The Brownfield Consultancy

Historical Aerial Photograph, 1999

LAND TO THE SOUTH OF SOUTH SIDE, STEEPLE ASTON, OXFORDSHIRE. OX25 4RX

SITE INVESTIGATION REPORT

Prepared for: RECTORY HOMES Report Reference: BC340 RE002 13th February 2018

CONTENTS

			Page
1	INT	RODUCTION	1
2	SITE	DESCRIPTION	1
3	PRE	VIOUS WORK	4
4	GEO	LOGY, HYDROLOGY AND HYDROGEOLOGY	5
•	4.1 4 2	Geology	5
	+.2 4.3	Hydrogeology	6
5	FIEL	DWORK	6
	5.1	Trial Pits	7
	5.2	Dynamic Windowless Boreholes	7
	5.3		8
6		ORATORY TESTING	8
	5.2	Environmental	8
7	GRC	OUND AND GROUNDWATER CONDITIONS	9
-	7.1	Strata Encountered	9
	7.2	Topsoil	9
	7.3 7 /	Made Ground Oplite Group Deposits	9
	7.5	Groundwater	10
	7.6	Contamination	10
8	HUN	MAN HEALTH QUANTITATIVE RISK ASSESSMENT	11
1	8.1	Current UK Screening Values	12
	8.2 2 2	C4SL SAUL	12
•	5.5 600		12
9	3011 9.1	Results	12
	9.2	Interpretation	13
	9.3	Controlled Waters	14
	9.4 D 5	Water Supply Pipework	14
10	9.J		14
10	10.1	Proposed Redevelopment	15 15
	10.2	Summary of Ground Conditions	15
	10.3	Foundations	15
	10.4 10.5	Ground Floor Slabs	16
	10.5	Chemical Considerations for Buried Concrete	17
11	GAS	PROTECTION REQUIREMENTS	17
	11.1	Ground Gas	17
12	CON	ICLUSIONS AND RECOMMENDATIONS	19
	121	Land Quality	10
	12.1		15

12.4	Soil Disposal and Reuse	20
12 5	Geotechnical	20
REFEREN	NCES	20

APPENDICES

Appendix A	Exploratory Hole Location Plans
------------	---------------------------------

- Appendix B Exploratory Hole Records
- Appendix C Chemical Laboratory Test Results
- Appendix D Geotechnical Laboratory Test Results
- Appendix E Gas Monitoring Records
- Appendix F Limitations

SITE INVESTIGATION REPORT

LAND TO THE SOUTH OF SOUTHSIDE, STEEPLE ASTON, OXFORDSHIRE. OX25 4RX

1 INTRODUCTION

The Brownfield Consultancy was instructed by Rectory Homes Ltd to carry out a Phase 2 Ground Investigation of a site in Steeple Aston, Oxfordshire (hereinafter referred to as 'the site').

The site currently comprises of a roughly rectangular field, recently cleared of all vegetation. It is proposed to construct 5No. residential houses with associated infrastructure and driveways. Access will be off South Side. A location plan and a proposed site layout is presented in Appendix A.

The purpose of the site investigation is to provide an assessment of the geotechnical engineering properties of the soils and the extent of any soil contamination at the site. The report is subject to limitations which are set out in Appendix F.

A previous Desk Top Study has been undertaken by The Brownfield Consultancy (Ref: BC340 RE001 26.07.2017) and the reader is referred to this report. The salient points of that report are presented in Section 3.

2 SITE DESCRIPTION

The site is located on the southwestern edge of the village of Steeple Aston, Oxfordshire. The site covers an area of approximately 0.83hectare and is roughly rectangular in shape. The entrance to the site is located in the northwest of the site, directly off South Side. At the time of the initial walkover undertaken on 20th July 2017, the site was overgrown with a healthy covering of a variety of small trees, plants, thistles and brambles. The far western area of the site is generally laid to grass with the ground surface showing signs of previous disturbance/reworking. The fenced boundary with an adjacent Car Repair shop is visible. There is a small area of concrete hardstanding (21m x 11m) with scattered building debris, traffic cones and traffic barriers to the immediate east of the site entrance. We understand from the site owners that there were some former sheds in this area used for storage of general agricultural supplies. There were 3No. stockpiles of imported soil in this location.

A soakaway investigation was also undertaken by the Brownfield Consultancy in mid-November 2017, by which time the site had been cleared of vegetation. The removal of the vegetation revealed the presence of some empty concrete sheds along the northwestern boundary, the base of a former static caravan and a sceptic tank housing. Photographs are presented below:-

Fridge freezer

Static Caravan Base

Static Caravan Base

Limited concrete slab near to caravan base

Underside of Concrete Slab

Sceptic Tank Housing

3 PREVIOUS WORK

The conclusions and recommendations made in the Desk Study report are set out below:-

- From the earliest historical maps, the site was part of a larger open field. Buildings appeared in the central northern area by 1900 which had extended westerly along the northern boundary. The owners of the site indicated that these buildings had been used as storage barns for agricultural goods and materials.
- The presence of on-site generated Made Ground including demolition fill as a result of the erection and subsequent demolition of the structures along the central northern boundary is considered a potential source of metal, hydrocarbon and asbestos contamination. The hydrocarbon components may also be a source of harmful vapours.

- Storage of agricultural materials and machinery is a potential source of metals, oils, solvents, asbestos, insecticides, e.g. organochlorines, organophosphates, pyrethroids, phenols and herbicides.
- The walkover did not identify any immediate pollution concerns.
- A Car Repair Yard is present immediately adjacent to the sites western boundary although it is unclear for how long this has been operating. This is a source of potential hydrocarbons, solvents and metals in close proximity to the western boundary.
- Reference to the on line BGS Mapping Index indicates that two different strata types outcrop below the site. The west of the site is underlain by the Chipping Norton Limestone and the East of the site is underlain by the Horseshay Sand Formation. Groundwater stored in both of these formations is considered vulnerable to pollution.
- The site is not located in an area considered at risk of flooding by the Environment Agency. The site is located in an area with 'Limited Potential' for groundwater flooding to occur.
- The Landmark report identifies no significant geological hazards.
- The latest BRE guidance on radon protective measures indicates that <u>no</u> radon protection measures are necessary for new build.

Should the residential proposals proceed then we would recommend that the following investigation works are undertaken:-

- One day of trial pitting to determine ground conditions. Samples of near surface soils (Made Ground) should be submitted to laboratory analysis for hydrocarbons, metals, solvents, pesticides, insecticides, asbestos and sulphates. A greater frequency of testing will be required along the northern central boundary in the vicinity of the former structures. The western boundary should also be targeted to determine whether or not pollutants may have migrated from the adjacent Car Repair Yard.
- One day of windowless sampling together with the installation of 4No. gas monitoring standpipes followed by a programme of 6No. gas monitoring visits at weekly intervals. If groundwater is encountered in the boreholes then samples should be retrieved and submitted to laboratory analysis for metals, hydrocarbons and solvents. At least one borehole installation should be located on the western boundary to determine impacts from the Car Repair Yard.
- It is recognised that access for the required plant to obtain any meaningful information from across the entire site is limited and that investigations should ideally be timed to coincide with tree/ vegetation clearance. This would allow for the necessary plant (JCB, mini-digger, drilling rig) to access the full site.

4 GEOLOGY, HYDROLOGY AND HYDROGEOLOGY

4.1 Geology

Reference to the on line BGS Mapping Index indicates that two different strata types outcrop below the site. The west of the site is underlain by the Chipping Norton Limestone described as.. 'Limestone, off-white to pale brown fine- to medium-grained ooidal and coated peloidal grainstone, with common fine burrows, medium- to coarse-grained shell debris and flakes of greenish grey mudstone and dark lignite and minor amounts of fine-grained sand'.

The East of the site is underlain by the Horseshay Sand Formation described as...

'Unbedded to weakly bedded and cross-bedded, pale grey and brown to off-white, mediumto fine-grained, quartzose sand, locally cemented into calcareous or weakly ferruginous sandstone with thin dark grey mudstone and siltstone beds in places, rootlets and lignitic debris common, shells and shell debris very rare'.

Superficial deposits are not denoted.

4.2 Hydrology

The nearest surface water feature is a small, spring fed stream located 185m northeast of the site. There is no water quality records for this watercourse.

The site is not located within an area considered at risk of flooding from rivers or the sea by the Environment Agency. The site is located in an area with 'Limited Potential' for groundwater flooding to occur.

There are no surface water abstractions within 1000m of the site.

4.3 Hydrogeology

The Groundwater Vulnerability map indicates that the Chipping Norton Limestone is designated a Principal Aquifer and the Horseshay Sandstone is designated a Secondary A Aquifer. Groundwater stored in both of these geological formations is considered vulnerable to pollution.

The site is not located within a groundwater source protection zone.

The nearest groundwater abstraction is located 735m northwest of the site at Brasenose Farm where groundwater is abstracted for general farming and domestic use.

5 FIELDWORK

The intrusive fieldwork was carried out on 13th and 14th December 2017 and comprised 15No. trial pits, 3No. dynamic windowless sampler boreholes and 6No. dynamic probes.

The site work was undertaken by The Brownfield Consultancy, with the ground investigation procedures and sample descriptions based on BS 5930 (2015) 'Code of Practice for Site Investigations' and BS 10175 "Investigation of potentially contaminated sites - code of practice". The locations of the exploratory holes are shown on the Drawing included in

Appendix A. The exploratory hole records are presented in Appendix B. The full details of the fieldwork undertaken are summarised in the following sections.

5.1 Trial Pits

The trial pits, designated TP4 to TP18, were excavated by a mechanical backhoe excavator and were backfilled with arisings upon completion. TP1, TP2 and TP3 were excavated in November 2017 as part of the soakaway investigation but are included in Appendix B. TP1 to TP14 were excavated to depths of 1.20m to 3.00m, many being terminated on reaching bedrock. TP15 and TP16 were excavated into the concrete slab to the immediate east of the gated entrance off Southside. TP17 and TP18 were excavated to investigate an elongated stockpile ('Stockpile 2') of imported soil to the immediate south of the concrete slab. A further 2No. pits were excavated into 2No. stockpiles denoted 'Stockpile 1' and 'Stockpile 3' to obtain samples of soil for contamination testing and to inspect the materials for asbestos.

An Exploratory Hole Location Plan of the whole site and one denoting the stockpile and concrete slab investigations are included in Appendix A.

5.2 Dynamic Windowless Boreholes

The dynamic windowless sampler boreholes, designated WS1 to WS3 were advanced to depths of 1.50m to 4.45m. WS1 and WS3 were terminated on reaching impenetrable bedrock.

The dynamic sampling technique uses a lightweight tracked rig to advance a borehole by 1m intervals using 1m long steel sampler tubes at diameters of 100mm reducing to 70mm. The soils are then recovered from each sampler tube as continuous core samples, which are then logged and sub-sampled on site.

In situ Standard Penetration Tests (SPTs) were undertaken in accordance with BS EN ISO 22476-3:2005+A1:2011 at 1.0m intervals in the sampler holes in order to provide strength parameters to assist in geotechnical design.

Standpipes were installed in all three boreholes to facilitate ground-borne gas and groundwater level monitoring.

5.3 Dynamic Probing

The dynamic probes, DP1 to DP6, were advanced to 1.60m to 7.00m depth, their purpose being to provide numerical data on ground strength. The super-heavy dynamic probe test (DPSH) used, comprises a 63.5kg weight falling through a constant drop of 760mm, driving a solid 51mm diameter steel cone of 90° angle into the deposits under test. The relative density of the deposit is determined by recording the number of blows per 100mm of penetration. The probe provides a continuous profile of the relative density of the soils. The energy and dynamics of the test are similar to that of the Standard Penetration Test (SPT) undertaken in the dynamic sampler boreholes.

The probe results are presented in Appendix B.

6 LABORATORY TESTING

6.1 Geotechnical

A programme of laboratory testing was scheduled to determine the geotechnical properties of selected soil samples obtained from the investigation. The details of the geotechnical testing are summarised below:-

Determinant	No
BRE SD1 Suite B	6
Atterberg limits including moisture content	7
Particle Size Distribution (sieve only)	1

 Table 1
 Summary of Geotechnical Laboratory Testing Suites

Tests were carried out in accordance with BS1377 (1990) "Methods of test for Soils for Civil Engineering purposes" and Building Research Establishment Special Digest 1 "Concrete in Aggressive Ground". The results of the geotechnical testing are presented in Appendix D.

6.2 Environmental

A programme of chemical laboratory testing was scheduled on 21No. soil samples taken from the Made Ground and Topsoil recovered from the boreholes. The samples were placed into suitable containers for the required chemical analysis. All samples were transported to 12 Laboratories who are UKAS and MCerts accredited. The following table summarises the contaminants scheduled:-

Summary of Soil Chemical Laboratory Testing Suites

Determinant	No
Metals and semi-metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium and zinc)	12
Speciated polycyclic aromatic hydrocarbons (PAH)	11
Asbestos screen	7
TPH Texas banded	1
TPH Total (C8-C40)	2
Pesticide/Herbicide Screen	1
WAC	1

The results of the laboratory chemical testing are interpreted in Section 9 and presented in full in Appendix C.

7 GROUND AND GROUNDWATER CONDITIONS

7.1 Strata Encountered

The exploratory holes revealed the site to be underlain by predominantly clay beds of the Oolite Group, with occasional granular beds, then bedrock. Other than the stockpile and concrete slab, very minor deposits of Made Ground were encountered.

7.2 Topsoil

Topsoil was present in most of the exploratory holes in thicknesses of 0.10m to 0.40m.

7.3 Made Ground

Made Ground was found below ground level only in TP3, TP15 and TP16. In TP3, timber fragments were present in the 0.2m thick topsoil. The Made Ground in TP15 and TP16 consisted of the hardstanding located on the northern boundary and consisted of 100mm thick concrete in both pits, over buried gravelly topsoil to 0.35m in TP15, and brick and concrete gravel and cobbles to 0.37m in TP16.

7.4 Oolite Group Deposits

The Oolite Group Deposits mainly comprised an upper horizon of clayey sandy limestone GRAVEL and COBBLES over stiff sandy, or very sandy CLAY. The gravel and cobble bed was overlain, locally, by a thin bed of clay. In those exploratory holes located on or near the footprints of the proposed houses, the lower clay bed was penetrated at depths of between 0.9m and 1.6m apart from in WS2 and WS3, located at the extreme western end of the site, where the granular layer was absent and clay was immediately beneath the topsoil. A rock bed was encountered beneath the clay at many locations at depths of 1.5m to 2.6m, but BC340 RE002 13.2.2018

generally between 2.0m and 2.6m. The rock bed was shown to be laterally discontinuous as it was not reached at some locations or was so thin that it was fully penetrated. In WS2, the clay was underlain at 3.5m by medium dense silty fine sand to the base of the borehole at 4.45m.

Atterberg Limit analyses undertaken on seven samples of the cohesive deposits of the Oolite Group Deposits yielded Liquid Limits of 44% to 60%, Plastic Limits of 17% to 21% and Plasticity Indices of 27% to 39% indicating them to be clays of intermediate or high plasticity (with respect to BS 5930, 1999) and medium volume change potential (with respect to NHBC Chapter 4.2).

7.5 Groundwater

Groundwater was not encountered in the exploratory holes during the fieldwork. On subsequent monitoring of the standpipe installations in the boreholes, all holes were dry with the exception of WS3 which contained a small amount of water in the initial 2No. monitoring visits but which subsequently were dry over the last 4No. monitoring visits.

7.6 Contamination

Evidence of contamination was not recorded in any of the trial pits with the exception of TP17 and TP18. TP17 and TP18 were excavated into a stockpile of soil ('Stockpile2') and fragments of suspected asbestos roof sheet were observed. (Photograph below)

The sceptic tank housing was empty and appeared free of residues and detritus.

Two other stockpiles located near to the concrete hardstanding contained largely inert material. Stockpile 1 comprised brown sandy GRAVEL and COBBLE with geotextile, lumps of soft clay and the occasional breeze block.

Stockpile 3 comprised of a visually clean TOPSOIL but with tin roof sheeting. (Photograph below)

8 HUMAN HEALTH QUANTITATIVE RISK ASSESSMENT

Qualitative assessment of risks may be sufficient in many cases to eliminate the possibility of significant pollutant linkages. However, quantitative risk assessment is formally required to determine whether there is a 'significant possibility of significant harm being caused'. Part IIA of the Environmental Protection Act 1990 recommends that 'authoritative and scientifically based guideline values for concentrations of the potential pollutants in or under the land' be used to quantify the risk posed by contamination.

Under the Planning Regime a quantitative risk assessment can be used to decide whether the site is suitable for the proposed use. In addition, the National Planning Policy Framework (March 2012) also indicates that after remediation as a minimum land should not be capable of being determined as contaminated land under Part IIA.

8.1 Current UK Screening Values

The UK technical guidance for assessing risks to human health is issued from various UK bodies including the Environment Agency (EA), DEFRA, Contaminated Land: Applications in Real Environment (CL:AIRE), Chartered Institute of Environmental Health (CIEH) and Land Quality Management (LQM) Ltd (part of the University of Nottingham).

New and updated screening values in the form of provisional Category Four Screening Levels (C4SL) (published in 2014) and Suitable for Use Levels (S4UL) (published 2015) have been produced by defra and CIEH / LQM respectively using modified versions of the EA's Contaminated Land Exposure Assessment (CLEA) software.

8.2 C4SL

Provisional C4SL have been derived by CL:AIRE following guidance and as a tool to assist in applying the Part IIA Category 1- 4 classifications to a site. The purpose of the C4SL is to provide a simple test for deciding that land is suitable for use and 'definitely not' contaminated land under Part IIA. They describe a level of risk that is above minimal but is still low. Six contaminants have been assigned provisional C4SL: arsenic; benzene; benzo[a]pyrene; cadmium; chromium VI and lead for the standard land uses (residential with and without plant uptake, allotments, commercial and public open space (parks and residential). The C4SL are also considered suitable to be used under the planning regime.

8.3 S4UL

The LQM / CIEH S4UL represent generic assessment criteria based on minimal or tolerable risk that are intended to be protective of human health. They represent values above which further assessment of the risks or remedial actions may be needed. S4UL have been derived for a comprehensive list of organic and inorganic determinants.

