37 37 37 36	9.4 7.5 2.1 0.0	132 190 250 366	
	120 min Winte 180 min Winte 240 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53	18 0.0 12 0.0 17 0.0 16 0.0 18 0.0 19 0.0 10 0.0 10 0.0 10 0.0	37 37 37 36 35	9.4 7.5 2.1	132 190 250	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65	18 0.0 12 0.0 7 0.0 86 0.0 82 0.0 85 0.0	37 37 36 35 34	9.4 7.5 2.1 0.0 0.4	132 190 250 366 484	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62	18 0.0 12 0.0 17 0.0 18 0.0 19 0.0 19 0.0 10 10 11 10 12 0.0 13 0.0 14 0.0 15 0.0 17 0.0 19 0.0	37 37 36 35 34 33 32	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7	132 190 250 366 484 600 718 950	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 4.78	18 0.0 12 0.0 12 0.0 12 0.0 16 0.0 17 0.0 17 0.0 19 0.0 13 0.0	37 37 36 35 34 33 32 31	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6	132 190 250 366 484 600 718 950 1410	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 4.78 er 3.44	18 0.0 12 0.0 12 0.0 12 0.0 16 0.0 17 0.0 17 0.0 19 0.0 10 0.0 11 0.0 12 0.0 13 0.0 14 0.0	37 37 36 35 34 33 32 31 67	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8	132 190 250 366 484 600 718 950 1410 2080	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 4.78 er 3.44 er 2.72	18 0.0 12 0.0 12 0.0 12 0.0 16 0.0 17 0.0 17 0.0 19 0.0 13 0.0 14 0.0 15 0.0 16 0.0 18 0.0	37 37 36 35 34 33 32 31 67 65	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2	132 190 250 366 484 600 718 950 1410 2080 2716	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 4.78 er 3.44 er 2.72 er 1.96	48 0.0 42 0.0 47 0.0 36 0.0 32 0.0 35 0.0 47 0.0 29 0.0 33 0.0 46 0.0 28 0.0 50 0.0	37 37 36 35 34 33 32 31 67 65 61	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2 1.7	132 190 250 366 484 600 718 950 1410 2080 2716 3416	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 4320 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 3.44 er 2.72 er 1.96 er 1.54	48 0.0 42 0.0 47 0.0 36 0.0 32 0.0 35 0.0 47 0.0 29 0.0 33 0.0 46 0.0 28 0.0 50 0.0 49 0.0	37 37 36 35 34 33 32 31 67 65 61 101	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2 1.7 1.4	132 190 250 366 484 600 718 950 1410 2080 2716	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 3.44 er 2.72 er 1.96 er 1.54 er 1.28 er 1.28	48 0.0 42 0.0 47 0.0 36 0.0 32 0.0 35 0.0 47 0.0 29 0.0 33 0.0 46 0.0 28 0.0 50 0.0 39 0.0 39 0.0 0.0 0.0	37 37 36 35 34 33 32 31 67 65 61 101	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2 1.7 1.4 1.4	132 190 250 366 484 600 718 950 1410 2080 2716 3416 4272 5112 5888	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 3.44 er 2.72 er 1.96 er 1.54 er 1.28 er 1.28	48 0.0 42 0.0 47 0.0 36 