

PRP Northampton Catherine House Harborough Road Brixworth Northampton NN6 9BX

Telephone: 01604 889870

northampton@prp.uk.com www.prp.uk.com

# Foul and Storm Water Drainage Strategy

## for

### Land off 127 Ruscote Avenue, Banbury, OX16 2NL

for:

Paloma I Propco Ltd 3rd Floor, Liberation House Castle Street St Helier Jersey JE1 1BL

| Date             | Issued                                                     | Revision |
|------------------|------------------------------------------------------------|----------|
| 12 November 2021 | For Planning                                               |          |
| Reference:       | 63364                                                      |          |
| Prepared by:     | Myles Sturgess - Civil Engineer                            |          |
| Approved by:     | Barry Smith<br>B.Eng. C.Eng. M.I.Struct.E. FGS<br>Director |          |
|                  |                                                            |          |

#### EXECUTIVE SUMMARY

This drainage strategy has been developed for Jacobs Douwe Egberts (JDE) in support of their planning application for the proposed Starbucks café drive through development at land off 127 Ruscote Avenue, Banbury, OX16 2NL.

The report provides a description of the best means of providing surface water drainage to the development using the hierarchy of SuDS alternatives.

A SuDS scheme is proposed incorporating type C permeable paving, catchpits, and flow control device to restrict the discharge rate. The type C permeable paving will provide sufficient storage for all storms up to and including a 1 in 100 year plus 40% for climate change. Flows will be restricted by means of a flow control device to an existing surface water ditch north-east of the site. The discharge rate will be restricted to 25.3l/s which provides 40% betterment to the existing brownfield rate. The existing ditch is located to the north-east of the proposed Starbucks café development, adjacent to Ruscote Avenue (A422). Permission will be required on third party land in these areas in order to form the surface water drainage run to the outfall connection into the existing ditch via a new headwall. The type C permeable paving constructed below all of the parking bays will provide treatment to the surface water runoff. Initial flood exceedance can be contained within the site with further flooding shown to not impact upon neighbouring properties.

In order to ensure the surface water drainage scheme remains effective, a maintenance plan is proposed. The key here is to prevent silt and the like entering the proposed drainage system which will be achieved with catchpits situated upstream of the orifice plate.

A Unilog retaining wall system has been proposed along the proposed parking bays and the proposed drive through road in the north-west side of Starbucks. This will protect the site against overland flows from the adjacent plot of land, preventing flows from entering the site. Proposed road gullies, yard gullies and drainage channels located at the proposed levels low points will pick up any additional flows and prevent runoff from escaping.

In light of all of the above, it can be seen that SuDS principles have been fully taken into account for the proposed surface water drainage system.

Foul drainage from the proposed Starbucks development will discharge into the Thames Water public foul sewer via a junction connection. The proposed foul junction connection is located to the north-east of the proposed development, close to the existing surface water ditch described above.

| CONTE | ENTS                                                     | Page |
|-------|----------------------------------------------------------|------|
| 1.    | Introduction                                             | 4    |
| 2.    | The Scope of the Assessment                              | 5    |
| 3.    | Existing Conditions and the Local Environment            | 6    |
| 4.    | The Development Proposals                                | 7    |
| 5.    | Site Investigations                                      | 8    |
| 6.    | Assessment of Present and Future and Surface Water Flows | 9    |
| 7.    | Maintenance of the Surface Water Drainage System         | 11   |
| 8.    | Foul Water Drainage                                      | 12   |
| 9.    | Conclusions and Recommendations                          | 13   |

### APPENDICES

| Appendix I   | Architectural Layout                 |
|--------------|--------------------------------------|
| Appendix II  | Proposed Preliminary Drainage Layout |
| Appendix III | MicroDrainage Calculations           |
| Appendix IV  | Drainage Maintenance Schedule        |
| Appendix V   | Thames Water Asset Plan              |
| Appendix VI  | General Conditions                   |

### 1. INTRODUCTION

- 1.1 This drainage strategy has been prepared on the instruction of Jacobs Douwe Egberts (JDE) in support of the planning application for the proposed drive through Starbucks café development and accompanying amenities on the land off 127 Ruscote Avenue, Banbury.
- 1.2 At the time of writing this report the site was currently occupied by a car park taking up the southern and central portions of the site, with an exit onto Ruscote Avenue along the north-west boundary.
- 1.3 The purpose of the report is to establish the best means of providing surface and foul water drainage to the new development taking into account statutory requirements.
- 1.4 References to the left and right are taken as viewing the site from the front. The front is taken to be the elevation facing the existing central car parking area where the proposed Starbucks café drive through will be located.
- 1.5 The appendices to this report are:

| Appendix I   | Architectural Layout                                  |
|--------------|-------------------------------------------------------|
| Appendix II  | Proposed Preliminary Surface and Foul Drainage Layout |
| Appendix III | MicroDrainage Calculations – Proposed Development     |
| Appendix IV  | Drainage Maintenance Schedule                         |
| Appendix V   | Thames Water Asset Plan                               |
| Appendix VI  | General Conditions                                    |
|              |                                                       |

### 2. <u>THE SCOPE OF THE ASSESSMENT</u>

- 2.1 The purpose of this strategy is to investigate and make recommendation as to the best way to deal with the discharge of foul and surface water drainage from the proposed Starbucks café drive through development and associated car parking spaces and landscaped areas on site, located adjacent to Ruscote Avenue.
- 2.2 In order to achieve the above, the following have been carried out:
  - Investigations into existing drainage systems to the site
  - Assessment of future and present surface water flows
  - Assessment of future foul water flows
  - Assessment of the permeability of underlying geology
- 2.3 The following specific additional considerations will be applied to the surface water drainage design:
  - SuDS principles are to be adopted generally
  - Allowances for climate change are to be incorporated into the scheme
  - A surface water drainage layout and calculations are to be provided
  - A maintenance plan

The purpose of the above is to contain as far as is reasonably practical surface water drainage within the site and to not have an adverse effect on neighbouring properties during exceptional rainfall events.

2.4 A foul water drainage layout will be produced showing how the foul drainage will be discharged.

### 3. EXISTING CONDITIONS AND THE LOCAL ENVIRONMENT

- 3.1 The site is relatively rectangular in shape. The site has an area of approximately 0.35 hectares.
- 3.2 The existing land use around the site includes existing parking spaces, residential houses, factories and commercial stores. The site is located at grid reference of 444908, 241491.
- 3.3 The site is currently a combination of an undeveloped piece of land as well as an existing car parking area with an existing access to Ruscote Avenue.
- 3.4 The existing site topography shows that the existing levels adjacent and around the site boundary vary from highest point of 103.930 m AOD at south-west direction, to the lowest point of the site at 99.670 m AOD located in the north-east corner of the existing access.
- To the north-east of the site there is a large surface water ditch running from west to east. This ditch is approximately 2.5m deep with the top of the ditch between 97.9 96.9m AOD and the bottom between 95.3 94.8m AOD. A short section of the ditch has been culverted to facilitate access to the extended northern portion of the site.
- 3.6 The immediate surrounding land uses are:

| Direction | Description                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| North     | Ruscote Avenue road, ALDI, McDonalds                                                                                                |
| South     | Nursery Drive road, Residential houses, Cemetery                                                                                    |
| East      | Factories & commercial stores including Kenco coffee<br>company, Jacobs Douwe Egberts coffee company,<br>Waitrose, B&Q and Homebase |
| West      | Ruscote Avenue, Residential houses, Primary school                                                                                  |

### 4. THE DEVELOPMENT PROPOSALS

- 4.1 It is proposed to construct a new drive through Starbucks Café along with amenities such as an access roadway, staff and visitor car parking spaces including disabled parking bays, pedestrian access, HGV access for deliveries on site and soft landscaping.
- 4.2 The architectural layout is shown in appendix I.

### 5. <u>SITE INVESTIGATIONS</u>

- 5.1 Geological sources from the site investigation report (Hydrock, July 2016) which was highlighted in T.R. Collier & Associates Limited Flood Risk Assessment report, indicated that as a result of the site's historic development, the depth of made ground/topsoil varies between 0.3-0.9m. The superficial deposit that was found on this site was Alluvium, which was encountered across the northern portion of the site at depths between 0.3-2.8m below ground level. Bedrock-wise, the remainder of the site is underlain by River Terrace formation, to a depth between 0.3-8.0m below ground level. The entire site is underlain by the Charmouth Mudstone Formation. The borehole logs indicated a layer of stiff grey clay transitioning to a weak laminated grey mudstone from a depth of 0.55m below ground level to a depth of at least 20m below ground level.
- 5.2 Groundwater was mostly encountered at the transition from the superficial deposits to the Charmouth Mudstone formation, with water depths in groundwater monitoring pipes varying between 0.36m 5.00m below ground level.
- 5.3 Given the likely make up of superficial deposits and the likely presence of ground water at shallow depth it is unlikely that soakaways will be suitable for this development.
- 5.4 The above predictions will be confirmed by the site specific ground investigation which will be conducted before the final design is completed. If these site investigations reveal that soakaways are a viable option, this strategy will be amended accordingly.

### 6. ASSESSMENT OF PRESENT AND FUTURE SURFACE WATER FLOWS

- 6.1 The area where the new Starbucks building and amenities are to be constructed is part of an undeveloped field and part of existing car parking bays.
- 6.2 The hierarchy of surface water disposal as outlined in the building regulations is as follows:
  - Soakaways
  - Discharge to a watercourse at an appropriate rate
  - Discharge to a sewer at an appropriate rate
- 6.3 Due to the makeup of the superficial deposits and the presence of ground water at shallow depths, soakaways are considered unsuitable for this development.
- 6.4 An existing ditch is available to the north-east of the development and would be utilised as the proposed surface water outfall, however this would require laying drainage within third party land. As this draining route is across third party land, permission to use this route will be required.
- 6.5 Thames Water sewer records plans show that there are some existing surface water sewers available to the north-east of the site, close to the existing ditch along Ruscote Avenue, including a rising main running nearby the existing access of the site in the road and a gravity drain running further east in the road, further away from the site. However, this will not be utilised as the proposed surface water network from the site will discharge into the existing ditch instead.
- 6.6 Type C permeable paving has a sufficient storage volume to accommodate all storms up to and including a 1 in 100 year storm plus 40% for climate change. The permeable paving will provide attenuation capacity at a depth of 0.450m in the event of an exceptional storm. No above ground flooding will occur for a flood event of this magnitude.
- 6.7 Flows will be restricted by means of a flow control device to an existing surface water ditch north-east of the site. The discharge rate will be restricted to 25.3l/s which provides 40% betterment to the existing brownfield rate. This discharge rate calculation of the existing (Brownfield) runoff compared to the new development runoff is demonstrated in Appendix III as part of the drainage calculations.

- 6.8 Type C permeable paving will be provided within all of the car parking bays and a part of the proposed road. These systems will provide treatment to the surface water runoff reducing the presence of hydrocarbons, heavy metals and other pollutants.
- 6.9 The outline drainage design is included in appendix II. This is supported by the MicroDrainage calculations demonstrating the feasibility of the system (appendix III). A Thames Water sewer records plan is provided in appendix V which shows the location of the ditch into which the surface water will discharge.
- 6.10 Although no above ground flooding occurs for a 1 in 100 year storm event plus 40% for climate change, exceedance flows for exceptional rainfall events were considered. As a result of this we comment as follows:
  - The type C permeable paving will provide storage for all storms up to and including 1 in 100 year storm plus 40% for climate change. In the event of exceedance of the surface water drainage system occurring during an exceptional rainfall event, the water would pond back into the permeable paving and the spare capacity within the attenuation. Should the permeable paving sub-base become completely saturated, water would pond above ground within the proposed road area and will be picked up by the road gullies and drainage channels specified at the low points.
  - In the exceedance event or in the event of a drainage blockage occurring at the flow control device the water will back up into the provided sewers, channel drainage and the porous paved storage.
  - The car parking areas and access roadway will be bounded by kerb upstands, including 300mm upstands where trief kerbs will be used for the HGV delivery vehicles, which will be able to contain a large degree of above ground water preventing any initial flooding from leaving the site.
  - Should this above ground storage be breached, overland flows will travel in a north easterly direction and will discharge into the carriageway of Ruscote Avenue. This road is bound by kerbs containing overland flows and thus the development will have no adverse effect on neighbouring properties.

### 7. MAINTENANCE OF THE SURFACE WATER DRAINAGE SYSTEM

- 7.1 It is recognised that the surface water drainage system has to be designed with its future maintenance being considered. In this context, there will be a management structure in place to cover various aspects of the development which will include the drainage requirements as set out herein.
- 7.2 In principle, by good design, it is intended to reduce the risk of the system becoming broken or otherwise failing to operate properly as the most effective way of reducing the need for active maintenance.
- 7.3 Before entry into the flow control chamber via an orifice and eventually outfall into the existing ditch, the drainage runs will be drained via catchpits with 300mm sumps. In this way, all silt will be prevented from entering the orifice plate thus ensuring that it is kept clear of silt and other debris.
- 7.4 Inspection access points will be provided which can be accessed and maintained.
- 7.5 A drainage maintenance schedule is included in appendix IV.
- 7.6 All the above will be developed by PRP and included in the O & M manuals and the health and safety file for the development.

### 8. FOUL WATER DRAINAGE

- 8.1 Foul drainage from the proposed Starbucks development will discharge via a junction connection on the Thames Water foul sewer located to the east of the proposed site, close by to the existing surface water ditch, and just before Ruscote Avenue, as indicated in the Thames Water sewer records plan provided in appendix V.
- 8.2 The existing foul sewer will need to be surveyed for depth and accurate position of the foul outfall to be confirmed.
- 8.3 The proposed drainage layout is shown in appendix II. The SVP positions are assumed at this stage but can be confirmed as part of the detailed design.