9 SOIL CHEMISTRY

9.1 Results

The results of chemical testing of 13No. samples of near surface soils are compared with the S4UL and C4SL for a residential end use with vegetable uptake in the following table:-

Determinant	Maximum Measured Concentration (mg/kg)	C4SL / S4UL Residential (mg/kg)	No. of tests carried out	No. of exceedances
Arsenic	19	37	12	0
Cadmium	<dl< td=""><td>11</td><td>12</td><td>0</td></dl<>	11	12	0
Chromium (total)	30	910	12	0
Mercury	<dl< td=""><td>1.2</td><td>12</td><td>0</td></dl<>	1.2	12	0
Lead	82	210	12	0
Nickel	26	180	12	0
Selenium	<dl< td=""><td>250</td><td>12</td><td>0</td></dl<>	250	12	0
Copper	52	2400	12	0
Zinc	150	3700	12	0
Asbestos	Present	presence	7	TP18 @ 0.40m
Naphthalene	<dl< td=""><td>2.3</td><td>11</td><td>0</td></dl<>	2.3	11	0
Acenaphthylene	<dl< td=""><td>170</td><td>11</td><td>0</td></dl<>	170	11	0
Acenaphthene	<dl< td=""><td>210</td><td>11</td><td>0</td></dl<>	210	11	0
Fluorene	<dl< td=""><td>170</td><td>11</td><td>0</td></dl<>	170	11	0
Phenanthrene	<dl< td=""><td>95</td><td>11</td><td>0</td></dl<>	95	11	0
Anthracene	<dl< td=""><td>2400</td><td>11</td><td>0</td></dl<>	2400	11	0
Fluoranthene	<dl< td=""><td>280</td><td>11</td><td>0</td></dl<>	280	11	0
Pyrene	<dl< td=""><td>620</td><td>11</td><td>0</td></dl<>	620	11	0
Benzo(a)anthracene	<dl< td=""><td>7.2</td><td>11</td><td>0</td></dl<>	7.2	11	0
Chrysene	<dl< td=""><td>15</td><td>11</td><td>0</td></dl<>	15	11	0
Benzo(b)fluoranthene	<dl< td=""><td>2.6</td><td>11</td><td>0</td></dl<>	2.6	11	0
Benzo(k)fluoranthene	<dl< td=""><td>77</td><td>11</td><td>0</td></dl<>	77	11	0
Benzo(a)pyrene	<dl< td=""><td>2.2</td><td>11</td><td>0</td></dl<>	2.2	11	0
Indeno(1,2,3-c,d)pyrene	<dl< td=""><td>27</td><td>11</td><td>0</td></dl<>	27	11	0
Dibenzo(a,h)anthracene	<dl< td=""><td>0.24</td><td>11</td><td>0</td></dl<>	0.24	11	0
Benzo(g,h,i)perylene	<dl< td=""><td>320</td><td>11</td><td>0</td></dl<>	320	11	0

9.2 Interpretation

Metals and Polycyclic Aromatic Hydrocarbons

Exceedances of the guideline values for metals and polycyclic aromatic hydrocarbons was not recorded.

Asbestos

7No. samples of soil were submitted to an asbestos screen and asbestos was only recorded in Stockpile 2. Visual evidence of asbestos roof sheet was recorded in TP17 and TP18 which was subsequently confirmed as *'Chrysotile - hard cement'* in TP17 at 0.10m and *'Chrysotile-Bitumen'* in TP18 at 0.40m. Loose asbestos fibres were not recorded in either sample. We estimate that the stockpile amounts to a volume of approximately 120m³.

Pestcides

1No. sample of shallow Topsoil was submitted to a pesticide screen and concentrations were not recorded above the laboratory limit of detection.

9.3 Controlled Waters

Groundwater was not encountered in the Oolite Formation. Based upon the recorded concentrations of contaminants in shallow soils we do not consider that controlled waters are at risk of impact.

9.4 Water Supply Pipework

Plastic water supply pipes are permeable to hydrocarbons such as petrol, diesel, heating fuel and white spirits. The site has not had a history of contaminative use. Samples of soil from typical pipework installation depths from TP5 (1.00m), TP6 (1.20m), TP10 (0.85m) and WS2 (1.00m) were submitted to analysis for common hydrocarbon determinants and the laboratory limit of detection for any of the compounds was not exceeded. Thus, protective pipework is not a requirement.

9.5 Waste Classification and Reuse

Existing topsoil at the site should be stockpiled and set aside for re-use. Foundation arisings will consist of virgin soil which will carry and 'inert' classification. A combined sample of virgin Oolite Group from WS1 and TP8 (1.00-1.45m) was submitted to WAC testing which demonstrates an inert classification. The results are included in Appendix C.

Asbestos was recorded in 'Stockpile 2' the location of which is denoted on the hand drawn plan in Appendix A. Visual evidence of asbestos roof sheet was recorded in TP17 and TP18 which was subsequently confirmed as '*Chrysotile - hard cement*' in TP17 at 0.10m and '*Chrysotile-Bitumen*' in TP18 at 0.40m. Loose asbestos fibres were not recorded in either sample. We estimate that the stockpile amounts to a volume of approximately 120m³. The concentrations of metals and PAH would render this stockpile suitable for re-use provided that the asbestos was removed by hand picking. Following removal of the asbestos validation testing would be required to demonstrate that the stockpile is free from asbestos.

Alternatively, the stockpile can be removed to landfill and based upon our visual assessment we consider that a 'non-hazardous' waste classification would be applicable as the content of asbestos within the matrix will be <0.1wt%.

We would recommend that the classification for the purposes of muck away should be confirmed with the closest relevant landfill site where pricing should be sought based upon the individual characteristics of the landfill site and haulier. Any excavated material and excess spoil should always be classified prior to removal from site as required by 'Duty of Care' (Environmental Protection Act 1990) legislation. This means that material has to be given a proper description and waste classification prior to removal consequently; details of the materials required for disposal, together with certificates of chemical analysis should be sent to a suitably licensed waste disposal contractor for classification and to confirm compliance with their license conditions.

10 GEOTECHNICAL ENGINEERING ASSESSMENT

10.1 Proposed Redevelopment

It is understood that it is proposed to construct six houses on the site, some with separate garages, with associated infrastructure. The layout indicated on the Exploratory Hole Location Plan is assumed to be valid.

10.2 Summary of Ground Conditions

The exploratory holes indicated the subsoils underlying the site to be Oolite Group Deposits mainly comprising clayey sandy limestone gravel and cobbles over stiff sandy clays. The gravel was overlain by a relatively thin bed of clay at some locations. In the areas where the houses will be located, the lower clay layer was encountered at depths of 0.90m to 1.60m. A rock bed was encountered at many locations, mainly at depths between 2.00m and 2.60m.

Groundwater was not encountered.

10.3 Foundations

Spread foundations bearing in the Oolite Group Deposits should be suitable for supporting the loads likely to be generated by the proposed low-rise residences. On the evidence of many of the exploratory holes and most of the dynamic probes, the soils above 1.50m depth are of relatively low strength requiring a limited allocated allowable bearing pressure. It may be more economical to found in the significantly stronger soils consistently found at 1.50m depth or below.

For foundations *up to* 1.0m wide, net allowable bearing pressures of 100kN/m² and 130kN/m² are recommended for the design of foundations bearing in either the granular or clay Oolite Group Deposits at depths of 0.90m and 1.50m respectively. These figures incorporate factors of safety of at least 3.0 against shear failure of the clays and should keep settlements to less than 10mm. However, it is strongly recommended that the foundations

are reinforced to counter differential rates of settlement through founding in variable soil types. It is recognised that this may not always be the case, but the variable depth of the clay horizon beneath the granular may still lead to differential movement where the upper surface of the clay is close to the base of the foundation.

It should be noted that none of the above takes into account the possibility that the new buildings are within the zone of influence of trees that previously stood on the site. Vegetation was recently cleared from the interior of the site but the pre-existence or otherwise is not known of trees or other deep-rooting vegetation that may have significantly depleted the clay moisture levels such that heave is now occurring as the soil rehydrates to its natural level. Such a process can take several years to complete. During the investigation roots and hair roots of a live appearance were recorded in TP4 to 2.00m, TP5 to 1.00m and TP6 to 2.00m.

If an assessment is made of the possible effects of trees and the requirement or otherwise for deeper footings, the clay soils should be assumed to be of *medium* volume-change potential with regard to the NHBC Standards classification. Although foundations may potentially be bearing in granular soils at many locations, should an increase in foundation depth be required to account for the pre-existence of trees, the depth of the underlying clay is unlikely to be sufficient to meet the criteria of NHBC Clause 4.2.9. This clause requires the shrinkable soil to be at least 0.75 x 'required depth' beneath the foundation, where the 'required depth' is that calculated using the methods of the Standards, assuming shrinkable soil to be present throughout. Furthermore, the clause also requires that consistent soil conditions exist across the plot, which is also unlikely.

10.4 Ground Floor Slabs

The near-surface soils are of variable composition but locally comprised soft clay. There may also be localised heave if, and where trees were removed (see above). It is recommended, therefore, that suspended ground floors are utilised. If an adjustment to the foundation depth has been necessary to account for the possible effect of trees, then a subjacent void should be provided of a dimension in accordance with the method of construction and types of materials used, as detailed in the NHBC guidelines (or other).

10.5 Road Pavement Design

As previously discussed, the near-surface soils are variable, seemingly randomly so, rendering it necessary adopt a lower-bound value of an overall California Bearing Ratio (CBR) for pavement design purposes. A CBR value of 2% is recommended, based on the localised presence of soft clays. This will be a conservative figure for many areas but delineating those areas immediately underlain by clay and those by granular soils is not practical. The soils are not considered to be frost-susceptible. The formation should be proof rolled and any significant soft spots removed and replaced with granular backfill.

10.6 Chemical Considerations for Buried Concrete

Chemical analysis of samples of the subsoils yielded water-soluble sulphate concentrations (SO4 in 2:1 soil aqueous extract) of 6mg/l to 143mg/l with pH values of 8.1 to 8.7. Calculation of the oxidisable sulphates using the methods of BRE SD1 (2005) "Concrete in aggressive ground", indicates an insignificant presence of pyrite in the soils. These factors, along with 'static' groundwater conditions, place the site in Design Sulphate Class DS-1 and ACEC Class AC-1s. Therefore, no special precautions will be necessary to protect buried concrete from potential chemical attack.

11 GAS PROTECTION REQUIREMENTS

11.1 Ground Gas

The current guidance on protecting buildings from ground gas hazards is contained in the document CIRIA C665 with updated risk assessment guidance contained within BS8485 (2015). It is intended that the proposed new build will be two storey apartments.

The level of gas protection is determined by comparing the following parameters to cut-off values prescribed within BS8485 (2015):

- "Typical Maximum Concentrations" for initial screening purposes.
- Risk based "Gas Screening Values" (GSV) for consideration where the typical maximum concentrations are exceeded.

The GSV is calculated using the following equation and the resulting GSV are compared to the Site Characteristic GSV given in Table 2 of BS8485 (2015).

Maximum gas concentration (%) x worst case borehole flow rate (I/h)

6No. gas monitoring visits were undertaken at the site from boreholes WS1, WS2 and WS3.

Methane was not recorded during any of the visits. Slightly elevated concentrations of CO_2 were recorded. The maximum CO_2 concentrations, the maximum flow rate and the screening values for the boreholes during the fieldwork period are summarised in the following table:-

Location	Maximum CO ₂ Concentration (% v/v)	Maximum Flow Rate (l/hr)	Gas Screening Value (I/hr)		
WS1	3.3	0.2	0.0066		
WS2	2.9	0.4	0.0116		
WS3	1.9	0.1	0.0019		

Table 9 Calculated GSV

The ground investigation has identified a maximum carbon dioxide concentration of 3.3% vol. (in WS1) and a worst case flow rate of 0.4 l/hr, giving a maximum GSV of 0.0132 l/h. These values are then compared to Table 2 within BS8485 (2015). Referring to Table 2 of BS8485 (2015), the site can be categorised as a Characteristic Situation 1 (CS1). Gas protection measures are not required. The results of gas monitoring are presented in Appendix E.

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 Land Quality

The Brownfield Consultancy have determined through site investigation, chemical testing and detailed quantitative risk assessment that a risk to future residential end users is not present from recorded concentrations of contaminants at the site. Consequently, remediation is not required. The site is considered suitable for the proposed end use.

A stockpile of soil located in the northern area of the site (denoted Stockpile 2 on the drawing in Appendix A) contains fragments of asbestos. Visual evidence of asbestos roof sheet was recorded in TP17 and TP18 which was subsequently confirmed as *'Chrysotile - hard cement'* in TP17 at 0.10m and *'Chrysotile-Bitumen'* in TP18 at 0.40m. Loose asbestos fibres were not recorded in either sample. We estimate that the stockpile amounts to a volume of approximately 120m³.

The concentrations of metals and PAH would render this stockpile suitable for re-use provided that the asbestos and any oversize objects were removed by hand picking. Following removal of the asbestos validation testing would be required to demonstrate that the stockpile is free from asbestos. This exercise would be subject to regulatory approval.

Alternatively, the stockpile can be removed to landfill and based upon our visual assessment we consider that a 'non-hazardous' waste classification would be applicable as the content of asbestos within the matrix will be <0.1wt%.

Stockpile 1 and 2 were free from asbestos and again these materials can be reused subject to removing oversized objects.

There is a sceptic tank housing which will require careful removal. The presence of contamination below the sceptic tank cannot be ruled out.

It is possible that additional hotspots of contamination may be encountered during groundworks including additional incidences of asbestos contamination. The principal contractor should contact The Brownfield Consultancy who will attend site and advise on the best course of action in consultation with the Local Planning Authority.

12.2 Gas Protection Measures

The results of 6No. gas monitoring visits has determined that gas protection measures are not required for the development.

Radon gas protection measures are also not required.

12.3 Buried Services

The ground investigation and results of laboratory testing have confirmed that the site is free from contamination at pipework installation depths. Hence there is no requirement for protective pipework. The reader is referred to Section 9.4.

12.4 Soil Disposal and Reuse

The reader is referred to Section 9.4.

12.5 Geotechnical

The reader is referred to Section 10 where the geotechnical conclusions are presented in full.

Prepared and approved by

vaddo

JIM TWADDLE BSc (Hons) CGeol FGS Director

REFERENCES

ASTM : 1992 : Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils. Designation D1586-84 (reapproved 1992). American Society for Testing and Materials, West Conshohocken, USA.

BRE : 2005 : Special Digest 1 : Concrete in Aggressive Ground. Building Research Establishment.

BS 1377 : 1990 : Methods of Test for soils for civil engineering purposes. British Standards Institution, London.

BS 5930 : 1999 : Code of practice for site investigations. British Standards Institution, London.

BS 8485 : 2007 : Code of practice for the characterization and remediation from ground gas in affected developments. British Standards Institution, London.

BS 10175 : 2001 : Investigation of potentially contaminated sites - code of practice. British Standards Institution, London.

Burland J B and M C Burbidge : 1985 : Settlement of foundations on sand and gravel. Proc. ICE, Part 1, Vol 78.

CL:AIRE and Chartered Institute of Environmental Health (CIEH). 2008. Guidance on Comparing Soil Contamination Data with a Critical Concentration. CL:AIRE / CIEH. London.

CL:AIRE. 2013. SP1010 – Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination. CL:AIRE. London.

Clayton C R I : 1990 : SPT energy transmission : theory, measurement and significance. Ground Engineering, December.

Chengini A and N A Trenter : 1995 : The shear strength and deformation behaviour of a glacial till. Proceedings of International Conference on Advances in site investigation practice. ICE, London.

Clayton C R I : 1995 : The Standard Penetration Test (SPT) : Methods and use. CIRIA Report 143. Construction Industry Research Information Association, London.

Croney D and J C Jacobs : 1967 : The frost susceptibility of soils and road materials. RRL Report LR90. Transport Research Laboratory (formerly Road Research Laboratory), Crowthorne

CIRIA C665 : 2007 Assessing Risks Posed by Hazardous Ground Gases to Buildings. CIRIA, London

DEFRA and EA (2002). S4UL 10. Soil Guideline Values for Lead Contamination. Environment Agency, Bristol.

DEFRA and EA (2004). Model Procedures for the Management of Land Contamination. CLR11. Environment Agency. Bristol.

DEFRA. 2014. SP1010 - Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document. DEFRA. London.

de Mello V F B : 1971 : The Standard penetration Test. State of the Art Report. 4th Pan American Conference on Soil Mechanics and Foundation Engineering. Puerto Rico. Vol 1.

Drinking Water Inspectorate : 2010 : What are the Drinking Water Standards?

Driscoll R : (1983) The influence of vegetation on swelling and shrinking of clay soils in Britain. Geotechnique 23 (2): 93-105

Environment Agency. 2005. The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils. P5-080/TR3.

Environment Agency. 2006. Remedial Targets Methodology. Hydrogeological Risk Assessment for Land Contamination.

Environment Agency. 2008. Compilation of Date for Priority Organic Pollutants for Derivation of Soil Guideline Values. Science Report SC050021/SR7.

Environment Agency. 2009. Human Health Toxicological Assessment of Contaminants in Soil. Science Report SC050021/SR2. Bristol.

Environment Agency. 2009. Updated technical background to the CLEA model. Science Report SC050021/SR3. Bristol.

Environment Agency. 2009. CLEA Software (Version 1.06) - Science Report SC050021/SR4. Bristol.

Environment Agency. 2010. Guiding Principles for Land Contamination. GPLC1. Bristol.

Environment Agency. 2010. Guiding Principles for Land Contamination - FAQS, technical information, detailed advice and references. GPLC2. Bristol.

Environment Agency. 2010. Guiding Principles for Land Contamination – Reporting checklists. GPLC3. Bristol.

Environment Agency : 2013. Chemical Standards Database

Eurocode 7 : 1997 : Geotechnical Design - Part 3, Design assisted by field testing Prestandard ENV 1997-3. British Standards Institution, London.

Gibbs H J and W G Holtz : 1957 : Research on determining the density of sands by spoon penetration testing. Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering, London.

HD25/94 : 1994 : Design Manual for Roads and Bridges Volume 7. The Department of Transport.

IAN 73/06 : 2009 : design Guidance for Road Pavement Foundations (Draft HD25).

Land Quality Management & Chartered Institute of Environmental Health (2015) The LQM/CIEH S4UL for Human Health Risk Assessment - LQM CIEH. Land Quality Press, Nottingham.

Nixon I K : 1982 : Standard penetration test. State of the art report. Proceedings of the Second European Symposium on Penetration Testing, Amsterdam.

Peck R B, W E Hanson and T H Thornburn : 1953 : Foundation Engineering, 1st Edition. Wiley, New York.

Peck R B, W E Hanson and T H Thornburn : 1974 : Foundation Engineering, 2nd Edition. Wiley, New York.

Rodin S, B O Corbett, D E Sherwood and S Thorburn : 1974 : Penetration testing in the UK, State of the art report. Proceedings of Symposium on Engineering Behaviour of Glacial Materials, Birmingham.

Skempton A W : 1986 : Standard Penetration Test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Geotechnique 36, No 3.

Sowers G F: 1979: Introductory Soil Mechanics and Foundations. Macmillan.

Stroud M A : 1974 : The standard penetration test in insensitive clays and soft rocks. Proceedings of European Symposium on Penetration Testing, Stockholm.

Stroud M A and F G Butler : 1975 : The standard penetration test and the engineering properties of glacial materials. Proceedings of Symposium on Engineering Behaviour of Glacial Materials, Birmingham.

Stroud M A : 1988 : The standard penetration test - its application and interpretation on Penetration Testing in the UK, Birmingham. Thomas Telford, London.

