

APPENDIX C

Laboratory Certificates

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

> Tel: (01244) 528700 Fax: (01244) 528701

email: haward encustomers er vices@alsglobal.com

Website: www.alsenvironmental.co.uk

Chemtest Willie Snaith Rd Newmarket Suffolk CB8 7SQ

Attention: Chemtest Subcontracting

CERTIFICATE OF ANALYSIS

Date of report Generation:11 May 2021Customer:ChemtestSample Delivery Group (SDG):210506-141

Your Reference:

Location: 21-14506 **Report No**: 597497

We received 14 samples on Thursday May 06, 2021 and 14 of these samples were scheduled for analysis which was completed on Tuesday May 11, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan
Operations Manager

ALS

 SDG:
 210506-141
 Client Reference:
 Report Number:
 597497

 Location:
 21-14506
 Order Number:
 20798
 Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
24219553	PH9-S38			04/05/2021
24219554	PH9-S39			04/05/2021
24219555	PH9-S40			04/05/2021
24219557	PH9-S41			04/05/2021
24219558	PH9-S42			04/05/2021
24219559	PH9-S43			04/05/2021
24219560	PH9-S44			04/05/2021
24219562	PH9-S45			04/05/2021
24219563	PH9-S46			04/05/2021
24219564	PH9-S47			04/05/2021
24219565	PH9-S48			04/05/2021
24219566	PH9-S49			04/05/2021
24219567	PH9-S50			04/05/2021
24219568	PH9-S51			04/05/2021

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

CERTIFICATE OF ANALYSIS

	4		
4	0		

SDG: 210506-141 Client Reference: Report Number: 597497 21-14506 20798 Superseded Report: Location: Order Number: Results Legend 24219553 24219554 24219555 24219557 24219560 24219562 24219563 24219564 24219567 24219568 24219558 24219559 24219565 24219566 Lab Sample No(s) X Test No Determination Possible Customer PH9-S38 PH9-S39 PH9-S44 PH9-S50 PH9-S41 PH9-S43 PH9-S45 PH9-S47 PH9-S48 PH9-S51 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other Sample Type S PAH by GCMS All NDPs: 0 Tests: 14 Х Х Χ Х Х Х Χ Х Х Χ Χ Х Χ Х Sample description All NDPs: 0 Tests: 14 Χ Χ Χ Χ Х Χ Х Х

>10mm

SDG: 210506-141 **Location**: 21-14506

Client Reference: Order Number:

20798

Report Number: Superseded Report: 597497

Sample Descriptions

Grain Sizes

very fine	<0.063m	nm	fine	0.06	3mm - 0.1mm	m	edium	0.1mn	m - 2mm co		se	2mm - 1	.0mm	very coar
Lab Sample No	o(s)	Custom	er Sample Re	ef.	Depth (m)	,	Co	lour	Desc	ription	Iı	nclusions	Inclu	sions 2
24219553			PH9-S38				Dark	Brown	Loan	ny Sand		Stones	N	lone
24219554			PH9-S39				Dark	Brown	Loam	ny Sand		Stones	N	lone
24219555			PH9-S40				Dark	Brown	Loan	ny Sand		Stones	N	lone
24219557			PH9-S41				Dark	Brown	Loan	ny Sand		Stones	Veg	etation
24219558			PH9-S42				Dark	Brown	Loan	ny Sand		Stones	N	lone
24219559			PH9-S43				Dark	Brown	Loan	ny Sand		Stones	N	lone
24219560			PH9-S44				Dark	Brown	Sandy (Clay Loam		Stones	N	lone
24219562			PH9-S45				Dark	Brown	Clay	Loam		None	N	lone
24219563			PH9-S46				Dark	Brown	Clay	Loam		None	N	lone
24219564			PH9-S47				Dark	Brown	Loan	ny Sand		None	N	lone
24219565			PH9-S48				Dark	Brown	Loan	ny Sand		None	N	lone
24219566			PH9-S49				Light	Brown	Sandy	Silt Loam		None	N	lone
24219567			PH9-S50				Dark Brown		Loan	ny Sand		Stones	Veg	etation
24219568			PH9-S51				Light	Brown	Loan	ny Sand		None	N	lone

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

597497

CERTIFICATE OF ANALYSIS

 SDG:
 210506-141
 Client Reference:
 Report Number:

 Location:
 21-14506
 Order Number:
 20798
 Superseded Report:

Results Legend # ISO17025 accredited.		Customer Sample Ref.	PH9-S38	PH9-S39	PH9-S40	PH9-S41	PH9-S42	PH9-S43
M mCERTS accredited. aq Aqueous / settled sample.								
diss.filt Dissolved / filtered sample.		Depth (m)						
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor repor	tfor	Sample Type	Soil/Solid (S)					
accreditation status. ** % recovery of the surrogate standard to chee		Date Sampled Sample Time	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021
efficiency of the method. The results of indiv	idual	Date Received	06/05/2021	06/05/2021	06/05/2021	06/05/2021	06/05/2021	06/05/2021
compounds within samples aren't corrected recovery	for the	SDG Ref	210506-141	210506-141	210506-141	210506-141	210506-141	210506-141
(F) Trigger breach confirmed		Lab Sample No.(s)	24219553	24219554	24219555	24219557	24219558	24219559
1-4+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method						
Moisture Content Ratio (% of as	%	PM024	9.4	11	9	11	13	7.4
received sample)	/0	1 101024	3.4	''		""	13	7.4
received sample)	+	1						
		-						
		1						
		_						
		+						
								l
I—————————————————————————————————————								

597497

CERTIFICATE OF ANALYSIS

210506-141 21-14506 SDG: Location:

Client Reference: Order Number:

20798

Report Number: Superseded Report:

Results Legen	ıd	Customer Sample Re	ef. PH9-S44	PH9-S45	PH9-S46	PH9-S47	PH9-S48	PH9-S49
# ISO17025 accredited.		- Customor Gumpio IX	TF10-044	FF19-040	F113-340	FH3-347	FH3-340	F119-349
M mCERTS accredited. aq Aqueous / settled sample.								
diss.filt Dissolved / filtered sample.		Depth (m						
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcon		Sample Typ	Soil/Solid (S)					
* Subcontracted - refer to subcon accreditation status.	tractor report for	Date Sample	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021
** % recovery of the surrogate sta	ndard to check the	Sample Time						
efficiency of the method. The re compounds within samples are	sults of individual	Date Receive		06/05/2021	06/05/2021	06/05/2021	06/05/2021	06/05/2021
recovery		SDG Re		210506-141	210506-141	210506-141	210506-141	210506-141
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix		Lab Sample No.(s AGS Reference	24219560	24219562	24219563	24219564	24219565	24219566
Component		/Units Method						
Moisture Content Ratio (% of	tas	% PM024	13	14	15	13	16	17
received sample)								
			 					
								7
			+					
			+					
			+	-				
			+	-	-			
			-					
	- 	- 	 					
			1					

 SDG:
 210506-141
 Client Reference:
 Report Number:
 597497

 Location:
 21-14506
 Order Number:
 20798
 Superseded Report:

# ISO17025 accredited. # mCERTS accredited. aq Aqueous settled sample. diss.filt Dissolved i filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report accreditation status.		Customer Sample Ref. Depth (m) Sample Type Date Sampled	PH9-S50 . Soii/Solid (S) 04/05/2021	PH9-S51 Soil/Solid (S) 04/05/2021		
** % recovery of the surrogate standard to che efficiency of the method. The results of indi compounds within samples aren't corrected recovery	vidual	Sample Time Date Received SDG Ref	06/05/2021 210506-141	06/05/2021 210506-141		
(F) Trigger breach confirmed 1-44§@ Sample deviation (see appendix) Component	LOD/Units	Lab Sample No.(s) AGS Reference	24219567	24219568		
Moisture Content Ratio (% of as received sample)	%	PM024	10	12		

ALS

 SDG:
 210506-141
 Client Reference:
 Report Number:
 597497

 Location:
 21-14506
 Order Number:
 20798
 Superseded Report:

PAH by GCMS										_				
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.		Customer Sample Ref.	PH9-S38		PH9-S39		PH9-S40		PH9-S41		PH9-S42		PH9-S43	
aq Aqueous / settled sample. diss.filt bissolved / filtered sample. tot.unfilt Total / unfiltered sample. Subcontracted - refer to subcontractor repor accreditation status. " % recovery of the surrogate standard to che efficiency of the method. The results of indix compounds within samples aren't corrected recovery	ck the vidual	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref	Soil/Solid (S) 04/05/2021 06/05/2021 210506-141		Soil/Solid (S) 04/05/2021 06/05/2021 210506-141		Soil/Solid (S) 04/05/2021 - 06/05/2021 210506-141		Soil/Solid (S) 04/05/2021 06/05/2021 210506-141		Soil/Solid (S) 04/05/2021 06/05/2021 210506-141		Soil/Solid (S) 04/05/2021 06/05/2021 210506-141	
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	24219553		24219554		24219555		24219557		24219558		24219559	
Component Naphthalene-d8 % recovery**	LOD/Units %	Method TM218	78.1		76.2		85.6		85.2	+	76.6		76.9	
Acenaphthene-d10 %	%	TM218	80.2		78.9		82.9		76.5	+	75.9		78	
recovery** Phenanthrene-d10 % recovery**	%	TM218	90.5		84.9		93.8		81.1	\dagger	84.3	\neg	90.6	
Chrysene-d12 % recovery**	%	TM218	94.6		90.2		82.8		71.2	\dagger	84.9		91.4	
Perylene-d12 % recovery**	%	TM218	85.1		79.1		75		69.3	1	74		82.3	
Naphthalene	<9 µg/kg	TM218	<9	М	<9	М	<9	М	<9	М	<9	М	<9	М
Acenaphthylene	<12 µg/kg	TM218	<12	М	<12	М	<12	М	<12	M	<12	М	<12	М
Acenaphthene	<8 µg/kg	TM218	<8	М	<8	М	22.5	М	<8	М	<8	М	<8	М
Fluorene	<10 µg/kg	TM218	<10	М	<10	М	13.3	М	<10	М	<10	М	<10	М
Phenanthrene	<15 µg/kg	TM218	<15	М	<15	М	223	М	<15	М	44.7	М	<15	М
Anthracene	<16 µg/kg	TM218	<16	М	<16	М	46	М	<16	М	<16	М	<16	М
Fluoranthene	<17 µg/kg	TM218	<17	М	<17	М	387	М	<17	М	118	М	21	М
Pyrene	<15 µg/kg	TM218	<15	М	<15	М	324	М	<15	М	109	М	16.6	М
Benz(a)anthracene	<14 µg/kg	TM218	<14	М	<14	М	138	М	<14	М	67.5	М	<14	М
Chrysene	<10 µg/kg	TM218	<10	М	<10	М	129	М	<10	М	58.2	М	<10	М
Benzo(b)fluoranthene	<15 µg/kg	TM218	<15	М	<15	М	157	М	<15	М	89	М	<15	М
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14	М	<14	М	57.6	М	<14	М	31.3	М	<14	М
Benzo(a)pyrene	<15 µg/kg		<15	М	<15	М	119	М	<15	М	60.4	М	<15	М
Indeno(1,2,3-cd)pyrene	<18 µg/kg		<18	М	<18	М	82.7	М	<18	М	41.6	М	<18	М
Dibenzo(a,h)anthracene	<23 µg/kg		<23	М	<23	М	<23	М		М	<23	М	<23	М
Benzo(g,h,i)perylene	<24 µg/kg		<24	М	<24	М	80.1	М		М	43.5	М	<24	М
PAH, Total Detected USEPA 16	<118 µg/kǫ	g TM218	<118		<118		1780		<118		664		<118	
1										<u> </u>				
										1				
										+				
										1				
										+				
										+				
										\dagger				
										_				

ALS

 SDG:
 210506-141
 Client Reference:
 Report Number:
 597497

 Location:
 21-14506
 Order Number:
 20798
 Superseded Report:

Part	DALL by COMO										
Description of the control of the			Customer Sample Ref.	PH9-S44		PH9-S45	PH9-S46		PH9-S47	PH9-S48	PH9-S49
Substitution Subs											
Sample System Sample Syste			Depth (m)								
Note		l for				Soil/Solid (S)					Soil/Solid (S)
Beauty B	accreditation status.			04/05/2021		04/05/2021	04/05/2021		04/05/2021	04/05/2021	04/05/2021
Secretaries				06/05/2021		06/05/2021	06/05/2021		06/05/2021	06/05/2021	06/05/2021
Section Sect		for the		210506-141		210506-141	210506-141		210506-141	210506-141	210506-141
Component Month Method Month	(F) Trigger breach confirmed		Lab Sample No.(s)	24219560		24219562	24219563		24219564	24219565	24219566
Naphthalene 48 % recovery** \$\$ TM218 84.9 86.6 86.4 81.1 74.2 75.4 Accomplished end 10 % recovery** \$\$ TM218 82.6 79 81 77.7 76.5 77 **Conversions** **Penanthrone 410 % recovery** \$\$ TM218 93.5 85.6 90.6 85.7 86.5 81 **Chrysene 412 % recovery** \$\$ TM218 74.1 72.7 93.4 80.6 89.7 84.1 **Chrysene 412 % recovery** \$\$ TM218 74.1 72.7 93.4 80.6 89.7 84.1 **Perylene 412 % recovery** \$\$ TM218 74.1 72.7 93.4 80.6 89.7 84.1 **Perylene 412 % recovery** \$\$ TM218 41.1 72.7 93.4 80.6 89.7 84.1 **Perylene 412 % recovery** \$\$ TM218 41.1 72.7 93.4 80.6 89.7 84.1 **Accomplishing ene 49 µg/hg TM218 412 812 812 812 812 812 812 812 812 812 8		L OD/Uni									
Acceptithine-d10 % recovery"		1		84 9		86.6	86.4		81 1	74.2	75.4
Premarthrene-d10 % recovery**	7. 1007.01	, ,	2.0	0		33.0				· <u>-</u>	
Chrysene-d12% recovery**	Acenaphthene-d10 % recovery**	%	TM218	82.6		79	81		77.7	76.5	77
Perylene-d12 % recovery**	Phenanthrene-d10 % recovery**	%	TM218	93.5		85.6	90.6		85.7	86.5	81
Naphthalene	Chrysene-d12 % recovery**	%	TM218	80.2		74.9	97.1		82.6	89.7	84.1
Acenaphthylene	Perylene-d12 % recovery**	%	TM218	74.1		72.7	93.4		80.6	80	72.8
Acenaphthylene	Naphthalene	<9 µg/k	rg TM218	<9	М		<9	М			1
Acenaphthene	Acenaphthylene	<12 µg/l	kg TM218	<12		<12	<12		<12	<12	<12
Fluorene <10 μg/kg TM218 <10	Acenaphthene	<8 µg/k	rg TM218	<8		<8	<8		<8	<8	<8
Phenanthrene	Fluorene	<10 µg/	kg TM218	<10		<10	<10		<10	<10	<10
Anthracene	Phenanthrene	<15 µg/	kg TM218	<15		<15	<15		22.3	<15	<15
Fluoranthene	Anthracene	<16 µg/	kg TM218	<16		<16	<16		<16	<16	<16
Pyrene	Fluoranthene	<17 µg/	kg TM218	<17		<17	34.6		119	<17	47
Benz(a)anthracene	Pyrene	<15 µg/	kg TM218	<15		<15	30.4		111	<15	44
Chrysene	Benz(a)anthracene	<14 µg/l	kg TM218	<14		<14	22		69.8	<14	<14
Benzo(b)fluoranthene \$15 μg/kg TM218 \$15	Chrysene	<10 µg/	kg TM218	<10		<10	19.1		56.4	<10	20.7
Benzo(k)fluoranthene	Benzo(b)fluoranthene	<15 µg/l	kg TM218	<15		<15	28.1		145	<15	47.4
Benzo(a)pyrene < 15 μg/kg TM218 < 15 M M M M M M M M M M M M M M M M M M	Benzo(k)fluoranthene	<14 µg/l	kg TM218	<14		<14	<14		40.8	<14	18.7
Indeno(1,2,3-cd)pyrene	Benzo(a)pyrene	<15 µg/l	kg TM218	<15		<15			101	<15	32.9
Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	<18 µg/l	kg TM218	<18		<18	<18		94.2	<18	30.1
Benzo(g,h,i)perylene <24 μg/kg TM218 <24 <24 <24 106 <24 33 M M M M M M M M M M	Dibenzo(a,h)anthracene	<23 µg/	kg TM218	<23		<23			<23	<23	<23
PAH, Total Detected USEPA 16 <118 μg/kg TM218 <118 <118 154 865 <118 274	Benzo(g,h,i)perylene	<24 µg/l	kg TM218	<24	М		<24	М			1
	PAH, Total Detected USEPA 16	<118 µg	/kg TM218	<118		<118	154		865	<118	274

210506-141 21-14506 Report Number: Superseded Report: SDG: Client Reference: 597497

Location:

Order Number:

20798

PAH by GCMS						
Results Legend # ISO17025 accredited.		Customer Sample Ref.	PH9-S50	PH9-S51		
M mCERTS accredited. aq Aqueous / settled sample.						
diss.filt Dissolved / filtered sample.		Depth (m)				
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report	for	Sample Type Date Sampled	Soil/Solid (S) 04/05/2021	Soil/Solid (S) 04/05/2021		
accreditation status. ** % recovery of the surrogate standard to check		Sample Time				
efficiency of the method. The results of indivi- compounds within samples aren't corrected for	dual or the	Date Received	06/05/2021	06/05/2021		
recovery		SDG Ref Lab Sample No.(s)	210506-141 24219567	210506-141 24219568		
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		AGS Reference				
Component	LOD/Units	Method				
Naphthalene-d8 % recovery**	%	TM218	75.2	81.2		
Acenaphthene-d10 % recovery**	%	TM218	77.8	79.1		
Phenanthrene-d10 % recovery**	%	TM218	90.5	88.5		
Chrysene-d12 % recovery**	%	TM218	91.7	78.4		
Perylene-d12 % recovery**	%	TM218	82.7	70.4		
Naphthalene	<9 µg/kg	TM218	14.8 M	<9 M		
Acenaphthylene	<12 µg/kg	TM218	29.1 M	<12 M		
Acenaphthene	<8 µg/kg	TM218	230 M	<8 M		
Fluorene	<10 µg/kg	TM218	<10 M	<10 N		
Phenanthrene	<15 µg/kg	TM218	1920 M	45.8 M		
Anthracene	<16 µg/kg	TM218	543 M	<16 N		
Fluoranthene	<17 µg/kg	TM218	3140 M	182 M		
Pyrene	<15 µg/kg	TM218	2540 M	171 M		
Benz(a)anthracene	<14 µg/kg	TM218	1330 M	77.8 N		
Chrysene	<10 µg/kg	TM218	1110 M	73.6 N		
Benzo(b)fluoranthene	<15 µg/kg	TM218	1420 M	106 M		
Benzo(k)fluoranthene	<14 µg/kg	TM218	474 M	34.6 M		
Benzo(a)pyrene	<15 µg/kg	TM218	1040 M	68.1 M		
Indeno(1,2,3-cd)pyrene	<18 µg/kg		630 M			
Dibenzo(a,h)anthracene	<23 µg/kg		131 M			
Benzo(g,h,i)perylene	<24 μg/kg	TM218	660 M	54 M		
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	15200	864		

Client Reference: Order Number:

Report Number: Superseded Report:

597497

Validated

Table of Results - Appendix

20798

Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos
		Containing Material
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Validated

CERTIFICATE OF ANALYSIS

ALS

 SDG:
 210506-141
 Client Reference:
 Report Number:
 597497

 Location:
 21-14506
 Order Number:
 20798
 Superseded Report:

Test Completion Dates

				p. 0 t. 0 .						
Lab Sample No(s)	24219553	24219554	24219555	24219557	24219558	24219559	24219560	24219562	24219563	24219564
Customer Sample Ref.	PH9-S38	PH9-S39	PH9-S40	PH9-S41	PH9-S42	PH9-S43	PH9-S44	PH9-S45	PH9-S46	PH9-S47
AGS Ref.										
Depth										
Туре	Soil/Solid (S)									
PAH by GCMS	10-May-2021	10-May-2021	10-May-2021	11-May-2021	10-May-2021	10-May-2021	10-May-2021	11-May-2021	10-May-2021	10-May-2021
Sample description	07-May-2021									

Lab Sample No(s)		24219566	24219567	24219568
Customer Sample Ref.	PH9-S48	PH9-S49	PH9-S50	PH9-S51
AGS Ref.				
Depth				
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
PAH by GCMS	10-May-2021	10-May-2021	10-May-2021	10-May-2021
Sample description	07-May-2021	07-May-2021	07-May-2021	07-May-2021

 SDG:
 210506-141
 Client Reference:
 Report Number:
 597497

 Location:
 21-14506
 Order Number:
 20798
 Superseded Report:

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
Ø	Sampled on date not provided

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name					
Chrysofile	White Asbests					
Amosite	Brown Asbestos					
Cro di dolite	Blue Asbe stos					
Fibrous Act nolite	-					
Fib to us Anthop hyll ite	-					
Fibrous Tremolite	-					

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017).