### 9. CONCLUSIONS AND RECOMMENDATIONS

- 9.1 It is intended to construct a new drive through Starbucks cafe with accompanying amenities.
- 9.2 The development should be allowed to proceed because:
  - The surface water runoff from the proposed development can be treated and subsequently discharged via a permeable paving system into an existing surface water ditch by means of a flow control device.
  - The foul water flows from the proposed development can be discharged into an existing Thames Water sewer via an existing junction connection.
  - The initial flood exceedance from exceptional rainfall events will be contained within the type C permeable paving structures with further flood exceedance being contained within the kerb bound car parking areas and access roadway. Should this be breached further flood exceedance has been shown to have no adverse effect on neighbouring properties.
  - A maintenance plan including prevention measures has been outlined for the development and will be finalised as part of the detailed design thus ensuring the longevity of the surface water drainage scheme.

### APPENDIX I

### ARCHITECTURAL LAYOUT





General Notes

The drawing is copyright of Darling Associates. This drawing shall not be scaled. All dimensions are in mm unless otherwise stated. All dimensions shall be checked on site prior to commencing the works and any discrepancies to be reported to Darling Associates. All works shall conform to the current edition of the building regulations and other statutory requirements. All materials and workmanship shall conform with the relevant British Standard specifications and codes of practice. If this drawing forms part of an application for planning permission, it shall not be used for any other purpose without the express permission of Darling Associates. This drawing may incorporate information from other professionals. Darling Associates cannot accept responsibility for the integrity and accuracy of such information. Any clarification and/or additions that are required appertaining to such information should be sought from the relevant profession or their appointment representative. representative.

Drawings, specifications and schedules are to be read in conjunction with the following where applicable: Employer's Requirements documents, Agreements to Lease, Structural Engineer's drawings and specifications, Civil Engineer's drawings and specifications, Survey Drawings, Party Wall/ Boundary Awards. Other specialist design consultant's requirements as appointed by the Main Contractor. Other specialist design sub-contractor's requirements as appointed by the Main Contractor.

| Notes | 5 |
|-------|---|
|-------|---|

KEY:

Site Boundary

Areas under applicant's ownership

0 12.5m 25m 37.5m 50m 62.5m 75m 87.5m 100m 112.5m 125 SCALE IN MM

| REV | NOTES               | DATE     | BY | AUTH |
|-----|---------------------|----------|----|------|
| PL1 | Issued for Planning | 14.07.21 | SL | GW   |
|     |                     |          |    |      |

## DARLING ASSOCIATES ARCHITECTS

1 Greencoat Row mail@darlingassociates.net London SW1P 1PQ www.darlingassociates.net UK +44 20 7630 0500

DRAWING STATUS Planning TITLE
Existing Site Location Plan PROJECT Ruscote Avenue, Banbury - Site 3 SCALE AT A1: SCALE AT A3: 1:1250 1:2500 JOB NO. DRAWING REV (01)-S3-S-000 PL1 16061

© Darling Associates Ltd.



![](_page_15_Picture_1.jpeg)

General Notes

The drawing is copyright of Darling Associates. This drawing shall not be scaled. All dimensions are in mm unless otherwise stated. All dimensions shall be checked on site prior to commencing the works and any discrepancies to be reported to Darling Associates. All works shall conform to the current edition of the building regulations and other statutory requirements. All materials and workmanship shall conform with the relevant British Standard specifications and codes of practice. If this drawing forms part of an application for planning permission, it shall not be used for any other purpose without the express permission of Darling Associates. This drawing may incorporate information from other professionals. Darling Associates cannot accept responsibility for the integrity and accuracy of such information. Any clarification and/or additions that are required appertaining to such information should be sought from the relevant profession or their appointment representative. representative.

Drawings, specifications and schedules are to be read in conjunction with the following where applicable: Employer's Requirements documents, Agreements to Lease, Structural Engineer's drawings and specifications, Civil Engineer's drawings and specifications, Survey Drawings, Party Wall/ Boundary Awards. Other specialist design consultant's requirements as appointed by the Main Contractor. Other specialist design sub-contractor's requirements as appointed by the Main Contractor.

Notes

## **Overall Site Area**

0.85 Acres

![](_page_15_Figure_8.jpeg)

Site Boundary

| 0 2500 50  | 00 7500 | 10000 | 12500 | 15000 | 17500 | 20000 | 22500 | 25000 |
|------------|---------|-------|-------|-------|-------|-------|-------|-------|
| SCALE IN M | Μ       |       |       |       |       |       |       |       |

| REV | NOTES               | DATE     | BY | AUTH |
|-----|---------------------|----------|----|------|
| PL1 | Issued for Planning | 14.07.21 | SL | GW   |
| PL2 | Issued for Planning | 27.07.21 | SL | GW   |

## DARLING ASSOCIATES ARCHITECTS

1 Greencoat Row mail@darlingassociates.net London SW1P1PQ www.darlingassociates.net UK +44 20 7630 0500

| DRAWING STATUS                     |                          |            |
|------------------------------------|--------------------------|------------|
| Planning                           |                          |            |
| TITLE<br>Existing BI               | ock Plan of Site         |            |
| <sup>project</sup><br>Ruscote Aver | nue, Banbury - Site 3    |            |
| scale at a1:<br><b>1:250</b>       | SCALE AT A3:<br>1:500    |            |
| јов no.<br>16061                   | drawing<br>(01)-S3-S-001 | REV<br>PL2 |

© Darling Associates Ltd.

![](_page_16_Figure_0.jpeg)

![](_page_16_Picture_1.jpeg)

General Notes

The drawing is copyright of Darling Associates. This drawing shall not be scaled. All dimensions are in mm unless otherwise stated. All dimensions shall be checked on site prior to commencing the works and any discrepancies to be reported to Darling Associates. All works shall conform to the current edition of the building regulations and other statutory requirements. All materials and workmanship shall conform with the relevant British Standard specifications and codes of practice. If this drawing forms part of an application for planning permission it chall not be used for any other purpose. forms part of an application for planning permission, it shall not be used for any other purpose without the express permission of Darling Associates. This drawing may incorporate information from other professionals. Darling Associates cannot accept responsibility for the integrity and accuracy of such information. Any clarification and/or additions that are required appertaining to such information should be sought from the relevant profession or their appointment representative.

Drawings, specifications and schedules are to be read in conjunction with the following where applicable: Employer's Requirements documents, Agreements to Lease, Structural Engineer's drawings and specifications, Civil Engineer's drawings and specifications, Survey Drawings, Party Wall/ Boundary Awards. Other specialist design consultant's requirements as appointed by the Main Contractor. Other specialist design sub-contractor's requirements as appointed by the Main Contractor.

Key Plan

![](_page_16_Picture_6.jpeg)

### Notes

16000 | 2000C 8000 | 12000 | 10000 14000 4000 6000 2000 SCALE BAR IN mm

| REV | NOTES               | DATE     | BY | AUTH |
|-----|---------------------|----------|----|------|
| PL1 | Issued for Planning | 14.07.21 | SL | GW   |
| PL2 | Issued for Planning | 27.07.21 | SL | GW   |
| PL3 | Issued for Planning | 11.08.21 | SL | GW   |
| PL4 | Issued for Planning | 03.11.21 | SL | GW   |
| PL5 | Issued for Planning | 11.11.21 | SL | GW   |

## DARLING ASSOCIATES ARCHITECTS

1 Greencoat Row mail@darlingassociates.net London SW1P 1DH www.darlingassociates.net UK +44 20 7630 0500

| Plan              |
|-------------------|
|                   |
| Banbury - Phase 3 |
| CALE AT A3:       |
|                   |

1.200 \_\_\_\_\_ JOB NO. 16061

N.I.S. DRAWING (03)-S3-S-002

© Darling Associates Ltd.

REV PL5

### APPENDIX II

### PROPOSED PRELIMINARY SURFACE AND FOUL DRAINAGE LAYOUT

![](_page_18_Figure_0.jpeg)

| age Legend: <ul> <li>Existing Surface Water</li> <li>Existing Foul</li> </ul> <ul> <li>New Surface Water</li> <li>New Foul</li> </ul> <ul> <li>New Foul</li> <li>Rodding Eye</li> </ul> <ul> <li>Road Gully</li> <li>Yard Gully</li> <li>Foul Gully</li> <li>ACO / Channel Drain</li> <li>150Ø Perforated Pipe</li> <li>Type C</li> <li>Permeable Paving</li> </ul> |                |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|
| <ul> <li>Existing Surface Water</li> <li>Existing Foul</li> <li>New Surface Water</li> <li>New Foul</li> <li>Rodding Eye</li> <li>Road Gully</li> <li>Yard Gully</li> <li>Foul Gully</li> <li>ACO / Channel Drain</li> <li>150Ø Perforated Pipe</li> <li>Type C<br/>Permeable Paving</li> </ul>                                                                     | ige Legend:    |                            |
| <ul> <li>Existing Foul</li> <li>New Surface Water</li> <li>New Foul</li> <li>Rodding Eye</li> <li>Road Gully</li> <li>Yard Gully</li> <li>Foul Gully</li> <li>ACO / Channel Drain</li> <li>150Ø Perforated Pipe</li> <li>Type C<br/>Permeable Paving</li> </ul>                                                                                                     | $\rightarrow$  | Existing Surface Water     |
| New Surface Water   New Foul   Rodding Eye   Road Gully   Yard Gully   Foul Gully   ACO / Channel Drain   150Ø Perforated Pipe   Type C   Permeable Paving                                                                                                                                                                                                          | → · — · -      | Existing Foul              |
| New Foul   Rodding Eye   Road Gully   Yard Gully   Foul Gully   ACO / Channel Drain   150Ø Perforated Pipe   Type C   Permeable Paving                                                                                                                                                                                                                              | ·->            | New Surface Water          |
| Rodding Eye   Road Gully   Yard Gully   Foul Gully   ACO / Channel Drain   150Ø Perforated Pipe   Type C   Permeable Paving                                                                                                                                                                                                                                         | - <b>&gt;</b>  | New Foul                   |
| Road Gully   Yard Gully   Foul Gully   ACO / Channel Drain   150Ø Perforated Pipe   Type C   Permeable Paving                                                                                                                                                                                                                                                       | ₽ <b>⊢−−</b> − | Rodding Eye                |
| <ul> <li>Yard Gully</li> <li>Foul Gully</li> <li>ACO / Channel Drain</li> <li>150Ø Perforated Pipe</li> <li>Type C<br/>Permeable Paving</li> </ul>                                                                                                                                                                                                                  | <              | Road Gully                 |
| Foul Gully<br>ACO / Channel Drain<br>150Ø Perforated Pipe<br>Type C<br>Permeable Paving                                                                                                                                                                                                                                                                             | ⊴              | Yard Gully                 |
| ACO / Channel Drain<br>150Ø Perforated Pipe<br>Type C<br>Permeable Paving                                                                                                                                                                                                                                                                                           | ⊴              | Foul Gully                 |
| 150Ø Perforated Pipe         Type C         Permeable Paving                                                                                                                                                                                                                                                                                                        | ×              | ACO / Channel Drain        |
| Type C<br>Permeable Paving                                                                                                                                                                                                                                                                                                                                          |                | 150Ø Perforated Pipe       |
|                                                                                                                                                                                                                                                                                                                                                                     |                | Type C<br>Permeable Paving |

## SAFETY, HEALTH & ENVIRONMENTAL HAZARD INFORMATION BOX.

The hazards noted below are in addition to the normal hazards and risks faced by a competent contractor when dealing with the types of works detailed on this drawing.

![](_page_18_Picture_4.jpeg)

CONSTRUCTION RISKS: DEMOLITION RISKS:

MAINTENANCE / CLEANING RISKS:

### Notes:

- 1. DO NOT SCALE FROM THIS DRAWING.
- 2. All dimensions are in millimetres Unless Noted Otherwise (u.n.o.)
- 3. Drawing is to be read in conjunction with all relevant architect's drawings. Any inconsistencies should be reported to PRP immediately.
- 4. All levels and dimensions are to be checked on site before any work commences.
- For more information see PRP drawings:
   63364 100series Drainage and External Works
   63364- 200series Foundations
   63364 300series Superstructure
- 6. The Health and Safety at Work act is to be complied with at all times. Attention is drawn to the wearing of hard hats, safety boots, reflective clothing, and the use of any other required safety equipment.