Terzaghi K and R B Peck : 1948 : Soil Mechanics in Engineering Practice, 1st Edition. John Wiley, London.

Terzaghi K and R B Peck : 1967 : Soil Mechanics in Engineering Practice, 2nd Edition. John Wiley, London.

Tokimatsu K : 1988 : Penetration testing for dynamic problems. Proceedings of First International Symposium on Penetration Testing.

TPH Criteria Working Group : 1997: . Total Petroleum Hydrocarbon Group Series. Volume 3. Selection of Representative TPH Fractions Based on Fate and Transport Considerations.

APPENDIX A

Exploratory Hole Location Plan

STEEPLE ASTON – EXPLORATORY HOLE LOCATION PLAN

APPENDIX B

Exploratory Hole Logs

hone: 0785	52881086		INAL				
Project						T	RIAL PIT No
Sou	thside, Ste	eeple Aston					TP1
lob No	2.40	Date	Ground Level (m)	Co-Ordina	tes ()		
BC	340	15-11-17				CL	.t
Contractor	unfield C	oncultanov I td				Snee	t of 1
БІО	willield C						1 01 1
			STRATA			SAMPLI	ES & TESTS
Douth	No		DESCRI	DTION		epth No	Remarks/Test
Depth 0.00-0.40	No $\frac{\sqrt{h_{1}}}{\sqrt{1}}$	Grass over TOPSOIL. (TO	DESCRI DPSOIL)	PHON			
	<u>NG</u> 12 NI						
).40-2.20		Brown slightly clayey san occasionally tabular limes	dy GRAVEL & COBBI tone. Occasional boulde	E of subangular and r. (OOLITE GROU	d subrounded JP)		
		1.00 Becoming very sandy	y below 1.00m.				
2.20-2.40		Firm brown sandy CLAY	with abundant shell frag	ments. (OOLITE G	ROUP)		
horing/S tability:	upport: Sides stal	ble.					LENERAL REMARKS
		>		N ↓		Ground encount with ari	water not ered. Backfilled sings.
D	A	B		Ť			-
	С	¥					
All dimens Sca	sions in metr le 1:25	res Client Rectory	Homes Ltd M P	lethod/ lant Used	JCB 3CX	Logged	By JT

Project					тр	IAL DIT No.
Southside St	aanla Aston					AAL PIT NO
Job No	Date	Ground Level (m)	Co-Ordinates ()		-	TP2
BC340	15-11-17					
Contractor					Sheet	
Brownfield C	onsultancy Ltd					1 of 1
		STRATA		SAI	MPLE	S & TESTS
				Depth	No	Remarks/Tests
Depth 0.00-0.20 No $\underbrace{\times^{1/2}}_{1 \times 1 \times 1}$	Grass over TOPSOIL. (TO	DESCRIPTI DPSOIL)	ON			
0.20-1.00	Buff brown slightly clayey coarse limestone. (OOLIT	<pre>v very sandy GRAVEL of st E GROUP)</pre>	bangular and subrounded fine to)		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
1.00-1.90	Firm brown sandy CLAY	with shell fragments. Shell	fragments abundant in places.			
	(OOLITE GROUP)	-				
1.90	No further progress due to	encountering bedrock.				
Shoring/Support: Stability: Sides sta	ble.				G	ENERAL EMARKS
►	>		N 4 +	C e w	Froundw ncounter with arisi	rater not red. Backfilled ngs.
D	B		A			
	T	1				

Project	5200	1000					TF	RIAL PIT No
Sou Jah Na	ıthsi	de, St	eeple Aston	Crown d Lowel (m)	Co Ordinatas ()			TP3
JOD NO	7340		15-11-17	Ground Level (m)	Co-Ordinates ()			
Contractor	-940		15-11-17				Sheet	t
Bro	ownf	ield C	Consultancy Ltd					1 of 1
				STRATA		SAN	MPLE	S & TESTS
	1					Depth	No	Remarks/Tests
Depth 0.00-0.20	No		Black humic TOPSOIL w	DESCRIPTI ith timber. (MADE GROUN	ON ND)			
0.20-0.90			Soft brown sandy CLAY.	Rare gravel of limestone. (C	OOLITE GROUP)			
0.90-1.50		0 4° 0 0 0 0	Brown slightly clayey san occasionally tabular limes	dy GRAVEL & COBBLE o tone. (OOLITE GROUP)	f subangular and subrounded			
1.50-3.00			Firm brown sandy CLAY	with abundant shell fragme	nts. (OOLITE GROUP)			
Shoring/S Stability:	Supp Sid	port: les sta	ble. B		N 4 1 8	Gerw	G R roundv counter ith aris	ENERAL EMARKS vater not rred. Backfilled ings.
All dimen	sions ale 1:	in met 25	res Client Rectory	Homes Ltd Meth Plant	od/ Used JCB 3CX		ogged l	By JT

Project TRIAL	
	∠ PIT No
Southside, Steeple Aston	'P4
Job No Date Ground Level (m) Co-Ordinates ()	
BC340 13-12-17	
Dressential Consultances Ltd	of 1
Brownneid Consultancy Ltd	
STRATA SAMPLES &	TESTS
Depth No Re	marks/Tests
Depth No DESCRIPTION $0.00-0.30$ Grass over TOPSOIL. Roots and rootlets. (TOPSOIL)	
0.30-1.60 22 Dark brown becoming light brown at 0.50m slightly clayey very sandy GRAVEL & 0.20	
$\begin{array}{c} 0.504100 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array} \end{array} \begin{array}{c} 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array} \end{array} \begin{array}{c} 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline 0 \hline$	
<u>Ba</u>	
1.60-2.50 Firm and stiff sandy very shelly CLAY. Becoming a very weak shelly mudstone below	
2.20m. Fine hair roots of a live appearence to 2.00m. 1.70 D	
2.50 No further progress due to encountering bedrock. Bedrock is a grey calcareous siltstone.	
Shoring/Support:	ERAL
Stability: Sides stable.	ARKS
N Backfilled wit	th arisings.
All dimensions in metres Scale 1:25 Chent Rectory Homes Ltd Method/ Plant Used JCB 3CX Logged By	Т

Project	1.1.1						TR	IAL PIT No
Sou		TP5						
	340	12 12 17	Glound Level (III		nates ()			
Contractor	.340	13-12-17					Sheet	
Bro		1 of 1						
	C 4 1							
			SIKAIA			5AN Depth		Bemarks/Test
Depth	No		DESCI	RIPTION		Depui		Remarks/ 103
).00-0.40	<u>x¹/z</u> 1/2 <u>x¹/</u>	Grass over TOPSOIL. (TOPSOIL)					
0.40-1.40		Brown slightly clayey v frequently tabular limes	ery sandy GRAVEL & C tone. (OOLITE GROUP	COBBLE of subang)	gular and angular			
		1.00 Live rootlets to 1.0	0m.			1.00	ES	
40-2.20		Stiff brown very sandy	shelly CLAY. (OOLITE	GROUP)				
2.20-2.30		Hard LIMESTONE. Re	covered as tabular COBI	BLE & BOULDER	of tabular blue			
2.50		No further progress due	to encountering hard be	lrock.				
Shoring/Stability:	Support: Sides st	able.					G	ENERAL EMARKS
D	A	B		N 4 1		B	ackfille	d with arisings.
All dimens	sions in me de 1:25	etres Client Rector	y Homes Ltd	Method/ Plant Used	JCB 3CX		ogged B	^y JT

Project	uthaida S	taanla Astan				TR	IAL PIT No		
Job No	iuisiae, s		-	TP6					
BC	2340	13-12-17							
Contractor		10 12 11				Sheet			
Bro	wnfield (1 of 1						
			STRATA		SAI	MPLE	S & TESTS		
					Depth	No	Remarks/Tes		
Depth 0.00-0.20	No $\frac{\sqrt{l_{\chi}}}{l_{\chi}}$	Grass over TOPSOIL. (TO							
0.20-1.60		Brown slightly clayey ver frequently tabular limesto	y sandy GRAVEL & COB ne. (OOLITE GROUP)	BLE of subangular and angular					
					1.20	ES			
1.60-2.00		Very stiff brown sandy ve GROUP)	ry shelly CLAY. Fine hair	roots of a live appearance. (OOLI	TE				
2.00-2.60		Very stiff light brown san Grading into a very weak	dy locally very sandy shell shelly mudstone. (OOLITE	y CLAY with mudstone lithorelic: E GROUP)	s. 2.00	D			
2.60		No further progress due to	encountering bedrock.						
Shoring/Support: Stability: Sides stable.							GENERAL REMARKS		
D	A C	B L				acktille	d with arisings.		
All dimensions in metres Client Rectory Homes Ltd Method/ Scale 1:25 Client Rectory Homes Ltd Plant Used ICB 2CV							Logged By IT		
Phone: 078	52881086			1 200			2		
-------------------------	----------------------	---	--	------------------------------	-------	-----------	------------------		
Project						TR	IAL PIT No		
Sou	thside, S	Steeple Aston				_	TP7		
Job No	10.40	Date 12, 12, 17	Ground Level (m)	Co-Ordinates ()					
BC	2340	13-12-17				Classe			
Contractor	C - 1 -1	C 14 1 4-1				Sneet	1 .6 1		
Bro	whiteld	Consultancy Ltd					1 OF 1		
			STRATA		SA	MPLE	S & TESTS		
					Depth	No	Remarks/Tests		
Depth $0.00-0.30$	No	Grass over soft brown sand	DESCRIPTI w gravelly CLAY with root	ON tlets (TOPSOIL)					
0.00 0.20	1 <u>/ \</u> 1	Gruss over solt blown suite			0.10	ES			
	<u></u>								
0.30-1.50	 	Brown slightly clayey very frequently tabular limeston	sandy GRAVEL & COBB e. (OOLITE GROUP)	LE of subangular and angular					
	° de	1 5							
	00								
	00 PA								
	РД								
1.50-2.00		Stiff brown sandy shelly lo	cally very shelly CLAY. (C	OOLITE GROUP)	1.60	р			
					1.00				
2 00-2 60		Very stiff light brown sand	y locally very sandy shelly	CLAY with mudstone lithoreli	rs.				
2.00-2.00		Grading into a very weak s	helly mudstone. (OOLITE	GROUP)					
					2.30	D			
2.60		No further progress due to	encountering bedrock.						
Shoring/S Stability:	Support: Sides st	able.				G RI	ENERAL EMARKS		
~	51005 31			N 7		Rackfille	d with arieinge		
-		>		N		JUCKIIIIC	a mui anomgo.		
1 -	Α	- ,		Ŧ					
D		B		A					
	C								
All dimen	sions in me	etres Client Rectory H	Homes Ltd Meth	od/		Logged B	By T		
Sca	ale 1:25		Plant	Used JCB 3CX			JT		

Phone: 078	52881086		INALI				
Project						TR	IAL PIT No
Soi	uthside, Ste	eeple Aston					TDS
Job No		Date	Ground Level (m)	Co-Ordinates ()			IFO
BC	2340	13-12-17					
Contractor						Sheet	
Bro	wnfield C	onsultancy Ltd					1 of 1
			STRATA		SAN	MPLE	S & TESTS
					Depth	No	Remarks/Tests
Depth	No	-	DESCRIPTI	ON			
0.00-0.20		Grass over TOPSOIL. Roo	ots and rootlets. (TOPSOIL))	0.10	FS	
0.20-0.70		Brown clayey sandy GRA	VEL & COBBLE of subang	gular and angular frequently tabular			
		limestone. (OOLITE GRO	UUP)				
	- 0 - 0				0.50	FS	
					0.50		
0.70-1.30		Firm brown and buff brow	n sandy gravelly shelly CL	AY. Gravel is subangular fine to	0.75	D	
		medium limestone. (OOLI	TE GROUP)				
1 20 2 40		P' 1		AV Coursel's solution of the first	1.20		
1.30-2.40		coarse limestone. (OOLIT	E GROUP)	A I. Gravel is subangular line to	1.50		
					1.60	HV	90kPa
	<u> </u>						
					2.30	D	
2.40	1	No further progress due to	encountering bedrock.				
Charina/	l l						
Stability:	Sides stal	ole.				RI	EMERAL
2				N	B	ackfille	d with arisings.
•		►					
	Α			Ŧ			
D				A			
	C						
All dimen	sions in metr	res Client Rectory	Homes Ltd Meth	nod/		ogged E	3y
Sc	ale 1:25	5	Plant	Used JCB 3CX			JT

10116.070	5288108	6		11 20 0		1	
Project		~ 1 .				TR	IAL PIT No
Sou L L N	ithside,	Steeple Aston					TP9
Job No	7240	Date 12 12 17	Ground Level (m)	Co-Ordinates ()			
Contractor	.340	13-12-17				Sheet	
Bro	wnfield	d Consultancy I td				Sheet	1 of 1
	whitek				<u> </u>		
			SIRAIA		5AI Depth	No	S & IESIS Remarks/Test
Depth 0.00-0.20	No No	Grass over TOPSOIL. Ro	DESCRIPTI ots and rootlets. (TOPSOIL)	ON)			Tentarks Test
0.20-1.00		Brown clayey sandy GRA limestone. (OOLITE GRO	VEL & COBBLE of suban DUP)	gular and angular frequently tabu	lar		
1.00-1.20		Firm brown and buff brow medium limestone. (OOL	vn sandy gravelly shelly CL. ITE GROUP)	AY. Gravel is subangular fine to			
1.20	· ·	Trial Pit terminated.					
Shoring/S Stability:	Support Sides	: stable.				G	ENERAL EMARKS
k		►		N ∳	В	ackfille	d with arisings.
D	A	В		Ť			
	С		TT T.1				
All dimen	sions in r ale 1:25	netres Client Rectory	Homes Ltd Meth Plant	t Used JCB 3CX		ogged E	,, JT

Phone: 078	5288108	86		INIA		J				
Project								TR	IAL PIT No	
	uthside,	Steepl	e Aston			1 • • • •		TP10		
lob No	72.40		Date 12, 12, 17	Ground Level (n	n) Co-Or	dinates ()				
BC	2340		13-12-17							
Contractor	C" 1	10	1. T.I					Sneet	1 6 1	
Bro	ownfield	a Cons	ultancy Ltd						1 of 1	
				STRATA			SA	MPLES	S & TESTS	
D .1	N			DEGG	DIDTION		Depth	n No	Remarks/Tes	
Depth 0.00-0.20		Gras	s over TOPSOIL. Roo	DESC ts and rootlets. (TOP	RIPTION SOIL)		0.10	ES		
0.20-1.40			n clayey sandy GRA' stone. (OOLITE GRO	VEL & COBBLE of UP)	subangular and an	gular frequently tabular	0.85	ES		
1.40-2.40		Soft	becoming firm at 2.10	m very sandy shelly	CLAY. (OOLITE	GROUP)	1.60	HV	35kPa	
							2.00	HV	45kPa	
2.40-2.50 2.50		Very No fu	soft orange brown ve urther progress due to	ry sandy slightly shel encountering bedroc	lly SILT/CLAY. (k.	OOLITE GROUP)	- 2.45	D		
Shoring/Stability:	Support Sides	: stable.						GI	ENERAL EMARKS	
D	A		B		N + 1			Backfilled	d with arisings.	
All dimen	sions in r	netres	Client Rectory H	Homes Ltd	Method/ Plant Used	ICD 2CV		Logged B	by IT	
Sc	ale 1:25				Plant Used	JCB 3CX			JI	

Project				TDIAL DIT No.				
Southside Steenle Aston				IRIAL PII NO				
Job No Date	Ground Level ((m) Co-Ordinates ()		- TP11				
BC340 13-	12-17							
Contractor				Sheet				
Brownfield Consultancy I	Ltd			1 of 1				
	STRATA		SAN	APLES & TESTS				
			Depth	No Remarks/Test				
Depth 0.00-0.30 No $(\frac{\sqrt{L_2}}{\sqrt{L_2}})$ Grass over TO $(\frac{\sqrt{L_2}}{\sqrt{L_2}})$ Grass over TO $(\frac{\sqrt{L_2}}{\sqrt{L_2}})$ Soft brown slip	DESC PSOIL. Roots and rootlets. (TO	CRIPTION PSOIL) Y. Fine hair roots (OOL ITE GROUP)						
$0.50-0.90 \qquad \underbrace{\bigcirc \overline{\partial} \ \overline{\partial} $	Buff brown clayey locally very clayey sandy GRAVEL of subangular fine to coarse limestone. (OOLITE GROUP)							
0.90-2.40 Stiff buff brown 1.80 - 2.40 Ver	n very sandy shelly locally very y hard digging. Becoming pale	grey.	1.60	D				
Shoring/Support: Stability: Sides stable.		N ∳	B	GENERAL REMARKS ackfilled with arisings.				
A D C		† ≬						
All dimensions in metres Scale 1:25	Rectory Homes Ltd	Method/ Plant Used JCB 3CX		ogged By JT				

Phone: 0785 Project	52881086	3		II LOO			TP	
Sou	thside S	Steenle Aston						IAL FIT NO
Job No		Date	Ground Level (m)	Co-Ordin	ates ()		-	TP12
BC	340	13-12-17						
Contractor							Sheet	
Bro	wnfield	Consultancy Ltd						1 of 1
			STRATA			SAI	MPLE	S & TESTS
						Depth	No	Remarks/Test
Depth 0.00-0.20	No $\left \frac{\frac{\sqrt{1}}{\sqrt{1}}}{\frac{1}{\sqrt{1}}} \right $	Grass over TOPSOIL. Roo	DESCRIPT ts and rootlets. (TOPSOII	FION L)				
0.20-0.60		Soft brown slightly sandy s medium limestone. Fine ha	lightly shelly gravelly CL ir roots. (OOLITE GROU	LAY. Gravel is s JP)	ubanagular fine to			
		- ā				0.45 0.50	ES D	
0.60-1.90		Buff brown clayey locally limestone. Infrequent horiz GROUP)	very clayey sandy GRAV ons of friable shelly muds	EL of subangula stone and firm sl	ar fine to coarse helly clay. (OOLITE			
1.90-2.10		Brown poorly laminated sh	elly MUDSTONE. (OOL	ITE GROUP)		_		
Shoring/S Stability:	upport: Sides st	table.		N + 		B	G RI	ENERAL EMARKS d with arisings.
All dimens	ions in m le 1:25	etres Client Rectory H	Homes Ltd Met Plan	thod/ nt Used	JCB 3CX		ogged E	^{3y} JT