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Element Materials Technology

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Smith Grant LLP Station House Station Road Ruabon Wrexham LL14 6DL

Dan Wayland Attention:

Date: 3rd March, 2021

Your reference : R1742B

Our reference : Test Report 21/2316 Batch 1

Heyford PH9 Location:

Date samples received : 19th February, 2021

Status: Final report

Issue : 1

Three samples were received for analysis on 19th February, 2021 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie

b luce

Project Manager

Please include all sections of this report if it is reproduced

Element Materials Technology

Client Name: Smith Grant LLP

Reference: R1742B Location: Heyford PH9 Contact: Dan Wayland Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No: 21/2316

EMT 30D NO.	21/2010										-		
EMT Sample No.	1-2	3-4	5-6										
Sample ID	HS-TP104-S1	HS-TP104-S2	HS-TP104-S3										
Depth	0.0-0.4	0.0-0.4	0.4-1.1								Please se	e attached n	notes for all
COC No / misc												ations and a	
Containers	٧J	٧J	٧J										
Sample Date	17/02/2021	17/02/2021	17/02/2021										
Sample Type	Clay	Clay	Clay										
Batch Number	1	1	1										Matteria
Date of Receipt			19/02/2021								LOD/LOR	Units	Method No.
TPH CWG	10/02/2021	10/02/2021	10/02/2021										
Aliphatics													
>C5-C6 #M	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>C6-C8 #M	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>C10-C12 *M	<0.2 ^{SV}	<0.2 ^{sv}	<0.2 ^{sv}								<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 #M	<4 ^{SV}	<4 ^{SV}	<4 ^{SV}								<4	mg/kg	TM5/PM8/PM16
>C16-C21 #M	14 ^{sv}	<7 ^{SV}	<7 ^{SV}								<7	mg/kg	TM5/PM8/PM16
>C21-C35 **M	63 ^{SV}	<7 ^{SV}	<7 ^{SV}								<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	77	<19	<19								<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics													
>C5-EC7#	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>EC8-EC10 #M	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2 ^{SV}	<0.2 ^{SV}	<0.2 sv								<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 #	<4 ^{SV}	<4 ^{SV}	<4 ^{SV}								<4	mg/kg	TM5/PM8/PM16
>EC16-EC21#	33 ^{sv}	<7 ^{SV}	<7 ^{SV}								<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	231 ^{SV}	<7 ^{sv}	<7 ^{SV}								<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35#	264	<19	<19								<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	341	<38	<38								<38	mg/kg	TM5/TM36/PM8/PM12/PM16
MTBE#	<5	<5	<5								<5	ug/kg	TM36/PM12
Benzene #	<5	<5	<5								<5	ug/kg	TM36/PM12
Toluene #	<5	<5	<5								<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5								<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5	<5								<5	ug/kg	TM36/PM12
o-Xylene#	<5	<5	<5								<5	ug/kg	TM36/PM12
Natural Moisture Content	22.9	11.2	12.0								<0.1	%	PM4/PM0
			1=12										
Sample Type	Clay	Clay	Clay									None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown									None	PM13/PM0
Other Items	stones	stones	stones									None	PM13/PM0
													-
	l	l	l	l	l	I.	I.	l	I.	l	l	l	1

Client Name: Smith Grant LLP

Reference: R1742B

Location: Heyford PH9 **Contact:** Dan Wayland

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 21/2316	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/2316

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/2316

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
_	

Element Materials Technology

EMT Job No: 21/2316

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
ТМ5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	No
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-06789-1

Initial Date of Issue: 10-Mar-2021

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Dan Wayland

Project R1742b Heyford - Phase 9

Quotation No.: Q15-02887 Date Received: 04-Mar-2021

Order No.: Date Instructed: 04-Mar-2021

No. of Samples: 11

Turnaround (Wkdays): 5 Results Due: 10-Mar-2021

Date Approved: 10-Mar-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789
Quotation No.: Q15-02887	(Chemte	st Sam	ple ID.:	1153713	1153714	1153715	1153716	1153717	1153718	1153719	1153720	1153721
		Sa	ample Lo	ocation:	PH9-S1	PH9-S2	PH9-S3	PH9-S4	PH9-S5	PH9-S6	PH9-S7	PH9-S8	PH9-S9
			Sampl	е Туре:	SOIL								
			Top De	pth (m):	0	0	0	0	0	0	0	0	0
		Bo	ttom De _l	oth (m):	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
			Date Sa	ampled:	02-Mar-2021								
			Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
ACM Type	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-	-	-	-
Moisture	N	2030	%	0.020	15	13	15	15	11	10	12	6.9	13
рН	U	2010		4.0	8.7	8.6	8.6	8.6	8.7	8.6	8.6	8.7	8.6
Arsenic	U	2450	mg/kg	1.0	12	20	15	16	25	24	25	10	21
Cadmium	U	2450	mg/kg	0.10	0.18	0.12	0.13	0.16	0.16	0.15	0.15	< 0.10	0.23
Chromium	U	2450	mg/kg	1.0	21	20	26	25	20	18	18	4.0	25
Copper	U	2450	mg/kg	0.50	14	9.0	13	14	10	10	9.8	1.7	11
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	20	20	24	26	21	18	19	3.9	24
Lead	U	2450	mg/kg	0.50	17	9.8	12	15	10	12	9.8	1.9	17
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	0.24	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Zinc	U	2450	mg/kg	0.50	47	28	47	44	28	30	26	4.6	41
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.95	0.67	0.84	1.4	0.55	1.1	0.74	< 0.40	1.2
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

1 TOJECT. ICTT 425 TICYTOTA - 1 TIAS													
Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789
Quotation No.: Q15-02887		Chemte	est Sam	ple ID.:	1153713	1153714	1153715	1153716	1153717	1153718	1153719	1153720	1153721
		Sa	ample Lo		PH9-S1	PH9-S2	PH9-S3	PH9-S4	PH9-S5	PH9-S6	PH9-S7	PH9-S8	PH9-S9
			Sampl	e Type:	SOIL								
		Top Depth (m):			0	0	0	0	0	0	0	0	0
		Bottom Depth (m):			0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
			Date Sa	ampled:	02-Mar-2021								
			Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Smith Grant LLP			mtest Jo			21-06789
Quotation No.: Q15-02887	(st Sam		1153722	1153723
		Sa	ample Lo		PH9-S10	PH9-S11
			Sample	SOIL	SOIL	
			Top Dep	0	0	
		Bot	tom Dep		0.4	0.4
			Date Sa	ampled:	02-Mar-2021	02-Mar-2021
		_	Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
ACM Type	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-
Moisture	N	2030	%	0.020	12	7.5
рН	U	2010		4.0	8.4	8.6
Arsenic	U	2450	mg/kg	1.0	13	13
Cadmium	U	2450	mg/kg	0.10	< 0.10	< 0.10
Chromium	U	2450		1.0	9.4	7.2
Copper	U	2450	mg/kg	0.50	5.0	3.8
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10
Nickel	U	2450		0.50	9.3	7.0
Lead	U	2450	mg/kg	0.50	7.7	5.8
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20
Zinc	U	2450	mg/kg	0.50	21	12
Chromium (Hexavalent)	N	2490		0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	1.1	0.60
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680		1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680		1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680		1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680		5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680		1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680		1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680		1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680		5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	U	2700		0.10	< 0.10	< 0.10

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-06789	21-06789
Quotation No.: Q15-02887	(Chemte	st Sam	ple ID.:	1153722	1153723
		Sa	ample Lo	ocation:	PH9-S10	PH9-S11
			Sample	е Туре:	SOIL	SOIL
			Top Dep	oth (m):	0	0
		Bot	tom Dep		0.4	0.4
			Date Sa	ampled:	02-Mar-2021	02-Mar-2021
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	0.78
Anthracene	U	2700	mg/kg	0.10	< 0.10	0.40
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	1.7
Pyrene	U	2700	mg/kg	0.10	< 0.10	1.6
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	0.90
Chrysene	U	2700	mg/kg	0.10	< 0.10	0.90
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	0.60
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	0.17
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	0.56
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	7.6
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 21-06789-2

Initial Date of Issue: 10-Mar-2021 Date of Re-Issue: 18-Mar-2021

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Dan Wayland

Project R1742b Heyford - Phase 9

Quotation No.: Q15-02887 Date Received: 04-Mar-2021

Order No.: Date Instructed: 04-Mar-2021

No. of Samples: 11

Turnaround (Wkdays): 15 Results Due: 24-Mar-2021

Date Approved: 18-Mar-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789
Quotation No.: Q15-02887			est Sam		1153713	1153714	1153715	1153716	1153717	1153718	1153719	1153720	1153721
			ample L		PH9-S1	PH9-S2	PH9-S3	PH9-S4	PH9-S5	PH9-S6	PH9-S7	PH9-S8	PH9-S9
				е Туре:	SOIL								
			Top De		0	0	0	0	0	0	0	0	0
		Bo	ttom De	pth (m):	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
			Date Sa	ampled:	02-Mar-2021								
			Asbest		COVENTRY								
Determinand	Accred.	SOP											
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-	-	-	-
Moisture	N	2030	%	0.020	15	13	15	15	11	10	12	6.9	13
рН	U	2010		4.0	8.7	8.6	8.6	8.6	8.7	8.6	8.6	8.7	8.6
Arsenic	U	2450	mg/kg	1.0	12	20	15	16	25	24	25	10	21
Cadmium	U	2450	mg/kg	0.10	0.18	0.12	0.13	0.16	0.16	0.15	0.15	< 0.10	0.23
Chromium	U	2450	mg/kg	1.0	21	20	26	25	20	18	18	4.0	25
Copper	U	2450	mg/kg	0.50	14	9.0	13	14	10	10	9.8	1.7	11
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	20	20	24	26	21	18	19	3.9	24
Lead	U	2450	mg/kg	0.50	17	9.8	12	15	10	12	9.8	1.9	17
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	0.24	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	40	40	45	49	41	38	41	7.8	49
Zinc	U	2450	mg/kg	0.50	47	28	47	44	28	30	26	4.6	41
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.95	0.67	0.84	1.4	0.55	1.1	0.74	< 0.40	1.2
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Chemtest Job No.:			21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	21-06789	
Chemtest Sample ID.:				1153713	1153714	1153715	1153716	1153717	1153718	1153719	1153720	1153721
Sample Location:			PH9-S1	PH9-S2	PH9-S3	PH9-S4	PH9-S5	PH9-S6	PH9-S7	PH9-S8	PH9-S9	
Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
Top Depth (m):			0	0	0	0	0	0	0	0	0	
Bottom Depth (m):			0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
Date Sampled:			02-Mar-2021	02-Mar-2021	02-Mar-2021	02-Mar-2021	02-Mar-2021	02-Mar-2021	02-Mar-2021	02-Mar-2021	02-Mar-2021	
Asbestos Lab:			COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	
Accred.	SOP	Units	LOD									
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Accred. U	Chemte Si	Chemtest Sample Load Sampl	Chemtest Sample ID.:	Chemtest Sample ID.: 1153713 Sample Location: PH9-S1 Sample Type: SOIL Top Depth (m): 0 O.4 Date Sampled: 02-Mar-2021 Asbestos Lab: COVENTRY Accred. SOP Units LOD U 2700 mg/kg 0.10 < 0.10 U 2700 mg/kg 0.10 < 1.0 U 2760 μg/kg 1.0 <	Chemtest Sample ID.: 1153713 1153714 Sample Location: PH9-S1 PH9-S2 Sample Type: SOIL SOIL Top Depth (m): 0 Bottom Depth (m): 0.4 0.4 Date Sampled: 02-Mar-2021 02-Mar-2021 Asbestos Lab: COVENTRY COVENTRY Accred. SOP Units LOD U 2700 mg/kg 0.10 < 0.10 U 2700 mg/kg 0.10 < 0.10 < 0.10	Chemtest Sample ID.: 1153713 1153714 1153715 Sample Location: PH9-S1 PH9-S2 PH9-S3 Sample Type: SOIL SOIL SOIL Top Depth (m): 0.4 0.4 0.4 0.4 0.4 0.4 O.4 O	Chemtest Sample ID.: 1153713 1153714 1153715 1153716 Sample Location: PH9-S1 PH9-S2 PH9-S3 PH9-S4 SollL Sol	Chemtest Sample ID.: 1153713 1153714 1153715 1153716 1153717 Sample Location: PH9-S1 PH9-S2 PH9-S3 PH9-S4 PH9-S5 Sample Type: SOIL SOIL SOIL SOIL SOIL Top Depth (m): 0 0 0 0 0 Bottom Depth (m): 0.4 0.4 0.4 0.4 0.4 Date Sampled: 02-Mar-2021 02-Mar-2021 <t< td=""><td> Chemtest Sample D.: 1153713 1153714 1153715 1153716 1153717 1153718 Sample Location: PH9-S1 PH9-S2 PH9-S3 PH9-S4 PH9-S5 PH9-S6 Sample Type: SOIL SOI</td><td> Chemtest Sample ID.: 1153713</td><td> Chemtest Sample ID: 1153713</td></t<>	Chemtest Sample D.: 1153713 1153714 1153715 1153716 1153717 1153718 Sample Location: PH9-S1 PH9-S2 PH9-S3 PH9-S4 PH9-S5 PH9-S6 Sample Type: SOIL SOI	Chemtest Sample ID.: 1153713	Chemtest Sample ID: 1153713

Client: Smith Grant LLP			mtest Jo		21-06789	21-06789
Quotation No.: Q15-02887	(st Sam	1153722	1153723	
		Sa	ample Lo	PH9-S10	PH9-S11	
			Sample	SOIL	SOIL	
			Top Dep	0	0	
		Bot	tom Dep	0.4	0.4	
			Date Sa	02-Mar-2021	02-Mar-2021	
		Asbestos Lab:			COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
ACM Type	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-
Moisture	N	2030	%	0.020	12	7.5
рН	U	2010		4.0	8.4	8.6
Arsenic	U	2450	mg/kg	1.0	13	13
Cadmium	U	2450	mg/kg	0.10	< 0.10	< 0.10
Chromium	U	2450	mg/kg	1.0	9.4	7.2
Copper	U	2450	mg/kg	0.50	5.0	3.8
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	9.3	7.0
Lead	U	2450	mg/kg	0.50	7.7	5.8
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	19	15
Zinc	U	2450	mg/kg	0.50	21	12
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	1.1	0.60
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10

Client: Smith Grant LLP			mtest Jo		21-06789	21-06789
Quotation No.: Q15-02887		Chemte	est Sam	1153722	1153723	
		Sa	ample Lo	cation:	PH9-S10	PH9-S11
				е Туре:	SOIL	SOIL
			Top Dep		0	0
		Bot	tom Dep		0.4	0.4
			Date Sa		02-Mar-2021	02-Mar-2021
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
Acenaphthylene	U	2700)	0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	0.78
Anthracene	U	2700	mg/kg	0.10	< 0.10	0.40
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	1.7
Pyrene	U	2700	mg/kg	0.10	< 0.10	1.6
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	0.90
Chrysene	U	2700	mg/kg	0.10	< 0.10	0.90
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	0.60
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	0.17
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	0.56
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	7.6
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-07749-1

Initial Date of Issue: 17-Mar-2021

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Dan Wayland

Project R172B Heyford - Ph9

Quotation No.: Date Received: 11-Mar-2021

Order No.: Date Instructed: 11-Mar-2021

No. of Samples: 12

Turnaround (Wkdays): 5 Results Due: 17-Mar-2021

Date Approved: 17-Mar-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Client: Smith Grant LLP		Cho	mtest J	ah Na :	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749	21-07749
Quotation No.:	 		est Sam		1158239	1158240	1158241	1158242	1158243	1158244	1158245	1158246	1158247
Quotation No	+		ample Lo		PH9-SS12	PH9-SS13	PH9-SS14	PH9-SS15	PH9-SS16	PH9-SS17	PH9-SS18	PH9-SS19	PH9-SS20
	+			e Type:	SOIL								
			Top De		0	0	0	0	0	0	0	0	0
		Bo	ttom De		0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
		БО	Date Sa	. ,	0.4 09-Mar-2021								
			Asbest		DURHAM								
Determinand	Accred.	SOP			DOMINI								
ACM Type	U	2192	Office	N/A	_	_	_	_	_	_	_	_	_
,,	<u> </u>				No Asbestos								
Asbestos Identification	U	2192		N/A	Detected								
ACM Detection Stage	U	2192		N/A	-	_	_	_	-	_	-	_	_
Moisture	N	2030	%	0.020	9.6	10	9.5	9.1	10	10	12	11	11
pH	Ü	2010		4.0	8.9	8.9	9.0	9.0	8.8	8.9	8.9	8.9	8.9
Arsenic	Ü	2450	mg/kg	1.0	26	31	21	35	26	33	27	24	26
Cadmium	Ü	2450	mg/kg	0.10	0.15	0.11	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chromium	U	2450	mg/kg	1.0	13	14	7.8	14	16	18	16	14	19
Copper	U	2450	mg/kg	0.50	7.2	5.8	3.5	5.9	6.9	7.8	5.9	5.1	7.4
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	12	11	7.2	12	16	17	13	11	17
Lead	U	2450	mg/kg	0.50	8.3	7.2	3.3	6.7	6.6	9.0	6.6	6.4	8.2
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	30	36	22	37	35	43	35	32	39
Zinc	U	2450	mg/kg	0.50	30	19	7.9	15	18	19	54	16	23
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.90	< 0.40	< 0.40	0.41	< 0.40	< 0.40	< 0.40	0.69	< 0.40
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Clients Smith Grant LLP Chemiest Job No.: 21-07749 21-0774	111122110110101	
Sample Location: PH9-SS12	Smith Grant LLP	21-07749
Sample Type: SOIL	on No.:	1158247
Top Depth (m): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9 PH9-SS20
Bottom Depth (m); 0.4		SOIL
Date Sampled: 09-Mar-2021 09-Mar-2021		0
Asbestos Lab: DURHAM DUR		0.4
Determinand Accred. SOP Units LOD Acenaphthylene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0		21 09-Mar-2021
Acenaphthylene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0		I DURHAM
Acenaphthene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.1	inand A	
Fluorene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	nthylene	< 0.10
Phenanthrene	nthene	< 0.10
Anthracene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.1	е	< 0.10
Fluoranthene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <	threne	< 0.10
Pyrene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <td>ene</td> <td>< 0.10</td>	ene	< 0.10
Benzo[a]anthracene	hene	< 0.10
Chrysene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 </td <td></td> <td>< 0.10</td>		< 0.10
Benzo[b]fluoranthene]anthracene	< 0.10
Benzo[k]fluoranthene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	ie	< 0.10
Benzo[a]pyrene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <]fluoranthene	< 0.10
Indeno(1,2,3-c,d)Pyrene]fluoranthene	< 0.10
Dibenz(a,h)Anthracene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.1]pyrene	< 0.10
Benzo[g,h,i]perylene U 2700 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1,2,3-c,d)Pyrene	< 0.10
Total Of 16 PAH's U 2700 mg/kg 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	a,h)Anthracene	< 0.10
Benzene U 2760 μg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <	,h,i]perylene	< 0.10
Toluene U 2760 μg/kg 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	16 PAH's	< 2.0
Ethylbenzene U 2760 μg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	е	< 1.0
m & p-Xylene U 2760 µg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0		< 1.0
	nzene	< 1.0
o-Xylene U 2760 µg/kg 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	ylene	< 1.0
	e	< 1.0

