

Appendix F

Geotechnical Test Results and Geotechnical Plots

Geotechnical Laboratory Test Results

LABORATORY REPORT

Contract Number: PSL20/5086

08 October 2020 Report Date:

Client's Reference: C-13603 sch 1

Client Name: Hydrock

Northern Assurance Buildings

9-21 Princess Street Albert Square Manchester M2 4DN

For the attention of: Cameron Adams

Contract Title: North West Bicester Eco Development

Date Received: 24/9/2020 Date Commenced: 24/9/2020 Date Completed: 8/10/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

H Daniels A Watkins R Berriman (Senior Technician) (Director) (Quality Manager)

S Royle S Eyre L Knight (Senior Technician) (Senior Technician) (Laboratory Manager)

Page 1 of

5-7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

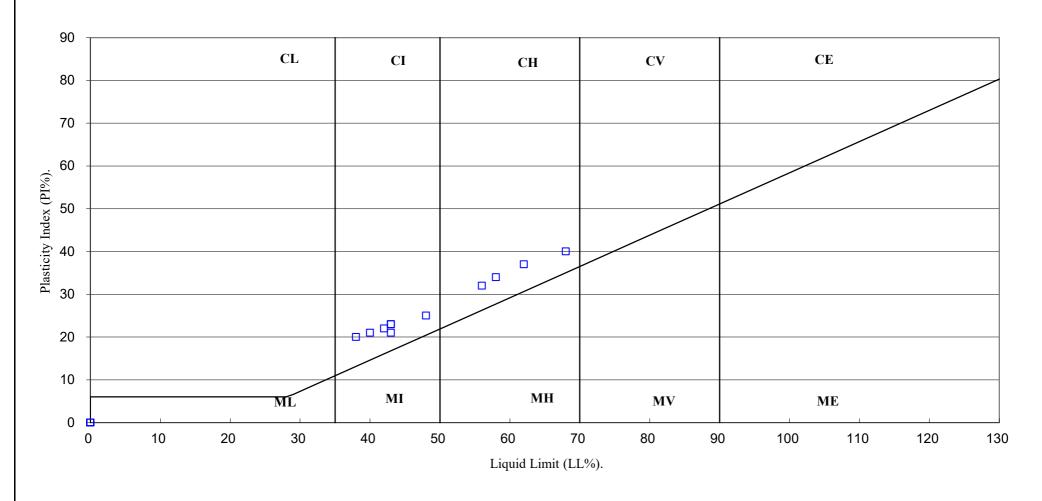
Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP17	4	D	1.90		Brown mottled grey slightly gravelly sandy CLAY.
TP03	5	D	2.40		Brown mottled grey slightly gravelly sandy CLAY.
TP14	5	D	1.60		Brown mottled grey slightly gravelly sandy CLAY.
TP14	6	D	2.60		Brown mottled grey gravelly sandy CLAY.
TP22	4	D	1.20		Brown slightly gravelly slightly sandy CLAY.
TP22	5	D	2.20		Brown mottled grey slightly gravelly slightly sandy CLAY.
TP12	2	D	0.40		Brown slightly gravelly sandy CLAY.
TP12	3	D	0.90		Brown mottled grey slightly gravelly slightly sandy CLAY.
TP12	6	D	2.20		Brown mottled grey slightly gravelly slightly sandy CLAY.
TP12	7	D	3.10		Brown mottled grey slightly gravelly slightly sandy CLAY.
TP02	4	D	1.40		Brown mottled grey gravelly sandy CLAY.
TP23	2	D	0.50		Brown mottled grey slightly gravelly sandy CLAY.
TP23	5	D	1.70		Brown gravelly sandy CLAY.
TP11	2	D	0.50		Brown slightly gravelly sandy CLAY.
TP11	3	D	1.00		Brown mottled grey gravelly sandy CLAY.
TP20	3	В	1.40	2.40	Brown slightly gravelly slightly sandy CLAY.

Contract No:
PSL20/5086
Client Ref:
C-13603

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content %	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm	Remarks
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
TP17	4	D	1.90		24			43	22	21	96	Intermediate plasticity CI.
TP03	5	D	2.40		26			40	19	21	93	Intermediate plasticity CI.
TP14	5	D	1.60		18			48	23	25	97	Intermediate plasticity CI.
TP14	6	D	2.60		29			43	20	23	89	Intermediate plasticity CI.
TP22	4	D	1.20		26			62	25	37	94	High plasticity CH.
TP22	5	D	2.20		30			68	28	40	96	High plasticity CH.
TP12	2	D	0.40		14							
TP12	3	D	0.90		21			58	24	34	94	High plasticity CH.
TP12	6	D	2.20		23							
TP12	7	D	3.10		25							
TP02	4	D	1.40		11			38	18	20	82	Intermediate plasticity CI.
TP23	2	D	0.50		29							
TP23	5	D	1.70		18			43	20	23	82	Intermediate plasticity CI.
TP11	2	D	0.50		20			42	20	22	92	Intermediate plasticity CI.
TP11	3	D	1.00		16							
TP20	3	В	1.40	2.40	24		2.70	56	24	32	94	High plasticity CH.


SYMBOLS: NP: Non Plastic

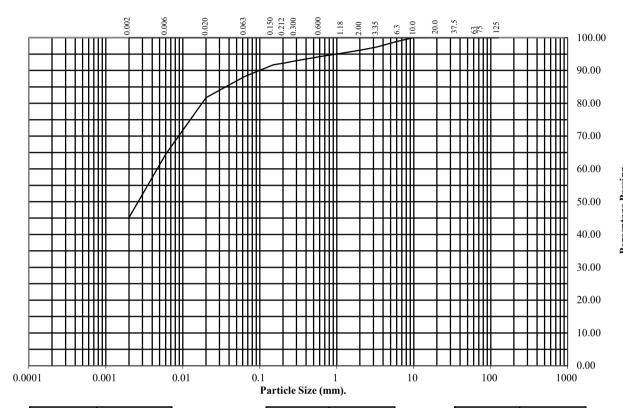
^{*:} Liquid Limit and Plastic Limit Wet Sieved.

Contract No:
PSL20/5086
Client Ref:
C-13603

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Contract No:
PSL20/5086
Client Ref:
C-13603

PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: TP20 Top Depth (m): 1.40

Sample Number: 4 Base Depth(m): 2.40

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	99
3.35	97
2	96
1.18	95
0.6	94
0.3	93
0.212	92
0.15	92
0.063	88

Particle	Percentage
Diameter	Passing
0.02	82
0.006	64
0.002	45

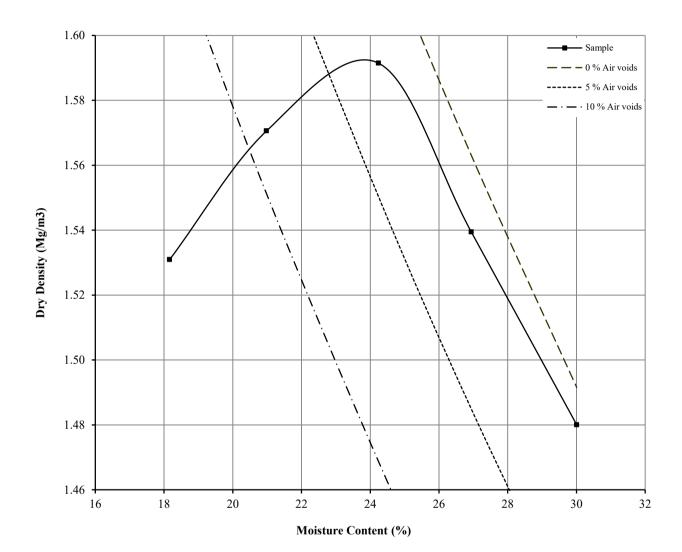
Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	4
Sand	8
Silt	43
Clay	45

Remarks:

See Summary of Soil Descriptions

North West Bicester Eco Development

Contract No: PSL20/5086 Client Ref: C-13603


DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377: Part 4: Clause 3.3: 1990

Hole Number: TP20 Top Depth (m): 1.40

Sample Number: 4 Base Depth (m): 2.00

Sample Type: B

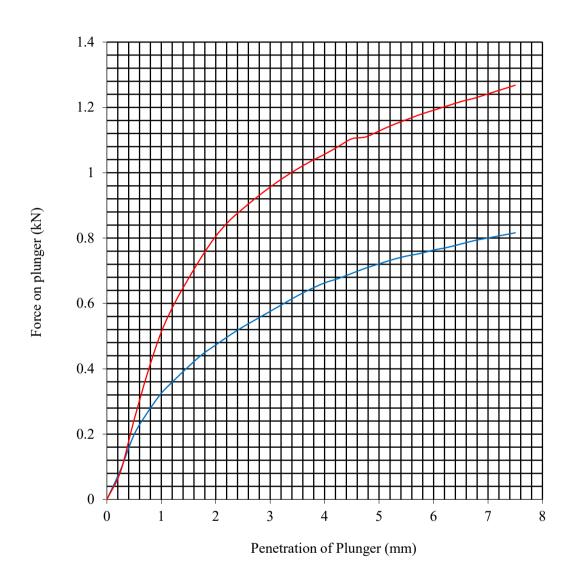
Initial Moisture Content:		24	Method of Compaction:	Separate Samples	
Particle Density (Mg/m3):	2.70	Measured	Material Retained on 37.5 mm Test Sieve	0	
Maximum Dry Density (Mg/	/m3):	1.59	Material Retained on 20.0 mm Test Sieve	(%):	0
Optimum Moisture Content	(%):	24			

Remarks

See summary of soil descriptions.

North West Bicester Eco Development

Contract PSL20/5086 Client Ref C-13603


CALIFORNIA BEARING RATIO TEST

BS 1377: Part 4: 1990

Hole Number: TP20 Top Depth (m): 1.40

Sample Number: 3 Base Depth (m): 2.40

Sample Type: B

Initial Sample Cond	Sample Prepara	ation	Final Moisture Cont	C.B.R. Value %			
Moisture Content:	24	Surcharge Kg:	4.20	Sample Top	26	Sample Top	4.0
Bulk Density Mg/m3:	1.98	Soaking Time hrs	96	Sample Bottom	25	Sample Bottom	6.7
Dry Density Mg/m3: 1.59 Swelling mm:		1.05	Remarks : See Summary o	f Soil Desci	riptions.		
Percentage retained on 20mm BS test sieve:							
Compaction Conditions 2.5kg							

- Top

- Bottom

Contract No: PSL20/5086 Client Ref: C-13603

SUMMARY OF LABORATORY HAND VANES

(BS1377: PART 7: 1990)

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Moisture Content	Peak Shear Strength kPa	Residual Shear Strength kPa	Remarks
TP20	3	В	1.40	2.40	18	>140		Remoulded with 2.5kg effort
TP20	3	В	1.40	2.40	21	>140		Remoulded with 2.5kg effort
TP20	3	В	1.40	2.40	24	102		Remoulded with 2.5kg effort
TP20	3	В	1.40	2.40	27	64		Remoulded with 2.5kg effort
TP20	3	В	1.40	2.40	30	26		Remoulded with 2.5kg effort

^{*} This test is out of our UKAS scope

Contract No:
PSL20/5086
Client Ref:
C-13603

ANALYTICAL TEST REPORT

Contract no: 89762

Contract name: North West Bicester Eco Development (C-13603)

Client reference: PSL20/5086

Clients name: Professional Soils Laboratory

Clients address: 5/7 Hexthorpe Road

Doncaster DN4 0AR

Samples received: 29 September 2020

Analysis started: 29 September 2020

Analysis completed: 06 September 2020

Report issued: 06 September 2020

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

Karan Campbell Director

Lab number			89762-1	89762-2	89762-3	89762-4	89762-5	89762-6
Sample id			TP01	TP03	TP06	TP08	TP11	TP12
Depth (m)			1.00	2.40	0.50	0.70	0.50	0.40
Date sampled			28/09/2020	28/09/2020	28/09/2020	28/09/2020	28/09/2020	28/09/2020
Test	Method	Units						
рН	CE004 ^U	units	8.7	8.5	8.4	8.5	8.4	8.4
Magnesium (2:1 water soluble)	CE061	mg/l Mg	<1	1.2	<1	1.8	<1	<1
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	3.9	2.3	2.0	3.2	1.5	1.8
Nitrate (2:1 water soluble)	CE049 ^U	mg/I NO ₃	8.9	12	27	6.1	10	6.6
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	22	20	13	24	13	18
Sulphate (total)	CE062 ^U	mg/kg SO ₄	946	718	811	940	751	861
Sulphur (total)	CE119	mg/kg S	556	314	413	443	376	405
Sulphur (total)	CE119	% w/w S	0.06	0.03	0.04	0.04	0.04	0.04
Total Organic Carbon (TOC)	CE072 ^U	% w/w C	-	1	-	-	1	-
Estimate of OMC (calculated from TOC)	CE072 ^U	% w/w	-	-	-	-	-	-

Lab number			89762-7	89762-8	89762-9	89762-10	89762-11
Sample id			TP13	TP14	TP17	TP20	TP22
Depth (m)			0.40	1.60	1.90	1.40-2.40	2.20
Date sampled			28/09/2020	28/09/2020	28/09/2020	28/09/2020	28/09/2020
Test	Method	Units					
рН	CE004 ^U	units	8.3	8.4	8.3	7.7	8.2
Magnesium (2:1 water soluble)	CE061	mg/l Mg	<1	<1	<1	<1	<1
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	3.0	2.5	2.1	<1	45
Nitrate (2:1 water soluble)	CE049 ^U	mg/I NO ₃	19	9.3	10	<1	9.6
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	17	15	15	45	16
Sulphate (total)	CE062 ^U	mg/kg SO ₄	986	701	581	504	487
Sulphur (total)	CE119	mg/kg S	490	326	256	231	216
Sulphur (total)	CE119	% w/w S	0.05	0.03	0.03	0.02	0.02
Total Organic Carbon (TOC)	CE072 ^U	% w/w C	-	-	-	0.3	-
Estimate of OMC (calculated from TOC)	CE072 ^U	% w/w	-	-	-	0.5	-

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE004	рН	Based on BS 1377, pH Meter	As received	U	-	units
CE061	Magnesium (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry		1	mg/l Mg
CE049	Chloride (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	1	mg/l Cl
CE049	Nitrate (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	1	mg/l NO ₃
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	U	10	mg/l SO ₄
CE062	Sulphate (total)	Acid extraction, ICP-OES	Dry	U	100	mg/kg SO ₄
CE119	Sulphur (total)	Acid extraction, ICP-OES	Dry		100	mg/kg S
CE119	Sulphur (total)	Acid extraction, ICP-OES	Dry		0.01	% w/w S
CE072	Total Organic Carbon (TOC)	Removal of IC by acidification, Carbon Analyser	Dry	U	0.1	% w/w C
CE072	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry	U	0.1	% w/w

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

N No (not deviating sample)
Y Yes (deviating sample)
NSD Sampling date not provided

NST Sampling time not provided (waters only)

EHT Sample exceeded holding time(s)

IC Sample not received in appropriate containers HP Headspace present in sample container

NCF Sample not chemically fixed (where appropriate)

OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
89762-1	TP01	1.00	N	
89762-2	TP03	2.40	N	
89762-3	TP06	0.50	N	
89762-4	TP08	0.70	N	
89762-5	TP11	0.50	N	
89762-6	TP12	0.40	N	
89762-7	TP13	0.40	N	
89762-8	TP14	1.60	N	
89762-9	TP17	1.90	N	
89762-10	TP20	1.40-2.40	N	
89762-11	TP22	2.20	N	

LABORATORY REPORT

4043

Contract Number: PSL20/5199

Report Date: 15 October 2020

Client's Reference: C-13603 sch 3

Client Name: Hydrock

Northern Assurance Buildings

9-21 Princess Street Albert Square Manchester M2 4DN

For the attention of: Cameron Adams

Contract Title: North West Bicester Eco Development

Date Received: 30/9/2020
Date Commenced: 30/9/2020
Date Completed: 15/10/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins R Berriman (Director) (Director) (Quality Manager)

L Knight S Eyre S Royle (Senior Technician) (Senior Technician) (Laboratory Manager)

Page 1 of

5-7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP19	4	D	1.70		Brown slightly gravelly sandy CLAY.
TP19	5	D	2.70		Brown mottled grey sandy CLAY.
TP25	4	D	1.30		Brown mottled grey slightly gravelly slightly sandy CLAY.
TP25	5	D	2.00		Brown mottled grey sandy CLAY.
TP31	4	D	2.20		Brown mottled grey slightly gravelly sandy CLAY.
TP31	3	D	1.20		Brown slightly gravelly sandy CLAY.
TP41	3	D	1.20		Brown mottled grey sandy CLAY.
TP30	4	D	1.50		Brown mottled grey gravelly sandy CLAY.
TP30	5	D	2.00		Brown mottled grey gravelly sandy CLAY.
TP32	4	D	1.00		Brown gravelly very sandy CLAY.
TP32	5	D	2.30		Brown mottled grey sandy CLAY.
TP28	3	D	1.00		Brown mottled grey sandy CLAY.
TP28	4	D	1.80		Brown mottled grey sandy CLAY.
TP42	4	D	1.20		Brown slightly gravelly sandy CLAY.
TP45	3	D	0.70		Brown slightly gravelly slightly sandy CLAY.
TP49	5	D	1.70		Brown slightly gravelly slightly sandy CLAY.
TP48	3	D	0.55		Brown very gravelly very sandy CLAY.
TP48	5	D	1.80		Brown mottled grey slightly gravelly slightly sandy CLAY.
TP50	4	D	1.00		Brown slightly gravelly slightly sandy CLAY.

Contract No:
PSL20/5199
Client Ref:
C-13603

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP56	4	D	1.70		Brown mottled grey sandy CLAY.
TP54	3	D	0.60		Brown gravelly sandy CLAY.
TP54	6	D	2.40		Brown slightly gravelly slightly sandy CLAY.
TP54	7	D	3.00		Brown sandy CLAY.
TP44	2	D	0.50		Brown slightly gravelly sandy CLAY.
TP44	4	D	1.60		Brown slightly gravelly slightly sandy CLAY.
TP46	4	В	1.80	1.90	Brown mottled grey slightly sandy CLAY.
TP42	3	В	0.70	0.80	Brown GRAVEL of cobbles.

North West Bicester Eco Development

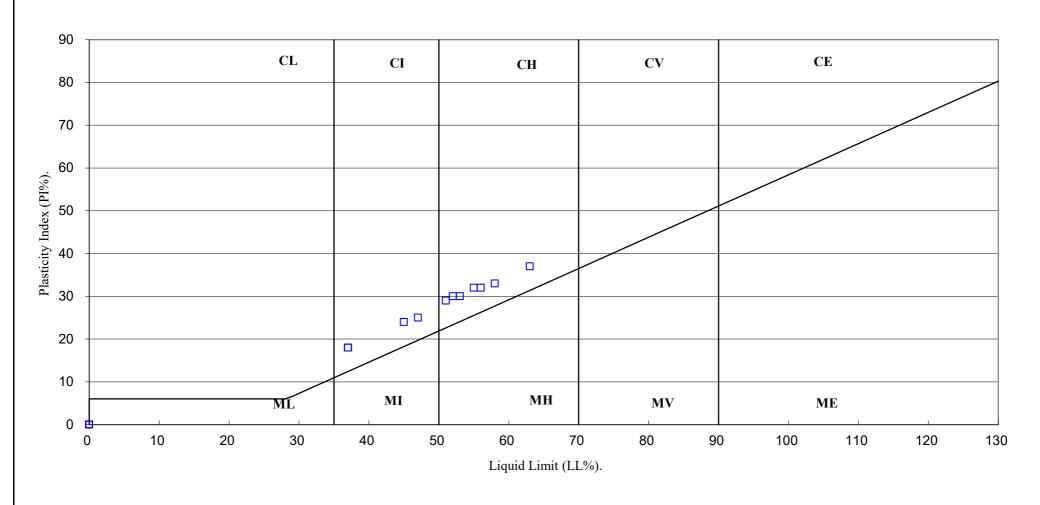
Contract No:
PSL20/5199
Client Ref:
C-13603

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hala	Cample	C 1 -	Т.	D	Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing .425mm	Domonto
Hole	Sample	Sample	Top	Base	Content %	Shrinkage	Density	Limit %	Limit %	Index %	.425mm %	Remarks
Number	Number	Type	Depth	Depth	%	%	Mg/m^3		%	%0	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
TP19	4	D	1.70		22			52	22	30	96	High plasticity CH.
TP19	5	D	2.70		20							
TP25	4	D	1.30		23			55	23	32	95	High plasticity CH.
TP25	5	D	2.00		28							
TP31	4	D	2.20		19			51	22	29	92	High plasticity CH.
TP31	3	D	1.20		20							
TP41	3	D	1.20		22			37	19	18	100	Intermediate plasticity CI.
TP30	4	D	1.50		18			45	21	24	90	Intermediate plasticity CI.
TP30	5	D	2.00		16			37	19	18	85	Intermediate plasticity CI.
TP32	4	D	1.00		17							
TP32	5	D	2.30		17							
TP28	3	D	1.00		19							
TP28	4	D	1.80		17							
TP42	4	D	1.20		22			47	22	25	92	Intermediate plasticity CI.
TP45	3	D	0.70		27			63	26	37	97	High plasticity CH.
TP49	5	D	1.70		26			53	23	30	95	High plasticity CH.
TP48	3	D	0.55		12							
TP48	5	D	1.80		24			56	24	32	94	High plasticity CH.
TP50	4	D	1.00		22			58	25	33	91	High plasticity CH.

SYMBOLS: NP: Non Plastic



Contract No:
PSL20/5199
Client Ref:
C-13603

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

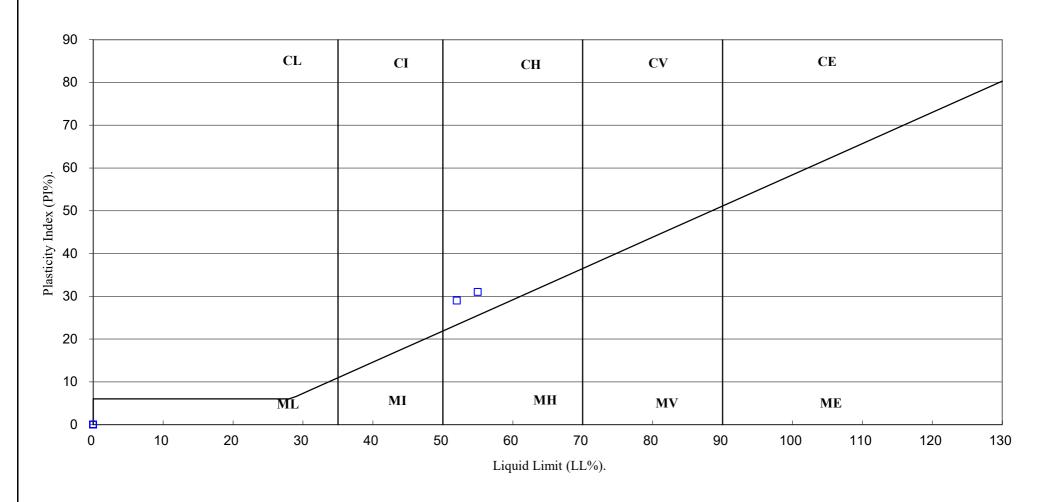
Contract No:
PSL20/5199
Client Ref:
C-13603

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content %	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm %	Remarks
TD5(4	D	m 1.70	m	Clause 3.2 24	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
TP56		-	1.70									
TP54	3	D	0.60		24							
TP54	6	D	2.40		28			55	24	31	93	High plasticity CH.
TP54	7	D	3.00		32							
TP44	2	D	0.50		19							
TP44	4	D	1.60		27							
TP46	4	В	1.80	1.90	22		2.70	52	23	29	100	High plasticity CH.
TP42	3	В	0.70	0.80	2.2		2.65		NP			

SYMBOLS: NP: Non Plastic

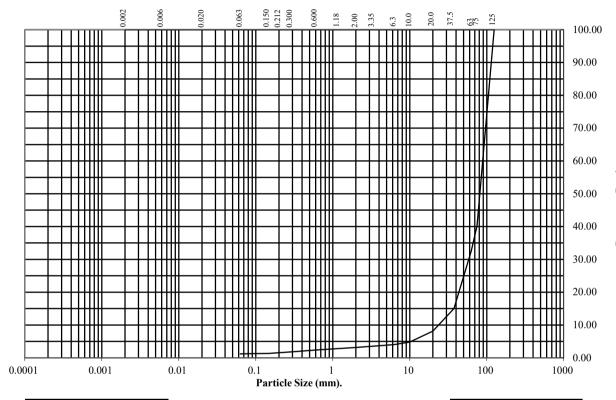


Contract No:
PSL20/5199
Client Ref:
C-13603

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Contract No:
PSL20/5199
Client Ref:
C-13603


PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990Wet Sieve, Clause 9.2

Hole Number: TP42 Top Depth (m): 0.70

Sample Number: 3 Base Depth(m): 0.80

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	40
63	33
37.5	15
20	8
10	5
6.3	4
3.35	4
2	3
1.18	3
0.6	2
0.3	2
0.212	2
0.15	1
0.063	1

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	67 30 2 1

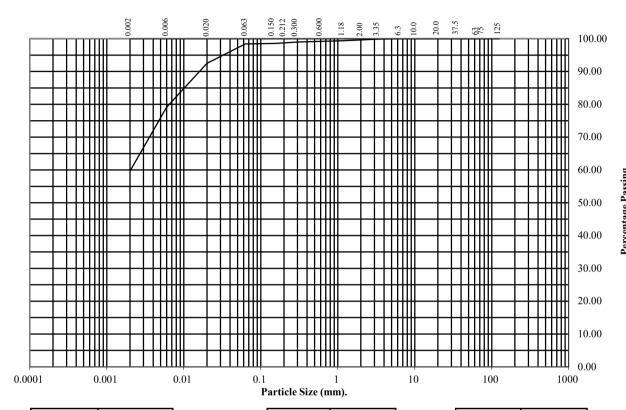
Remarks:

See Summary of Soil Descriptions

North West Bicester Eco Development

Contract No:
PSL20/5199
Client Ref:
C-13603

PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: TP46 Top Depth (m): 1.80

Sample Number: 4 Base Depth(m): 1.90

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	100
3.35	100
2	100
1.18	99
0.6	99
0.3	99
0.212	99
0.15	99
0.063	98

Particle	Percentage
Diameter	Passing
0.02	92
0.006	79
0.002	60

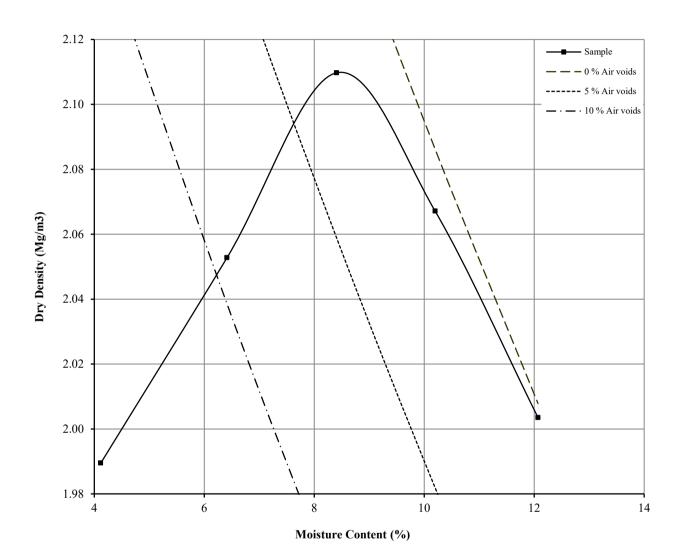
Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	0
Sand	2
Silt	38
Clay	60

Remarks:

See Summary of Soil Descriptions

North West Bicester Eco Development

Contract No: PSL20/5199 Client Ref: C-13603


DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

Non compliance with BS 1377: Part 4: Clause 3.7: 1990

Hole Number: TP42 Top Depth (m): 0.70

Sample Number: 3 Base Depth (m): 0.80

Sample Type: B

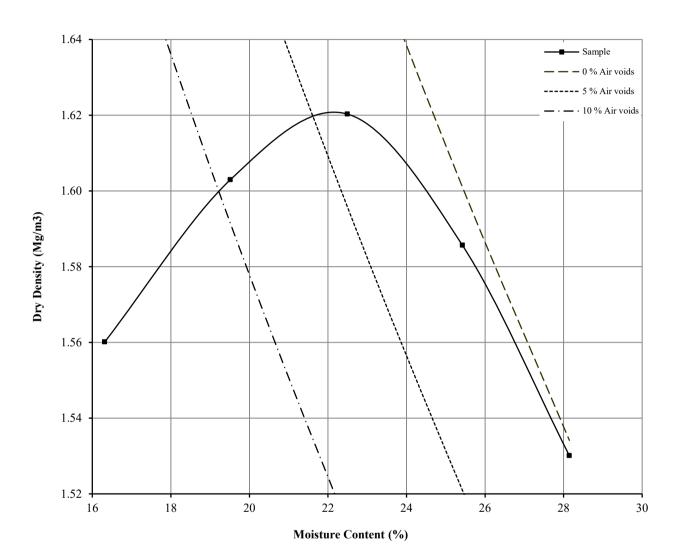
Initial Moisture Content:		2.2	Method of Compaction: Vibro		Separate Samples
Particle Density (Mg/m3): 2.65		Measured	Material Retained on 37.5 mm Test Sieve (%):		85
Maximum Dry Density (Mg/m3):		2.11	Material Retained on 20.0 mm Test Sieve (%):		7
Optimum Moisture Content (%):		8			
Remarks			.		

Remarks

See summary of soil descriptions.

North West Bicester Eco Development

Contract PSL20/5199 Client Ref C-13603


DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377: Part 4: Clause 3.3: 1990

Hole Number: TP46 Top Depth (m): 1.80

Sample Number: 4 Base Depth (m): 1.90

Sample Type: B

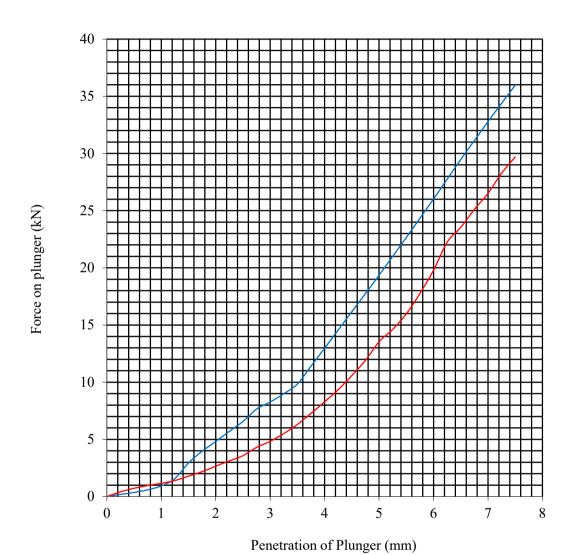
Initial Moisture Content:		22	Method of Compaction: 2.5kg		Separate Samples
Particle Density (Mg/m3): 2.70		Measured	Material Retained on 37.5 mm Test Sieve	0	
Maximum Dry Density (Mg/m3):		1.62	Material Retained on 20.0 mm Test Sieve	0	
Optimum Moisture Content (%):		22			

Remark

See summary of soil descriptions.