Phone: 078	528810	086				U		_	
Project	.1 • 1	C.	1					TF	RIAL PIT No
SOI	uthside	e, Steej	ple Aston	Cround Loyal (\mathbf{r}	Indinatas ()		_	TP13
	7240		12 12 17	Ground Lever (1		Juliates ()			
Contractor			13-12-17					Sheet	
Bro	ownfie	ld Cor	sultancy Ltd					bliect	1 of 1
							<u> </u>		
				SIRAIA			SA Denth	MPLE No	S & TESTS Remarks/Test
Depth	No			DESC	RIPTION				Remarks/ Test
0.00-0.10	<u>74</u>	<u>//</u> Gra	ass over TOPSOIL. Roo	ots and rootlets. (TOI	PSOIL)				
0.10-0.30			ft brown slightly sandy OLITE GROUP)	CLAY. Rare fine to 1	nedium subangu	lar limestone gravel.			
0.30-1.20		- Bro	own clayey sandy GRA	VEL & COBBLE of	subangular and	angular frequently tabular	-		
	0. 0	-⊅ lim	nestone. (OOLITE GRO	OUP)					
	- 4	20							
		20							
	, P	₹) 9-e							
	0	Δ							
	<i>.</i> 0	2							
1.20-1.60		Fir	m buff brown and brow	n very sandy very gr	avelly CLAY. G	ravel is subangular fine to	1.20	D	
			alse innestone. Elseuny	a enayey sandy grave			1.30	в	
		·							
1.60-1.90		Ho	rizon of blue LIMESTO	ONE. Recovered as b	oulders. (OOLIT	'E GROUP)			
1.90-2.50		Fir	m locally stiff brown sa	ndy very shelly CLA	Y. (OOLITE G	ROUP)			
		-1							
2.50			further progress due to	encountering bedroc	k		-		
2.00		110	radio progress dae to	encountering course					
Shoring/S Stability:	Suppor Sides	rt: s stable	2					G	ENERAL
Stability.	Side	stable						Pookfille	d with origing
ha					N I			Dackillie	a with ansings.
		4			4				
D	1				Á				
	(2							
All dimen	isions in	metres	Client Rectory I	Homes Ltd	Method/ Plant Used	ICB 2CV		Logged I	 Ву ИТ
Sc	ale 1:25)			riant Used	JUB JUX			JI

Phone: 078	52881086	211		1.	RIAL PL	LOG	THC I	DIOWIN	liciu	consultancy
Project									Г	RIAL PIT No
Sou	thside, St	eeple Aste	on	C 11	1 ()				_	TP14
Job No	340	Date	3 12 17	Ground L	evel (m)	Co-Ordin	ates ()			
Contractor	.540		13-12-17						She	et
Bro	wnfield C	Consultanc	ey Ltd							1 of 1
				STRATA				S	AMPL	ES & TESTS
								Dept	h No	Remarks/Tests
Depth 0.00-0.20	No $\frac{\sqrt{1/2}}{1/2}$	Grass over	TOPSOIL. R	oots and rootlets	DESCRIPTIO S. (TOPSOIL)	N				
0.20-1.50		Dark brown COBBLE o (OOLITE C	a becoming lig f subangular a GROUP)	ght brown at 0.5 and angular free	Om slightly cla uently tabular	vey very san	dy GRAVEL & oots and rootlets.			
1.50-2.50		Firm brown	very sandy v	ery shelly CLA	Y. (OOLITE G	ROUP)				
2.50		No further p	progress due t	o encountering	bedrock.			2.43		JUKPA
Shoring/S Stability:	Support: Sides sta	ble.								GENERAL REMARKS
D	A	F	3			N + 			Backfil	led with arisings.
All dimens	sions in met ale 1:25	res Client	t Rectory	Homes Ltd	Metho Plant U	l/ Ised	JCB 3CX		Logged	JT

Project	5288	1086					•		Т	
Sol	ıthsi	de Ste	enle Astor	1						MALIII NO
Job No	41151	ue, 50	Date		Ground Level (r	n) Co-Or	dinates ()		-	TP15
BC	2340)	13	-12-17		,				
Contractor			10						Sheet	t
Bro	own	field C	onsultancy	Ltd						1 of 1
					STR Δ T Δ			S A I		S & TESTS
					SIKAIA			Depth		Remarks/Tests
Depth	No				DESC	RIPTION		- Depui	110	101111110/ 10000
0.00-0.10		× 💥	CONCRETE.	(MADE GR	OUND)					
0.10-0.35			Dark grey slig prick. Buried	ghtly sandy sl Topsoil. (MA	ightly gravelly CLA` DE GROUND)	Y. Gravel is suban	igular fine to medium red	0.20	FS	
0.25.0.60		XX,	P' 1					0.20	1.5	
0.35-0.60			Firm brown sa	andy CLAY.	(OOLITE GROUP)					
								_		
Shoring/S	Supr	ort:							G	ENERAL
Stability:	Sic	les stal	ole.						R	EMARKS
						N		E	Backfille	ed with arisings.
-						↓				
		А		T		1				
D			В	Ţ		N.				
		C		¥						
		~				1				
All dimen	sions	in metr	res Client	Rectory H	Homes Ltd	Method/ Plant Used	JCB 3CX	L	ogged I	By JT
30	uie I.	<u> </u>					JCD JCA			51

Project								TF	RIAL PIT No
Sou	uthside	, Steeple Asto	on						TP16
Job No		Date		Ground Level (m	i) Co-Ordi	nates ()			
BC	2340	1	3-12-17					~	
Contractor								Sheet	
Bro	ownfiel	ld Consultanc	y Ltd						1 of 1
				STRATA			SAN	APLE	S & TESTS
Domth	Na			DESCI			Depth	No	Remarks/Tes
0.00-0.10		CONCRET	E. (MADE GR	OUND)	AIPTION				
0.10-0.37		Loose red at and concrete	nd brown sandy e. (MADE GRO	y GRAVEL & COBB OUND)	LE of angular and	subangular red brick	0.20	ES	
0.37-0.60		Firm brown	sandy CLAY.	(OOLITE GROUP)			_		
		·					-		
horing/S	Suppor Sides	t: stable						G	ENERAL EMARKS
	21405				N		В	ackfille	d with arisings
-	A	>	Ŧ		4				
D		E	3		N				
A 11 -L'	C	matras Client	Dootom	Jomes I td	Method/			Juned I	3v
Sc:	ale 1:25	metres Chem	Rectory F		Plant Used	JCB 3CX		sgcu I	JT

hone: 078	3528810	86		111 200				
Project							TF	RIAL PIT No
So	uthside	, Steeple Aston						TP17
lob No		Date	Ground Level (m)	Co-Ordin	ates ()			
BC	C340	13-12-17					C1	
Contractor	ст. 1						Sheet	1 C 1
Bro	ownfiel	d Consultancy Ltd						1 of 1
			STRATA			SAI	MPLE	S & TESTS
						Depth	No	Remarks/Tes
Depth 0.00-0.40	No	Loose brown and grey brick, concrete slab, til clay. 2 pieces of suspec	DESCRI clayey locally very clayey s e and occasional pieces of b cted asbestos roofing sheet.	PTION slightly sandy GRA preeze block. Pock (MADE GROUN	AVEL & COBBLE of ets of soft brown D)	0.10	ES	
).40-0.60		Dark grey slightly sand	ly slightly gravelly CLAY.	Gravel is subangu	ar fine to medium red	0.30	ES	
0.60.0.00		Firm brown sandy CL	(MADE GROUND)			_		
1.00-0.90			AT. (OOLITE OKOUP)					
		- 1						
						-		
	~ '							
horing/	Suppor	t:					G	ENERAL
tability:	Sides	stable.					R	EMARKS
				N		T	rial pit	excavated into
1		- 1				W	estern a	area of the
-		—		•		st	ockpile	near to the site
	А	L		+		e	itrance.	Backfilled wit
		↓				a	risings.	
D		В		я				
-								
L	C							
		-						
		Client Desta		F (1 1/			ogged I	2.
All dimon	icione in	merrec (Cincin reaction	ry Homes I to I h	lethod/) V
All dimen	isions in	metres Chefit Recto	ry Homes Ltd	lethod/ lant Used	ICB 3CY		055001	у IT

Project						TF	RIAL PIT No
Sou	thside, S	Steeple Aston	Cround Loval (m)	Co Ordinatas ()			TP18
JOD NO	240	Date 12 12 17	Ground Level (m)	Co-Ordinates ()			
Contractor	.340	13-12-17				Sheet	
Bro	wnfield	Consultancy I td				Sheet	1 of 1
DIO	winnend						
			SIKAIA		SAN Depth	IPLE No	S & IESIS Remarks/Test
Depth 0.00-0.60	No	Fill comprising slightly sa and half bricks, plastic she fragments. Rare pieces of	DESCRIPTI ndy slightly gravelly and co eting, geotextile. Suspected slate. (MADE GROUND)	ON bbly CLAY and TOPSOIL. Whole asbestos containing roof sheet	0.40	ES	- Remarks, rest
0.60-0.80		Dark grey slightly sandy s	lightly gravelly CLAY. Gra	vel is subangular fine to medium		LS	
0.80-1.00		Firm brown sandy CLAY.	(MADE GROUND) (OOLITE GROUP)		_		
Shoring/S	upport:					G	ENERAL
D	Sides st				Tr ea ne Ba	ial pit of stern a ar to th ackfille	EMARKS excavated into the rea of the stockp the site entrance. d with arisings.
All dimens	C sions in me	etres Client Rectory	Homes Ltd Meth	nod/		ogged I	Зу IT

Project	020010	00											BOREH	OLE	No
Sou	ıthside	, Stee	ple A	Asto	n								- w	S1	
Job No	1240		Date	•	1 10 17	-	Ground L	evel (m)	Co-Oi	rdinates ()				0.	
Contractor	.340			14	+-12-1	/							Sheet		
Bro	wnfie	ld Cor	sult	ancy	/ Ltd								1 0	of 1	
SAMPI	FS &	TEST	'S		Lia				STR Δ	ТА			1		it/
SAMIL			.5	ater	D . 1	4	Depth		SIKA					ogy	umen
Depth	No I ype	Resi	alt	W	Level	Legend	(Thick-			DESCI	RIPTION			Geolo	nstru
						NIX NIX		Grass over 7	TOPSOIL.	. (TOPSOII	L)		/		
							(0.40) 0.50	Stiff brown	sandy CL	AY. (OOLI	TE GROU	P)			
						0000	- (0.50)	Brown sligh	tly clayey	slightly sa	ndy GRAV	EL & COBB	LE of		
							1.00	subangular i	intestone.	(OOLITE)	GROUI)				E
1.00 1.00	D	N1	8				(0.40)	Medium der	ise buff bi	rown very c	layey SAN	D. (OOLITE	GROUP)		
		10,	7/				1.40	Firm buff br	own very	sandy sligh	tly gravelly	CLAY. Gra	vel is		E
		0,0,	.,.				t1.55/ -	Shattered or	ine to me	dium limest	tone. (OOL	$\frac{\text{ITE GROUP}}{\text{F}}$) GROUP)		E
2.00	D						-	Very stiff br	own sand	y locally ve	ery sandy sh	elly CLAY.	Poorly		E
2.00		N2	3					laminated. C into a very s)range sta helly wea	ining along k mudstone	laminated e. (OOLITE	surfaces. Gra GROUP)	ding at depth		
2 (0		5,6,5	5,7				2.60	N. C. 4			-				ÈÈ
2.60		25,2	.5/				-	No further p	rogress. C	.P1 driven.					
		50)				 [
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
Bor	ing Pro	ogress	and	l Wa	ater Ob	servati	ons	C	hisellin	g	Water	Added	GENE	RAL	
Date	Time	De	pth	D	Casin epth	ng Dia. mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	
													Gas and ground	lwater	
													installed.	WORK	
All dimen	sions in	metree	Cl	lient	Rect	ory Hor	nes Ltd	Metho	od/				Logged Bv		
Scale 1:50 Cheft Rectory Homes Ltd Plant Used Dynamic Sampling Rig JT															

BOREHOLE LOC	j
---------------------	---

Submixie, Steeple Asson WS2 bit No Late:	Project														BOREH	OLE	No
bit No Date Ground Level (m) Co-Ordinates () WUS2 Contractor II-12-17 State 1 1 1 SAMPLES & TESTS Image: Solution of the solution of	So	uthside	, Steej	ple A	sto	n									10/	50	
BC340 14-12-17 Sile Contractor Sile 1 of 1 SAMPLES & TESTS Breach Stratt 1 of 1 Sile Even Feast Criss over TOPSOIL (TOPSOIL) Stratt 0.10 ES Value Stratt Stratt<	Job No			Date				Ground L	evel (r	n)	Co-O	rdinates ()			V	52	
Contract State I of 1 Browniefd Consultancy Lut STRATA I of 1 Depth Take I endered Contactor STRATA I endered I endered <tdi endered<="" td=""> <tdi endered<="" td=""> <td< td=""><td>BO</td><td>C340</td><td></td><td></td><td>14</td><td>4-12-17</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<></tdi></tdi>	BO	C340			14	4-12-17	1										
Borwnfield Consultancy Lid I of 1 SAMPLES & TESTS STRATA Drph Tree Test Reduced Level Level Level STRATA 0.0 LS Image: Strate in the strate in t	Contractor	r													Sheet		
SAMPLES & TESTS Image: Test and the second seco	Bro	ownfie	ld Cor	sulta	ncy	/ Ltd									1 0	of 1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SAMPI	LES &	TEST	S	er						STRA	TA				Ś	nent/
0.10 ES 100 ES 100 Staff dark brown ery sandy shelly CLAY. (OOLITE GROUP) 1.00 ES N53 2.3/4.5 Staff dark brown ery sandy shelly CLAY. (OOLITE GROUP) 1.00 ES N15 3.3/4.5 Staff dark grey very sandy shelly CLAY. (OOLITE GROUP) 2.40 ES N15 3.3/4.5 Staff dark grey very sandy shelly CLAY. Locally a clayey sand. 3.00 D N19 4.3/ 3.5/5.5 Staff dark grey and brown motifed very sandy shelly CLAY. Locally a clayey sand. 3.00 N N9 4.3/ 3.5/5.5 Staff dark grey and brown motifed very sandy shelly CLAY. Locally a clayey sand. 3.00 N N9 4.3/ 3.5/5.5 Staff dark grey and brown motifed very sandy clay. (OOLITE GROUP) 2.40 Staff dark grey and brown motifed very sandy CLAY. (OOLITE GROUP) 3.00 N N8 8.8/ 8.7/8.7 Staff dark grey and brown motifed very sandy CLAY. (OOLITE GROUP) 2.40 Staff dark grey and brown motifed very sandy CLAY. (OOLITE GROUP) Staff dark grey and brown motifed very sandy CLAY. (OOLITE GROUP) 3.00 N30 N30 Staff dark grey and brown motifed very sandy shelly CLAY. (OOLITE GROUP) Staff dark grey and brown motifed very sandy clay. (OOLITE GROUP) 4.45 Staff dark grey and brown motifed very sandy shelly clay. Comparison of the transport of	Depth	Type No	Tes Resi	st ilt	Wat	Reduced Level	Legend	Depth (Thick- ness)				DESCH	RIPTION			Geolog	Instrun Backfi
1.00 D 1.00 D 1.00 D 1.00 D 1.00 N3 2.37 6.16.25.6 Stiff light brown very sandy shelly CLAY. (OOLITE GROUP) 2.00 N15 3.34.5 1.50 Stiff light brown very sandy shelly CLAY. (OOLITE GROUP) 2.40 ES N15 3.34.5 1.50 3.00 D N19 3.35.6.5 2.00 3.00 D N19 3.55.6.5 2.00 4.00 N8 8.78.7 4.45 Medium dense light grey slightly slip fine SAND. (OOLITE GROUP) 2.00 Very sliff dark grey and brown noticel very sandy CLAY. (OOLITE GROUP) 2.00 N19 3.55.6.5 1.62.56 3.00 D N19 8.8/ 8.7.8.7 4.45 Medium dense light grey slightly slip fine SAND. (OOLITE GROUP) 2.00 Very slift dark grey and brown noticel very sandy CLAY. (OOLITE GROUP)	0.10	ES						0.20	Gras Stiff	s over	TOPSOIL	. (TOPSOII	L) tlv shellv (ITE GROUP)		
100 D Statis and statis stati	-							- 0.50	Seiff	Licht h		sandy singh					·· 📑
100 D NS3 6,16,25,6 Image: Constraint of the second state of the secon	-								Sun	ngnt b	rown very	sandy shell	y CLAT. (JOLITE GR	OUP)		
100 FS NS3 2.39 6.16.256 (1.50) 200 N15 3.34 2.00 Very stiff dark grey very sandy shelly CLAY. Locally a clavey sand. (OULTTE GROUP) 240 ES 3.34.5 Control (0.50) Very stiff dark grey very sandy shelly CLAY. Locally a clavey sand. (OULTTE GROUP) 3.00 D N19 3.5.6.5 3.50 Stiff dark grey van brown mottled very sandy CLAY. (OOLTTE GROUP) 3.00 N N19 3.5.6.5 3.50 Stiff dark grey van brown mottled very sandy CLAY. (OOLTTE GROUP) 4.00 N30 8.7.8.7 4.45 Medium dense light grey slightly silty fine SAND. (OOLTTE GROUP) 4.00 N30 8.7.8.7 4.45 Medium dense light grey slightly silty fine SAND. (OOLTTE GROUP) 4.00 N30 8.7.8.7 4.45 Control (0.50) Medium dense light grey slightly silty fine SAND. (OOLTTE GROUP) 4.45 Control (0.50) Medium dense light grey slightly silty fine SAND. (OOLTTE GROUP) GENERAL REMARKS 2.50 N19 9.00 Dageh Dageh Dageh Scale 1.01 GENERAL Remarks 3.60 Dageh Dageh Dageh Dageh From To Hous From To 3.60 Dageh Dageh	-	D						+ 									
1.00 2.37 5.16.25.6 N15 3.3.4.5 2.00 Very stiff dark grey very sandy shelly CLAY. Locally a clayey sand. OOUTE GROUP) 2.40 FS 3.3.4.5 1 2.00 3.00 D N19 4.7 3.5.6.5 Stiff dark grey and brown mottled very sandy CLAY. (OOLITE GROUP) Stiff dark grey and brown mottled very sandy CLAY. (OOLITE GROUP) 3.00 D N19 4.7 3.5.6.5 Stiff dark grey and brown mottled very sandy CLAY. (OOLITE GROUP) 2.50 4.00 N30 8.57.8.7	1.00	ËS	NE	2				(1.50)									目
2.00 N15 3.3 2.00 Very stiff dark grey very sandy shelly CLAY. Locally a clayey sand. 2.40 FS 3.4.5 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 3.00 D N19 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 3.00 D N19 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 4.00 N30 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 4.00 N30 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 4.00 N30 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 4.00 N30 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 4.00 N30 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 4.00 N30 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 4.00 N30 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 4.00 N30 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 5 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 8 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 5 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) 5 Stiff dark grey and bown motiled very sandy CLAY. (OOLITE GROUP) <td>1.00</td> <td></td> <td>2,3</td> <td></td>	1.00		2,3														
2.00 N37 3.3.4.5 Very stiff dark grey very sandy shelly CLAY. Locally a clayey sand. (OOLITE GROUP) 2.40 PS N10 3.3.4.5 Very stiff dark grey very sandy shelly CLAY. Locally a clayey sand. (DOLTE GROUP) 3.00 D N10 4.37 Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) 4.00 N30 8.37 Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) 4.00 N30 8.37 Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) 4.00 N30 8.37 Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) 4.00 N30 8.37 Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) 4.00 N30 8.37 Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) 5.20 Stiff dark grey and brown motiled very sandy CLAY. Stiff dark grey and brown motiled very sandy CLAY. (OOLTTE GROUP) 5.20 Stiff dark grey and brown motiled very sandy CLAY. Stiff dark grey and brown motil	-		6,16,2	25,6													
2.40 FS 3.34/2 3.34.5 Image: Constraint of the second secon	2.00		N1	5			<u> </u>	- 2.00	Very	v stiff d	ark grey v	ery sandy sl	helly CLAY	. Locally a c	clayey sand.		
2.40 ES Image: Constraint of the set o	-		3,3 3,3,4	4,5	1			(0.50)	(00)	LITE C	GROUP)						
3.00 D N19 4.37 3.56.5	2.40	ES		-	<u>.</u>				Stiff	dark g	rey and br	own mottled	d very sand	y CLAY. (O	OLITE		
3.00 D N19 4.37 3.56.5 Medium dense light grey slightly silty fine SAND. (OOLITE GROUP) 4.00 N30 8.7,8.7									2.50	Strata	wet.						
A00 143/3 3.5.6.5 8.W 8.7.8.7 1 1 1 Medium dense light gey slightly silty fine SAND. (OOLITE GROUP) 4.45 Boring Progress and Water Observations Date 4.45 1 1 1 Boring Progress and Water Observations Date Chiselling Water Added GENERAL REMARKS Date Time Depth Depth Depth Depth From To Hours From To All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig Logged By JT	- 3.00	D	NI	9				-(1.00)									
4.00 N30 8.87 8.7.8.7	5.00		4,3	1				3.50									目
4.00 N30 8.87 8.7.8,7 N30 8.97 8.7.8,7	-		5,5,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-: <u>-</u> :	1 [Med	Medium dense light grey slightly silty fine SAND. (OOLITE GROU							
4.00 8.80 8.7.8.7 Image: Constraint of the second sec			NO					(0.95)									
Boring Progress and Water Observations Chiselling Water Added Boring Progress and Water Observations Chiselling Water Added Date Time Depth Depth Dia, mm Water From To Hours From To Gas and groundwater monitoring pipework installed. All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig Logged By	4.00		N3 8,8	V			$\overline{\overline{}}$	 									
Boring Progress and Water Observations Chiselling Water Added Date Time Depth Depth From To Hours From To Image: Solution of the solu	-		8,7,8	3,7				<u>- 4.45</u>									-
$\begin{tabular}{ c c c c c c c } \hline I & I &$	-							-									
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	- -							-									
$ \begin{array}{ c c c c c c } \hline \hline \\ $																	
$ \begin{array}{ $	-							-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- - -																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 - -							-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-							-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-							-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-							-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-							-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- - -							-									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-							-									
Date Time Depth Depth Dia. mm Water Dpt From To Hours From To REMARKS All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Method/ Method/ Image: Scale 1:50 Logged By	Bor	ing Pro	ogress	and	Wa	ater Ob	servati	ons		(Chisellin	g	Water	Added	GENE	RAI	
All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Method/ Plant Used Logged By Dynamic Sampling Rig Logged By JT	Date	Time	De	pth	D	Casir enth 1	ig Dia mm	Water Dpt	Fi	rom	То	Hours	From	То	REMA	RKS	
All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig Logged By JT							-1u. 11111								Gas and ground	lwater	
All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig Logged By JT															monitoring pipe installed.	ework	
All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Method/ Plant Used Logged By JT																	
All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig Logged By JT																	
All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig Logged By JT																	
All dimensions in metres Scale 1:50 Ctient Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig JT					at					M 1					Lagard D		
	All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig JT																