Drainage:

- 1. The position, line, level and diameter of all existing drainage apparatus should be confirmed on site prior to the commencement of the works. Any discrepancies should be reported to PRP immediately.
- The connection of foul and surface water drainage to the existing public sewer system shall be subject to the approval of the water authority
- For positions of all rainwater pipes & foul outlets refer to Architect's drawings.
- 4. Drainage designed in accordance with the Sewerage Sector Guidance, Design and Construction Guidance ("the Code") Approved Version 2.0, 10 March 2020.
- 5. All joints between precast manhole components shall have a minimum uncompressed thickness of 10mm of proprietary bitumen or resin mastic sealant.
- 6. Storm & foul branch connections are to be laid at gradients of between 1:10 & 1:80
- All in-situ concrete shall be minimum grade GEN3.
   Precast concrete cover & reducing slabs to be heavy duty reinforced concrete to BS 5911.
- Manhole covers & frames shall be manufactured in cast iron or ductile iron & shall comply with requirements of BS EN 124 & shall be kite marked or equivalent.
- Where there is no intermediate manhole between the start of a surface water pipe run and the soakaway the gradient of the run shall be not less than 1 : 60.
   All completed work shall be suitably protected from
- damage by construction work. Damaged drainage will not be accepted. It is recommended that no heavy loading or underground work is permitted above or near unprotected drainage, and that dumpers, trucks, fork lifts or other heavy vehicles are not driven along or near pipe runs.
- 12. Inspection chambers, soakaways and flow control units are to be installed strictly in accordance with manufacturer guidance and instructions

| P3          | 12/11/2021                                                                                                                                               | Site layout up<br>and gradients<br>invert levels s | odated, pip<br>s shown, co<br>shown    | e sizes<br>over and | ST    | / HP  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|---------------------|-------|-------|--|--|--|
| P2          | 04/10/2021                                                                                                                                               | Gully position<br>accordingly to<br>revised Exter  | s updated<br>suit as pe<br>nal Levels. | er the              | SK    | / HP  |  |  |  |
| P1          | 13/08/2021                                                                                                                                               | Issued for cor                                     | mments                                 |                     | SK    | / HP  |  |  |  |
| Rev         | Date                                                                                                                                                     | Description                                        |                                        |                     | Ву    | / Chk |  |  |  |
|             |                                                                                                                                                          | P                                                  | RP                                     |                     |       |       |  |  |  |
|             |                                                                                                                                                          | consulti                                           | ng engineers                           | & surveyo           | ors   |       |  |  |  |
| C<br>O<br>B | Catherine House Telephone: 01604 889 870 Leicester<br>Old Harborough Road northampton@prp.uk.com Northampton<br>Brixworth, NN6 9BX www.prp.uk.com London |                                                    |                                        |                     |       |       |  |  |  |
| е           | ngineerin                                                                                                                                                | g excellenc                                        | e [ creati                             | ing adv             | antag | ge    |  |  |  |
| Clie<br>F   | <sup>Client:</sup><br>Paloma I Propco Ltd                                                                                                                |                                                    |                                        |                     |       |       |  |  |  |
| Arcl        | hitect:<br>Darling As                                                                                                                                    | ssociates                                          |                                        |                     |       |       |  |  |  |
| Proj        | ect:                                                                                                                                                     |                                                    |                                        |                     |       |       |  |  |  |
| F           | Ruscote A                                                                                                                                                | venue,                                             |                                        |                     |       |       |  |  |  |
| E           | Banbury                                                                                                                                                  |                                                    |                                        |                     |       |       |  |  |  |
|             |                                                                                                                                                          |                                                    |                                        |                     |       |       |  |  |  |
| Title       | 9:                                                                                                                                                       |                                                    |                                        |                     |       |       |  |  |  |
| C           | Drainage                                                                                                                                                 | Layout                                             |                                        |                     |       |       |  |  |  |
| Stat        | us:<br>P                                                                                                                                                 | RELIN                                              | <b>/INA</b>                            | RY                  |       |       |  |  |  |
| Eng         | ineer:                                                                                                                                                   | SK                                                 | Date:                                  | Aug                 | 2021  |       |  |  |  |
| Dra         | wn:                                                                                                                                                      | JD                                                 | Scales @                               | ) A 1:              |       |       |  |  |  |
| Che         | ecked:                                                                                                                                                   | HP                                                 |                                        | 1:200               | )     |       |  |  |  |
| Pro         | ject No: 6                                                                                                                                               | 63364                                              | Drg No:                                | 101                 | Rev:  | P3    |  |  |  |

![](_page_19_Figure_0.jpeg)

All pipes entering the bottom of the manhole to have soffits level

600x600mm clear opening cover to comply Manhole frame to be set to level, bedded and haunched -externally over the abase and sides of the frame in mortar, in accordance with the manufacturer instructions.

Min 2 courses Class B Engineering bricks or -Type 1 cover frame seating ring with 600x600 eccentric access hole (BS 752-3) beaded on

Precast concrete cover slab bedded with mortar, plastomeric or elastomeric seal conforming to BS EN 1917 and BS 5911-3. Lifting eyes in concrete to be pointed

10mm uncompressed thickness of

150mm thick in-situ concrete surround to -be GEN3 (designed to BRE Special Digest 1 Concrete in Aggressive Ground)

Precast concrete manhole sections bedded with mortar, plastomeric or elastomeric seal conforming to BS EN

Grano Concrete benching (Min 20mm thick) to be brought up to a dense smooth face neatly shaped and finished to all branch connections. Benching slope to be between 1:10 and 1:30.

Invert within chamber to be formed Pipes of different diameter entering the manhole should be installed with soffits

-FND2 concrete (sulphate resisting)

Joint to be as close as possible to satisfactory joint and subsequent

Pipe joint with chanel to be located minimum 100mm inside face of

| Effective<br>Length [mm] |
|--------------------------|
| 600                      |
| 1000                     |
| 1250                     |

| ۱ | Internal Ø of manhole [mm] |
|---|----------------------------|
|   | 1200                       |
|   | 1350                       |
|   | 1500                       |
|   | 1800                       |
|   | pipe Ø + 900               |

No junction less than 90° from outgoing sewer

Rigid pipes built into manhole should have external face of the structure and the length of the next rocker pipe should be as shown

SAFETY, HEALTH & ENVIRONMENTAL HAZARD INFORMATION BOX.

The hazards noted below are in addition to the normal hazards and risks faced by a competent contractor when dealing with the types of works detailed on this drawing.

CONSTRUCTION RISKS:

DEMOLITION RISKS:

MAINTENANCE / CLEANING RISKS:

Notes:

- DO NOT SCALE FROM THIS DRAWING.
- All dimensions are in millimetres Unless Noted
- Otherwise (u.n.o.) Drawing is to be read in conjunction with all relevant
- architect's drawings. Any inconsistencies should be reported to PRP immediately.
- 4. All levels and dimensions are to be checked on site before any work commences.
- For more information see PRP drawings: 63364 - 100series - Drainage and External Works 63364-200series - Foundations 63364 - 300series - Superstructure
- The Health and Safety at Work act is to be complied with at all times. Attention is drawn to the wearing of hard hats, safety boots, reflective clothing, and the use of any other required safety equipment.

Drainage:

- 1. The position, line, level and diameter of all existing drainage apparatus should be confirmed on site prior to the commencement of the works. Any discrepancies should be reported to PRP immediately.
- 2. The connection of foul and surface water drainage to the existing public sewer system shall be subject to the approval of the water authority
- 3. For positions of all rainwater pipes & foul outlets refer to Architect's drawings
- Drainage designed in accordance with the Sewerage Sector Guidance, Design and Construction Guidance ("the Code") Approved Version 2.0, 10 March 2020.
- All joints between precast manhole components shall have a minimum uncompressed thickness of 10mm of proprietary bitumen or resin mastic sealant.
- Chambers & manholes with outgoing pipes of greater than Ø600mm shall be fitted with removable stainless steel (grade 316) safety chains or polypropylene rope. Storm & foul branch connections are to be laid at
- gradients of between 1:10 & 1:80 8. All in-situ concrete shall be minimum grade GEN3.
- 9. Precast concrete cover & reducing slabs to be heavy duty reinforced concrete to BS 5911.
- 10. Rising mains shall be black MDPE SDR11 as WI 4-32-03 & joints & fittings to be in accordance with WI 4-32-04. Other approved pipe materials to be in accordance with their relevant BS.
- 11. Manhole covers & frames shall be manufactured in cast iron or ductile iron & shall comply with requirements of BS EN 124 & shall be kite marked or equivalent.
- 12. Where there is no intermediate manhole between the start of a surface water pipe run and the soakaway the gradient of the run shall be not less than 1 : 60.
- 13. All completed work shall be suitably protected from damage by construction work. Damaged drainage will not be accepted. It is recommended that no heavy loading or underground work is permitted above or near unprotected drainage, and that dumpers, trucks, fork lifts or other heavy vehicles are not driven along or near pipe runs.
- 14. Inspection chambers, soakaways and flow control units are to be installed strictly in accordance with manufacturer guidance and instructions

| P1          | 13/08/2021                                            | Issued for co                              | mments                                     |                             | JD / HP                 |
|-------------|-------------------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------|-------------------------|
| Rev         | Date                                                  | Description                                |                                            |                             | By / Chk                |
|             |                                                       | Pl                                         | RP<br>ng engineers                         | & surveyors                 | 5                       |
| C<br>O<br>B | atherine House<br>Id Harborough R<br>rixworth, NN6 9B | Telephone<br>load northampi<br>X www.prp.r | e: 01604 889 8<br>ton@prp.uk.cor<br>uk.com | 70 Leice<br>m North<br>Lond | ester<br>nampton<br>Ion |
| е           | ngineerin                                             | g excellenc                                | e [ creati                                 | ng adva                     | intage                  |
| Clie<br>F   | <sup>nt:</sup><br>Paloma I                            | Propco Lto                                 | ł                                          |                             |                         |
| Arcl        | hitect:<br>Darling As                                 | ssociates                                  |                                            |                             |                         |
| Proj        | ect:                                                  |                                            |                                            |                             |                         |
| F           | Ruscote A<br>Banbury                                  | venue,                                     |                                            |                             |                         |
| Title       | <b>:</b>                                              |                                            |                                            |                             |                         |
|             | Drainage                                              | Constructi                                 | on Detai                                   | ls                          |                         |
| Stat        | us:<br>P                                              | RELIN                                      | /INA                                       | RY                          |                         |
| Eng         | ineer:                                                | SK                                         | Date:                                      | Aug 2                       | 021                     |
| Drav        | wn:                                                   | JD                                         | Scales @                                   | A1:                         |                         |

Checked:

Project No:

HP

1:20

### APPENDIX III

### **MICRODRAINAGE CALCULATIONS**

| PRP          |                |                |              |                  |                |                      |               |            |             |              | Page           | e 1           |
|--------------|----------------|----------------|--------------|------------------|----------------|----------------------|---------------|------------|-------------|--------------|----------------|---------------|
| Cather       | ine Hou        | ıse            |              |                  |                |                      |               |            |             |              |                |               |
| Old Har      | rborouc        | gh Roa         | ad           |                  |                |                      |               |            |             |              |                |               |
| Brixwo       | rth NN         | 16 9BX         | X            |                  |                |                      |               |            |             |              | Mir            |               |
| Date 12      | 2/11/20        | )21 10         | 0:48         |                  | Des            | signed by            | Scott         |            |             |              |                |               |
| File 63      | 3364 -         | SW Ne          | etwor        | k Rev .          | Che            | ecked by             |               |            |             |              | DIC            |               |
| Micro I      | Drainac        | ge             |              |                  | Net            | work 2020            | .1            |            |             |              |                |               |
|              |                |                |              |                  |                |                      |               |            |             |              |                |               |
|              |                | STORN          | 1 SEW        | ER DESI          | <u>GN by t</u> | the Modifi           | led Ra        | tion       | al M        | <u>ethod</u> |                |               |
|              |                |                |              | Networ           | k Desig        | <u>gn Table f</u>    | <u>for St</u> | orm        |             |              |                |               |
| PN           | Length<br>(m)  | Fall<br>(m)    | Slop         | e I.Area         | T.E.<br>(mins) | Base                 | k<br>(mm)     | HYD        | DIA<br>(mm) | Sectio       | on Type        | Auto          |
|              | ()             | (111)          | (1.1         | , (114)          | (1113)         | 110# (1/3/           | (1111)        | 0101       | (11111)     |              |                | Design        |
| S1.000       | 6.647          | 0.114          | 58.          | 3 0.006          | 5.00           | 0.0                  | 0.600         | 0          | 150         | Pipe/(       | Conduit        | •             |
| 51.001       | 9.175          | 0.122          | /3.          | 2 0.015          | 0.00           | 0.0                  | 0.000         | 0          | 100         | rthe\(       | Jonaurt        | •             |
| S2.000       | 13.937         | 0.240          | 58.          | 1 0.015          | 5.00           | 0.0                  | 0.600         | 0          | 150         | Pipe/0       | Conduit        | •             |
| S1.002       | 20.951         | 0.212          | 98.          | 8 0.010          | 0.00           | 0.0                  | 0.600         | 0          | 150         | Pipe/0       | Conduit        | •             |
| s3.000       | 14.073         | 0.402          | 35.          | 0 0.020          | 5.00           | 0.0                  | 0.600         | 0          | 150         | Pipe/0       | Conduit        | •             |
| S1.003       | 2.890          | 0.017          | 170.         | 0 0.003          | 0.00           | 0.0                  | 0.600         | 0          | 225         | Pipe/0       | Conduit        | •             |
| S4.000       | 33.956         | 0.679          | 50.          | 0 0.045          | 5.00           | 0.0                  | 0.600         | 0          | 375         | Pipe/0       | Conduit        | •             |
| S1.004       | 17.998         | 0.090          | 200.         | 0 0.034          | 0.00           | 0.0                  | 0.600         | 0          | 375         | Pipe/0       | Conduit        | •             |
| S1.005       | 11.690         | 0.039          | 299.         | 7 0.028          | 0.00           | 0.0                  | 0.600         | 0          | 375         | Pipe/(       | Conduit        | •             |
| S5.000       | 21.331         | 0.162          | 132.         | 0 0.018          | 5.00           | 0.0                  | 0.600         | 0          | 150         | Pipe/(       | Conduit        | •             |
| 55.001       | 5.715          | 0.028          | 132.         | 0 0.000          | 0.00           | 0.0                  | 0.600         | 0          | 150         | Pipe/(       |                | . <b>.</b>    |
| S1.006       | 46.023         | 3.540          | 13.          | 0 0.029          | 0.00           | 0.0                  | 0.600         | 0          | 375         | Pipe/(       | Conduit        |               |
|              |                |                |              | N∈               | etwork         | <u>Results T</u>     | <u>able</u>   |            |             |              |                |               |
| PN           | Rai<br>(mm/1   | .n T<br>hr) (m | .C.<br>ins)  | US/IL Σ<br>(m)   | I.Area (ha)    | Σ Base<br>Flow (l/s) | Foul<br>(1/s) | Add<br>(1, | Flow<br>(s) | Vel<br>(m/s) | Cap<br>(1/s)   | Flow<br>(l/s) |
| S1.0         | 00 50          | .00            | 5.08         | 100.000          | 0.006          | 0.0                  | 0.0           |            | 0.0         | 1.32         | 23.3           | 0.8           |
| 51.0         | 01 50          | .00            | 5.22         | 99.886           | 0.021          | 0.0                  | 0.0           |            | 0.0         | 1.10         | 20.5           | 2.8           |
| S2.0         | 00 50          | .00            | 5.18         | 100.000          | 0.015          | 0.0                  | 0.0           |            | 0.0         | 1.32         | 23.4           | 2.0           |
| S1.0         | 02 50          | .00            | 5.56         | 99.764           | 0.046          | 0.0                  | 0.0           |            | 0.0         | 1.01         | 17.9           | 6.2           |
| S3.0         | 00 50          | .00            | 5.14         | 100.000          | 0.020          | 0.0                  | 0.0           |            | 0.0         | 1.71         | 30.2           | 2.7           |
| S1.0         | 03 50          | .00            | 5.61         | 99.477           | 0.069          | 0.0                  | 0.0           |            | 0.0         | 1.00         | 39.8           | 9.3           |
| S4.0         | 00 50          | .00            | 5.22         | 99.000           | 0.045          | 0.0                  | 0.0           |            | 0.0         | 2.57         | 283.6          | 6.1           |
| S1.0<br>S1.0 | 04 50<br>05 50 | .00<br>.00     | 5.84<br>6.03 | 98.830<br>98.740 | 0.148<br>0.176 | 0.C<br>0.C           | 0.0           |            | 0.0         | 1.28<br>1.04 | 141.1<br>115.0 | 20.0<br>23.8  |
| S5.0         | 00 50          | .00            | 5.41         | 98.850           | 0.018          | 0.0                  | 0.0           |            | 0.0         | 0.87         | 15.4           | 2.4           |
| S5.0         | 01 50          | .00            | 5.48         | 98.688           | 0.018          | 0.0                  | 0.0           |            | 0.0         | 0.87         | 15.4           | 2.4           |
| S1.0         | 06 50          | .00            | 6.18         | 98.685           | 0.223          | 0.0                  | 0.0           |            | 0.0         | 5.05         | 557.6          | 30.2          |
|              |                |                |              |                  | 1000           | <u> </u>             |               |            |             |              |                |               |
| 1            |                |                |              | (0               | DI982-2        | 020 Innov            | vze           |            |             |              |                |               |