Client: Smith Grant LLP			mtest Jo		21-07749	21-07749	21-07749
Quotation No.:	(st Sam		1158248	1158249	1158250
		Sa	ample Lo	ocation:	PH9-SS21	PH9-SS22	PH9-SS23
				e Type:	SOIL	SOIL	SOIL
			Top De	oth (m):	0	0	0
		Bot	tom De	oth (m):	0.4	0.4	0.4
			Date Sa	ampled:	09-Mar-2021	09-Mar-2021	09-Mar-2021
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			
ACM Type	U	2192		N/A	-	1	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-	-
Moisture	N	2030	%	0.020	27	38	16
pH	U	2010		4.0	8.9	9.0	9.1
Arsenic	U	2450	mg/kg	1.0	30	12	10
Cadmium	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chromium	U	2450	mg/kg	1.0	16	4.7	3.2
Copper	U	2450	mg/kg	0.50	6.4	1.9	1.4
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	16	4.3	2.8
Lead	U	2450	mg/kg	0.50	7.1	2.1	1.5
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	36	11	10
Zinc	U	2450	mg/kg	0.50	18	5.3	3.9
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	< 0.40	< 0.40	< 0.40
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-07749	21-07749	21-07749
Quotation No.:		Chemte	est Sam	ple ID.:	1158248	1158249	1158250
		Sa	ample Lo			PH9-SS22	PH9-SS23
			Sample	е Туре:	SOIL	SOIL	SOIL
			Top Dep			0	0
		Bot	tom Dep			0.4	0.4
			Date Sa	ampled:	09-Mar-2021	09-Mar-2021	09-Mar-2021
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Initial Date of Issue:

Report No.: 21-11315-1

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

16-Apr-2021

Contact(s): Dan Wayland

Project R1742b Heyford Ph9

Quotation No.: Date Received: 09-Apr-2021

Order No.: Date Instructed: 09-Apr-2021

No. of Samples: 14

Turnaround (Wkdays): 5 Results Due: 15-Apr-2021

Date Approved: 15-Apr-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Client: Smith Grant LLP		Cha	mtest J	oh No :	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315
Quotation No.:	-		est Sam		1175986	1175987	1175988	1175989	1175990	1175991	1175992	1175993	1175994
Quotation No	— '		ent Sam		S24	S25	S26	S27	S28	S29	S30	S31	S32
			ample Lo										
		36		e Type:	Ph9- SOIL								
			Date Sa			-	-						
				_ '	06-Apr-2021								
Determine and	A 1	000	Asbest		COVENTRY								
Determinand	Accred.	SOP	Units										
ACM Type	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected								
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-	-	-	-
Moisture	N	2030	%	0.020	6.0	10	9.6	8.9	12	10	18	14	15
pH	U	2010		4.0	8.0	8.4	8.3	8.2	8.4	8.5	8.6	8.2	8.5
Arsenic	U	2450	mg/kg	1.0	18	20	17	17	23	18	16	22	13
Cadmium	U	2450	mg/kg	0.10	0.17	0.12	< 0.10	< 0.10	0.22	0.11	< 0.10	0.15	< 0.10
Chromium	U	2450	mg/kg	1.0	16	14	14	13	25	15	12	21	9.6
Copper	U	2450	mg/kg	0.50	9.3	6.3	6.3	7.2	14	7.4	7.7	12	4.8
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	22	11	13	11	22	14	13	21	9.0
Lead	U	2450	mg/kg	0.50	25	8.5	7.2	6.5	23	8.4	7.3	15	5.0
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	29	32	29	28	53	36	24	44	19
Zinc	U	2450	mg/kg	0.50	28	23	18	18	46	29	13	37	12
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.86	< 0.40	0.52	< 0.40	2.2	1.0	< 0.40	0.69	< 0.40
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	27	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	Ü	2680	mg/kg	1.0	18	26	< 1.0	< 1.0	34	140	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	18	26	< 5.0	< 5.0	34	170	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	18	26	< 10	< 10	34	170	< 10	< 10	< 10
Naphthalene	Ü	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	Ü			0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

i Toject. IXT7420 Heylold I II3													
Client: Smith Grant LLP		Che	mtest J	ob No.:	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315	21-11315
Quotation No.:	(Chemte	est Sam	ple ID.:	1175986	1175987	1175988	1175989	1175990	1175991	1175992	1175993	1175994
		Client Sample ID.:			S24	S25	S26	S27	S28	S29	S30	S31	S32
		S	ample Lo	ocation:	Ph9-								
			Sampl	е Туре:	SOIL								
			Date Sa	ampled:	06-Apr-2021								
			Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	2.5	0.23	2.0	1.3	1.4	1.5	< 0.10	0.58	< 0.10
Anthracene	U	2700	mg/kg	0.10	0.63	0.10	0.77	0.42	0.45	0.45	< 0.10	0.14	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	3.2	0.94	6.9	1.8	6.5	3.2	< 0.10	1.0	< 0.10
Pyrene	U	2700	mg/kg	0.10	2.9	1.1	7.0	1.7	6.7	3.0	< 0.10	1.1	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	0.95	0.50	3.0	0.51	3.3	1.2	< 0.10	0.36	< 0.10
Chrysene	U	2700	mg/kg	0.10	1.2	0.61	3.0	0.69	3.6	1.3	< 0.10	0.51	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	1.3	1.1	3.9	< 0.10	5.1	1.9	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	0.51	0.38	1.6	< 0.10	2.0	0.77	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	0.81	0.72	2.8	< 0.10	3.5	1.1	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	0.59	0.49	2.3	< 0.10	2.7	0.79	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	0.64	< 0.10	0.67	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	0.50	0.50	1.8	< 0.10	2.4	0.78	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	15	6.7	36	6.4	38	16	< 2.0	3.7	< 2.0
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Client: Smith Grant LLP			mtest Jo		21-11315	21-11315	21-11315	21-11315	21-11315
Quotation No.:	(st Sam		1175995	1175996	1175997	1175998	1175999
			ent Sam		S33	S34	S35	S36	S37
		Sa	ample Lo		Ph9-	Ph9-	Ph9-	Ph9-	Ph9-
				e Type:	SOIL	SOIL	SOIL	SOIL	SOIL
			Date Sa		06-Apr-2021	06-Apr-2021	06-Apr-2021	06-Apr-2021	06-Apr-202
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTR
Determinand	Accred.	SOP	Units	LOD					
АСМ Туре	U	2192		N/A	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbesto Detected
ACM Detection Stage	U	2192		N/A	-	-	-	_	-
Moisture	N	2030	%	0.020	16	13	13	17	11
Hq	Ü	2010		4.0	8.4	8.4	8.2	8.3	8.3
Arsenic	Ü		mg/kg	1.0	14	16	23	23	25
Cadmium	Ü	2450	mg/kg	0.10	0.12	0.13	0.18	0.18	0.21
Chromium	Ü	2450	mg/kg	1.0	16	26	34	38	25
Copper	Ü	2450	mg/kg	0.50	7.8	8.9	15	16	13
Mercury	Ü	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	Ü	2450	mg/kg	0.50	15	20	27	34	21
Lead	Ü	2450	mg/kg	0.50	8.4	14	17	17	20
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5.0	31	44	63	65	52
Zinc	U	2450	mg/kg	0.50	19	43	53	59	39
Chromium (Hexavalent)	N	2490		0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	mg/kg %	0.30	< 0.40	0.52	0.83	0.78	0.88
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N N	2680	0	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
·	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH > C8-C10	U		mg/kg			_			
Aliphatic TPH > C10-C12	U	2680	mg/kg	1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Aliphatic TPH > C12-C16	U	2680	mg/kg	1.0	_	_			
Aliphatic TPH > C16-C21		2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH > C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	12
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	12
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH > C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	12
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.18
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Client: Smith Grant LLP		Che	mtest Jo	:.oN do	21-11315	21-11315	21-11315	21-11315	21-11315
Quotation No.:		Chemte	st Sam	ple ID.:	1175995	1175996	1175997	1175998	1175999
			ent Sam		S33	S34	S35	S36	S37
		Sa	ample Lo	ocation:	Ph9-	Ph9-	Ph9-	Ph9-	Ph9-
			Sample	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
			Date Sa	ampled:	06-Apr-2021	06-Apr-2021	06-Apr-2021	06-Apr-2021	06-Apr-2021
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD					
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.39
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.31
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	3.6
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	1.2
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	11
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	11
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	4.3
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	4.0
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	5.1
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.3
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	4.0
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.9
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	1.3
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	2.5
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	54
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

eurofins

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Chemtest

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-11321-1

Initial Date of Issue: 16-Apr-2021

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Dan Wayland

Project R1742b Heyford - Ph9

Quotation No.: Date Received: 09-Apr-2021

Order No.: Date Instructed: 09-Apr-2021

No. of Samples: 10

Turnaround (Wkdays): 5 Results Due: 15-Apr-2021

Date Approved: 15-Apr-2021

Approved By:

Details: Rachel Robertson, Deputy Technical

Manager

Client: Smith Grant LLP		Chem	test Jo	b No.:	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176016	1176017
		Sar	nple Lo	cation:	Shilling St - Tarmac	Altus St - Tarmac
			Sample	Type:	MISCSOLID	MISCSOLID
			ate Sa		06-Apr-2021	06-Apr-2021
Determinand	Accred.	SOP	Units	LOD	•	•
Chromatogram (TPH)	N			N/A	See Attached	See Attached
Diesel Present	Ν	2670		N/A	False	False
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	330	32
Coal Tar Quantification (%)	N		%	0.001	0.15	0.017
Coal Tar Quantification	N		mg/kg	10.0	1500	170
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	1500	170
Total Petroleum Hydrocarbons	N	2680	mg/kg	10	1900	200
Naphthalene	N	2700	mg/kg	0.10	2.0	1.4
Acenaphthylene	N	2700	mg/kg	0.10	4.3	7.3
Acenaphthene	N	2700	mg/kg	0.10	8.8	18
Fluorene	N	2700	mg/kg	0.10	7.7	15
Phenanthrene	N	2700	mg/kg	0.10	55	130
Anthracene	N	2700	mg/kg	0.10	21	58
Fluoranthene	N	2700	mg/kg	0.10	85	360
Pyrene	N	2700	mg/kg	0.10	84	380
Benzo[a]anthracene	N	2700	mg/kg	0.10	34	150
Chrysene	N	2700	mg/kg	0.10	40	140
Benzo[b]fluoranthene	N	2700	mg/kg	0.10	63	200
Benzo[k]fluoranthene	N	2700	mg/kg	0.10	26	76
Benzo[a]pyrene	N	2700	mg/kg	0.10	46	160

	Chem	test Jo	b No.:	21-11321	21-11321
Ch				1176016	1176017
				Shilling St -	Altus St - Tarmac
		Sample	Type:	MISCSOLID	MISCSOLID
				06-Apr-2021	06-Apr-2021
Accred.	SOP	Units	LOD		
N	2700	mg/kg	0.10	35	120
N	2700	mg/kg	0.10	9.8	25
N	2700	mg/kg	0.10	29	98
N	2700	mg/kg	0.10	< 0.10	< 0.10
N	2700	mg/kg	2.0	550	1900
N	2700		0.010	1.0	0.96
N	2700		0.010	0.86	1.1
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
N	2790	mg/kg	0.50	< 0.50	< 0.50
	Accred. N N N N N N N N N N N N N	Chemtes Sar	Chemtest Sample Sample Low Sample Date San Accred. SOP Units N 2700 mg/kg N 2790 mg/kg	N 2700 mg/kg 0.10 N 2700 mg/kg 0.10 N 2700 mg/kg 0.10 N 2700 mg/kg 0.10 N 2700 mg/kg 2.0 N 2700 0.010 N 2700 0.010 N 2790 mg/kg 0.50 N 27	Chemtest Sample ID.: 1176016 Sample Location: Shilling Stammac Sample Type: MISCSOLID Date Sampled: 06-Apr-2021 Accred. SOP Units LOD N 2700 mg/kg 0.10 35 N 2700 mg/kg 0.10 9.8 N 2700 mg/kg 0.10 29 N 2700 mg/kg 0.10 <0.10

Client: Smith Grant LLP		Chem	test Jo	b No.:	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176016	1176017
		Sar	nple Lo	cation:	Shilling St - Tarmac	Altus St - Tarmac
			Sample	Type:	MISCSOLID	MISCSOLID
			ate Sa	mpled:	06-Apr-2021	06-Apr-2021
Determinand	Accred.	SOP	Units	LOD		
2-Nitrophenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
2,4-Dimethylphenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
Bis(2-Chloroethoxy)Methane	N	2790	mg/kg	0.50	< 0.50	< 0.50
2,4-Dichlorophenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
1,2,4-Trichlorobenzene	N	2790	mg/kg	0.50	< 0.50	< 0.50
Naphthalene	N	2790	mg/kg	0.50	6.5	< 0.50
4-Chloroaniline	N	2790	mg/kg	0.50	< 0.50	< 0.50
Hexachlorobutadiene	N	2790	mg/kg	0.50	< 0.50	< 0.50
4-Chloro-3-Methylphenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
2-Methylnaphthalene	N	2790	mg/kg	0.50	5.7	< 0.50
4-Nitrophenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
Hexachlorocyclopentadiene	N	2790	mg/kg	0.50	< 0.50	< 0.50
2,4,6-Trichlorophenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
2,4,5-Trichlorophenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
2-Chloronaphthalene	N	2790	mg/kg	0.50	< 0.50	< 0.50
2-Nitroaniline	N	2790	mg/kg	0.50	< 0.50	< 0.50
Acenaphthylene	N	2790	mg/kg	0.50	0.67	< 0.50
Dimethylphthalate	N	2790	mg/kg	0.50	< 0.50	< 0.50
2,6-Dinitrotoluene	N	2790	mg/kg	0.50	< 0.50	< 0.50
Acenaphthene	N	2790	mg/kg	0.50	10	< 0.50

Client: Smith Grant LLP		Chem	test Jo	b No.:	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176016	1176017
		Sar	nple Lo	cation:	Shilling St - Tarmac	Altus St - Tarmac
			Sample	Type:	MISCSOLID	MISCSOLID
			ate Sa		06-Apr-2021	06-Apr-2021
Determinand	Accred.	SOP	Units	LOD	•	•
3-Nitroaniline	N	2790	mg/kg	0.50	< 0.50	< 0.50
Dibenzofuran	Ν	2790	mg/kg	0.50	6.8	< 0.50
4-Chlorophenylphenylether	N	2790	mg/kg	0.50	< 0.50	< 0.50
2,4-Dinitrotoluene	N	2790	mg/kg	0.50	< 0.50	< 0.50
Fluorene	N	2790	mg/kg	0.50	6.3	< 0.50
Diethyl Phthalate	N	2790	mg/kg	0.50	< 0.50	< 0.50
4-Nitroaniline	N	2790	mg/kg	0.50	< 0.50	< 0.50
2-Methyl-4,6-Dinitrophenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
Azobenzene	N	2790	mg/kg	0.50	< 0.50	< 0.50
4-Bromophenylphenyl Ether	N	2790	mg/kg	0.50	< 0.50	< 0.50
Hexachlorobenzene	N	2790	mg/kg	0.50	< 0.50	< 0.50
Pentachlorophenol	N	2790	mg/kg	0.50	< 0.50	< 0.50
Phenanthrene	N	2790	mg/kg	0.50	60	9.5
Anthracene	N	2790	mg/kg	0.50	17	3.0
Carbazole	N	2790	mg/kg	0.50	5.0	0.73
Di-N-Butyl Phthalate	N	2790	mg/kg	0.50	< 0.50	< 0.50
Fluoranthene	N	2790	mg/kg	0.50	62	18
Pyrene	N	2790	mg/kg	0.50	46	15
Butylbenzyl Phthalate	N	2790	mg/kg	0.50	< 0.50	< 0.50
Benzo[a]anthracene	N	2790	mg/kg	0.50	19	6.9

Project: R1742b Heyford - Ph9

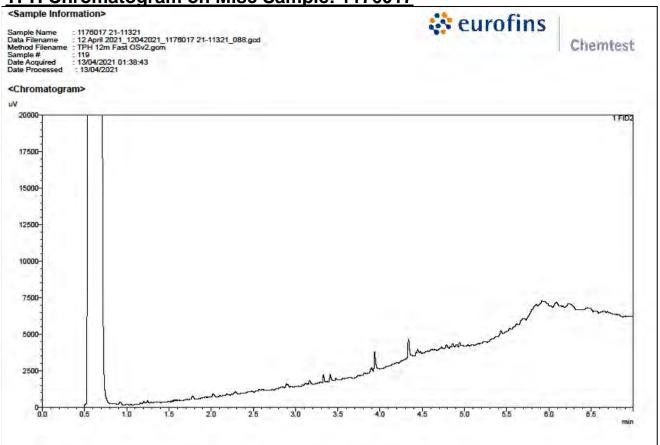
Client: Smith Grant LLP		Chem	test Jo	b No.:	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176016	1176017
		Sar	nple Lo	ration:	Shilling St -	Altus St -
			'		Tarmac	Tarmac
			Sample		MISCSOLID	MISCSOLID
			ate Sar		06-Apr-2021	06-Apr-2021
Determinand	Accred.	SOP	Units	LOD		
Chrysene	N	2790	mg/kg	0.50	19	6.3
Bis(2-Ethylhexyl)Phthalate	N	2790	mg/kg	0.50	< 0.50	< 0.50
Di-N-Octyl Phthalate	N	2790	mg/kg	0.50	< 0.50	< 0.50
Benzo[b]fluoranthene	N	2790	mg/kg	0.50	26	7.7
Benzo[k]fluoranthene	N	2790	mg/kg	0.50	8.0	2.7
Benzo[a]pyrene	N	2790	mg/kg	0.50	21	6.5
Indeno(1,2,3-c,d)Pyrene	N	2790	mg/kg	0.50	10	3.1
Dibenz(a,h)Anthracene	N	2790	mg/kg	0.50	2.4	0.69
Benzo[g,h,i]perylene	N	2790	mg/kg	0.50	12	3.9
Moisture	N		%	0.10	< 0.10	< 0.10
Interpretive Report	N			N/A	See Below	See Below
SVOC TIC	N	2790	mg/kg	N/A	See Below	None Detected
(SVOC TIC) Dibenzothiophene	N	2790	mg/kg	N/A	3.7	

Sample 1176016 contains coal tar contamination. Dibenzothiphene, a biomarker present in coal tar, has been detected by SVOC analysis. This, in conjunction with the elevated PAH contamination detected, confirms the presence of coal tar in this sample.