BOREHOLE LOC	j
---------------------	---

Southside, Steeple Aston Job No BC340 Date Ground Level (m) Co-Ordinates () Sheet Southside, Steeple Aston BC340 14-12-17 Contractor Brownfield Consultancy Ltd STRATA Depth Type Type Test Result Reduced Legend 0.50 HV 80kPa 1.00 D Ni5 1.50 N50220mm 9.25/ 27,14,9 1.50 N50220mm 9.25/ 1.50 No further progress. CPT driven.					
Job No Date Ground Level (m) Co-Ordinates () BC340 14-12-17 Sheet Contractor Sheet 1 of SAMPLES & TESTS Image: Consultancy Ltd Strata Depth Type Test Image: Consultancy Ltd Strata 0.50 HV 80kPa Image: Consultancy Ltd Ground Level (m) Co-Ordinates () 1.00 D Nis Consultancy Ltd Consultancy Ltd Stiff borown slightly sandy slightly gravelly CLAY. Gravel is 1.00 D Nis Consultancy Ltd Consultancy Ltd Consultancy Ltd 1.00 D Nis Consultancy Ltd Consultancy Ltd Consultancy Ltd 1.00 D Nis Consultancy Ltd Consultancy Ltd Consultancy Ltd 1.00 D Nis Consultancy Ltd Consultancy Ltd Consultancy Ltd 1.00 D Nis Consultancy Ltd Consultancy Ltd Consultancy Ltd 1.00 D Nis Consultancy Ltd Consultancy Ltd Consultancy Ltd 1.00 D Nis Consultancy Ltd Consultancy Ltd Consultancy Ltd 1.00 Consultancy Ltd Consultancy Ltd Consultancy Ltd Consultanc					
BC340 14-12-17 Contractor Sheet Brownfield Consultancy Ltd 1 of SAMPLES & TESTS Educed Legend (Thick-ness) Depth (Thick-ness) Depth Type (Test Result) Educed Legend (Thick-ness) DESCRIPTION 0.50 HV 80kPa Subargiant file to medium limestone. (OOLTE GROUP) 1.00 D N15 1.00 N15 1.50 1.50 N50/220mm 1.50 1.50 N50/220mm No further progress. CPT driven.					
Sided Brownfield Consultancy Ltd I of SAMPLES & TESTS Sector Topsol Depth Type Test Beduced Depth Depth Type Test Beduced Depth Colspan="2">STRATA 0.50 HV 80kPa Stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular fine to medium limestone. (OOLITE GROUP) Stiff brown slightly sandy shelly CLAY. Locally very shelly. (OOLITE GROUP) 1.00 D N15 1.50 1.50 N50/220mm 1.50 No further progress. CPT driven.					
Solume a constraint y Eu SAMPLES & TESTS Depth Type Test Educed Depth 0.50 HV 80kPa Stiff burn slightly sandy slightly gravelly CLAY. Gravel is subangular fine to medium limestone. (OOLTTE GROUP) 0.50 HV 80kPa 1.00 D 1.00 D 1.50 N50/220mm 9.25/ 27,14.9					
SIRATA Depth Type Test Result Depth Depth Depch 0.50 HV 80kPa 0.30 Grass over TOPSOIL. (TOPSOIL) 0.50 HV 80kPa 0.30 Stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular fine to medium limestone. (OOLTTE GROUP) 1.00 D N15 0.30 Stiff buff brown very sandy shelly CLAY. Locally very shelly. (OOLTTE GROUP) 1.50 N50/220mm 9.25/ 27,14,9 1.50					
Depth Type No Test Result Reduced Level Legend (Thick- ness) Grass over TOPSOIL. (TOPSOIL) 0.50 HV 80kPa 0.30 0.30 0.30 0.50 HV 80kPa 0.50 Stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular fine to medium limestone. (OOLITE GROUP) 1.00 D N15 0.30 1.50 N15 0.30 2.3/ 3.4,5.3 0.150 NS0/220mm 9.225/ 27,14.9	men				
0.50 HV 80kPa 1.00 D 1.00 D 1.00 N15 2.3/ 3.45.3 1.50 N50/220mm 9.25/ 27,14.9 No further progress. CPT driven.	Instru Rackf				
0.50 HV 80kPa 1.00 D 1.00 N115 2.3/ 3.4,5,3 1.50 9.25/ 27,14,9 No further progress. CPT driven.					
0.50 HV 80kPa 1.00 D 1.00 N15 2.3/ 3.4,5,3 1.50 N50/220mm 9,25/ 27,14,9 No further progress. CPT driven.					
1.00 D N15 2.3/ 3.4,5,3 1.50 9.25/ 27,14,9 No further progress. CPT driven.					
1.00 N15 2.3/ 3.4,5,3 N50/220mm 9.25/ 27,14,9 No further progress. CPT driven.					
1.50 3,4,5,3 N50/220mm No further progress. CPT driven. 9,25/ 27,14,9 - -					
1.50 N50/220mm 9.25/ 27,14,9	<u> ⊟</u> .				
Image: sector of the sector					
Image: sector of the sector					
Boring Progress and Water Observations Chiselling Water Added GENER					
Date Time Depth Casing Depth Water Dia From To Hours From To	5				
Gas and groundwa	ſ				
All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig JT					

DYNAMIC PROBE LOG

Project	ne: 0/852881086									
Southside, Steeple As	ton						DD1			
Job No Date		Ground Level (n	n) Co	-Ordinates ()			DET			
BC340	14-12-17									
Contractor	T , 1						Sheet			
Brownfield Consultan						1	1 of 1			
Depth Readings (m) (blows/100mm)	5	Diagram (N 10	100 Valu 15 2	les) 20 2.	5 30	Torque (Nm)	Remarks			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
Hammer Wt (kg)	63.5						GENERAL REMARKS			
Hammer Drop (mm)	760						KLIVIAKKS			
Cone Dia (mm)	50.5	-								
G Cone Type Fixed B Damper										
All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Plant Used Dynamic Sampling Ri							logged By JT			

DYNAMIC PROBE LOG

Project	oject											PROBE No
Sout	thside, Stee	ple As	ton									290
Job No		Date			Ground Le	vel (m))	Co-Ordina	tes ()			
BC3	340		14-12-17									
Contractor	C 11 C	1.	T / 1									Sheet
Brov	whiteld Cor	isuitar									1	1 01 1
Depth (m) (Readin blows/100	gs)mm)	5		Diagrai 10	m (N 1	100 Va 5	lues) 20	25	30	Torqu (Nm)	e Remarks
- 1 - 2 - 3 - 4 - 5 - 6 - 81721 1001 ESEM 015 - 7 - 7 - 7 - 7 - 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 3 10 5 4 2 3 4 4 2 5										
Hammer	Wt (kg)		63.5									GENERAL
Hammer	Drop (mm)		760									NLWARRS
	(mm)		50.5									
Cone Typ	Cone Type Fixed											
All dimensions in metres Scale 1:50ClientRectory Homes LtdMethod/ Plant UsedIImage: Plant Used Dynamic Sampling RigImage: Plant Used Dynamic Sampling RigImage: Plant Used Dynamic Sampling RigImage: Plant Used Dynamic Sampling Rig						Logged By JT						

DYNAMIC PROBE LOG

Project	ect									
Southside, S	teeple A	ston							DP3	
Job No	Date	14 10 17	Ground Lev	vel (m)	Co-Ordina	ites ()			210	
BC340		14-12-17							Sheet	
Brownfield	Consulta	nev Ltd							1 of 1	
Diowiniera	consultu								1 01 1	
Depth Rea (m) (blows/	lings 100mm) 5	Diagran 10	n (N100) 15	Values) 20	25	30	Torque (Nm)	Remarks	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 2 1 3 5 3 4 18 16 5 4 7 8 10 11									
Hammer Wt (kg)		63.5							GENERAL REMARKS	
Hammer Drop (n	ım)	760							NLWAKKO	
Cone Dia (mm)		50.5	_							
Damper		Fixed								
Damper Method/ All dimensions in metres Client Rectory Homes Ltd Scale 1:50 Plant Used Dynamic Sampling Rig							ogged By JT			

DYNAMIC PROBE LOG

Project			PROBE No							
So	uthside, Stee	ple As	ton							DP4
Job No	7240	Date	14 10 17	Ground Level ((m)	Co-Ordinat	tes ()			
Contractor			14-12-17							Sheet
Bro	ownfield Co	nsultar	ncv Ltd							1 of 1
Depth	Readin	gs		Diagram (N100 V	alues)			Torque	Demortes
(m)	(blows/100	0mm)	5	10	15	20	(Nm)	Remarks		
	0 0 0							 		
	0	0 0							-	
	$\begin{bmatrix} 0 & 1 \\ & 1 & 0 \end{bmatrix}$								-	
- 1	1	1 1							-	
F	2 1	3							-	
-	50	11						50	-	
F a								İ	-	
F 2								İ		
-									-	
-									-	
- 3									-	
									-	
-									-	
									-	
- 4										
								İ	-	
								İ	-	
- 5										
E									-	
-									-	
									-	
- 0									-	
									-	
								İ	-	
7								İ	-	
GDT									-	
20 									-	
Hammer	r Wt (kg)		63.5							GENERAL REMARKS
ig Hammer	r Drop (mm))	760							
Cone Di	a (mm)		50.5							
Cone Ty	pe		Fixed							
Damper										
All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig						L	ogged By JT			

DYNAMIC PROBE LOG

Project	02001000		PROBE No							
So	uthside, Stee	ple As	ston							DD5
Job No		Date		Ground Le	evel (m)	Co-Ordina	ites ()			DFJ
B	C340		14-12-17							
Contractor	r C 11C	1.	T (1							Sheet
Br	ownfield Co	nsultar								1 of 1
Depth	Readin	gs		Diagra	m (N100	Values)			Torque	
(m)	(blows/10	Ĵmm)	5	10	15	20	25	30	(Nm)	Remarks
-	0 0								-	
-	1	0 1								
-	1 0 1	1						İ		
-		1 0						ļ	-	
	$\begin{bmatrix} 2 & 1 \\ & 1 & 1 \end{bmatrix}$	_								
-	6	1 2						ļ		
-	11 6	4						ļ	-	
- 2	2 3	3								
-	2	2 3								
	$\begin{bmatrix} 2 & & \\ & 2 & & \\ & & 3 & \end{bmatrix}$	5								
- 3	1	3 3								
	⁴ ³ ₂	2						Ì		
	2 2	2						İ		
-	3 6	8						į		
- 4	4 4	9						ļ		
E E	4	5 5								
-	$\begin{bmatrix} 5 & & \\ & 3 & \\ & & 3 \end{bmatrix}$	_						ļ		
- 5	6	3 3						ļ	-	
-	7 5	4							-	
-	3 3	. 4							-	
	3	5 2								
- 6	6 6	2							-	
-		4 4						İ		
- - -	4 4 4	4						į		
7		4 4						į	-	
GDT								ļ		
S3 1								ļ		
Hamme	r Wt (kg)		63.5							GENERAL REMARKS
B Hamme	r Drop (mm)	760							
Cone Di	ia (mm)		50.5	_						
Cone Ty	ype		Fixed	_						
Damper					Γ_					
All dimer	All dimensions in metres Scale 1:50 Client Rectory Homes					d/ Used Dynan	nic Samp	ling Rig	L	ogged By JT

DYNAMIC PROBE LOG

Project	Project									
Southsid	e, Steeple As	ston						DDG		
Job No	Date		Ground Level (r	n)	Co-Ordinates ()		DFU		
BC340		14-12-17								
Contractor	110 1	T . 1						Sheet		
Brownfie	eld Consulta	ncy Ltd						l of l		
Depth R (m) (blow	(eadings ws/100mm)) 5	Diagram (N 10	N100 Va 15	lues) 20 2	25 30	Torqu (Nm)	e Remarks		
$= 1 \qquad 1 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad$	1 1 1 1 0 1 2 7 9 kg) 1 1 i 0 1 i 0 1 i 2 7 9 kg) 1 1 i 0 1 i 0 (mm) n) 1 1	63.5 760 50.5					0	GENERAL REMARKS		
S Cone Type		11120	-							
	n metros Clie	ent Rectory U	mes I td	Method/				Logged By		
All dimensions in metres Scale 1:50 Client Rectory Homes Ltd Method/ Plant Used Dynamic Sampling Rig						JT				

APPENDIX C

Chemical Laboratory Results

Jim Twaddle The Brownfield Consultancy Woodstock Memorial Road Fenny Compton Warwickshire CV47 2XU

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: jim.twaddle@brownfieldconsultancy.co.uk

Analytical Report Number : 17-71017

Project / Site name:	Steeple Aston	Samples received on:	15/12/2017
Your job number:	BC340	Samples instructed on:	15/12/2017
Your order number:		Analysis completed by:	28/12/2017
Report Issue Number:	1	Report issued on:	28/12/2017
Samples Analysed:	1 bulk sample - 21 soil samples		