| PRP  |       |      |        |       |          |           |          |                   |            |        | Page 2    |          |          |
|------|-------|------|--------|-------|----------|-----------|----------|-------------------|------------|--------|-----------|----------|----------|
| Cath | neri  | ne H | louse  |       |          |           |          |                   |            |        |           |          |          |
| Old  | Harl  | bord | ough F | Road  |          |           |          |                   |            |        |           |          |          |
| Brix | wor   | th   | NN6 9  | BX    |          |           |          |                   |            |        | Micco     |          |          |
| Date | e 12  | /11/ | /2021  | 10:4  | 8        | Des       | signed   | by Scott          |            |        |           |          |          |
| File | e 63  | 364  | - SW   | Netw  | ork Rev  | Che       | ecked 1  | by                |            |        | Didiiic   | ige      |          |
| Micr | to Di | rair | nage   |       |          | Net       | work 2   | 2020.1            |            |        |           |          |          |
|      |       |      |        |       |          |           |          | <b>C C</b>        |            |        |           |          |          |
|      |       |      |        |       | Mar      | nole Sch  | ledules  | <u>s for Stor</u> | <u>.m</u>  |        |           |          |          |
| мн   | м     | н    | МН     |       | MH       | МН        |          | Pipe Out          |            |        | Pipes In  |          |          |
| Name | CL    | (m)  | Depth  | Coni  | nection  | Diam.,L*W | PN       | Invert            | Diameter   | PN     | Invert    | Diameter | Backdrop |
|      |       |      | (11)   |       |          | (1101)    |          | rever (m)         | (1111)     |        | rever (m) | (1111)   | (1111)   |
| S1   | 100   | .900 | 0.900  | Open  | Manhole  | 1200      | S1.000   | 100.000           | 150        |        |           |          |          |
| s2   | 100   | .850 | 0.964  | Open  | Manhole  | 1200      | s1.001   | 99.886            | 150        | s1.000 | 99.886    | 150      |          |
| S3   | 100   | .900 | 0.900  | Open  | Manhole  | 1200      | s2.000   | 100.000           | 150        |        |           |          |          |
| S3   | 100   | .850 | 1.090  | Open  | Manhole  | 1200      | s1.002   | 99.764            | 150        | S1.001 | 99.764    | 150      |          |
|      |       |      |        |       |          |           |          |                   |            | s2.000 | 99.760    | 150      |          |
| S5   | 100   | .900 | 0.900  | Open  | Manhole  | 1200      | s3.000   | 100.000           | 150        |        |           |          |          |
| S4   | 100   | .850 | 1.373  | Open  | Manhole  | 1200      | s1.003   | 99.477            | 225        | S1.002 | 99.552    | 150      |          |
|      |       |      |        |       |          |           |          |                   |            | S3.000 | 99.598    | 150      | 46       |
| s7   | 101   | .100 | 2.100  | Open  | Manhole  | 1350      | S4.000   | 99.000            | 375        |        |           |          |          |
| S5   | 100   | .850 | 2.529  | Open  | Manhole  | 1350      | S1.004   | 98.830            | 375        | S1.003 | 99.460    | 225      | 480      |
|      |       |      |        |       |          |           |          |                   |            | S4.000 | 98.321    | 375      |          |
| S6   | 100   | .450 | 1.710  | Open  | Manhole  | 1350      | S1.005   | 98.740            | 375        | S1.004 | 98.740    | 375      |          |
| S10  | 99.   | .900 | 1.050  | Open  | Manhole  | 1200      | \$5.000  | 98.850            | 150        |        |           |          |          |
| S11  | 100   | .248 | 1.560  | Open  | Manhole  | 1200      | S5.001   | 98.688            | 150        | S5.000 | 98.688    | 150      |          |
| S7   | 100   | .595 | 1.935  | Open  | Manhole  | 1350      | S1.006   | 98.685            | 375        | s1.005 | 98.701    | 375      | 16       |
|      |       |      |        |       |          |           |          |                   |            | s5.001 | 98.660    | 150      |          |
| S    | 97.   | .500 | 2.355  | Open  | Manhole  | 0         |          | OUTFALL           |            | S1.006 | 95.145    | 375      |          |
|      |       |      | мн⊾    | anhol | e Manhol | e Interse | oction ' | Intersection      | Manhole    | Lavou  | +         |          |          |
|      |       |      | Name E | astin | g Northi | ng East   | ing      | Northing          | Access     | (North | n)        |          |          |
|      |       |      |        | (m)   | (m)      | -<br>(m   | )        | (m)               |            |        |           |          |          |
|      |       |      | S1     | -7.18 | 3 2.2    | 77 -      | 7.183    | 2.27              | 7 Required | 1      |           |          |          |
|      |       |      |        |       |          |           |          |                   |            | 7      |           |          |          |
|      |       |      | S2     | -9.02 | 6 -4.1   | 10 -      | 9.026    | -4.110            | ) Required | 1      |           |          |          |
|      |       |      | S3     | -0.54 | 1 1.3    | 63 -      | 0.541    | 1.363             | 3 Required | 1      |           |          |          |

©1982-2020 Innovyze

S3 -4.397 -12.029 -4.397 -12.029 Required

19.626

15.732

-4.314 Required

-17.838 Required

S5 19.626 -4.314

S4 15.732 -17.838

| PRP            |             |                 |             |              |          |                | Page 3   |
|----------------|-------------|-----------------|-------------|--------------|----------|----------------|----------|
| Catherine Hous | e           |                 |             |              |          |                |          |
| Old Harborough | Road        |                 |             |              |          |                |          |
| Brixworth NN6  | 9bx         |                 |             |              |          |                | Micco    |
| Date 12/11/202 | 1 10:48     |                 | Designed    | d by Scott   |          |                |          |
| File 63364 - S | W Netwo     | rk Rev          | . Checked   | bv           |          |                | Drainage |
| Micro Drainage |             |                 | Network     | 2020.1       |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             | <u>Manhol</u>   | e Schedule  | es for Storm | <u>1</u> |                |          |
|                |             |                 |             |              |          |                |          |
| MH             | Manhole     | Manhole I       | ntersection | Intersection | Manhole  | Layout         |          |
| Name           | Easting (m) | Northing<br>(m) | Easting     | Northing     | Access   | (North)        |          |
|                | (111)       | (111)           | (111)       | (111)        |          |                |          |
| S7             | -17.600     | -20.785         | -17.600     | -20.785      | Required |                |          |
|                |             |                 |             |              |          | -              |          |
| 55             | 16 356      | -20 659         | 16 356      | -20 659      | Required |                |          |
|                | 10.000      | 20.000          | 10.000      | 20.000       | nequirea | <u> </u>       |          |
|                |             |                 |             |              |          |                |          |
| S6             | 34.354      | -20.593         | 34.354      | -20.593      | Required |                |          |
|                |             |                 |             |              |          |                |          |
| S10            | 43,404      | -0.742          | 43.404      | -0.742       | Required |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          | - T-           |          |
| S11            | 44.416      | -22.048         | 44.416      | -22.048      | Required | - {            |          |
|                |             |                 |             |              |          | •              |          |
| 57             | 44.851      | -25.737         | 44.851      | -25.737      | Required | - <sup>1</sup> |          |
|                | 11.001      | 20.101          | 11.001      | 20.101       | nequirea | ~              |          |
|                |             |                 |             |              |          |                |          |
| S              | 90.871      | -25.231         |             |              | No Entry |                |          |
|                |             |                 |             |              |          | •              |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             |                 |             |              |          |                |          |
|                |             | ©1              | 982-2020 1  | Innovyze     |          |                |          |

| PRP                  |        |                |       |             |           |                  |              |          | Page 4       |
|----------------------|--------|----------------|-------|-------------|-----------|------------------|--------------|----------|--------------|
| Catherine Hou        | ıse    |                |       |             |           |                  |              |          |              |
| Old Harboroug        |        |                |       |             |           |                  |              |          |              |
| Brixworth NN         | Micco  |                |       |             |           |                  |              |          |              |
| $D_{2} + 0.12/11/20$ | 1211   | 0.18           |       |             | Designe   | d by Sci         | <u></u>      |          | MILIU        |
| Date 12/11/20        |        | 0.40           | 1- D  |             | obaabad   | u by Sco         | ULL          |          | Drainace     |
| File 63364 -         | SW N   | etwor          | к кеч |             | Спескеа   | ya .             |              |          | J            |
| Micro Drainag        | je     |                |       |             | Network   | 2020.1           |              |          |              |
|                      |        |                |       |             |           |                  |              |          |              |
|                      |        |                | PIE   | PELINE      | SCHEDUL   | ES for           | <u>Storm</u> |          |              |
|                      |        |                |       |             |           |                  |              |          |              |
|                      |        |                |       | <u>Ups</u>  | tream M   | <u>lanhole</u>   |              |          |              |
|                      |        |                |       |             |           |                  |              |          |              |
| PN                   | Hyd    | Diam           | мн с  | C.Level     | I.Level   | D.Depth          | MH 1         | MH DIAM. | , L*W        |
|                      | Sect   | (mm) 1         | Name  | (m)         | (m)       | (m)              | Connection   | (mm)     |              |
| S1.000               | 0      | 150            | S1 (  | 100.900     | 100.000   | 0.750 0          | Open Manhole |          | 1200         |
| S1.001               | 0      | 150            | S2    | 100.850     | 99.886    | 0.814 0          | Open Manhole |          | 1200         |
|                      |        |                |       |             |           |                  |              |          |              |
| S2.000               | 0      | 150            | S3    | 100.900     | 100.000   | 0.750 (          | Open Manhole |          | 1200         |
| -1 -0.0              |        |                |       |             |           |                  |              |          |              |
| S1.002               | 0      | 150            | 53    | 100.850     | 99.764    | 0.936 (          | Upen Manhole |          | 1200         |
| \$3.000              | 0      | 150            | 95    | 100 900     | 100 000   | 0 750 0          | Open Manhole |          | 1200         |
| 55.000               | 0      | 100            | 55    | 100.900     | 100.000   | 0.750 0          | open namore  |          | 1200         |
| S1.003               | 0      | 225            | S4    | 100.850     | 99.477    | 1.148 (          | Open Manhole |          | 1200         |
|                      |        |                |       |             |           |                  |              |          |              |
| S4.000               | 0      | 375            | S7    | 101.100     | 99.000    | 1.725 (          | Open Manhole |          | 1350         |
|                      |        |                |       |             |           |                  |              |          |              |
| S1.004               | 0      | 375            | S5    | 100.850     | 98.830    | 1.645 (          | Open Manhole |          | 1350         |
| S1.005               | 0      | 375            | 56    | 100.450     | 98.740    | 1.335 (          | Jpen Mannole |          | 1350         |
| \$5.000              | 0      | 150            | S10   | 99.900      | 98.850    | 0.900 (          | Open Manhole |          | 1200         |
| S5.001               | 0      | 150            | S11 1 | 100.248     | 98.688    | 1.410 (          | Open Manhole |          | 1200         |
|                      |        |                |       |             |           |                  |              |          |              |
| S1.006               | 0      | 375            | S7    | 100.595     | 98.685    | 1.535 (          | Open Manhole |          | 1350         |
|                      |        |                |       |             |           |                  |              |          |              |
|                      |        |                |       | <u>Down</u> | stream    | <u>Manhole</u>   |              |          |              |
|                      |        |                |       |             |           |                  |              |          |              |
| PN I                 | ength  | Slope          | MH    | C.Level     | l I.Leve  | l D.Depth        | MH           | MH DIAM  | ., L*W       |
|                      | (m)    | (1:X)          | Name  | (m)         | (m)       | (m)              | Connection   | (mr      | n)           |
| S1.000               | 6.647  | 58.3           | S2    | 100.850     | ) 99.88   | 6 0.814          | Open Manhole |          | 1200         |
| s1.001               | 9.173  | 75.2           | s3    | 100.850     | 99.76     | 4 0.936          | Open Manhole |          | 1200         |
|                      |        |                |       |             |           |                  | _            |          |              |
| S2.000 1             | 3.937  | 58.1           | S3    | 100.850     | 99.76     | 0.940            | Open Manhole |          | 1200         |
|                      | 0 055  | 0.0.0          | ~ ·   | 100 07      | 0.0 5 5 5 |                  | o            |          | 1000         |
| S1.002 2             | :0.951 | 98.8           | S4    | 100.850     | J 99.552  | 2 1.148          | Open Manhole |          | 1200         |
| 93 000 1             | 4 073  | 35 N           | сЛ    | 100 850     | 9950      | R 1 102          | Open Manhole |          | 1200         |
| 55.000 1             | / .    | 55.0           | 54    | 100.000     | ور. در    | ↓.⊥∪∠            | open mainute |          | 1200         |
| S1.003               | 2.890  | 170.0          | S5    | 100.850     | 99.46     | 0 1.165          | Open Manhole |          | 1350         |
|                      |        |                |       |             |           |                  |              |          |              |
| S4.000 3             | 83.956 | 50.0           | S5    | 100.850     | 98.32     | 1 2.154          | Open Manhole |          | 1350         |
|                      | 7 000  | 000 0          | ~ ~   | 100 15      |           | 1                |              |          | 1050         |
| SI.004 1             | 1 600  | 200.0          | S6    | 100.450     | J 98.740  | J 1.335          | Open Manhole |          | 1350<br>1350 |
| 51.005 1             |        | ۱ <i>و د</i> ۲ | 57    | 100.093     |           | т т <b>.</b> Этд | open mannote |          | TOOD         |
| s5.000 2             | 21.331 | 132.0          | S11   | 100.248     | 3 98.688  | 3 1.410          | Open Manhole |          | 1200         |
| S5.001               | 3.715  | 132.0          | s7    | 100.595     | 5 98.660  | 1.785            | Open Manhole |          | 1350         |
|                      |        |                |       |             |           |                  |              |          |              |
| S1.006 4             | 6.023  | 13.0           | S     | 97.500      | 95.14     | 5 1.980          | Open Manhole |          | 0            |
|                      |        |                |       |             |           |                  |              |          |              |
|                      |        |                |       |             |           |                  |              |          |              |
|                      |        |                |       | ©1982       | 2-2020    | Innovyze         | 9            |          |              |
| L                    |        |                |       |             |           | -                |              |          |              |