North West Bicester Eco Development

Contract PSL20/5199 Client Ref C-13603


CALIFORNIA BEARING RATIO TEST

Non compliance with BS 1377: Part 4: 1990

Hole Number: TP42 Top Depth (m): 0.70

Sample Number: 3 Base Depth (m): 0.80

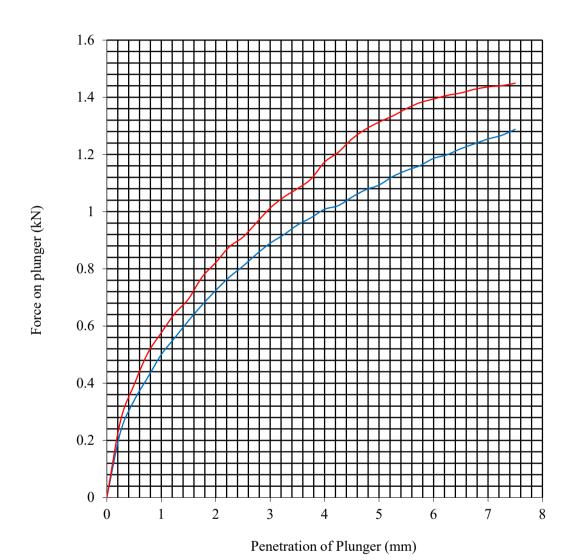
Sample Type: B

Initial Sample Conditions Sample Pre		Sample Prepara	ation	Final Moisture Content %		C.B.R. Value %	
Moisture Content:	8.4	Surcharge Kg:	4.20	Sample Top	Гор 9.3		96.8
Bulk Density Mg/m3:	2.29	Soaking Time hrs	96	Sample Bottom	9.5	Sample Bottom	67.7
Dry Density Mg/m3:	2.11	Swelling mm:	0.01	Remarks : See Summary o	f Soil Desci	riptions.	
Percentage retained on 20mm BS test sieve:			92	1			
Compaction Conditions Vibro							

- Top

- Bottom

Contract No: PSL20/5199 Client Ref: C-13603


CALIFORNIA BEARING RATIO TEST

BS 1377: Part 4: 1990

Top Depth (m): **Hole Number: TP46** 1.80

Sample Number: Base Depth (m): 4 1.90

Sample Type: В

itial Sample Conditions Sample Pr		Sample Prepara	ation	Final Moisture Content %		C.B.R. Value %	
ture Content:	22	Surcharge Kg:	4.20	Sample Top	24	Sample Top	6.1
Density Mg/m3:	1.98	Soaking Time hrs	96	Sample Bottom	24	Sample Bottom	6.9
Density Mg/m3:	1.62	Swelling mm:	1.00	Remarks : See Summary of Soil Descriptions.			
		_	1				

- Bottom

Initial Sample Conditions Sample Conditions		Sample Preparation		Final Moisture Cont	C.B.R. Value %		
Moisture Content:	22	Surcharge Kg:	4.20	Sample Top	24	Sample Top	6.1
Bulk Density Mg/m3:	1.98	Soaking Time hrs	96	Sample Bottom	24	Sample Bottom	6.9
Dry Density Mg/m3:	1.62	Swelling mm:	1.00	Remarks : See Summary o	f Soil Descr	riptions.	
Percentage retained on 20mm BS test sieve:		0]				
Compaction Conditions 2.5kg							

- Top

Contract No: PSL20/5199 **Client Ref:** C-13603

SUMMARY OF LABORATORY HAND VANES

(BS1377: PART 7: 1990)

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Moisture Content	Peak Shear Strength kPa	Residual Shear Strength kPa	Remarks
TP46	4	В	1.80	1.90	16	>146		
					19	>146		
					22	113		
					25	68		
					28	22		

^{*} This test is out of our UKAS scope

Contract No:
PSL20/5199
Client Ref:
C-13603

DETERMINATION OF LOS ANGELES COEFFICIENT

BS EN ISO 1097 Part 2: 2010

Hole Number: TP42 Top Depth (m): 0.70

Sample Number: 3 Base Depth (m): 0.80

Sample Type: B Sample Date:

Sample Description: See summary of soil descriptions

Test Specimen Details:	Mass (g)	Mass (%)
Passing 14mm sieve	5000	100
Retained 12.5mm sieve	1740	35
Retained 10mm sieve	3260	65
Retained 1.6mm sieve post rotation and washing	3971	n/a

Test Results:	
LA Coefficient	21

Remarks:			ļ

ANALYTICAL TEST REPORT

Contract no: 90074

Contract name: North West Bicester Eco Development (C-13603)

Client reference: PSL20/5199

Clients name: Professional Soils Laboratory

Clients address: 5/7 Hexthorpe Road

Doncaster DN4 0AR

Samples received: 08 October 2020

Analysis started: 08 October 2020

Analysis completed: 15 October 2020

Report issued: 15 October 2020

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

Karan Campbell Director

Lab number	90074-1	90074-2	90074-3	90074-4	90074-5	90074-6		
Sample id	TP18	TP19	TP28	TP30	TP31	TP37		
Depth (m)			1.00	1.70	1.80	1.50	0.50	0.60
Date sampled	07/10/2020	07/10/2020	07/10/2020	07/10/2020	07/10/2020	07/10/2020		
Test	Method	Units						
рН	CE004 ^U	units	8.8	8.5	8.4	8.6	8.5	8.5
Magnesium (2:1 water soluble)	CE061	mg/l Mg	1.5	1.0	1.3	<1	1.6	1.6
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	5.9	2.8	2.3	1.6	3.0	3.5
Nitrate (2:1 water soluble)	CE049 ^U	mg/I NO ₃	2.3	1.2	1.7	<1	6.5	3.8
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	20	20	24	16	13	14
Sulphate (total)	CE062 ^U	mg/kg SO ₄	1097	961	820	682	1025	887
Sulphur (total)	CE119	mg/kg S	405	544	357	249	407	326
Sulphur (total)	CE119	% w/w S	0.04	0.05	0.04	0.02	0.04	0.03
Total Organic Carbon (TOC)	CE072 ^U	% w/w C	-	-	-	-	-	-
Estimate of OMC (calculated from TOC)	CE072 ^U	% w/w	-	-	-	-	-	-

Lab number	90074-7	90074-8	90074-9	90074-10	90074-11	90074-12		
Sample id	TP41	TP42	TP42	TP46	TP48	TP50		
Depth (m)			1.20	0.70-0.80	1.20	1.80-1.90	1.80	1.00
Date sampled	07/10/2020	07/10/2020	07/10/2020	07/10/2020	07/10/2020	07/10/2020		
Test	Method	Units						
рН	CE004 ^U	units	8.5	8.6	8.5	8.5	8.5	8.3
Magnesium (2:1 water soluble)	CE061	mg/l Mg	1.1	2.8	1.1	<1	1.0	1.4
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	6.0	2.8	2.3	1.6	3.0	3.5
Nitrate (2:1 water soluble)	CE049 ^U	mg/I NO ₃	2.4	1.2	1.8	<1	6.7	3.9
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	<10	36	17	13	23	20
Sulphate (total)	CE062 ^U	mg/kg SO ₄	365	744	833	680	749	649
Sulphur (total)	CE119	mg/kg S	130	406	301	240	290	263
Sulphur (total)	CE119	% w/w S	0.01	0.04	0.03	0.02	0.03	0.03
Total Organic Carbon (TOC)	CE072 ^U	% w/w C	-	0.4	-	<0.1	-	-
Estimate of OMC (calculated from TOC)	CE072 ^U	% w/w	-	0.6	-	<0.1	-	-

Lab number		90074-13	90074-14	
Sample id	TP51	TP54		
Depth (m)		0.60	2.40	
Date sampled	07/10/2020	07/10/2020		
Test	Method	Units		
рН	CE004 ^U	units	8.5	8.5
Magnesium (2:1 water soluble)	CE061	mg/l Mg	1.9	2.3
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	4.4	2.3
Nitrate (2:1 water soluble)	CE049 ^U	mg/I NO ₃	1.8	2.6
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	16	16
Sulphate (total)	CE062 ^U	mg/kg SO ₄	843	599
Sulphur (total)	CE119	mg/kg S	292	220
Sulphur (total)	CE119	% w/w S	0.03	0.02
Total Organic Carbon (TOC)	CE072 ^U	% w/w C	-	-
Estimate of OMC (calculated from TOC)	CE072 ^U	% w/w	-	-

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE004	рН	Based on BS 1377, pH Meter	As received	U	-	units
CE061	Magnesium (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry		1	mg/l Mg
CE049	Chloride (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	1	mg/l Cl
CE049	Nitrate (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	1	mg/l NO ₃
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	U	10	mg/l SO ₄
CE062	Sulphate (total)	Acid extraction, ICP-OES	Dry	U	100	mg/kg SO ₄
CE119	Sulphur (total)	Acid extraction, ICP-OES	Dry		100	mg/kg S
CE119	Sulphur (total)	Acid extraction, ICP-OES	Dry		0.01	% w/w S
CE072	Total Organic Carbon (TOC)	Removal of IC by acidification, Carbon Analyser	Dry	U	0.1	% w/w C
CE072	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry	U	0.1	% w/w

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

N No (not deviating sample)
Y Yes (deviating sample)
NSD Sampling date not provided

NST Sampling time not provided (waters only)

EHT Sample exceeded holding time(s)

IC Sample not received in appropriate containers HP Headspace present in sample container

NCF Sample not chemically fixed (where appropriate)

OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
90074-1	TP18	1.00	N	
90074-2	TP19	1.70	N	
90074-3	TP28	1.80	N	
90074-4	TP30	1.50	N	
90074-5	TP31	0.50	N	
90074-6	TP37	0.60	N	
90074-7	TP41	1.20	N	
90074-8	TP42	0.70-0.80	N	
90074-9	TP42	1.20	N	
90074-10	TP46	1.80-1.90	N	
90074-11	TP48	1.80	N	
90074-12	TP50	1.00	N	
90074-13	TP51	0.60	N	
90074-14	TP54	2.40	N	

LABORATORY **REPORT**

Contract Number: PSL20/5200

Report Date: 14 October 2020

Client's Reference: C-13603 sch 4

Client Name: Hydrock

Northern Assurance Buildings

9-21 Princess Street Albert Square Manchester

M2 4DN

For the attention of: Cameron Adams

Contract Title: North West Bicester Eco Development

Date Received: 30/9/2020 Date Commenced: 30/9/2020 Date Completed: 14/10/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins R Berriman (Director) (Quality Manager) (Director)

L Knight S Eyre (Senior Technician)

S Royle (Senior Technician) (Laboratory Manager)

Page 1 of

5-7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP68	4	D	1.20		Brown mottled grey slightly gravelly slightly sandy CLAY.
TP82	3	D	1.00		Brown slightly gravelly slightly sandy CLAY.
TP82	4	В	1.50	1.80	Brown slightly sandy CLAY.
TP83	3	В	1.00	1.50	Brown sandy very clayey GRAVEL with many cobbles.
TP77	4	D	1.00		Brown very gravelly slightly sandy CLAY.
TP70	6	D	1.50		Brown mottled grey slightly gravelly slightly sandy CLAY.
TP59	3	D	1.60		Brown mottled grey gravelly slightly sandy CLAY.
TP59	5	В	2.00	3.00	Brown very gravelly sandy CLAY.
TP61	2	D	0.60		Brown slightly sandy slightly clayey GRAVEL.
TP61	4	D	2.00		Brown slightly gravelly slightly sandy CLAY.
TP72	4	D	1.10		Brown gravelly slightly sandy CLAY.
TP81	4	В	0.50	1.20	Brown slightly gravelly slightly sandy CLAY.
TP69	3	D	1.50		Light brown very gravelly slightly sandy CLAY.
TP71	3	D	0.90		Brown slightly gravelly slightly sandy CLAY.

Professional Soils Laboratory

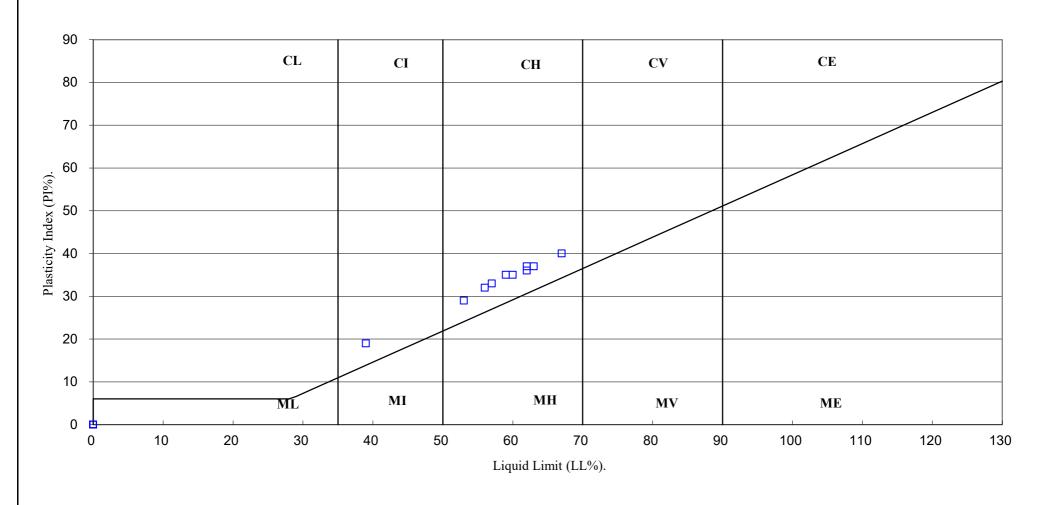
Contract No:
PSL20/5200
Client Ref:
C-13603

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hele	Commis	C 1 -	Tom	D	Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	Domonles
Hole	Sample	Sample	Top	Base	Content %	Shrinkage %	Density	Limit %	Limit %	Index %	.425mm %	Remarks
Number	Number	Type	Depth	Depth			Mg/m ³				% 0	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
TP68	4	D	1.20		27			67	27	40	92	High plasticity CH.
TP82	3	D	1.00		19							
TP82	4	В	1.50	1.80	28			63	26	37	93	High plasticity CH.
TP83	3	В	1.00	1.50	11			39	20	19	24	Intermediate plasticity CI.
TP77	4	D	1.00		15			62	26	36	70	High plasticity CH.
TP70	6	D	1.50		20			59	24	35	92	High plasticity CH.
TP59	3	D	1.60		18			62	25	37	82	High plasticity CH.
TP59	5	В	2.00	3.00	14							
TP61	2	D	0.60		9.0							
TP61	4	D	2.00		20							
TP72	4	D	1.10		16			60	25	35	81	High plasticity CH.
TP81	4	В	0.50	1.20	30			57	24	33	93	High plasticity CH.
TP69	3	D	1.50		15			53	24	29	76	High plasticity CH.
TP71	3	D	0.90		24			56	24	32	93	High plasticity CH.
_	_	_	_									

SYMBOLS: NP: Non Plastic



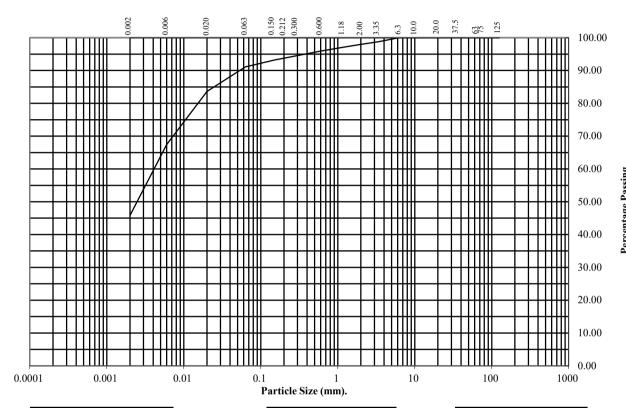
Contract No:
PSL20/5200
Client Ref:
C-13603

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Contract No:
PSL20/5200
Client Ref:
C-13603

PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: TP82 Top Depth (m): 1.50

Sample Number: 4 Base Depth(m): 1.80

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	100
3.35	99
2	98
1.18	97
0.6	96
0.3	95
0.212	94
0.15	93
0.063	91

Particle	Percentage
Diameter	Passing
0.02	84
0.006	67
0.002	46

Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	2
Sand	7
Silt	45
Clay	46

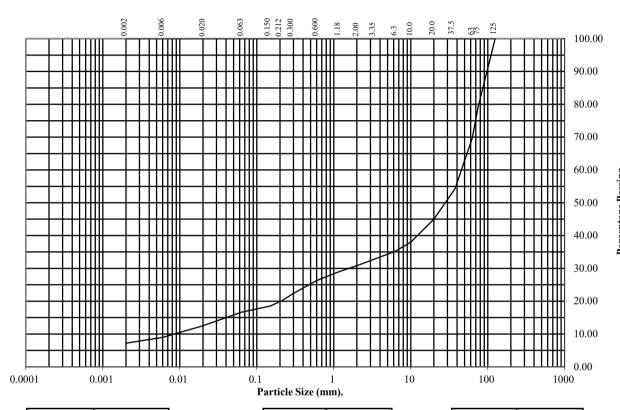
Remarks:

See Summary of Soil Descriptions

North West Bicester Eco Development

Contract No: PSL20/5200 Client Ref: C-13603

PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: TP83 Top Depth (m): 1.00

Sample Number: 3 Base Depth(m): 1.50

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	79
63	70
37.5	54
20	45
10	38
6.3	35
3.35	33
2	31
1.18	29
0.6	26
0.3	22
0.212	20
0.15	19
0.063	17

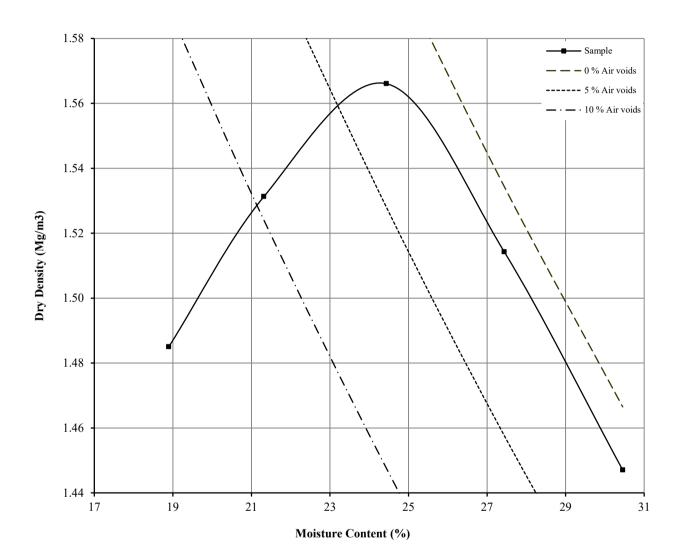
Particle	Percentage		
Diameter	Passing		
0.02	13		
0.006	9		
0.002	7		

Soil	Total
Fraction	Percentage
Cobbles	30
Gravel	39
Sand	14
Silt	10
Clay	7

R	em	19	rl	zς	
1/	CIL	ıa		7.3	٠

See Summary of Soil Descriptions

Contract No:
PSL20/5200
Client Ref:
C-13603


DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377: Part 4: Clause 3.3: 1990

Hole Number: TP82 Top Depth (m): 1.50

Sample Number: 4 Base Depth (m): 1.80

Sample Type: B

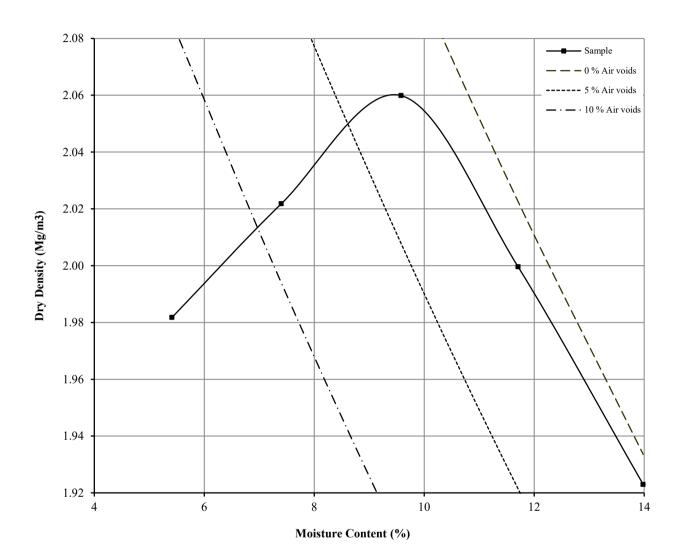
Initial Moisture Content:		30	Method of Compaction:	Separate Samples	
Particle Density (Mg/m3):	le Density (Mg/m3): 2.65 Measured Material Retained on 37.5 mm		Material Retained on 37.5 mm Test Sieve	0	
Maximum Dry Density (Mg/	/m3):	1.57	Material Retained on 20.0 mm Test Sieve	0	
Optimum Moisture Content	(%):	24			

Remark

See summary of soil descriptions.

North West Bicester Eco Development

Contract PSL20/5200 Client Ref C-13603


DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

Non compliance with BS 1377: Part 4: Clause 3.6: 1990

Hole Number: TP83 Top Depth (m): 1.00

Sample Number: 3 Base Depth (m): 1.50

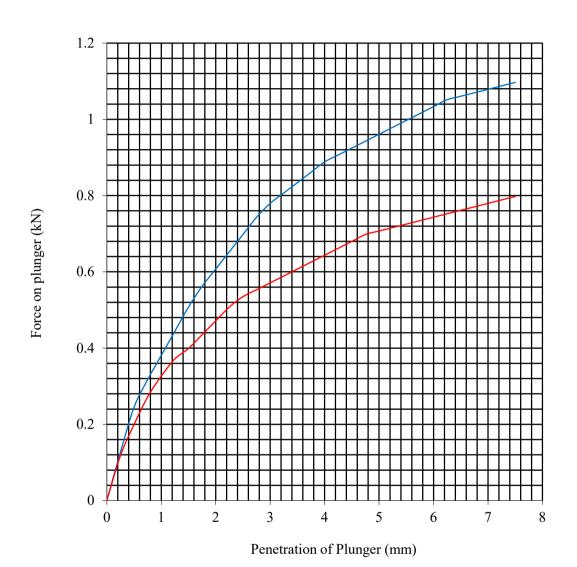
Sample Type: B

Initial Moisture Content:		9.6	Method of Compaction:	4.5kg	Separate Samples
Particle Density (Mg/m3):	Density (Mg/m3): 2.65 Measured Material Retained on 37.5 mm Test Sieve (%):				
Maximum Dry Density (Mg/m3):		2.06	Material Retained on 20.0 mm Test Sieve	(%):	9
Optimum Moisture Content (%):		10			
Remarks			·		

See summary of soil descriptions.

North West Bicester Eco Development

Contract PSL20/5200 Client Ref C-13603


CALIFORNIA BEARING RATIO TEST

BS 1377: Part 4: 1990

Hole Number: TP82 Top Depth (m): 1.50

Sample Number: 4 Base Depth (m): 1.80

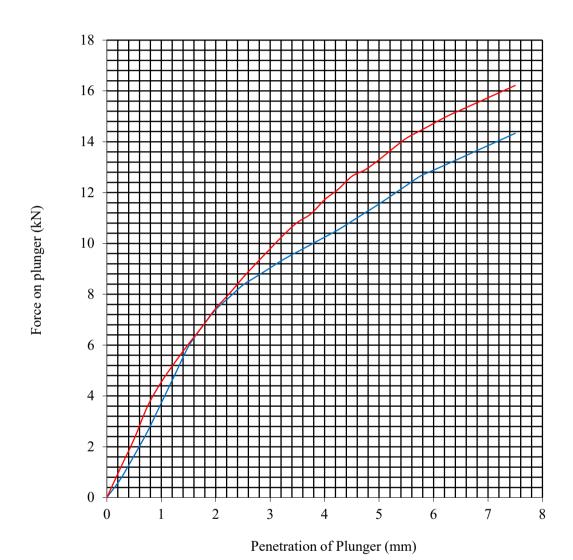
Sample Type: B

Initial Sample Cond	Sample Prepara	ation	Final Moisture Cont	C.B.R. Value %			
Moisture Content:	re Content: 24 Surcharge Kg: 4.20 Sample Top 28		Sample Top	5.3			
Bulk Density Mg/m3:	1.96	Soaking Time hrs	96	Sample Bottom	27	Sample Bottom	4.1
Dry Density Mg/m3:	1.57	Swelling mm:	1.18	Remarks : See Summary o	f Soil Desci	riptions.	
Percentage retained on 20mm BS test sieve:			0]			
Compaction Conditions 2.5kg							

- Top

- Bottom

Contract No: PSL20/5200 Client Ref: C-13603


CALIFORNIA BEARING RATIO TEST

Non compliance with BS 1377: Part 4: 1990

Hole Number: TP83 Top Depth (m): 1.00

Sample Number: 3 Base Depth (m): 1.50

Sample Type: B

Initial Sample Cond	Sample Prepara	ation	Final Moisture Cont	C.B.R. Value %			
Moisture Content:	nt: 9.6 Surcharge Kg:		4.20	Sample Top	12	Sample Top	63.3
Bulk Density Mg/m3:	2.23	Soaking Time hrs	96	Sample Bottom	12	Sample Bottom	66.5
Dry Density Mg/m3:	2.04	Swelling mm:	0.20	Remarks : See Summary o	f Soil Desci	riptions.	
Percentage retained on 20mm BS test sieve:			55]			
Compaction Conditions 4.5kg							

- Top

- Bottom

Contract No: PSL20/5200 Client Ref: C-13603

ANALYTICAL TEST REPORT

Contract no: 90071

Contract name: North West Bicester Eco Development (C-13603)

Client reference: PSL20/5200

Clients name: Professional Soils Laboratory

Clients address: 5/7 Hexthorpe Road

Doncaster DN4 0AR

Samples received: 08 October 2020

Analysis started: 08 October 2020

Analysis completed: 15 October 2020

Report issued: 15 October 2020

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

Karan Campbell

Director

SOILS

Lab number			90071-1	90071-2	90071-3	90071-4	90071-5	90071-6
Sample id	TP65	TP68	TP69	TP70	TP71	TP72		
Depth (m)			1.00	1.20	1.50	1.50	0.90	1.10
Date sampled			07/10/2020	07/10/2020	07/10/2020	07/10/2020	07/10/2020	07/10/2020
Test	Method	Units						
рН	CE004 ^U	units	9.5	8.9	8.9	8.7	8.4	8.5
Magnesium (2:1 water soluble)	CE061	mg/l Mg	15	2.1	1.4	1.3	1.3	1.0
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	5.6	2.9	2.4	4.8	1.5	1.1
Nitrate (2:1 water soluble)	CE049 ^U	mg/l NO ₃	2.0	<1	2.4	11	4.7	<1
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	371	74	25	27	12	17
Sulphate (total)	CE062 ^U	mg/kg SO ₄	1591	727	666	914	545	899
Sulphur (total)	CE119	mg/kg S	593	297	283	361	207	366
Sulphur (total)	CE119	% w/w S	0.06	0.03	0.03	0.04	0.02	0.04
Total Organic Carbon (TOC)	CE072 ^U	% w/w C	-	-	-	-	-	-
Estimate of OMC (calculated from TOC)	CE072 ^U	% w/w	-	-	-	-	-	-

SOILS

Lab number			90071-7	90071-8	90071-9	90071-10
Sample id		TP76	TP77	TP82	TP83	
Depth (m)			0.50	1.00	1.50-1.80	1.00-1.50
Date sampled			07/10/2020	07/10/2020	07/10/2020	07/10/2020
Test	Method	Units				
рН	CE004 ^U	units	8.6	8.5	8.6	8.6
Magnesium (2:1 water soluble)	CE061	mg/l Mg	1.7	2.0	1.0	2.4
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	3.5	22	2.2	2.0
Nitrate (2:1 water soluble)	CE049 ^U	mg/I NO ₃	1.2	4.0	1.5	5.1
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	25	42	35	13
Sulphate (total)	CE062 ^U	mg/kg SO ₄	875	632	1630	1012
Sulphur (total)	CE119	mg/kg S	399	269	578	381
Sulphur (total)	CE119	% w/w S	0.04	0.03	0.06	0.04
Total Organic Carbon (TOC)	CE072 ^U	% w/w C	-	1	0.4	1.4
Estimate of OMC (calculated from TOC)	CE072 ^U	% w/w	-	-	0.8	2.4

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE004	рН	Based on BS 1377, pH Meter	As received	U	-	units
CE061	Magnesium (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry		1	mg/l Mg
CE049	Chloride (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	1	mg/l Cl
CE049	Nitrate (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	1	mg/I NO ₃
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	U	10	mg/l SO ₄
CE062	Sulphate (total)	Acid extraction, ICP-OES	Dry	U	100	mg/kg SO ₄
CE119	Sulphur (total)	Acid extraction, ICP-OES	Dry		100	mg/kg S
CE119	Sulphur (total)	Acid extraction, ICP-OES	Dry		0.01	% w/w S
CE072	Total Organic Carbon (TOC)	Removal of IC by acidification, Carbon Analyser	Dry	U	0.1	% w/w C
CE072	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry	U	0.1	% w/w

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

N No (not deviating sample)
Y Yes (deviating sample)
NSD Sampling date not provided

NST Sampling time not provided (waters only)

EHT Sample exceeded holding time(s)

IC Sample not received in appropriate containers
HP Headspace present in sample container

NCF Sample not chemically fixed (where appropriate)

OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
90071-1	TP65	1.00	N	
90071-2	TP68	1.20	N	
90071-3	TP69	1.50	N	
90071-4	TP70	1.50	N	
90071-5	TP71	0.90	N	
90071-6	TP72	1.10	N	
90071-7	TP76	0.50	N	
90071-8	TP77	1.00	N	
90071-9	TP82	1.50-1.80	N	
90071-10	TP83	1.00-1.50	N	

LABORATORY REPORT

4043

Contract Number: PSL20/5201

14 October 2020 Report Date:

Client's Reference: C-13603

Client Name: Hydrock

Northern Assurance Buildings

9-21 Princess Street Albert Square Manchester

M2 4DN

For the attention of: Cameron Adams

Contract Title: North West Bicester Eco Development

Date Received: 30/9/2020 Date Commenced: 30/9/2020 Date Completed: 14/10/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

H Daniels A Watkins R Berriman (Senior Technician) (Director) (Quality Manager)

S Royle S Eyre L Knight (Senior Technician) (Senior Technician) (Laboratory Manager)

Page 1 of

5-7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP05	B2	В	0.40		Brown sandy slightly clayey slightly silty GRAVEL with many cobbles.

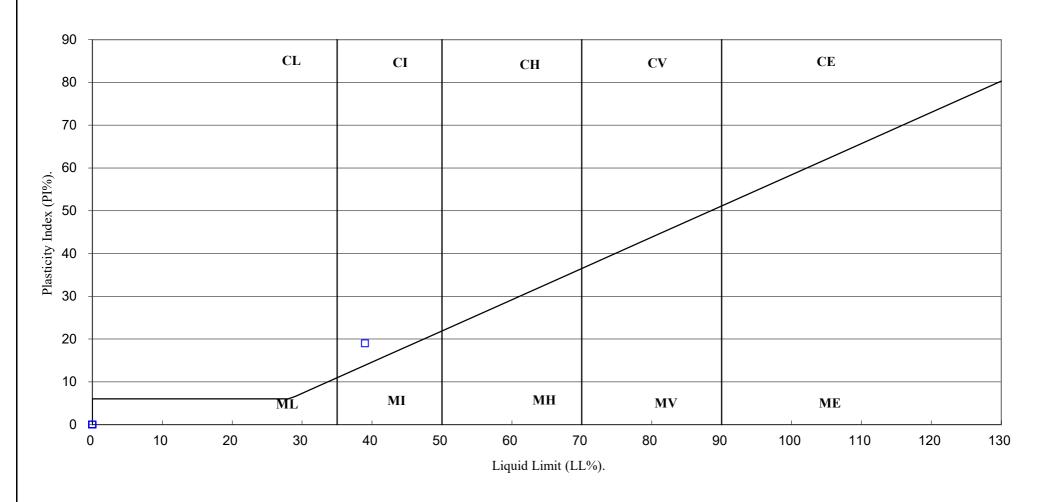
Contract No:
PSL20/5201
Client Ref:
C-13603

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm %	Remarks
TD05	D2	D	m 0.40	m 1.40	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4	E (Intonmodiata plasticity CI
TP05	B2	В	0.40	1.40	11		2.65	39	20	19	56	Intermediate plasticity CI.

SYMBOLS: NP: Non Plastic



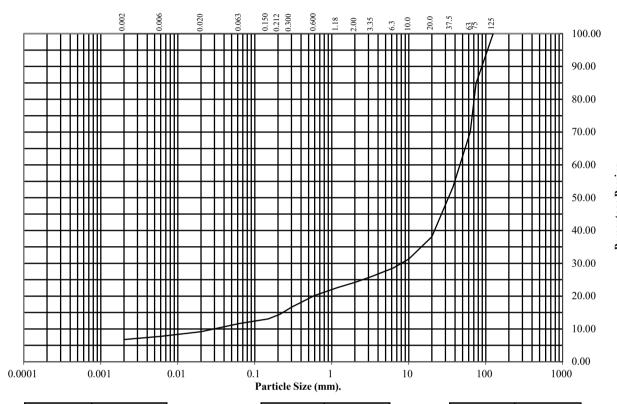
Contract No:
PSL20/5201
Client Ref:
C-13603

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Contract No:
PSL20/5201
Client Ref:
C-13603

PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: TP05 Top Depth (m): 0.40

Sample Number: B2 Base Depth(m): 1.40

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	85
63	70
37.5	53
20	38
10	31
6.3	29
3.35	26
2	24
1.18	23
0.6	20
0.3	17
0.212	14
0.15	13
0.063	12

Particle	Percentage
Diameter	Passing
0.02	9
0.006	8
0.002	7

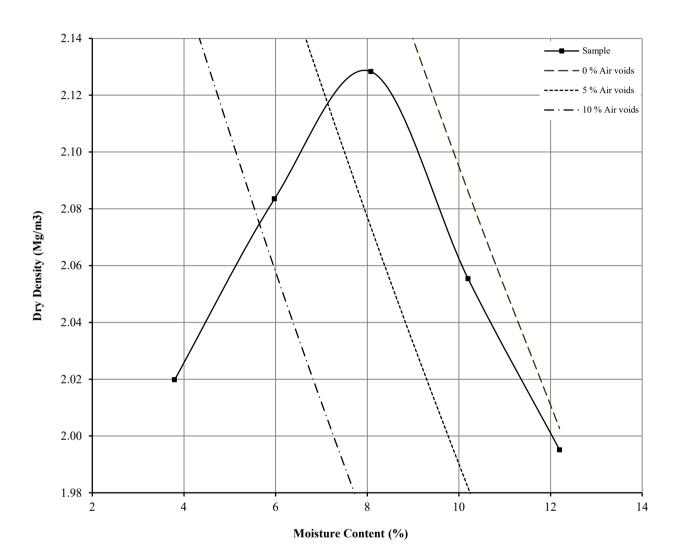
Soil	Total
Fraction	Percentage
Cobbles	30
Gravel	46
Sand	12
Silt	5
Clay	7

Remarks:

See Summary of Soil Descriptions

North West Bicester Eco Development

Contract No:
PSL20/5201
Client Ref:
C-13603


DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

Non compliance with BS 1377: Part 4: Clause 3.7: 1990

Hole Number: TP05 Top Depth (m): 0.40

Sample Number: B2 Base Depth (m): 1.40

Sample Type: B

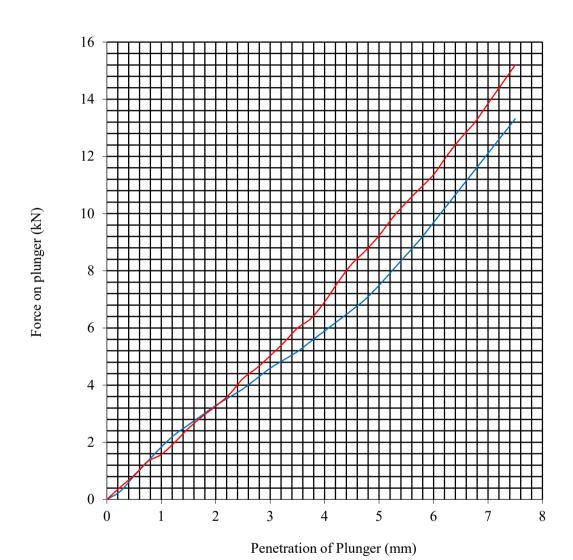
Initial Moisture Content:		8.1	Method of Compaction: Vibro		Separate Samples
Particle Density (Mg/m3):	2.65	Measured	Material Retained on 37.5 mm Test Sieve (%): 47		47
Maximum Dry Density (Mg/m3):		2.13	Material Retained on 20.0 mm Test Sieve	(%):	15
Optimum Moisture Content (%):		8			
Remarks			•		

Kemarks

See summary of soil descriptions.

North West Bicester Eco Development

Contract PSL20/5201 Client Ref C-13603


CALIFORNIA BEARING RATIO TEST

Non compliance with BS 1377: Part 4: 1990

Hole Number: TP05 Top Depth (m): 0.40

Sample Number: B2 Base Depth (m): 1.40

Sample Type: B

Initial Sample Conditions		Sample Preparation Final		Final Moisture Cont	inal Moisture Content %		C.B.R. Value %	
Moisture Content:	8.1	Surcharge Kg:	4.20	Sample Top	10	Sample Top	37.5	
Bulk Density Mg/m3:	alk Density Mg/m3: 2.30 Soaking Time hrs		0	Sample Bottom	9.5	Sample Bottom	46.2	
Dry Density Mg/m3: 2.13 Swelling mm:			0.00	Remarks : See Summary o	f Soil Desci	riptions.		
Percentage retained on 20mm BS test sieve:			62	1				
Compaction Conditions Vibro]					

- Top

- Bottom

Contract No: PSL20/5201 Client Ref: C-13603

ANALYTICAL TEST REPORT

Contract no: 90076

Contract name: North West Bicester Eco Development (C-13603)

Client reference: PSL20/5201

Clients name: Professional Soils Laboratory

Clients address: 5/7 Hexthorpe Road

Doncaster DN4 0AR

Samples received: 08 October 2020

Analysis started: 08 October 2020

Analysis completed: 15 October 2020

Report issued: 15 October 2020

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

Karan Campbell Director

SOILS

Lab number	90076-1		
Sample id	TP05		
Depth (m)			0.40-1.40
Date sampled			07/10/2020
Test	Method	Units	
рН	CE004 ^U	units	8.5
Magnesium (2:1 water soluble)	CE061	mg/l Mg	6.0
Chloride (2:1 water soluble)	CE049 ^U	mg/l Cl	4.4
Nitrate (2:1 water soluble)	CE049 ^U	mg/l NO ₃	29
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	27
Sulphate (total)	CE062 ^U	mg/kg SO ₄	996
Sulphur (total)	CE119	mg/kg S	374
Sulphur (total)	CE119	% w/w S	0.04
Total Organic Carbon (TOC)	CE072 ^U	% w/w C	0.3
Estimate of OMC (calculated from TOC)	CE072 ^U	% w/w	0.4

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE004	рН	Based on BS 1377, pH Meter	As received	U	-	units
CE061	Magnesium (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry		1	mg/l Mg
CE049	Chloride (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	1	mg/l Cl
CE049	Nitrate (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	1	mg/I NO ₃
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	U	10	mg/l SO ₄
CE062	Sulphate (total)	Acid extraction, ICP-OES	Dry	U	100	mg/kg SO ₄
CE119	Sulphur (total)	Acid extraction, ICP-OES	Dry		100	mg/kg S
CE119	Sulphur (total)	Acid extraction, ICP-OES	Dry		0.01	% w/w S
CE072	Total Organic Carbon (TOC)	Removal of IC by acidification, Carbon Analyser	Dry	U	0.1	% w/w C
CE072	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry	U	0.1	% w/w

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

N No (not deviating sample)
Y Yes (deviating sample)
NSD Sampling date not provided

NST Sampling time not provided (waters only)

EHT Sample exceeded holding time(s)

IC Sample not received in appropriate containers
HP Headspace present in sample container

NCF Sample not chemically fixed (where appropriate)

OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
90076-1	TP05	0.40-1.40	N	

LABORATORY REPORT

1013

Contract Number: PSL20/5338

Report Date: 12 October 2020

Client's Reference: C-13603 sch 5

Client Name: Hydrock

Northern Assurance Buildings

9-21 Princess Street Albert Square Manchester M2 4DN

For the attention of: Cameron Adams

Contract Title: North West Bicester Eco Development

Date Received: 5/10/2020
Date Commenced: 5/10/2020
Date Completed: 12/10/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins R Berriman (Director) (Director) (Quality Manager)

C Extra

L Knight S Eyre
(Senior Technician) (Senior Technician)

S Royle (Laboratory Manager)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
RBH01	1	D	4.50	4.60	Grey CLAY.
RBH06	4	D	4.60	4.70	Grey slightly sandy CLAY.
RBH11	1	D	4.00		Grey slightly sandy CLAY.