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Sample Reference 174 175 177 177 178 Beagh (m) 0.0 0.00 1.00 1.00 0.00 0.00 Beagh (m) 0.0 0.00 1.00 1.00 0.00 0.00 Beagh (m) 0.0 1.00 1.00 1.00 0.00 0.00 0.00 Beagh (m) 0.00 1.01/2001 1.01/2001 1.01/2001 0.01 0.00 0.00 Store Content 50 0.1 0.00 1.00 0.0 0.00	Lab Sample Number				877644	877645	877646	877647	877648
Sample Number None Supplied None Sup	Sample Reference				TP4	TP5	TP6	TP7	TP8
Depth (m) 0.0 1.00 1.00 1.00 1.00 0.00 0.00 Bete Sampled 13/12/017 13/12/017 13/12/017 13/12/017 13/12/017 Time Taken Nore Supplied Nore Supplied Nore Supplied Nore Supplied Nore Supplied Analytical Parameter (solid natypes) G g <	Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled Trial Table Trial Table Trial Table None Supplied None Supplied None Supplied None Supplied Analytical Parameter (soil Analysis) gr gr gr gr gr gr gr gr gr gr gr gr gr g	Depth (m)				0.20	1.00	1.20	0.10	0.10
Time Trainen None Supplied None Suplied None Supplied None Suppl	Date Sampled				13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
Analytical Parameter (Soil Analysis) gr of g	Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (\$01 Analysis) gr				A					
Stane Content % 0.1 NORE < 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0	Analytical Parameter (Soil Analysis)	Units	Limit of detection	creditation Status					
Moisture Content % N/A NORe 18 13 6.6 15 19 Asbeatos in Soll Screen / Identification Name Type N/A ISO 17025 -<	Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total mass of sample received top 0.001 NOME 0.41 0.45 0.39 0.40 0.44 Asbestos in Soil Soreen / Identification Name Type N/A ISO 17025 - - Not-detected - Asbestos in Soil Soreen / Identification Name Type N/A ISO 17025 - - Not-detected - General Inorganics -	Moisture Content	%	N/A	NONE	18	13	6.6	15	19
Achestos in Soil Soreen / Identification Name Type N/A ISO 17025 Asbestos in Soil Type N/A ISO 17025 . . NOL-detected . General Longanics pt Units N/A MCRTS . . 0.134 . . Bit Automated Stophate as SO, 16hr extraction (2:1) mages 2.5 MCRTS .	Total mass of sample received	kg	0.001	NONE	0.41	0.45	0.39	0.40	0.46
Asbestos in Soll Type N/A ISO 17025 - - Not detected General Longanies pt Jubros Sol, 16h extraction (2:1) mg/kg 0.005 MCERTS - 0.134 - - Total Subplate as SO, 16h extraction (2:1) mg/kg 2.5 MCERTS - - 0.134 - - Water Solube Solubin extraction (2:1) mg/kg 2.5 MCERTS - - 0.014 - - Equivalent) gl 0.00125 MCERTS - - 0.014 - - Speciated PAHs mg/kg 0.05 MCERTS - 0.053 - - Speciated PAHs mg/kg 0.05 MCERTS - 0.05 <	Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
General Inorganics pt - utures N/A MCRRTS · · 8.7 ·	Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	Not-detected	-
General Inorganics PH Lats N/A MCERTS - - 8.7 - <									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	General Inorganics						0.7		
$ \begin{array}{c} 1 \ \mbox{cm} \mbo$	pH - Automated	pH Units	N/A	MCERTS	-	-	8.7	-	-
Water Soluble Subjets as SQ, 16hr extraction (2:1) m_{R}/q 2.5 MERTS . Station of the extraction (Total Sulphate as SO ₄	%	0.005	MCERTS	-	-	0.134	-	-
Equivalent) 0.00125 MCERTS - 0.014 - - Equivalent) mg/l 1.25 MCERTS - 1.3.5 - - Total Sulphur % 0.005 MCERTS - 0.053 - - Speciated PAHs - 0.055 < 0.05	Water Soluble Sulphate as SO₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	-	-	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate mg/l 1.25 MCERTS . . 1.3.5 . . Total Sulphur % 0.005 MCERTS . 0.053 . . Speciated PAHS . . 0.05 < 0.05	Equivalent)	g/l	0.00125	MCERTS	-	-	0.014	-	-
Display India Display ay< th=""> <thdisplay< th=""> <thdis< td=""><td>Water Soluble SO4 16hr extraction (2:1 Leachate</td><td>ma/l</td><td>1 25</td><td>MCEDTS</td><td>_</td><td>_</td><td>13.5</td><td>_</td><td></td></thdis<></thdisplay<></thdisplay<>	Water Soluble SO4 16hr extraction (2:1 Leachate	ma/l	1 25	MCEDTS	_	_	13.5	_	
Speciated PAHs Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	Total Sulphur	%	0.005	MCERTS	-	-	0.053	-	-
Speciated PAHs Speciated PAHs mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · · · · · · · · · · · · · · · · · ·								
Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	Speciated PAHs								
Acenaphthylene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Acenaprifiene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Phenanthrone	mg/kg	0.05	MCEDTS	< 0.05	< 0.05	< 0.05	< 0.05	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Anthracene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Pyrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <td>Fluoranthene</td> <td>ma/ka</td> <td>0.05</td> <td>MCERTS</td> <td>< 0.05</td> <td>< 0.05</td> <td>< 0.05</td> <td>< 0.05</td> <td>-</td>	Fluoranthene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Benzo(a)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Benzo(b)fluoranthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Benzo(k)fluoranthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Benzo(a)pyrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <	Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Inden(1,2,3-cd) pyrene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <th< td=""><td>Benzo(a)pyrene</td><td>mg/kg</td><td>0.05</td><td>MCERTS</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>-</td></th<>	Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Diberiz(a)right indicate in the gray of the second secon	Dibona(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Total PAH Speciated Total EPA-16 PAHs Marking 0.8 MCERTS < 0.80	Benzo(abi)pervlene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80	benzo(gni)per yene	mg/kg	0.05	HELKIS	x 0.05	< 0.05	0.05	< 0.05	
Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80 < 0.80	Total PAH								
Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 14 - - 12 15 Boron (water soluble) mg/kg 0.2 MCERTS 1.3 - - 1.7 1.6 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS - - <	Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	-
Arsenic (aqua regia extractable) mg/kg 1 MCERTS 14 - - 12 15 Boron (water soluble) mg/kg 0.2 MCERTS 1.3 - - 1.7 1.6 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS <.0.2	Heavy Metals / Metalloids								
Boron (water soluble) mg/kg 0.2 MCERTS 1.3 - - 1.7 1.6 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2	Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	-	-	12	15
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2 - - < 0.2 < 0.2 < 0.2 Chromium (hexavalent) mg/kg 4 MCERTS - <t< td=""><td>Boron (water soluble)</td><td>mg/kg</td><td>0.2</td><td>MCERTS</td><td>1.3</td><td>-</td><td>-</td><td>1.7</td><td>1.6</td></t<>	Boron (water soluble)	mg/kg	0.2	MCERTS	1.3	-	-	1.7	1.6
Chromium (hexavalent) mg/kg 4 MCERTS - <th< td=""><td>Cadmium (aqua regia extractable)</td><td>mg/kg</td><td>0.2</td><td>MCERTS</td><td>< 0.2</td><td>-</td><td>-</td><td>< 0.2</td><td>< 0.2</td></th<>	Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	-	< 0.2	< 0.2
Chromium (III) mg/kg 1 NONE -	Chromium (hexavalent)	mg/kg	4	MCERTS	-	-	-	-	-
Chromium (aqua regia extractable) mg/kg 1 MCERTS 21 - - 16 25 Copper (aqua regia extractable) mg/kg 1 MCERTS 21 - - 14 15 Lead (aqua regia extractable) mg/kg 1 MCERTS 32 - - 26 29 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS <	Chromium (III)	mg/kg	1	NONE	-	-	-	-	-
Lead (aqua regia extractable) mg/kg 1 MCERTS 21 - - 14 15 Lead (aqua regia extractable) mg/kg 1 MCERTS 32 - - 26 29 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS - - 26 29 Nickel (aqua regia extractable) mg/kg 1 MCERTS - - <0.3	Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	-	-	16	25
Lead (aqua regia extractable) mg/kg 1 MCERTS 32 - - 2b 29 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Lopper (aqua regia extractable)	mg/kg	1	MCERTS	21	-	-	14	15
Intercury (aqua regia extractable)mg/kgU.3MCERTS< U.3< (U.3)< (U.3)Nickel (aqua regia extractable)mg/kg1MCERTS139.813Selenium (aqua regia extractable)mg/kg1MCERTS z 9.813	Leau (aqua regia extractable)	mg/kg	1	MCERTS	32	-	-	26	29
$\frac{1}{2} \frac{1}{2} Nickel (aqua regia extractable)	mg/kg	0.3	MCEDIS	< 0.3 13	-	-	< U.3 9.8	< 0.3 13	
	Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Zinc (aqua regia extractable) mg/kg 1 MCERTS 48 38 45	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	48	-	-	38	45

Project / Site name: Steeple Aston

Lab Sample Number				877644	877645	877646	877647	877648
Sample Reference		TP4	TP5	TP6	TP7	TP8		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.20	1.00	1.20	0.10	0.10		
Date Sampled				13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Petroleum Hydrocarbons

		·						
TPH C10 - C40	mg/kg	10	MCERTS	-	-	-	-	-
TPH5 (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	-	-	-
TPH5 (C10 - C20)	mg/kg	10	MCERTS	-	< 10	-	-	-
TPH5 (C20 - C30)	mg/kg	10	NONE	-	< 10	-	-	-
TPH5 (C30 - C40)	mg/kg	10	NONE	-	< 10	-	-	-
TPH5 (C6 - C40)	mg/kg	10	NONE	-	< 10	-	-	-
Pesticide and Herbicide Screen								
Pesticides/Herbicides Screen in Soil	P/A	N/A	NONE	-	-	-	-	-

ab Sample Number				877640	877650	877651	877652	877653
Sample Reference				TP8	TP10	TP10	TP12	TP12
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.10	0.85	0.45	0.50
Date Sampled				13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			Þ					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	occreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	8.3	26	12	17	15
Total mass of sample received	kg	0.001	NONE	0.17	0.32	0.43	0.38	1.0
	-				-			
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	-	8.5	-	8.5
Total Sulphate as SO ₄	%	0.005	MCERTS	-	-	0.140	-	0.144
Water Soluble Sulphate as SO₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	-	-	-	-	-
Equivalent)	g/l	0.00125	MCERTS	-	-	0.0065	-	0.0074
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	mg/l	1.25	MCERTS	-	-	6.5	-	7.4
Total Sulphur	%	0.005	MCERTS	-	-	0.051	-	0.051
Consident al DALLS								
Speciated PARS		0.05	MOSBER		. 0.05	. 0.05		
Aconomic to the second s	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Acenaphthono	mg/kg	0.05	MCEDIC	-	< 0.05	< 0.05	-	-
Eluorene	mg/kg	0.05	MCEDTS	-	< 0.05	< 0.05	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Anthracene	ma/ka	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Fluoranthene	ma/ka	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Pyrene	ma/ka	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	< 0.80	< 0.80	-	-
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	3.4	13	-	15	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.3	2.6	-	1.1	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	< 0.2	-
Chromium (hexavalent)	mg/kg	4	MCERTS	-	-	-	-	-
Chromium (III)	mg/kg	1	NONE	-	-	-	-	-
Chromium (aqua regia extractable)	mg/kg 	1	MCERTS	/.2	23	-	26	-
Loopper (aqua regia extractable)	mg/kg	1	MCERTS	5.8	26	-	13	-
	mg/kg	1	MCERTS	4.0	32	-	1/	-
Mickel (aqua regia extractable)	mg/kg	0.3	MCEDIC	< 0.3	< 0.3	-	< U.3 1E	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	т.2 < 1.0	 < 1.0	-	 < 1.0	-
Zinc (aqua regia extractable)	ma/ka	1	MCEDIS	13	56		38	
בווים (מקום וכקום כאנומנומטוכ)	iiig/Kg	1	MCER13	IJ	50		50	

I ah Samnle Number				877649	877650	877651	877652	877653
Sample Reference				TD9	TP10	TD10	TD12	TD12
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Donth (m)								
Depth (III)				12/12/2017	12/12/2017	12/12/2017	12/12/2017	12/12/2017
Time Teken				13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
	1	1		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH C10 - C40	mg/kg	10	MCERTS	-	-	-	-	-
TPH5 (C6 - C10)	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH5 (C10 - C20)	mg/kg	10	MCERTS	-	-	-	-	-
TPH5 (C20 - C30)	mg/kg	10	NONE	-	-	-	-	-
TPH5 (C30 - C40)	mg/kg	10	NONE	-	-	-	-	-
TPH5 (C6 - C40)	mg/kg	10	NONE	-	-	-	-	-
Pesticide and Herbicide Screen								
Pesticides/Herbicides Screen in Soil	P/A	N/A	NONE	-	-	-	-	-

ab Sample Number				077654	077655	077656	077657	077650
				877654	877055	877656	8//05/	877658
Sample Reference				IP13	Stockpile 1	IP15	IP16	IP1/
Sample Number				None Supplied	None Supplied			None Supplied
Depth (m)				1.30-1.40	12/12/2017	0.20	0.20	0.30
Date Sampled				13/12/2017 None Supplied	13/12/2017 None Supplied	13/12/2017 None Supplied	13/12/2017 None Supplied	13/12/2017 None Supplied
				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	-	< 0.1
Moisture Content	%	N/A	NONE	12	16	16	-	20
Total mass of sample received	kg	0.001	NONE	1.1	1.7	1.3	-	1.1
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.6	8.4	-	-	-
Total Sulphate as SO ₄	%	0.005	MCERTS	0.092	-	-	-	-
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	290	-	-	-
Equivalent)	a/l	0.00125	MCERTS	0.0082	0.14	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate	9/-	0.00120	HOLITO	010002	0121			
Equivalent)	mg/l	1.25	MCERTS	8.2	143	-	-	-
Total Sulphur	%	0.005	MCERTS	0.033	-	-	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Pyfelle Bonzo(2)2nthracono	mg/kg	0.05	MCEDITC	-	< 0.05	-	-	-
	mg/kg	0.05	MCEPTS	-	< 0.05	-	-	-
Benzo(h)fluoranthene	mg/kg	0.05	MCEDTS		< 0.05	_		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	_	< 0.05		_	
Benzo(a)pyrene	ma/ka	0.05	MCERTS	-	< 0.05	-	-	-
Indeno(1,2,3-cd)pyrene	ma/ka	0.05	MCERTS	-	< 0.05	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	-
Speciated Total EPA-16 PAHs	ma/ka	0.8	MCERTS	-	< 0.80	-	-	-
	ing/kg	0.0	HOLINO		1 0100			
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	14	19	-	16
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-	7.8	-	1.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0	-	-	-
Chromium (III)	mg/kg	1	NONE	-	14	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	14	23	-	30
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	15	52	-	18
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	15	82	-	36
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	13	26	-	22
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	49	150	-	91

Lab Sample Number				877654	877655	877656	877657	877658
Sample Reference				TP13	Stockpile 1	TP15	TP16	TP17
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.30-1.40	1.00	0.20	0.20	0.30
Date Sampled				13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons				 				
TPH C10 - C40	mg/kg	10	MCERTS	-	< 10	-	-	-
	-							
TPH5 (C6 - C10)	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH5 (C10 - C20)	mg/kg	10	MCERTS	-	-	-	-	-
TPH5 (C20 - C30)	mg/kg	10	NONE	-	-	-	-	-
TPH5 (C30 - C40)	mg/kg	10	NONE	-	-	-	-	-
TPH5 (C6 - C40)	mg/kg	10	NONE	-	-	-	-	-
Pesticide and Herbicide Screen								
Pesticides/Herbicides Screen in Soil	P/A	N/A	NONE	-	-	-	-	-

ab Sample Number				077650	077660	077661	077660	077(()
				877659	877660	877001	877662	877663
Sample Reference				IP18	Stockpile 3	IP/	WS2	WS2
Sample Number				None Supplied		None Supplied	None Supplied	None Supplied
Deptn (m)				0.40	0.30	12/12/2017	0.10	1.00
Date Sampled				13/12/2017	13/12/2017	13/12/2017 None Supplied	14/12/2017 None Supplied	14/12/2017 None Supplied
				None Supplied	None Supplied	None Supplied	None Supplieu	None Supplieu
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	20	20	13	27	18
Total mass of sample received	kg	0.001	NONE	1.3	0.42	1.2	0.39	0.43
•ł								
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile- Bitumen	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.1	-	8.5	-	-
Total Sulphate as SO ₄	%	0.005	MCERTS	-	-	0.083	-	-
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	64	-	-	-	-
Equivalent)	g/l	0.00125	MCERTS	0.032	-	0.0057	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	mg/l	1.25	MCERTS	32.0	-	5./	-	-
Total Sulphur	%	0.005	MCERTS	-	-	0.033	-	-
Speciated BAHs								
Nanhthalana	ma/ka	0.05	MCEDTS	< 0.05	< 0.05	_	< 0.05	< 0.05
Acenandthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	_	< 0.05	< 0.05
Fluorene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Phenanthrene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Anthracene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Benzo(gni)perviene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Tetal DAH								
Speciated Total EDA-16 DAHs	malka	0.0	MCEDTC	< 0.80	< 0.90	_	< 0.90	< 0.90
Specialed Total LFA-10 FAIls	iiig/kg	0.0	PICER15	< 0.80	< 0.80	-	< 0.60	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	ma/ka	1	MCERTS	12	16	-	14	-
Boron (water soluble)	ma/ka	0.2	MCERTS	-	1.3	-	1.8	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	< 0.2	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	-	-	-
Chromium (III)	mg/kg	1	NONE	28	-	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29	25	-	26	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	17	17	-	16	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	29	36	-	27	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	17	17	-	17	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	/2	89	-	49	-

Lab Sample Number				877659	877660	877661	877662	877663
Sample Reference				TP18	Stockpile 3	TP7	WS2	WS2
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.30	1.60	0.10	1.00
Date Sampled				13/12/2017	13/12/2017	13/12/2017	14/12/2017	14/12/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH C10 - C40	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH5 (C6 - C10)	mg/kg	0.1	MCERTS	-	-	-	-	-
TPH5 (C10 - C20)	mg/kg	10	MCERTS	-	-	-	-	-
TPH5 (C20 - C30)	mg/kg	10	NONE	-	-	-	-	-
TPH5 (C30 - C40)	mg/kg	10	NONE	-	-	-	-	-
TPH5 (C6 - C40)	mg/kg	10	NONE	-	-	-	-	-
Pesticide and Herbicide Screen								
Pesticides/Herbicides Screen in Soil	P/A	N/A	NONE	-	-	-	Absent	-

				077664			
Lab Sample Number				87/664		 	
Sample Reference				WS2			
Sample Number				None Supplied			
Depth (m)				2.40		 	
Date Sampled				14/12/201/		 	
				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1			
Moisture Content	%	N/A	NONE	20			
Total mass of sample received	kg	0.001	NONE	0.36			
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-			
Asbestos in Soil	Туре	N/A	ISO 17025	-			
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	8.3	ļ	 	
iotai Suiphate as SU ₄	%	0.005	MCERTS	0.100	ļ		
Water Soluble Sulphate as SO₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	-			
Equivalent)	g/l	0.00125	MCERTS	0.016			
Water Soluble SO4 16hr extraction (2:1 Leachate	ma/l	1 25	MCEDTS	15 7			
Total Sulphur	111g/1 %	0.005	MCERTS	0.040			
	70	0.005	PICERTS	0.010			
Speciated PAHs							
Naphthalene	ma/ka	0.05	MCERTS	-			
Acenaphthylene	mg/kg	0.05	MCERTS	-			
Acenaphthene	mg/kg	0.05	MCERTS	-			
Fluorene	mg/kg	0.05	MCERTS	-			
Phenanthrene	mg/kg	0.05	MCERTS	-			
Anthracene	mg/kg	0.05	MCERTS	-			
Fluoranthene	mg/kg	0.05	MCERTS	-			
Pyrene	mg/kg	0.05	MCERTS	-			
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-			
Chrysene	mg/kg	0.05	MCERTS	-			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-			
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-			
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-			
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-			
Didenz(a,n)anthracene	mg/kg	0.05	MCEDITS	-			
benzo(gni)perylene	шу/ку	0.05	PICER15	-			
Total PAH							
Speciated Total EPA-16 PAHs	ma/ka	0.8	MCERTS	-			
Specialed Total EIX 10 TAILS	iiig/kg	0.0	TIGENTS				
Heavy Metals / Metalloids							
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	-			
Boron (water soluble)	mg/kg	0.2	MCERTS	-			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-			
Chromium (hexavalent)	mg/kg	4	MCERTS	-		 	
Chromium (III)	mg/kg	1	NONE	-			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-		 	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	L		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-		 	
Nickei (aqua regia extractable)	mg/kg	1	MCERTS	-	ļ	 	
Zinc (aqua rogia ovtractable)	mg/kg	1		-	L		L
ZINC (ayud Teyla exilaciable)	mg/Kg	1	PILERIS	-			

Lab Sample Number				877664		
Sample Reference				WS2		
Sample Number				None Supplied		
Depth (m)				2.40		
Date Sampled				14/12/2017		
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Petroleum Hydrocarbons						
ТРН С10 - С40	mg/kg	10	MCERTS	-		
TPH5 (C6 - C10)	mg/kg	0.1	MCERTS	-		
TPH5 (C10 - C20)	mg/kg	10	MCERTS	-		
TPH5 (C20 - C30)	mg/kg	10	NONE	-		
TPH5 (C30 - C40)	mg/kg	10	NONE	-		
TPH5 (C6 - C40)	mg/kg	10	NONE	-		
Pesticide and Herbicide Screen						
Pesticides/Herbicides Screen in Soil	P/A	N/A	NONE	-		

Lab Sample Number				877665		
Sample Reference	TP17					
Sample Number	None Supplied					
Depth (m)	0.10					
Date Sampled				13/12/2017		
Time Taken				None Supplied		
Analytical Parameter (Bulk Analysis)	Units	Limit of detection	Accreditation Status			
Asbestos Identification Name	Туре	N/A	ISO 17025	Chrysotile- Hard/Cement Type Material		

Project / Site name: Steeple Aston

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
877644	TP4	None Supplied	0.20	Light brown clay and sand with gravel and vegetation.
877645	TP5	None Supplied	1.00	Light brown clay and sand.
877646	TP6	None Supplied	1.20	Light brown clay and sand with gravel.
877647	TP7	None Supplied	0.10	Brown loam and clay with gravel and vegetation.
877648	TP8	None Supplied	0.10	Brown loam and clay with vegetation.
877649	TP8	None Supplied	0.50	Light brown clay and sand with vegetation.
877650	TP10	None Supplied	0.10	Brown loam and clay with vegetation.
877651	TP10	None Supplied	0.85	Light brown clay and sand with rubble.
877652	TP12	None Supplied	0.45	Brown clay.
877653	TP12	None Supplied	0.50	Brown clay.
877654	TP13	None Supplied	1.30-1.40	Light brown clay.
877655	Stockpile 1	None Supplied	1.00	Brown clay and sand with gravel.
877656	TP15	None Supplied	0.20	Brown clay and sand with rubble and gravel
877657	TP16	None Supplied	0.20	-
877658	TP17	None Supplied	0.30	Brown clay with vegetation.
877659	TP18	None Supplied	0.40	Brown clay and loam with gravel.
877660	Stockpile 3	None Supplied	0.30	Brown loam and clay with vegetation.
877661	TP7	None Supplied	1.60	Light brown clay.
877662	WS2	None Supplied	0.10	Brown loam and clay with vegetation.
877663	WS2	None Supplied	1.00	Light brown clay with vegetation and gravel.
877664	WS2	None Supplied	2.40	Grey clay.