| PRP                                                          |                                                                                        | Page 5      |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------|
| Catherine House                                              |                                                                                        |             |
| Old Harborough Road                                          |                                                                                        |             |
| Brixworth NN6 9BX                                            |                                                                                        | Mirro       |
| Date 12/11/2021 10:48                                        | Designed by Scott                                                                      | Drainago    |
| File 63364 - SW Network Rev                                  | Checked by                                                                             | Dialitage   |
| Micro Drainage                                               | Network 2020.1                                                                         |             |
| _                                                            |                                                                                        |             |
| Area                                                         | Summary for Storm                                                                      |             |
| Pipe PIMP PIMP PI                                            | IMP Gross Imp. Pipe Total                                                              |             |
| Number Type Name (                                           | %) Area (ha) Area (ha) (ha)                                                            |             |
| 1.000                                                        |                                                                                        |             |
| 1.000 1                                                      | 00 0.015 0.008 0.008 0.008                                                             |             |
| 2.000 1                                                      | 0.015 0.015 0.015                                                                      |             |
| 1.002 1                                                      | 0.010 0.010 0.010                                                                      |             |
| 3.000 1                                                      | 0.020 0.020 0.020                                                                      |             |
| 1.003 1                                                      | 0.003 0.003 0.003                                                                      |             |
| 4.000 1                                                      | 0.045 0.045 0.045                                                                      |             |
| 1.004 1                                                      | 0.034 0.034 0.034                                                                      |             |
| 1.005 1                                                      | 00 0.028 0.028 0.028                                                                   |             |
| 5.000 1                                                      |                                                                                        |             |
| 5.001 1                                                      |                                                                                        |             |
| 1.008 1                                                      | Total Total Total                                                                      |             |
|                                                              | 0.223 0.223 0.223                                                                      |             |
|                                                              |                                                                                        |             |
| <u>Free Flowing</u><br>Outfall Outfall C<br>Pipe Number Name | Outfall Details for Storm<br>C. Level I. Level Min D,L W<br>(m) (m) I. Level (mm) (mm) |             |
|                                                              | (m)                                                                                    |             |
| S1.006 S                                                     | 97.500 95.145 0.000 0 0                                                                |             |
|                                                              |                                                                                        |             |
| Simulatio                                                    | <u>on Criteria for Storm</u>                                                           |             |
|                                                              |                                                                                        |             |
| Volumetric Runoff Coeff                                      | U./5U Additional Flow - % of Total                                                     | Flow 0.000  |
| Hot Start (mins)                                             | 1.000 MADD Factor ^ 10M2/Ha Sto                                                        | cient 0 800 |
| Hot Start Level (mm)                                         | 0 Flow per Person per Day (1/per                                                       | (dav) 0.000 |
| Manhole Headloss Coeff (Global)                              | 0.500 Run Time (r                                                                      | nins) 60    |
| Foul Sewage per hectare (1/s)                                | 0.000 Output Interval (r                                                               | nins) 1     |
|                                                              |                                                                                        |             |
| Number of Input Hydrogr                                      | aphs 0 Number of Storage Structures                                                    | 2           |
| Number of Online Cont                                        | rols 2 Number of Time/Area Diagrams                                                    | U           |
| Number of Offline Cont                                       | TOIS U NUMBER OF REAL TIME CONTROLS                                                    | U           |
| Synthet                                                      | ic Rainfall Details                                                                    |             |
| Dainfall Model                                               | FSB Brofilo Trong S                                                                    | ummer       |
| Return Period (vears)                                        | 2 Cv (Summer)                                                                          | 0.750       |
| Region Engla                                                 | and and Wales Cv (Winter)                                                              | 0.840       |
| M5-60 (mm)                                                   | 19.700 Storm Duration (mins)                                                           | 30          |
| Ratio R                                                      | 0.409                                                                                  |             |
|                                                              |                                                                                        |             |
|                                                              |                                                                                        |             |
|                                                              |                                                                                        |             |
|                                                              |                                                                                        |             |
|                                                              |                                                                                        |             |
|                                                              |                                                                                        |             |
|                                                              |                                                                                        |             |
| ©19                                                          | 82-2020 Innovyze                                                                       |             |

| PRP                         |                    | Page 6  |
|-----------------------------|--------------------|---------|
| Catherine House             |                    |         |
| Old Harborough Road         |                    |         |
| Brixworth NN6 9BX           |                    | Micro   |
| Date 12/11/2021 10:48       | Designed by Scott  |         |
| File 63364 - SW Network Rev | Checked by         | Diamage |
| Micro Drainage              | Network 2020.1     |         |
|                             |                    |         |
| Online                      | Controls for Storm |         |

Non Return Valve Manhole: S11, DS/PN: S5.001, Volume (m<sup>3</sup>): 2.1

Orifice Manhole: S7, DS/PN: S1.006, Volume (m<sup>3</sup>): 3.9

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 98.685

| PRP                           |                 |                |                        | Page 7   |
|-------------------------------|-----------------|----------------|------------------------|----------|
| Catherine House               |                 |                |                        |          |
| Old Harborough Road           |                 |                |                        |          |
| Brixworth NN6 9BX             |                 |                |                        | Micco    |
| Date 12/11/2021 10:48         | Designe         | ed by So       | cott                   |          |
| File 63364 - SW Network Rev   | Checked         | l by           |                        | urainage |
| Micro Drainage                | Network         | 2020.1         | 1                      |          |
|                               |                 |                |                        |          |
| Storage S                     | Structur        | <u>res for</u> | Storm                  |          |
|                               |                 |                |                        |          |
| <u>Porous Car Park</u>        | Manhole         | e: s7,         | DS/PN: S4.000          |          |
| Infiltration Coofficient Pass | (m/hr) = 0      | 00000          | Width (m)              | 19.0     |
| Membrane Percolation (r       | (m/hr) 0        | 1000           | Length (m)             | 16.0     |
| Max Percolation               | (l/s)           | 84.4           | Slope (1:X)            | 0.0      |
| Safety 1                      | Factor          | 2.0 D          | epression Storage (mm) | 5        |
| Poi                           | rosity          | 0.30           | Evaporation (mm/day)   | 3        |
| Invert Leve                   | el (m) 10       | 00.060         | Membrane Depth (mm)    | 0        |
| Porous Car Park               | Manhole         | e: S5,         | DS/PN: S1.004          |          |
|                               |                 |                |                        |          |
| Infiltration Coefficient Base | (m/hr) 0        | .00000         | Width (m)              | 4.8      |
| Membrane Percolation (r       | nm/hr)          | 1000           | Length (m)             | 36.0     |
| Max Percolation               | (1/S)<br>Factor | 40.0<br>2 0 D  | STOPE (1:X)            | 0.0      |
| Poi                           | rositv          | 0.30           | Evaporation (mm/dav)   | 3        |
| Invert Leve                   | el (m) 10       | 00.060         | Membrane Depth (mm)    | 0        |
|                               |                 |                |                        |          |
| Manhole                       | Headlos         | ss for         | <u>Storm</u>           |          |
| PN                            | US/MH           | US/MH          |                        |          |
|                               | Name            | Headlos        | s                      |          |
| S1.0                          | 00 S1           | 0.50           | 0                      |          |
| S1.0                          | 01 S2           | 0.50           | 0                      |          |
| S2.0                          | 00 S3           | 0.50           | 0                      |          |
| S1.01<br>S3.01                | 02 53           | 0.50           | 0                      |          |
| 53.0<br>51 0                  | 00 55           | 0.50           | 0                      |          |
| S4.0                          | 00 57           | 0.50           | 0                      |          |
| S1.0                          | 04 S5           | 0.50           | 0                      |          |
| S1.0                          | 05 S6           | 0.50           | 0                      |          |
| \$5.0                         | 00 S10          | 0.50           | 0                      |          |
| \$5.0                         | 01 S11          | 0.50           | 0                      |          |
| S1.0                          | 06 S7           | 0.50           | 0                      |          |
|                               |                 |                |                        |          |
|                               |                 |                |                        |          |
|                               |                 |                |                        |          |
|                               |                 |                |                        |          |
|                               |                 |                |                        |          |
|                               |                 |                |                        |          |
|                               |                 |                |                        |          |
|                               |                 |                |                        |          |
|                               |                 |                |                        |          |
|                               |                 |                |                        |          |
|                               |                 |                |                        |          |

| PRP                                                                            |                                                                                                                                                                                                                                  |                                          |                                                      |                                                                       |                                                              |                                                                  |                                                                                       | 1                                                                    | Page 8                                             |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|
| Catheri                                                                        | ne Hou                                                                                                                                                                                                                           | ise                                      |                                                      |                                                                       |                                                              |                                                                  |                                                                                       |                                                                      |                                                    |
| Old Harl                                                                       | borouc                                                                                                                                                                                                                           | gh Road                                  |                                                      |                                                                       |                                                              |                                                                  |                                                                                       |                                                                      |                                                    |
| Brixwor                                                                        | th NN                                                                                                                                                                                                                            | 16 9BX                                   |                                                      |                                                                       |                                                              |                                                                  |                                                                                       |                                                                      | Micco                                              |
| Date 12                                                                        | /11/20                                                                                                                                                                                                                           | 121 10.48                                |                                                      |                                                                       | esianed                                                      | by S                                                             | cott                                                                                  |                                                                      |                                                    |
|                                                                                | 261 -                                                                                                                                                                                                                            | CW Notuo                                 | rle Dou                                              |                                                                       | bookod                                                       | bu                                                               |                                                                                       |                                                                      | Drainage                                           |
| FILE 03                                                                        |                                                                                                                                                                                                                                  | SW Netwo                                 | ork Rev                                              | [C                                                                    | пескеа                                                       | Yu<br>2000                                                       | 1                                                                                     |                                                                      | J                                                  |
| Micro Di                                                                       | rainac                                                                                                                                                                                                                           | le                                       |                                                      | N                                                                     | etwork                                                       | 2020.                                                            | Ţ                                                                                     |                                                                      |                                                    |
| <u>l year</u><br>Man                                                           | Retur                                                                                                                                                                                                                            | real Reduct<br>Hot Start<br>eadloss Coe  | Summa<br>Stion Fa<br>Start (n<br>t Level<br>eff (Glo | <u>Simu</u><br><u>Simu</u><br>actor 1.(<br>nins)<br>(mm)<br>obal) 0.5 | Critical<br>for Sto<br>lation Cr<br>000 Add<br>0<br>500 Flow | <u>Resu</u><br>rm<br><u>riteria</u><br>ditiona<br>MADD<br>per Pe | alts by Maxim<br>al Flow - % of 7<br>Factor * 10m³/h<br>Inlet Coe<br>erson per Day (1 | um Level<br>Total Flow<br>ha Storage<br>effiecient<br>l/per/day)     | (Rank 1)<br>v 0.000<br>e 2.000<br>z 0.800<br>0.000 |
| F                                                                              | Foul Sewage per hectare (l/s) 0.000<br>Number of Input Hydrographs 0 Number of Storage Structures 2<br>Number of Online Controls 2 Number of Time/Area Diagrams 0<br>Number of Offline Controls 0 Number of Real Time Controls 0 |                                          |                                                      |                                                                       |                                                              |                                                                  |                                                                                       |                                                                      |                                                    |
|                                                                                | Synthetic Rainfall Details<br>Rainfall Model FSR Ratio R 0.408<br>Region England and Wales Cv (Summer) 0.750<br>M5-60 (mm) 19 700 Cv (Winter) 0.840                                                                              |                                          |                                                      |                                                                       |                                                              |                                                                  |                                                                                       |                                                                      |                                                    |
|                                                                                | Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF<br>Analysis Timestep Fine Inertia Status OFF<br>DTS Status ON                                                                                                            |                                          |                                                      |                                                                       |                                                              |                                                                  |                                                                                       |                                                                      |                                                    |
|                                                                                | Retur                                                                                                                                                                                                                            | E<br>Duration<br>n Period(s<br>Climate C | Profile(<br>(s) (min<br>s) (year<br>Change (         | s)<br>as) 1<br>s)<br>%)                                               | 5, 30, 6<br>720, 96                                          | 0, 120<br>0, 144                                                 | Summer<br>, 180, 240, 360<br>0, 2160, 2880,<br>7200,                                  | and Wint<br>, 480, 60<br>4320, 576<br>8640, 100<br>1, 30, 1<br>0, 0, | er<br>0,<br>0,<br>80<br>00<br>40                   |
| WARNING: Half Drain Time has not been calculated as the structure is too full. |                                                                                                                                                                                                                                  |                                          |                                                      |                                                                       |                                                              |                                                                  |                                                                                       |                                                                      |                                                    |
| PN                                                                             | US/MH<br>Name                                                                                                                                                                                                                    | Storm                                    | Return<br>Period                                     | Climate<br>Change                                                     | First<br>Surcha                                              | (X)<br>arge                                                      | First (Y)<br>Flood                                                                    | First (Z<br>Overflow                                                 | ) Overflow<br>Act.                                 |
| S1.000                                                                         | S1                                                                                                                                                                                                                               | 15 Winter                                | 1                                                    | +0%                                                                   | 100/15 \$                                                    | Summer                                                           |                                                                                       |                                                                      |                                                    |
| S1.001                                                                         | s2                                                                                                                                                                                                                               | 15 Winter                                | 1                                                    | +0%                                                                   | 30/15 1                                                      | Winter                                                           |                                                                                       |                                                                      |                                                    |
| S2.000                                                                         | s3                                                                                                                                                                                                                               | 15 Winter                                | - 1                                                  | +0%                                                                   | 100/15 \$                                                    | Summer                                                           |                                                                                       |                                                                      |                                                    |
| S1.002                                                                         | S3                                                                                                                                                                                                                               | 15 Winter                                | 1                                                    | +0%                                                                   | 30/15 0                                                      | Winter                                                           |                                                                                       |                                                                      |                                                    |
| S3.000                                                                         | s5                                                                                                                                                                                                                               | 15 Winter                                | 1                                                    | +0응                                                                   | 100/15 \$                                                    | Summer                                                           |                                                                                       |                                                                      |                                                    |
| S1.003                                                                         | S4                                                                                                                                                                                                                               | 15 Winter                                | 1                                                    | +0%                                                                   | 30/15 \$                                                     | Summer                                                           |                                                                                       |                                                                      |                                                    |
| S4.000                                                                         | S7                                                                                                                                                                                                                               | 15 Winter                                | 1                                                    | +0%                                                                   | 30/15 \$                                                     | Summer                                                           |                                                                                       |                                                                      |                                                    |
| S1.004                                                                         | S5                                                                                                                                                                                                                               | 30 Winter                                | 1                                                    | +0%                                                                   | 30/15 \$                                                     | Summer                                                           | 100/00 5                                                                              |                                                                      |                                                    |
| S1.005                                                                         | S6                                                                                                                                                                                                                               | 30 Winter                                | 1                                                    | +0%                                                                   | 30/15 \$                                                     | Summer                                                           | 100/60 Summer                                                                         |                                                                      |                                                    |
| S5.000                                                                         | S10<br>911                                                                                                                                                                                                                       | 30 Winter                                | 1                                                    | +U号<br>⊥∩⊙                                                            | 3U/15 \$<br>1/15 ¢                                           | Summor                                                           | 100/15 Summer                                                                         |                                                                      |                                                    |
| s1.006                                                                         | SII<br>S7                                                                                                                                                                                                                        | 30 Winter                                | 1<br>1                                               | +U종<br>+0응                                                            | 30/15 \$                                                     | Summer                                                           | 100/120 Summer                                                                        |                                                                      |                                                    |
|                                                                                |                                                                                                                                                                                                                                  |                                          |                                                      |                                                                       |                                                              |                                                                  |                                                                                       |                                                                      |                                                    |
|                                                                                |                                                                                                                                                                                                                                  |                                          |                                                      | ©1982                                                                 | -2020 I                                                      | nnovy                                                            | ze                                                                                    |                                                                      |                                                    |
| L                                                                              |                                                                                                                                                                                                                                  |                                          |                                                      |                                                                       |                                                              |                                                                  |                                                                                       |                                                                      |                                                    |