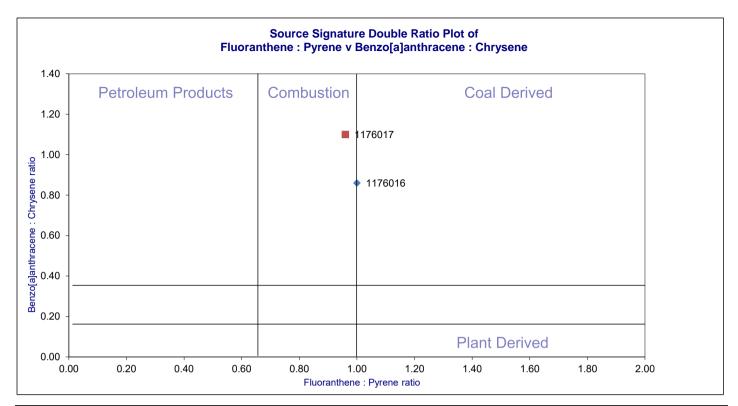
Sample 1176017 is inconclusive for coal tar contamination. Dibenzothiphene, a biomarker present in coal tar, has not been detected by SVOC analysis. This, in conjunction with the elevated PAH contamination detected, means we cannot confirm the presence of coal tar in this sample.

Client: Smith Grant LLP			test Jo		21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176008	1176009	1176010	1176011	1176012	1176013	1176014	1176015
		Sar	nple Lo	cation:	Ph9-TS-S1	Ph9-TS-S2	Ph9-TS-S3	Ph9-TS-S4	Ph9-TS-S5	Ph9-TS-S6	AGG-060421- S1	AGG-060421 S2
			Sample		SOIL							
			ate Sar		06-Apr-2021							
			Asbesto		DURHAM							
Determinand	Accred.	SOP	Units	LOD								
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected							
ACM Detection Stage	U	2192		N/A	-	-	-	-	-	-	-	-
Moisture	N	2030	%	0.020	21	26	20	20	22	23		
рН	U	2010		4.0	8.4	8.3	8.3	8.2	8.3	8.2		
Arsenic	U	2450	mg/kg	1.0	23	21	24	54	28	24		
Cadmium	U	2450	mg/kg	0.10	0.37	0.35	0.29	0.29	0.36	0.38		
Chromium	U	2450	mg/kg	1.0	30	25	27	63	35	32		
Copper	U	2450	mg/kg	0.50	21	23	15	19	20	19		
Mercury	U	2450	mg/kg	0.10	0.13	< 0.10	< 0.10	< 0.10	0.10	0.12		
Nickel	U	2450	mg/kg	0.50	24	20	21	38	30	26		
Lead	U	2450	mg/kg	0.50	45	42	33	44	77	46		
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
Vanadium	U	2450	mg/kg	5.0	53	45	52	100	61	56		
Zinc	U	2450	mg/kg	0.50	80	74	62	130	91	86		
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
Organic Matter	U	2625	%	0.40	3.6	5.3	3.1	4.8	4.5	5.3		
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		

Client: Smith Grant LLP			test Jo		21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176008	1176009	1176010	1176011	1176012	1176013	1176014	1176015
		Sar	nple Lo	cation:	Ph9-TS-S1	Ph9-TS-S2	Ph9-TS-S3	Ph9-TS-S4	Ph9-TS-S5	Ph9-TS-S6	AGG-060421- S1	AGG-060421 S2
			Sample	71	SOIL	SOIL						
			ate Sar		06-Apr-2021	06-Apr-2021						
			Asbesto		DURHAM	DURHAM						
Determinand	Accred.	SOP	Units	LOD								
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	7.9		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	7.9		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	34	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	34	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	34	< 10	< 10	< 10	< 10	< 10		
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		


Client: Smith Grant LLP			test Jo		21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321
Quotation No.:	Ch	emtes	t Samp	le ID.:	1176008	1176009	1176010	1176011	1176012	1176013	1176014	1176015
		San	nple Lo	cation:	Ph9-TS-S1	Ph9-TS-S2	Ph9-TS-S3	Ph9-TS-S4	Ph9-TS-S5	Ph9-TS-S6	AGG-060421- S1	AGG-060421 S2
			Sample		SOIL	SOIL						
			ate Sar		06-Apr-2021	06-Apr-2021						
			Asbesto		DURHAM	DURHAM						
Determinand	Accred.	SOP	Units	LOD								
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Phenanthrene	U	2700	mg/kg	0.10	0.57	2.5	0.58	3.9	1.7	0.72		
Anthracene	U	2700	mg/kg	0.10	0.19	0.63	0.20	1.1	0.53	0.22		
Fluoranthene	U	2700	mg/kg	0.10	2.1	9.7	1.9	5.1	3.7	2.0		
Pyrene	U	2700	mg/kg	0.10	2.1	9.6	1.9	4.9	3.6	2.0		
Benzo[a]anthracene	U	2700	mg/kg	0.10	1.0	4.3	0.37	2.0	1.7	1.1		
Chrysene	U	2700	mg/kg	0.10	1.2	5.1	0.87	2.3	1.9	1.2		
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	1.9	7.8	1.6	2.7	2.7	1.6		
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	0.95	2.8	0.51	1.0	1.3	0.49		
Benzo[a]pyrene	U	2700	mg/kg	0.10	1.2	5.6	1.2	1.7	1.7	1.1		
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	1.1	4.8	0.19	1.1	1.4	0.85		
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	0.26	0.77	0.56	< 0.10	0.32	0.10		
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	0.88	4.1	0.65	1.3	1.2	1.0		
Total Of 16 PAH's	U	2700	mg/kg	2.0	14	58	11	27	22	12		
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		

Client: Smith Grant LLP		Chem	test Jo	b No.:	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321	21-11321
Quotation No.:	Chemtest Sample ID.:			1176008	1176009	1176010	1176011	1176012	1176013	1176014	1176015	
		Sample Location:			Ph9-TS-S1	Ph9-TS-S2	Ph9-TS-S3	Ph9-TS-S4	Ph9-TS-S5	Ph9-TS-S6	AGG-060421- S1	AGG-060421- S2
	Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
		D	ate Sar	npled:	06-Apr-2021	06-Apr-2021						
		F	Asbesto	s Lab:	DURHAM	DURHAM						
Determinand	Accred.	SOP	Units	LOD								
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		


TPH Chromatogram on Misc Sample: 1176016

TPH Chromatogram on Misc Sample: 1176017

Double Ratio Plot

Sample No.	Fluoranthene	Pyrene	Pyrene Benzo[a]Anthracene Chrysei		Fluoranthene : Pyrene Ratio	Benzo[a]Anthracene : Chrysene Ratio
1176016	85	84	34	40	1.00	0.86
1176017	360	380	150	140	0.96	1.10

TPH Interpretation

Job	Sample	Matrix	Location	Sample Ref	Sample ID	Sample Depth (m)	Gasoline / Diesel Present	TPH Interpretation
21-11321	1176016	М	Shilling St - Tarmac				No	PAH and Heavy Oil
21-11321	1176017	М	Altus St - Tarmac				No	PAH and Heavy Oil

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2790	Semi-Volatile Organic Compounds (SVOCs) in Soils by GC-MS	Semi-volatile organic compounds(cf. USEPA Method 8270)	Acetone/Hexane extraction / GC-MS

Report Information

Key UKAS accredited MCERTS and UKAS accredited Μ Ν Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" < "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 21-13303-2

Initial Date of Issue: 27-Apr-2021 Date of Re-Issue: 05-May-2021

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Dan Wayland

Project R1742b Hayford - Phase 9

Quotation No.: Date Received: 23-Apr-2021

Order No.: Date Instructed: 23-Apr-2021

No. of Samples: 6

Turnaround (Wkdays): 8 Results Due: 05-May-2021

Date Approved: 05-May-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-13303	21-13303	21-13303	21-13303	21-13303	21-13303
Quotation No.:	Chemtest Sample ID.:			ple ID.:	1185894	1185895	1185896	1185897	1185898	1185899
	Sample Location:			ocation:	Ph9-AGG2-S1	Ph9-AGG2-S2	Ph9-AGG2-S3	Ph9-AGG2-S4	Ph9-AGG2-S5	Ph9-AGG2-S6
	Sample Type:			е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Date Sampled:			ampled:	20-Apr-2021	20-Apr-2021	20-Apr-2021	20-Apr-2021	20-Apr-2021	20-Apr-2021
	Asbestos Lab:		COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192		N/A	Fibres/Clumps	Fibres/Clumps	-	Fibres/Clumps	-	-
Asbestos Identification	U	2192		N/A	Chrysotile	Chrysotile	No Asbestos Detected	Chrysotile	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	Stereo Microscopy	Stereo Microscopy	-	Stereo Microscopy	-	-
Asbestos by Gravimetry	U	2192	%	0.001	0.009	<0.001		<0.001		
Total Asbestos	U	2192	%	0.001	0.009	<0.001		<0.001		

Test Methods

SOP	Title	Parameters included	Method summary
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 21-14505-3

Initial Date of Issue: 12-May-2021 Date of Re-Issue: 17-May-2021

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Dan Wayland

Project R1742B Heyford - Phase 9

Quotation No.: Date Received: 04-May-2021

Order No.: Date Instructed: 04-May-2021

No. of Samples: 23

Turnaround (Wkdays): 12 Results Due: 19-May-2021

Date Approved: 15-May-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Project: R1742B Heyford - Phase 9

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505
Quotation No.:	(Chemte	st Sam	ple ID.:	1192608	1192609	1192610	1192611	1192612	1192613	1192614	1192615	1192616
		Sa	ample Lo	ocation:	PH9-AGG2-S7	PH9-AGG2-S8	PH9-AGG2-S9	PH9-AGG2- S10	PH9-AGG3-S1	PH9-AGG3-S2	PH9-AGG3-S3	PH9-AGG3-S4	PH9-ACMHS- S1
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):									0
		Bot	ttom De _l	oth (m):									0.5
		Date Sampled		ampled:	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021
		Asbestos Lab:		DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	
Determinand	Accred.		Units	LOD									
ACM Type	U	2192		N/A	-	-	Fibres/Clumps	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	Amosite	No Asbestos Detected					
ACM Detection Stage	U	2192		N/A	-	-	Stereo Microscopy	-	-	-	-	-	-
Asbestos by Gravimetry	U	2192	%	0.001			<0.001						
Total Asbestos	U	2192	%	0.001			<0.001						
Moisture	N	2030	%	0.020									
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0									
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0									
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0									
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0									
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0									
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0									
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0									
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0									
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0									
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0									
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0									
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0									
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0									
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0									
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0									
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0									
Aromatic TPH >C35-C44	N	2680	mg/kg										
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0									
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0									
Benzene	U	2760	μg/kg	1.0									
Toluene	U	2760	μg/kg	1.0									
Ethylbenzene	U	2760	μg/kg	1.0									
m & p-Xylene	U	2760	μg/kg	1.0									
o-Xylene	U	2760	μg/kg	1.0									
PAH-MS	SN			N/A									

Project: R1742B Heyford - Phase 9

Client: Smith Grant LLP			mtest J		21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505	21-14505
Quotation No.:	(Chemte	est Sam	ple ID.:	1192617	1192618	1192619	1192620	1192621	1192622	1192623	1192624	1192625
		٥,	ample Lo	ocation:	PH9-ACMHS-	PH9-ACMHS-	PH9-ACMHS-	PH9-ACMHS-	PH9-ACMHS-	PH9-ACMHS-	PH9-ACMHS-	TP102-HS-S1	TP102-HS-SS1
					S2	S3	S4	S5	S6	S7	S8	17 102-113-31	17 102-113-331
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	0	0	0	0	0	0	0	0.2	
		Bot	ttom De	oth (m):	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.3	
			Date Sa	ampled:	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021
		Asbestos Lab:		DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM			
Determinand	Accred.	SOP	Units	LOD									
ACM Type	U	2192		N/A	Fibres/Clumps	-	-	-	-	-	-		
Asbestos Identification	U	2192		N/A	Amosite	No Asbestos Detected							
ACM Detection Stage	U	2192		N/A	Stereo Microscopy	-	-	-	-	-	-		
Asbestos by Gravimetry	U	2192	%	0.001	<0.001								
Total Asbestos	U	2192	%	0.001	<0.001								
Moisture	N	2030	%	0.020								9.2	8.9
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0								< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0								< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0								4.2	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0								42	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0								99	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0								78	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0								320	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0								130	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0								680	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0								< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0								< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0								2.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0								11	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0								660	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0								2400	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0								6700	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0								460	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0								10000	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0								11000	< 10
Benzene	U	2760	μg/kg	1.0								< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0								< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0								< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0								< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0								< 1.0	< 1.0
PAH-MS	SN			N/A								See Attached	See Attached

Project: R1742B Heyford - Phase 9

Client: Smith Grant LLP			mtest J		21-14505	21-14505	21-14505	21-14505	21-14505
Quotation No.:	(Chemte	st Sam	ple ID.:	1192626	1192627	1192628	1192629	1192630
		Sa	ample Lo	ocation:	TP102-HS-SS2	TP102-HS-SS3	TP102-HS-SS4	TP102-HS-SS5	TP102-HS-SS6
				е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):					
		Bot	tom De _l	oth (m):					
			Date Sa	ampled:	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021
			Asbest	os Lab:					
Determinand	Accred.	SOP	Units	LOD					
ACM Type	U	2192		N/A					
Asbestos Identification	U	2192		N/A					
ACM Detection Stage	U	2192		N/A					
Asbestos by Gravimetry	U	2192	%	0.001					
Total Asbestos	U	2192	%	0.001					
Moisture	N	2030	%	0.020	11	11	24	23	22
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.2
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.6
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	6.8
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	5.4	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	17	< 1.0	< 1.0	< 1.0	46
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	23	< 5.0	< 5.0	< 5.0	46
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	23	< 10	< 10	< 10	53
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAH-MS	SN			N/A	See Attached				

Test Methods

SOP	Title	Parameters included	Method summary
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 21-14506-1

Initial Date of Issue: 12-May-2021

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Dan Wayland

Project R1742b Heyford - Phase 9

Quotation No.: Date Received: 04-May-2021

Order No.: Date Instructed: 04-May-2021

No. of Samples: 14

Turnaround (Wkdays): 7 Results Due: 12-May-2021

Date Approved: 12-May-2021 Subcon Results Due: 25-May-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Project: R1742b Heyford - Phase 9

Client: Smith Grant LLP		Chem	ntest Jo	h No ·	21-14506	21-14506	21-14506	21-14506	21-14506	21-14506	21-14506	21-14506	21-14506	21-14506
Quotation No.:			t Samp		1192631	1192632	1192633	1192634	1192635	1192636	1192637	1192638	1192639	1192640
Quotation No	GII		nple Lo		Ph9 - S38	Ph9 - S39	Ph9 - S40	Ph9 - S41	Ph9 - S42	Ph9 - S43	Ph9 - S44	Ph9 - S45	Ph9 - S46	Ph9 - S47
			Sample		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Date Sa	71	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021	-
			Asbesto		COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	28-Apr-2021 COVENTRY
Determinand	Accred.		Units		COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
ACM Type	U	2192	Ullits	N/A	_	_	_	_	_	_	_	_	-	_
ACIVI Type	U	2192		IN/A	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos
Asbestos Identification	U	2192		N/A	Detected	Detected	Detected	Detected	Detected	Detected	Detected	Detected	Detected	Detected
ACM Detection Stage	U	2192		N/A	-	- Detected	-	-	- Detected	-	Detected -	- Detected	-	- Detected
Moisture	N	2030	%	0.020	29	43	33	22	32	11	13	38	19	38
pH	U	2010	70	4.0	8.7	8.6	8.5	8.9	8.8	8.7	8.5	8.7	8.5	8.5
Arsenic	U		mg/kg		40	32	30	36	27	43	23	24	21	17
Cadmium	U	2450			< 0.10	0.10	< 0.10	< 0.10	0.11	0.12	< 0.10	0.11	0.11	0.11
Chromium	U	2450	mg/kg		20	15	14	17	43	24	45	45	39	26
Copper	U	2450			9.6	8.6	6.9	7.6	17	11	18	16	17	14
Mercury	U	2450	0 0		9.6 < 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U		mg/kg		19	14	14	16	39	25	38	36	35	22
Lead	U				9.8	13	7.4	8.3	21	12	20	18	19	17
Selenium	U		mg/kg		< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.29	0.35	< 0.20	0.23
Vanadium	U	2450			47	38	37	44	76	59	73	73	68	50
Zinc	U	2450			24	21	17	19	53	27	61	61	50	42
Chromium (Hexavalent)	N	2490	0 0		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	111g/kg %	0.40	< 0.40	0.41	< 0.40	< 0.40	0.72	< 0.40	0.66	0.45	0.79	0.71
Aliphatic TPH >C5-C6	N	2680	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	0 0		< 1.0	< 1.0	12	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N		0 0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N		0		< 5.0	< 5.0	12	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	0 0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg		< 1.0	< 1.0	6.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg		< 1.0	< 1.0	170	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	_		< 5.0	< 5.0	170	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	0 0		< 10	< 10	180	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	U	2760	0	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760		1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	, J	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	Ü	2760		1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U		μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAH-MS	SN	00	פייישיו	N/A	See Attached			See Attached						

Project: R1742b Heyford - Phase 9

Client: Smith Grant LLP							21-14506	21-14506
Quotation No.:	Ch	emtes	t Samp	le ID.:	1192641	1192642	1192643	1192644
		Sar	nple Lo	cation:	Ph9 - S48	Ph9 - S49	Ph9 - S50	Ph9 - S51
			Sample	Туре:	SOIL	SOIL	SOIL	SOIL
			ate Sa	mpled:	28-Apr-2021	28-Apr-2021	28-Apr-2021	28-Apr-2021
			Asbesto	s Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD				
ACM Type	U	2192		N/A	-	-	1	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-	-	-
Moisture	N	2030	%	0.020	52	44	38	32
pH	U	2010		4.0	8.5	8.7	8.6	8.9
Arsenic	U	2450	mg/kg	1.0	14	12	31	18
Cadmium	U	2450	mg/kg	0.10	< 0.10	< 0.10	0.15	< 0.10
Chromium	U	2450	mg/kg	1.0	11	9.0	26	7.1
Copper	U	2450	mg/kg	0.50	8.1	6.8	15	4.2
Mercury	Ū		mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U		mg/kg	0.50	12	9.4	27	8.3
Lead	U		mg/kg		8.0	6.9	17	5.2
Selenium	U	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U		mg/kg	5.0	21	17	66	21
Zinc	U		mg/kg	0.50	14	9.2	38	13
Chromium (Hexavalent)	N		mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	< 0.40	< 0.40	0.88	< 0.40
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U		mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U		mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U		mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U		mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U		mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N		mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10
Benzene	U	2760		1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760		1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760		1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
PAH-MS	SN			N/A	See Attached	See Attached	See Attached	See Attached