0.0 32 0.0 35 0.0 47 0.0 29 0.0 33 0.0 46 0.0 28 0.0 50 0.0 39 0.0 39 0.0 0.0 0.0	37 37 36 35 34 33 32 31 67 65 61 101 105 108	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2 1.7 1.4 1.4 3.6	132 190 250 366 484 600 718 950 1410 2080 2716 3416 4272 5112	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 3.44 er 2.72 er 1.96 er 1.54 er 1.28 er 1.28	48 0.0 42 0.0 47 0.0 36 0.0 32 0.0 35 0.0 47 0.0 29 0.0 33 0.0 46 0.0 28 0.0 50 0.0 39 0.0 39 0.0 0.0 0.0	37 37 36 35 34 33 32 31 67 65 61 101 105 108	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2 1.7 1.4 1.4 3.6	132 190 250 366 484 600 718 950 1410 2080 2716 3416 4272 5112 5888	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 3.44 er 2.72 er 1.96 er 1.54 er 1.28 er 1.28	48 0.0 42 0.0 47 0.0 36 0.0 32 0.0 35 0.0 47 0.0 29 0.0 33 0.0 46 0.0 28 0.0 50 0.0 39 0.0 39 0.0 0.0 0.0	37 37 36 35 34 33 32 31 67 65 61 101 105 108	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2 1.7 1.4 1.4 3.6	132 190 250 366 484 600 718 950 1410 2080 2716 3416 4272 5112 5888	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 3.44 er 2.72 er 1.96 er 1.54 er 1.28 er 1.28	48 0.0 42 0.0 47 0.0 36 0.0 32 0.0 35 0.0 47 0.0 29 0.0 33 0.0 46 0.0 28 0.0 50 0.0 39 0.0 39 0.0 0.0 0.0	37 37 36 35 34 33 32 31 67 65 61 101 105 108	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2 1.7 1.4 1.4 3.6	132 190 250 366 484 600 718 950 1410 2080 2716 3416 4272 5112 5888	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 3.44 er 2.72 er 1.96 er 1.54 er 1.28 er 1.28	48 0.0 42 0.0 47 0.0 36 0.0 32 0.0 35 0.0 47 0.0 29 0.0 33 0.0 46 0.0 28 0.0 50 0.0 39 0.0 39 0.0 0.0 0.0	37 37 36 35 34 33 32 31 67 65 61 101 105 108	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2 1.7 1.4 1.4 3.6	132 190 250 366 484 600 718 950 1410 2080 2716 3416 4272 5112 5888	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 3.44 er 2.72 er 1.96 er 1.54 er 1.28 er 1.28	48 0.0 42 0.0 47 0.0 36 0.0 32 0.0 35 0.0 47 0.0 29 0.0 33 0.0 46 0.0 28 0.0 50 0.0 39 0.0 39 0.0 0.0 0.0	37 37 36 35 34 33 32 31 67 65 61 101 105 108	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2 1.7 1.4 1.4 3.6	132 190 250 366 484 600 718 950 1410 2080 2716 3416 4272 5112 5888	
	120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	er 34.14 er 25.04 er 19.97 er 14.48 er 11.53 er 9.65 er 8.34 er 6.62 er 3.44 er 2.72 er 1.96 er 1.54 er 1.28 er 1.28	48 0.0 42 0.0 47 0.0 36 0.0 32 0.0 35 0.0 47 0.0 29 0.0 33 0.0 46 0.0 28 0.0 50 0.0 39 0.0 39 0.0 0.0 0.0	37 37 36 35 34 33 32 31 67 65 61 101 105 108	9.4 7.5 2.1 0.0 0.4 3.1 7.1 7.7 4.6 9.8 7.2 1.7 1.4 1.4 3.6	132 190 250 366 484 600 718 950 1410 2080 2716 3416 4272 5112 5888	