| PRP                         |                   | Page 9  |
|-----------------------------|-------------------|---------|
| Catherine House             |                   |         |
| Old Harborough Road         |                   |         |
| Brixworth NN6 9BX           |                   | Micro   |
| Date 12/11/2021 10:48       | Designed by Scott |         |
| File 63364 - SW Network Rev | Checked by        | Diamage |
| Micro Drainage              | Network 2020.1    |         |

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

| PN     | US/MH<br>Name | Water<br>Level<br>(m) | Surcharged<br>Depth<br>(m) | Flooded<br>Volume<br>(m³) | Flow /<br>Cap. | Overflow<br>(l/s) | Half Drain<br>Time<br>(mins) | Pipe<br>Flow<br>(l/s) | Status     |
|--------|---------------|-----------------------|----------------------------|---------------------------|----------------|-------------------|------------------------------|-----------------------|------------|
| S1.000 | S1            | 100.020               | -0.130                     | 0.000                     | 0.04           |                   |                              | 0.8                   | OK         |
| S1.001 | S2            | 99.924                | -0.112                     | 0.000                     | 0.14           |                   |                              | 2.6                   | OK         |
| S2.000 | S3            | 100.031               | -0.119                     | 0.000                     | 0.10           |                   |                              | 2.1                   | OK         |
| S1.002 | S3            | 99.825                | -0.089                     | 0.000                     | 0.35           |                   |                              | 5.8                   | OK         |
| S3.000 | S5            | 100.032               | -0.118                     | 0.000                     | 0.10           |                   |                              | 2.7                   | OK         |
| S1.003 | S4            | 99.566                | -0.136                     | 0.000                     | 0.33           |                   |                              | 8.9                   | OK         |
| S4.000 | S7            | 99.039                | -0.336                     | 0.000                     | 0.02           |                   | 4                            | 5.6                   | OK         |
| S1.004 | S5            | 99.002                | -0.203                     | 0.000                     | 0.12           |                   |                              | 13.5                  | OK         |
| S1.005 | S6            | 98.998                | -0.117                     | 0.000                     | 0.12           |                   |                              | 10.1                  | OK         |
| S5.000 | S10           | 98.995                | -0.005                     | 0.000                     | 0.13           |                   |                              | 1.9                   | OK         |
| S5.001 | S11           | 98.991                | 0.153                      | 0.000                     | 0.13           |                   |                              | 1.4                   | SURCHARGED |
| S1.006 | s7            | 98.994                | -0.066                     | 0.000                     | 0.02           |                   |                              | 10.6                  | OK         |

| PN     | US/MH<br>Name | Level<br>Exceeded |
|--------|---------------|-------------------|
| s1.000 | S1            |                   |
| S1.001 | S2            |                   |
| s2.000 | S3            |                   |
| S1.002 | s3            |                   |
| S3.000 | S5            |                   |
| S1.003 | S4            |                   |
| S4.000 | S7            |                   |
| S1.004 | S5            |                   |
| S1.005 | S6            | 5                 |
| S5.000 | S10           | 11                |
| S5.001 | S11           |                   |
| S1.006 | S7            | 2                 |

©1982-2020 Innovyze

| PRP                                                                                                                                                                                                                                                                 | ge 10      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Catherine House                                                                                                                                                                                                                                                     |            |
| Old Harborough Road                                                                                                                                                                                                                                                 |            |
| Brixworth NN6 9BX                                                                                                                                                                                                                                                   | icco       |
| Date 12/11/2021 10:48 Designed by Scott                                                                                                                                                                                                                             | icio       |
| File 63364 - SW Network Rev Checked by                                                                                                                                                                                                                              | anage      |
| Micro Drainage Network 2020 1                                                                                                                                                                                                                                       |            |
| MICIO Dialinage Network 2020.1                                                                                                                                                                                                                                      |            |
| 30 year Return Period Summary of Critical Results by Maximum Level                                                                                                                                                                                                  | (Rank 1)   |
| for Storm                                                                                                                                                                                                                                                           | (Italin I) |
|                                                                                                                                                                                                                                                                     |            |
|                                                                                                                                                                                                                                                                     |            |
| Simulation Criteria                                                                                                                                                                                                                                                 |            |
| Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0                                                                                                                                                                                                    | .000       |
| HOU SUART (MINS) 0 MADD Factor ^ IOM*/Na Storage 2<br>Hot Start Level (mm) 0 Inlet Coefficient 0                                                                                                                                                                    | .800       |
| Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0                                                                                                                                                                                         | .000       |
| Foul Sewage per hectare (1/s) 0.000                                                                                                                                                                                                                                 |            |
|                                                                                                                                                                                                                                                                     |            |
| Number of Input Hydrographs U Number of Storage Structures 2<br>Number of Online Controls 2 Number of Time/Area Diagrams 0                                                                                                                                          |            |
| Number of Offline Controls 0 Number of Real Time Controls 0                                                                                                                                                                                                         |            |
|                                                                                                                                                                                                                                                                     |            |
| Synthetic Rainfall Details                                                                                                                                                                                                                                          |            |
| Rainfall Model FSR Ratio R 0.408<br>Region England and Wales Cv. (Summer) 0.750                                                                                                                                                                                     |            |
| M5-60 (mm) 19.700 Cv (Winter) 0.840                                                                                                                                                                                                                                 |            |
|                                                                                                                                                                                                                                                                     |            |
| Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF                                                                                                                                                                                                             |            |
| Analysis Timestep Fine Inertia Status OFF                                                                                                                                                                                                                           |            |
| DIS Status ON                                                                                                                                                                                                                                                       |            |
|                                                                                                                                                                                                                                                                     |            |
| Profile(s) Summer and Winter                                                                                                                                                                                                                                        |            |
| 720, 960, 1440, 2160, 2880, 4320, 5760,                                                                                                                                                                                                                             |            |
| 7200, 8640, 10080                                                                                                                                                                                                                                                   |            |
| Return Period(s) (years) 1, 30, 100                                                                                                                                                                                                                                 |            |
| Climate Change (%) 0, 0, 40                                                                                                                                                                                                                                         |            |
|                                                                                                                                                                                                                                                                     |            |
|                                                                                                                                                                                                                                                                     |            |
| US/MH Return Climate First (X) First (Y) First (Z) (<br>DN Name Storm Beried Change Surgharge Fleed Overfler                                                                                                                                                        | Dverilow   |
| FN Name Storm Ferrod Change Surcharge Frood Overriow                                                                                                                                                                                                                | ACC.       |
| S1.000 S1 30 Winter 30 +0% 100/15 Summer                                                                                                                                                                                                                            |            |
| S1.001 S2 30 Winter 30 +0% 30/15 Winter                                                                                                                                                                                                                             |            |
| S2.000 S3 30 Winter 30 +0% 100/15 Summer                                                                                                                                                                                                                            |            |
| S3.000 S5 30 Winter 30 +0% 100/15 Summer                                                                                                                                                                                                                            |            |
| S1.003 S4 30 Winter 30 +0% 30/15 Summer                                                                                                                                                                                                                             |            |
| S4.000 S7 30 Winter 30 +0% 30/15 Summer                                                                                                                                                                                                                             |            |
| S1.004 S5 30 Winter 30 +0% 30/15 Summer                                                                                                                                                                                                                             |            |
| S1.005 S6 30 Winter 30 +0% 30/15 Summer 100/60 Summer                                                                                                                                                                                                               |            |
| S5.001 S11 60 Winter 30 +0% 1/15 Summer                                                                                                                                                                                                                             |            |
|                                                                                                                                                                                                                                                                     |            |
| S1.006 S7 30 Winter 30 +0% 30/15 Summer 100/120 Summer                                                                                                                                                                                                              |            |
| S1.006 S7 30 Winter 30 +0% 30/15 Summer 100/120 Summer                                                                                                                                                                                                              |            |
| S1.006 S7 30 Winter 30 +0% 30/15 Summer 100/120 Summer Water Surcharged Flooded Half Drain Pipe                                                                                                                                                                     |            |
| S1.006 S7 30 Winter 30 +0% 30/15 Summer 100/120 Summer<br>Water Surcharged Flooded Half Drain Pipe<br>US/MH Level Depth Volume Flow / Overflow Time Flow                                                                                                            |            |
| S1.006 S7 30 Winter 30 +0% 30/15 Summer 100/120 Summer<br>Water Surcharged Flooded Half Drain Pipe<br>US/MH Level Depth Volume Flow / Overflow Time Flow<br>PN Name (m) (m) (m <sup>3</sup> ) Cap. (1/s) (mins) (1/s) St                                            | tatus      |
| S1.006 S7 30 Winter 30 +0% 30/15 Summer 100/120 Summer<br>Water Surcharged Flooded Half Drain Pipe<br>US/MH Level Depth Volume Flow / Overflow Time Flow<br>PN Name (m) (m) (m <sup>3</sup> ) Cap. (1/s) (mins) (1/s) St<br>S1.000 S1 100.109 -0.041 0.000 0.08 1 6 | or         |

| PRP                         |                   | Page 11 |
|-----------------------------|-------------------|---------|
| Catherine House             |                   |         |
| Old Harborough Road         |                   |         |
| Brixworth NN6 9BX           |                   | Micro   |
| Date 12/11/2021 10:48       | Designed by Scott |         |
| File 63364 - SW Network Rev | Checked by        | Diamage |
| Micro Drainage              | Network 2020.1    |         |