Project / Site name: Steeple Aston

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in Bulks	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Pesticides and Herbicides in soil screening	In-house method	In-house method		W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L038	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038	W	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding.	L076-PL	W	MCERTS
TPH5 (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method	L076-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Jim Twaddle The Brownfield Consultancy Woodstock Memorial Road Fenny Compton Warwickshire CV47 2XU

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: jim.twaddle@brownfieldconsultancy.co.uk

Analytical Report Number : 17-71018

Project / Site name:	Steeple Aston	Samples received on:	15/12/2017
Your job number:	BC340	Samples instructed on:	15/12/2017
Your order number:		Analysis completed by:	28/12/2017
Report Issue Number:	1	Report issued on:	28/12/2017
Samples Analysed:	1 10:1 WAC sample		

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results						
Report No:		17-:	71018				
					Client:	BROWNFIEL	D
		C h					
Location		Steep	le Aston	Landfill	Nacto Accontan	o Critoria	
Lab Reference (Sample Number)	877668 / 877669				Lanumi	l imite	
Sampling Date		14/1	2/2017			Stable Non-	
Sample ID	WS1 + TP8 combined					reactive	
Denth (m)	1.00-1.45				Inert Waste Landfill	HAZARDOUS waste in non-	Hazardous Waste Landfill
		1.0	1.15		Landfill		
Solid Waste Analysis							
TOC (%)**	0.6				3%	5%	6%
Loss on Ignition (%) **	1.8		-	-			10%
BIEX (µg/kg) **	< 10				6000		
Sum of PCBS (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 0.9				100		
pH (units)**	8.4					>6	
Acid Neutralisation Capacity (mol / kg)	28					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test
(BS EN 12457 - 2 preparation utilising end over end leaching					using BS EN	1 12457-2 at L/S 10) l/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	0.0020			0.0153	0.5	2	25
Barium *	0.0066			0.0514	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0032			0.025	0.5	10	70
Copper *	0.022			0.17	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0013			0.0098	0.5	10	30
Nickel *	0.0048			0.037	0.4	10	40
Lead *	0.0040			0.031	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.023			0.18	4	50	200
Chloride *	0.83			6.5	800	4000	25000
Fluoride	0.24			1.8	10	150	500
Sulphate *	1.3			10	1000	20000	50000
TDS	50			390	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	3.56			27.8	500	800	1000
Leach Test Information							
				 			
Stone Content (%)	< 0.1		+				
Sample Mass (Kg)	0.80						
Dry Matter (%)	85		+	ł			
Moisture (%)	15		+	ł			
			+	ł			
		l	+	ł			
Deside an empressed on a description built of after some 11.	alahuna aariterite 1	ne enelles t-t-	<u> </u>	<u> </u>	* 11// 40 ""	ad (liquid shorts	alugia antro
Results are expressed on a dry weight basis, after correction for m	oisture content whe	re applicable.	aislation		···= UKAS accredit	eu (liquia eluate an	aiysis oniy)
Stated limits are for guidance only and i2 cannot be held responsib	ne for any discrepar	icies with current le	egislation		** = MCERTS acc	redited	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Iss No 17-71018-1 Steeple Aston BC340

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number : 17-71018

Project / Site name: Steeple Aston

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
877668	WS1 + TP8	combined	1.00-1.45	Light brown clay and sand.

Т

Analytical Report Number : 17-71018

Project / Site name: Steeple Aston

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-UK	W	NONE
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	in-house method	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	w	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests"	L009-PL	D	MCERTS

Iss No 17-71018-1 Steeple Aston BC340

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number : 17-71018

Project / Site name: Steeple Aston

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
WS1 + TP8	combined	S	17-71018	877668	b	BTEX in soil (Monoaromatics)	L073B-PL	b
WS1 + TP8	combined	S	17-71018	877668	b	Mineral Oil (Soil) C10 - C40	L076-PL	b
WS1 + TP8	combined	S	17-71018	877668	b	PCB's By GC-MS in soil	L027-PL	b
WS1 + TP8	combined	S	17-71018	877668	b	Speciated WAC-17 PAHs in soil	L064-PL	b
WS1 + TP8	combined	S	17-71018	877668	b	Total BTEX in soil (Poland)	L073-PL	b

APPENDIX D

Geotechnical Laboratory Testing

i2 Analytical Ltd **TEST CERTIFICATE** 7 Woodshots Meadow **Croxley Green Business Park Determination of Liquid and Plastic Limits** Watford Herts WD18 8YS Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method Client: The Brownfield Consultancy Client Reference: BC340 Woodstock Job Number: 17-70944 **Client Address:** Memorial Road Date Sampled: 13/12/2017 Fenny Compton Warwickshire Date Received: 15/12/2017 CV47 2XU Jim Twaddle Contact: Date Tested: 22/12/2017 Site Name: **Steeple Aston** Sampled By: Not Given Not Given Site Address: 877227 **TEST RESULTS** Laboratory Reference: Sample Reference: Not Given Description: Yellowish brown slightly gravelly slightly sandy CLAY Sample Type: D TP4 Depth Top [m]: 1.70 Location: Sample Preparation: Depth Base [m]: Not Given Tested after >425um removed by hand **Liquid Limit** As Received Moisture **Plasticity Index Plastic Limit** % Passing 425µm Content [%] [%] [%] **BS Test Sieve** [%] 21 55 21 34 95 100 90 A line 80 70 CE 60 PLASTICITY INDEX CV 50 ME 40 • 877227 MV 30 CI 20 MH CL 10 MI ML 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 LIQUID LIMIT Legend, based on BS 5930:2015 Code of practice for site investigations Liquid Limit Plasticity С below 35 Clay L Low Silt 35 to 50 М Medium Т н High 50 to 70 Very high 70 to 90 ν Е Extremely high exceeding 90 0 Organic append to classification for organic material (eg CHO)

Remarks

Approved: Signed: Dariusz Piotrowski Mark Beastall PL Laboratory Geotechnical Commercial Manager Geotechnical Section Date Reported: 02/01/2018

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1

i2 Analytical Ltd **TEST CERTIFICATE** 7 Woodshots Meadow **Croxley Green Business Park Determination of Liquid and Plastic Limits** Watford Herts WD18 8YS Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method Client: The Brownfield Consultancy Client Reference: BC340 Woodstock Job Number: 17-70944 **Client Address:** Memorial Road Date Sampled: 13/12/2017 Fenny Compton Warwickshire Date Received: 15/12/2017 CV47 2XU Jim Twaddle Contact: Date Tested: 22/12/2017 Site Name: **Steeple Aston** Sampled By: Not Given Not Given Site Address: 877228 **TEST RESULTS** Laboratory Reference: Sample Reference: Not Given Description: Light brown slightly gravelly slightly sandy CLAY Sample Type: D TP6 Depth Top [m]: 2.00 Location: Sample Preparation: Depth Base [m]: Not Given Tested after washing to remove >425um **Liquid Limit** As Received Moisture Plasticity Index **Plastic Limit** % Passing 425µm Content [%] [%] [%] [%] **BS Test Sieve** 13 47 19 28 86 100 A line 90 80 70 CE 60 PLASTICITY INDEX CV 50 ME 40 CH MV 30 877228 ۲ CI 20 MH CL 10 MI ML 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 LIQUID LIMIT Legend, based on BS 5930:2015 Code of practice for site investigations Liquid Limit Plasticity С below 35 Clay L Low Silt 35 to 50 М Medium Т н High 50 to 70 Very high 70 to 90 ν Е Extremely high exceeding 90 0 Organic append to classification for organic material (eg CHO)

Remarks

Approved: Signed:
Dariusz Piotrowski
PL Laboratory
Manager Geotechnical
Section
Date Reported: 02/01/2018

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

i2 Analytical Ltd **TEST CERTIFICATE** 7 Woodshots Meadow **Croxley Green Business Park Determination of Liquid and Plastic Limits** Watford Herts WD18 8YS Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method Client: The Brownfield Consultancy Client Reference: BC340 Woodstock Job Number: 17-70944 **Client Address:** Memorial Road Date Sampled: 13/12/2017 Fenny Compton Warwickshire Date Received: 15/12/2017 CV47 2XU Jim Twaddle Contact: Date Tested: 22/12/2017 Site Name: **Steeple Aston** Sampled By: Not Given Not Given Site Address: 877229 **TEST RESULTS** Laboratory Reference: Sample Reference: Not Given Light brown slightly gravelly slightly sandy CLAY with fragments of shell Description: Sample Type: D TP7 Depth Top [m]: 2.30 Location: Sample Preparation: Depth Base [m]: Not Given Tested after >425um removed by hand **Liquid Limit** As Received Moisture **Plasticity Index Plastic Limit** % Passing 425µm Content [%] [%] [%] [%] **BS Test Sieve** 17 44 17 27 97 100 90 A line 80 70 CE 60 PLASTICITY INDEX CV 50 ME 40 CH MV 30 CP 877229 20 MH CL 10 MI ML 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 LIQUID LIMIT Legend, based on BS 5930:2015 Code of practice for site investigations Liquid Limit Plasticity С Clay Low below 35 L Silt 35 to 50 М Medium Т н High 50 to 70 Very high 70 to 90 ν Е Extremely high exceeding 90 0

Remarks

Signed: Approved: Dariusz Piotrowski Mark Beastall PL Laboratory **Geotechnical Commercial** Manager Geotechnical Manager Section 02/01/2018 Date Reported:

append to classification for organic material (eg CHO)

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Organic

	Detern	TEST CERTIFICATE i2 Analytical Ltd 7 Woodshots Meadow 7 Woodshots Meadow Croxley Green Business Park Croxley Green Business Park Watford Herts WD18 8YS Watford Herts WD18 8YS												
	Tested in /		BS1377_2: 100		Watford Herts WD1	8 8YS Environmental Science								
4041 Client: Client Address:	The Bro Woods Memori Fenny (Warwic CV47 2	The Brownfield ConsultancyClient Reference: BC340WoodstockJob Number: 17-70944Memorial RoadDate Sampled: 13/12/2017Fenny ComptonDate Received: 15/12/2017WarwickshireDate Received: 15/12/2017CV47 2XUCV47 2XU												
Contact: Site Name: Site Address:	Jim Tw Steeple Not Giv	Jim TwaddleDate Tested: 22/12/2017Steeple AstonSampled By: Not GivenNot Given												
TEST RESULT Description: Location: Sample Prepara	Light br TP8 tion:	Laboratory Reference: 877230 Sample Reference: Not Given Light brown slightly sandy CLAY Sample Type: D TP8 Depth Top [m]: 0.75 n: Tested in natural condition Depth Base [m]: Not Giver												
As Received Content	Moisture [%]	Liquic [؟	l Limit 6]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425µm BS Test Sieve								
15		6	0	21	39	100								
100 - 90 - 80 - 70 - 60 - 40 - 30 - 10 - 10 - 0 - 0 - 0		CL 	CI MI 40 50	CV CH 877230 MV MH	CE ME 0 100 110 120	A line								
		Legend, based on BS 5930:2015 Code of practice for site investigations Plasticity Liquid Limit C Clay L Low below 35 M Silt I Medium 35 to 50 H High 50 to 70 V Very high 70 to 90 E Extremely high exceeding 90 Organic O append to classification for organic material (eg CHO)												

Remarks

 Approved:
 Signed:

 Dariusz Piotrowski
 Mark Beastall

 PL Laboratory
 Geotechnical Commercial

 Manager Geotechnical
 Manager

 Section
 02/01/2018

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

for and on behalf of i2 Analytical Ltd

Page 1 of 1

i2 Analytical Ltd **TEST CERTIFICATE** 7 Woodshots Meadow **Croxley Green Business Park Determination of Liquid and Plastic Limits** Watford Herts WD18 8YS Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method The Brownfield Consultancy **Client Reference: BC340** Client: **Client Address:** Woodstock Job Number: 17-70944 Memorial Road Date Sampled: 13/12/2017 Fenny Compton Warwickshire Date Received: 15/12/2017 CV47 2XU Contact: Jim Twaddle Date Tested: 22/12/2017 Steeple Aston Site Name: Sampled By: Not Given Site Address: Not Given 877231 **TEST RESULTS** Laboratory Reference: Not Given Sample Reference: Yellowish brown slightly gravelly slightly sandy CLAY with fragments of **Description:** Sample Type: D shell TP8 Depth Top [m]: 2.30 Location: Sample Preparation: Depth Base [m]: Not Given Tested after washing to remove >425um As Received **Liquid Limit Plastic Limit Plasticity Index** % Passing 425µm Moisture Content [%] **BS Test Sieve** [%] [%] [%] 19 52 19 33 91 100 90 A line 80 70 CE 60 PLASTICITY INDEX CV 50 ME 40 CH MV 877231 30 CI 20 МH CL 10 MI ML 0 10 100 130 150 0 20 30 40 50 60 70 80 90 110 120 140 LIQUID LIMIT Legend, based on BS 5930:2015 Code of practice for site investigations Liquid Limit Plasticity below 35 С Clay L Low M Silt Т Medium 35 to 50 50 to 70 н High v Very high 70 to 90

> Organic 0 append to classification for organic material (eg CHO)

exceeding 90

Extremely high

Е

Remarks

Approved:		Signed:
Dariusz Piotrowski		Mark Beastall
PL Laboratory		Geotechnical Commercial
Manager Geotechnical		Manager
Section		
Date Reported:	02/01/2018	
-		for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

		TEST CERTIFICATE i2 Analytical Ltd 7 Woodshots Meadow Croyley Green Business Park											
	<u>Detern</u>	nination	of Liqu	uid an	d Pla	stic Lir	<u>nits</u>	Croxle Watfo	y Greer rd Herts	Busin WD18	ess Parl 8YS	K Env	rironmental Science
4041	Tested in A	ccordance wit	h BS1377-2	2: 1990: C	Clause 4.4	4 & 5: One F	oint Met	hod					
Client: Client Address:	The Bro Woodst Memori Fenny C Warwic	ownfield Cons ock al Road Compton kshire	sultancy			Clie E D	ent Refe Job Nu Date Sar ate Rec	rence: imber: npled: eived:	BC340 17-7094 13/12/2 15/12/2	14 017 017			
Contact: Site Name: Site Address:	Jim Twa Steeple Not Giv	UV47 2XUDate Tested: 22/12/2017Jim TwaddleDate Tested: 22/12/2017Steeple AstonSampled By: Not GivenNot GivenSampled By: Not Given											
TEST RESUL	TS	Lat	ooratory R	eference	e: 8	77232							
Description: Location: Sample Prepara	Yellowis TP10 tion:	Sample Reference: Not Given Yellowish brown slightly sandy CLAY Sample Type: D TP10 Depth Top [m]: 2.45 ion: Tested in natural condition										5 Given	
As Received	Moisture ſ%1	Liqui) ۲	d Limit %1		Plast	ic Limit %1		Plastic r	ity Ind %1	ex	% Pa BS	assing Test	j 425µm Sieve
28	[,0]	L	52		21				31		100		
100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 10 - 0 - 0 -		CL CL 20 30 Legend, based of C Clay M Silt	CI MI 40 m BS 5930:20	50 C Plas L H V E O	H 2332 H 50 7 LIQ of practice ticity Low Medium High Very hig Extreme append	CV MV MV 0 80 UID LIMIT for site invest	90 igations	CE ME 100 Liquid Li below 38 35 to 50 50 to 70 70 to 90 exceedin	110 : mit 5	120			150
Remarks													