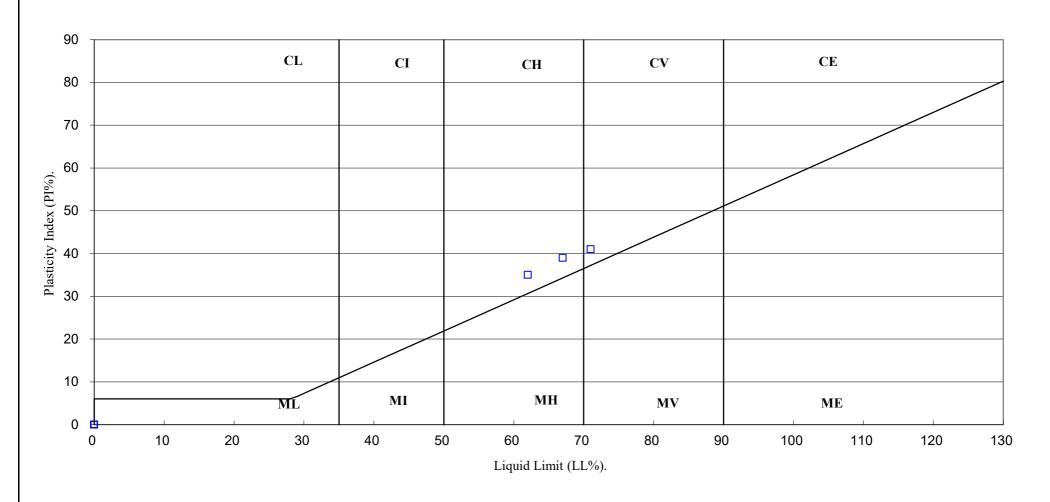
Contract No:
PSL20/5338
Client Ref:
C-13603

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content %	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm %	Remarks
DDIIA1	1	D	1.50	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4	100	Vous high wlogdisides CV
RBH01	1	D	4.50	4.60	31			71	30	41	100	Very high plasticity CV.
RBH06	4	D	4.60	4.70	31			62	27	35	100	High plasticity CH.
RBH11	1	D	4.00		26			67	28	39	98	High plasticity CH.

SYMBOLS: NP: Non Plastic



Contract No:
PSL20/5338
Client Ref:
C-13603

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Contract No:
PSL20/5338
Client Ref:
C-13603

DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH

ISRM Suggested Methods, pp 111 –116, 1981.

Hole	Sample	Sample	Тор	Base	Sample	Sample	Height	Initial	Bulk	Moisture	Dry	Load	UCS	Failure	Date	Remarks
Number	Number		Depth	Depth	Diameter		Ratio	Mass	Density	Content		Failure		Mode	Tested	
			(m)	(m)	(mm)	(mm)		(g)	(Mg/m)	(%)	(Mg/m)	(kN)	(MPa)			
RBH04	3	C	4.23	4.52	90	180	2.0	2864	2.50	1.3	2.47	83.3	13.1	Brittle	09/10/20	
RBH05	4	C	4.70	5.00	90	191	2.1	2935	2.42	1.9	2.37	117.4	18.5	Brittle	09/10/20	
RBH08	3	C	4.30	5.00	90	176	2.0	2817	2.52	2.4	2.46	294.6	46.3	Brittle	09/10/20	
RBH09	3	C	4.67	5.00	90	179	2.0	2841	2.49	2.6	2.43	124.8	19.6	Brittle	09/10/20	
RBH14	1	C	4.00	4.49	90	184	2.0	2993	2.56	3.2	2.48	335.5	52.7	Brittle	09/10/20	
RBH14	3	C	4.70	4.90	90	195	2.2	3138	2.53	3.5	2.44	73.8	11.6	Brittle	09/10/20	

PSL
Professional Soils Laboratory

Contract No:
PSL20/5338
Client Ref:
C-13603

ISRM Suggested Methods: 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation	Dimer (m		Area	D _e ²	D _e	Failure 1	Load (P)	Is	Corr Fac	I_{s50}	Failure Type	Remarks
rvamber		Rei	Турс	Par / Perp	W	D	(mm2)		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	Турс	
RBH01	3.37	1	A	Perp	90	51	4590	5844.17	76.45	-	10.59	1.81	1.211	2.19	Valid	
RBH01	4.82	2	A	Perp	90	59	5310	6760.90	82.22	-	9.30	1.38	1.251	1.72	Valid	
RBH02	2.12	1	A	Perp	90	36	3240	4125.30	64.23	-	12.58	3.05	1.119	3.41	Valid	
RBH02	2.82	2	A	Perp	90	38	3420	4354.48	65.99	-	13.14	3.02	1.133	3.42	Valid	
RBH03	4.71	1	A	Perp	90	55	4950	6302.54	79.39	-	12.39	1.97	1.231	2.42	Valid	
RBH03	4.81	2	A	Perp	90	62	5580	7104.68	84.29	-	12.01	1.69	1.265	2.14	Valid	
RBH04	4.00	1	A	Perp	90	56	5040	6417.13	80.11	-	16.47	2.57	1.236	3.17	Valid	
RBH04	4.13	2	A	Perp	90	35	3150	4010.70	63.33	-	15.16	3.78	1.112	4.20	Valid	
RBH04	4.88	4	A	Perp	90	71	6390	8136.00	90.20	-	8.10	1.00	1.304	1.30	Valid	
RBH05	3.96	1	A	Perp	90	41	3690	4698.25	68.54	-	16.40	3.49	1.153	4.02	Valid	
RBH05	4.22	2	A	Perp	90	62	5580	7104.68	84.29	-	18.97	2.67	1.265	3.38	Valid	
RBH05	4.33	3	A	Perp	90	46	4140	5271.21	72.60	-	13.27	2.52	1.183	2.98	Valid	
RBH06	3.73	1	A	Perp	90	60	5400	6875.49	82.92	-	0.30	0.04	1.256	0.05	Valid	
RBH06	3.88	2	A	Perp	90	74	6660	8479.78	92.09	-	3.59	0.42	1.316	0.56	Valid	
RBH06	4.00	3	A	Perp	90	42	3780	4812.85	69.37	-	0.81	0.17	1.159	0.20	Valid	
RBH07	3.68	1	A	Perp	90	61	5490	6990.09	83.61	-	9.74	1.39	1.260	1.76	Valid	
RBH07	4.48	2	A	Perp	90	66	5940	7563.04	86.97	-	4.35	0.58	1.283	0.74	Valid	
RBH08	2.85	1	A	Perp	90	64	5760	7333.86	85.64	-	20.47	2.79	1.274	3.56	Valid	
RBH08	3.00	2	A	Perp	90	73	6570	8365.18	91.46	-	22.09	2.64	1.312	3.47	Valid	
RBH09	4.37	1	A	Perp	90	54	4860	6187.94	78.66	-	18.76	3.03	1.226	3.72	Valid	
RBH09	4.54	2	A	Perp	90	61	5490	6990.09	83.61	-	19.34	2.77	1.260	3.49	Valid	

*Note All testing carried out on samples at as received water content

Par = parallel, Perp = perpendicular, U = Random

A = Axial, D = Diametral, I = Irregular

Contract No:
PSL20/5338
Client Ref:
C-13603

ISRM Suggested Methods: 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation	Dimer (m		D _e ²	D _e	Failur	e Load	I_s	Corr Fac	I _{s50}	Failure Type	Remarks
rvaniber	(111)	KCI	Турс	Par / Perp	L	D		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	Турс	
RBH01	3.37	1	D	Par	-	90	8100	90.00	ı	15.22	1.879	1.303	2.45	Valid	
RBH01	4.82	2	D	Par	-	90	8100	90.00	ı	18.13	2.238	1.303	2.92	Valid	
RBH02	2.12	1	D	Par	-	90	8100	90.00	ı	3.70	0.457	1.303	0.60	Valid	
RBH02	2.82	2	D	Par	-	90	8100	90.00	ı	21.46	2.649	1.303	3.45	Valid	
RBH03	4.71	1	D	Par	-	90	8100	90.00	ı	20.42	2.521	1.303	3.28	Valid	
RBH03	4.81	2	D	Par	-	90	8100	90.00	1	19.04	2.351	1.303	3.06	Valid	
RBH04	4.00	1	D	Par	-	90	8100	90.00	ı	9.93	1.226	1.303	1.60	Valid	
RBH04	4.13	2	D	Par	-	90	8100	90.00	-	1.77	0.219	1.303	0.28	Valid	
RBH04	4.88	4	D	Par	-	90	8100	90.00	1	7.02	0.867	1.303	1.13	Valid	
RBH05	3.96	1	D	Par	-	90	8100	90.00	1	2.00	0.247	1.303	0.32	Valid	
RBH05	4.22	2	D	Par	-	90	8100	90.00	-	12.77	1.577	1.303	2.05	Valid	
RBH05	4.33	3	D	Par	-	90	8100	90.00	ı	17.53	2.164	1.303	2.82	Valid	
RBH06	3.73	1	D	Par	-	90	8100	90.00	ı	0.47	0.058	1.303	0.08	Valid	
RBH06	3.88	2	D	Par	-	90	8100	90.00	1	1.03	0.127	1.303	0.17	Valid	
RBH06	4.00	3	D	Par	-	90	8100	90.00	1	0.48	0.059	1.303	0.08	Valid	
RBH07	3.68	1	D	Par	-	90	8100	90.00	1	6.43	0.794	1.303	1.03	Valid	
RBH07	4.48	2	D	Par	-	90	8100	90.00	-	4.55	0.562	1.303	0.73	Valid	
RBH08	2.85	1	D	Par	-	90	8100	90.00	-	1.96	0.242	1.303	0.32	Valid	
RBH08	3.00	2	D	Par	-	90	8100	90.00	-	18.80	2.321	1.303	3.02	Valid	
RBH09	4.37	1	D	Par	-	90	8100	90.00	-	12.61	1.557	1.303	2.03	Valid	
RBH09	4.54	2	D	Par	-	90	8100	90.00	-	17.84	2.202	1.303	2.87	Valid	

*Note All testing carried out on samples at as received water content

Par = parallel, Perp = perpendicular, U = Random

North West Bicester Eco Development

Contract No:
PSL20/5338
Client Ref:
C-13603

ISRM Suggested Methods: 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation	Dimer (m		Area	D _e ²	D _e	Failure	Load (P)	I_s	Corr Fac	I_{s50}	Failure Type	Remarks
1,411,01		1101	1340	Par / Perp	W	D	(mm2)		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	1,100	
RBH14	4.49	2	A	Perp	90	64	5760	7333.86	85.64	-	10.70	1.46	1.274	1.86	Valid	
RBH14	4.90	4	A	Perp	90	61	5490	6990.09	83.61	-	13.01	1.86	1.260	2.35	Valid	
RBH15	3.10	1	A	Perp	90	64	5760	7333.86	85.64	•	3.93	0.54	1.274	0.68	Valid	
RBH15	3.24	2	A	Perp	90	76	6840	8708.96	93.32	•	11.68	1.34	1.324	1.78	Valid	
RBH15	4.30	3	A	Perp	90	66	5940	7563.04	86.97	•	15.82	2.09	1.283	2.68	Valid	
	_												_			_

*Note All testing carried out on samples at as received water content

Par = parallel, Perp = perpendicular, U = Random

A = Axial, D = Diametral, I = Irregular

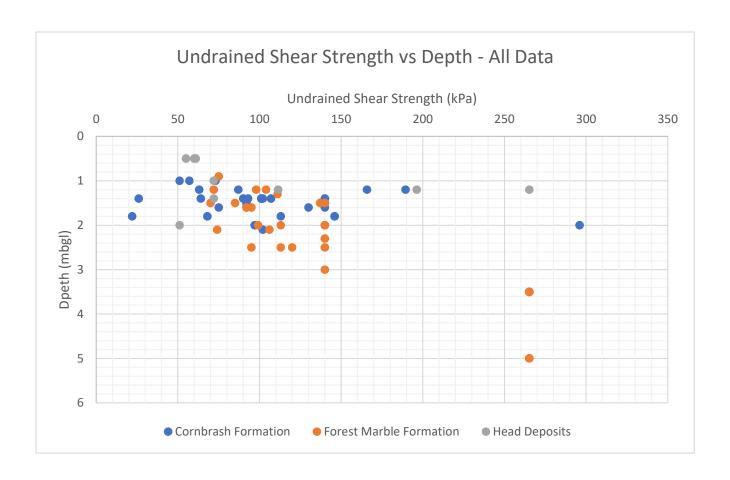
Contract No:
PSL20/5338
Client Ref:
C-13603

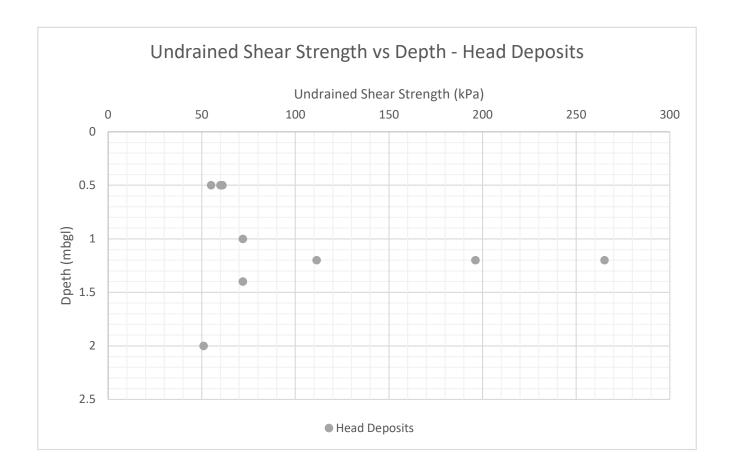
ISRM Suggested Methods: 2007

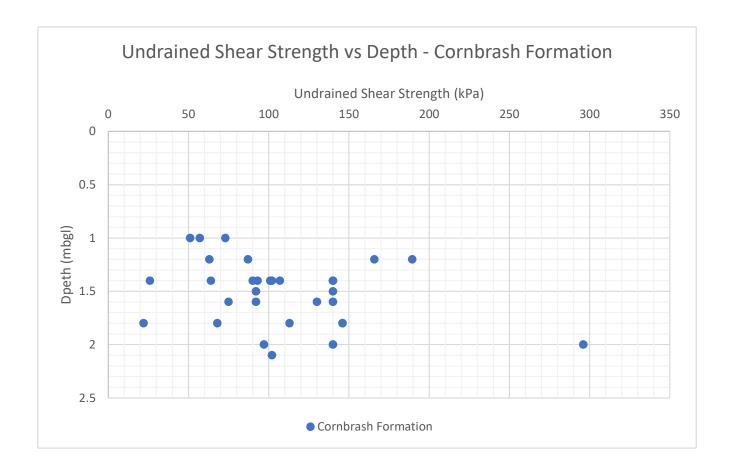
Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation	Dimei (m	nsions m)	D _e ²	\mathbf{D}_{e}	Failur	e Load	$\mathbf{I_s}$	Corr Fac	I_{s50}	Failure Type	Remarks
rvamber	(111)	KCI	Турс	Par / Perp	L	D		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	Турс	
RBH14	4.49	2	D	Par	-	90	8100	90.00	-	9.02	1.114	1.303	1.45	Valid	
RBH14	4.90	4	D	Par	-	90	8100	90.00	-	12.31	1.520	1.303	1.98	Valid	
RBH15	3.10	1	D	Par	-	90	8100	90.00	-	1.09	0.135	1.303	0.18	Valid	
RBH15	3.24	2	D	Par	-	90	8100	90.00	-	16.63	2.053	1.303	2.67	Valid	
RBH15	4.30	3	D	Par	-	90	8100	90.00	-	14.60	1.802	1.303	2.35	Valid	

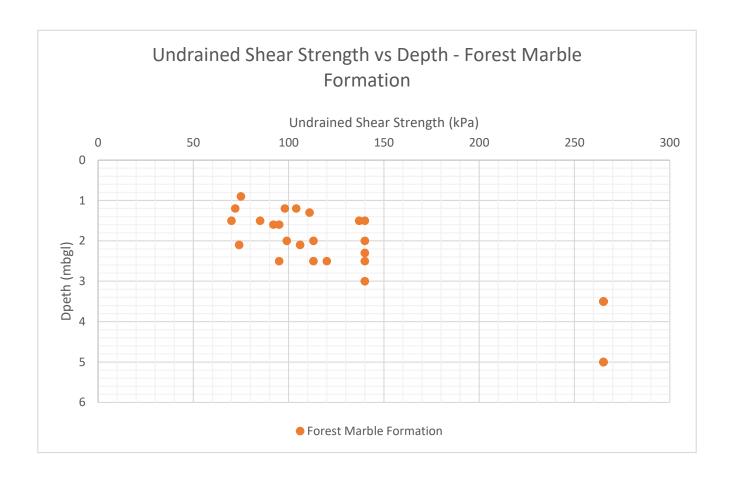
*Note All testing carried out on samples at as received water content

Par = parallel, Perp = perpendicular, U = Random






Contract No:	
PSL20/5338	
Client Ref:	
C-13603	



Geotechnical Plots

ient Firethorn Developm	ents Ltd	Head Deposits	
oject NW Bicester Eco De	evelopment		
ob number C-13603			
Concrete in	n aggressive	ground	After BRE Special Digest 1, 2005
			•
Soil data			
	(A. II)		Water
	(Adjusted) water	Total potential	soluble
	soluble sulfate	sulfate	magnesium
	(mg/l)	(%)	(mg/l)
Number of test	-	8	0
No. tests in 20% data se		2	
No. tests with suspected pyrit		0	
Maximum valu		0.2	
Mean of highest two value		0	
Mean of highest 20%	6		
Characteristic Valu	e 34	0	
	[no pyrite]	[pyrite suspected]	<u></u>
DS Clas	s DS-1	DS-1	_
			<u> </u>
If pyrite suspected.	DS Class limited to	DS-1	
If pyrite suspected,		DS-1	_
If pyrite suspected,		Adopted DS Class	s = DS-1
		-	s = DS-1
Is pyrite assumed to	b be present? No	Adopted DS Class	= DS-1
Is pyrite assumed to	o be present? No	Adopted DS Class Soluble	= DS-1
Is pyrite assumed to	b be present? No	Adopted DS Class	s = DS-1
Is pyrite assumed to	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium	s = DS-1
Water data Characteristic Valu (Maximum Leve	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	s = DS-1
Is pyrite assumed to Water data Characteristic Valu	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	s = DS-1
Water data Characteristic Valu (Maximum Leve	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	s = DS-1
Water data Characteristic Valu (Maximum Leve	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Valu (Maximum Leve	(Adjusted) soluble sulfate (mg/l) e 0 Soil s 8	Soluble magnesium (mg/l)	s = DS-1
Characteristic Value (Maximum Levee DS Classes) PH data Number of test No. tests in 20% data see	(Adjusted) soluble sulfate (mg/l) (Both Solids Sol	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Value (Maximum Leve DS Classes) PH data Number of test No. tests in 20% data se Lowest pl	(Adjusted) soluble sulfate (mg/l) e 0 Soil s 8 et 2 H 8.3	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Value (Maximum Leve DS Clase PH data Number of test No. tests in 20% data see Lowest ple Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) s Soil Soil 8 4 4 8 8 8 8 8 8 8 8 8 8	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Value (Maximum Leve DS Classes) PH data Number of test No. tests in 20% data se Lowest pl	(Adjusted) soluble sulfate (mg/l) Soil Soil 8 8 9 1 8.3 6 8.4	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Value (Maximum Leve DS Clase PH data Number of test No. tests in 20% data see Lowest ple Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) e 0 Soil s 8 et 2 H 8.3 6 8.4 e 8.4	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Value (Maximum Level DS Classes) PH data Number of test No. tests in 20% data see Lowest ple Mean of lowest 20% Characteristic value (Characteristic value)	(Adjusted) soluble sulfate (mg/l) Soil Soil S 8 St 2 H 8.3 6 8.4 e 8.4 e 8.4	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Value (Maximum Level) DS Clase PH data Number of test No. tests in 20% data sea Lowest ple Mean of lowest 20% Characteristic value.	(Adjusted) soluble sulfate (mg/l) (B) Soil Soil Soil S 8 St 2 H 8.3 6 8.4 8 8.4 8 8.4 9 8.4	Soluble magnesium (mg/l) 0	ACEC Class design value
Characteristic Value (Maximum Level) DS Clase PH data Number of test No. tests in 20% data sea Lowest ple Mean of lowest 20% Characteristic value Design value Number of soil pH results less than 5.	(Adjusted) soluble sulfate (mg/l) s Soil 8 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 9 1 8 1 9 1 1 1 1 1 1 1 1 1 1 1	Soluble magnesium (mg/l) 0	

ent Firethorn Develop		Location or materia	al to which this assessment applies
oject NW Bicester Eco [Development		
b number C-13603	3		
Concrete	in aggressive	ground	After BRE Special Digest 1, 2005
Soil data			
	(A -li., -4l)4	Tatal material	Water
	(Adjusted) water soluble sulfate	Total potential sulfate	soluble magnesium
	(mg/l)	(%)	(mg/l)
Number of te		1	0
No. tests in 20% data		0	
No. tests with suspected pyr		0	
Maximum val		0.1	
Mean of highest two valu Mean of highest 20		0	
Characteristic Val		0.1	
	[no pyrite]	[pyrite suspected]	<u></u>
DS Cla	ss DS-1	DS-1	_
lf munito augmentes	, DS Class limited to	DS-1	
if pyrite suspected			
			=
Is pyrite assumed		o Adopted DS Class	s = DS-1
Is pyrite assumed		o Adopted DS Class	s = DS-1
	to be present? N	·	S = DS-1
Is pyrite assumed	to be present? N (Adjusted) soluble	Soluble	s = DS-1
Is pyrite assumed	to be present? N (Adjusted) soluble sulfate	Soluble magnesium	s = DS-1
Is pyrite assumed	to be present? N (Adjusted) soluble	Soluble	S = DS-1
Is pyrite assumed	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium	s = DS-1
Water data Characteristic Val	(Adjusted) soluble sulfate (mg/l) ue 0	Soluble magnesium (mg/l)	s = DS-1
Water data Characteristic Val (Maximum Lev	(Adjusted) soluble sulfate (mg/l) ue 0	Soluble magnesium (mg/l)	s = DS-1
Water data Characteristic Val	(Adjusted) soluble sulfate (mg/l) ue 0 vel)	Soluble magnesium (mg/l)	S = DS-1
Water data Characteristic Val (Maximum Lev	(Adjusted) soluble sulfate (mg/l) ue 0 /el) SS	Soluble magnesium (mg/l)	s = DS-1
Characteristic Val (Maximum Lev	(Adjusted) soluble sulfate (mg/l) ue 0 vel) SS Soil sts 1	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Val (Maximum Lev DS Cla PH data Number of ter No. tests in 20% data s Lowest	(Adjusted) soluble sulfate (mg/l) ue 0 vel) ss Soil sts 1 set 0 bH 8.4	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Val (Maximum Lev DS Cla PH data Number of ter No. tests in 20% data s Lowest Mean of lowest 20	(Adjusted) soluble sulfate (mg/l) ue 0 rel) ss Soil sts 1 set 0 bH 8.4 0%	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Val (Maximum Lev DS Cla PH data Number of ter No. tests in 20% data s Lowest	(Adjusted) soluble sulfate (mg/l) ue 0 rel) ss Soil sts 1 set 0 bH 8.4	Soluble magnesium (mg/l) 0	s = DS-1
Characteristic Val (Maximum Lev DS Cla PH data Number of ter No. tests in 20% data s Lowest Mean of lowest 20	(Adjusted) soluble sulfate (mg/l) ue 0 ss Soil sts 1 set 0 oH 8.4 0% ue 8.4	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Val (Maximum Lev DS Cla PH data Number of tex No. tests in 20% data s Lowest Mean of lowest 20 Characteristic val	(Adjusted) soluble sulfate (mg/l) ue 0 vel) SS Soil sts 1 set 0 oH 8.4 ow ue 8.4 ue 8.4	Soluble magnesium (mg/l) 0	S = DS-1
Characteristic Val (Maximum Lev DS Cla PH data Number of tex No. tests in 20% data s Lowest Mean of lowest 20 Characteristic val Design val	(Adjusted) soluble sulfate (mg/l) ue 0 vel) ss Soil sts 1 set 0 bH 8.4 0% ue 8.4 ue 8.4 ue 8.4	Soluble magnesium (mg/l) 0	ACEC Class design value
Characteristic Val (Maximum Lev DS Cla PH data Number of tee No. tests in 20% data s Lowest Mean of lowest 20 Characteristic val Design val Number of soil pH results less than DS Class des	(Adjusted) soluble sulfate (mg/l) ue 0 vel) ss Soil sts 1 set 0 bH 8.4 0% ue 8.4 ue 8.4 ue 8.4	Soluble magnesium (mg/l) 0	

ient Firet	horn Developme	nts Ltd	Cornbrash Formatio	n
roject NW E	Bicester Eco Dev	elopment		
ob number	C-13603			
Co	ncrete in	aggressive	ground	After BRE Special Digest 1, 2005
501	l data			
				Water
		(Adjusted) water	Total potential	soluble
		soluble sulfate	sulfate	magnesium
		(mg/l)	(%)	(mg/l)
	Number of tests	20	20	0
	s in 20% data set	4	4	
No. tests with	suspected pyrite		0	
	Maximum value	371	0.2	
	ighest two values	223	0	
Mea	n of highest 20%	100	0	
Chai	racteristic Value	100	0.2	
		[no pyrite]	[pyrite suspected]	
	DS Class	DS-1	DS-1	
If py	rite suspected, D	S Class limited to	DS-1	_
وم ما	rito occumend to	ho procest?	Adopted DC Class	= = DS-1
is py	rite assumed to I	ne hieseliti. No	Adopted DS Class	= <u>D3-1</u>
Wa	ter data			
		(Adjusted) soluble	Soluble	
		sulfate	magnesium	
		(mg/l)	(mg/l)	
Chai	racteristic Value (Maximum Level)	0	0	
Chai	(Maximum Level)	0	0	
<u> </u>	(Maximum Level) DS Class	0	0	
<u> </u>	(Maximum Level)	0 Soil		
<u> </u>	(Maximum Level) DS Class data	Soil	Water	
pH	(Maximum Level) DS Class data Number of tests	Soil 20		
pH	(Maximum Level) DS Class data Number of tests in 20% data set	Soil 20 4	Water	
pH No. tests	(Maximum Level) DS Class data Number of tests s in 20% data set Lowest pH	Soil 20 4 7.7	Water	
pH No. tests	(Maximum Level) DS Class data Number of tests in 20% data set	Soil 20 4	Water	
pH No. tests	(Maximum Level) DS Class data Number of tests s in 20% data set Lowest pH an of lowest 20%	Soil 20 4 7.7 8.2	Water	
pH No. tests Me Cha	Maximum Level) DS Class data Number of tests s in 20% data set Lowest pH an of lowest 20% racteristic value	Soil 20 4 7.7 8.2 8.2	Water	
pH No. tests Me Cha	(Maximum Level) DS Class data Number of tests in 20% data set Lowest pH an of lowest 20% racteristic value Design value	Soil 20 4 7.7 8.2 8.2	Water	ACEC Class design value
pH No. tests Me Cha Number of soil pl-	Maximum Level) DS Class data Number of tests in 20% data set Lowest pH an of lowest 20% racteristic value Design value H results less than 5.5 Class desig	Soil 20 4 7.7 8.2 8.2 8.2	Water 0	Natural ground
pH No. tests Me Cha	Maximum Level) DS Class data Number of tests in 20% data set Lowest pH an of lowest 20% racteristic value Design value H results less than 5.5 Class desig	Soil 20 4 7.7 8.2 8.2	Water 0	

	-	nts Ltd	Forest Marble Form	ation
oject NW Bicester Eco	o Dev	elopment]	
b number C-136	603		1	
Concrete	e in	aggressive	ground	After BRE Special Digest 1, 2005
Soil data				
				Water
		(Adjusted) water	Total potential	soluble
		soluble sulfate	sulfate	magnesium
		(mg/l)	(%)	(mg/l)
Number of		5	5	0
No. tests in 20% dat		1	1	
No. tests with suspected p			0	
Maximum		35	0.2	
Mean of highest two va		26	0	
Mean of highest			_	
Characteristic V	value	26	0	
		[no pyrite]	[pyrite suspected]	
DS C	Class	DS-1	DS-1	_
				_
If pyrite suspect	ted, D	S Class limited to	DS-1	_
1			Adam(: 100.0)	D0.4
IC DVIITA SCOUMA	ea to l	pe present? No	Adopted DS Class	= DS-1
is pyrite assume	ou .o .	•	- Adopted Do Glass	
		•	Audited Bo Glade	
Water data		•	Adopted Do Glass	
				<u>- 50-1</u>
		(Adjusted) soluble	Soluble	<u>- 50-1</u>
Water data		(Adjusted) soluble sulfate (mg/l)	Soluble magnesium	
Water data Characteristic V	V alue	(Adjusted) soluble sulfate	Soluble magnesium	<u>- 50-1</u>
Water data	V alue	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	
Water data Characteristic V (Maximum	V alue	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	
Characteristic V	Value Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	
Water data Characteristic V (Maximum	Value Level)	(Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l)	
Characteristic V (Maximum DS C	Value Level)	(Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0	
Characteristic V (Maximum DS C) pH data Number of	Value Level) Class	(Adjusted) soluble sulfate (mg/l) 0 Soil 5	Soluble magnesium (mg/l)	
Characteristic V (Maximum DS C pH data Number of No. tests in 20% dat	Value Level) Class	(Adjusted) soluble sulfate (mg/l) 0 Soil 5 1	Soluble magnesium (mg/l) 0	
Characteristic V (Maximum) DS C pH data Number of No. tests in 20% dat Lower	Value Level) Class tests ta set est pH	(Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 8.2	Soluble magnesium (mg/l) 0	
Characteristic V (Maximum) DS C pH data Number of No. tests in 20% dat Lower Mean of lowest	Value Level) Class tests ta set est pH t 20%	(Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 8.2 8.2	Soluble magnesium (mg/l) 0	
Characteristic V (Maximum) DS C pH data Number of No. tests in 20% dat Lower	Value Level) Class tests ta set est pH t 20%	(Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 8.2	Soluble magnesium (mg/l) 0	
Characteristic V (Maximum) DS C pH data Number of No. tests in 20% dat Lower Mean of lowest	Value Level) Class tests ta set est pH t 20% value	(Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 8.2 8.2	Soluble magnesium (mg/l) 0	
Characteristic V (Maximum DS C) PH data Number of No. tests in 20% dat Lower Mean of lowest Characteristic V Design V	Value Level) Class tests ta set est pH t 20% value	(Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 8.2 8.2 8.2	Soluble magnesium (mg/l) 0	
Characteristic V (Maximum) DS C pH data Number of No. tests in 20% dat Lower Mean of lowest Characteristic V	Value Level) Class tests ta set est pH t 20% value value	(Adjusted) soluble sulfate (mg/l) O Soil 5 1 8.2 8.2 8.2 8.2	Soluble magnesium (mg/l) 0	ACEC Class design value
Characteristic V (Maximum) DS C pH data Number of No. tests in 20% dat Lower Mean of lowest Characteristic V Design V Number of soil pH results less the DS Class design v DS Class design v	Value Level) Class tests ta set est pH t 20% value value nan 5.5	(Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 8.2 8.2 8.2 8.2 0 n value	Soluble magnesium (mg/l) 0 Water 0	ACEC Class design value Natural ground
Characteristic V (Maximum) DS C pH data Number of No. tests in 20% dat Lower Mean of lowest Characteristic V Design V Number of soil pH results less the DS Class design v DS Class design v	Value Level) Class tests ta set est pH t 20% value value nan 5.5	(Adjusted) soluble sulfate (mg/l) O Soil 5 1 8.2 8.2 8.2 8.2	Soluble magnesium (mg/l) 0 Water 0	ACEC Class design value

Appendix G

Site Monitoring Data and Ground Gas Risk Assessment

Site Monitoring Data

Job numb Clie Notes: LEL = lov	ber: C				•		Notes on site conditions: 20/09/20 Sunny weather condition 00/01/00											Gas analyser: GA507130					
Notes: LEL = lov	ent: R	oviou Part				20/09/20	ISunn	v weath	er condit	ion					Equipm	ent che	ck OK:	•		OK			
	Client: Review Partners								,								in date:		•		06/01/2021		
	Notes: LEL = lower explosive limit = 5%v/v.															Calibrat	tion che	ck OK:	•		OK		
Where the flow is less than the limit of detection of t							00/01/00 00/01/00									Name o	of persor	n monito	oring:		Aidan Tomkins		
		•			ction	of the	00/01/00]						
instrument, the							00/01/00											#####					
GSVs are round																							
Monitoring rou		-	Borel	hole de	tails		Pre	ssure	and flov	٧					Gas co	oncentra	ations				Local conditions		
Time Date	Tim	Volume of headspace in BH & filter pack) (m³ D denotes dry hol Depth to water or depth of (m) Single or dual gas t			Volume of headspac & filter pa	Atmospheric pressure (hPa)	Gas flow* (absolute value) (I/hr) Gas flow* (I/hr) Relative BH pressure (hPa) Atm pressure falling / rising / steady		VOC (as ppm	CH₄ (%v/v)			CH ₄ CO ₂ (%LEL) (%v/v)		(%v		Notes on condition of borehole and surrounding ground						
Ф 0	TO .	ole	al gas tap	pth	dry hole	e in BH (well pipie ck) (m³)	ressure (hPa)	g/rising/steady	essure (hPa)	* (I/hr)	ıte value) (l/hr)	using PID)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady			
29/09/20 13:5		RO01	S	1.90		0.013	1007	S	0.00	0.30	0.30		0.0	0.0	0.0	0.0	0.5	0.5	19.9	19.9	Borehole is good condition		
29/09/20 13:3		RO02	S	2.10		0.014	1007	S	-0.04	0.10	0.10		0.0	0.0	0.0	0.0	2.4	2.4	10.1		Borehole is good condition		
29/09/20 14:3		RO03	S	1.10		0.013	1007	S	-0.05	0.00	0.00		0.0	0.0	0.0	0.0	0.6	0.6	19.4	19.4	Gas Bung Venting		
29/09/20 14:1		RO04	S	1.90		0.013	1007	S	-0.05	0.00	0.00		0.0	0.0	0.0	0.0	2.4	2.4	10.1	10.1	Borehole is good condition		
29/09/20 14:2		RO05	S	2.75		0.018	1008	S	-7.24	0.10	0.10		0.0	0.0	0.0	0.0	1.8	1.8	16.9	16.9	Borehole is good condition		
29/09/20 13:2		RO06	S	1.85		0.012	1001	S	-0.05	0.00	0.00		0.0	0.0	0.0	0.0	1.0	0.3	19.6	13.3	Borehole is good condition		
29/09/20 14:3		RO07	S	2.60		0.017	1007	S	0.04	0.00	0.00		0.0	0.0	0.0	0.0	2.4	2.4	19.3	19.3	Borehole is good condition		
29/09/20 14:4		RO08	S	2.60		0.017	1008	S	-0.02	0.10	0.10		0.0	0.0	0.0	0.0	2.5	2.5	15.2	15.2	Borehole is good condition		
29/09/20 14:5		RO09	S	5.00	D	0.033	1008	S	0.09	0.00	0.00		0.0	0.0	0.0	0.0	0.3	0.3	20.5	20.5	Gas Bung Venting		
29/09/20 13:2		RO10	S	1.75		0.012	1008	S	0.07	0.00	0.00		0.0	0.0	0.0	0.0	1.5	1.5	16.6	16.6	Borehole is good condition		
29/09/20 15:0		RO11	S	2.00		0.013	1008	S	-0.07	0.00	0.00		0.0	0.0	0.0	0.0	3.1	3.1	15.3		Borehole is good condition		
29/09/20 15:2		RO12	S	2.35		0.016	1007	S	0.02	0.00	0.00		0.0	0.0	0.0	0.0	4.7	4.7	4.2		Borehole is good condition		
29/09/20 15:2		RO13	S	2.70		0.018	1008	S	-0.04	0.00	0.00		0.0	0.0	0.0	0.0	3.6	3.6	17.7		Borehole is good condition		
29/09/20 15:3		RO14	S	5.00	D	0.033	1008	S	0.14	0.10	0.10		0.0	0.0	0.0	0.0	2.0	2.0	18.2		Borehole is good condition		
29/09/20 15:2	5:27	RO15	S	4.05		0.027	1008	S	-0.23	0.00	0.00		0.0	0.0	0.0	0.0	2.6	2.6	16.5	16.5	Gas Bung Venting		
\vdash																							
	-																						
	-																						