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

| PN     | US/MH<br>Name | Water<br>Level<br>(m) | Surcharged<br>Depth<br>(m) | Flooded<br>Volume<br>(m³) | Flow /<br>Cap. | Overflow<br>(l/s) | Half Drain<br>Time<br>(mins) | Pipe<br>Flow<br>(l/s) | Status     |
|--------|---------------|-----------------------|----------------------------|---------------------------|----------------|-------------------|------------------------------|-----------------------|------------|
| S1.001 | S2            | 100.107               | 0.071                      | 0.000                     | 0.31           |                   |                              | 5.6                   | SURCHARGED |
| S2.000 | s3            | 100.107               | -0.043                     | 0.000                     | 0.18           |                   |                              | 3.9                   | OK         |
| S1.002 | S3            | 100.098               | 0.184                      | 0.000                     | 0.72           |                   |                              | 12.1                  | SURCHARGED |
| S3.000 | S5            | 100.081               | -0.069                     | 0.000                     | 0.19           |                   |                              | 5.3                   | OK         |
| S1.003 | S4            | 100.067               | 0.365                      | 0.000                     | 0.65           |                   |                              | 17.5                  | SURCHARGED |
| S4.000 | s7            | 100.066               | 0.691                      | 0.000                     | 0.04           |                   | 10                           | 9.3                   | SURCHARGED |
| S1.004 | S5            | 100.062               | 0.857                      | 0.000                     | 0.18           |                   | 25                           | 20.8                  | SURCHARGED |
| S1.005 | S6            | 100.059               | 0.944                      | 0.000                     | 0.25           |                   |                              | 22.1                  | SURCHARGED |
| S5.000 | S10           | 99.894                | 0.894                      | 0.000                     | 0.14           |                   |                              | 2.1                   | FLOOD RISK |
| S5.001 | S11           | 99.890                | 1.051                      | 0.000                     | 0.30           |                   |                              | 3.2                   | SURCHARGED |
| S1.006 | S7            | 100.052               | 0.992                      | 0.000                     | 0.05           |                   |                              | 23.9                  | SURCHARGED |

| PN     | US/MH<br>Name | Level<br>Exceeded |
|--------|---------------|-------------------|
| S1.000 | S1            |                   |
| S1.001 | S2            |                   |
| S2.000 | S3            |                   |
| S1.002 | S3            |                   |
| S3.000 | S5            |                   |
| S1.003 | S4            |                   |
| S4.000 | S7            |                   |
| S1.004 | S5            |                   |
| S1.005 | S6            | 5                 |
| S5.000 | S10           | 11                |
| S5.001 | S11           |                   |
| S1.006 | S7            | 2                 |

©1982-2020 Innovyze

| PRP              |               |                        |                       |                            |                          |                                    | Page 12                |
|------------------|---------------|------------------------|-----------------------|----------------------------|--------------------------|------------------------------------|------------------------|
| Catherin         | ne Hous       | е                      |                       |                            |                          |                                    |                        |
| Old Harb         | orough        | Road                   |                       |                            |                          |                                    |                        |
| Brixwort         | h NN6         | 9BX                    |                       |                            |                          |                                    | Micco                  |
| Date 12/         | 11/202        | 1 10:48                |                       | De                         | esigned by               | Scott                              |                        |
| File 633         | 864 – S       | W Netwo                | rk Rev                | Cł                         | necked by                |                                    | Digitiga               |
| Micro Dr         | ainage        | :                      |                       | Ne                         | etwork 2020              | 0.1                                |                        |
|                  | ) -           |                        |                       |                            |                          | -                                  |                        |
| <u>100 yea</u>   | ar Reti       | urn Peri               | od Summ               | ary of                     | Critical                 | Results by Ma                      | aximum Level (Rank     |
|                  |               |                        |                       | 1)                         | for Storm                | -                                  |                        |
|                  |               |                        |                       |                            |                          |                                    |                        |
|                  |               |                        |                       |                            |                          |                                    |                        |
|                  | 7             | a l Dadua              |                       | <u>Simul</u>               | ation Criter             | <u>ia</u><br>                      |                        |
|                  | Ar            | eal Reduc<br>Hot S     | tion Fac<br>tart (mi  | tor I.U<br>ns)             | 0 Additio                | nal Flow - % of<br>D Factor * 10m³ | /ha Storage 2 000      |
|                  |               | Hot Start              | Level (               | mm)                        | 0                        | Inlet C                            | oeffiecient 0.800      |
| Manh             | nole Hea      | dloss Coe              | ff (Glob              | al) 0.5                    | 00 Flow per              | Person per Day                     | (l/per/day) 0.000      |
| Fc               | oul Sewa      | ge per he              | ctare (l              | /s) 0.0                    | 00                       |                                    |                        |
|                  | Nı            | mber of '              | [nnut Hyc             | irograph                   | s (Number (              | of Storage Struc                   | tures 2                |
|                  | 100           | Number of              | E Online              | Control                    | s 2 Number o             | of Time/Area Dia                   | agrams 0               |
|                  | 1             | Number of              | Offline               | Control                    | s 0 Number o             | of Real Time Cor                   | ntrols 0               |
|                  |               |                        |                       |                            |                          |                                    |                        |
|                  |               | Painf                  | <u>S'</u><br>11 Model | ynthetic                   | Rainfall De              | Patio P 0 /                        | 108                    |
|                  |               | Naliilo                | Regior                | n Englar                   | nd and Wales             | Cv (Summer) 0.7                    | 750                    |
|                  |               | M                      | 5-60 (mm)             | 5                          | 19.700                   | Cv (Winter) 0.8                    | 340                    |
|                  |               |                        |                       |                            |                          |                                    |                        |
|                  | М             | argin for              | Flood R               | isk Warn                   | ning (mm) 30             | 0.0 DVD Sta                        | tus OFF                |
|                  |               |                        | А                     | naiysis<br>D'              | TIMESLEP F.<br>TS Status | ON                                 | LUS OFF                |
|                  |               |                        |                       |                            |                          |                                    |                        |
|                  |               | P                      | rofile(s              | )                          |                          | Summe                              | er and Winter          |
|                  | 1             | Duration(              | s) (mins              | ,<br>) 15                  | 5, 30, 60, 12            | 20, 180, 240, 36                   | 50, 480, 600,          |
|                  |               |                        |                       |                            | 720, 960, 14             | 40, 2160, 2880,                    | 4320, 5760,            |
|                  | 5             | D 11                   | <b>`</b>              | ,                          |                          | 7200,                              | 8640, 10080            |
|                  | Return        | Period(s<br>Climate C  | ) (years<br>hange (%  | )                          |                          |                                    | 1, 30, 100<br>0, 0, 40 |
|                  |               | 01111100000            | indingo (o            | /                          |                          |                                    | 0, 0, 10               |
|                  |               |                        |                       |                            |                          |                                    |                        |
| τ                | JS/MH         |                        | Return (              | Climate                    | First (X)                | First (Y)                          | First (Z) Overflow     |
| PN               | Name          | Storm                  | Period                | Change                     | Surcharge                | Flood                              | Overflow Act.          |
| G1 000           | 01 1          | 5 Winter               | 100                   | 1400                       | 100/15 0                 | ~~                                 |                        |
| S1.000           | S1 1<br>S2 1  | 15 Winter<br>15 Winter | 100                   | +4U≷<br>+4N%               | 30/15 Winte              | s⊤<br>Sr                           |                        |
| s2.000           | S3 1          | 15 Winter              | 100                   | +40%                       | 100/15 Summe             | er                                 |                        |
| S1.002           | S3 1          | 15 Winter              | 100                   | +40%                       | 30/15 Winte              | er                                 |                        |
| S3.000           | S5 3          | 30 Winter              | 100                   | +40%                       | 100/15 Summe             | er                                 |                        |
| S1.003<br>S4 000 | S4 3          | SU Winter              | 100<br>100            | +40왕<br>+40왕               | 30/15 Summe              | er<br>er                           |                        |
| s1.004           | S5 3          | 30 Winter              | 100                   | +40%                       | 30/15 Summe              | er                                 |                        |
| S1.005           | S6 12         | 20 Summer              | 100                   | +40%                       | 30/15 Summe              | er 100/60 Summe                    | er                     |
| S5.000           | S10 3         | 30 Winter              | 100                   | +40%                       | 30/15 Summe              | er 100/15 Summe                    | er                     |
| S5.001           | S11 18        | 30 Winter              | 100                   | +40%                       | 1/15 Summe               | er 100/100 com                     | - m                    |
| 31.000           | 31 12         | to willer              | TOO                   | 7403                       | JU/IJ SUMME              | =⊤ ⊥∪∪/⊥∠∪ Suinme                  | ≂⊥                     |
|                  |               |                        | _                     |                            |                          |                                    |                        |
|                  | 110 /200      | Water S                | urcharge              | d Flood                    | ed                       | Half Dra                           | in Pipe                |
| DN               | US/MH<br>Nam≏ | (m)                    | uepth<br>(m)          | voLun<br>(m <sup>3</sup> ۱ | Le FIOW / OV             | eritow Time<br>(]/s) (mine)        | riow<br>(1/s) Status   |
|                  | 1102115       | ()                     | ()                    | ( )                        | cup.                     | (_, 5, (m±113)                     | (1,5, 50000            |
| S1.000           | S1            | 100.465                | 0.31                  | 5 0.0                      | 00 0.14                  |                                    | 2.7 SURCHARGED         |
|                  |               |                        |                       | ©1982-                     | 2020 Innov               | vze                                |                        |

| PRP                         |                   | Page 13 |
|-----------------------------|-------------------|---------|
| Catherine House             |                   |         |
| Old Harborough Road         |                   |         |
| Brixworth NN6 9BX           |                   | Micro   |
| Date 12/11/2021 10:48       | Designed by Scott |         |
| File 63364 - SW Network Rev | Checked by        | Diamage |
| Micro Drainage              | Network 2020.1    |         |

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

|        |            | Water   | Surcharged | Flooded |        |          | Half Drain | Pipe  |            |
|--------|------------|---------|------------|---------|--------|----------|------------|-------|------------|
|        | US/MH      | Level   | Depth      | Volume  | Flow / | Overflow | Time       | Flow  |            |
| PN     | Name       | (m)     | (m)        | (m³)    | Cap.   | (1/s)    | (mins)     | (l/s) | Status     |
| S1.001 | S2         | 100.459 | 0.423      | 0.000   | 0.53   |          |            | 9.7   | SURCHARGED |
| S2.000 | s3         | 100.459 | 0.309      | 0.000   | 0.32   |          |            | 6.8   | SURCHARGED |
| S1.002 | <b>S</b> 3 | 100.434 | 0.520      | 0.000   | 1.04   |          |            | 17.4  | SURCHARGED |
| S3.000 | S5         | 100.254 | 0.104      | 0.000   | 0.31   |          |            | 8.7   | SURCHARGED |
| S1.003 | S4         | 100.241 | 0.539      | 0.000   | 0.93   |          |            | 25.3  | SURCHARGED |
| S4.000 | s7         | 100.229 | 0.854      | 0.000   | 0.06   |          | 24         | 15.9  | SURCHARGED |
| S1.004 | S5         | 100.233 | 1.028      | 0.000   | 0.27   |          | 21         | 31.3  | SURCHARGED |
| S1.005 | S6         | 100.451 | 1.336      | 2.448   | 0.35   |          |            | 31.0  | FLOOD      |
| S5.000 | S10        | 99.903  | 0.903      | 3.127   | 0.91   |          |            | 13.3  | FLOOD      |
| S5.001 | S11        | 99.995  | 1.156      | 0.000   | 0.80   |          |            | 8.7   | FLOOD RISK |
| S1.006 | s7         | 100.596 | 1.536      | 1.713   | 0.05   |          |            | 24.3  | FLOOD      |

| PN     | US/MH<br>Name | Level<br>Exceeded |
|--------|---------------|-------------------|
| S1.000 | S1            |                   |
| S1.001 | S2            |                   |
| S2.000 | S3            |                   |
| S1.002 | S3            |                   |
| S3.000 | S5            |                   |
| S1.003 | S4            |                   |
| S4.000 | S7            |                   |
| S1.004 | S5            |                   |
| S1.005 | S6            | 5                 |
| S5.000 | S10           | 11                |
| S5.001 | S11           |                   |
| S1.006 | S7            | 2                 |

©1982-2020 Innovyze

|                  |                                                                                                                                                                                                                                                                                                                                                                  | Project:                                                                                                                                      | Sheet No. 0 0 0 1        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                  |                                                                                                                                                                                                                                                                                                                                                                  | Starbucks, Ruscote Avenue, Banbury                                                                                                            | Project 63364            |
|                  | consulting civil & structural engineers                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               | Date Aug 2021            |
|                  |                                                                                                                                                                                                                                                                                                                                                                  | Section:                                                                                                                                      | Designed MAS             |
| 0116<br>275 1710 | Northampton Bythorn<br>01604 01832<br>889870 710959                                                                                                                                                                                                                                                                                                              | Brownfield Runoff Rate                                                                                                                        | Checked                  |
| Reference        |                                                                                                                                                                                                                                                                                                                                                                  | Calculation                                                                                                                                   | <b>I</b>                 |
|                  | Equation for Brownfield Runoff<br>Q=2.78 x C x I x A<br>Q = flow rate in I/s<br>C = 1<br>I = is rainfall intensity $-50$ mm/<br>A = area in hectares.<br>Q=2.78x1x50x0.303 = 42.11 / x<br>Equation of New Development<br>Reduce I otal or Brownineia Ru<br>AND-GUIDANCE-FOR-SURF/<br>OXFORDSHIRF ndfl<br>40% of 42.11 = 16.84<br>42.11 - 16.84 = 25.27 $\approx$ | hr A = 0.303<br>s<br>information with the by 40% ( as per Oxfordshife Flood Tookit - LO<br>ACE-WATER-DRAINAGE-ON-MAJOR-DEVELOPMENT<br>25.31/s | ILAL-SI ANDAKDS-<br>-IN- |

### APPENDIX IV

### DRAINAGE MAINTENANCE SCHEDULE

![](_page_36_Picture_0.jpeg)

### MAINTENANCE AND ACTION SCHEDULE FOR SURFACE WATER DRAINAGE

Project No: 63364

For: **Trinity Property Consultants** 

Date: August 2021 Prepared by:

PRP Catherine House Old Harborough Road Brixworth Northampton NN6 9BX

- Catchpits, manholes and inspection chambers should be regularly inspected and debris/silt removed, if this is not removed then it is likely to become hard packed requiring considerable effort to remove it. Replacement of the cellular storage units will be necessary if the system becomes blocked with silt. Effective monitoring will give information on changes in infiltration and provide a warning of potential failure in the long term.
- 2. The following are guidelines for when inspections and treatment should be carried out based on typical commercial units with average usage. The rate of silt and debris accumulation should be monitored and the frequency of inspection may need to be adjusted based on this.
  - 2.1. Monthly:
    - Lift hydrobrake manhole cover and inspect to make sure that the outfall and inlet are clear. (Monthly during Autumn and Winter.)
    - Inspect silt traps and note rate of sediment accumulation (Monthly during first year, then annually.)
  - 2.2. Annually:
    - Inspect all gutters and gullies for sediment and debris and remove as necessary to prevent it from entering into the attenuation tank.
    - Any roots that have entered the system should be removed.
    - Inspect manholes and silt traps and remove any silt or debris from base and ensure that they are clean.
    - Inspect filter drains including inlet and outlet pipework for blockages.
    - Check attenuation tanks to ensure emptying is occurring.
    - Remove and clean silt traps and clean out catchpits to ensure they operate correctly.
  - 2.3. As required:
    - Clean perforated pipework of blockages (usually annually or bi-annually).