							Da
BWB Consulting Ltd						· · · · ·	Page 3
5th Floor, Waterfront House							1
35 Station Street							
Nottingham, NG2 3DQ							Micro
Date 20/01/2022 10:55	Designed by Keith.Alger						Drainago
File S Catchment_Q100_40_FSR	Checke	-					brainagi
Innovyze	Source	e Cont	crol 20	20.1			
Ra	infall	Deta	ils				
Rainfall Model Return Period (years) Region Engl M5-60 (mm) Ratio R Summer Storms	2	0.000	Shortes Longes	Cv Cv t Stor t Stor	(Winte m (min	r) 0.75 r) 0.84 s) 1 s) 1008	- 0 0 5 0
	<u>ne Area</u> al Area	-					
Time (mins) Area Time (mins)			(mins)			(mins)	
From: To: (ha) From: To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0 4 0.200 4 8	3 0.200	8	12	0.200	12	16	0.215

BWB Consulting Ltd			Page 4
5th Floor, Waterfront House			
35 Station Street			and the second second
Nottingham, NG2 3DQ			Micro
Date 20/01/2022 10:55	Designed by Keit	h.Alger	Drainage
File S Catchment_Q100_40_FSR	Checked by		brainage
Innovyze	Source Control 2	020.1	
	Model Details		
	MODEL DECALLS		
Storage is O	line Cover Level (m)	116.000	
Tank	or Pond Structure	2	
Inve	rt Level (m) 115.000		
Depth (m) A	ea (m²) Depth (m) Ar	rea (m²)	
0.000	740.0 1.000	1176.0	
<u>Hydro-Brake</u>	Optimum Outflow	Control	
Uni	Reference MD-SHE-00)72-2300-1000-2300)
Desi	yn Head (m)	1.000	
Design	Flow (l/s) Flush-Flo™	2.3 Calculated	-
	Objective Minimise		
	Application	Surface	
	o Available ameter (mm)	Ye: 72	
	Level (m)	115.000	
Minimum Outlet Pipe Di		100	-
Suggested Manhole Di	ameter (mm)	1200)
Control F	oints Head (m)	Flow (l/s)	
Design Point (alculated) 1.000		
	Flush-Flo™ 0.307 Kick-Flo® 0.625	2.3 1.9	
Mean Flow over		2.0	
The hydrological calculations have Hydro-Brake® Optimum as specified.			
Hydro-Brake Optimum® be utilised th			
invalidated			
Depth (m) Flow (1/s) Depth (m) Flo	w (l/s) Depth (m) Fl	ow (l/s) Depth (n	n) Flow (l/s)
0.100 1.9 1.200	2.5 3.000	3.8 7.00	
0.200 2.2 1.400 0.300 2.3 1.600	2.7 3.500 2.9 4.000	4.1 7.50 4.4 8.00	
0.400 2.3 1.800	3.0 4.500	4.6 8.50	
0.500 2.2 2.000	3.2 5.000	4.8 9.00	00 6.4
0.600 2.0 2.200 0.800 2.1 2.400	3.3 5.500 3.4 6.000	5.1 9.50 5.3	00 6.6
1.000 2.3 2.600	3.6 6.500	5.5	
	I	I	
	00 0000 T==		
©19	82-2020 Innovyze		

Appendix 7: Surface Water Drainage Drawing

Copyright BWB Consulting Ltd

\bwbbirfil01\birmingham\Birmingham\BMWBMW3171_Upper Heyford, Oxfordshire\02. Project Delivery\01. WIP\Drawings\UHO-BWB-ZZ-XX-DR-CD-002-SW Drainage Plan_S2-P02.dwg

Notes

- Do not scale this drawing. All dimensions must be checked/ verified on site. If in doubt ask.
- 2. This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.
- 3. All dimensions in millimetres unless noted otherwise. All levels in metres unless noted otherwise.
- 4. Any discrepancies noted on site are to be reported to the engineer immediately.
- 5. Indicative surface water drainage based upon Parameters Plan produced by Edge, reference: 374_P01.
- 6. Infiltration rates are based upon investigation undertaken by Exploration & testing Associate, project number: C10194
- 7. Drainage features outlines are indicative only.
- 8. The drawing is not to be used for construction with all drainage features and associated levels being confirmed as part of detailed design.
- Impermeable areas quoted based upon 65% of developable area being impermeable with a further 10% to account for future Urban Creep.
- This drawing is to be read in conjunction with the Sustainable Drainage Statement, reference: UHO-BWB-ZZ-XX-RP-CD-0001_SDS

Legend			
	Northern Catchment		
	Central Catchment		
	Southern Catchment		
	Proposed Outfall		
	SuDS Basin		
	SuDS Maintenance	e Buff	er
P2 20.01.22 Updated	to Defloat Commente	KA	OT
P1 20.12.21 Prelimina	-	KA	
Rev Date Details of De	f issue / revision	Dr	v Rev
A CAF GROU	Birmingham 01 Birmingham 01 Leeds 0113 23 London 020 74 Manchester 01 Nottingham 01 www.bwbconsulting	3 8000 07 3879 61 233 4 15 924 1	260
Client			
Richboro	ugh Estates L	td	
Project Title			
Heyford I of Camp	Park, Land No Road	rth	
Drawing Title Outline S Drainage	ourface Water		
Drawn: K.Alger BWB Ref: BMW317 Drawing Status PRELIMINA		A1: 1:1	000
Project - Originator - Zon	IC Y ie - Level - Type - Role - Number Z-XX-DR-CD-0002	Status	Rev P02