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

Key **UKAS** accredited Μ MCERTS and UKAS accredited Ν Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" < > "greater than" SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-14510-1

Initial Date of Issue: 10-May-2021

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Dan Wayland

Project R1742b Heyford Ph9

Quotation No.: Date Received: 04-May-2021

Order No.: Date Instructed: 04-May-2021

No. of Samples: 12

Turnaround (Wkdays): 5 Results Due: 10-May-2021

Date Approved: 10-May-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Project: R1742b Heyford Ph9

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-14510	21-14510	21-14510	21-14510	21-14510	21-14510	21-14510	21-14510	21-14510
Quotation No.:	(Chemte	est Sam	ple ID.:	1192654	1192655	1192656	1192657	1192658	1192659	1192660	1192661	1192662
		9.	ample Lo	ocation:	Ph9 - UST -								
		- 0	ample L	Jeanon.	SS1	SS2	SS3	SS4	SS5	SS6	SS7	SS8	SS9
			Sampl	е Туре:	SOIL								
			Top De	oth (m):	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.80
		Bottom Depth (m):			2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	
			Date Sa	ampled:	28-Apr-2021								
Determinand	Accred.	SOP	Units	LOD									
Moisture	N	2030	%	0.020	6.2	10	14	15	21	22	13	12	10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	26	17	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	51
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	150	110	< 1.0	< 1.0	< 1.0	< 1.0	7.5	< 1.0	280
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	180	130	< 1.0	< 1.0	< 1.0	< 1.0	14	< 1.0	300
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	210	180	< 1.0	< 1.0	< 1.0	< 1.0	28	< 1.0	250
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	560	430	< 5.0	< 5.0	< 5.0	< 5.0	49	< 5.0	880
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	47	40	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	70
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	190	250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	330
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	32000	610	< 1.0	< 1.0	< 1.0	< 1.0	40	56	390
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	560	1100	< 1.0	< 1.0	< 1.0	< 1.0	170	200	580
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	32000	2000	< 5.0	< 5.0	< 5.0	< 5.0	210	250	1400
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	33000	2400	< 10	< 10	< 10	< 10	260	250	2300
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Project: R1742b Heyford Ph9

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-14510	21-14510	21-14510
Quotation No.:	(Chemte	st Sam	ple ID.:	1192663	1192664	1192665
		Sa	ample Lo	ocation:	Ph9 - UST - SS10	Ph9 - UST - SS11	Ph9 - UST - SS12
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top De		2.80	2.80	2.80
		Bot	tom De				
			Date Sa	, ,	28-Apr-2021	28-Apr-2021	28-Apr-2021
Determinand	Accred.	SOP	Units				
Moisture	N	2030	%	0.020	9.4	9.4	11
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	34	6.7	9.2
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	230	40	62
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	230	47	74
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	180	52	67
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	670	150	210
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	35	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	250	46	75
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	280	69	120
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	370	180	220
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	930	290	410
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	1600	440	620
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	1.4	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 21-16265-2

Initial Date of Issue: 20-May-2021 Date of Re-Issue: 27-May-2021

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Scott Miller

Project R1742b Heyford (Phase 9)

Quotation No.: Q15-02887 Date Received: 17-May-2021

Order No.: Date Instructed: 17-May-2021

No. of Samples: 2

Turnaround (Wkdays): 9 Results Due: 27-May-2021

Date Approved: 27-May-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Project: R1742b Heyford (Phase 9)

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	21-16265	21-16265
Quotation No.: Q15-02887	C	Chemte	st Sam	ple ID.:	1201418	1201419
		Sa	ample Lo	ocation:	Agg-SP3-S5	Agg-SP3-S6
			Sample	е Туре:	SOIL	SOIL
			Date Sa	ampled:	13-May-2021	13-May-2021
	Asbestos Lab:				COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
ACM Type	J	2192		N/A	Fibres/Clumps	Fibres/Clumps
Asbestos Identification	\supset	2192		N/A	Chrysotile	Chrysotile
ACM Detection Stage	U	2192		N/A	Stereo	Stereo
ACIVI Detection Stage	0 2192 N/A		Microscopy	Microscopy		
Asbestos by Gravimetry	U 2192 % 0.001			0.001	0.008	<0.001
Total Asbestos	U 2192 % 0.001				0.008	<0.001

Test Methods

SOP	Title	Parameters included	Method summary
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-19648-1

Initial Date of Issue: 15-Jun-2021

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Scott Miller

Project RI742d Heyford, Dorchester

Quotation No.: Q15-02887 Date Received: 10-Jun-2021

Order No.: Date Instructed: 10-Jun-2021

No. of Samples: 11

Turnaround (Wkdays): 5 Results Due: 16-Jun-2021

Date Approved: 15-Jun-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Project: RI742d Heyford, Dorchester

Client: Smith Grant LLP		Che	mtest J	ob No.:	21-19648	21-19648	21-19648	21-19648	21-19648	21-19648	21-19648	21-19648	21-19648
Quotation No.: Q15-02887		Chemte	est Sam	ple ID.:	1218258	1218259	1218260	1218261	1218262	1218263	1218264	1218265	1218266
		Cli	ent San	ple ID.:	TP1-S1	TP2-S1	S11	S12	S13	S14	S15	S16	S17
		S	ample L	ocation:	CULV	CULC	AGG-SP2						
			Samp	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
		Во	ttom De	pth (m):	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
			Date S	ampled:	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021	08-Jun-2021
			Asbest	tos Lab:			DURHAM						
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192		N/A			-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A			No Asbestos Detected						
Moisture	N	2030	%	0.020	16	11							
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material	N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones	Stones
Soil Texture	N	2040		N/A	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0							
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0							
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0							
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0							
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0							
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10							
Benzene	М	2760	μg/kg	1.0	< 1.0	< 1.0							
Toluene	М	2760	μg/kg	1.0	< 1.0	< 1.0							
Ethylbenzene	М	2760	μg/kg	1.0	< 1.0	< 1.0							
m & p-Xylene	М	2760	μg/kg	1.0	< 1.0	< 1.0							
o-Xylene	М	2760	μg/kg	1.0	< 1.0	< 1.0							

Project: RI742d Heyford, Dorchester

Client: Smith Grant LLP	Chemtest Job No.:				21-19648	21-19648
Quotation No.: Q15-02887	(Chemte	st Sam	ple ID.:	1218267	1218268
	Client Sample ID.:				S3	S4
		Sa	ample Lo	ocation:	AGG-SP1	AGG-SP1
			Sample	е Туре:	SOIL	SOIL
			Top Dep	oth (m):	2.1	2.1
		Bot	tom Dep	oth (m):	2.4	2.4
			Date Sa	ampled:	08-Jun-2021	08-Jun-2021
			Asbest	os Lab:	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		
ACM Type	U	2192		N/A	-	1
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020		
Soil Colour	N	2040		N/A	Brown	Brown
Other Material	N	2040		N/A	Stones	Stones
Soil Texture	N	2040		N/A	Sand	Sand
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0		
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0		
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0		
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0		
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0		
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0		
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0		
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0		
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0		
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0		
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0		
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0		
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0		
Benzene	М	2760	μg/kg	1.0		
Toluene	М	2760	μg/kg	1.0		
Ethylbenzene	М	2760	μg/kg	1.0		
m & p-Xylene	М	2760	μg/kg	1.0		
o-Xylene	M	2760	μg/kg	1.0		

Test Methods

SOP	Title	Parameters included	Method summary
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

PSD Assessment of material for use in Earthworks

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2:1990: Clause 9.2

Smith Grant LLP Client:

Client Address: Station House, Station Road,

Ruabon, Wrexham,

LL146DL

Contact: Daniel Wayland Hayford Phase 9 Site Address:

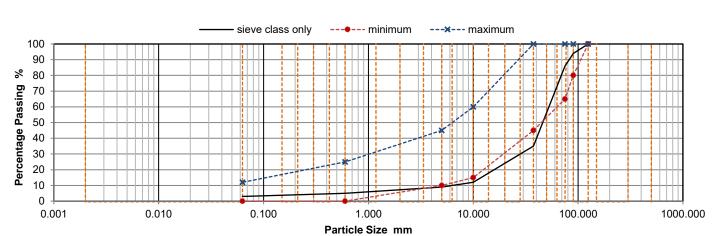
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: R1742B Job Number: 21-68265 Date Sampled: 06/04/2021 Date Received: 09/04/2021 Date Tested: 27/04/2021

Sampled By: Client

Depth Top [m]: Not Given

Depth Base [m]: Not Given


Sample Type: B

Test Results:

Laboratory Reference: 1834720 AGG 060421 S1 Hole No.: Not Given

Sample Reference: Sample Description: **CRUSHED CONCRETE**

Sample was whole tested, oven dried at 106.0 °C and broken down by hand. Sample Preparation:

Siev	Material Type 6F2					
Particle Size Passing		Selected granular material				
mm	%	Mat	terial Sp	ecification	Pass or Fail	
500	100					
300	100					
150	100					
125	100	100	-	100	PASS	
90	94	80	-	100	PASS	
75	86	65	-	100	PASS	
63	61	1				
50	49					
37.5	35	45	-	100	FAIL	
28	27	1				
20	20	1				
14	15					
10	12	15	-	60	FAIL	
6.3	10					
5	9	10	-	45	FAIL	
3.35	8	1				
2	7	1				
1.18	6					
0.6	5	0	-	25	PASS	
0.425	5	1				
0.3	4					
0.212	4					
0.15	3					
0.063	3	0	-	12	PASS	
		1				

Uniformity Coefficient [Cu]	9.5	
D60	mm	62.3
D10	mm	6.55

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Earthworks
Specification for Highway Works, Volume 1, Series 600, TABLE 6/2

Remarks:

Signed: Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This laboratory. The results included within the report relate only to the sample(s) submitted for testing. This

Houks Brokele

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 30/04/2021

with uncertainty in relation to the decision rules applied do not need to be considered.

report may not be reproduced other than in full without the prior written approval of the issuing

report includes a statement of conformity to an industry standard specification, as such risks associated

Page 1 of 1

GF 471.1

TEST CERTIFICATE

Testing for Constituents of Coarse Recycled Aggregate

Tested in Accordance with: BS EN 933-11:2009

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Smith Grant LLP Client: Client Address: Station House, Station Road,

Ruabon, Wrexham,

LL146DL

Daniel Wayland Contact: Site Address: Hayford Phase 9

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: R1742B Job Number: 21-68265 Date Sampled: 06/04/2021 Date Received: 09/04/2021 Date Tested: 27/04/2021

Sampled By: Client

Test Results:

Laboratory Reference: 1834720 AGG 060421 S1 Hole No.:

Sample Reference: Not Given

Sample Description: CRUSHED CONCRETE

Depth Top [m]: Not Given Depth Base [m]: Not Given

Sample Type: B

Sample preparation: Sample was dried at 106°C

Constituents	Proportion (cm3/kg)
Floating (FL)	1.4

Constituents	Proportion (%)
Concrete/ Concrete units and Mortar (Rc)	92
Unbound Aggregate (Ru)	1
Masonry (Rb)	8.2
Bituminous materials (Ra)	0
Glass (Rg)	0
Other (X)	0.1

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Signed: Karika

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 30/04/2021

Brokele

Page 1 of 1

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

GF 147.16

PSD Assessment of material for use in Earthworks

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2:1990: Clause 9.2

Smith Grant LLP Client:

Client Address: Station House, Station Road,

Ruabon, Wrexham,

LL146DL

Contact: Scott Miller Site Address: Heyford Phase 9

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: R1742B Job Number: 21-75647 Date Sampled: 12/05/2021

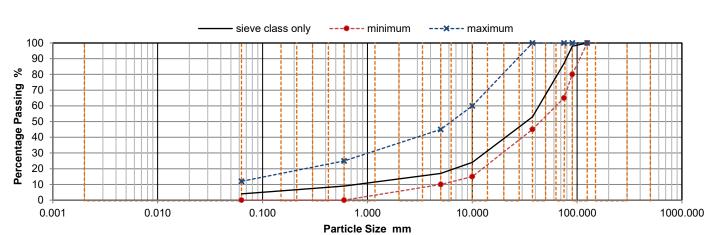
Date Received: 13/05/2021 Date Tested: 03/06/2021 Sampled By: Client

Depth Top [m]: Not Given

Depth Base [m]: Not Given

Sample Type: B

Test Results:


Laboratory Reference: 1874622

Agg SP3 - GS1 to GS3 Hole No.:

Sample Reference: Not Given

CRUSHED CONCRETE Sample Description:

Sample was whole tested, oven dried at 40.0 $^{\circ}\text{C}$ and broken down by hand. Sample Preparation:

Siev	Material Type 6F2						
Particle Size Passing		Selected granular material					
mm	%	Mat	terial Sp	ecification	Pass or Fail		
500	100						
300	100						
150	100						
125	100	100	-	100	PASS		
90	98	80	-	100	PASS		
75	87	65	-	100	PASS		
63	75						
50	64						
37.5	53	45	-	100	PASS		
28	48						
20	39						
14	30						
10	24	15	-	60	PASS		
6.3	19						
5	17	10	-	45	PASS		
3.35	15						
2	13						
1.18	11						
0.6	9	0	-	25	PASS		
0.425	8						
0.3	7						
0.212	6	1					
0.15	5						
0.063	4	0	-	12	PASS		
	•	1					

Uniformity Coefficient [Cu]	55	
D60	mm	45.1
D10	mm	0.824

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Earthworks
Specification for Highway Works, Volume 1, Series 600, TABLE 6/2

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3 Remarks:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Signed:

Date Reported: 11/06/2021 GF 471.1

with uncertainty in relation to the decision rules applied do not need to be considered.

TEST CERTIFICATE

Testing for Constituents of Coarse Recycled Aggregate

Tested in Accordance with: BS EN 933-11:2009

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Smith Grant LLP Client:

Client Address: Station House, Station Road,

Ruabon, Wrexham,

LL146DL

Scott Miller Contact: Site Address: Heyford Phase 9

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: R1742B Job Number: 21-75647 Date Sampled: 12/05/2021 Date Received: 13/05/2021 Date Tested: 03/06/2021

Sampled By: Client

Depth Top [m]: Not Given

Depth Base [m]: Not Given

Sample Type: B

Test Results:

Laboratory Reference: 1874622

Agg SP3 - GS1 to GS3 Hole No.:

Not Given Sample Reference:

Sample Description: CRUSHED CONCRETE

Sample preparation:

Sample was dried at 40°C

Constituents	Proportion (cm3/kg)
Floating (FL)	1

Constituents	Proportion (%)
Concrete/ Concrete units and Mortar (Rc)	88
Unbound Aggregate (Ru)	0.9
Masonry (Rb)	9.9
Bituminous materials (Ra)	0.4
Glass (Rg)	0.1
Other (X)	0.1

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 11/06/2021

Test Results:

Sample Reference:

Hole No.:

PSD Assessment of material for use in Earthworks

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2:1990: Clause 9.2

Smith Grant LLP Client:

Client Address: Station House, Station Road

Ruabon, Wrexham

LL146DL

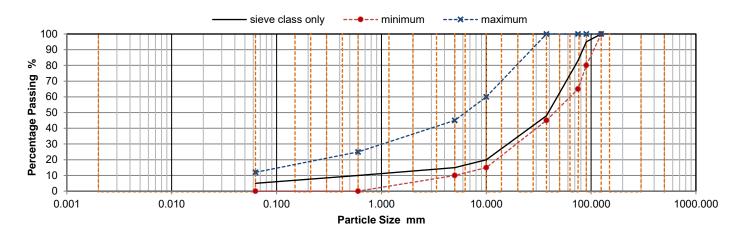
megan.jones@smithgrant.co.uk Contact:

Not Given

Site Address: Heyford Phase 9

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: R1742B Job Number: 21-75652 Date Sampled: 12/05/2021


Date Received: 13/05/2021 Date Tested: 03/06/2021 Sampled By: Client

Laboratory Reference: 1874642 Depth Top [m]: Not Given Agg SP2 - GS1 to GS3 Depth Base [m]: Not Given

Sample Type: B

Multicolor slightly clayey sandy GRAVEL with cobbles Sample Description:

Sample Preparation: Sample was whole tested, oven dried at 40.0 °C and broken down by hand.

Siev	ving	Material Type 6F2			
Particle Size	Passing	Selected granular mate			aterial
mm	%	Mat	terial Sp	ecification	Pass or Fail
500	100				
300	100				
150	100				
125	100	100	-	100	PASS
90	95	80	-	100	PASS
75	83	65	-	100	PASS
63	69				
50	56				
37.5	48	45	-	100	PASS
28	39				
20	31				
14	24				
10	20	15	-	60	PASS
6.3	16				
5	15	10	-	45	PASS
3.35	13				
2	12				
1.18	11				
0.6	10	0	-	25	PASS
0.425	9				
0.3	8				
0.212	7				
0.15	6				
0.063	5	0	-	12	PASS
		1			

Uniformity Coefficient [Cu]		76
D60	mm	53.9
D10	mm	0.709

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Earthworks				
Specification for Highway Works, Volume 1, Series 600, TABLE 6/2				

Re-issue 1: PSD classified. Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

laboratory. The results included within the report relate only to the sample(s) submitted for testing. This report includes a statement of conformity to an industry standard specification, as such risks associated

report may not be reproduced other than in full without the prior written approval of the issuing

with uncertainty in relation to the decision rules applied do not need to be considered.

Signed:

Aleksandra Jurochnik PL Technical Reviewer for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 15/06/2021 GF 471.1

TEST CERTIFICATE

<u>Testing for Constituents of</u> Coarse Recycled Aggregate

Tested in Accordance with: BS EN 933-11:2009

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Smith Grant LLP

Client Address: Station House, Station Road,

Ruabon, Wrexham,

LL146DL

Contact: megan.jones@smithgrant.co.uk

Sample preparation:

Site Address: Heyford Phase 9

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: R1742B Job Number: 21-75652 Date Sampled: 12/05/2021 Date Received: 13/05/2021 Date Tested: 03/06/2021

Sampled By: Client

Test Results:

Laboratory Reference: 1874642

Hole No.: Agg SP2 - GS1 to GS3

Sample Reference: Not Given

Sample Description: Multicolor slightly clayey sandy GRAVEL with cobbles

Depth Top [m]: Not Given Depth Base [m]: Not Given

Sample Type: B

Sample was dried at 40°C

Constituents	Proportion (cm3/kg)	
Floating (FL)	1	

Constituents	Proportion (%)
Concrete/ Concrete units and Mortar (Rc)	88
Unbound Aggregate (Ru)	1.4
Masonry (Rb)	7
Bituminous materials (Ra)	2.9
Glass (Rg)	0
Other (X)	0.1

Remarks: Re-issue 1: PSD classified.

Signed:

Aleksandra Jurochnik
PL Technical Reviewer
for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 15/06/2021

APPENDIX D

Topsoil & Formation Validation Report (ref. R1742b-L07; August 2018)

Contaminated Land Air Quality Environmental Audit

Partnership No: OC 300776

Our ref: R1742B-L07 Your ref:

07th August 2018

Andy Walker Urban Regen 23 Springvale Bolton BL7 0FS

by e-mail: andy.walker@urbanregen.co.uk

Dear Andy

Upper Heyford – Dorchester Phase 9 – Basketball Pitch Supplementary Site Investigation

SGP have been instructed to produce a validation report for a parcel of land formerly occupied by a baseball pitch associated with RAF Heyford which is currently utilised as a public open space for recreational use. This parcel of land forms the north-west corner of the wider Phase 9 area (see Drawing D01).