### APPENDIX V

### THAMES WATER SEWER RECORDS PLAN

![](_page_39_Figure_0.jpeg)

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No llability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

| TND. Levels quoted in metres of unance newlyn Datum. The value -3333.00 indicates no survey information is availab | NB. | Levels quoted in m | netres Ordnance I | Newlyn Datum. | The value -9999.00 indic | ates no survey information is available |
|--------------------------------------------------------------------------------------------------------------------|-----|--------------------|-------------------|---------------|--------------------------|-----------------------------------------|
|--------------------------------------------------------------------------------------------------------------------|-----|--------------------|-------------------|---------------|--------------------------|-----------------------------------------|

| Manhole Reference | Manhole Cover Level | Manhole Invert Level |
|-------------------|---------------------|----------------------|
| 9451              | 103.66              | 102.03               |
| 9401              | 104.23              | 102.4                |
| 2501              | 96.93               | 91.58                |
| 1501              | 96.79               | 92.39                |
| 9554              | 100.44              | 95.39                |
| 9503              | 100.35              | 95.54                |
| 9551              | 99.82               | 95.40                |
| 0501              | 97.04               | 93.23                |
| 8504              | 100.41              | 95.74                |
| 9502<br>8502      | 98.53               | 94.97                |
| 9504              | 99.79               | 95.19                |
| 9501              | 97.89               | 95.44                |
| 8503              | 100.62              | 95.92                |
| 9651              | 98.11<br>08.30      | 96.55                |
| 0602              | 99.03               | 97.18                |
| 0652              | 99.04               | 97.49                |
| 0651<br>0601      | 100.65              | 98.86<br>98.61       |
| 2401              | 95.85               | 90.83                |
| 8354              | 106.56              | 105.52               |
| 8352              | n/a                 | n/a                  |
| 831A              | n/a                 | n/a                  |
| 8258              | 107.98              | 103.7                |
| 8356              | 105.68              | 103.89               |
| 8260              | n/a<br>105 72       | n/a<br>104 74        |
| 9254              | 106.66              | 103.73               |
| 931D              | n/a                 | n/a                  |
| 9206              | 106.68              | 104.06               |
| 9253<br>921B      | 100.58<br>n/a       | 104.97<br>n/a        |
| 921A              | n/a                 | n/a                  |
| 931C              | n/a                 | n/a                  |
| 931B<br>921C      | n/a<br>n/a          | n/a                  |
| 931A              | n/a                 | n/a                  |
| 9452              | 103.14              | 102.4                |
| 9402              | 103.01              | 101.58               |
| 9453<br>9301      | 102.78              | 101                  |
| 9403              | 102.51              | 101.7                |
| 9302              | 102.08              | 100.7                |
| 9307              | 102.57              | 101.75               |
| 9404              | 102.51              | 101.97               |
| 9203              | 102.5               | 101.64               |
| 9306              | 101.91              | 101.11               |
| 9351<br>9303      | 102.25              | 100.64               |
| 9202              | 102.72              | 101.38               |
| 9304              | 101.52              | 100.71               |
| 9309              | 101.41              | 100.86               |
| 9352              | 101.82              | 99.8                 |
| 9308              | 101.42              | 100.41               |
| 9310              | n/a                 | n/a                  |
| 9204              | 101.72              | 99.53                |
| 9311              | n/a                 | n/a                  |
| 9251              | 101.43              | 99.19                |
| 9205              | 101.46              | 99.43                |
| 9313              | n/a                 | n/a                  |
| 8253              | 109.15              | 107.57               |
| 8201              | 108.59              | 105.16               |
| 921E              | n/a                 | n/a                  |
| 9201              | 102.71              | 102.18               |
| 921D              | n/a                 | n/a                  |
| 821A<br>8202      | n/a  <br>109.21     | n/a<br>103 39        |
| 8252              | 106.34              | 104.8                |
| 8259              | 108.25              | 103.66               |
| 0252              | 98.37               | 97.5                 |
| 1352              | 90.31<br>n/a        | 91.2<br>n/a          |

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

| Manhole Reference                                                                                                                                   | Manhole Cover Level                                                                                                                        | Manhole Invert Level                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1301                                                                                                                                                | 96.68                                                                                                                                      | 94.87                                                                                                                                 |
| 1302                                                                                                                                                | 95.52                                                                                                                                      | 93.66                                                                                                                                 |
| 1351                                                                                                                                                | 95.55                                                                                                                                      | 94.31                                                                                                                                 |
| 2351                                                                                                                                                | 94.48                                                                                                                                      | 93.56                                                                                                                                 |
| 2301                                                                                                                                                | 94.23                                                                                                                                      | 93.08                                                                                                                                 |
| 2302                                                                                                                                                | 93.93                                                                                                                                      | 92.5                                                                                                                                  |
| 2352                                                                                                                                                | 94.45                                                                                                                                      | 91.1                                                                                                                                  |
| 2303                                                                                                                                                | 94.07                                                                                                                                      | 90.7                                                                                                                                  |
| 3301                                                                                                                                                | 94.47                                                                                                                                      | 90.56                                                                                                                                 |
| 3353                                                                                                                                                | 94.17                                                                                                                                      | 92.71                                                                                                                                 |
| 3351                                                                                                                                                | 95.15                                                                                                                                      | 91.77                                                                                                                                 |
| 3302                                                                                                                                                | 95.03                                                                                                                                      | 90.43                                                                                                                                 |
| 3253                                                                                                                                                | n/a                                                                                                                                        | n/a                                                                                                                                   |
| 3251                                                                                                                                                | 93.89                                                                                                                                      | 90.1                                                                                                                                  |
| 3352                                                                                                                                                | 93.99                                                                                                                                      | 93.16                                                                                                                                 |
| 3201                                                                                                                                                | 93.41                                                                                                                                      | 91.14                                                                                                                                 |
| 3202                                                                                                                                                | 93.27                                                                                                                                      | 91.15                                                                                                                                 |
| 0251                                                                                                                                                | 101.17                                                                                                                                     | 99.62                                                                                                                                 |
| 0354                                                                                                                                                | 99.09                                                                                                                                      | 98.61                                                                                                                                 |
| 0201                                                                                                                                                | 101.09                                                                                                                                     | 98.74                                                                                                                                 |
| 0297                                                                                                                                                | n/a                                                                                                                                        | n/a                                                                                                                                   |
| 0356                                                                                                                                                | 99.17                                                                                                                                      | 98.49                                                                                                                                 |
| 0353                                                                                                                                                | 99.12                                                                                                                                      | 97.97                                                                                                                                 |
| 0301                                                                                                                                                | 99.31                                                                                                                                      | 97.85                                                                                                                                 |
| 0352                                                                                                                                                | 99.21                                                                                                                                      | 97.71                                                                                                                                 |
| 0296                                                                                                                                                | n/a                                                                                                                                        | n/a                                                                                                                                   |
| 0351                                                                                                                                                | 98.93                                                                                                                                      | 97.29                                                                                                                                 |
| 0203                                                                                                                                                | 98.53                                                                                                                                      | 97.17                                                                                                                                 |
| 0294                                                                                                                                                | n/a                                                                                                                                        | n/a                                                                                                                                   |
| 0295                                                                                                                                                | n/a                                                                                                                                        | n/a                                                                                                                                   |
| 0358                                                                                                                                                | n/a                                                                                                                                        | n/a                                                                                                                                   |
| 0355                                                                                                                                                | 97.77                                                                                                                                      | 96.75                                                                                                                                 |
| 0303                                                                                                                                                | 97.58                                                                                                                                      | 96.18                                                                                                                                 |
| 0302                                                                                                                                                | 97.77                                                                                                                                      | 96.53                                                                                                                                 |
| 0304                                                                                                                                                | 97.52                                                                                                                                      | 96.01                                                                                                                                 |
| 0357                                                                                                                                                | 97.5                                                                                                                                       | 96.27                                                                                                                                 |
| 0305                                                                                                                                                | 97.51                                                                                                                                      | 95.85                                                                                                                                 |
|                                                                                                                                                     |                                                                                                                                            |                                                                                                                                       |
| The position of the apparatus shown on this plan is given without oblig<br>liability of any kind whatsoever is accepted by Thames Water for any err | ation and warranty, and the accuracy cannot be guaranteed. Service<br>for or omission. The actual position of mains and services must be v | pipes are not shown but their presence should be anticipated. No<br>rerified and established on site before any works are undertaken. |

| Sewer Key - Commercial Di                                                                                                                                                                                                                                                                                                                                                                                                                            | rainage and Water Enquiry                                                                                                                                                                                                                                                                                                                      |                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Public Sewer Types (Operated & Maintained by Thames Water)                                                                                                                                                                                                                                                                                                                                                                                           | Sewer Fittings                                                                                                                                                                                                                                                                                                                                 | Other Symbols                                                                                              |
| Foul: A sewer designed to convey waste water from domestic and industrial sources to a treatment works.                                                                                                                                                                                                                                                                                                                                              | A feature in a sewer that does not affect the flow in the pipe. Example: a vent<br>is a fitting as the function of a vent is to release excess gas.                                                                                                                                                                                            | Symbols used on maps which do not fall under other general categories ▲ / ▲ Public/Private Pumping Station |
| O Surface Water: A sewer designed to convey surface water (e.g. rain<br>water from roofs, yards and car parks) to rivers or watercourses.                                                                                                                                                                                                                                                                                                            | Dam Chase                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Change of characteristic indicator (C.O.C.I.)</li> <li>Invert Level</li> </ul>                    |
| Combined: A sewer designed to convey both waste water and surface water from domestic and industrial sources to a treatment works.                                                                                                                                                                                                                                                                                                                   | <ul> <li>Meter</li> <li>Vent Column</li> </ul>                                                                                                                                                                                                                                                                                                 | <li>∠1 Summit<br/>Areas</li>                                                                               |
| Trunk Surface Water Trunk Foul                                                                                                                                                                                                                                                                                                                                                                                                                       | A feature in a source that changes are direct the flow in the source Example.                                                                                                                                                                                                                                                                  | Agreement                                                                                                  |
| Storm Relief Trunk Combined                                                                                                                                                                                                                                                                                                                                                                                                                          | A hydrobrake line server a large or given is use in with the server. Examples,<br>A hydrobrake limits the flowpassing downstream.                                                                                                                                                                                                              | Chamber                                                                                                    |
| P P Vent Pipe Bio-solids (Sludge)                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Drop Pipe</li> <li>Ancillary</li> </ul>                                                                                                                                                                                                                                                                                               | Tunnel                                                                                                     |
| Water Sewer                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>〈</b> Weir                                                                                                                                                                                                                                                                                                                                  | ConduitBridge                                                                                              |
| Gallery Foul Rising Main                                                                                                                                                                                                                                                                                                                                                                                                                             | End Items                                                                                                                                                                                                                                                                                                                                      | Other Sewer Types (Not Operated or Maintained by Thames Water)                                             |
| Main Surface Water Rising Combined Rising Main                                                                                                                                                                                                                                                                                                                                                                                                       | End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river                                       | Foul Sewer Surface Water Sewer                                                                             |
| Sludge Rising Main Proposed Thames Water Rising Main                                                                                                                                                                                                                                                                                                                                                                                                 | C Outfall                                                                                                                                                                                                                                                                                                                                      | Culverted Watercourse                                                                                      |
| Vacuum                                                                                                                                                                                                                                                                                                                                                                                                                                               | Undefined End                                                                                                                                                                                                                                                                                                                                  | Abandoned Sewer                                                                                            |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |
| <ul> <li>1) All levels associated with the plans are to Ordnance Datum Newlyn.</li> <li>2) All measurements on the plans are metric.</li> <li>3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.</li> <li>4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.</li> <li>5) 'na' or '0' on a manhole level indicates that data is unavailable.</li> </ul> | The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Searches on 0118 925 1504. |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |

Thames Water Utilities Ltd. Property Searches, PO Box 3189, Stough SL1 4W, DX 151280 Stough 13 T 0645 070 9148 E searches@thamsswater.co.uk I www.thameswater.sropertysearches.co.uk

### APPENDIX VI

### **GENERAL CONDITIONS**

- 1. This report has been prepared and written specifically for the Client named in the introduction and is exclusively for his/her/their benefit. No reliance may be placed in the contents of this report by any third party except with the express agreement of the original Client and the written agreement of PRP. Such written agreement may require the payment of an additional fee.
- 2. This report has been prepared and written in the context of the proposals for the development of the site as stated by the client and will not be valid in a differing context. Furthermore, new information, improved practices, or legislation may necessitate alteration to the report in whole or in part after its submission. Therefore, with any change in circumstances or after the expiry of one year from the date of this report, it should be referred to us for re-assessment.
- 3. Factual reports received from third parties are included or summarised in this report. They have been used in best faith and in the context of the site and the proposals. We cannot be held responsible for any shortcomings in these third party reports in any way whatsoever.
- 4. There may also be special conditions appertaining to the site which were not revealed by the investigation and which will not, therefore, have been taken into account in this report. Any assessments may be subject to amendment in the light of additional information becoming available.
- 5. Whilst an opinion may be expressed or implied in this report on possible configurations or on the possible presence of features based either visual, verbal or published evidence, this is for guidance only and no liability can be accepted for the accuracy of such opinions.
- Comments on groundwater conditions will have been based on observations made only at the time of any investigation or published data unless otherwise stated. It should be noted, however, that groundwater levels vary due to seasonal and other effects.
- 7. This report is not a site categorisation, and hazards could occur which have not been detected.
- 8. The copyright in this report and other related plans and documents prepared by PRP is owned by them and no such report, plan or document may be reproduced, published or adapted without their written consent. Complete copies of the report may however be made and distributed by the client as an expedient in dealing with matters related to its commission.