Appendix 8: Thames water Pre-development Enquiry Response

Leigh Screen

BWB Consulting Ltd 35 Livery Street Birmingham B3 2PB Wastewater pre-planning Our ref DS6090860

24 December 2021

Pre-planning enquiry: Confirmation of sufficient capacity (Foul Water)

Site: Upper Heyford, Chilgrove Drive, Heyford Park, Cherwell, Oxfordshire, OX25 5LX

Dear Leigh,

Thank you for providing information on your development.

Proposed General Housing (152) Proposed FW discharge by gravity into FWMH SP49259901 No information on surface water discharge, should follow disposal hierarchy

We have completed the assessment of the foul water flows based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

Foul Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent foul water sewer network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

Surface Water

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you have followed the sequential approach to the disposal of surface water and considered all practical means.

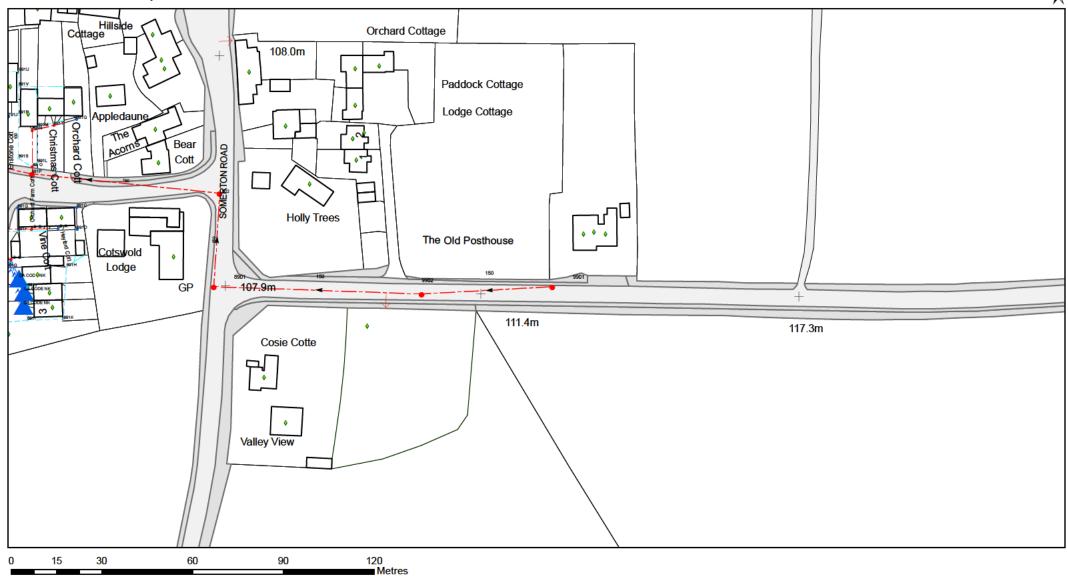
The disposal hierarchy being:

- 1. rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
- 2. rainwater infiltration to ground at or close to source
- 3. rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4. rainwater discharge direct to a watercourse (unless not appropriate)
- 5. controlled rainwater discharge to a surface water sewer or drain
- 6. controlled rainwater discharge to a combined sewer

Where connection to the public sewerage network is still required to manage surface water flows, we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

Please see the attached 'Planning your wastewater' leaflet for additional information.

What happens next?


Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you have any further questions, please contact me on 0774 764 6498.

Kind Regards,

Long Tran Developer Services – Adoptions Engineer, Sewer Adoptions Team Tel: 0800 009 3921 Get advice on making your sewer connection correctly at <u>connectright.org.uk</u> Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>

Thames Water

The position of any boundary or apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. No liability of any kind whatsoever is accepted by Thames Water for any error or omission.

 Printed At (A4)
 :1:1250

 Printed By
 :DREES3

 Print Date
 :29/05/2020

 Map Centered On:449972,225928
 Grid Reference

 Grid Reference
 :SP4925

DS6072974

www.bwbconsulting.com