The site is part of a wider area covered by a Hydrock Remediation Strategy (ref. HPW-HYD-PX-REM-RP-GE-3000-P1-S2, April 2017) which states that a site wide engineered cover system is required to comprise of a 200mm hard dig layer, geotextile and 400mm clean soil cover. At present it is unknown whether the Strategy has been approved, however it is proposed that a revised Strategy to cover the Phase 9 area is appropriate given the absence of made ground in some locations and that the made ground consists largely of placed uncontaminated natural soils. These remedial recommendations are consistent with those made with the approved Remediation Strategy (R1742-R01-v3) which covers other phases of the Heyford Park New Settlement Area. This report has therefore been produced to satisfy the proposed remedial recommendations.

No potential contaminative activities such as the storage of fuels (ASTs, USTs, boiler house etc.) was identified within previous reporting with historical mapping confirming the site remained undeveloped until the construction of a baseball pitch sometime between 1979 and 1992.

Given the effective Greenfield history of the site it may be underlain by natural soils or made ground comprising of reworked natural soils, negating the requirement for an engineered cover system.

In-situ sampling was therefore completed to ascertain whether the natural soils were suitable for retention within shallow garden soils and to also determine the extent and chemistry of shallow made ground soils present across the site.

In-situ Topsoil Testing

It is a requirement under the Hydrock Strategy that site won soils are sampled at a minimum test frequency of 1 sample per 250m³, however proposed recommendations under a revised Strategy and in line with previous remedial works within the Heyford development specify testing of site won soils at a frequency of 1 per 500m³.

Assuming an approximate site area of 14,650m² and a nominal topsoil thickness of 0.3m, this equivalates to an approximate volume of 4,395m³. Sampling was carried out in-situ with the proposed

sampling frequency of 1 sample per 500m³ resulting in the collection of 9 samples (achieving a frequency of 1 per 488m³) to assess the potential for recovery and reuse within the development.

Samples were collected by SGP and were placed in appropriate laboratory-provided containers and stored in cooled boxes. Samples submitted for chemical analysis were delivered to Exova-Jones Environmental Ltd (EJEL) within 24 hours of collection and samples for asbestos screen were sent to Chemtest within 48 hours of collection. SGP retains chain of custody documentation.

The results of the soil analyses are compared to human health critical values (CVs) for initial screening purposes. The CVs adopted are appropriate to the environmental setting and proposed future residential use of the site and are taken primarily from the LQM / CIEH Suitable for Use Levels (S4ULs) which are used to define land that is 'not contaminated'. These a derived for a sandy loam soil; reference is initially made to the S4ULs derived for a soil with 1% organic matter as a conservative assumption for screening purposes.

The Defra Category 4 Screening Level (C4SL) for lead in soils under residential land-use has been utilised to allow an initial screening for risk to human health. This is intended to demonstrate that land is definitely not Contaminated Land as defined under Part IIA of the Environmental Protection Act. The adoption of the C4SL in a planning scenario has not been universally accepted, however in the absence of other generic screening criteria for lead following the withdrawal of the SGV by the EA it is considered appropriate to utilise the screening criterion.

Chemical laboratory certificate (18-7823) and asbestos laboratory certificate (18-14613) are attached. Results are summarised in the table below and are compared to assessment criteria for garden cover soils as per above.

It is noted that published criteria have been utilised to reflect those proposed within a revised Strategy with some values differing slightly from those within the current Hydrock Strategy.

Table 2. Analysis Summary for in-situ Topsoil

Tubic 2. Analysis cullin	Range of Contaminant Samples Concentrations (mg/kg unless stated)		Residential Use	
Contaminant		Screening criteria (mg/kg unless stated)	Exceedances	
SOM	9	1.5-3.8	-	None
рН	9	7.74-8.25	-	None
asbestos fibre*	9	NAD	<0.001%	None
antimony	9	2-5	550 (GAC)	None
arsenic	9	15.2-52.1	37 (S4UL)	(1): Ph9-S9A
barium	9	59-107	1300 (GAC)	None
beryllium	9	0.9-3.0	1.7 (S4UL)	(1): Ph9-S9A
cadmium	9	0.1-0.2	11 (S4UL)	None
chromium	9	36.9-82.2	910 (S4UL)	None
chromium IV	9	<0.3	6 (S4UL)	None
cobalt	9	7.6-13.6	-	None
copper	9	10-29	2400 (S4UL)	None
lead	9	17-88	200 (C4SL)	None
mercury	9	<0.1	170 (S4UL)	None
molybdenum	9	1.5-2.3	670 (GAC)	None
nickel	9	18.3-51.50	180 (S4UL)	None

		Range of Concentrations (mg/kg unless stated)	Residential Use	
Contaminant	Samples		Screening criteria (mg/kg unless stated)	Exceedances
selenium	9	<1-2	250 (S4UL)	None
vanadium	9	52-119	410 (S4UL)	None
water soluble boron	9	0.9-2.9	290 (S4UL)	None
zinc	9	64-174	3700 (S4UL)	None
naphthalene	9	<0.04	2.3 (S4UL)	None
acenaphthylene	9	<0.03	170 (S4UL)	None
acenaphthene	9	<0.05	210 (S4UL)	None
fluorene	9	<0.04	170 (S4UL)	None
phenanthrene	9	<0.03-0.26	95(S4UL)	None
anthracene	9	<0.04-0.09	280 (S4UL)	None
fluoranthene	9	0.09-0.95	2400 (S4UL)	None
pyrene	9	0.09-0.87	620 (S4UL)	None
benzo(a)anthracene	9	0.06-0.59	7.2 (S4UL)	None
chrysene	9	0.06-0.46	15 (S4UL)	None
benzo(bk)fluoranthene	9	0.11-1.09	-	-
benzo(a)pyrene	9	0.06-0.59	2.2 (S4UL)	None
indeno(123cd)pyrene	9	0.04-0.44	27 (S4UL)	None
dibenzo(ah)anthracene	9	0.04-0.09	0.24(S4UL)	None
benzo(ghi)perylene	9	0.04-0.4	320 (S4UL)	None
aliphatic C5-C6	9	<0.1	42 (S4UL)	None
aliphatic C6-C8	9	<0.1	100 (S4UL)	None
aliphatic C8-C10	9	<0.1	27 (S4UL)	None
aliphatic C10-C12	9	<0.2	130 (S4UL)	None
aliphatic C12-C16	9	<4	1100 (S4UL)	None
aliphatic C16-C21	9	<7	5000 (S4UL)	None
aliphatic C21-C35	9	<7	5000 (S4UL)	None
aromatic C5-C7	9	<0.1	70 (S4UL)	None
aromatic C7-C8	9	<0.1	130 (S4UL)	None
aromatic C8-C10	9	<0.1	34 (S4UL)	None
aromatic C10-C12	9	<0.2	74 (S4UL)	None
aromatic C12-C16	9	<4	140 (S4UL)	None
aromatic C16-C21	9	<7	260 (S4UL)	None
aromatic C21-C35	9	<7	1100 (S4UL)	None
benzene	9	<0.005	0.08 (S4UL)	None
toluene	9	<0.005	130 (S4UL)	None
ethylbenzene	9	<0.005	47 (S4UL)	None
o-xylene	9	<0.005	60 (S4UL)	None
m-xylene	9	<0.005	56 (S4UL)	None
p-xylene	9	<0.005	56 (S4UL)	None
methyl tert butyl ether	9	<0.005		None

Notes to table:

Suitable For Use Levels published by Chartered Institute of Environmental Health and Land Quality Management Ltd, residential with plant uptake scenario (1% SOM); copyright Land Quality Management S4UL:

Ltd reproduced with permission publication number S4UL3102. All rights reserved.

GAC: Generic Assessment Criteria published by CL:AIRE for human health risk assessment for a residential

scenario with consumption of homegrown produce (1% SOM).

C4SL: Category 4 Screening Levels published by CL:AIRE (C4SLs); 'residential without home grown produce land

use' (at 1% SOM)

Two minor exceedances were reported and were limited to a single sample (Ph9-S9A). Arsenic was recorded at 52.1 mg/kg (criteria of 37 mg/kg), and beryllium at 3 mg/kg (criteria of 1.7 mg/kg). In the absence of anthropogenic material, statistical analysis has been carried out on the sample mean, the results are tabulated in the table below:

Table 3. Statistical Analysis of Arsenic and

statistic	arsenic (mg/kg)	beryllium (mg/kg)
criterion	37	1.7
no. of samples	9	9
Grubbs outlier test for highest value (P0.05)	Ph9-S9A (max value 52.1 mg/kg) is an outlier	Ph9-S9A (max value 3.0 mg/kg) is an outlier
arithmetic mean, including outlier	22.42	1.36
upper confidence limit (UCL 0.95) including outlier	39.09 (fail)	2.28 (fail)
arithmetic mean, excluding Ph9-S9A outlier	18.71	1.15
upper confidence limit (UCL 0.95) excluding Ph9-S9A outlier	23.26 (pass)	1.25 (pass)

Statistical analysis confirms that both exceedances are outliers of the dataset and are not representative of the soil concentrations and can therefore be excluded from the dataset. When these exceedances are removed, the UCL (0.95) for arsenic is 23.26 mg/kg and 1.25 mg/kg for beryllium resulting in no exceedances.

In-Situ Future Formation Soil Validation

Under a revised Strategy and in accordance with validation works within the wider Heyford Park development, sampling of the underlying 400mm subsoil beneath any topsoil or removed hardstanding would be sampled to determine its retention as part of the 600mm garden cover providing that it is uncontaminated and suitable for such use.

In-situ sampling of subsoils below the topsoil cover was completed through the excavation and sampling of the top 400mm of soil. Sampling was completed at a test frequency of 1 sample per 500m³, the residual depth of 400mm equating to 1 sample per 1,250m² plan area of development.

Twelve in-situ samples were collected from the underlying soil with depth validation photos showing the extent of the 400mm depth range appended to this report with sampling locations reproduced in Drawing D01. Assuming an approximate site area of 14,650m², the volume of validated soils is effectively 5,860m³, exceeding the specified sampling rate of 1 sample per 500m³ (1 per 488m³ achieved).

Sampled soils generally comprised of a dark brown clay soil with coarse gravel of limestone although inclusions of brick fragments (S5, S6, S11 and S12) and tarmac (S7 and S11) were observed. No inclusions of ash, slag or clinker were observed but it is noted that Hydrock reported ash within 2 locations. A plan detailing the validation entries with Hydrock's trial-pits is provided in Drawing D01.

		Range of	Resi	idential Use
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances
SOM	12		-	None
рН	12	7.53-8.47	-	None
asbestos fibre*	12	NAD	<0.001%	None
antimony	12	1-3	550 (GAC)	None
arsenic	12	14.3-25.1	37 (S4UL)	None
barium	12	49.119	1300 (GAC)	None
beryllium	12	0.9-1.4	1.7 (S4UL)	None
cadmium	12	<0.1-0.2	11 (S4UL)	None
chromium	12	32.3-47	910 (S4UL)	None
chromium IV	12	<0.3	6 (S4UL)	None
cobalt	12	6.3-12.5	-	None
copper	12	9-57	2400 (S4UL)	None
lead	12	11-59	200 (C4SL)	None
mercury	12	<0.1	170 (S4UL)	None
molybdenum	12	1.2-2.6	670 (GAC)	None
nickel	12	16.3-31.6	180 (S4UL)	None
selenium	12	<1	250 (S4UL)	None
vanadium	12	42-69	410 (S4UL)	None
water soluble boron	12	0.7-3.4	290 (S4UL)	None
zinc	12	52-204	3700 (S4UL)	None
naphthalene	12	<0.04-0.06	2.3 (S4UL)	None
acenaphthylene	12	<0.03-0.08	170 (S4UL)	None
acenaphthene	12	<0.05-0.23	210 (S4UL)	None
fluorene	12	<0.04-0.15	170 (S4UL)	None
phenanthrene	12	<0.03-2.93	95(S4UL)	None
anthracene	12	<0.04-0.87	280 (S4UL)	None
fluoranthene	12	<0.03-6.08	2400 (S4UL)	None
pyrene	12	<0.03-6.08	620 (S4UL)	None
benzo(a)anthracene	12	<0.06-2.15	7.2 (S4UL)	None
chrysene	12	<0.02-2.15	15 (S4UL)	None
enzo(bk)fluoranthene	12	<0.07-3.83	-	-
benzo(a)pyrene	12	<0.04-2.22	2.2 (S4UL)	(2) Ph9-S4
indeno(123cd)pyrene	12	<0.04-1.60	27 (S4UL)	None
ibenzo(ah)anthracene	12	<0.04-0.28	0.24(S4UL)	(2) Ph9-S4 & Ph9-S1
benzo(ghi)perylene	12	<0.04-1.51	320 (S4UL)	None
aliphatic C5-C6	12	<0.1	42 (S4UL)	None
aliphatic C6-C8	12	<0.1	100 (S4UL)	None
aliphatic C8-C10	12	<0.1	27 (S4UL)	None

		Range of	Resid	dential Use
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances
aliphatic C10-C12	12	<0.2	130 (S4UL)	None
aliphatic C12-C16	12	<4	1100 (S4UL)	None
aliphatic C16-C21	12	<7	5000 (S4UL)	None
aliphatic C21-C35	12	<7-11	5000 (S4UL)	None
aromatic C5-C7	12	<0.1	70 (S4UL)	None
aromatic C7-C8	12	<0.1	130 (S4UL)	None
aromatic C8-C10	12	<0.1	34 (S4UL)	None
aromatic C10-C12	12	<0.2-0.3	74 (S4UL)	None
aromatic C12-C16	12	<4	140 (S4UL)	None
aromatic C16-C21	12	<7-20	260 (S4UL)	None
aromatic C21-C35	12	<7-97	1100 (S4UL)	None
benzene	12	<0.005	0.08 (S4UL)	None
toluene	12	<0.005	130 (S4UL)	None
ethylbenzene	12	<0.005	47 (S4UL)	None
o-xylene	12	<0.005	60 (S4UL)	None
m-xylene	12	<0.005	56 (S4UL)	None
p-xylene	12	<0.005	56 (S4UL)	None
methyl tert butyl ether	12	<0.005	-	None

Notes to table:

S4UL: Suitable For Use Levels published by Chartered Institute of Environmental Health and Land Quality

Management Ltd, residential with plant uptake scenario (1% SOM); copyright Land Quality Management

Ltd reproduced with permission publication number S4UL3102. All rights reserved.

GAC: Generic Assessment Criteria published by CL:AIRE for human health risk assessment for a residential

scenario with consumption of homegrown produce (1% SOM).

C4SL: Category 4 Screening Levels published by CL:AIRÈ (C4SLs); 'residential without home grown produce land

use' (at 1% SOM)

Exceedances were limited to a very minor elevated concentrations of benzo(a)pyrene within sample Ph9-S4 with a concentration of 2.22 mg/kg compared to the criteria of 2.2 mg/kg, and dibenzo(ah)anthracene with concentrations of 0.28 mg/kg (criteria of 0.24 mg/kg) with both Ph9-S4 and Ph9-S11.

PAH ratio analysis was completed on the exceeded samples to determine the source of the elevated PAHs, a copy of the plot is attached to this report. Source identification confirms a coal signature, no anthropogenic material such as ash or clinker were observed within Ph9-S4 whilst fragments of tarmac were recorded within Ph9-S11. Source identification indicates a likely low bio-availability due to the sequestration of PAHs within a carbon or vitrified matrix, with B(a)P concentrations below the DEFRA C4SL criteria of 5 mg/kg for garden soils. The minor PAH exceedances are unlikely to represent an unacceptable risk to human health.

Conclusions

Topsoil cover was present across the site (with exception of entry S29) extending to depths of 0.2 and 0.3m bgl. Minor exceedances of site topsoil were initially recorded for both arsenic and beryllium within sample Ph9-S9A, however further statistical analysis confirmed the exceedances are not

representative of the dataset and when removed the UCL (0.95) did not result in any exceedances. It is concluded that the topsoil is suitable for recovery and reuse within the development.

The 0.4m of soils present beneath the topsoil layer were a brown clay with frequent limestone gravel (possible weathered bedrock) and rare inclusions of brick and tarmac, tarmac fragments were limited to entries S7 and S11. It is anticipated that the clay layer may have been placed in part during construction of the baseball pitch where soils from the wider Heyford area may have been placed.

Concentrations of determinants were below the assessment criteria except with 3 minor exceedances for the PAHs benzo(a)pyrene (no 1) and dibenzo(ah)anthracene (no 2) in entries S4 and S11. Further assessment has confirmed a coal signature, possibly associated with minor tarmac inclusions and concluded that the identified sources are likely to be below significant in terms of solubility and bioavailability due to the sequestration within coal / tarmac.

SGP considers that the risk associated to future site occupants to concentrations to be negligible and that the site soils (topsoil and subsoil) are suitable for retention in future garden areas. The recommended remedial measures (i.e. engineered cover system) may be revised to be consistent with those applied to other similar areas i.e. no specific requirement for cover soils.

Recommendations

It is recommended that in the absence of a revised Strategy being produced and issued for the Phase 9 area that this report be submitted to CDC for approval, however further justification to the deviation from the submitted Strategy may be required.