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

			TE	ST (CER	TIFI	CAT	E			i2 Analytical Ltd 7 Woodshots Meadow						
	Det	ermi	nation	of	Liqu	id ar	nd P	lasti	<u>c Lin</u>	<u>nits</u>	Crox Watf	ley Gre ord Hei	en Busir ts WD1	ness Pai 8 8YS	rk ⊧	Environment	al Science
4041	Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method																
Client: Client Address:	The Wo Me Fer Wa	e Brown odstoc morial ny Co rwicks	nfield Cor k Road mpton nire	nsulta	ncy				Client Reference: BC340 Job Number: 17-70944 Date Sampled: 14/12/2017								
Contact: Site Name: Site Address:	CV Jim Ste Not	CV47 2XUDate Tested: 22/12/2017Jim TwaddleDate Tested: 22/12/2017Steeple AstonSampled By: Not GivenNot GivenSampled By: Not Given															
TEST RESUL	TS		La	aborat	ory Re	eferenc	e:	8772	34								
Description: Location: Sample Prepara	Sample Reference: Not Given Light brown slightly gravelly slightly sandy CLAY Sample Type: D WS1 Depth Top [m]: 2.00 eparation: Tested after >425um removed by hand											00 15					
As Received	Moistu 1%1	oisture Liquid Limit Plastic							imit		Plasticity Index % Passing 42					g 42: t Siev	5µm
14	[70]			45			20					25			89		
100 -														•		_	
90 - 80 - 70 -											CE						
60 - 50 - 40 - 10 -							CH		cv		ME						
LS 30 - 20 - 10 -			CL		CI. 8	377234	ин										
		•••••	ML		МІ												
0) 1() 2	0 30	4	0 !	50	, 60	70	80	90	100	110	120	130	140	' 150	
	Legend, based on BS 5930:2015 Code of practice for site investigations Plasticity Liquid Limit C Clay L Low below 35 M Silt I Medium 35 to 50 H High 50 to 70 V Very high 70 to 90 E Extremely high exceeding 90																
Remarks	organic O append to classification for organic material (eg CHO)																

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

TEST CERTIFICATE

Summary of Classification Test Results

The Brownfield Consultancy
Woodstock
Memorial Road
Fenny Compton
Warwickshire
CV47 2XU
Jim Twaddle
Steeple Aston
Not Given

Test results

Client Reference: BC340 Job Number: 17-70944 Date Sampled: 13/12 - 14/12/2017

Date Received: 15/12/2017

Date Tested: 22/12/2017 Sampled By: Not Given

			Sa	mple	-		De	nsity	M/G		PD			
Laboratory Reference	Hole No.	Reference	Top depth	Base depth	Туре	Soli Description	bulk	dry	141/0	% Passing 425um	LL	PL	Ы	15
			լող	[in]			Mg/m3	Mg/m3	%	%	%	%	%	Mg/m3
877232	TP10	Not Given	2.45	Not Given	D	Yellowish brown slightly sandy CLAY			28	100	52	21	31	
877227	TP4	Not Given	1.70	Not Given	D	Yellowish brown slightly gravelly slightly sandy CLAY			21	95	55	21	34	
877228	TP6	Not Given	2.00	Not Given	D	Light brown slightly gravelly slightly sandy CLAY			13	86	47	19	28	
877229	TP7	Not Given	2.30	Not Given	D	Light brown slightly gravelly slightly sandy CLAY with fragments of shell			17	97	44	17	27	
877230	TP8	Not Given	0.75	Not Given	D	Light brown slightly sandy CLAY			15	100	60	21	39	
877231	TP8	Not Given	2.30	Not Given	D	Yellowish brown slightly gravelly slightly sandy CLAY with fragments of shell			19	91	52	19	33	
877234	WS1	Not Given	2.00	2.45	D	Light brown slightly gravelly slightly sandy CLAY			14	89	45	20	25	

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 02/01/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than In full without the prior written approval of the Issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Plonierow 39, 41-711. Ruds Slaska, Poland." Signed:

Mark Beastall

Geotechnical Commercial Manager

			Dete	rm	ina	TES	OT CE	RTIF	ICA Si	ATE	Dist	trik	out	io	<u>n</u>	i2 7 C W	Ana Woo roxle /atfo	alytica odsho ey Gre ord He	il Lto ots M een l erts V	leado Busin VD18	w ess 8Y:	Park S	Env	Analytical	2 tal Science	Ce
Client: The Brownfield Consultancy Client Address: Woodstock Memorial Road Fenny Compton Warwickshire CV47 2XU Contact: Jim Twaddle											C	lien J Da Dai	t Refe lob Ni te Sa e Rec	erenc umb mple ceive	xe: B(er: 17 ed: 13 ed: 15	C34(-70) 5/12/ 5/12/) 944 2017 2017									
Site	Nar Add	ne: Iress:		Ste	eple t Give	Aston en											ŝ	Sampl	led E	su. 22 By: No	ot G	iven				
TEST RESULTS Laboratory Reference: 877233 Sample Reference: Not Sample description: Yellow slightly gravelly slightly sandy CLAY Sample Type: B Location: TP13 Depth Top [m]: 1.30 Supplier: Not Given Depth Base [m]: 1.40													ot G 30 40	iven												
	_	CLAY	Fine	Ð	SI Med	LT dium	Coarse	Fi	ie	S/ Me	AND edium	(Coars	se		ine	G	RAVEL ledium	c	oarse	c	DBBLES	BO	JLDER	s	
	100 - 90 -																									
	80 -							_	_					_	_											
	70						_						-													
% 5	60 -								_																	
assir	50																									
age P	40																									
cents	40																									
Per	30 -																									
	20 -																									
	10																									
	0.0	001			0.0	01		0.1			Ba	tiolo	1	-				10		·		100			100	0
			Sie	ving				Sedi	men	tatio	n				Dry	Mass	of sa	mple [[g]:				1052			
	P	article mm	Size		% Pas	ssing	Parti	cle Size mm	•	% I	Passi	ng														
		125	(10	0								5	Sam	ple P	ropo	ortions	5				% dry	mass	i	
		90 75			10	0									Grav	rel	58						19.	90 90		
		63 50			10	0									Sand	ł					_		20.	00		
		37.5	i		10	0									Fine	s <0.0)63m	m					60.	10		
		28			10	0							-		Grad	ling (\nab	/ele			—					_
		14			96	5									D10	, iiig <i>i</i>)	Jiai	/313		mr	n		28	3		
		10			93	3			$- \Box$						D60					m	n					
		<u>0.3</u>			86	9 6			-						D30					mr	n					_
		3.35	i		84	1 1			$- \Box$						Unife	ormity	Coe	fficient	t t		\top					
		<u></u>	3	E	76	5								2		aure	008	moleni								
		0.6	5		7	1							1		Rem	arks		lastic -	in	orde		h 86407	7		d hole.	
		0.42	.		66	5	┟───						-		riepa	ai duOfi	9110 1	ເວຣແກ່ງ	III BCC	JURDIC	o WIC	0313/	/ unies		n nelow	ŗ
		0.21	2		64	4																				
	\vdash	0.15	3		60	,)	1																			
				L			II						_													

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 02/0

02/01/2018

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Mark Beastall Geotechnical Commercia Manager

APPENDIX E

Gas Monitoring Results

Site:	Steeple A	ston				Operator	:	НК				
Project:	BC340]	Date:	6.1.18			Weather:		Cold dry	
Monitoring	Standpipe diameter	Standpipe Depth	Water Level	Atmos. Pressure	Initial Flow Rate	Temp	Reading Duration	CH_4	CO ₂	O ₂	Notes	
Location	(mm)	(m bgl)	(m bgl)	(mb)	(litres/hr)	(°C)	(s)	(% v/v)	(% v/v)	(% v/v)		
WS1	50	2.70	Dry	998	0.1		30	<0.1	3.7	16.4		
							60	<0.1	3.7	16.0		
							120	<0.1	3.7	16.0		
							180	<0.1	3.7	16.0		
							240	<0.1	3.7	16.0		
							300	<0.1	3.7	16.0		
WS2	50	3.02	Dry	008	<0.1		30	-0.1	0.7	20.7		
W 32	50	5.92	Diy	990	<0.1		50 60	<0.1	1.0	10.7		
							120	<0.1	2.4	18.8		
							180	<0.1	2.6	18.5		
							240	<0.1	2.9	18.1		
							300	<0.1	2.9	18.1		
WS3	50	1.75	1.50	998	<0.1		30	<0.1	1.4	20.2		
							60	<0.1	1.4	20.2		
							120	<0.1	1.4	20.2		
							180	<0.1	1.4	20.2		
							240	<0.1	1.4	20.2		
							300	<0.1	1.4	20.2		

Site:	Steeple A	ston							Operator		НК
Project:	BC340]	Date:	11.1.18]	Weather:		Foggy damp
Monitoring	Standpipe diameter	Standpipe Depth	Water Level	Atmos. Pressure	Initial Flow Rate	Temp	Reading Duration	CH_4	CO ₂	O ₂	Notes
LUCATION	(mm)	(m bgl)	(m bgl)	(mb)	(litres/hr)	(°C)	(s)	(% v/v)	(% v/v)	(% v/v)	
WS1	50	2.70	Dry	1006	0.2		30	<0.1	3.3	17.4	
							60	<0.1	3.3	17.0	
							120	<0.1	3.3	16.9	
							180	<0.1	3.3	16.9	
							240	<0.1	3.3	16.9	
							300	<0.1	3.3	16.9	
WS2	50	3.92	Dry	1006	<0.1		30	<0.1	0.3	20.8	
							60	<0.1	0.3	20.8	
							120	<0.1	0.3	20.8	
							180	<0.1	0.3	20.8	
							240	<0.1	0.3	20.8	
							300	<0.1	0.3	20.8	
WS3	50	1.75	1.62	1006	<0.1		30	<0.1	1.9	20.2	
							60	<0.1	1.9	20.0	
							120	<0.1	1.9	20.0	
							180	<0.1	1.9	20.0	
							240	<0.1	1.9	20.0	
							300	<0.1	1.9	20.0	

Site:	Steeple A	ston							Operator		НК	
Project:	BC340]	Date:	19.1.18			Weather:		Warm, frosty	
Monitoring	Standpipe diameter	Standpipe Depth	Water Level	Atmos. Pressure	Initial Flow Rate	Temp	Reading Duration	CH_4	CO ₂	O ₂	Notes	
Location	(mm)	(m bgl)	(m bgl)	(mb)	(litres/hr)	(°C)	(s)	(% v/v)	(% v/v)	(% v/v)		
WS1	50	2.70	Dry	995	<0.1		30	<0.1	1.8	18.8		
							60	<0.1	1.8	18.7		
							120	<0.1	1.8	18.7		
							180	<0.1	1.8	18.7		
							240	<0.1	1.8	18.7		
							300	<0.1	1.8	18.7		
WS2	50	3.92	Dry	995	<0.1		30	<0.1	0.2	20.6		
							60	<0.1	0.2	20.6		
							120	<0.1	0.2	20.6		
							180	<0.1	0.2	20.6		
							240	<0.1	0.2	20.6		
							300	<0.1	0.2	20.6		
WS3	50	1.75	Dry	995	<0.1		30	<0.1	1.7	19.4		
							60	<0.1	1.7	19.3		
							120	<0.1	1.7	19.3		
							180	<0.1	1.7	19.3		
							240	<0.1	1.7	19.3		
							300	<0.1	1.7	19.3		

Site:	Steeple A	ston							Operator		НК	
Project:	BC340]	Date:	19.1.18]	Weather:		Heavy rain	
Monitoring	Standpipe diameter	Standpipe Depth	Water Level	Atmos. Pressure	Initial Flow Rate	Temp	Reading Duration	CH_4	CO ₂	O ₂	Notes	
Location	(mm)	(m bgl)	(m bgl)	(mb)	(litres/hr)	(°C)	(s)	(% v/v)	(% v/v)	(% v/v)		
WS1	50	2.70	Dry	987	<0.1		30	<0.1	2.2	18.6		
							60	<0.1	2.2	18.3		
							120	<0.1	2.2	18.3		
							180	<0.1	2.2	18.3		
							240	<0.1	2.2	18.3		
							300	<0.1	2.2	18.3		
WS2	50	3.92	Dry	987	0.4		30	<0.1	2.8	17.9		
							60	<0.1	2.8	17.6		
							120	<0.1	2.8	17.6		
							180	<0.1	2.8	17.6		
							240	<0.1	2.8	17.6		
							300	<0.1	2.8	17.6		
WS3	50	1.75	Dry	987	<0.1		30	<0.1	1.2	19.8		
							60	<0.1	1.2	19.6		
							120	<0.1	1.2	19.6		
							180	<0.1	1.2	19.6		
							240	<0.1	1.2	19.6		
							300	<0.1	1.2	19.6		

Site:	Steeple A	ston							Operator	:	НК
Project:	BC340]	Date:	1.2.18			Weather:		Dry cold
Monitoring	Standpipe diameter	Standpipe Depth	Water Level	Atmos. Pressure	Initial Flow Rate	Temp	Reading Duration	CH_4	CO ₂	O ₂	Notes
Location	(mm)	(m bgl)	(m bgl)	(mb)	(litres/hr)	(°C)	(s)	(% v/v)	(% v/v)	(% v/v)	
WS1	50	2.70	Dry	990	<0.1		30	<0.1	1.8	18.6	
							60	<0.1	1.8	18.4	
							120	<0.1	1.8	18.4	
							180	<0.1	1.8	18.4	
							240	<0.1	1.8	18.4	
							300	<0.1	1.8	18.4	
WS2	50	3.92	Dry	990	<0.1		30	<0.1	1.7	19.6	
							60	<0.1	1.7	19.5	
							120	<0.1	1.7	19.5	
							180	<0.1	1.7	19.5	
							240	<0.1	1.7	19.5	
							300	<0.1	1.7	19.5	
WS3	50	1.75	Dry	990	<0.1		30	<0.1	1.8	19.8	
			-				60	<0.1	1.8	19.6	
							120	<0.1	1.8	19.6	
							180	<0.1	1.8	19.6	
							240	<0.1	1.8	19.6	
							300	<0.1	1.8	19.6	

Site:	Steeple A	ston			_	Operator:		НК			
Project:	BC340]	Date:	6.2.18			Weather:		Dry cold
Monitoring	Standpipe diameter	Standpipe Depth	Water Level	Atmos. Pressure	Initial Flow Rate	Temp	Reading Duration	CH_4	CO ₂	O ₂	Notes
Location	(mm)	(m bgl)	(m bgl)	(mb)	(litres/hr)	(°C)	(s)	(% v/v)	(% v/v)	(% v/v)	
WS1	50	2.70	Dry	1005	<0.1		30	<0.1	2.9	16.8	
							60	<0.1	2.9	16.1	
							120	<0.1	2.9	16.1	
							180	<0.1	2.9	16.1	
							240	<0.1	2.9	16.1	
							300	<0.1	2.9	16.1	
WS2	50	3.92	Dry	1005	<0.1		30	<0.1	2.0	18.3	
			-				60	<0.1	2.0	18.0	
							120	<0.1	2.0	18.0	
							180	<0.1	2.0	18.0	
							240	<0.1	2.0	18.0	
							300	<0.1	2.0	18.0	
WS3	50	1.75	Dry	1005	<0.1		30	<0.1	1.9	19.3	
			,				60	<0.1	1.9	19.0	
							120	<0.1	1.9	18.9	
							180	<0.1	1.9	18.9	
							240	<0.1	1.9	18.9	
							300	<0.1	1.9	18.9	

APPENDIX F

Limitations

NOTES ON LIMITATIONS

This report has been prepared by the Brownfield Consultancy with all reasonable skill, care and diligence. This report is confidential and has been prepared solely for the benefit of the client as stated at the front of the report in relation to a specific development or scheme; and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from The Brownfield Consultancy; a charge may be levied against such approval. We accept no responsibility or liability for the consequences of this document being used for any purpose or project other than for which it was commissioned, and: this document to any third party with whom an agreement has not been executed.

Any comments given are based on the understanding that the proposed development will be as detailed. The Brownfield Consultancy warrants the accuracy of this report up to and including the published date. Additional information, improved practice or changes in legislation may necessitate this report having to be reviewed in whole or in part after that date.

This report is only valid when used it its entirety. Any information or advice included in the report should not be relied upon until considered in the context of the whole report. Whilst this report and the opinion made herein are correct to the best of our belief we cannot guarantee the accuracy or completeness of any information provided by third parties.

The opinions and recommendations expressed in this report are based on statute, guidance, and appropriate practice current at the date of its preparation. The Brownfield Consultancy does not accept any liability whatsoever for the consequences of any future legislative changes or the release of subsequent guidance documentation, etc. Such changes may render some of the opinions and advice in this report inappropriate or incorrect and we will be pleased to advise if any report requires revision due to changing circumstances. Following delivery of a report we have no obligation to advise the Client or any other party of such changes or their repercussions.

Phase 1 Reports

The work undertaken to provide the basis of a Phase I report comprised a study of available documented information from a variety of sources, together with (where appropriate) a brief walk over inspection of the site. The opinions given in this report have been dictated by the finite data on which they are based and are relevant only to the purpose for which the report was commissioned. The information reviewed should not be considered exhaustive and has been accepted in good faith as providing true and representative data pertaining to site conditions. It should be noted that any risks identified in this report are perceived risks based on the information reviewed; actual risks can only be assessed following a physical investigation of the site.

Historical maps and aerial photographs provide a "snap shot" in time about conditions or activities at the site and cannot be relied upon as indicators of any events or activities that may have taken place at other times.

Phase II Intrusive Investigations

The investigation of the site has been carried out to provide sufficient information concerning the type and degree of contamination, and ground and groundwater conditions to allow a reasonable risk assessment to be made. The conclusions and recommendations made in this site appraisal report and the opinions expressed are based on the information reviewed and/or the ground conditions encountered in exploratory holes and the results of any field or laboratory testing undertaken. There may be ground conditions at the site that have not been disclosed by the information reviewed or by the investigative work undertaken. Such undisclosed conditions cannot be taken into account in any analysis and reporting.

Some of the conclusions in this site appraisal report may be based on third party data. No guarantee can be given for the accuracy or completeness of any of the third party data used.

The evaluation and conclusions do not preclude the existence of contamination, which could not reasonably have been revealed by the current work. Given the discrete nature of sampling, no investigation technique is capable of identifying all conditions present in all areas. The number of sampling points and the methods of sampling and testing do not preclude the existence of localised "hotspots" of contamination where concentrations may be significantly higher than those actually encountered. Hence this report should be used for information purposes only and should not be construed as a comprehensive characterisation of all site conditions.

It should be noted that groundwater levels, groundwater chemistry, surface water levels, surface water chemistry, soil gas concentrations and soil gas flow rates can vary due to seasonal, climatic, tidal and man-made effects.

The interpretation carried out in this report is based on scientific and engineering appraisal carried out by suitably experienced and qualified technical consultants based on the scope of our engagement. We have not taken into account the perceptions of, for example, banks, insurers, other funders, lay people, etc., unless the report has been prepared specifically for that purpose. Advice from other specialists may be required such as the legal, planning and architecture professions, whether specifically recommended in our report or not.

The objectives of the investigation have been linked to establishing the risks associated with potential human targets, building materials, the environment (including adjacent land), and to surface and ground water. The amount of exploratory work and chemical testing undertaken has necessarily been restricted by the short timescale available, and the locations of exploratory holes have been restricted to areas unoccupied by the building(s) on the site and by buried services.

Registered Office:-

The Brownfield Consultancy Woodstock Memorial Road Fenny Compton CV47 2XU

Company No: 8143932

Jim.twaddle@brownfieldconsultancy.co.uk

Tel: 07852 881086