Site: Caversfield

Job number: C-13603

Client: Hydrock

Gas analyser: G505312
Equipment check OK: Y

Service in date: Y
Calibration check OK: Y

Name of person monitoring: W. Milburn

Notes on site conditions:

Monitorin							Press	ure and	flow Gas concentrations								ions	(0 0	Local conditions			
Date	Time	Borehole	Kesponse zor Single or du	,		D denotes	Atmospheric p	Relative BH pı	Gas flow	VOC (as ppm		H₄ v/v)		CH ₄ LEL)	C((%v		0 (%v		Oth	er Gases	Notes on condition of borehole and surrounding ground	
ie .	ie	nole	or dual gas tap		depth of hole if dry m)	denotes dry hole	pressure (hPa)	pressure (hPa)	s flow* (I/hr)	using PID)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	СО (РРМ)	H₂S (PPM)		
15/10/20	07:38	RBH01	5.	10	1.10		1016	2.2	0.5	NA	ND	ND	ND	ND	1.0	1.0	20.2	20.2	5.0	ND		
15/10/20	07:43	RBH02	5.3	30	2.22		1016	71.9	19.4	NA	ND	ND	ND	ND	2.4	2.4	7.4	7.4	ND	ND		
15/10/20	07:47	RBH03	4.9	93	0.65		1016	74.2	20.1	NA	ND	ND	ND	ND	0.7	0.7	20.7	20.7	4.0	ND		
15/10/20	07:50	RBH04	4.9	92	0.98		1016	-0.1	ND	NA	ND	ND	ND	ND	0.2	0.1	20.9	20.9	ND	ND		
15/10/20	07:28	RBH05	4.0	63	1.73		1016	-0.1	ND	NA	ND	ND	ND	ND	1.2	1.2	19.5	19.5	1.0	ND		
15/10/20	07:24	RBH06	4.0		1.00		1016	-0.2	ND	NA	ND	ND	ND	ND	0.5	0.4	20.8	20.9	ND	ND		
15/10/20	07:20	RBH07	4.9	95	1.55		1016	-0.2	ND	NA	ND	ND	ND	ND	2.9	2.9	16.0	16.0	1.0	ND		
15/10/20	07:15	RBH08	4.		2.49		1016	0.0	ND	NA	ND	ND	ND	ND	2.9	2.9	15.0	15.0	ND	ND		
15/10/20	07:10	RBH09	5.5		3.12		1016	-0.1	ND	NA	ND	ND	ND	ND	1.1	1.1	19.4	19.4	ND	ND		
15/10/20	07:01	RBH10	3.3		1.25		1015	0.0	ND	NA	ND	ND	ND	ND	0.6	0.5	20.2	20.2	ND	ND		
15/10/20	08:02	RBH11	4.4		1.48		1016	-4.3	-2.1	NA	ND	ND	ND	ND	4.1	4.1	13.4	13.4	ND	ND		
15/10/20	08:05	RBH12	3.		1.20		1016	3.1	2.0	NA	ND	ND	ND	ND	4.2	4.2	7.7	7.7	2.0	ND		
15/10/20	08:09	RBH13	5.3		1.65		1016	-0.2	ND	NA	ND	ND	ND	ND	3.0	3.0	12.3	12.3	ND	ND		
15/10/20	08:13	RBH14	5.:		4.49		1016	-0.1	ND	NA	ND	ND	ND	ND	3.2	3.2	15.9	15.9	ND	ND		
15/10/20	08:19	RBH15	5.3	37	2.78		1017	-0.1	ND	NA	ND	ND	ND	ND	2.8	2.8	18.3	18.3	ND	ND		

Site: Caversfield

Job number: C-13603

Client: Hydrock

Gas analyser: G505312
Equipment check OK: Y

Service in date: Y
Calibration check OK: Y

Name of person monitoring: W. Milburn

Notes on site conditions:

Monitorin	g round	d Borehole details Pressure and flo													Gas con					· 5 5	Local conditions	
Date	Time	Borehole	Single or du	Response zon		D denotes dry	Atmospheric pı	Relative BH pr	Gas flow	VOC (as ppm		H₄ //v)		CH₄ LEL)	C((%\		0 (%v		Oth	er Gases	Notes on condition of borehole and surrounding ground	
ie	ie	nole	or dual gas tap	e depth (m)		dry hole	ressure (hPa)	pressure (hPa)	flow [*] (I/hr)	using PID)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	СО (РРМ)	H₂S (PPM)		
30/10/20	07:55	RBH01		5.10	0.89		1003	1.6	0.2	NA	ND	ND	ND	ND	1.2	1.2	19.8	19.8	3.0	ND		
30/10/20	07:50	RBH02		5.30	1.98		1003	52.5	16.3	NA	ND	ND	ND	ND	1.6	1.6	10.5	10.5	2.0	1		
30/10/20	07:43	RBH03	4	4.93	0.51		1003	8.4	0.1	NA	ND	ND	ND	ND	0.7	0.7	18.9	18.9	3.0	1		
30/10/20	07:39	RBH04	4	4.92	0.96		1003	0.1	ND	NA	ND	ND	ND	ND	0.2	0.1	20.0	20.0	ND	1		
30/10/20	07:31	RBH05		4.63	1.85		1003	-0.2	ND	NA	ND	ND	ND	ND	0.7	0.3	19.7	19.9	ND	1		
30/10/20	07:28	RBH06		4.02	0.85		1003	0.0	ND	NA	ND	ND	ND	ND	0.2	0.2	19.4	19.8	ND	1		
30/10/20	07:25	RBH07		4.95	1.45		1003	0.8	0.1	NA	ND	ND	ND	ND	2.1	2.1	18.0	18.0	ND	1		
30/10/20	07:21	RBH08		4.55	2.51		1003	-0.1	ND	NA	ND	ND	ND	ND	2.7	2.7	14.7	14.7	ND	1		
30/10/20	07:18	RBH09		5.55	3.09		1003	-0.1	ND	NA	ND	ND	ND	ND	1.8	1.8	18.6	18.6	ND	1		
30/10/20	07:14	RBH10		3.30	1.19		1004	0.0	ND	NA	ND	ND	ND	ND	0.5	0.5	19.8	19.9	ND	1		
30/10/20	06:55	RBH11		4.43	2.70		1003	3.4	2.5	NA	ND	ND	ND	ND	3.7	3.7	11.4	11.4	2.0	ND		
30/10/20	06:58	RBH12		3.54	1.09		1003	0.0	ND	NA	ND	ND	ND	ND	3.5	3.5	16.2	16.2	ND	1		
30/10/20	07:02	RBH13		5.35	1.52		1003	15.3	6.7	NA	ND	ND	ND	ND	3.7	3.7	13.2	13.2	ND	1		
30/10/20	07:06	RBH14		5.21	4.37		1003	-0.1	ND	NA	ND	ND	ND	ND	3.7	3.7	14.0	14.0	1.0	1		
30/10/20	07:10	RBH15		5.37	2.70		1003	-0.2	ND	NA	ND	ND	ND	ND	3.0	3.0	17.5	17.5	ND	1		
1																			1			

Site: Caversfield
Job number: C-13603
Client: Hydrock
Gas analyser: G

Gas analyser: G500679
Equipment check OK: Y

Service in date: Y
Calibration check OK: Y

Name of person monitoring: W. Milburn

Notes on site conditions:

							explosive limit = 5%v/v. * where the flow is less than the limit of detection of the instrument, the detection limit is reported (Highlighted in d flow Gas concentrations							n of the in	strument,	tne detect	ion limit is repo	rtea (Highlightea in		
Monitoring	g round	Во	orehole de	tails	Pres	sure and	l flow						Gas cor	ncentrat	ions				Local conditions	
Date	Time	Borehole	Response zon	Depth to water or d	Atmospheric pi	Relative BH pr	Gas flow	VOC (as ppm		H₄ //v)		H₄ .EL)		O ₂ v/v)) ₂ //v)	Oth	ner Gases	Notes on condition of borehole and surrounding ground	
o.	Ф	ole	e depth (m)	epth of hole if dry	ressure (hPa)	essure (hPa)	: flow* (I/hr)	using PID)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	СО (РРМ)	H₂S (PPM)		
12/11/20	11:54	RBH01	5.10	1.27	1006	0.7	0.1	NA	ND	ND	ND	ND	0.1	0.1	21.4	21.1	1.0	1	Bung removed on arrival - borehole casing not fixed in ground from first visit	
12/11/20	11:50	RBH02	5.30	1.55	1006	-16.2	-3.7	NA	ND	ND	ND	ND	1.5	1.5	10.2	20.2	3.0	ND		
12/11/20	11:46	RBH03	4.93	0.55	1006	-10.8	-3.3	NA	ND	ND	ND	ND	0.6	0.6	19.6	19.6	4.0	1		
12/11/20	11:42	RBH04	4.92	0.98	1005	0.0	ND	NA	ND	ND	ND	ND	0.2	0.2	17.7	9.3	ND	ND		
12/11/20	11:39	RBH05	4.63	2.14	1006	0.0	ND	NA	ND	ND	ND	ND	1.7	1.7	19.3	19.3	1.0	1		
12/11/20	11:33	RBH06	4.02	1.05	1005	0.0	ND	NA	ND	ND	ND	ND	0.1	0.1	21.0	21.0	ND	ND		
12/11/20	11:31	RBH07	4.95	1.78	1006	0.0	ND	NA	ND	ND	ND	ND	3.4	3.4	14.2	14.2	1.0	ND		
12/11/20	11:26	RBH08	4.55	2.67	1006	-0.2	ND	NA	ND	ND	ND	ND	2.6	2.1	17.2	17.4	1.0	ND		
12/11/20	11:22	RBH09	5.55	3.15	1006	-0.1	ND	NA	ND	ND	ND	ND	1.8	1.8	18.5	18.5	1.0	1		
12/11/20	11:18	RBH10	3.30	1.28	1006	0.8	0.1	NA	ND	ND	ND	ND	0.7	0.6	20.7	20.8	1.0	ND		
12/11/20	11:09	RBH11	4.43	1.51	1005	0.2	ND	NA	ND	ND	ND	ND	4.2	4.2	13.5	13.5	2.0	ND		
12/11/20	11:08	RBH12	3.54	1.43	1003	-0.1	ND	NA	ND	ND	ND	ND	4.2	4.2	13.3	13.3	1.0	ND		
12/11/20	11:10	RBH13	5.35	2.03	1004	0.0	ND	NA	ND	ND	ND	ND	3.7	3.7	17.0	17.0	ND	ND		
12/11/20	11:12	RBH14	5.21	4.56	1005	-0.1	ND	NA	ND	ND	ND	ND	3.8	3.8	15.8	15.8	1.0	ND		
12/11/20	11:15	RBH15	5.37	2.83	1005	-0.1	ND	NA	ND	ND	ND	ND	2.7	2.7	17.5	17.5	1.0	ND		

Site: Caversfield
Job number: C-13603

Client: Hydrock
Gas analyser: G500679

Equipment check OK: Y

Service in date: Y
Calibration check OK: Y

Name of person monitoring: W. Milburn

Notes on site conditions:

Monitorin							Press	ure and	flow						Gas con	centrat	ions		· · · · · · · · · · · · · · · · · · ·		Local conditions	
Date	Time	Borehole	Single or du	Response zor		D denotes	Atmospheric p	Relative BH pı	Gas flow	VOC (as ppm		H₄ //v)		CH ₄ LEL)	C((%\		(%v		Oth	er Gases	Notes on condition of borehole and surrounding ground	
FG FG	16	nole	or dual gas tap	ıe depth (m)	depth of hole if dry m)	denotes dry hole	pressure (hPa)	pressure (hPa)	s flow* (I/hr)	າ using PID)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	СО (РРМ)	H₂S (PPM)		
27/11/20	11:32	RBH01	5	5.10	1.55		1010	0.0	ND	NA	ND	ND	ND	ND	0.1	0.1	20.5	20.5	ND	ND		
27/11/20	11:36	RBH02	5	5.30	1.58		1010	-0.2	-4.0	NA	ND	ND	ND	ND	1.4	1.4	12.9	12.9	2.0	ND		
27/11/20	11:42	RBH03	4	4.93	0.76		1010	-12.2	-4.1	NA	ND	ND	ND	ND	0.7	0.7	18.6	18.6	2.0	ND		
27/11/20	11:46	RBH04	4	4.92	1.09		1010	0.0	ND	NA	ND	ND	ND	ND	0.4	0.4	13.8	13.8	ND	ND		
27/11/20	11:21	RBH05	4	4.63	2.31		1011	-0.1	ND	NA	ND	ND	ND	ND	2.4	2.4	18.0	18.0	ND	ND		
27/11/20	11:18	RBH06		4.02	1.11		1010	0.0	ND	NA	ND	ND	ND	ND	0.2	0.2	20.2	20.2	ND	ND		
27/11/20	11:16	RBH07	4	4.95	2.04		1010	-0.2	ND	NA	ND	ND	ND	ND	4.1	4.1	14.9	14.9	ND	ND		
27/11/20	11:14	RBH08		4.55	2.73		1011	0.0	ND	NA	ND	ND	ND	ND	3.5	3.5	13.8	13.8	ND	ND		
27/11/20	11:12	RBH09		5.55	3.15		1010	-0.1	ND	NA	ND	ND	ND	ND	1.6	1.6	18.7	18.7	ND	ND		
27/11/20	11:09	RBH10		3.30	1.88		1011	0.0	ND	NA	ND	ND	ND	ND	1.3	1.1	19.7	19.7	ND	ND		
27/11/20	10:58	RBH11		4.43	1.64		1010	0.0	ND	NA	ND	ND	ND	ND	4.2	4.2	12.3	12.3	ND	ND		
27/11/20	10:52	RBH12		3.54	1.71		1008	-0.1	ND	NA	ND	ND	ND	ND	4.2	4.2	13.3	13.3	ND	ND		
27/11/20	10:55	RBH13		5.35	2.36		1009	0.0	ND	NA	ND	ND	ND	ND	4.0	4.0	15.6	15.6	ND	ND		
27/11/20	11:01	RBH14		5.21	4.72		1010	0.0	ND	NA	ND	ND	ND	ND	3.9	3.9	14.0	14.7	ND	ND		
27/11/20	11:03	RBH15	5	5.37	2.97		1010	-0.2	ND	NA	ND	ND	ND	ND	2.7	2.7	17.3	17.3	ND	ND		

Ground Gas Risk Assessment

Ground Gas Risk Assessment

 Job Number
 C-13603

 Job Name
 NW Bicester

 Client
 Firethorn Developments

Data All Data

	Max CH4	Max C02	Worst Case Flow	Worst Case GSV Methane	Worst Case GSV CO ₂
I	0.0	4.7	20.1	0.0000	0.9447

Number of Readings	75
Number of Monitoring Rounds	5
Number of Readings with Flow Rate	75

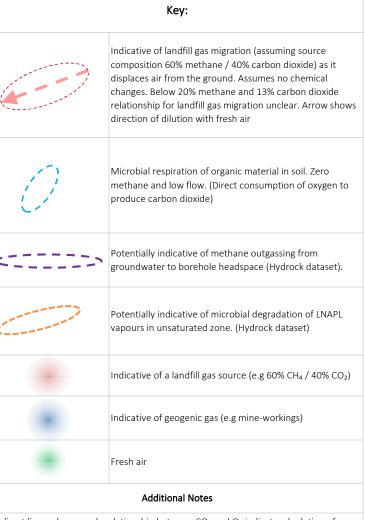
	NHBC Assessment												
	Methane Carbon Dioxide												
	Max Value	GSV	Max Value	GSV									
Green	75	75	75	75									
Amber 1	0	0	0	0									
Amber 2	0	0	0	0									
Red	0	0	0	0									

CIRIA (CIRIA C665 Assessment											
	Meth	nane	Carbon	Dioxide								
	Max Value	Max Value GSV		GSV								
CS1	75	75	75	69								
CS2	0 0		0	6								
CS3	N/A	0	N/A	0								
CS4	N/A	0	N/A	0								
CS5	N/A	N/A 0		0								
CS6	N/A	0	N/A	0								

	Pressure		Relative	Flow Rate	Atmos.	CH₄ (¹	% vol)	(%L	.EL)	CO ₂ (% vol)	O ₂ (9	% vol)		
Location	Trend	Date	Pressure (mb)	(I/hr)	Pressure (m.bar)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	GSV - CH4	GSV - CO ₂
RBH01	Rising	30/10/20	1.60	0.2	1003	0.0	0.0	0.0	0.0	1.2	1.2	19.8	19.8	0.0000	0.0024
RBH02	Rising	30/10/20	52.50	16.3	1003	0.0	0.0	0.0	0.0	1.6	1.6	10.5	10.5	0.0000	0.2608
RBH03	Rising	30/10/20	8.40	0.1	1003	0.0	0.0	0.0	0.0	0.7	0.7	18.9	18.9	0.0000	0.0007
RBH04	Rising	30/10/20	0.10	0.1	1003	0.0	0.0	0.0	0.0	0.2	0.1	20.0	20.0	0.0000	0.0001
RBH05	Rising	30/10/20	-0.20	0.1	1003	0.0	0.0	0.0	0.0	0.7	0.3	19.7	19.9	0.0000	0.0003
RBH06 RBH07	Rising Rising	30/10/20 30/10/20	0.00	0.1 0.1	1003 1003	0.0	0.0	0.0	0.0	0.2 2.1	0.2 2.1	19.4 18.0	19.8 18.0	0.0000	0.0002 0.0021
RBH08	Rising	30/10/20	-0.10	0.1	1003	0.0	0.0	0.0	0.0	2.7	2.7	14.7	14.7	0.0000	0.0021
RBH09	Rising	30/10/20	-0.10	0.1	1003	0.0	0.0	0.0	0.0	1.8	1.8	18.6	18.6	0.0000	0.0027
RBH10	Rising	30/10/20	0.00	0.1	1004	0.0	0.0	0.0	0.0	0.5	0.5	19.8	19.9	0.0000	0.0005
RBH11	Rising	30/10/20	3.40	2.5	1003	0.0	0.0	0.0	0.0	3.7	3.7	11.4	11.4	0.0000	0.0925
RBH12	Rising	30/10/20	0.00	0.1	1003	0.0	0.0	0.0	0.0	3.5	3.5	16.2	16.2	0.0000	0.0035
RBH13	Rising	30/10/20	15.30	6.7	1003	0.0	0.0	0.0	0.0	3.7	3.7	13.2	13.2	0.0000	0.2479
RBH14	Rising	30/10/20	-0.10	0.1	1003	0.0	0.0	0.0	0.0	3.7	3.7	14.0	14.0	0.0000	0.0037
RBH15	Rising	30/10/20	-0.20	0.1	1003	0.0	0.0	0.0	0.0	3.0	3.0	17.5	17.5	0.0000	0.0030
RBH01 RBH02	Falling Falling	15/10/20 15/10/20	2.20 71.90	0.5 19.4	1016 1016	0.0	0.0	0.0	0.0	1.0 2.4	1.0 2.4	20.2 7.4	20.2 7.4	0.0000	0.0050 0.4656
RBH03	Falling	15/10/20	74.20	20.1	1016	0.0	0.0	0.0	0.0	0.7	0.7	20.7	20.7	0.0000	0.4656
RBH04	Falling	15/10/20	-0.10	0.1	1016	0.0	0.0	0.0	0.0	0.2	0.1	20.9	20.9	0.0000	0.0001
RBH05	Falling	15/10/20	-0.10	0.1	1016	0.0	0.0	0.0	0.0	1.2	1.2	19.5	19.5	0.0000	0.0012
RBH06	Falling	15/10/20	-0.20	0.1	1016	0.0	0.0	0.0	0.0	0.5	0.4	20.8	20.9	0.0000	0.0004
RBH07	Falling	15/10/20	-0.20	0.1	1016	0.0	0.0	0.0	0.0	2.9	2.9	16.0	16.0	0.0000	0.0029
RBH08	Falling	15/10/20	0.00	0.1	1016	0.0	0.0	0.0	0.0	2.9	2.9	15.0	15.0	0.0000	0.0029
RBH09	Falling	15/10/20	-0.10	0.1	1016	0.0	0.0	0.0	0.0	1.1	1.1	19.4	19.4	0.0000	0.0011
RBH10	Falling	15/10/20	0.00	0.1	1015	0.0	0.0	0.0	0.0	0.6	0.5	20.2	20.2	0.0000	0.0005
RBH11	Falling	15/10/20	-4.30	0.1	1016	0.0	0.0	0.0	0.0	4.1	4.1	13.4	13.4	0.0000	0.0041
RBH12	Falling	15/10/20	3.10	2.0	1016	0.0	0.0	0.0	0.0	4.2	4.2	7.7	7.7	0.0000	0.0840
RBH13 RBH14	Falling Falling	15/10/20 15/10/20	-0.20 -0.10	0.1 0.1	1016 1016	0.0	0.0	0.0	0.0	3.0 3.2	3.0 3.2	12.3 15.9	12.3 15.9	0.0000	0.0030 0.0032
RBH15	Falling	15/10/20	-0.10	0.1	1017	0.0	0.0	0.0	0.0	2.8	2.8	18.3	18.3	0.0000	0.0032
RBH01	Rising	29/09/20	0.00	0.1	1007	0.0	0.0	0.0	0.0	0.5	0.5	19.9	19.9	0.0000	0.0028
RBH02	Rising	29/09/20	-0.04	0.1	1007	0.0	0.0	0.0	0.0	2.4	2.4	10.1	10.1	0.0000	0.0024
RBH03	Rising	29/09/20	-0.05	0.1	1007	0.0	0.0	0.0	0.0	0.6	0.6	19.4	19.4	0.0000	0.0006
RBH04	Rising	29/09/20	-0.05	0.1	1007	0.0	0.0	0.0	0.0	2.4	2.4	10.1	10.1	0.0000	0.0024
RBH05	Rising	29/09/20	-7.24	0.1	1008	0.0	0.0	0.0	0.0	1.8	1.8	16.9	16.9	0.0000	0.0018
RBH06	Rising	29/09/20	-0.05	0.1	1001	0.0	0.0	0.0	0.0	1.0	0.3	19.6	19.9	0.0000	0.0003
RBH07	Rising	29/09/20	0.04	0.1	1007	0.0	0.0	0.0	0.0	2.4	2.4	19.3	19.3	0.0000	0.0024
RBH08	Rising	29/09/20	-0.02	0.1	1008	0.0	0.0	0.0	0.0	2.5	2.5	15.2	15.2	0.0000	0.0025
RBH09 RBH10	Rising Rising	29/09/20 29/09/20	0.09	0.1 0.1	1008 1008	0.0	0.0	0.0	0.0	0.3 1.5	0.3 1.5	20.5 16.6	20.5 16.6	0.0000	0.0003 0.0015
RBH11	Rising	29/09/20	-0.07	0.1	1008	0.0	0.0	0.0	0.0	3.1	3.1	15.3	15.3	0.0000	0.0015
RBH12	Rising	29/09/20	0.02	0.1	1007	0.0	0.0	0.0	0.0	4.7	4.7	4.2	4.2	0.0000	0.0031
RBH13	Rising	29/09/20	-0.04	0.1	1008	0.0	0.0	0.0	0.0	3.6	3.6	17.7	17.7	0.0000	0.0036
RBH14	Rising	29/09/20	0.14	0.1	1008	0.0	0.0	0.0	0.0	2.0	2.0	18.2	18.2	0.0000	0.0020
RBH15	Rising	29/09/20	-0.23	0.1	1008	0.0	0.0	0.0	0.0	2.6	2.6	16.5	16.5	0.0000	0.0026
RBH01	Rising	12/11/20	0.70	0.1	1006	0.0	0.0	0.0	0.0	0.1	0.1	21.4	21.1	0.0000	0.0001
RBH02	Rising	12/11/20	-16.20	0.1	1006	0.0	0.0	0.0	0.0	1.5	1.5	10.2	20.2	0.0000	0.0015
RBH03	Rising	12/11/20	-10.80	0.1	1006	0.0	0.0	0.0	0.0	0.6	0.6	19.6	19.6	0.0000	0.0006
RBH04 RBH05	Rising	12/11/20	0.00	0.1 0.1	1005 1006	0.0	0.0	0.0	0.0	0.2 1.7	0.2 1.7	17.7	9.3	0.0000	0.0002 0.0017
RBH06	Rising Rising	12/11/20 12/11/20	0.00	0.1	1005	0.0	0.0	0.0	0.0	0.1	0.1	19.3 21.0	19.3 21.0	0.0000	0.0017
RBH07	Rising	12/11/20	0.00	0.1	1005	0.0	0.0	0.0	0.0	3.4	3.4	14.2	14.2	0.0000	0.0001
RBH08	Rising	12/11/20	-0.20	0.1	1006	0.0	0.0	0.0	0.0	2.6	2.1	17.2	17.4	0.0000	0.0034
RBH09	Rising	12/11/20	-0.10	0.1	1006	0.0	0.0	0.0	0.0	1.8	1.8	18.5	18.5	0.0000	0.0018
RBH10	Rising	12/11/20	0.80	0.1	1006	0.0	0.0	0.0	0.0	0.7	0.6	20.7	20.8	0.0000	0.0006
RBH11	Rising	12/11/20	0.20	0.1	1005	0.0	0.0	0.0	0.0	4.2	4.2	13.5	13.5	0.0000	0.0042
RBH12	Rising	12/11/20	-0.10	0.1	1003	0.0	0.0	0.0	0.0	4.2	4.2	13.3	13.3	0.0000	0.0042
RBH13	Rising	12/11/20	0.00	0.1	1004	0.0	0.0	0.0	0.0	3.7	3.7	17.0	17.0	0.0000	0.0037
RBH14	Rising	12/11/20	-0.10	0.1	1005	0.0	0.0	0.0	0.0	3.8	3.8	15.8	15.8	0.0000	0.0038
RBH15	Rising	12/11/20	-0.10	0.1	1005	0.0	0.0	0.0	0.0	2.7	2.7	17.5	17.5	0.0000	0.0027
RBH01 RBH02	Falling Falling	27/11/20 27/11/20	0.00 -0.20	0.1 0.1	1010 1010	0.0	0.0	0.0	0.0	0.1 1.4	0.1 1.4	20.5 12.9	20.5 12.9	0.0000	0.0001 0.0014
RBH03	Falling	27/11/20	-0.20	0.1	1010	0.0	0.0	0.0	0.0	0.7	0.7	18.6	18.6	0.0000	0.0014
RBH04	Falling	27/11/20	0.00	0.1	1010	0.0	0.0	0.0	0.0	0.7	0.7	13.8	13.8	0.0000	0.0007
RBH05	Falling	27/11/20	-0.10	0.1	1011	0.0	0.0	0.0	0.0	2.4	2.4	18.0	18.0	0.0000	0.0024
RBH06	Falling	27/11/20	0.00	0.1	1010	0.0	0.0	0.0	0.0	0.2	0.2	20.2	20.2	0.0000	0.0002
RBH07	Falling	27/11/20	-0.20	0.1	1010	0.0	0.0	0.0	0.0	4.1	4.1	14.9	14.9	0.0000	0.0041
RBH08	Falling	27/11/20	0.00	0.1	1011	0.0	0.0	0.0	0.0	3.5	3.5	13.8	13.8	0.0000	0.0035
RBH09	Falling	27/11/20	-0.10	0.1	1010	0.0	0.0	0.0	0.0	1.6	1.6	18.7	18.7	0.0000	0.0016
RBH10	Falling	27/11/20	0.00	0.1	1011	0.0	0.0	0.0	0.0	1.3	1.1	19.7	19.7	0.0000	0.0011
RBH11	Falling	27/11/20	0.00	0.1	1010	0.0	0.0	0.0	0.0	4.2	4.2	12.3	12.3	0.0000	0.0042

Ground Gas Risk Assessment

	Pressure		Relative	Flow Rate	Atmos.	Atmos. CH ₄ (% vol)		(%LEL)		CO ₂ (% vol)		O ₂ (% vol)			
Location	Trend	Date	Pressure (mb)	(l/hr)	Pressure (m.bar)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	GSV – CH4	GSV – CO ₂
RBH12	Falling	27/11/20	-0.10	0.1	1008	0.0	0.0	0.0	0.0	4.2	4.2	13.3	13.3	0.0000	0.0042
RBH13	Falling	27/11/20	0.00	0.1	1009	0.0	0.0	0.0	0.0	4.0	4.0	15.6	15.6	0.0000	0.0040
RBH14	Falling	27/11/20	0.00	0.1	1010	0.0	0.0	0.0	0.0	3.9	3.9	14.0	14.7	0.0000	0.0039
RBH15	Falling	27/11/20	-0.20	0.1	1010	0.0	0.0	0.0	0.0	2.7	2.7	17.3	17.3	0.0000	0.0027


Hydrock Bulk Gases Ternary Plot Analysis

Client:	Firethorn Developments
Site Name:	NW Bicester
Contract Number:	C-13603
Assessment Date:	02/12/2020

Screened Strata:	All
Site Zone:	All

	RBH02	RBH03	RBH04	RBH05	RBH06	RBH07	RBH08	RBH09	RBH10	RBH11	RBH12	RBH13
BH14	RBH15	(blank)										
	.,		-									
Gas Tern	ary Plot		0 100				Gas Ternary	Plot (Detailed	70	/		30
		10	90									CO ₂ Stead
		20	\rightarrow	80								(%)
O2 (%	+ Balance	30			O2 Steady (%	6)	O ₂ + E (%)	Balance 80		$\overline{}$	\	20
(7)	50 /			60							\ /	. /
	60				40				// \			/ -
	70				30		9	90				10
80		<u>/</u>			20			2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
90	4====				10							
00			<u> </u>	<u> </u>		0	100					<u> </u>
0	10 20	30 40	50 60	70 80	90 100		0		10	20		30
	10 20	30 40 CH ₄ Stea		70 80	90 100				10 CH ₄ Steady			
0	10 20 ses Time-Plot	CH ₄ Stea		70 80	90 100							
0 Bulk Ga		CH ₄ Stea		70 80	90 100		0					
Bulk Ga		CH ₄ Stea		•	90 100		0 CO ₂ / O ₂ relation				••	
Bulk Ga		CH ₄ Stea	ady (%)				0 CO ₂ / O ₂ relation					
Bulk Ga		CH4 Stea	ady (%)		90 100		0 CO ₂ / O ₂ relation 25 20					
Bulk Ga		CH4 Stea	ady (%)				0 CO ₂ / O ₂ relation					
Bulk Ga		CH4 Stea	ady (%)				25 20 8 5 7 10					30
Bulk Ga		CH4 Stea	ady (%)				25 20 8 50 10					
Bulk Ga		CH4 Stea	ady (%)				25 20 8 5 7 10					30
Bulk Ga		CH4 Stea	ady (%)				25 20 20 10					30

A direct linear downwards relationship between CO_2 and O_2 indicates depletion of oxygen to produce carbon dioxide via microbial respiration using the following equation:

 $CH_2O + O_2 ->> CO_2 + H_2O$ In this scenerio $CO_2 + O_2$ should be around 21% (i.e. the O_2 concentration in the atmosphere)

There may also be trace amounts of methane up to about 3% caused by anaerobic decomposition in small anaerobic hotspots or the reduction of carbon dioxide by methanogens. Oxygen concentrations may be depleted but in this scenario oxygen deficient air is not likely to be emitted quickly from the ground and it does not pose a risk.

After: Wilson et al, 2018. Ground Gas Information Sheet No. 1
Hydrock datasets (methane outgassing / LNAPL vapour degradation)

09/07/2019

Version:

Appendix H

Contamination Test Results and Statistical Analysis

Contamination Test Results

Cameron Adams
Hydrock Consultants Ltd
2-4 Hawthorne Park
Holdenby Road
Spratton
Northamptonshire
NN6 8LD

t: 01604842888 f: 01604842666

e: cameronadams@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-29332

Replaces Analytical Report Number: 20-29332, issue no. 1

Client sampling date amended.