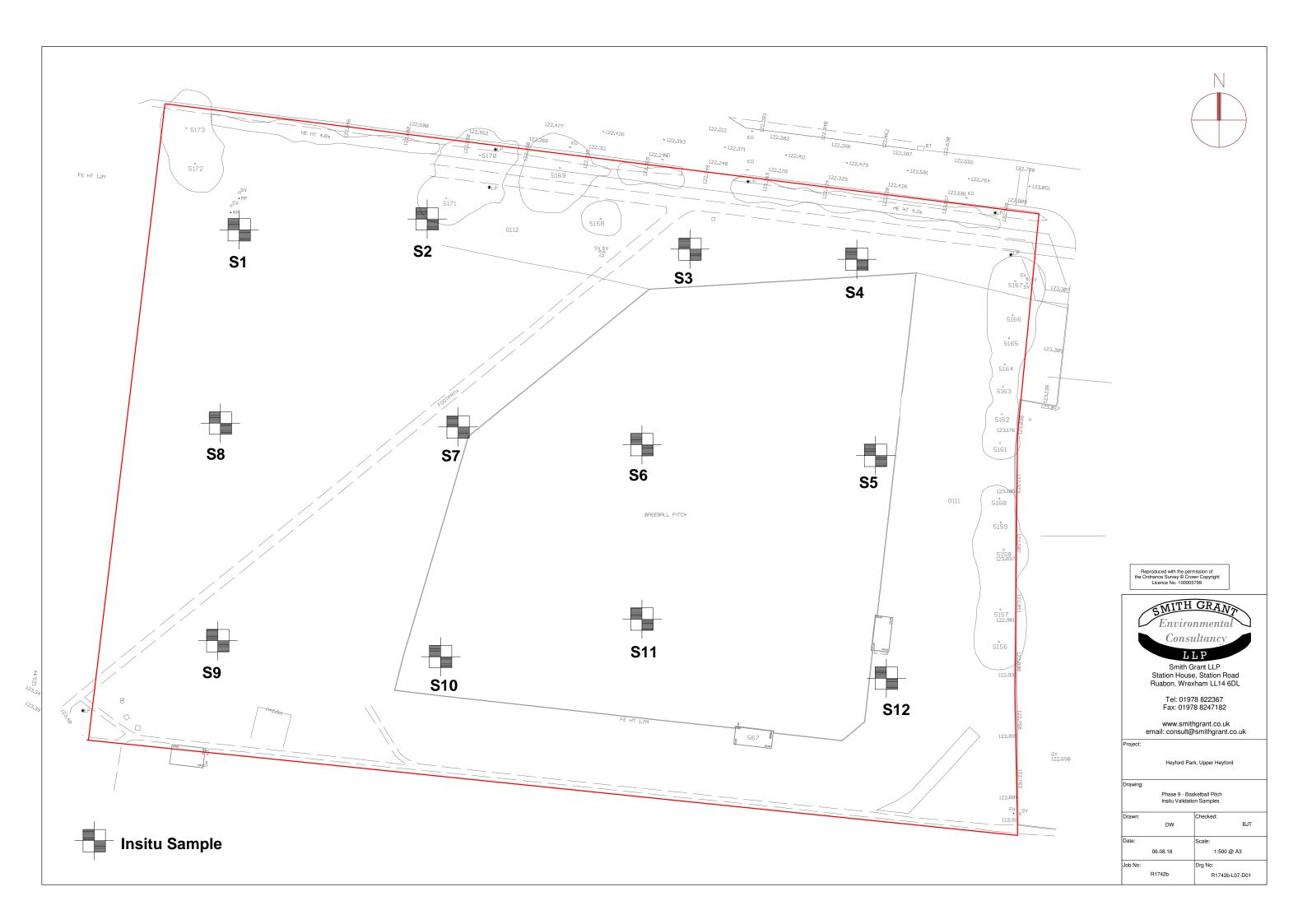
Assessment of risks associated with occasional exceedances and conclusions regarding suitability for retention at shallow depths should be provided to CDC for approval.

Yours sincerely for: Smith Grant LLP

D Wayland BSc MSc MCIWEM

Attached:

Drawing D01


App A: Entry Logs & Photo Record

App B: Lab Certificate: 18-7823 & 18-14613

App C: PAH Ratio Plot & Arsenic and Beryllium CLR7 Statistics

DRAWING

APPENDIX A

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	DATE: 1st May		Ph9-S1
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
0.2 0.6	SAMPLES Ph9-S1A Ph9-S1B	Heyford Suite Heyford Suite	0.2	Dark brown CLAY topsoil w MADE GROUND: Dark bro gravel (relict gas pipe at ba Base at 0.6m bgl	with rootlets	regen
		GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

GROUND WATER:

No groundwater encountered

REMARKS:

Sidewalls stable PID < 0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SCALE: LOGGED BY: FIGURE NO. 1:250 1 DW

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PI NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	DATE: Urban Regen Ltd. DATE: 1st May		Ph9-S
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
0.3		Heyford Suite	0 _	Dark brown CLAY topsoil w	vith rootlets	
<u> </u>	Ph9-S2A	Heyford Suite	0.3	Dark brown to red CLAY wi angular limestone	ith frequent gravel of	
0.7	Ph9-S2B			Base at 0.7m bgl		
			_			
			_			
			-			
			_			
			_ _ _			
			_			
			_			
			_			
			_			
			_			

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S3
DEPTH (m)	SAMPLES	Lab testing	DEРТН (m)	DESCRIPTIO	N OF STRATA	LEGEND
0.2		Heyford Suite	0 _	Dark brown CLAY topsoil w	rith rootlets	
0.2	Ph9-S3A	Heyford Suite	0.2	Dark brown CLAY with freq limestone	uent gravel of angular	
0.6	Ph9-S3B		_	Base at 0.6m bgl		
			_	base at 0.6m bgi		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
	MITH GRAI	GROUND WATER:		l		

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S4
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	N OF STRATA	LEGEND
0.2		Heyford Suite	0 _	Dark brown CLAY topsoil w	rith rootlets	
0.2	Ph9-S4A	Heyford Suite	0.2	Dark brown CLAY with freq limestone	uent gravel of angular	
0.6	Ph9-S4B		_			
			_	Base at 0.6m bgl		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
	NITH GRAI	GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

1

LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	DATE: 1st May		Ph9-S5
SAMPLES	Lab testing	DEPTH (m)	DESCRIPTION	ON OF STRATA	LEGEND
	Heyford Suite	0 _	Dark brown CLAY topsoil v	vith rootlets	
Ph9-S5A	Heyford Suite	0.3	Dark brown CLAY with free limestone and rare brick fra	quent gravel of angular agments	
Ph9-S5B			Base at 0.7m bgl		
		-			
		_			
		_			
		_			
		_			
		_			
		_			
		-			
		_			
	See Plan SAMPLES Ph9-S5A	LOCATION: See Plan EXCAVATED BY: Tracked 360	LOCATION: See Plan EXCAVATED BY: Tracked 360 CLIENT: Urban R	Heyford Dorchester DW	LOCATION: See Plan EXCAVATED BY: Tracked 360 CLIENT: Urban Regen Ltd. DATE: 1st May

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.	
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S	
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND	
0.2		Heyford Suite	0 _	Dark brown CLAY topsoil v	vith rootlets		
0.2	Ph9-S6A	Heyford Suite	0.2	Dark brown CLAY with free limestone and rare brick fra	quent gravel of angular agments		
0.6	Ph9-S6B			Base at 0.6m bgl			
			_				
			_				
			_				
			_				
			_				
			_				
			-				
			_				
			_				
			_				
			_				
			_				
			_				
			_				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S7
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
0.2		Heyford Suite	0 _	Dark brown CLAY topsoil v	vith rootlets	
0.2	Ph9-S7A	Heyford Suite	0.2	Dark brown CLAY with frec limestone and rare brick ar	quent gravel of angular nd tarmac fragments	
0.6	Ph9-S7B			Base at 0.6m bgl		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			-			
			_			
			_			
		GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S8
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
0.2		Heyford Suite	0 _	Dark brown CLAY topsoil w	rith rootlets	
0.2	Ph9-S8A	Heyford Suite	0.2	Dark brown CLAY with freq limestone	uent gravel of angular	
0.6	Ph9-S8B	-	_	Decree of O One had		
			_	Base at 0.6m bgl		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
	MITH GRAI	GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S9
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTION	ON OF STRATA	LEGEND
			0 _	Light brown CLAYbecomir gravel of angular limestone	ng darker with frequent	
		Heyford Suite	_			
0.6			_			
0.0	Ph9-S9A		_	Base at 0.6m bgl		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
	NITH GRAI	GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

1

SCALE: LOGGED BY: 1:250

DW

FIGURE NO.

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL P
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban F	Regen Ltd.	DATE: 1st May	Ph9-S
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTI	ON OF STRATA	LEGEND
			0 -	Dark brown CLAY topsoil	with rootlets	
		Heyford Suite	0.3	Dark brown CLAY with fre limestone	quent gravel of angular	
0.7	Ph9-S10A			Base at 0.7m bgl		
			-			
			-			
			_ _ _			
				-		
			-			
			-	-		
			_			
			-			
			- -	-		
			-			
			-	-		
			-	1		
			-			

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PI
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S
ОЕРТН (m)	SAMPLES	Lab testing	рертн (m)	DESCRIPTION	ON OF STRATA	LEGEND
			0 _	Dark brown CLAY topsoil v	with rootlets	
		Heyford Suite	0.3	Light brown CLAY with coa and rare brick and tarmac	arse gravel of limestone fragments	
0.7	Ph9-S11A		_	Dana at 0.7m had		
			_	Base at 0.7m bgl		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			-			
			_			
			-			
			_			
۵۱	NITH GRAI	GROUND WATER:				<u> </u>

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL P NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban F	Regen Ltd.	DATE: 1st May	Ph9-S
DEPTH (m)	SAMPLES	Lab testing	ОЕРТН (m)	DESCRIPTIO	ON OF STRATA	LEGEND
			0 _	Dark brown CLAY topsoil v	vith rootlets	
		Heyford Suite	0.3	Light brown CLAY with coa and rare brick fragments	rse gravel of limestone	
0.7	Ph9-S12A			Base at 0.7m bgl		
			-			
			_			
			_			
			_			
			_ _ _			
			-			
			-			
			-			
			-			
			_			

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SCALE: LOGGED BY: 1:250

DW

FIGURE NO.

1

APPENDIX B

Registered Address: Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8PL

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Station House Station Road Ruabon Wrexham LL14 6DL

Smith Grant LLP

Attention: Dan Wayland

Date: 7th June, 2018

Your reference : R1742B

Our reference: Test Report 18/7823 Batch 1

Location: Heyford (Dorchester)

Date samples received: 22nd May, 2018

Status: Final report

Issue:

Twenty samples were received for analysis on 22nd May, 2018 of which twenty were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Phil Sommerton BSc

Project Manager

Client Name: Smith Grant LLP

Reference: R1742B

Location: Heyford (Dorchester) Solids: V=60g VOC jal

Contact: Dan Wayland JE Job No.: 18/7823

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

											-		
J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20			
Sample ID	PH9-S1A	PH9-S1B	PH9-S2A	PH9-S2B	PH9-S3A	PH9-S3B	PH9-S4A	PH9-S4B	PH9-S5A	PH9-S5B			
Depth	0.00-0.20	0.20-0.60	0.00-0.30	0.30-0.70	0.00-0.20	0.20-0.60	0.00-0.20	0.20-0.60	0.00-0.30	0.30-0.70	Please se	e attached n	notes for all
COC No / misc												ations and a	
Containers	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J	1		
Sample Date				22/05/2018				22/05/2018			1		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	<u> </u>	ı	Т
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018			No.
Antimony	2	2	2	2	2	2	3	3	2	2	<1	mg/kg	TM30/PM15
Arsenic **M	15.9	17.1	16.2	19.1	21.6	16.5	17.4	18.1	19.3	25.1	<0.5	mg/kg	TM30/PM15
Barium ^{#M}	68	68	62	49	59	51	61	69	63	95	<1	mg/kg	TM30/PM15
Beryllium	1.1	1.2	1.3	1.3	1.1	1.0	1.1	1.0	1.1	1.0	<0.5	mg/kg	TM30/PM15
Cadmium #M	0.1	0.1	<0.1	<0.1	0.2	0.2	0.1	<0.1	0.1	0.1	<0.1	mg/kg	TM30/PM15
Chromium ^{#M} Cobalt ^{#M}	42.2 8.5	43.2 9.3	42.5 9.4	47.0 9.3	38.8 8.2	34.9 6.5	38.6 8.3	39.8 9.4	43.5 8.0	45.1 6.8	<0.5 <0.5	mg/kg	TM30/PM15 TM30/PM15
Copper **M	15	9.3	10	9.3	10	9	12	9.4	11	18	<0.5	mg/kg mg/kg	TM30/PM15
Lead *M	21	24	17	11	38	42	36	35	35	32	<5	mg/kg	TM30/PM15
Mercury **M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum **M	1.9	1.9	1.8	1.9	1.5	1.6	1.9	2.0	1.8	2.1	<0.1	mg/kg	TM30/PM15
Nickel **M	24.2	23.0	26.3	27.2	22.4	16.3	22.5	22.3	22.0	18.3	<0.7	mg/kg	TM30/PM15
Selenium *M	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM30/PM15
Vanadium	55	57	54	55	54	50	55	57	54	69	<1	mg/kg	TM30/PM15
Water Soluble Boron #M	1.2	1.2	1.1	0.7	0.9	1.1	1.6	1.4	1.8	1.1	<0.1	mg/kg	TM74/PM32
Zinc #M	64	68	64	52	78	63	71	59	67	122	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #M	<0.04	<0.04	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	0.05	<0.03	0.07	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.23	<0.05	0.23	<0.05	mg/kg	TM4/PM8
Fluorene #M	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.12	<0.04	0.15	<0.04	mg/kg	TM4/PM8
Phenanthrene **M Anthracene **	0.11 <0.04	<0.03 <0.04	<0.03 <0.04	<0.03 <0.04	0.12	0.70	0.06 <0.04	2.24 0.87	0.07 <0.04	2.93 0.69	<0.03 <0.04	mg/kg mg/kg	TM4/PM8 TM4/PM8
Fluoranthene #M	0.42	0.11	0.09	<0.04	0.51	1.56	0.21	6.08	0.22	3.88	<0.04	mg/kg	TM4/PM8
Pyrene #	0.37	0.11	0.09	<0.03	0.50	1.34	0.20	4.91	0.20	3.14	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	0.21	0.08	0.08	<0.06	0.30	0.63	0.12	2.15	0.13	1.31	<0.06	mg/kg	TM4/PM8
Chrysene **M	0.21	0.07	0.06	<0.02	0.31	0.66	0.12	2.15	0.13	1.48	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene ***	0.43	0.14	0.11	<0.07	0.67	1.26	0.25	3.83	0.26	2.88	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene#	0.23	0.08	0.06	<0.04	0.39	0.70	0.14	2.22	0.15	1.54	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	0.19	0.06	<0.04	<0.04	0.29	0.49	0.10	1.49	0.12	1.19	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	<0.04	<0.04	0.06	0.10	<0.04	0.28	<0.04	0.19	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	0.17	0.06	<0.04	<0.04	0.28	0.47	0.09	1.33	0.10	1.04	<0.04	mg/kg	TM4/PM8
PAH 16 Total	2.3	0.7	<0.6	<0.6	3.5	8.2	1.3	28.0	1.4	20.7	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.31	0.10	0.08	<0.05	0.48	0.91	0.18	2.76	0.19	2.07	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.12	0.04	0.03	<0.02	0.19	0.35	0.07	1.07	0.07	0.81	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	89	91	90	89	89	90	84	90	91	88	<0	%	TM4/PM8

Client Name: Smith Grant LLP

Reference: R1742B

Location: Heyford (Dorchester)

Contact: Dan Wayland JE Job No.: 18/7823

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE JOD NO.:	18/7823												
J E Sample No.	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20			
Sample ID	PH9-S1A	PH9-S1B	PH9-S2A	PH9-S2B	PH9-S3A	PH9-S3B	PH9-S4A	PH9-S4B	PH9-S5A	PH9-S5B			
Depth	0.00-0.20	0.20-0.60	0.00-0.30	0.30-0.70	0.00-0.20	0.20-0.60	0.00-0.20	0.20-0.60	0.00-0.30	0.30-0.70	Please se	e attached n	otes for all
COC No / misc											abbreviations and acro		
Containers	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J			
Sample Date	22/05/2018	22/05/2018											
Sample Type			Soil	Soil									
. ,.	Soil	Soil			Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018			110.
TPH CWG													
Aliphatics >C5-C6 ***	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 #M	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 #M	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 #M	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 #M	<7	<7	<7	<7	<7	<7	<7	<7	<7	11	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics													
>C5-EC7#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8# >EC8-EC10#M	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	mg/kg	TM36/PM12 TM36/PM12
>EC8-EC10 >EC10-EC12#	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1	<0.1 <0.2	<0.1	<0.1	<0.1 <0.2	<0.1	<0.1	<0.1 <0.2	mg/kg mg/kg	TM5/PM8/PM16
>EC10-EC12 >EC12-EC16#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 #	<7	<7	<7	<7	<7	<7	<7	<7	<7	78	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 #	<19	<19	<19	<19	<19	<19	<19	<19	<19	78	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	<38	<38	<38	<38	<38	<38	<38	<38	78	<38	mg/kg	TM5/TM38/PM8/PM12/PM16
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Benzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Toluene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Ethylbenzene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Natural Moisture Content	10.7	12.6	11.2	12.4	10.2	10.8	10.6	12.5	12.1	13.2	<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Organic Matter	1.8	1.9	1.5	0.6	1.5	1.2	2.6	1.4	2.4	1.2	<0.2	%	TM21/PM24
Electrical Conductivity @25C (5:1 ext)	204	192	203	157	203	176	236	175	234	191	<100	uS/cm	TM76/PM58
pH ^{#M}	8.18	8.25	8.12	8.31	8.25	8.24	8.10	8.46	8.06	8.38	<0.01	pH units	TM73/PM11
Sample Type	Clayey Loam		Loam	Clay	Clayey Loam	Clay	Clayey Loam	Clay		Clayey Loam		None	PM13/PM0
Sample Colour	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones, vegetation, carbon	stones, vegetation	vegetation, stones	vegetation, stones	vegetation, stones	stones	stones, vegetation	loam, stones, vegetation	vegetation, stones	sones, vegeation		None	PM13/PM0

Client Name: Smith Grant LLP

Reference: R1742B

Location: Heyford (Dorchester) **Solids:** V=60g VOC jar, J=250g glass jar, T=plastic tub