Project / Site name: North-West Bicester Eco Development Samples received on: 09/09/2020

Your job number: C-13603 Samples instructed on/ 09/09/2020

Analysis started on:

Your order number: Analysis completed by: 14/10/2020

Report Issue Number: 2 Report issued on: 14/10/2020

Samples Analysed: 10 soil samples

Signed

Will Fardon
Technical Reviewer (CS Team)
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils -

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Project / Site name: North-West Bicester Eco Development

Lab Sample Number				1616782	1616783	1616784	1616785
Sample Reference				TP21	TP06	TP17	TP16
Sample Number				4	4	4	4
				0.10	0.20	0.30	0.10
Depth (m) Date Sampled				04/09/2020	07/09/2020	07/09/2020	07/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Time Taken		I		None Supplied	попе Заррнеа	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
		_	S				
		1					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	16	12	12
Total mass of sample received	kg	0.001	NONE	1.5	1.5	0.5	1.5
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
en altra antic							
General Inorganics	T	1 .	I 1		0 :	0 :	
pH - Automated	pH Units	N/A	MCERTS	8	8.1	8.1	8.1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.012	0.015	0.013	0.016
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.032	0.023	0.017	0.017
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH	1	1					
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Honor Motale / Motallaida							
Heavy Metals / Metalloids	· n ·		MCERTO	10	10	10	12
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	18	16	13
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.6	1.6	1.4	1.3
Boron (water soluble)	mg/kg	0.2	MCERTS	1.2	1.2	1.3	1
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2 < 1.2
,	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	
Chromium (III)	mg/kg	1	NONE	33	37	30	29
Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	1	MCERTS	34 18	38 19	31 16	29 17
Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	28	32	24	21
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3 29	< 0.3 28	< 0.3 24	< 0.3 23
Selenium (aqua regia extractable)	mg/kg	1		< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg		MCERTS MCERTS	< 1.0 78	< 1.0 81	< 1.0 74	67
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	67	69	52	53
Zinc (aqua regia extractable)	mg/kg	1	PICERIO	0/	לט	JZ	JJ

-	-		
Project	/ Site name:	North-West Bicester	Eco Development

Lab Sample Number				1616782	1616783	1616784	1616785
Sample Reference				TP21	TP06	TP17	TP16
Sample Number				4	4	4	4
Depth (m)				0.10	0.20	0.30	0.10
Date Sampled				04/09/2020	07/09/2020	07/09/2020	07/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs							
Aniline	mg/kg	0.1	NONE	_	_	_	-
Phenol	mg/kg	0.2	ISO 17025	-	_	_	-
2-Chlorophenol	mg/kg	0.1	MCERTS	_	_	_	_
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	_	_	_
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	_	_	_	_
1,2-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	
Bis(2-chloroisopropyl)ether	mg/kg	0.2	MCERTS	_	<u>-</u>	_	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	_	_
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	_	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	_	_	_	_
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	_
2,4-Dimethylphenol	mg/kg	0.3	MCERTS				
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-		
1,2,4-Trichlorobenzene		0.3	MCERTS	-			
Naphthalene	mg/kg mg/kg	0.05	MCERTS				
2,4-Dichlorophenol	mg/kg	0.03	MCERTS				
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	_
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	_	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	_	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	_	_	_	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	_	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	_	_	_	_
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	_	_	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	_	_	_
Acenaphthene	mg/kg	0.05	MCERTS	_	_	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	_	_	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS		-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS		-	-	-

Project / Site name: North-West Bicester Eco Development

Lab Sample Number				1616782	1616783	1616784	1616785
Sample Reference	TP21	TP06	TP17	TP16			
Sample Number					4	4	4
Depth (m)				0.10	0.20	0.30	0.10
Date Sampled				04/09/2020	07/09/2020	07/09/2020	07/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	ı	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-

SVOCs TICs

SVOCs TICs Compound Name	N/A	NONE	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North-West Bicester Eco Development

Lab Carrala Normbar				1616706	1616707	1616700	1616700
Lab Sample Number				1616786 TP22	1616787 TP23	1616788 TP11	1616789 TP01
Sample Reference							
Sample Number				4	4	4	4
Depth (m)				0.10	0.20	0.30	0.10
Date Sampled				07/09/2020	07/09/2020	07/09/2020	07/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
		1					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	19	15	21	16
Total mass of sample received	kg	0.001	NONE	1.5	1.5	1.5	1.5
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics			MOFFEE	7.0	7.0	7.0	7.0
pH - Automated	pH Units	N/A	MCERTS	7.8	7.9	7.8	7.6
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.014	0.014	0.016	0.03
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.031	0.032	0.03	0.024
Total Phenols	1	T		_	_		_
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids	·IT						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	15	15	16
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.7	1.4	1.6	1.5
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	2.2	1.6	1.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	37	29	34	31
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	38	30	34	32
Copper (aqua regia extractable)	mg/kg	1	MCERTS	20	17	18	19
Lead (aqua regia extractable)	mg/kg	1	MCERTS	30	23	29	22
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	32	24	25	27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	86	68	71	74
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	74	58	67	61

Project / Site name: North-West Bicester Eco Development

Lab Sample Number				1616786	1616787	1616788	1616789
Sample Reference	TP22	TP23	TP11	TP01			
Sample Number	4	4	4	4			
Depth (m)				0.10	0.20	0.30	0.10
Date Sampled				07/09/2020	07/09/2020	07/09/2020	07/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
au o							
SVOCs							
Aniline	mg/kg	0.1	NONE	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
	3, 3						

Project / Site name: North-West Bicester Eco Development

Lab Sample Number				1616786	1616787	1616788	1616789
Sample Reference	TP22	TP23	TP11	TP01			
Sample Number	4	4	4	4			
Depth (m)	0.10	0.20	0.30	0.10			
Date Sampled	07/09/2020	07/09/2020	07/09/2020	07/09/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	1	ı	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	1	ı	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	ı	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-

	TI	

SVOCs TICs Compound Name	N/A	NONE	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North-West Bicester Eco Development

Lab Sample Number				1616790	1616791
Sample Reference				TP12	TP13
Sample Number				4	4
Depth (m)				0.10	0.20
Date Sampled				08/09/2020	08/09/2020
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	22	19
Total mass of sample received		0.001	NONE	1.5	1.5
Total mass of sample received	kg	0.001	NONE	1.5	1.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	7.9	7.9
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.015	0.016
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.033	0.034
	•	•			
Total Phenois			T 1		
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0
Speciated PAHs					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Total PAH	1		1		1
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80
Heavy Metals / Metalloids		1			T
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	18
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.6	1.6
Boron (water soluble)	mg/kg	0.2	MCERTS	1	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Chromium (HEXAVAIENT)	mg/kg	1.2	MCERTS	< 1.2	< 1.2
Chromium (III) Chromium (agua regia extractable)	mg/kg	1	NONE	34	37
(1)	mg/kg	1	MCERTS	34	37 10
Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	1	MCERTS	18 26	19 27
Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS MCERTS	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	27	31
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	74	86
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	68	68

Project / Site name: North-West Bicester Eco Development

Lab Sample Number				1616790	1616791
Sample Reference				TP12	TP13
Sample Number				4	4
Depth (m)				0.10	0.20
Date Sampled				08/09/2020	08/09/2020
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		

Anline mg/ng 0.1 NONE < 0.1 - Preceded - Prec	SVOCs					
2-Chlorophynelmon	Aniline	mg/kg	0.1	NONE	< 0.1	-
BB(2-chloroethyl)ether	Phenol	mg/kg	0.2	ISO 17025	< 0.2	-
1,3-Dichlorobenzene	2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	ı
1,2-Dichlorobenzene	Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-
1,4-Dichlorobenzene	1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-
BB(2-chloroisopropyl)ether	1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	ı
2-Methylphenol mg/kg	1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-
Hexachloroethane	Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-
Nitrobenzene mg/kg 0.3 MCERTS < 0.3 - 4-Methylphenol mg/kg 0.2 NONE < 0.2	2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-
### detail	Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-
Sophorone	Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	-
2-Nitrophenol mg/kg 0.3 McERTS 0.3 - 2,4-Dimethylphenol mg/kg 0.3 McERTS 0.3 - 1,2,4-Trichlorobenzene mg/kg 0.05 McERTS 0.05 - 1,2,4-Dichlorophenol mg/kg 0.05 McERTS 0.05 - 1,2,4-Dichlorophenol mg/kg 0.1 NoNE 0.1 - 1,2,4-Trichlorobenzene mg/kg 0.1 NoNE 0.1 - 1,2,4-Trichlorobenzene mg/kg 0.1 NoNE 0.1 - 1,2,4-Trichlorobenzene mg/kg 0.1 McERTS 0.1 - 1,2,4-Trichlorophenol mg/kg 0.1 McERTS 0.1 - 1,2,4-Trichlorophenol mg/kg 0.1 McERTS 0.1 - 1,2,4,5-Trichlorophenol mg/kg 0.2 McERTS 0.0 - 1,2,4-Trichlorophenol mg/kg 0.2 McERTS 0.0 - 1,2,4-Trichlorophenol mg/kg 0.2 McERTS 0.0 - 1,2,4-Trichlorophenol mg/kg 0.2 McERTS 0.2 - 1,2,4-Trichlorophenol mg/kg 0.3 McERTS 0.2 - 1,2,4-Trichlorophenol mg/kg 0.3 McERTS 0.3 - 1,2,4-Trichlorophenol mg/kg	4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-
2,4-Dimethylphenol mg/kg 0.3 MCERTS < 0.3 -	Isophorone	mg/kg	0.2	MCERTS	< 0.2	-
Bis(2-chlorothoxy)methane	2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-
1,2,4-Trichlorobenzene	2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-
Naphthalene	Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-
2,4-Dichlorophenol mg/kg 0.3 MCERTS < 0.3	1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-
#-Chloroaniline	Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-
4-Chloroanilline mg/kg 0.1 NONE < 0.1 - Hexachlorobutadiene mg/kg 0.1 MCERTS < 0.1	2,4-Dichlorophenol		0.3	MCERTS	< 0.3	-
#*Chloro-3-methylphenol mg/kg 0.1 NONE < 0.1 - 2,4,6-Trichlorophenol mg/kg 0.1 MCERTS < 0.1 - 2,4,5-Trichlorophenol mg/kg 0.1 MCERTS < 0.1 - 2,4,5-Trichlorophenol mg/kg 0.2 MCERTS < 0.2 - 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-
2,4,6-Trichlorophenol mg/kg 0.1 MCERTS < 0.1	Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-
2,4,5-Trichlorophenol mg/kg 0.2 MCERTS < 0.2	4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-
2-Methylnaphthalene mg/kg 0.1 NONE < 0.1	2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-
2-Chloronaphthalene mg/kg 0.1 MCERTS < 0.1 - Dimethylphthalate mg/kg 0.1 MCERTS < 0.1	2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-
Dimethylphthalate mg/kg 0.1 MCERTS < 0.1 - 2,6-Dinitrotoluene mg/kg 0.1 MCERTS < 0.1	2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	-
2,6-Dinitrotoluene mg/kg 0.1 MCERTS < 0.1	2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-
Acenaphthylene mg/kg 0.05 MCERTS < 0.05 - Acenaphthene mg/kg 0.05 MCERTS < 0.05	Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-
Acenaphthene mg/kg 0.05 MCERTS < 0.05 - 2,4-Dinitrotoluene mg/kg 0.2 MCERTS < 0.2	2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-
2,4-Dinitrotoluene mg/kg 0.2 MCERTS < 0.2	Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-
Dibenzofuran mg/kg 0.2 MCERTS < 0.2 - 4-Chlorophenyl phenyl ether mg/kg 0.3 ISO 17025 < 0.3	Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-
4-Chlorophenyl phenyl ether mg/kg 0.3 ISO 17025 < 0.3	2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-
Diethyl phthalate mg/kg 0.2 MCERTS < 0.2 - 4-Nitroaniline mg/kg 0.2 MCERTS < 0.2	Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	-
4-Nitroaniline mg/kg 0.2 MCERTS < 0.2 - Fluorene mg/kg 0.05 MCERTS < 0.05	4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	-
Fluorene mg/kg 0.05 MCERTS < 0.05 - Azobenzene mg/kg 0.3 MCERTS < 0.3	Diethyl phthalate		0.2	MCERTS	< 0.2	-
Azobenzene mg/kg 0.3 MCERTS < 0.3 - Bromophenyl phenyl ether mg/kg 0.2 MCERTS < 0.2	4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	-
Bromophenyl phenyl ether mg/kg 0.2 MCERTS < 0.2 - Hexachlorobenzene mg/kg 0.3 MCERTS < 0.3	Fluorene	mg/kg	0.05	MCERTS	< 0.05	-
Hexachlorobenzene mg/kg 0.3 MCERTS < 0.3 - Phenanthrene mg/kg 0.05 MCERTS < 0.05	Azobenzene	mg/kg	0.3	MCERTS	< 0.3	-
Phenanthrene mg/kg 0.05 MCERTS < 0.05 - Anthracene mg/kg 0.05 MCERTS < 0.05	Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	-
Anthracene mg/kg 0.05 MCERTS < 0.05 - Carbazole mg/kg 0.3 MCERTS < 0.3	Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-
Carbazole mg/kg 0.3 MCERTS < 0.3 - Dibutyl phthalate mg/kg 0.2 MCERTS < 0.2	Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-
Dibutyl phthalate mg/kg 0.2 MCERTS < 0.2 - Anthraquinone mg/kg 0.3 MCERTS < 0.3	Anthracene	mg/kg	0.05	MCERTS	< 0.05	-
Anthraquinone mg/kg 0.3 MCERTS < 0.3 - Fluoranthene mg/kg 0.05 MCERTS < 0.05	Carbazole	mg/kg	0.3	MCERTS	< 0.3	-
Fluoranthene mg/kg 0.05 MCERTS < 0.05 - Pyrene mg/kg 0.05 MCERTS < 0.05	Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-
Pyrene mg/kg 0.05 MCERTS < 0.05 - Butyl benzyl phthalate mg/kg 0.3 ISO 17025 < 0.3	Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	-
Butyl benzyl phthalate mg/kg 0.3 ISO 17025 < 0.3 - Benzo(a)anthracene mg/kg 0.05 MCERTS < 0.05	Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-
Benzo(a)anthracene mg/kg 0.05 MCERTS < 0.05 - Chrysene mg/kg 0.05 MCERTS < 0.05	Pyrene	mg/kg	0.05	MCERTS	< 0.05	-
Benzo(a)anthracene mg/kg 0.05 MCERTS < 0.05 - Chrysene mg/kg 0.05 MCERTS < 0.05	Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-
	Benzo(a)anthracene		0.05	MCERTS	< 0.05	-
Benzo(b)fluoranthene mg/kg 0.05 MCERTS < 0.05 -	Chrysene	mg/kg	0.05	MCERTS	< 0.05	-
	Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-

Project / Site name: North-West Bicester Eco Development

Lab Sample Number	1616790	1616791			
Sample Reference	TP12	TP13			
Sample Number	4	4			
Depth (m)	0.10	0.20			
Date Sampled	08/09/2020	08/09/2020			
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-

SVOCs TICs

SVOCs TICs Compound Name	N/A	NONE	None Detected	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North-West Bicester Eco Development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1616782	TP21	4	0.1	Brown loam and sand with gravel.
1616783	TP06	4	0.2	Brown clay and sand with gravel.
1616784	TP17	4	0.3	Brown clay and sand with gravel.
1616785	TP16	4	0.1	Brown clay and sand with gravel.
1616786	TP22	4	0.1	Brown clay and sand with gravel.
1616787	TP23	4	0.2	Brown loam and sand with gravel.
1616788	TP11	4	0.3	Brown loam and sand with gravel.
1616789	TP01	4	0.1	Brown loam and sand with gravel.
1616790	TP12	4	0.1	Brown loam and sand with gravel.
1616791	TP13	4	0.2	Brown loam and sand with gravel.

Project / Site name: North-West Bicester Eco Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Tentatively identified compounds (SVOC) in soil	Determination of semi-volatile organic compounds total ion count in soil by extraction with dichloromethane and hexane followed by GC-MS followed by a full library scan.	In-house method based on USEPA 8270	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Hydrock Consultants Ltd

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

 t: 01322 665566
 t: 01923 225404

 f: 01322 661480
 f: 01923 237404

e: e: reception@i2analytical.com

Analytical Report Number: 20-29338

Project / Site name: North-West Bicester Eco Development Samples received on: 09/09/2020

Your job number: C-13603 Samples instructed on/ 09/09/2020

Analysis started on:

Your order number: po01889 Analysis completed by: 16/09/2020

Report Issue Number: 1 Report issued on: 16/09/2020

Samples Analysed: 10:1 WAC sample

Signed:

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

- 4 weeks from reporting

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Standard sample disposal times, unless otherwise agreed with the laboratory, are:

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

This certificate should not be reproduced, except in full, without the express permission of the laboratoryIss No 20-29338-1 North-West Bicester Eco Development C-13603.XLSM The results included within the report are representative of the samples submitted for analysis.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		20-29338					
				Client:	HYDROCK		
Location	Nort	n-West Bicester Eco De	velopment				
Lab Reference (Sample Number)		1616876 / 1616877		Landfill	Waste Acceptano Limits	e Criteria	
Sampling Date		07/09/2020			Stable Non-		
Sample ID		TP17 4			reactive		
Depth (m)		0.30	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil		
Solid Waste Analysis							
ГОС (%)**	1.7			3%	5%	6%	
Loss on Ignition (%) **	5.0					10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg)	< 10			500			
Total PAH (WAC-17) (mg/kg)	< 0.85			100			
pH (units)**	8.1				>6		
Acid Neutralisation Capacity (mol / kg)	23				To be evaluated	To be evaluate	
Eluate Analysis	10:1		10:1		es for compliance l		
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg			
Arsenic *	0.0018		0.0148	0.5	2	25	
Barium *	0.0100		0.0805	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	1	5	
Chromium *	0.0012		0.0095	0.5	10	70	
Copper *	0.0044		0.035	2	50	100	
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2	
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30	
Nickel *	0.0034		0.028	0.4	10	40	
Lead *	0.0027		0.022	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc * Chloride *	0.0042 1.0		0.034 8.4	4 800	50 15000	200 25000	
Fluoride	0.66		5.3	10	150	500	
Sulphate *	3.2		26	1000	20000	50000	
TDS*	99		800	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
DOC	7.99		64.4	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	0.50						
Ory Matter (%)	88						
Moisture (%)	12						
Results are expressed on a dry weight basis, after correction for m				*= UKAS accredi		<u> </u>	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.


Project / Site name: North-West Bicester Eco Development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1616876	TP17	4	0.3	Brown clay and sand with gravel.

Project / Site name: North-West Bicester Eco Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	w	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Project / Site name: North-West Bicester Eco Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

TEST CERTIFICATE

Specification for Topsoil

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 3882: 2015

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

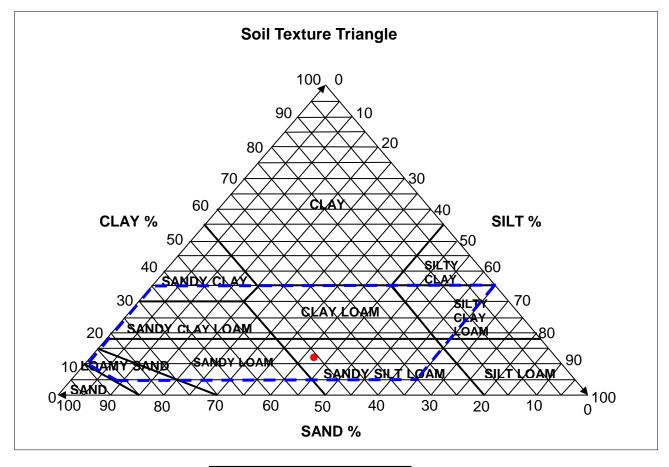
NN6 8LD

Contact: Cameron Adams

Site Address: North-West Bicester Eo Development

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-13603 Job Number: 20-29409 Date Sampled: 08/04/2020 Date Received: 09/09/2020 Date Tested: 14/09/2020


Sampled By: Not Given

Test Results:

Laboratory Reference: 1617286 TP13 Hole No.: Sample Reference: Not Given

Sample Description: SANDY SILT LOAM

Depth Top [m]: 0.00 Depth Base [m]: 0.30 Sample Type: D

Sample Proportion	% dry mass
Sand	46.2
Silt	40.6
Clay	13.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Date Reported: 18/09/2020

Cameron Adams Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: cameronadams@hydrock.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-29409

Project / Site name: North-West Bicester Eo Development Samples received on: 09/09/2020

Your job number: C-13603 Samples instructed on/ 09/09/2020

Analysis started on:

Your order number: Analysis completed by: 21/09/2020

Report Issue Number: Report issued on: 21/09/2020

Samples Analysed: 1 soil sample

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting

> leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

		Certifi	cate of Analys	SiS					
	BS 38	82:2015	Specification	For Tops	oil				
		Fa	il BS 3882					client	
Report No:			20-29409				Hydroc	k Consult	ants Ltd
Location		North-West B	Bicester Eo Developr	nent			1		
Lab Reference (Sample Number)			1617286				,	016048428	88
Sampling Date		(08/04/2020				1		
Sample ID			TP13				1		
Depth (m)	(0.00-0.30			Co	mpliant wi	th range (Y	/N)	
		unit	Result	Multi-P	Acid	Calc	Low-F	Low-F(a)	Low-F(c)
Soil texture	<2mm fraction	%m/m	SANDY SILT LOAM	Y	Υ	Υ	Υ	Υ	Υ
	>2mm	%m/m	36.00	N	N	N	N	N	N
Maximum coarse fragment content:	>20mm	%m/m	21.00	N	N	N	N	N	N
content:	>50mm	%m/m	0.00	Y	Υ	Υ	Υ	Υ	Υ
-	<u> </u>	0/	0.20				1	1	-
Mass loss on ignition	Clay 5-20%	%	8.20 Y	Y	Υ	Y	Y	Y	Y
	Clay 20-35%		-	-	-	-	-	-	-
Soil pH:	<u> </u>	pH	8.10	Y	N	Y	Y	N	Y
ou pri.		рп	0.10	'	IN	'	'	IN	<u> </u>
Carbonate:		%m/m	7.20	-	-,	Υ	-	-	Υ
	T							<u> </u>	
	Nitrogen	%m/m	0.13 22.00	N Y	N Y	N Y	- N	-	- N
Available plant nutrients	Extractable Phosphate (as P) Extractable Potassium	mg/l mg/l	164.00	Y	Y	Y	- IN	N -	IN -
	Extractable Magnesium	mg/l	65.00	Y	Y	Y	_	 -	<u> </u>
	Extractable Hagnesiani	1119/1	03.00						<u> </u>
Carbon: Nitrogen Ratio:		:1	37.00	N	N	N	N	N	N
Conductivity		us/cm	1900.00	Y	-	-	-	-	-
·		,							
	** Total Zinc	mg/kg	72.00	Υ	Υ	Υ	Υ	Υ	Υ
Phytotoxic contaminants:	** Total Copper	mg/kg	19.00	Υ	Υ	Υ	Υ	Υ	Υ
	** Total Nickel	mg/kg	33.00	Y	Υ	Y	Υ	Y	Y
	>2mm	%m/m	0.00	Υ	Υ	Υ	Υ	Υ	Y
isible contaminants:	Plastics	%m/m	0.00	Υ	Υ	Υ	Υ	Υ	Υ
	Sharps	no. in 1 kg	0.00	Y	Υ	Υ	Υ	Y	Υ
Compliancy:				Fail	Fail	Fail	Fail	Fail	Fail

^{** =} MCERTS accrediited

Project / Site name: North-West Bicester Eo Development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1617286	TP13	None Supplied	0.00-0.30	Brown loam and clay with gravel.

Project / Site name: North-West Bicester Eo Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Geotechnical Testing in Soil	See attached geotechnical report	See attached geotechnical report		W	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Textural Classification Diagram	Textural classification Diagram	BS3882:2015		D	NONE
Carbon to Nitrogen Ratio (Topsoil - BS3882:2015)	Carbon to Nitrogen ratio (:1) calculated using Loss on Ignition.	BS3882:2015	L01TS2015	W	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Kjeldahl nitrogen in soil	Determination of total nitrogen using the Kjeldahl- digestion method and colorimetric determination.	In house method based on BS 7755-3.7:1995 &	L087-PL	D	NONE
Topsoil	See attached report.	BS 3882: 2015	PL	w	NONE
Mass loss on ignition (Topsoil - BS3882)	Determination of Loss on Ignition as per BS 3882:2015.	BS3882:2015	L047-PL	D	NONE
Carbonate (Topsoil - BS3882)	Determination of Carbonate as per BS 3882:2015.	BS3882:2015	L034-PL	D	NONE
Phosphorus as PO4 (BS3882/BS8601)	Determiation of the extractable phosphorus in soil, in accordance with BS3882:2007 methodology.	BS3882:2015 & BS8601:2013	L082-PL	D	NONE
Coarse Fragment and Contaminant Analysi:	S Determination of >2mm contaminants	BS3882:2007 & BS8601:2013 & PAS 100:2005	L01TS	D	NONE
Nitrogen (TKN)	Determination of total nitrogen by Kjeldahl method.	BS3882:2007	L087-PL	D	NONE
Conductivity (BS3882/BS8601)	Determination of the conductivity of soil in accordance with BS 3882:2007 methodology	BS3882:2007 & BS8601:2013	L099-PL	D	NONE
рН (BS3882/BS8601)	Determination of the pH of soil in accordance with BS 3882:2007 methodology	BS3882:2007 & BS8601:2013	L099-PL	D	NONE
Extractable/Available Metals (BS3882/BS8601)	Determiation of the extractable metals in soil, in accordance with BS3882:2007 methodology.	BS3882:2007 & BS8601:2013	L038-PL	D	NONE
Sodium (exchangeable %)	Determination of exchangeable sodium (%) by calculation, in accordance with BS3882:2007 methodology.	BS3882:2007	L028-PL	D	NONE

Project / Site name: North-West Bicester Eo Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of the textural classifcation of soil following BS3882:2007 methodology.	BS3882:2007 & BS8601:2013	L01TS	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Project / Site name: North-West Bicester Eo Development

Sample ID	Other ID			Sample Deviation	Test Name	Test Ref	Test Deviation
TP13	None Supplied	S	1617286	С	Conductivity (BS3882/BS8601)	L099-PL	С
TP13	None Supplied	S	1617286	С	Kjeldahl nitrogen in soil	L087-PL	С
TP13	None Supplied	S	1617286	С	Nitrogen (TKN)	L087-PL	С
TP13	None Supplied	S	1617286	С	Phosphorus as PO4 (BS3882/BS8601)	L082-PL	С
TP13	None Supplied	S	1617286	С	pH (BS3882/BS8601)	L099-PL	С

Cameron Adams
Hydrock Consultants Ltd
2-4 Hawthorne Park
Holdenby Road
Spratton
Northamptonshire
NN6 8LD

t: 01604842888 f: 01604842666

e: cameronadams@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-30126

Project / Site name: North-West Bicester Eco Development Samples received on: 15/09/2020

Your job number: C-13603 Samples instructed on/ 15/09/2020

Analysis started on:

Your order number: PO01889 Analysis completed by: 22/09/2020

Report Issue Number: 1 Report issued on: 22/09/2020

Samples Analysed: 10:1 WAC sample

Signed:

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		20-30126				
				Client:	HYDROCK	
Location	North-	West Bicester Eco Develo	nnment	-		
	North	West bicester Eco bever	риненс	Landfill	e Criteria	
Lab Reference (Sample Number)		1620619 / 1620620			Limits	
Sampling Date		04/08/2020			Stable Non- reactive	
Sample ID Depth (m)		0.20		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfi
Solid Waste Analysis						
TOC (%)**	2.1			3%	5%	6%
Loss on Ignition (%) **	5.9					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 0.85			100		
pH (units)**	7.4				>6	
Acid Neutralisation Capacity (mol / kg)	1.8				To be evaluated	To be evaluate
Eluate Analysis	10:1		10:1	Limit valu	es for compliance l	eaching test
(BS EN 12457 - 2 preparation utilising end over end leaching				using BS EN	N 12457-2 at L/S 10 l/kg (mg/k	
procedure)	mg/l		mg/kg			
Arsenic *	< 0.0011		< 0.0110	0.5	2	25
Barium *	0.0073		0.0631	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0011		0.0095	0.5	10	70
Copper *	0.012		0.10	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30
Nickel *	0.0056		0.048	0.4	10	40
Lead *	< 0.0010		< 0.010	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.013		0.12	4	50	200
Chloride *	1.0		8.8	800	15000	25000
Fluoride	0.39		3.4	10	150	500
Sulphate *	2.2		19	1000	20000	50000
IDS*	38		320	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	=
DOC	8.28		71.6	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1				1	
Sample Mass (kg)	1.0					
Dry Matter (%)	85					
Moisture (%)	15					
					-	
	1		1	1	l	L

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project / Site name: North-West Bicester Eco Development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

ı	Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
	1620619	TP05	None Supplied	0.2	Brown sandy clay.

Project / Site name: North-West Bicester Eco Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	w	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Project / Site name: North-West Bicester Eco Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Project / Site name: North-West Bicester Eco Development

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
TP05	None Supplied	S	1620619	С	Acid neutralisation capacity of soil	L046-PL	С
TP05	None Supplied	S	1620619	С	BTEX in soil (Monoaromatics)	L073B-PL	С
TP05	None Supplied	S	1620619	С	Loss on ignition of soil @ 450oC	L047-PL	С
TP05	None Supplied	S	1620619	С	Mineral Oil (Soil) C10 - C40	L076-PL	С
TP05	None Supplied	S	1620619	С	Organic matter (Automated) in soil	L009-PL	С
TP05	None Supplied	S	1620619	С	PCB's By GC-MS in soil	L027-PL	С
TP05	None Supplied	S	1620619	С	Speciated WAC-17 PAHs in soil	L064-PL	С
TP05	None Supplied	S	1620619	С	Total BTEX in soil (Poland)	L073-PL	С
TP05	None Supplied	S	1620619	С	Total organic carbon (Automated) in soil	L009-PL	С
TP05	None Supplied	S	1620619	С	pH at 20oC in soil	L005-PL	С

Cameron Adams
Hydrock Consultants Ltd
2-4 Hawthorne Park
Holdenby Road
Spratton
Northamptonshire
NN6 8LD

t: 01604842888 f: 01604842666

e: cameronadams@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-30257

Project / Site name: North West Bicester Eco-Development Samples received on: 15/09/2020

Your job number: C-13603 Samples instructed on/ 16/09/2020

Analysis started on:

Your order number: P002035 Analysis completed by: 23/09/2020

Report Issue Number: 1 Report issued on: 23/09/2020

Samples Analysed: 25 soil samples

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from the sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number				1621267	1621268	1621269	1621270
Sample Reference				TP37	TP38	TP45	TP46
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.50	0.10	0.20
Date Sampled				14/09/2020	14/09/2020	14/09/2020	14/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	11	15	17
Total mass of sample received	kg	0.001	NONE	0.99	1.2	1	0.96
Total mass of sample received	ing	0.001	HOHE	0.55	1.2	-	0.50
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	nH 11-:4-	N/A	MCEDIC	7.0	0.7	0.1	0
pH - Automated	pH Units	N/A	MCERTS	7.8	8.2	8.1	9
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.018	0.016	0.015	0.016
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.04	0.013	0.024	0.041
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Total Friends (monorlydric)	ilig/kg	1	MCLKIS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg			< 0.05	< 0.05	< 0.05	< 0.05
	mg/kg	0.05	MCERTS				
Fluorene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Phenanthrene Anthropone	mg/kg	0.05	MCERTS				
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids							
	malka	1	MCERTS	23	11	19	23
Arsenic (aqua regia extractable)	mg/kg				0.88	1.6	1.7
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.6			
Boron (water soluble)	mg/kg	0.2	MCERTS	3.3 < 0.2	0.5	0.6	0.3 < 0.2
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	0.2	MCERTS	< 1.2	< 0.2 < 1.2	< 0.2 < 1.2	< 1.2
Chromium (nexavalent) Chromium (III)	mg/kg	1.2	MCERTS	< 1.2 31	< 1.2 14	< 1.2 29	31
	mg/kg		NONE				
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	15 13	29	31 29
Copper (aqua regia extractable)	mg/kg	1	MCERTS	25 31	7.5	21 22	30
Lead (aqua regia extractable) Marcuny (agua regia extractable)	mg/kg	0.3	MCERTS				
Mercury (aqua regia extractable)	mg/kg		MCERTS	< 0.3 26	< 0.3 14	< 0.3 25	< 0.3 27
Nickel (aqua regia extractable)	mg/kg	1	MCERTS				
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0 70	< 1.0 77
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	80	48 29		77
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	69	29	56	//

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035								
Lab Sample Number				1621267	1621268	1621269	1621270	
Sample Reference	Sample Reference							
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied				
Depth (m)	0.20	0.50	0.10	0.20				
Date Sampled	14/09/2020	14/09/2020	14/09/2020	14/09/2020				
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs Aniline	ma/ka	0.1	NONE	-	_	l -	_	
Phenol	mg/kg mg/kg	0.1	ISO 17025	-			-	
2-Chlorophenol	mg/kg	0.2	MCERTS			_		
Bis(2-chloroethyl)ether	mg/kg	0.1	MCERTS			_	<u> </u>	
L,3-Dischlorobenzene	mg/kg	0.2	MCERTS			_	<u> </u>	
L,2-Dichlorobenzene	mg/kg	0.2	MCERTS			_		
L,4-Dichlorobenzene	mg/kg	0.1	MCERTS			_	<u> </u>	
, i Dicitio obchizone	mg/kg	5.2	HOLKIS					

SVOCs							
Aniline	mg/kg	0.1	NONE	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	_	_	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	_	_	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	_	_	-
Naphthalene	mg/kg	0.05	MCERTS	_	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	_	_	-
4-Chloroaniline	mg/kg	0.1	NONE	-	_	_	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	_	-	_	_
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	_	_	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	_	_	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	_	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	_	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	_	_	_
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	_	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	_	-	_
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	_	_
Acenaphthene	mg/kg	0.05	MCERTS	-	-	_	-
2,4-Dinitrotoluene	mg/kg	0.03	MCERTS	_	-	_	_
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	_	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	_	_	_	_
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	_	-
4-Nitroaniline	mg/kg	0.2	MCERTS	_	_	_	_
Fluorene	mg/kg	0.05	MCERTS	-	-	_	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	_	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	_	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	_	-
Anthracene	mg/kg	0.05	MCERTS	-	-	_	_
Carbazole	mg/kg	0.03	MCERTS	_		_	_
Dibutyl phthalate	mg/kg	0.3	MCERTS	-	-		-
Anthraguinone	mg/kg	0.2	MCERTS	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-		
Pyrene	mg/kg	0.05	MCERTS	-	-		-
Butyl benzyl phthalate	mg/kg	0.05	ISO 17025	-	_		-
Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS	-	-		-
Chrysene	mg/kg	0.05	MCERTS	-	-	_	-
Benzo(b)fluoranthene		0.05	MCERTS	-	-	_	-
שבווצט(ש)וועטו מוועופוופ	mg/kg	0.05	MICERIS	-		<u> </u>	<u> </u>

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number	b Sample Number							
Sample Reference				TP37	TP38	TP45	TP46	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)	0.20	0.50	0.10	0.20				
Date Sampled	14/09/2020	14/09/2020	14/09/2020	14/09/2020				
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	
Benzo(ahi)pervlene	mg/kg	0.05	MCERTS	-	-	-	-	

SVOCs TICs

SVOCs TICs Compound Name		N/A	NONE	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number				1621271	1621272	1621273	1621274
Sample Reference				TP49	TP48	TP57	TP50
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.20	0.10	0.20
Date Sampled				14/09/2020	14/09/2020	14/09/2020	14/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	14	16	16
Total mass of sample received	kg	0.001	NONE	1	0.9	0.96	0.94
·						•	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	8.1	8	7.7	7.6
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.017	0.014	0.016	0.014
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.036	0.033	0.036	0.042
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	18	19	19
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.3	1.2	1.3	1.5
Boron (water soluble)	mg/kg	0.2	MCERTS	0.3	2.2	2.3	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	23	21	25	28
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	21	25	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	21	20	21	22
Lead (aqua regia extractable)	mg/kg	1	MCERTS	20	22	23	24
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	19	22	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	63	59	61	66

61

mg/kg

MCERTS

56

Zinc (aqua regia extractable)

64

Project / Site name: North West Bicester Eco-Development Your Order No: P002035

Lab Sample Number				1621271	1621272	1621273	1621274
Sample Reference	TP49	TP48	TP57	TP50			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.20	0.10	0.20
Date Sampled				14/09/2020	14/09/2020	14/09/2020	14/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs			•				_
Aniline	mg/kg	0.1	NONE	< 0.1	-	-	<u> </u>
Phenol	mg/kg	ISO 17025	< 0.2	-	-	-	
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-

		ection	Status				
			v				
SVOCs		1				ı	
Aniline	mg/kg	0.1	NONE	< 0.1	-	-	-
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-	-	-
Isophorone	mg/kg	0.2	MCERTS	< 0.2	i	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	ī	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	ī	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	_
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	_	_	_
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	_	_
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	_	_	_
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	_	_	_
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	_	-
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	-	_	_
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	_	-
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	_	_	_
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	_	_	_
Hexachlorobenzene	mg/kg	0.2	MCERTS	< 0.3	-	_	
Phenanthrene	+	0.05	MCERTS	< 0.05	-		<u>-</u>
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	_	
Carbazole	mg/kg		MCERTS		-	-	-
	mg/kg	0.3	MCERTS	< 0.3	-	-	-
Dibutyl phthalate	mg/kg	0.2		< 0.2	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number	1621271	1621272	1621273	1621274			
Sample Reference				TP49	TP48	TP57	TP50
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.10	0.20	0.10	0.20			
Date Sampled	14/09/2020	14/09/2020	14/09/2020	14/09/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Indeno(1,2,3-cd)pyrene	< 0.05	-	-	-			
Dibenz(a,h)anthracene	< 0.05	-	-	-			
Benzo(ghi)pervlene	mg/kg	0.05	MCERTS	< 0.05	-	-	-

SVOCs TICs

SVOCs TICs Compound Name		N/A	NONE	ND	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number				1621275	1621276	1621277	1621278
Sample Reference				TP56	TP54	TP43	TP44
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.20	0.10	0.60
Date Sampled				14/09/2020	15/09/2020	15/09/2020	15/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	5	14	12	16
Total mass of sample received	kg	0.001	NONE	1	1.1	1	0.91
Total mass of sample received	кg	0.001	NONE	1	1.1	_	0.51
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	8.1	7.9	7.8	8.1
ree Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.011	0.017	0.014	0.018
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.0074	0.031	0.033	0.011
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Supplied DAMA							
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.33	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.39	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.21	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.22	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.21	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.15	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.19	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	1.7	< 0.80	< 0.80
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	4.7	17	6.9	15
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.46	1.1	0.64	1.4
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	0.8	0.2	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	6.1	20	11	26
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	6.3	21	12	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	7.6	22	9.4	11
Lead (aqua regia extractable)	mg/kg	1	MCERTS	3	66	8.6	13
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	6.2	20	9.6	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	27	55	30	57
(inc (agua rogia oytractable)	ma/ke				- 77	-) E	71

25

mg/kg

MCERTS

16

Zinc (aqua regia extractable)

71

Analytical Report Number: 20-30257 Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

				1601075	4604076	4604077	4604070
Lab Sample Number				1621275	1621276	1621277	1621278
Sample Reference	TP56	TP54	TP43	TP44			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.40	0.20	0.10	0.60			
Date Sampled	14/09/2020	15/09/2020	15/09/2020	15/09/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs							
Aniline	mg/kg	0.1	NONE	-	-	< 0.1	-
Phenol	mg/kg	0.2	ISO 17025	-	-	< 0.2	-
	1	1					

(Soil Analysis)	its	detection	ion Status				
SVOCs							
Aniline	mg/kg	0.1	NONE	-	-	< 0.1	-
Phenol	mg/kg	0.2	ISO 17025	-	-	< 0.2	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	< 0.2	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	< 0.1	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	< 0.1	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	< 0.05	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	< 0.2	-
Isophorone	mg/kg	0.2	MCERTS	-	-	< 0.2	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	< 0.3	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	< 0.05	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	< 0.1	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	< 0.1	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	< 0.1	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	< 0.2	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	< 0.1	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	< 0.1	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	< 0.1	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	< 0.1	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	< 0.05	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	< 0.2	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	< 0.2	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	< 0.3	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	< 0.2	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	< 0.2	-
Fluorene	mg/kg	0.05	MCERTS	-	-	< 0.05	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	< 0.2	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-
Carbazole	mg/kg	0.3	MCERTS	-	-	< 0.3	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	< 0.2	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	< 0.3	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	< 0.05	-
Pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	< 0.3	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	-	-	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	_	_	< 0.05	_

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number	•		•		1621275	1621276	1621277	1621278
Sample Reference					TP56	TP54	TP43	TP44
Sample Number						None Supplied	None Supplied	None Supplied
Depth (m)						0.20	0.10	0.60
Date Sampled						15/09/2020	15/09/2020	15/09/2020
Time Taken						None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)		Units	Limit of detection	Accreditation Status				
Benzo(k)fluoranthene		mg/kg	0.05	MCERTS	-	-	< 0.05	-
Benzo(a)pyrene		mg/kg	0.05	MCERTS	-	-	< 0.05	-
Indeno(1,2,3-cd)pyrene		mg/kg	0.05	MCERTS	-	-	< 0.05	-
Dibenz(a,h)anthracene		mg/kg	0.05	MCERTS	-	-	< 0.05	-
Benzo(ahi)pervlene		ma/ka	0.05	MCERTS	_	-	< 0.05	-

SVOCs TICs

SVOCs TICs Compound Name		N/A	NONE	-	-	ND	-
SVOC % Match	%	N/A	NONE	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lah Cample Number				1621279	1621280	1621281	1621282
Lab Sample Number				TP53	TP18	1621281 TP24	TP25
Sample Reference							
Sample Number				None Supplied 0.10	None Supplied 0.10	None Supplied 0.10	None Supplied 0.30
Depth (m) Date Sampled				15/09/2020	10/09/2020	10/09/2020	10/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Time Tuken		1		чоне заррнеа	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	21	15	17	16
Total mass of sample received	kg	0.001	NONE	0.95	1.1	1.2	1.2
, , , , , , , , , , , , , , , , , , ,			_				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.7	7.9	7.9	7.7
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.014	0.011	0.012	0.016
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.038	0.026	0.012	0.029
Total Phenols							
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
	•	•					
Speciated PAHs Naphthalene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH			•				
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids		_					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	22	20	20
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	1.6	1.7	1.4
Boron (water soluble)	mg/kg	0.2	MCERTS	2	2.1	1.2	1.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	24	30	33	27
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	24	31	33 16	28 19
Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	18 24	19 28	16	23
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	23	27	31	25
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	58	76	67	70
,/		-			. •	· · · · · · · · · · · · · · · · · · ·	

51

mg/kg

MCERTS

66

61

Zinc (aqua regia extractable)

59

Bis(2-chloroethoxy)methane

1,2,4-Trichlorobenzene

2,4-Dichlorophenol

Hexachlorobutadiene

2,4,6-Trichlorophenol

2,4,5-Trichlorophenol

2-Methylnaphthalene

2-Chloronaphthalene

Dimethylphthalate

2,6-Dinitrotoluene

2,4-Dinitrotoluene

Diethyl phthalate

4-Chlorophenyl phenyl ether

Bromophenyl phenyl ether

Hexachlorobenzene

Acenaphthylene

Acenaphthene

Dibenzofuran

4-Nitroaniline

Azobenzene

Phenanthrene

Dibutyl phthalate

Butyl benzyl phthalate

Benzo(a)anthracene

Benzo(b)fluoranthene

Anthraquinone

Fluoranthene

Pyrene

Chrysene

Anthracene

Carbazole

Fluorene

4-Chloro-3-methylphenol

Naphthalene

4-Chloroaniline

Project / Site name: North West Bicester Eco-Development

Lab Sample Number				1621279	1621280	1621281	1621282
Sample Reference				TP53	TP18	TP24	TP25
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.10	0.10	0.30
Date Sampled				15/09/2020	10/09/2020	10/09/2020	10/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs Aniline	mg/kg	0.1	NONE	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	_
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	i	i	ı	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-
1-Methylphenol	mg/kg	0.2	NONE	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-
o 1 1	ä .	0.3	MCERTS	-	-	_	-
2-Nitrophenol 2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	_	

MCERTS

MCERTS

MCERTS

MCERTS

NONE

MCERTS

NONE

MCERTS

MCERTS

NONE

MCERTS

MCERTS

MCERTS MCERTS

MCERTS MCERTS

MCERTS

ISO 17025

MCERTS

MCERTS

MCERTS

MCERTS MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS MCERTS

ISO 17025

MCERTS

MCERTS

MCERTS

0.3

0.3

0.05

0.3

0.1

0.1

0.1

0.1

0.2

0.1

0.1

0.1

0.1

0.05

0.05

0.2

0.2

0.3

0.2

0.2

0.05

0.3

0.2

0.3

0.05

0.05

0.3

0.2

0.3

0.05

0.05

0.3

0.05

0.05

0.05

mg/kg

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number	1621279	1621280	1621281	1621282			
Sample Reference				TP53	TP18	TP24	TP25
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.10	0.10	0.10	0.30			
Date Sampled	15/09/2020	10/09/2020	10/09/2020	10/09/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis) Analysis							
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(ghi)pervlene	mg/kg	0.05	MCERTS	-	-	-	-

SVOCs TICs

SVOCs TICs Compound Name		N/A	NONE	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number				1621283	1621284	1621285	1621286
Sample Reference				TP27	TP30	TP31	TP32
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.20	0.20	0.30
Date Sampled				11/09/2020	11/09/2020	10/09/2020	10/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	16	14	14	15
Total mass of sample received	kg	0.001	NONE	1.3	1.1	1.2	1.2
·						1	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.8	7.6	7.7	7.9
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.013	0.015	0.015	0.0096
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.029	0.044	0.035	0.023
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05
Anthracene Fluoranthene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	21	19	20
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	1.4	1.4	1.5
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	1	1.2	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.4	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	24	34	24	26
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	34	25	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	21	21	20
Lead (aqua regia extractable)	mg/kg	1	MCERTS	21	64	20 < 0.3	25 < 0.3
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3 25	< 0.3 29	< 0.3 23	< 0.3 27
Nickel (aqua regia extractable) Selenium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	69	78	69	73
Zing (agus regia extractable)		 	MCERTS	F7	90	60	F0

60

mg/kg

MCERTS

57

80

Zinc (aqua regia extractable)

58

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Dibutyl phthalate

Butyl benzyl phthalate

Benzo(a)anthracene

Benzo(b)fluoranthene

Anthraquinone

Fluoranthene

Pyrene

Chrysene

Lab Sample Number				1621283	1621284	1621285	1621286
Sample Reference				TP27	TP30	TP31	TP32
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.20	0.20	0.30
Date Sampled				11/09/2020	11/09/2020	10/09/2020	10/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs							
Aniline	mg/kg	0.1	NONE	< 0.1	-	-	-
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-	-	-
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	-	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Carbazole	mg/kg	0.3	MCERTS	< 0.3	-	-	-
50	1	1					

0.2

0.3

0.05

0.05

0.3

0.05

0.05

0.05

MCERTS

MCERTS

MCERTS

MCERTS

ISO 17025

MCERTS

MCERTS

MCERTS

< 0.2

< 0.3

< 0.05

< 0.05

< 0.3

< 0.05 < 0.05

< 0.05

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number	1621283	1621284	1621285	1621286			
Sample Reference				TP27	TP30	TP31	TP32
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.10	0.20	0.20	0.30			
Date Sampled	11/09/2020	11/09/2020	10/09/2020	10/09/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter Soil Analysis) Limit of detection Status							
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	i	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	i	-
Dibenz(a,h)anthracene	< 0.05	-	i	-			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	ī	ī	-

SVOCs TICs

SVOCs TICs Compound Name		N/A	NONE	ND	-	-	-
SVOC % Match	%	N/A	NONE	0.00000	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number				1621287	1621288	1621289	1621290
Sample Reference				TP33	TP34	TP35	TP39
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.10	0.30	0.20
Date Sampled				10/09/2020	11/09/2020	11/09/2020	10/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	12	17	16
Total mass of sample received	kg	0.001	NONE	1.1	1.2	1.1	1.2
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.8	7.9	7.8	7.8
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.012	0.014	0.014	0.016
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.027	0.025	0.037	0.022
	.,,			***	******		****
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Total Friction (Histority arts)	mg/kg		FICEICIS	11.0	11.0	11.0	11.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
No are a constant	319			2.22			
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	26	18	24	18
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	1.3	1.8	1.6
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.5	1.5	1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	25	24	33	30
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	24	34	30
Chiomium (aqua regia extractable)	J. 1.5		MCERTS	20	19	25	24
Copper (aqua regia extractable)	mg/kg	1					
, , ,	mg/kg mg/kg	1	MCERTS	20	79	30	17
Copper (aqua regia extractable)	mg/kg			20 < 0.3	79 < 0.3	30 < 0.3	17 < 0.3
Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS MCERTS				
Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg mg/kg	1 0.3 1	MCERTS MCERTS MCERTS	< 0.3 26	< 0.3 22	< 0.3 30	< 0.3 27
Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS MCERTS	< 0.3	< 0.3	< 0.3	< 0.3

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Carbazole

Dibutyl phthalate

Butyl benzyl phthalate

Benzo(a)anthracene

Benzo(b)fluoranthene

Anthraquinone

Fluoranthene

Pyrene

Chrysene

Lab Sample Number				1621287	1621288	1621289	1621290
Sample Reference				TP33	TP34	TP35	TP39
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.10	0.30	0.20
Date Sampled				10/09/2020	11/09/2020	11/09/2020	10/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs							
Aniline	mg/kg	0.1	NONE	_	_	_	_
Phenol	mg/kg	0.2	ISO 17025	-	-	_	_
2-Chlorophenol	mg/kg	0.1	MCERTS	-	_	_	_
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	_	_	_	_
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	_	_	_	_
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	_	_	_	_
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	_	_
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	_	_	_	_
2-Methylphenol	mg/kg	0.3	MCERTS	_	_	_	_
Hexachloroethane	mg/kg	0.05	MCERTS	_	_	_	_
Nitrobenzene	mg/kg	0.3	MCERTS	-	_	-	_
4-Methylphenol	mg/kg	0.2	NONE	-	_	-	_
Isophorone	mg/kg	0.2	MCERTS	_	_	_	-
2-Nitrophenol	mg/kg	0.3	MCERTS		_	_	_
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	_	_	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	_	_	_	_
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	_	_	_	_
Naphthalene	mg/kg	0.05	MCERTS	_	_	_	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	_	_	_
4-Chloroaniline	mg/kg	0.1	NONE	_	_	_	_
Hexachlorobutadiene	mg/kg	0.1	MCERTS	_	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	_	_	_	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	_	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	_	_
2-Methylnaphthalene	mg/kg	0.1	NONE		_	_	_
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	_	_	_
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	_	_	
Acenaphthylene	mg/kg	0.05	MCERTS	_	_	_	_
Acenaphthene	mg/kg	0.05	MCERTS	_	_	_	_
2,4-Dinitrotoluene	mg/kg	0.03	MCERTS	_	-	_	_
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	_	_
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	_	_	_	-
4-Nitroaniline	mg/kg	0.2	MCERTS	_	_	_	_
Fluorene	mg/kg	0.05	MCERTS	_	_	_	-
Azobenzene	mg/kg	0.03	MCERTS	-	-	_	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	_	_	_	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	_	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	_	-
Anthracene	mg/kg	0.05	MCERTS	-	_	-	-
Carbazole	mg/kg	0.03	MCEDTS			1	

0.3

0.2

0.3

0.05

0.05

0.3

0.05

0.05

0.05

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

ISO 17025

MCERTS

MCERTS

MCERTS

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number		•		1621287	1621288	1621289	1621290
Sample Reference				TP33	TP34	TP35	TP39
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.10	0.30	0.20
Date Sampled				10/09/2020	11/09/2020	11/09/2020	10/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(ghi)pervlene	mg/kg	0.05	MCERTS	-	-	-	-

SVOCs TICs

SVOCs TICs Compound Name		N/A	NONE	-	-	-	-
SVOC % Match	%	N/A	NONE	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number	1621291			
Sample Reference				TP41
Sample Number				None Supplied
Depth (m)				0.10
Date Sampled				10/09/2020
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	N/A	NONE	16
Total mass of sample received	kg	0.001	NONE	1.1

Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected
------------------	------	-----	-----------	--------------

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.7
Free Cyanide	mg/kg	1	MCERTS	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.013
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.029

Total Phenois

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.8
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2
Chromium (III)	mg/kg	1	NONE	32
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26
Lead (aqua regia extractable)	mg/kg	1	MCERTS	25
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	28
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	82
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	77

Analytical Report Number: 20-30257
Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number							
Sample Reference				TP41			
Sample Number				None Supplied			
Depth (m)				0.10			
Date Sampled				10/09/2020			
Time Taken							
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				

SVOCs				
Aniline	mg/kg	0.1	NONE	-
Phenol	mg/kg	0.2	ISO 17025	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-
2-Methylphenol	mg/kg	0.3	MCERTS	-
Hexachloroethane	mg/kg	0.05	MCERTS	-
Nitrobenzene	mg/kg	0.3	MCERTS	-
4-Methylphenol	mg/kg	0.2	NONE	-
Isophorone	mg/kg	0.2	MCERTS	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-
Naphthalene	mg/kg	0.05	MCERTS	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-
4-Chloroaniline	mg/kg	0.1	NONE	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-
Acenaphthylene	mg/kg	0.05	MCERTS	-
Acenaphthene	mg/kg	0.05	MCERTS	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-
Dibenzofuran	mg/kg	0.2	MCERTS	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-
Fluorene	mg/kg	0.05	MCERTS	-
Azobenzene	mg/kg	0.3	MCERTS	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-
Phenanthrene	mg/kg	0.05	MCERTS	-
Anthracene	mg/kg	0.05	MCERTS	-
Carbazole	mg/kg	0.3	MCERTS	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-
Anthraquinone	mg/kg	0.3	MCERTS	-
Fluoranthene	mg/kg	0.05	MCERTS	-
Pyrene	mg/kg	0.05	MCERTS	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-
Chrysene	mg/kg	0.05	MCERTS	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	_
(-y301 difference	9/1/9	5.05		

Project / Site name: North West Bicester Eco-Development

Your Order No: P002035

Lab Sample Number							
Sample Reference							
Sample Number				None Supplied			
Depth (m)				0.10			
Date Sampled				10/09/2020			
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-			
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-			
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-			
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-			

SVOCs TICs

SVOCs TICs Compound Name		N/A	NONE	-
SVOC % Match	%	N/A	NONE	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North West Bicester Eco-Development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1621267	TP37	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
1621268	TP38	None Supplied	0.5	Brown loam and sand with gravel and vegetation.
1621269	TP45	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
1621270	TP46	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
1621271	TP49	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
1621272	TP48	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
1621273	TP57	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
1621274	TP50	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
1621275	TP56	None Supplied	0.4	Brown clay and loam with gravel.
1621276	TP54	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
1621277	TP43	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
1621278	TP44	None Supplied	0.6	Brown loam and sand with gravel and vegetation.
1621279	TP53	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
1621280	TP18	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
1621281	TP24	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
1621282	TP25	None Supplied	0.3	Brown loam and sand with gravel and vegetation.
1621283	TP27	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
1621284	TP30	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
1621285	TP31	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
1621286	TP32	None Supplied	0.3	Brown loam and sand with gravel and vegetation.
1621287	TP33	None Supplied	0.3	Brown loam and sand with gravel and vegetation.
1621288	TP34	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
1621289	TP35	None Supplied	0.3	Brown loam and sand with gravel and vegetation.
1621290	TP39	None Supplied	0.2	Brown loam and sand with gravel and vegetation.
1621291	TP41	None Supplied	0.1	Brown loam and sand with gravel and vegetation.

Project / Site name: North West Bicester Eco-Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (Π) sulphate.	In house method.	L009-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Tentatively identified compounds (SVOC) in soil	Determination of semi-volatile organic compounds total ion count in soil by extraction with dichloromethane and hexane followed by GC-MS followed by a full library scan.	In-house method based on USEPA 8270	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Cameron Adams
Hydrock Consultants Ltd
2-4 Hawthorne Park
Holdenby Road
Spratton
Northamptonshire
NN6 8LD

t: 01604842888 f: 01604842666

e: cameronadams@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-30261

Project / Site name: North West Bicester Eco-Development Samples received on: 15/09/2020

Your job number: C-13603 Samples instructed on/ 16/09/2020

Analysis started on:

Your order number: P002035 Analysis completed by: 23/09/2020

Report Issue Number: 1 Report issued on: 23/09/2020

Samples Analysed: 2 10:1 WAC samples

Signed:

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	·	20-30261	•		-	
				Client:	HYDROCK	
Location	North 1	West Bicester Eco-Deve	elopment	-		
Lab Reference (Sample Number)				Landfill	Waste Acceptanc	e Criteria
		1621307 / 1621308 14/09/2020			Limits Stable Non-	
Sampling Date Sample ID		TP49			reactive	
Depth (m)	0.10			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil
Solid Waste Analysis						
ГОС (%)**	3.6			3%	5%	6%
Loss on Ignition (%) **	8.5					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 0.85			100		
pH (units)**	7.8				>6	
Acid Neutralisation Capacity (mol / kg)	4.2				To be evaluated	To be evaluate
Eluate Analysis	10:1		10:1	Limit valu	es for compliance l	eaching test
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)		
Arsenic *	0.0034		0.0290	0.5	2	25
Barium *	0.0099		0.0849	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0011		0.0090	0.5	10	70
Copper *	0.0074		0.063	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30
Nickel *	0.0032		0.028	0.4	10	40
Lead *	< 0.0010		< 0.010	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.0053		0.045	4	50	200
Chloride *	0.20		1.7	800	15000	25000
Fluoride	0.52		4.5	10	150	500
Sulphate *	1.6		13	1000	20000	50000
TDS*	79		670	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-
000	8.80		75.4	500	800	1000
Leach Test Information						
Leach rest information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	0.90					
Ory Matter (%)	92					
Moisture (%)	8.3					
Results are expressed on a dry weight basis, after correction for m	sistems contant where s	P 11		*= UKAS accredi	/ / :	alucic only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		20-30261				
				Client	HVDDOCK	
				Client:	HYDROCK	
Location	Norti	West Bicester Eco-Develo	opment	1		
Lab Reference (Sample Number)		1621309 / 1621310		Landfill	Waste Acceptano Limits	e Criteria
Sampling Date		15/09/2020			Stable Non-	
Sample ID		TP44			reactive	
Depth (m)		0.60		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis						
TOC (%)**	1.2			3%	5%	6%
Loss on Ignition (%) **	3.1					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 0.85			100		
oH (units)**	8.0				>6	
Acid Neutralisation Capacity (mol / kg)	16				To be evaluated	To be evaluated
Eluate Analysis	10:1		10:1		es for compliance le	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg		
Arsenic *	0.0012		< 0.0110	0.5	2	25
Barium *	0.0012		0.0698	20	100	300
Cadmium *	< 0.0001		< 0.0098	0.04	1	5
Chromium *	0.0014		0.011	0.5	10	70
Copper *	0.0030		0.024	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30
Nickel *	0.0029		0.023	0.4	10	40
Lead *	< 0.0010		< 0.010	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.0042		0.034	4	50	200
Chloride *	0.31		2.5	800	15000	25000
Fluoride	0.31		2.5	10	150	500
Sulphate *	2.1		17	1000	20000	50000
TDS*	62		500	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-
DOC	3.73		30.3	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	0.91					
Dry Matter (%)	84					
Moisture (%)	16					
Results are expressed on a dry weight basis, after correction for m	oicture content where		•	*- LIKAS accredit	ed (liquid eluate an	alveie only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

Project / Site name: North West Bicester Eco-Development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1621307	TP49	None Supplied	0.1	Brown loam and sand with gravel and vegetation.
1621309	TP44	None Supplied	0.6	Brown loam and sand with gravel and vegetation.

Project / Site name: North West Bicester Eco-Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	ocid neutralisation capacity of soil Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.		L046-PL	w	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Project / Site name: North West Bicester Eco-Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

TEST CERTIFICATE

Specification for Topsoil

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 3882: 2015

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

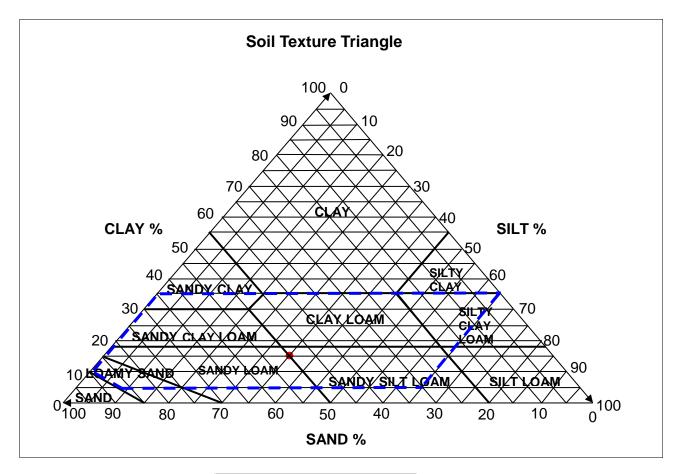
Spratton, Northamptonshire,

NN6 8LD

Contact: Cameron Adams

Site Address: NW Bicester Eco-Development

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: C-13603 Job Number: 20-30423 Date Sampled: 14/09/2020

Date Received: 15/09/2020 Date Tested: 21/09/2020 Sampled By: Not Given

Test Results:

Laboratory Reference: 1622052 TP37 Hole No.: Not Given Sample Reference: Sample Description: SANDY LOAM

Depth Top [m]: 0.20 Depth Base [m]: 0.30 Sample Type: D

Sample Proportion	% dry mass
Sand	50.2
Silt	33.5
Clay	16.3

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 23/09/2020

Cameron Adams
Hydrock Consultants Ltd
2-4 Hawthorne Park
Holdenby Road
Spratton
Northamptonshire
NN6 8LD

t: 01604842888 f: 01604842666

e: cameronadams@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-30423

Project / Site name: NW Bicester Eco-Development Samples received on: 15/09/2020

Your job number: C-13603 Samples instructed on/ 16/09/2020

Analysis started on:

Your order number: P002035 Analysis completed by: 23/09/2020

Report Issue Number: 1 Report issued on: 23/09/2020

Samples Analysed: 1 soil sample

Signed:

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

		Certifi	cate of Analy	sis					
	BS 38	82:2015	Specification	For Tops	oil				
		Fa	il BS 3882					client	
Report No:		,	20-30423				Hydrod	k Consult	ants Ltd
Location		NW Bicest	er Eco-Developme	nt			1		
Lab Reference (Sample Number)			1622052				(016048428	38
Sampling Date		1	14/09/2020				1		
Sample ID			TP37						
Depth (m)		0.20-0.30			Co	mpliant wi	th range (Y	/N)	
		unit	Result	Multi-P	Acid	Calc	Low-F	Low-F(a)	Low-F(c)
Soil texture	<2mm fraction	%m/m	SANDY LOAM	Υ	Υ	Υ	Υ	Υ	Y
	>2mm	%m/m	46.00	N	N	N	N	N	N
Maximum coarse fragment	>20mm	%m/m	39.00	N	N	N	N	N	N
content:	>50mm	%m/m	0.00	Y	Y	Y	Y	Y	Υ
Mass loss on ignition	Cla F 200/	%	9.80 Y	Y	Y	Y	Y	Y	Y
Mass loss on ignition	Clay 5-20% Clay 20-35%		-	-	-	-	-	-	-
Soil pH:		pН	7.90	Υ	N	Υ	Υ	N	Υ
Carbonate:		%m/m	14.00	-	-	Υ	-	-	Υ
	Nitrogen	%m/m	0.25	Υ	Υ	Υ	-	-	-
Available plant nutrients	Extractable Phosphate (as P)	mg/l	51.00	Υ	Υ	Υ	N	N	N
_	Extractable Potassium	mg/l	534.00	Y	Y	Y	-		-
	Extractable Magnesium	mg/l	130.00	Y	Y	Y	-	-	-
Carbon: Nitrogen Ratio:		:1	23.00	N	N	N	Υ	Υ	N
Conductivity		us/cm	1700.00	Y	-	-	-	-	-
	** Total Zinc	mg/kg	77.00	Y	Υ	Y	Y	Y	Υ
Phytotoxic contaminants:	** Total Copper	mg/kg	26.00	Y	Y	Y	Y	Y	Y
,	** Total Nickel	mg/kg	30.00	Y	Y	Y	Y	Y	Y
e. 11.1	>2mm	%m/m	0.00	Y	Y	Y	Y	Y	Y
/isible contaminants:	Plastics Sharps	%m/m no. in 1 kg	0.00	Y	Y	Y	Y	Y	Y
	23.60	2 119			•				
Compliancy:				Fail	Fail	Fail	Fail	Fail	Fail

^{** =} MCERTS accrediited

Project / Site name: NW Bicester Eco-Development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab San Numb			Depth (m)	Sample Description *
16220	52 TP37	None Supplied	0.20-0.30	Brown loam and sand with gravel and vegetation.

Project / Site name: NW Bicester Eco-Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Geotechnical Testing in Soil	See attached geotechnical report	See attached geotechnical report		W	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Textural Classification Diagram	Textural classification Diagram	BS3882:2015		D	NONE
Carbon to Nitrogen Ratio (Topsoil - BS3882:2015)	Carbon to Nitrogen ratio (:1) calculated using Loss on Ignition.	BS3882:2015	L01TS2015	W	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Kjeldahl nitrogen in soil	Determination of total nitrogen using the Kjeldahl- digestion method and colorimetric determination.	In house method based on BS 7755-3.7:1995 &	L087-PL	D	NONE
Topsoil	See attached report.	BS 3882: 2015	PL	w	NONE
Mass loss on ignition (Topsoil - BS3882)	Determination of Loss on Ignition as per BS 3882:2015.	BS3882:2015	L047-PL	D	NONE
Carbonate (Topsoil - BS3882)	Determination of Carbonate as per BS 3882:2015.	BS3882:2015	L034-PL	D	NONE
Phosphorus as PO4 (BS3882/BS8601)	Determiation of the extractable phosphorus in soil, in accordance with BS3882:2007 methodology.	BS3882:2015 & BS8601:2013	L082-PL	D	NONE
Coarse Fragment and Contaminant Analysi:	S Determination of >2mm contaminants	BS3882:2007 & BS8601:2013 & PAS 100:2005	L01TS	D	NONE
Nitrogen (TKN)	Determination of total nitrogen by Kjeldahl method.	BS3882:2007	L087-PL	D	NONE
Conductivity (BS3882/BS8601)	Determination of the conductivity of soil in accordance with BS 3882:2007 methodology	BS3882:2007 & BS8601:2013	L099-PL	D	NONE
рН (BS3882/BS8601)	Determination of the pH of soil in accordance with BS 3882:2007 methodology	BS3882:2007 & BS8601:2013	L099-PL	D	NONE
Extractable/Available Metals (BS3882/BS8601)	Determiation of the extractable metals in soil, in accordance with BS3882:2007 methodology.	BS3882:2007 & BS8601:2013	L038-PL	D	NONE
Sodium (exchangeable %)	Determination of exchangeable sodium (%) by calculation, in accordance with BS3882:2007 methodology.	BS3882:2007	L028-PL	D	NONE

Project / Site name: NW Bicester Eco-Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Textural Classification (BS3882/BS8601)	Determination of the textural classifcation of soil following BS3882:2007 methodology.	BS3882:2007 & BS8601:2013	L01TS	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Cameron Adams
Hydrock Consultants Ltd
2-4 Hawthorne Park
Holdenby Road
Spratton
Northamptonshire
NN6 8LD

t: 01604842888 f: 01604842666

e: cameronadams@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-31833

Project / Site name: North-west bicester eco development Samples received on: 18/09/2020

Your job number: C-13603 Samples instructed on/ 22/09/2020

Analysis started on:

Your order number: PO02101 Analysis completed by: 28/09/2020

Report Issue Number: 1 Report issued on: 28/09/2020

Samples Analysed: 5 soil samples

Signed:

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-31833 Project / Site name: North-west bicester eco development

Your Order No: PO02101

Lab Sample Number				1629783	1629784	1629785	1629786
Sample Reference				TP88	TP87	TP82	TP71
Sample Number				4	4	4	4
Depth (m)				0.50	0.10	0.70	0.20
Date Sampled				21/09/2020	21/09/2020	16/09/2020	16/09/2020
Time Taken				1200	1200	1200	1200
Analytical Parameter	U	Lin	Ac ta St				
(Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
		<u>∷</u> of	S I				
							0.1
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	17	7.5	15
Total mass of sample received	kg	0.001	NONE	1	1.2	0.6	0.6
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	8.2	8	8.6	7.8
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.011	0.014	0.0097	0.011
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.028	0.042	0.0086	0.046
	-	-					
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
	5, 5			-			
Speciated PAHs							
Naphthalene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
, ,	mg/kg	1					
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	21	16	19
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.94	0.99	0.69	1
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	1.5	0.3	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	21	24	18	23
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	24	18	23
Copper (aqua regia extractable)	mg/kg	1	MCERTS	24	17	9.3	20
Lead (aqua regia extractable)	1	1	MCERTS	52	32	11	30
	mg/kg	1		< 0.3	< 0.3	< 0.3	< 0.3
Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg	0.3	MCERTS MCERTS	< 0.3 24	< 0.3 26	< 0.3 19	< 0.3 25
, , , ,	mg/kg	1					
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	45	58	39	54
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	97	79	39	87
SVOCs							
Aniline	mg/kg	0.1	NONE	-	< 0.1	-	< 0.1

Project / Site name: North-west bicester eco development

Your Order No: PO02101

Lab Sample Number				1629783	1629784	1629785	1629786
Sample Reference				TP88	TP87	TP82	TP71
Sample Number				4	4	4	4
Depth (m)				0.50	0.10	0.70	0.20
Date Sampled				21/09/2020	21/09/2020	16/09/2020	16/09/2020
Time Taken				1200	1200	1200	1200
Analytical Parameter	Units	Limit of detecti	Accredi tation Status				
(Soil Analysis)	its	t of ecti n	redi ion tus				
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	ì	< 0.3	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	< 0.2	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	< 0.1	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	< 0.1	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	< 0.3	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	=	< 0.3	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	-	< 0.05
10 11 1	, J						

SVOCs TICs

Project / Site name: North-west bicester eco development

Your Order No: PO02101

Lab Sample Number	1629783	1629784	1629785	1629786			
Sample Reference					TP87	TP82	TP71
Sample Number					4	4	4
Depth (m)					0.10	0.70	0.20
Date Sampled				21/09/2020	21/09/2020	16/09/2020	16/09/2020
Time Taken				1200	1200	1200	1200
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
SVOCs TICs Compound Name		N/A	NONE	-	ND	-	ND
SVOC % Match	%	N/A	NONE	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North-west bicester eco development

Your Order No: PO02101

Lab Sample Number				1629787
Sample Reference				TP65
Sample Number				4
Depth (m)				0.20
Date Sampled				18/09/2020
Time Taken				1200
Analytical Parameter	U	Lin de	Acq ta St	,
(Soil Analysis)	Units	Limit of detection	Accredi tation Status	
• • •		<u> </u>	6 - =	
Stana Contant	0/	0.1	NONE	< 0.1
Stone Content	%	0.1	-	< 0.1 15
Moisture Content	%	N/A	NONE	
Total mass of sample received	kg	0.001	NONE	1.2
Ashashas in Cail	T -	21/2	TCO 47025	Not detected
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected
General Inorganics	1	T		
pH - Automated	pH Units	N/A	MCERTS	8.1
Free Cyanide	mg/kg	1	MCERTS	< 1
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.0065
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.031
Total Phenols				
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0
Speciated PAHs				
Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05
Total PAH				
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80
Heavy Metals / Metalloids				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	20
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.96
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2
Chromium (III)	mg/kg	1	NONE	24
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	12
Lead (aqua regia extractable)	mg/kg	1	MCERTS	21
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	25
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	60
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	53
SVOCs .				

Project / Site name: North-west bicester eco development

Your Order No: PO02101

				1600707
Lab Sample Number				1629787
Sample Reference				TP65
Sample Number				4
Depth (m)				0.20
Date Sampled				18/09/2020
Time Taken				1200
Analytical Parameter	Ç.	Limit of detecti	Accredi tation Status	
(Soil Analysis)	Units	iit o	red tion	
Phenol	mg/kg	0.2	ISO 17025	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2
1.3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.2	MCERTS	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05
Nitrobenzene		0.3	MCERTS	< 0.3
4-Methylphenol	mg/kg mg/kg	0.3	NONE	< 0.2
Isophorone	mg/kg	0.2	MCERTS	< 0.2
2-Nitrophenol	mg/kg	0.2	MCERTS	< 0.3
2,4-Dimethylphenol		0.3		< 0.3
	mg/kg		MCERTS	< 0.3
Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS MCERTS	< 0.3
	mg/kg			
Naphthalene 2,4-Dichlorophenol	mg/kg	0.05	MCERTS	< 0.05 < 0.3
	mg/kg	0.3	MCERTS	
4-Chloroaniline Hexachlorobutadiene	mg/kg	0.1	NONE	< 0.1
	mg/kg		MCERTS	
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1
Acceptable	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3
Diethyl phthalate 4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2 < 0.2
4-Nitroaniline Fluorene	mg/kg	0.2	MCERTS	< 0.2
	mg/kg		MCERTS	
Azobenzene Bromonhenyl phenyl ether	mg/kg	0.3	MCERTS	< 0.3
Bromophenyl phenyl ether Hexachlorobenzene	mg/kg	0.2	MCERTS	< 0.2
Phenanthrene	mg/kg	0.3	MCERTS	< 0.3 < 0.05
	mg/kg	0.05	MCERTS	
Anthracene Carbazole	mg/kg	0.05	MCERTS	< 0.05
Carbazole Dibutul phthalata	mg/kg	0.3	MCERTS	< 0.3
Dibutyl phthalate Anthraquinone	mg/kg	0.2	MCERTS	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05 < 0.05
Pyrene Butul henzyl phthalate	mg/kg	0.05	MCERTS ISO 17025	
Butyl benzyl phthalate	mg/kg	0.3		< 0.3 < 0.05
Benzo(a)anthracene Chrysene	mg/kg	0.05	MCERTS MCERTS	< 0.05
	mg/kg			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05

SVOCs TICs

Project / Site name: North-west bicester eco development

Your Order No: PO02101

Lab Sample Number				1629787		
Sample Reference						
Sample Number				4		
Depth (m)				0.20		
Date Sampled						
Time Taken				1200		
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status			
SVOCs TICs Compound Name		N/A	NONE	ND		
SVOC % Match	%	N/A	NONE	-		

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North-west bicester eco development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1629783	TP88	4	0.5	Brown loam and clay with gravel and vegetation.
1629784	TP87	4	0.1	Brown loam and clay with gravel and vegetation.
1629785	TP82	4	0.7	Brown clay and sand with gravel and vegetation.
1629786	TP71	4	0.2	Brown loam and clay with gravel and vegetation.
1629787	TP65	4	0.2	Brown loam and clay with gravel and vegetation.