Report : Solid

Contact: Dan Wayland JE Job No.: 18/7823

JE Job No.:	18/7823										_		
J E Sample No.	21-22	23-24	25-26	27-28	29-30	31-32	33-34	35-36	37-38	39-40			
Sample ID	PH9-S6A	PH9-S6B	PH9-S7A	PH9-S7B	PH9-S8A	PH9-S8B	PH9-S9A	PH9-S10A	PH9-S11A	PH9-S12A			
Depth	0.00-0.20	0.20-0.60	0.00-0.20	0.20-0.60	0.00-0.20	0.20-0.60	0.00-0.60	0.30-0.70	0.30-0.70	0.30-0.70	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	۸٦	۸٦	٧J	۸٦	۸٦	VJ	۸٦	۸٦	VJ	۸٦			
Sample Date	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	LOD/LOR	Units	No.
Antimony	3	3	3	2	2	2	5	2	1	2	<1	mg/kg	TM30/PM15
Arsenic #M	23.0	22.4	21.1	14.3	15.2	15.1	52.1	15.5	17.3	15.1	<0.5	mg/kg	TM30/PM15
Barium ^{#M}	68	119	65	81	60	52	107	61	51	67	<1	mg/kg	TM30/PM15
Beryllium	1.2	1.2	1.4	1.4	0.9	1.0	3.0	1.4	0.9	1.0	<0.5	mg/kg	TM30/PM15
Cadmium #M	0.1	0.2	0.1	0.2	0.2	<0.1	<0.1	0.1	0.1	0.2	<0.1	mg/kg	TM30/PM15
Chromium #M	45.3	40.3	43.1	34.8	36.9	34.7	82.2	45.5	32.3	33.7	<0.5	mg/kg	TM30/PM15
Cobalt #M	9.7	12.5	8.8	6.9	7.6	7.4	13.6	10.6	6.3	7.1	<0.5	mg/kg	TM30/PM15
Copper ^{#M} Lead ^{#M}	11	12	29	57	12	11	13	18	11	14	<1	mg/kg	TM30/PM15 TM30/PM15
Lead **** Mercury **M	42 <0.1	59 <0.1	88	40	22	17 <0.1	84 <0.1	21 <0.1	23 <0.1	23 <0.1	<5 <0.1	mg/kg	TM30/PM15
Molybdenum **M	2.0	1.9	<0.1 2.3	<0.1 2.6	<0.1 1.8	1.7	1.9	1.2	1.5	1.4	<0.1	mg/kg mg/kg	TM30/PM15
Nickel **M	26.3	31.6	24.0	21.7	18.3	18.1	51.5	23.1	16.5	16.9	<0.7	mg/kg	TM30/PM15
Selenium #M	<1	<1	<1	<1	<1	<1	2	<1	<1	<1	<1	mg/kg	TM30/PM15
Vanadium	61	57	60	42	52	53	119	62	47	47	<1	mg/kg	TM30/PM15
Water Soluble Boron ***	1.7	1.1	1.7	1.3	1.8	1.2	2.9	3.4	0.9	1.2	<0.1	mg/kg	TM74/PM32
Zinc *M	75	80	128	204	87	61	174	67	64	67	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #M	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	0.08	<0.03	<0.03	<0.03	<0.03	0.08	0.07	<0.03	mg/kg	TM4/PM8
Acenaphthene #M	<0.05	<0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	0.09	0.06	<0.05	mg/kg	TM4/PM8
Fluorene #M	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene #M	0.07	0.22	0.24	1.09	0.07	<0.03	0.26	0.06	0.79	0.66	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	0.08	0.09	0.43	<0.04	<0.04	0.09	<0.04	0.34	0.22	<0.04	mg/kg	TM4/PM8
Fluoranthene #M	0.24	0.92	0.95	3.47	0.28	<0.03	0.61	0.18	3.11	1.64	<0.03	mg/kg	TM4/PM8
Pyrene #	0.22 0.15	0.84	0.87	3.15 1.61	0.26 0.15	<0.03 <0.06	0.50 0.28	0.18 0.12	2.88 1.42	1.42	<0.03 <0.06	mg/kg	TM4/PM8 TM4/PM8
Benzo(a)anthracene [#] Chrysene ^{#M}	0.15	0.47	0.47	1.64	0.13	<0.00	0.28	0.12	1.42	1.03	<0.06	mg/kg mg/kg	TM4/PM8
Benzo(bk)fluoranthene ***	0.13	1.12	1.09	3.50	0.39	<0.02	0.55	0.26	3.58	1.90	<0.02	mg/kg	TM4/PM8
Benzo(a)pyrene #	0.18	0.63	0.59	2.03	0.21	<0.04	0.29	0.13	2.00	0.98	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	0.12	0.48	0.44	1.60	0.18	<0.04	0.21	0.11	1.55	0.74	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	0.09	0.09	0.27	<0.04	<0.04	<0.04	<0.04	0.28	0.14	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	0.11	0.40	0.40	1.36	0.18	<0.04	0.19	0.10	1.51	0.69	<0.04	mg/kg	TM4/PM8
PAH 16 Total	1.6	5.7	5.7	20.4	1.9	<0.6	3.3	1.3	19.2	10.6	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.24	0.81	0.78	2.52	0.28	<0.05	0.40	0.19	2.58	1.37	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.10	0.31	0.31	0.98	0.11	<0.02	0.15	0.07	1.00	0.53	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	88	91	91	96	90	90	84	90	89	101	<0	%	TM4/PM8

Client Name: Smith Grant LLP

Reference: R1742B

Location: Heyford (Dorchester)

Contact: Dan Wayland JE Job No.: 18/7823

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	18/7823												
J E Sample No.	21-22	23-24	25-26	27-28	29-30	31-32	33-34	35-36	37-38	39-40			
Sample ID	PH9-S6A	PH9-S6B	PH9-S7A	PH9-S7B	PH9-S8A	PH9-S8B	PH9-S9A	PH9-S10A	PH9-S11A	PH9-S12A			
Depth	0.00-0.20	0.20-0.60	0.00-0.20	0.20-0.60	0.00-0.20	0.20-0.60	0.00-0.60	0.30-0.70	0.30-0.70	0.30-0.70	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J	٧J			
Sample Date	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018	22/05/2018			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	1			
Date of Receipt				22/05/2018			22/05/2018				LOD/LOR	Units	Method No.
TPH CWG	22/00/2010	22/00/2010	22/00/2010	22/00/2010	22/00/2010	22/00/2010	ZE/00/2010	22/00/2010	22/00/2010	22/00/2010			
Aliphatics													
>C5-C6 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 **M	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <4	<0.2	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C12-C16 #M >C16-C21 #M	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<7	<4 <7	mg/kg mg/kg	TM5/PM8/PM16
>C10-C21 >C21-C35 **M	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	mg/kg	TM5/TM38/PM8/PM12/PM16
Aromatics													
>C5-EC7#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12	<0.2 <4	0.3	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	<0.2 <4	mg/kg mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC16-EC21#	<7	<7	<7	20	<7	<7	<7	<7	9	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	17	<7	91	<7	<7	<7	<7	97	70	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 #	<19	<19	<19	111	<19	<19	<19	<19	106	70	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35)	<38	<38	<38	111	<38	<38	<38	<38	106	70	<38	mg/kg	TM5/TM38/PM8/PM12/PM16
#	_	_	_	_	_	_	_	_	_	_	_		T1404/D1440
MTBE # Benzene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	ug/kg	TM31/PM12 TM31/PM12
Toluene #	<5 <5	<5	<5 <5	<5 <5	<5 <5	<5 <5	58	<5 <5	<5 <5	<5	<5	ug/kg ug/kg	TM31/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM31/PM12
Natural Moisture Content	12.4	11.9	12.0	10.9	10.1	12.8	21.7	22.1	10.7	10.6	<0.1	%	PM4/PM0
ivatural Moisture Content	12.4	11.5	12.0	10.5	10.1	12.0	21.7	22.1	10.7	10.0	٧٥.١	70	1 101-471 1010
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Organic Matter	2.5	1.7	3.8	1.8	3.3	1.2	3.6	2.7	1.3	1.7	<0.2	%	TM21/PM24
Electrical Conductivity @25C (5:1 ext)	244	214	238	166	252	191	248	247	123	197	<100	uS/cm	TM76/PM58
рН #М	8.10	8.23	7.98	8.30	7.74	8.29	7.77	7.53	8.26	8.47	<0.01	pH units	TM73/PM11
Sample Type	Clayey Loam		Loam	Clayey Loam	Loam		Clayey Loam	Clay	Clayey Loam			None	PM13/PM0
Sample Colour Other Items	vegetation,	stones, vegetation	stones, vegetation	stones, vegetation	vegetation, stones, carbon	Medium Brown stones	stones, vegetation	loam, stones	stones, vegetation, brick	stones, vegetation		None	PM13/PM0 PM13/PM0
									fragment				

Exova Jones Environmental Notification of Deviating Samples

Client Name: Smith Grant LLP

Reference: R1742B

Location: Heyford (Dorchester)

Contact: Dan Wayland

Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
				No deviating sample report results for job 18/7823	
	Batch	Batch Sample ID	Batch Sample ID Depth	Batch Sample ID Depth J E Sample No.	NO.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/7823

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

18/7823

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an Exova Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

JE Job No: 18/7823

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	РМ0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes

JE Job No: 18/7823

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM58	Dried and ground solid samples are extracted with water in a 5:1 water to solid ratio, the samples are shaken on an orbital shaker.			AD	Yes

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Tel: 01638 606070 Email: info@chemtest.co.uk

Final Report

Report No.: 18-14613-1

Initial Date of Issue: 31-May-2018

Client Smith Grant LLP

Client Address: Station House, Station Road

Ruabon Wrexham LL14 6DL

Contact(s): Dan Wayland

Project R17426 Heyford Park (Dorchester)

Quotation No.: Date Received: 24-May-2018

Order No.: Date Instructed: 24-May-2018

No. of Samples: 20

Turnaround (Wkdays): 5 Results Due: 31-May-2018

Date Approved: 31-May-2018

Approved By:

Details: Glynn Harvey, Laboratory Manager

Results - Soil

011 1 0 111 0 111 0		01		- I. NI -	40 44040	10 11010	40.44040	40 44040	40 44040	10 11010	40 44040	10 11010	40.44040
Client: Smith Grant LLP		Cnei	mtest Jo	ו.סא מכ:	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613
Quotation No.:	Chemtest Sample ID.:		627756	627757	627758	627759	627760	627761	627762	627763	627764		
		Cli	ent Sam	ple ID.:	PH9-S1A	PH9-S1B	PH9-S2A	PH9-S2B	PH9-S3A	PH9-S3B	PH9-S4A	PH9-S4B	PH9-S5A
	Sample Type:		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
	Top Depth (m):		0.0	0.2	0.0	0.3	0.0	0.2	0.0	0.2	0.0		
		Bottom Depth (m):			0.2	0.6	0.3	0.7	0.2	0.6	0.2	0.6	0.3
			Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
ACM Type	U	2192		N/A	-	-	-	-	-	-	-	-	-
Asbestos Identification	11	2192	%	0.001	No Asbestos								
Aspesios identification	U 2192 % 0.001		Detected	Detected	Detected	Detected	Detected	Detected	Detected	Detected	Detected		

Results - Soil

	(= 0.0												
Client: Smith Grant LLP		Che	mtest J	ob No.:	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613	18-14613
Quotation No.:		Chemte	st Sam	ple ID.:	627765	627766	627767	627768	627769	627770	627771	627772	627773
		Cli	ent Sam	ple ID.:	PH9-S5B	PH9-S6A	PH9-S6B	PH9-S7A	PH9-S7B	PH9-S8A	PH9-S8B	PH9-S9A	PH9-S10A
	Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
		Top Depth (m):				0.0	0.2	0.0	0.2	0.0	0.2	0.0	0.3
		Bottom Depth (m):			0.7	0.2	0.6	0.2	0.6	0.2	0.6	0.6	0.7
	Asbestos Lab				COVENTRY								
Determinand	Accred. SOP Units LOD												
ACM Type	U 2192 N/A		N/A	1	-	-	-	-	-	-	-	-	
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected								

Client: Smith Grant LLP		Che	mtest Jo	ob No.:	18-14613	18-14613
Quotation No.:	(Chemte	est Sam	ple ID.:	627774	627775
		Cli	ent Sam	ple ID.:	PH9-S11A	PH9-S12A
			SOIL	SOIL		
			Top Dep	0.3	0.3	
		Bot	tom Dep	0.7	0.7	
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
ACM Type	U	2192		N/A	-	-
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected	No Asbestos Detected

Test Methods

SOP	Title	Parameters included	Method summary
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

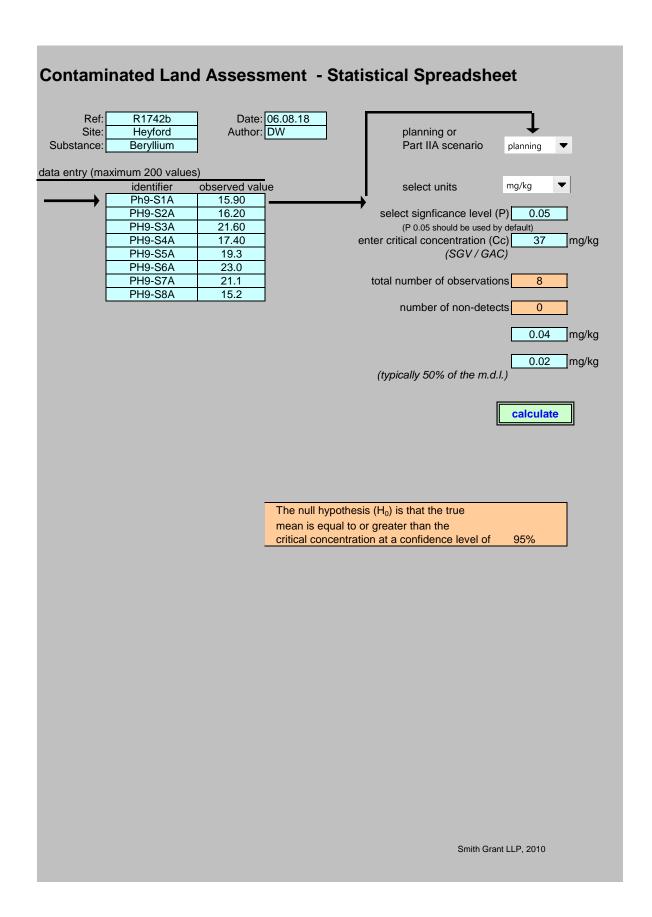
Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

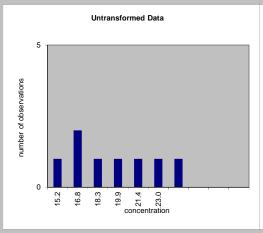
Sample Retention and Disposal

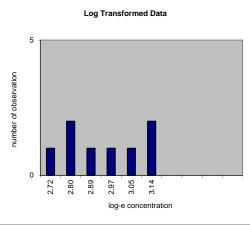
All soil samples will be retained for a period of 45 days from the date of receipt


All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk

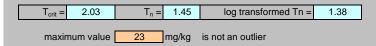

APPENDIX C



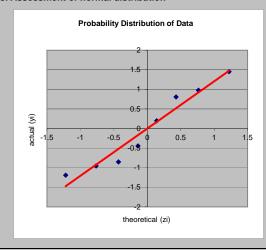
Contaminated Land Assessment - Statistical Spreadsheet

1. Data review

bell-shaped histograms indicate a normal-type distribution



Use log-transformed data?


2. Check for statistical outliers

Grubbs Test - assumes that data other than outlier(s) are normally distributed

note: outliers should only be removed in particular circumstances

3. Assessment of normal distribution

Shapiro-Wilk normality test

W = 0.562

 signficance level
 0.01
 0.05

 critical level
 0.749
 0.818

W is less than the critical value at 5% significance level

Are data points aligned close to red line, indicating a normal distribution?

yes ▼

Non-parametric testing (Chebychev Theorem) is appropriate

4. Significance Tests Against Critical Value

Non-parametric Chebychev Test

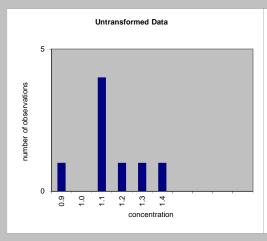
sample mean = 18.7125 mg/kg sample unbiased standard deviation = 2.95 mg/kg

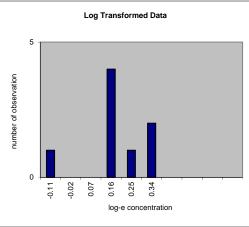
k statistic = -17.515 critical value = -4.360

k statistic is less than critical value null hypothesis can be rejected

upper confidence limit (UCL 0.95) = 23.26 mg/kg

Ref: R1742b
Site: Heyford
Substance: Beryllium

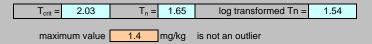

Date: 06.08.18 Author: DW


Contaminated Land Assessment - Statistical Spreadsheet Date: 06.08.18 Author: DW Ref: R1742b planning or Site: Heyford Substance: Beryllium Part IIA scenario planning data entry (maximum 200 values) identifier mg/kg select units observed value Ph9-S1A 1.10 PH9-S2A 1.30 select signficance level (P) 0.05 PH9-S3A 1.10 (P 0.05 should be used by default) enter critical concentration (Cc) mg/kg PH9-S4A 1.10 1.7 PH9-S5A (SGV/GAC) 1.1 PH9-S6A 1.2 PH9-S7A 1.4 total number of observations 8 PH9-S8A 0.9 number of non-detects 0.04 mg/kg mg/kg 0.02 (typically 50% of the m.d.l.) calculate The null hypothesis (H₀) is that the true mean is equal to or greater than the critical concentration at a confidence level of 95% Smith Grant LLP, 2010

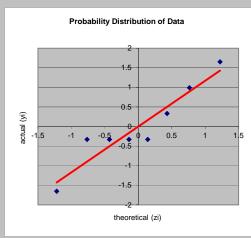
Contaminated Land Assessment - Statistical Spreadsheet

1. Data review

bell-shaped histograms indicate a normal-type distribution



Use log-transformed data?


2. Check for statistical outliers

Grubbs Test - assumes that data other than outlier(s) are normally distributed

note: outliers should only be removed in particular circumstances

3. Assessment of normal distribution

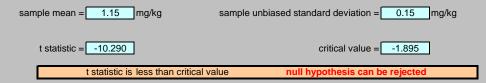
Shapiro-Wilk normality test

W = 0.917

 signficance level
 0.01
 0.05

 critical level
 0.749
 0.818

data do not significantly vary from a normal distribution


Are data points aligned close to red line, indicating a normal distribution?

yes 🔻

One-sample T test is appropriate

4. Significance Tests Against Critical Value

One-sample T Test

upper confidence limit (UCL 0.95) = 1.25 mg/kg

 Job name
 Upper Heyford (Dorchester)

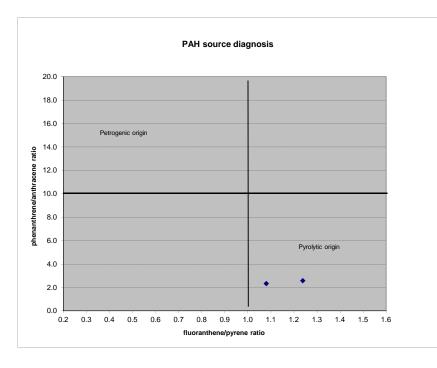
 Job no.
 R1742b

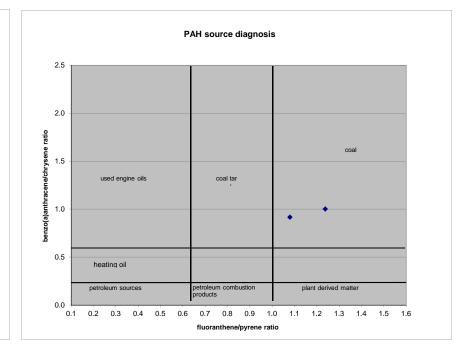
 Date:
 18.07.18

 Author:
 DW

 Laboratory:
 Exova Jones

 Lab. Reference:
 18-7823


PAH concentrations


174100110011414410110											
sample identity	Ph9-S4	Ph9-S11									
phenanthrene	2.24	0.79									
anthracene	0.87	0.34									
fluoranthene	6.08	3.11									
pyrene	4.91	2.88									
benz(a)anthracene	2.15	1.42									
chrysene	2.15	1.55									

PAH units	mg/kg
PAH units	mg/kg

PAH ratios

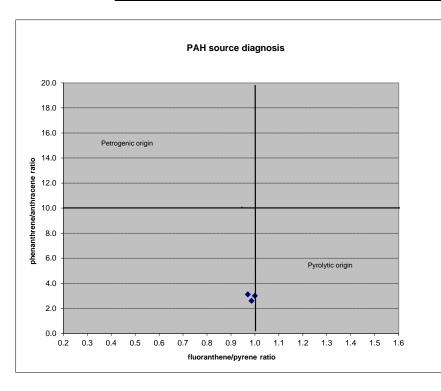
phe/ant	2.575	2.324										
flu/pyr	1.238	1.080										
baa/chr	1.000	0.916									•	

APPENDIX E

PAH Ratio Cross-Plot

Job name	Heyford: Dorchester Phase 9
Job no.	R1742
Date:	12.08.21
Author:	DW
Laboratory:	Chemtest
Lab. Reference:	21-11315

PAH concentrations


sample identity	PH9-SS26	PH9-SS28	PH9-SS37									
phenanthrene	2.0	1.4	3.6									
anthracene	0.77	0.45	1.2									
fluoranthene	6.9	6.5	11									
pyrene	7.0	6.7	11									
benz(a)anthracene	3.0	3.3	4.3									
chrysene	3.0	3.6	4.0									

PA	AH units	mg/kg

PAH ratios

phe/ant	
flu/pyr	
baa/chr	

2.597	3.111	3.000									
0.986	0.970	1.000									
1.000	0.917	1.075									