Project / Site name: North-west bicester eco development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry. Determination of free cyanide by distillation followed by and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)		L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Tentatively identified compounds (SVOC) ir soil	Determination of semi-volatile organic compounds total ion count in soil by extraction with dichloromethane and hexane followed by GC-MS followed by a full library scan.	In-house method based on USEPA 8270	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

Project / Site name: North-west bicester eco development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
--	-----------------------------	------------------	-----------------------	-------------------------	--

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Project / Site name: North-west bicester eco development

Sample ID	Other ID	Sample Type		Sample Deviation	Test Name	Test Ref	Test Deviation
TP71	4	S	1629786	С	Free cyanide in soil	L080-PL	С
TP82	4	S	1629785	С	Free cyanide in soil	L080-PL	С

Cameron Adams Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 f: 01604842666

e: cameronadams@hydrock.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-31851

Project / Site name: North-west bicester eco development Samples received on: 18/09/2020

Your job number: C-13603 Samples instructed on/ 23/09/2020

Analysis started on:

Your order number: PO02101 Analysis completed by: 29/09/2020

Report Issue Number: Report issued on: 29/09/2020

Samples Analysed: 3 10:1 WAC samples

Signed:

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

- 4 weeks from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Standard sample disposal times, unless otherwise agreed with the laboratory, are:

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		20-31851				
•						
				Oli		
				Client:	HYDROCK	
Location	Nor	th-west bicester eco develo	opment			
Lab Reference (Sample Number)				Landfill '	Waste Acceptanc	e Criteria
		1629856 / 1629857			Limits	
Sampling Date Sample ID		21/09/2020			Stable Non- reactive	
Depth (m)	TP88 4 0.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis						
ГОС (%)**	2.8			3%	5%	6%
oss on Ignition (%) **	7.2					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 0.85			100		
pH (units)**	7.7				>6	
Acid Neutralisation Capacity (mol / kg)	0.83				To be evaluated	To be evaluated
Eluate Analysis	10:1		10:1	Limit value	es for compliance le	eaching test
				using BS FN	12457-2 at L/S 10	I/ka (ma/ka)
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	doing 20 2.1	12.07 2 40 2/0 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Arsenic *	< 0.0011		< 0.0110	0.5	2	25
Barium *	0.0069		0.0567	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0005		0.0040	0.5	10	70
Copper *	0.0050		0.041	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30
Vickel *	0.0044		0.037	0.4	10	40
ead *	0.0033		0.027	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.0036		0.030	4	50	200
Chloride *	1.8		15	800	15000	25000
Fluoride	0.17		1.4	10	150	500
Sulphate *	3.0		24	1000	20000	50000
TDS*	78		640	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-
000	8.11		66.5	500	800	1000
					-	
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.2			1	1	
Dry Matter (%)	82					
Moisture (%)	18					
1000010 (70)	10					
				<u> </u>	L	<u> </u>
Results are expressed on a dry weight basis, after correction for m	ioisture content whe	e applicable.		→= UKAS accredit	ted (liquid eluate an	aıysıs only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		20-31851				
				Client:	HYDROCK	
Location	North	-west bicester eco develo	opment	Landfill	Waste Acceptanc	e Criteria
Lab Reference (Sample Number)		1629858 / 1629859		Lunum	Limits	e criteria
Sampling Date		16/09/2020			Stable Non-	
Sample ID		TP82 4		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)	Depth (m) 0.70		Landfill	waste in non- hazardous Landfill	Waste Landfil	
Solid Waste Analysis						
ГОС (%)**	0.9			3%	5%	6%
oss on Ignition (%) **	2.3					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1	-	
Mineral Oil (mg/kg)	< 10			500	-	
Гotal PAH (WAC-17) (mg/kg)	< 0.85			100		
oH (units)**	8.3				>6	
Acid Neutralisation Capacity (mol / kg)	1.1				To be evaluated	To be evaluate
Eluate Analysis	10:1		10:1	Limit valu	es for compliance l	eaching test
PC EN 134E7 3 proparation utilizing and over and leaching				using BS EN	12457-2 at L/S 10	l/kg (mg/kg)
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg			
Arsenic *	0.0055		0.0496	0.5	2	25
Barium *	0.0116		0.104	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0010		0.0086	0.5	10	70
Copper *	0.0053		0.048	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30
Vickel *	0.0046		0.041	0.4	10	40
_ead *	0.0028		0.025	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.0068		0.061	4	50	200
Chloride *	1.6		15	800	15000	25000
Fluoride	0.27		2.4	10	150	500
Sulphate *	2.3		21	1000	20000	50000
TDS*	88		790	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-
DOC	7.89		70.6	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	0.60	+		†	†	
Dry Matter (%)	93			1	1	
Moisture (%)	7.5			1	1	
	, 15					
		I	1	1	1	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Depth (m) Dept	Waste Acceptance Criteria Analytical Report No:		20-318	351					
Lab Reference (Sample Number) 16/29860 / 15/29861 Landfill Waste Acceptance C									
Lab Reference (Sample Number) 16/39860 / 16/39861 Landfill Waste Acceptance C									
Lab Reference (Sample Number) 1029860 / 1629861						Client:	HYDROCK		
Lab Retreence (Sample Number) 1629860 / 1629861	Location	Nor	rth-west bicester	eco developme	ent	1			
Sampling Date 18/09/2020 19/09/2020	Lab Reference (Sample Number)		4620060 //			Landfill \		e Criteria	
Company Comp									
Depth (m) Dept									
TOC (%)** 3.1 3.96 5.96	·				HAZARDOUS waste in non- hazardous	Hazardous Waste Landfill			
Case on Ingation (%) **	Solid Waste Analysis								
STEX (µg/kg) ** < 10 6000	ГОС (%)**	3.1				3%	5%	6%	
Simulation of PCBs (mg/kg) ** \$ < 0.007 \$ 1	oss on Ignition (%) **	7.7						10%	
Mineral Oil (Ing/kg)						6000			
Total PAH (WAC-17) (mg/kg)									
## Acid Netralisation Capacity (mol / kg) ## Cituate Analysis ## 10:1 ##				, in the second second		500	-		
Cacid Neutralisation Capacity (mol / kg) 0.46		< 0.85				100			
Bit late Analysis 10:1 10:1 Limit values for compliance leach using BS EN 12457 - 2 preparation utilising end over end leaching procedure) mg/l mg/kg	oH (units)**	8.0					>6		
(BS EN 12457 - 2 preparation utilising end over end leaching proceedure) mg/l	Acid Neutralisation Capacity (mol / kg)	0.46					To be evaluated	To be evaluate	
BS EN 12457 - 2 preparation utilising end over end leaching procedure) Marsenic * 0.0052 0.0425 0.05 2 3ardimium * 0.0130 0.106 20 100 20 100 20 100 20 100 20 100 20 2	Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test	
mg/kg	IDC EN 124E7 2 annualities utilisies and account leaching					using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Serium *		mg/l			mg/kg				
Sarium *	Arsenic *	0.0052			0.0425	0.5	2	25	
Cadmium *								300	
Chromium *								5	
Copper * 0.018 0.14 2 50								70	
Mercury *							50	100	
Molybdenum * < 0.0004	Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Cantimony Cant		< 0.0004			< 0.0040	0.5	10	30	
Antimony *	Nickel *	0.0059			0.048	0.4	10	40	
Selenium *	_ead *	0.0047			0.039	0.5	10	50	
Chloride * 0.0070 0.057 4 50 1.5 12 800 15000 15000 1.5 12 800 15000 15000 1.5 12 800 15000 1.5 12 800 15000 1.5 12 12 1000 1.5 12 1000 1.5 12 1000 1.5 12 1000 1.5 12 1000 1.5 12 1000 1.5 12 1000 1.5 12 1000 1.5 12 12 12 12 12 12 12 1	Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Chloride 1.5	Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Sulphate	Zinc *	0.0070			0.057	4	50	200	
Sulphate * 2.9 23 1000 20000 FDS* 87 710 4000 60000 Phenol Index (Monohydric Phenols) * < 0.010 1 - COC 11.2 90.9 500 800 Leach Test Information Stone Content (%) < 0.1 Sample Mass (kg) 1.2 Dry Matter (%) 85	Chloride *	1.5			12	800	15000	25000	
### RECORD	Fluoride	0.33			2.7	10	150	500	
Penelol Index (Monohydric Phenols) * < 0.010	Sulphate *	2.9			23	1000	20000	50000	
11.2 90.9 500 800	TDS*	87			710	4000	60000	100000	
Leach Test Information	Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
Stone Content (%) < 0.1 Sample Mass (kg) 1.2 Sory Matter (%) 85	DOC	11.2			90.9	500	800	1000	
Stone Content (%) < 0.1 Sample Mass (kg) 1.2 Sory Matter (%) 85									
Stone Content (%) < 0.1 Sample Mass (kg) 1.2 Sory Matter (%) 85	each Test Information								
Sample Mass (kg) 1.2 Jory Matter (%) 85	.cacii rest IIIIOFIIIatioii								
Ory Matter (%) 85	Stone Content (%)	< 0.1							
	Sample Mass (kg)	1.2							
Moisture (%) 15		85							
		15							
	-								
Results are expressed on a dry weight basis, after correction for moisture content where applicable. *= UKAS accredited (liquid eluate analys)									

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

Project / Site name: North-west bicester eco development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *	
1629856	TP88	4	0.5	Brown loam and clay with gravel and vegetation.	
1629858	TP82	4	0.7	Brown clay and sand with gravel and vegetation.	
1629860	TP65	4	0.2	Brown loam and clay with gravel and vegetation.	

Project / Site name: North-west bicester eco development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	w	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil"	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Project / Site name: North-west bicester eco development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

TEST CERTIFICATE

Specification for Topsoil

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 3882: 2015

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

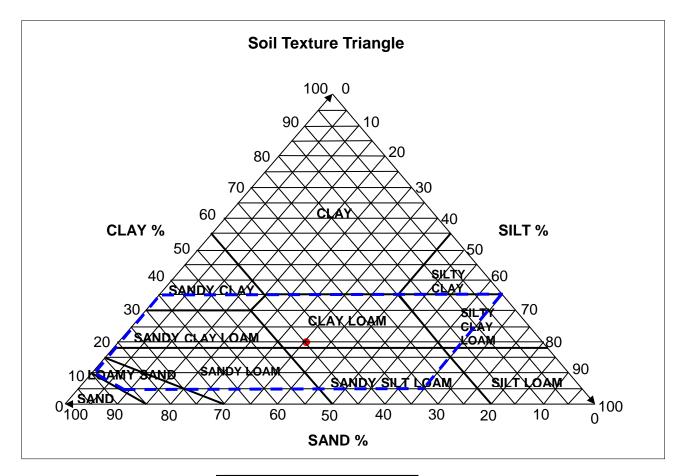
Spratton, Northamptonshire,

NN6 8LD

Contact: Cameron Adams

Site Address: North-West Bicester Eco Development

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: C 13603 Job Number: 20-32308 Date Sampled: 16/09/2020 Date Received: 18/09/2020 Date Tested: 29/03/2020

Sampled By: Not Given

Test Results:

Laboratory Reference: 1632012
Hole No.: TP85
Sample Reference: Not Given
Sample Description: CLAY LOAM

Depth Top [m]: 0.10 Depth Base [m]: 0.30 Sample Type: D

Sample Proportion	% dry mass
Sand	45.1
Silt	33.9
Clay	21.0

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Trevor Hill i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford WD18 8YS

> 14th October 2020 Our Ref: TOHA/20/9693/SS Your Ref: PO12870 20-32308

Dear Sirs

Topsoil Analysis Report: North-West Bicester Eco Development

We have completed a review of the i2 Analytical Ltd report 20-32308 for the sample referenced *TP85*, and have pleasure reporting our findings.

The purpose of the review was to determine the suitability of the sample for general landscape purposes (trees, shrubs, amenity grass). In addition, the sample has been assessed to determine its compliance with the <u>horticultural</u> requirements of the British Standard for Topsoil (BS3882:2015 – Specification for Topsoil – Table 1, Multipurpose Topsoil).

With reference to BS3882:2015 - Table 1: Notes 3 and 4, analysis of potential contaminants (human health and the environment) is required in relation to site history and end-use of the topsoil. In this instance, no human health contaminants have been tested.

This report presents the interpretation of laboratory results of analysis submitted to our office, and it should be considered 'indicative' of the topsoil source. The report should therefore not be used by third parties as a means of verification testing, validation testing or for waste designation purposes.

VISUAL EXAMINATION

The following photographic image of the sample was provided by Trevor Hill of i2 Analytical Ltd on 08/10/2020.

Plate 1: Sample TP85

From the supplied image, the sample may be described as brown (Munsell Colour 10YR 4/3), with a moderately developed, fine to medium sub-angular blocky structure. No observable deleterious materials or roots or rhizomes of pernicious weeds appear to be present within the photograph.

ANALYTICAL SCHEDULE

The sample was submitted to i2 Analytical Ltd for a range of physical and chemical tests to confirm the composition and fertility of the soil. The following parameters were determined:

- particle size analysis;
- stone content;
- pH and electrical conductivity value;
- major plant nutrients (N, P, K, Mg);
- organic matter content;
- C:N ratio;
- phytotoxic contaminants (Cu, Ni, Zn);
- visible contaminants (>2mm, plastics, sharps).

The results of analysis are attached in the form of an i2 Analytical Ltd Test Certificate at the end of this document.

RESULTS OF ANALYSIS

Particle Size Analysis and Stone Content

The sample fell into the *clay loam* texture class, which is usually considered suitable for general landscape applications provided the soil's physical condition is satisfactory.

Such soils usually have good water and nutrient retention capacities, but they are also prone to structural degradation and compaction during handling, and especially when plastic in consistency. Any damage to the structural condition of this soil is likely to reduce its drainage and aeration properties.

The stone content of the sample was moderate and, as such, stones are unlikely to constitute a limitation for planting purposes.

TOHA/20/9693/SS/Oct Page 2

pH and Electrical Conductivity values

The sample was strongly alkaline in reaction (pH 8.0), with a pH value that would be considered suitable for general landscape purposes providing species with a wide pH tolerance or those known to prefer alkaline soils are selected for planting, turfing and seeding.

The electrical conductivity value by CaSO₄ extract (BS3882 requirement) fell below the maximum specified value (3300 μS/cm) given in BS3882:2015 – Table 1.

Organic Matter and Fertility Status

The sample was adequately supplied with organic matter and all major plant nutrients.

The C:N ratio was high (26:1) and exceeded the maximum upper limit set by *BS3882:2015 - Table 1* (20:1). This could cause 'nitrogen lock up' and result in growth restriction in sensitive plants in particular. This can usually be remedied by a suitable fertiliser application.

Phytotoxic Contaminants

Of the phytotoxic (toxic to plants) contaminants determined (copper, nickel, zinc), none was found at levels that exceeded the maximum permissible levels specified in BS3882:2015 – Table 1.

CONCLUSIONS

The purpose of the review was to determine the suitability of the sample for general landscape purposes (trees, shrubs, amenity grass). In addition, the sample has been assessed to determine its compliance with the <u>horticultural</u> requirements of the British Standard for Topsoil (*BS3882:2015 – Specification for Topsoil – Table 1, Multipurpose Topsoil*).

From the visual examination and subsequent laboratory analysis, the sample was described as a strongly alkaline, non-saline clay loam with a moderately developed structure and moderate stone content. The sample was adequately supplied with organic matter and all major plant. The C:N ratio was high. Of the phytotoxic contaminants determined, none exceeded their respective guideline values.

To conclude based on our findings, the topsoil has a reduced potential for re-use in general landscape applications on account of its high C:N ratio and potential for nitrogen lock-up. This can usually be remedied by a suitable fertiliser application. Species with a wide pH tolerance or those known to prefer alkaline soils should be selected for planting, turfing and seeding and the physical condition maintained.

The sample was largely compliant with the requirements of the British Standard for Topsoil (BS3882:2015 – Specification for Topsoil – Table 1, Multipurpose Topsoil) with the exception of the C:N ratio (26:1) which exceeded the maximum specified value (20:1).

TOHA/20/9693/SS/Oct Page 3

RECOMMENDATIONS

Fertilisers for Planting

To address the C:N ratio imbalance and to help promote effective plant establishment, we recommend applying and incorporating the compound, controlled release fertiliser ICL Osmocote PrePlant (17%N:9%P₂O₅:10%K₂O:2%MgO+TE) at a rate of 70 g/m² for planting beds and/or 180 g/tree pit, and to a depth of 200mm.

Fertiliser for Amenity Grass Establishment

To address the C:N ratio imbalance and to help promote effective grass establishment, we recommend incorporating the pre-seeding grass fertiliser ICL Sportsmaster Pre-seeder (8%N:12%P₂O₅:8%K₂O+3%MgO) prior to seeding or turfing at a rate of 35 g/m² and to a depth of 100mm.

Soil Handling Recommendations

It is important to maintain the physical condition of the soil and avoid structural damage during all phases of soil handling (e.g. stockpiling, respreading, cultivating, planting, seeding or turfing). As a consequence, soil handling operations should be carried out when soil is reasonably dry and non-plastic (friable) in consistency.

It is important to ensure that the soil is not unnecessarily compacted by trampling or trafficking by site machinery, and soil handling should be stopped during and after heavy rainfall and not continued until the soil is friable in consistency. If the soil is structurally damaged and compacted at any stage during the course of soiling or landscaping works, it should be cultivated appropriately to relieve the compaction and to restore the soil's structure prior to any planting, turfing or seeding.

Further details on soil handling are provided in Annex A of BS3882:2015.

We hope this report meets with your approval and provides the necessary information. Please do not hesitate to contact the undersigned if we can be of further assistance.

Yours faithfully

Tilly Kimble-Wilde BSc MSc

Graduate Soil Scientist

Laura Hathaway-Jenkins BSc MSc EnaD MISoilSci CSci Senior Associate

For & on behalf of Tim O'Hare Associates LLP

TOHA/20/9693/SS/Oct Page 4

Cameron Adams
Hydrock Consultants Ltd
2-4 Hawthorne Park
Holdenby Road
Spratton
Northamptonshire
NN6 8LD

t: 01604842888 f: 01604842666

e: cameronadams@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-32308

Project / Site name: North-West Bicester Eco Development Samples received on: 18/09/2020

Your job number: C 13603 Samples instructed on/ 25/09/2020

Analysis started on:

Your order number: PO02101 Analysis completed by: 06/10/2020

Report Issue Number: 1 Report issued on: 06/10/2020

Samples Analysed: 1 soil sample

Signed:

Karolina Marek
PL Head of Reporting Team
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Standard sample disposal times, unless otherwise agreed with the laboratory, are:

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

		Certifi	cate of Analy	sis .					
	BS 38	82:2015	Specification	For Tops	ioil				
		Fa	il BS 3882					client	
Report No:		,	20-32308				Hydrod	k Consult	ants Ltd
Location		North-West Bi	cester Eco Develo		1				
Lab Reference (Sample Number)		1632012							88
Sampling Date		1	16/09/2020						
Sample ID			TP85						
Depth (m)		0.10-0.30			Co	mpliant wi	th range (Y	/N)	
		unit	Result	Multi-P	Acid	Calc	Low-F	Low-F(a)	Low-F(c)
Soil texture	<2mm fraction	%m/m	CLAY LOAM	Υ	Υ	Υ	Υ	Υ	Υ
	>2mm	%m/m	21.00	Y	Y	Y	Y	Y	Y
Maximum coarse fragment	>20mm	%m/m	0.00	Y	Y	Y	Y	Y	Y
content:	>50mm	%m/m	0.00	Y	Y	Y	Y	Y	Y
		1							
M I !!*!	Cl. F 200/	%	9.80						
Mass loss on ignition	Clay 5-20% Clay 20-35%		- Y	- Y	- Y	- Y	- Y	- Y	- Y
	•								
Soil pH:		pH	8.00	Υ	N	Υ	Υ	N	Υ
Carbonate:		%m/m	13.00	_	-	Υ	_	<u> </u>	Υ
an bollate.		7011/111	15.00						
	Nitrogen	%m/m	0.22	Υ	Υ	Y	-	-	-
Available plant nutrients	Extractable Phosphate (as P)	mg/l	62.00	Y	Υ	Υ	N	N	N
tvanable plane naciones	Extractable Potassium	mg/l	419.00	Y	Υ	Υ	-	-	-
	Extractable Magnesium	mg/l	150.00	Υ	Υ	Υ	-		-
Carbon: Nitrogen Ratio:		:1	26.00	N	N	N	Y	Y	N
an Dominia Ogen Hadio.			20100					<u> </u>	· · ·
Conductivity		us/cm	1600.00	Υ	-	-	-	-	-
	** = 1 ! = 1		75.00		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Ohydotovia soutrait	** Total Zinc	mg/kg	75.00	Y	Y	Y	Y	Y	Y
Phytotoxic contaminants:	** Total Copper ** Total Nickel	mg/kg mg/kg	19.00 25.00	Y	Y	Y	Y	Y	Y
	I OTAL MICKEL	mg/kg	23.00	'	1	-	<u> </u>	<u>'</u>	<u>'</u>
	>2mm	%m/m	0.00	Υ	Υ	Υ	Υ	Υ	Υ
Visible contaminants:	Plastics	%m/m	0.00	Υ	Υ	Υ	Υ	Υ	Υ
	Sharps	no. in 1 kg	0.00	Υ	Y	Υ	Υ	Υ	Υ
Compliancy:				Fail	Fail	Fail	Fail	Fail	Fail

^{** =} MCERTS accrediited


Project / Site name: North-West Bicester Eco Development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1632012	TP85	None Supplied	0.10-0.30	Brown loam with gravel and vegetation.

Project / Site name: North-West Bicester Eco Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Geotechnical Testing in Soil	See attached geotechnical report	See attached geotechnical report		W	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Textural Classification Diagram	Textural classification Diagram	BS3882:2015		D	NONE
Carbon to Nitrogen Ratio (Topsoil - BS3882:2015)	Carbon to Nitrogen ratio (:1) calculated using Loss on Ignition.	BS3882:2015	L01TS2015	W	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Kjeldahl nitrogen in soil	Determination of total nitrogen using the Kjeldahl- digestion method and colorimetric determination.	In house method based on BS 7755-3.7:1995 &	L087-PL	D	NONE
Topsoil	See attached report.	BS 3882: 2015	PL	w	NONE
Mass loss on ignition (Topsoil - BS3882)	Determination of Loss on Ignition as per BS 3882:2015.	BS3882:2015	L047-PL	D	NONE
Carbonate (Topsoil - BS3882)	Determination of Carbonate as per BS 3882:2015.	BS3882:2015	L034-PL	D	NONE
Phosphorus as PO4 (BS3882/BS8601)	Determiation of the extractable phosphorus in soil, in accordance with BS3882:2007 methodology.	BS3882:2015 & BS8601:2013	L082-PL	D	NONE
Coarse Fragment and Contaminant Analysis	Determination of >2mm contaminants	BS3882:2007 & BS8601:2013 & PAS 100:2005	L01TS	D	NONE
Nitrogen (TKN)	Determination of total nitrogen by Kjeldahl method.	BS3882:2007	L087-PL	D	NONE
Conductivity (BS3882/BS8601)	Determination of the conductivity of soil in accordance with BS 3882:2007 methodology	BS3882:2007 & BS8601:2013	L099-PL	D	NONE
рН (BS3882/BS8601)	Determination of the pH of soil in accordance with BS 3882:2007 methodology	BS3882:2007 & BS8601:2013	L099-PL	D	NONE
Extractable/Available Metals (BS3882/BS8601)	Determiation of the extractable metals in soil, in accordance with BS3882:2007 methodology.	BS3882:2007 & BS8601:2013	L038-PL	D	NONE
Sodium (exchangeable %)	Determination of exchangeable sodium (%) by calculation, in accordance with BS3882:2007 methodology.	BS3882:2007	L028-PL	D	NONE

Project / Site name: North-West Bicester Eco Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of the textural classifcation of soil following BS3882:2007 methodology.	BS3882:2007 & BS8601:2013	L01TS	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

TEST CERTIFICATE

Specification for Topsoil

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 3882: 2015

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

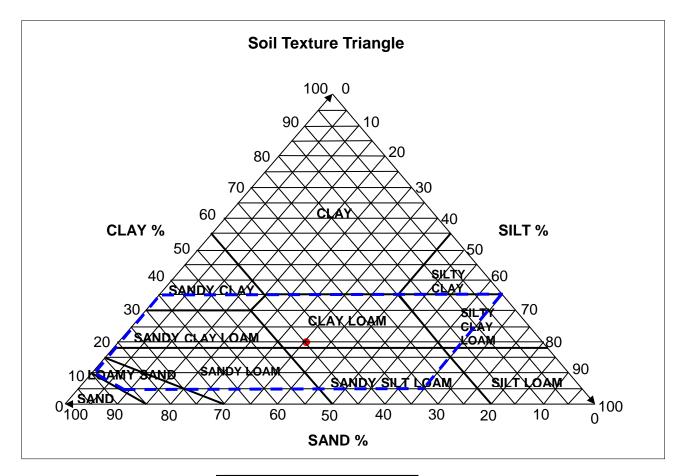
Spratton, Northamptonshire,

NN6 8LD

Contact: Cameron Adams

Site Address: North-West Bicester Eco Development

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: C 13603 Job Number: 20-32308 Date Sampled: 16/09/2020 Date Received: 18/09/2020 Date Tested: 29/03/2020

Sampled By: Not Given

Test Results:

Laboratory Reference: 1632012
Hole No.: TP85
Sample Reference: Not Given
Sample Description: CLAY LOAM

Depth Top [m]: 0.10 Depth Base [m]: 0.30 Sample Type: D

Sample Proportion	% dry mass
Sand	45.1
Silt	33.9
Clay	21.0

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Cameron Adams
Hydrock Consultants Ltd
2-4 Hawthorne Park
Holdenby Road
Spratton
Northamptonshire
NN6 8LD

t: 01604842888 **f:** 01604842666

e: cameronadams@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-32308

Project / Site name: North-West Bicester Eco Development Samples received on: 18/09/2020

Your job number: C 13603 Samples instructed on/ 25/09/2020

Analysis started on:

Your order number: PO02101 Analysis completed by: 06/10/2020

Report Issue Number: 1 **Report issued on:** 06/10/2020

Samples Analysed: 1 soil sample

Signed:

Karolina Marek PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

		Certifi	cate of Analy	sis .					
	BS 38	82:2015	Specification	For Tops	ioil				
		Fa	il BS 3882					client	
Report No:		,	20-32308				Hydrod	k Consult	ants Ltd
Location		North-West Bi	cester Eco Develo		1				
Lab Reference (Sample Number)		1632012							88
Sampling Date		1	16/09/2020						
Sample ID			TP85						
Depth (m)		0.10-0.30			Co	mpliant wi	th range (Y	/N)	
		unit	Result	Multi-P	Acid	Calc	Low-F	Low-F(a)	Low-F(c)
Soil texture	<2mm fraction	%m/m	CLAY LOAM	Υ	Υ	Υ	Υ	Υ	Υ
	>2mm	%m/m	21.00	Y	Y	Y	Y	Y	Y
Maximum coarse fragment	>20mm	%m/m	0.00	Y	Y	Y	Y	Y	Y
content:	>50mm	%m/m	0.00	Y	Y	Y	Y	Y	Y
		1							
M I !!*!	Cl. F 200/	%	9.80						
Mass loss on ignition	Clay 5-20% Clay 20-35%		- Y	- Y	- Y	- Y	- Y	- Y	- Y
	•								
Soil pH:		pH	8.00	Υ	N	Υ	Υ	N	Υ
Carbonate:		%m/m	13.00	_	-	Υ	_	<u> </u>	Υ
an bollate.		7011/111	15.00						
	Nitrogen	%m/m	0.22	Υ	Υ	Y	-	-	-
Available plant nutrients	Extractable Phosphate (as P)	mg/l	62.00	Y	Υ	Υ	N	N	N
tvanable plane naciones	Extractable Potassium	mg/l	419.00	Y	Υ	Υ	-	-	-
	Extractable Magnesium	mg/l	150.00	Υ	Υ	Υ	-		-
Carbon: Nitrogen Ratio:		:1	26.00	N	N	N	Y	Y	N
an Dominia Ogen Hadio.			20100					<u> </u>	· · ·
Conductivity		us/cm	1600.00	Υ	-	-	-	-	-
	** = 1 ! = 1		75.00		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Ohydotovia soutrait	** Total Zinc	mg/kg	75.00	Y	Y	Y	Y	Y	Y
Phytotoxic contaminants:	** Total Copper ** Total Nickel	mg/kg mg/kg	19.00 25.00	Y	Y	Y	Y	Y	Y
	I OTAL MICKEL	mg/kg	23.00	'	1	-	<u> </u>	<u>'</u>	<u>'</u>
	>2mm	%m/m	0.00	Υ	Υ	Υ	Υ	Υ	Υ
Visible contaminants:	Plastics	%m/m	0.00	Υ	Υ	Υ	Υ	Υ	Υ
	Sharps	no. in 1 kg	0.00	Υ	Y	Υ	Υ	Υ	Υ
Compliancy:				Fail	Fail	Fail	Fail	Fail	Fail

^{** =} MCERTS accrediited


Project / Site name: North-West Bicester Eco Development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1632012	TP85	None Supplied	0.10-0.30	Brown loam with gravel and vegetation.

Project / Site name: North-West Bicester Eco Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Geotechnical Testing in Soil	See attached geotechnical report	See attached geotechnical report		W	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Textural Classification Diagram	Textural classification Diagram	BS3882:2015		D	NONE
Carbon to Nitrogen Ratio (Topsoil - BS3882:2015)	Carbon to Nitrogen ratio (:1) calculated using Loss on Ignition.	BS3882:2015	L01TS2015	W	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Kjeldahl nitrogen in soil	Determination of total nitrogen using the Kjeldahl- digestion method and colorimetric determination.	In house method based on BS 7755-3.7:1995 &	L087-PL	D	NONE
Topsoil	See attached report.	BS 3882: 2015	PL	w	NONE
Mass loss on ignition (Topsoil - BS3882)	Determination of Loss on Ignition as per BS 3882:2015.	BS3882:2015	L047-PL	D	NONE
Carbonate (Topsoil - BS3882)	Determination of Carbonate as per BS 3882:2015.	BS3882:2015	L034-PL	D	NONE
Phosphorus as PO4 (BS3882/BS8601)	Determiation of the extractable phosphorus in soil, in accordance with BS3882:2007 methodology.	BS3882:2015 & BS8601:2013	L082-PL	D	NONE
Coarse Fragment and Contaminant Analysis	Determination of >2mm contaminants	BS3882:2007 & BS8601:2013 & PAS 100:2005	L01TS	D	NONE
Nitrogen (TKN)	Determination of total nitrogen by Kjeldahl method.	BS3882:2007	L087-PL	D	NONE
Conductivity (BS3882/BS8601)	Determination of the conductivity of soil in accordance with BS 3882:2007 methodology	BS3882:2007 & BS8601:2013	L099-PL	D	NONE
рН (BS3882/BS8601)	Determination of the pH of soil in accordance with BS 3882:2007 methodology	BS3882:2007 & BS8601:2013	L099-PL	D	NONE
Extractable/Available Metals (BS3882/BS8601)	Determiation of the extractable metals in soil, in accordance with BS3882:2007 methodology.	BS3882:2007 & BS8601:2013	L038-PL	D	NONE
Sodium (exchangeable %)	Determination of exchangeable sodium (%) by calculation, in accordance with BS3882:2007 methodology.	BS3882:2007	L028-PL	D	NONE

Project / Site name: North-West Bicester Eco Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of the textural classifcation of soil following BS3882:2007 methodology.	BS3882:2007 & BS8601:2013	L01TS	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 **f:** 01604842666

e:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-43466

Project / Site name: North-West Bicester Eco Development Samples received on: 25/11/2020

Your job number: C-13603 Samples instructed on/ 26/11/2020

Analysis started on:

Your order number: PO02101 Analysis completed by: 01/12/2020

Report Issue Number: 1 Report issued on: 01/12/2020

Samples Analysed: 11 soil samples

Signed

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Project / Site name: North-West Bicester Eco Development

Your Order No: PO02101

Lab Sample Number	<u> </u>			1695890	1695891	1695892	1695893
Sample Reference				TP81	TP88	TP86	TP83
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.40	0.10	0.10
Date Sampled				25/11/2020	25/11/2020	25/11/2020	25/11/2020
Time Taken				am	am	am	am
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	69	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	19	10	30	29
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	1.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	T			0.0	0.4	0.0	0.4
pH - Automated	pH Units	N/A	MCERTS	8.2	8.4	8.2	8.4
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction Fraction Organic Carbon (FOC)	g/l N/A	0.00125 0.001	MCERTS MCERTS	0.014 0.027	0.012 0.0091	0.021 0.048	0.016 0.053
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Constituted PAUL							
Speciated PAHs		0.05	MCEDIC	. 0.05	. 0.05	. 0.05	. 0.05
Naphthalene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Acceptable	mg/kg	0.05	MCERTS				
Acenaphthene Fluorene	mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.46	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg mg/kg	0.05	MCERTS	0.65	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.69	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.43	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	0.29	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
	5, 19						
Total PAH							1
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	2.52	< 0.80	< 0.80	< 0.80

Project / Site name: North-West Bicester Eco Development

Your Order No: PO02101

Lab Sample Number				1695890	1695891	1695892	1695893
Sample Reference				TP81	TP88	TP86	TP83
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.40	0.10	0.10
Date Sampled				25/11/2020	25/11/2020	25/11/2020	25/11/2020
Time Taken				am	am	am	am
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids	-			-		-	<u>-</u>
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	20	8.2	15	17
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.91	0.44	1	1
Boron (water soluble)	mg/kg	0.2	MCERTS	2.7	1	3.8	2.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	25	8.1	26	25
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	8.9	26	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	60	9.2	19	19
Lead (aqua regia extractable)	mg/kg	1	MCERTS	46	12	26	25
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	25	11	22	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	48	21	48	47
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	130	30	88	78

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North-West Bicester Eco Development

Your Order No: PO02101

Lab Sample Number				1695894	1695895	1695896	1695897
Sample Reference				TP77	TP60	TP79	TP63
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.50	0.10	0.30
Date Sampled				25/11/2020	25/11/2020	25/11/2020	25/11/2020
Time Taken				am	am	am	am
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	39	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	9.5	24	18
Total mass of sample received	kg	0.001	NONE	1.5	1.5	1.5	1.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	8.1	8.1	7.5	8.2
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.018	0.015	0.018	0.016
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.039	0.019	0.055	0.028
	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols (monohydric) Speciated PAHs	mg/kg mg/kg	0.05	MCERTS MCERTS	< 1.0 < 0.05	< 1.0 < 0.05	< 1.0 < 0.05	< 1.0 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene							
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

Project / Site name: North-West Bicester Eco Development

Your Order No: PO02101

Lab Sample Number				1695894	1695895	1695896	1695897
Sample Reference				TP77	TP60	TP79	TP63
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.50	0.10	0.30
Date Sampled				25/11/2020	25/11/2020	25/11/2020	25/11/2020
Time Taken				am	am	am	am
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							-
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	9.1	19	19
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.81	0.44	1.1	0.85
Boron (water soluble)	mg/kg	0.2	MCERTS	2.3	1	2.8	1.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	19	13	26	21
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	19	13	27	21
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	7.1	22	13
Lead (aqua regia extractable)	mg/kg	1	MCERTS	19	12	30	24
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18	11	28	22
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	43	40	57	55
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	62	31	97	52

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North-West Bicester Eco Development

Your Order No: PO02101

Lab Sample Number				1695898	1695899	1695900
Sample Reference				TP72	TP74	TP80
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.10	0.20
Date Sampled				25/11/2020	25/11/2020	25/11/2020
Time Taken				am	am	am
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	18	26
Total mass of sample received	kg	0.001	NONE	1.5	1.2	1
Advantage in Call			1700 17005	Not detected	Not detected	Not detected
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	7.8	7.9	7.4
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.017	0.014	0.017
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS	0.019	0.035	0.043
Total Phenols						
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.41
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.43
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.39
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.19
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.18
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Total PAH						

Project / Site name: North-West Bicester Eco Development

Your Order No: PO02101

Lab Sample Number				1695898	1695899	1695900
Sample Reference				TP72	TP74	TP80
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.10	0.20
Date Sampled				25/11/2020	25/11/2020	25/11/2020
Time Taken				am	am	am
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	21	21
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.56	0.96	1.2
Boron (water soluble)	mg/kg	0.2	MCERTS	1	2.6	3.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	13	24	30
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	13	24	31
Copper (aqua regia extractable)	mg/kg	1	MCERTS	10	15	23
Lead (aqua regia extractable)	mg/kg	1	MCERTS	15	25	32
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	14	26	30
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	35	62	70
Zinc (agua regia extractable)	mg/kg	1	MCERTS	38	62	96

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: North-West Bicester Eco Development

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1695890	TP81	None Supplied	0.4	Brown loam and clay with vegetation and gravel
1695891	TP88	None Supplied	0.4	Brown loam and clay with stones and vegetation.
1695892	TP86	None Supplied	0.1	Brown loam and clay with vegetation and gravel
1695893	TP83	None Supplied	0.1	Brown loam and clay with vegetation and gravel
1695894	TP77	None Supplied	0.1	Brown loam and clay with vegetation and stones.
1695895	TP60	None Supplied	0.5	Brown loam and clay with gravel and vegetation.
1695896	TP79	None Supplied	0.1	Brown loam and clay with vegetation and gravel
1695897	TP63	None Supplied	0.3	Brown loam and clay with vegetation and gravel
1695898	TP72	None Supplied	0.3	Brown loam and clay with vegetation and gravel
1695899	TP74	None Supplied	0.1	Brown loam and clay with vegetation and gravel
1695900	TP80	None Supplied	0.2	Brown loam and clay with vegetation and gravel

Project / Site name: North-West Bicester Eco Development

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Statistical Analysis

						Soil Type	MG	MG	MG	MG	·····			1	1	<u>:</u>	1
	All values in	n mg/kg unle:	ss otherwise s	stated	Locati	on & Depth	TP81	TP88	TP88	TP54				}			
	7	:					0.4	0.4	0.5	0.2			7	7	1	-	;
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC											
Arsenic	}	4	8.2	20	0	37	20	8.2	18	17					. 		
Beryllium	0.06	4	0.44	1.1	0	73	0.91	0.44	0.94	1.1				-}		•	:
Boron	0.2	4	0.8	2.7	0	300	2.7	1	0.9				}	-}		·	·
Cadmium	0.2	4	0.2	0.2	0	14	0.2	0.2	0.2	0.8 0.2 20			~ } ~~~~	-{	÷	•••••	·
Chromium (III)	1	4	8.1	25	0	890	25	8.1	21	20			}		·	• • • • • • • • • • • • • • • • • • • •	÷
Chromium (VI)	1.2	4	1.2	1.2	Ö	6.1	1.2	1.2	1.2	1.2			~ { ~~~~	- 		÷	
Copper	1	4	9.2	60	ő	2500	60	9.2	24	22	·····			-}		÷	· !
Lead	2	4	12	66	ŏ	200	46	12	52	66				·· [······	7		†····
Mercury, inorganic	0.3	4	0.3	0.3	Ö	170	0.3	0.3	0.3	0.3				·· † ·····	†		†····
	2	4	11	25	Ö		25	11	24	20			~ } ~~~~	-{	÷	;	
Nickel Selenium		4	· { }	<u></u>	0	130 360		······	1				}			÷	÷
Vanadium	{	4	21	55	0		48	21	45	55			{	-}		÷	
Vanadium Zinc		4	21 30	55 130	Ö	410 3900	130	21 30	45 97	55 77			{	}		•;•••••	÷ · · · · · · · ·
Zinc Cyanide (free)	···-}····	4	1	1	ő	790	1	1		4				{	·	• • • • • • • • • • • • • • • • • • • •	
Phenol (total)		·······	-{}			290		·····	! <u>;</u>				}	-{			÷
Acenaphthene	0.05	4	0.05	0.05	0	220	0.05	0.05	0.05	0.05			}			÷	·}
Acenaphthylene	0.05	4	0.05	0.05	Ö	180	0.05	0.05	0.05	0.05				}		• • • • • • • • • • • • • • • • • • • •	·····
Anthracene	0.05	4	0.05	0.05		2400	0.05			0.05			~ { ~~~~	- }			<u></u>
	0.05	4	0.05		0	4.2		0.05 0.05	0.05 0.05				}	-{			}
Benz(a)anthracene Benzo(a)pyrene	0.05	4	0.05	0.43 0.19	0	1.5	0.43	0.05	0.05	0.21 0.19		· 	}	-{		·	.
Benzo(b)fluoranthene	0.05	4	0.05	0.19		7.6	0.05	0.05	0.05	0.19				- {	÷	÷	<u></u>
		·····			0	7.6 64				0.05				}			
Benzo(ghi)perylene	0.05	4	0.05 0.05	0.05 0.15	0	12	0.05	0.05	0.05				}	-}			· .
Benzo(k)fluoranthene Chrysene	0.05 0.05	4	0.05	0.15	0	7.7	0.05 0.29	0.05	0.05	0.15 0.22			}	-{			÷
Dibenz(a,h)anthracene	0.05	4	0.05	0.29		1.1	0.29	0.05 0.05	0.05 0.05	0.22				-{	Ļ	·····	ļ
					0	!.!	0.65	•					{	}			
Fluoranthene	0.05	4	0.05	0.65	0	290		0.05	0.05	0.33			{	-}			.j
Fluorene	0.05	4	0.05	0.05	0	170	0.05	0.05	0.05	0.05			{	-}			. .
Indeno(1,2,3,cd)pyrene	0.05	4	0.05	0.05	0	4.3	0.05	0.05	0.05	0.05				}			<u> </u>
Naphthalene	0.05	4	0.05	0.05	0	2.2 97	0.05	0.05	0.05	0.05				{			į
Phenanthrene	0.05	4	0.05	0.46	<u>0</u>		0.46	0.05	0.05	0.05			}		<u> </u>	<u></u>	
Pyrene	0.05	4	0.05	0.69	0	620	0.69	0.05	0.05	0.39			}		. .	. 	<u>.</u>
Asbestos identified	Y/N	: 	.}				N	N	N	N			{	_}	. <u>.</u>		<u>;</u>
FOC (dimensionless)	0.023775		.}				0.027	0.0091	0.028	0.031	. i i					.1	į
SOM (calculated)	4.10%	(mean)	.}				4.65%	1.57%	4.83%	5.34%	<u>:</u>					. <u>:</u>	į
pH (su)	8.2	(mean)	1 1		1 1		8.2	8.4	8.2	7.9		į	}	}	1		1

Risk parameter: Human health - residential with plant uptake (1%SOM)

Data set: Made Ground
Client: Firethrorn Developments

Site: NW Bicester
Job no.: C-13603

Lab. report no(s).: 20-43466-1, 20-31833-1, 20-30257-1

Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground NAT denotes natural ground

Assessment of Chemicals of Potential Concern to Human Health

								Soil Type	TS	TS	TS	TS	TS	TS	TS	TS	TS						
	All values i	in mg/kg unles	s otherwise s	stated				Location & Depth	TP86	TP83	TP77	TP79	TP72	TP74	TP80	TP21	TP06	TP16	TP22	TP23	TP01	TP12	TP13
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.1	0.1	0.1	0.1	0.3	0.1	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.2
Arsenic	3 1	35	6.9	23	0	37	18.915582	POTENTIALLY SUITABLE FOR USE	15	17	15	19	11	21	21	16	18	13	16	15	16	13	18
Beryllium	0.06	35	0.56	1.8	0	73	1.4143648	POTENTIALLY SUITABLE FOR USE	1	1	0.81	1.1	0.56	0.96	1.2	1.6	1.6	1.3	1.7	1.4	1.5	1.6	1.6
Boron	0.2	35	0.2	3.8	0	300	1.7544472	POTENTIALLY SUITABLE FOR USE	3.8	2.3	2.3	2.8	1	2.6	3.8	1.2	1.2	1	0.9	2.2	1.3	1	0.6
Cadmium	0.2	35	0.2	0.4	0	14	0.2153771	POTENTIALLY SUITABLE FOR USE	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Chromium (III)	1	35	11	37	0	890	29.009884	POTENTIALLY SUITABLE FOR USE	26	25	19	26	13	24	30	33	37	29	37	29	31	34	37
Chromium (VI)	1.2	35	1.2	1.2	0	6.1	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	3 1	35	9.4	29	0	2500	20.297954	POTENTIALLY SUITABLE FOR USE	19	19	15	22	10	15	23	18	19	17	20	17	19	18	19
Lead	2	35	8.6	79	0	200	30.349009	POTENTIALLY SUITABLE FOR USE	26	25	19	30	15	25	32	28	32	21	30	23	22	26	27
Mercury, inorganic	0.3	35	0.3	0.3	0	170	0.3	POTENTIALLY SUITABLE FOR USE	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Nickel	7	35	9.6	32	0	130	26.084568	POTENTIALLY SUITABLE FOR USE	22	23	18	28	14	26	30	29	28	23	32	24	27	27	31
Selenium	7	35	1	1	0	360	1		1	1	1	1	1	1	1	1	1	1	1	1	} -	1	1
Vanadium	1	35	30	86	0	410	69.307194	POTENTIALLY SUITABLE FOR USE	48	47	43	57	35	62	70	78	81	67	86	68	74	74	86
Zinc	2	35	25	97		3900	69.927732		88	78	62	97	38	62	96	67	69	53	74	58	61	68	68
Cvanide (free)	·· · ······ · ī·····	35	1	1		790	1	TOTEL TOTAL	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Phenol (total)	2	35	1	1	0	290	1 1			1	1	1	1	1	1	1	1	·····	1	} -	·····	1	1
Acenaphthene	0.05	35	0.05	0.05	Ö	220	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Acenaphthylene	0.05	35	0.05	0.05	ů .	180	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Anthracene	0.05	35	0.05	0.05	· · · · · · · · · · · · · · · · · · ·	2400	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benz(a)anthracene	0.05	35	0.05	0.39	0	4.2	0.0761411	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.39	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(a)pyrene	0.05	35	0.05	0.05	0	1.5	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(b)fluoranthene	0.05	35	0.05	0.18	, , , , , , , , , , , , , , , , , , ,	76	0.0599951	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.18	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(ghi)perylene	0.05	35	0.05	0.05	0	64	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(k)fluoranthene	0.05	35	0.05	0.05	<u>ö</u>	12	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Chrysene	0.05	35	0.05	0.19	0	77	0.060764	POTENTIALLY SUITABLE FOR USE		0.05	0.05	0.05		0.05	0.19	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Dibenz(a,h)anthracene	0.05	35	0.05	0.05	, , , , , , , , , , , , , , , , , , ,	11	0.000701	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Fluoranthene	0.05	35	0.05	0.43	0	290	0.0792166	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.43	0.05	0.05	0.05	0.05	0.05	0.05		0.05
		35	0.05	0.05	<u>ö</u>	170	0.05	POTENTIALLY SHITABLE FOR USE		0.05	0.05	0.05	0.05	0.05	0.45	0.05	0.05	0.05	0.05	0.05		0.05	
Fluorene Indeno(1,2,3,cd)pyrene	0.05	35	0.05	0.05	0	4.3	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	0.05	35	0.05	0.05	·······	2.2	0.05	POTENTIALLY SUITABLE FOR USE	0.05		0.05	0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Naphthalene Phenanthrene	0.05	35	0.05	0.41		97	0.0776789	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.41	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	0.05	35	0.05	0.05	- 	620	0.0770703	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Pyrene Asbestos identified	Y/N		0.00	0.00		520	0.03	POTENTIALLY SUITABLE FOR USE	N.U.J	N.00	N.00	N.00	N.00	N.00	N.00	N.00	N.00	0.00 N	N.00	N.00	N	N.00	
FOC (dimensionless)		(mean)	}}				÷		0.048	0.053	0.039	0.055	0.019	0.035	0.043	0.032		0.017	0.031	0.032		0.033	0.034
SOM (calculated)	0.033771 5.82%	(mean)	.}	· • · · · • · · · · · · · · · ·		<u>.</u>	·[·····	8.28%	9.14%	6.72%	9.48%	3.28%	6.03%	7.41%	0.032 5.52%	0.023	2 03%	5.34%	5.52%	0.024 4.14%	5.69%	5.86%
pH (su)	7.0270	(mean)	-}	· • · · · • · · · · · · · · · · · · · ·		ļ	· !	·	8.2	8.4	8.1	7.5	7.8	7.03%	7.4170	υ.υΖ/0 Ω	ο.στ <i>7</i> ο Ω 1	8.1		7.0	7.1470	7.9	7.9
μιι (au)	7.9		3		.4	:		ii.	0.2		0.1	ن. ر	1.0	1.5	1.4		0.1	0.1	1.0	נ. ו	3	7.9	

Risk parameter: Human health - residential with plant uptake (1%SOM)

Data set: Topsoil

Client: Firethorn Developments

Site: NW Bicester Job no.: C-13603

Lab. report no(s).: 20-43466-1, 20-29332-2, 20-30257-1, 20-31833-1

Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground

NAT denotes natural ground TS denotes Topsoil

Assessment of Chemicals of Potential Concern to Human Health

								Soil Type	TS	TS	TS	TS	TS	TS	TS	TS	TS	TS	TS	TS	TS	TS	TS
	All values in	n mg/kg unles	s otherwise	stated				Location & Depth	TP37	TP45	TP46	TP49	TP48	TP57	TP50	TP43	TP53	TP18	TP24	TP27	TP30	TP31	TP34
	7		7	1			7		0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test			-	-			-	-				-	-	-	
Arsenic	1	35	6.9	23	0	37	18.915582	POTENTIALLY SUITABLE FOR USE	23	19	23	18	18	19	19	6.9	19	22	20	19	21	19	18
Beryllium	0.06	35	0.56	1.8	0	73	1.4143648	POTENTIALLY SUITABLE FOR USE	1.6	1.6	1.7	1.3	1.2	1.3	1.5	0.64	1.4	1.6	1.7	1.4	1.4	1.4	1.3
Boron	0.2	35	0.2	3.8	0	300	1.7544472	POTENTIALLY SUITABLE FOR USE	3.3	0.6	0.3	0.3	2.2	2.3	0.6	0.2	2	2.1	1.2	0.8	1	1.2	0.5
Cadmium	0.2	35	0.2	0.4	0	14	0.2153771		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.2	0.2
Chromium (III)	1	35	11	37	0	890	29.009884	POTENTIALLY SUITABLE FOR USE	31	29	31	23	21	25	28	11	24	30	33	24	34	24	24
Chromium (VI)	1.2	35	1.2	1.2	0	6.1	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	1	35	9.4	29	0	2500	20.297954	POTENTIALLY SUITABLE FOR USE	25	21	29	21	20	21	22	9.4	18	19	16	19	21	21	19
Lead	2	35	8.6	79	0	200	30.349009	POTENTIALLY SUITABLE FOR USE	31	22	30	20	22	23	24	8.6	24	28	14	21	64	20	79
Mercury, inorganic	0.3	35	0.3	0.3	0	170	0.3	POTENTIALLY SUITABLE FOR USE	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Nickel	2	35	9.6	32	0	130	26.084568	POTENTIALLY SUITABLE FOR USE	26	25	27	21	19	22	24	9.6	23	27	31	25	29	23	22
Selenium	1	35	1	1	0	360	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Vanadium	1	35	30	86	0	410	69.307194	POTENTIALLY SUITABLE FOR USE	80	70	77	63	59	61	66	30	58	76	67	69	78	69	65
Zinc	2	35	25	97	0	3900	69.927732	POTENTIALLY SUITABLE FOR USE	69	56	77	56	52	61	64	25	66	61	51	57	80	60	53
Cyanide (free)	1	35	1	1	0	790	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Phenol (total)	2	35	1	1	0	290	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Acenaphthene	0.05	35	0.05	0.05	0	220	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Acenaphthylene	0.05	35	0.05	0.05	0	180	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Anthracene	0.05	35	0.05	0.05	0	2400	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Renz(a)anthracene	0.05	35	0.05	0.39	0	4.2	0.0761411	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(a)pyrene	0.05	35	0.05	0.05	0	1.5	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(b)fluoranthene	0.05	35	0.05	0.18	0	7.6	0.0599951	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(ghi)perylene	0.05	35	0.05	0.05	0	64	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(k)fluoranthene	0.05	35	0.05 0.05	0.05	0	12	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Chrysene	0.05	35	0.05	0.19	0	7.7	0.060764	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Dibenz(a,h)anthracene	0.05	35	0.05	0.05	0	1.1	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Fluoranthene	0.05	35	0.05	0.43	0	290	0.0792166	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Fluorene	0.05	35	0.05	0.05	0	170	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Indeno(1,2,3,cd)pyrene	0.05	35	0.05	0.05	0	4.3	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Naphthalene	0.05	35	0.05	0.05	0	2.2	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Phenanthrene	0.05	35	0.05	0.41	0	97	0.0776789	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Pyrene	0.05	35	0.05	0.05	0	620	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Asbestos identified	Y/N	:	*	}		·			N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
FOC (dimensionless)		(mean)	<u> </u>	<u> </u>		·	· · · · · · · · · · · · · · · · · · ·		0.04	0.024	0.041	0.036	0.033	0.036	0.042	0.033	0.038	0.026	0.012	0.029	0.044	0.035	0.025
SOM (calculated)	5.82%	(mean)	}	ţ	>	«·····································	·:		6.90%	4.14%	7.07%	6.21%	5.69%	6.21%	7.24%	5.69%	6.55%	4.48%	2.07%	5.00%	7.59%	6.03%	4.31%
pH (su)	7.9	(mean)	.}	{······		÷·····	-;		7.8	8.1	9	8.1	8	7.7	7.6	7.8	7.7		7.9	7.8	7.6	7.7	7.9
11.: A7.77	<i>: ::</i>		3	<				٠ا		3	;	٠ ٢٢٠٠٠	, <u></u>	::	i:: <u></u>		:::::) i i ĭ			

Risk parameter: Human health - residential with plant uptake (1%SOM)

Data set: Topsoil

Client: Firethorn Developments

Site: NW Bicester

Job no.: C-13603

Lab. report no(s).: 20-43466-1, 20-29332-2, 20-30257-1, 20-31833-1

Chemical of Potential	All values in	n ma/ka unles											
Chemical of Potential	~~~~~~~		ss otherwise :	stated			:	Location & Depth	TP39	TP41	TP87	TP71	TP65
Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.2	0.1	0.1	0.2	0.2
Arsenic		35	6.9	23	0	37	18.915582	POTENTIALLY SUITABLE FOR USE	18	22	21	19	20
Beryllium	0.06		0.56		0		1.4143648	POTENTIALLY SUITABLE FOR USE	1.6			1	0.96
Boron	0.06	35 35	0.56	1.8 3.8	0	73 300	1.7544472		1.0	1.8 0.7	0.99 1.5	0.8	
Cadmium	0.2	35	0.2	0.4		14	0.2153771	POTENTIALLY SUITABLE FOR USE POTENTIALLY SUITABLE FOR USE	0.2	0.7	0.2	0.8	1.1 0.2
	0.2	35 35	.,	37	0	890	29.009884		30	32	24	23	
Chromium (III)	1.2		11					POTENTIALLY SUITABLE FOR USE					24
Chromium (VI)	1.2	35	1.2	1.2	0	6.1	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2
Copper		35 35	9.4 8.6	29 79	0	2500	20.297954 30.349009	POTENTIALLY SUITABLE FOR USE	24 17	26 25	17 32	20 30	12 21
Lead	2		. (200		POTENTIALLY SUITABLE FOR USE			L	?	
Mercury, inorganic	0.3	35	0.3	0.3	0	170	0.3	POTENTIALLY SUITABLE FOR USE	0.3	0.3	0.3	0.3	0.3
Nickel Selenium	2	35 35	9.6	32	0	130 360	26.084568	POTENTIALLY SUITABLE FOR USE	27	28	26	25	25
	1	35	1 1	1	0		1	:	1	1	1	<u> 1</u>	<u>; </u>
Vanadium	1	35 35	30 25	86	0	410	69.307194	POTENTIALLY SUITABLE FOR USE	73 75	82 77	58 79	54 87	60
Zinc	2	35	25	97	0	3900	69.927732	POTENTIALLY SUITABLE FOR USE	75	77	79	87	53
Cyanide (free)	1	35	1	1	0	790	1	i	1	1	1	1	1
Phenol (total)	2	35	1 1	1	0	290	1	j	1	1	1	1	1
Acenaphthene	0.05	35	0.05	0.05	0	220	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05 0.05	0.05
Acenaphthylene	0.05	35	0.05	0.05	0	180	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05		0.05
Anthracene	0.05	35	0.05	0.05	0	2400	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Benz(a)anthracene	0.05	35	0.05	0.39	0	4.2	0.0761411	POTENTIALLY SUITABLE FOR USE	0.05 0.05 0.05	0.05 0.05	0.05	0.05	0.05 0.05
Benzo(a)pyrene	0.05	35	0.05	0.05	0	1.5	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Benzo(b)fluoranthene	0.05	35	0.05	0.18	0	7.6	0.0599951	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Benzo(ghi)perylene	0.05	35 35	0.05	0.05	0	64	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Benzo(k)fluoranthene	0.05	35	0.05	0.05 0.05	0	12	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Chrysene	0.05	35	0.05	0.19	0	7.7	0.060764	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Dibenz(a,h)anthracene	0.05	35	0.05	0.05	0	1.1	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Fluoranthene	0.05	35	0.05	0.43	0	290	0.0792166	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Fluorene	0.05	35 35	0.05	0.05	0	170	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Indeno(1,2,3,cd)pyrene	0.05	35	0.05	0.05	0	4.3	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Naphthalene	0.05	35	0.05	0.05	0	2.2	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Phenanthrene	0.05	35	0.05	0.41	0	97	0.0776789	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05
Pyrene	0.05	35	0.05	0.05	0	620	0.05	POTENTIALLY SUITABLE FOR USE	0.05 0.05	0.05 0.05	0.05	0.05	0.05
Asbestos identified	Y/N						•	:	N	N	N	N	N
FOC (dimensionless)	0.033771	(mean)	-{		-:				0.022	0.029	0.042	0.046	0.031
SOM (calculated)		(mean)	·;{					·	3.79%	5.00%	7.24%	7.93%	5.34%
pH (su)	7.9	(mean)	.{}		+			·	7.8	7.7	8	7.8	8.1

Risk parameter: Human health - residential with plant uptake (1%SOM)

Data set: Topsoil

Client: Firethorn Developments

Site: NW Bicester

Job no.: C-13603

Lab. report no(s).: 20-43466-1, 20-29332-2, 20-30257-1, 20-31833-1

Assessment of Chemicals of Potential Concern to Human Health

								Soil Type	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	NAT	
	All values in	n mg/kg unle:	ss otherwise s	stated				Location & Depth	TP60	TP63	TP82	TP38	TP56	TP44	TP25	TP32	TP33	TP35	TP17	TP11	
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.5	0.3	0.7	0.5	0.4	0.6	0.3	0.3	0.3	0.3	0.3	0.3	
Arsenic	1	12	4.7	26	0	37	19.466837	POTENTIALLY SUITABLE FOR USE	9.1	19	16	11	4.7	15	20	20	26	24	16	15	;
Beryllium	0.06	12	0.44	1.8	0	73	1.4027269	POTENTIALLY SUITABLE FOR USE	0.44	0.85	0.69	0.88	0.46	1.4	1.4	1.5	1.5	1.8	1.4	1.6	:
Boron	0.2	12	0.3	1.8	0	300	1.2771508	POTENTIALLY SUITABLE FOR USE	1	1.5	0.3	0.5	0.6	0.6	1.8	0.7	0.8	1.5	1.3	1.6	;
Cadmium	0.2	12	0.2	0.2	0	14	0.2	POTENTIALLY SUITABLE FOR USE	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	;
Chromium (III)	1	12	6.1	34	0	890	27.187812	POTENTIALLY SUITABLE FOR USE	13	21	18	14	6.1	26	27	26	25	33	30	34	; ;
Chromium (VI)	1.2	12	1.2	1.2	0	6.1	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	i
Copper	1	12	7.1	25	0	2500	17.839409	POTENTIALLY SUITABLE FOR USE	7.1	13	9.3	13	7.6	11	19	20	20	25	16	18	:
Copper Lead	2	12	3	30	0	200	23.03653	POTENTIALLY SUITABLE FOR USE	12	24	11	7.5	3	13	23	25	20	30	24	29	:
Mercury, inorganic	0.3	12	0.3	0.3	0	170	0.3	POTENTIALLY SUITABLE FOR USE	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	; ;
Nickel	2	12	6.2	30	0	130	24.815462	POTENTIALLY SUITABLE FOR USE	11	22	19	14	6.2	24	25	27	26	30	24	25	,
Selenium	1	12	1	1	0	360	1	:	1	1	1	1	1	1	1	1	1	1	1	1	,
Vanadium	1	12	27	87	0	410	68.747538	POTENTIALLY SUITABLE FOR USE	40	55	39	48	27	57	70	73	72	87	74	71	 !
Zinc	2	12	16	78	Ô	3900	60.471765	POTENTIALLY SUITABLE FOR USE	31	52	39	29	16	71	59	73 58	58	78	52	67	
Cyanide (free)	···{······	12	1 1	1	0	790	1		1	1	1	1	1 1	1	ĩ	1	ĩ	1	7	1	;
Phenol (total)	1	12	1	1	0	290	1	<u>-</u> †	1	1	1	1	1	1	1	} <u>i</u>	1	1	1	1	,
Acenaphthene	0.05	12	0.05	0.05	0	220	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	 !
Acenaphthylene	0.05	12	0.05	0.05	0	180	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	· · · · · · · · · · · · · · · · · · ·
Anthracene	0.05	12	0.05	0.05	0	2400	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	,
Benz(a)anthracene	0.05	12	0.05	0.05	0	4.2	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	; ;
Benzo(a)pyrene	0.05	12	0.05	0.05	0	1.5	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	:
Benzo(b)fluoranthene	0.05	12	0.05	0.05	0	7.6	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	
Benzo(ghi)perylene	0.05	12	0.05	0.05	0	64	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	
Benzo(k)fluoranthene	0.05	12	0.05	0.05	0	12	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	;
Chrysene	0.05	12	0.05	0.05	0	7.7	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	,
Dibenz(a,h)anthracene	0.05	12	0.05	0.05	0	1.1	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	
Fluoranthene	0.05	12	0.05	0.05	0	290	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	,
Fluorene		12	0.05	0.05	0	170	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	;
ndeno(1,2,3,cd)pyrene		12	0.05	0.05	Ö	4.3	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	;
Naphthalene	0.05	12	0.05	0.05	Ô	2.2	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05		0.05	0.05	0.05	 (
Phenanthrene	0.05	12	0.05	0.05	0	97	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	{···-··
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.05	12	0.05	0.05	· · · · · · · · · · · · · · · · · · ·	620	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	,
Pyrene Asbestos identified	7/N			0.00		020	0.00	. O.E.HINCET GOTTABLE FOR USE	N.00	N.U.S	0.00 N	N.00	N.U.	N.00	N.UU	N.UU	0.00 N	N.00	N.00	N.UU	;
FOC (dimensionless)		(mean)	-}}				÷	├ <del> </del>	0.019	0.028	0.0086	0.013	0.0074	0.011	0.029	0.023	0.027	0.037	0.017	0.03	;
SOM (calculated)	0.020833	(mean)	.}{				<b>!</b>	·	3.28%	4.83%		2.24%	1.28%	1.90%	5.00%	3.97%	4.65%	6.38%	2.93%	5.17%	,
oH (su)	3.59% 8.0	(mean)	-}				įi	·	8.1	8.2	1.48% 8.6	8.2	8.1	1.5076	7.00%	7.9	7.8	7.8	8.1	7.8	¿
// ( ( ou)	0.0	(mean)						ii.	0.1	0.2	0.0	0.2	0.1	0.1	·	۳. ت	1.0	1.0	0.1	1.0	

Risk parameter: Human health - residential with plant uptake (1%SOM)

Data set: Natural soils

Client: Firethorn Developments

Site: NW Bicester Job no.: C-13603

Lab. report no(s).: 20-43466-1, 20-29332-2, 20-30257-1, 20-31833-1

Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground NAT denotes natural ground



	All values in	n mg/kg unles	s otherwise	stated	Locat	Soil Type ion & Depth	,	MG TP88	MG TP88	MG TP54						:	
Chemical of Potential Concern	Lab. RL	Samples	Min. Value	Value	No. Samples > or = GAC	GAC	0.4	0.4	0.5	0.2							
Arsenic	1	4	8.2	20	0	250	20	8.2	18	17		 ; :	}	}			
Boron	0.2	4	0.8	2.7	0	3	2.7	1	0.9	0.8	:		}	{	1		1
Chromium (III)	1	4	8.1	25	0	400	25	8.1	21	20	:		{	}			
Chromium (VI)	1.2	4	1.2	1.2	0	25	1.2	1.2	1.2	1.2				}	]	:	
Copper	1	4	9.2	60	0	135	60	9.2	24	22	:		{	}	:	:	:
Nickel	2	4	11	25	0	75	25	11	24	20	į	}	}	}			[
Zinc	2	4	30	130	0	300	130	30	97	77	:		}	{		·	
	Mean	j	}	}			;				:	i	Į.	}	;	:	j
pH (su)	8.2	· · · · · · · · · · · · · · · · · · ·					8.2	8.4	8.2	7.9			}				

Risk parameter: Plant life pH 7

Data set: Made Ground

Client: Firethrorn Developments

Site: NW Bicester Job no.: C-13603

Lab. report no(s).: 20-43466-1, 20-31833-1, 20-30257-1

Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground NAT denotes natural ground



							i	Soil Type	TS														
	All values in	n mg/kg unles	s otherwise	stated				Location & Depth	TP86	TP83	TP77	TP79	TP72	TP74	TP80	TP21	TP06	TP16	TP22	TP23	TP01	TP12	TP13
Chemical of Potential Concern	}	Samples	}	value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.1	0.1	0.1	0.1	0.3	0.1	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.2
Arsenic	1	35	6.9	23	0		18.91558	POTENTIALLY SUITABLE FOR USE	15	17	15	19	11	21	21	16	18	13	16	15	16	13	18
Boron	0.2	35	0.2	3.8	3	3	1.754447	POTENTIALLY SUITABLE FOR USE	3.8	2.3	2.3	2.8	1	2.6	3.8	1.2	1.2	1	0.9	2.2	1.3	1	0.6
Chromium (III)	1	35	11	37	0	400	29.00988	POTENTIALLY SUITABLE FOR USE	26	25	19	26	13	24	30	33	37	29	37	29	31	34	37
Chromium (VI)	1.2	35	1.2	1.2	0	25	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	1	35	9.4	29	0	135	20.29795	POTENTIALLY SUITABLE FOR USE	19	19	15	22	10	15	23	18	19	17	20	17	19	18	19
Nickel	2	35	9.6	32	0	75	26.08457	POTENTIALLY SUITABLE FOR USE	22	23	18	28	14	26	30	29	28	23	32	24	27	27	31
Zinc	2	35	25	97	0	300	69.92773	POTENTIALLY SUITABLE FOR USE	88	78	62	97	38	62	96	67	69	53	74	58	61	68	68
	Mean			}																			}
pH (su)	7.9			}					8.2	8.4	8.1	7.5	7.8	7.9	7.4	8	8.1	8.1	7.8	7.9	7.6	7.9	7.9

Risk parameter: Plant life pH 7

Data set: Topsoil

Client: Firethorn Developments

Site: NW Bicester Job no.: C-13603

Lab. report no(s).: 20-43466-1, 20-29332-2, 20-30257-1, 20-31833-1

Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are

considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground

NAT denotes natural ground

TS denotes Topsoil



								Soil Type	TS	TS	TS													
All values in mg/kg unless otherwise stated						Location & Deptl	TP37	TP45	TP46	TP49	TP48	TP57	TP50	TP43	TP53	TP18	TP24	TP27	TP30	TP31	TP34	TP39		
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.2
Arsenic	1	35	6.9	23	0	250	18.91558	POTENTIALLY SUITABLE FOR USE	23	19	23	18	18	19	19	6.9	19	22	20	19	21	19	18	18
Boron	0.2	35	0.2	3.8	3	3	1.754447	POTENTIALLY SUITABLE FOR USE	3.3	0.6	0.3	0.3	2.2	2.3	0.6	0.2	2	2.1	1.2	0.8	1	1.2	0.5	1
Chromium (III)	1	35	11	37	0	400	29.00988	POTENTIALLY SUITABLE FOR USE	31	29	31	23	21	25	28	11	24	30	33	24	34	24	24	30
Chromium (VI)	1.2	35	1.2	1.2	0	25	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	1	35	9.4	29	0	135	20.29795	POTENTIALLY SUITABLE FOR USE	25	21	29	21	20	21	22	9.4	18	19	16	19	21	21	19	24
Nickel	2	35	9.6	32	0	75	26.08457	POTENTIALLY SUITABLE FOR USE	26	25	27	21	19	22	24	9.6	23	27	31	25	29	23	22	27
Zinc	2	35	25	97	0	300	69.92773	POTENTIALLY SUITABLE FOR USE	69	56	77	56	52	61	64	25	66	61	51	57	80	60	53	75
	Mean		{	}																				
pH (su)	7.9	:	{	}					7.8	8.1	9	8.1	8	7.7	7.6	7.8	7.7	7.9	7.9	7.8	7.6	7.7	7.9	7.8

Risk parameter: Plant life pH 7
Data set: Topsoil

Client: Firethorn Developments

Site: NW Bicester Job no.: C-13603

Lab. report no(s).: 20-43466-1, 20-29332-2, 20-30257-1, 20-31833-1



								Soil Type	TS	TS	TS	TS
	All values in	n mg/kg unles	s otherwise :	Location & Deptl	TP41	TP87	TP71	TP65				
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.1	0.1	0.2	0.2
Arsenic	1	35	6.9	23	0	250	18.91558	POTENTIALLY SUITABLE FOR USE	22	21	19	20
Boron	0.2	35	0.2	3.8	3	3	1.754447	POTENTIALLY SUITABLE FOR USE	0.7	1.5	0.8	1.1
Chromium (III)	1	35	11	37	0	400	29.00988	POTENTIALLY SUITABLE FOR USE	32	24	23	24
Chromium (VI)	1.2	35	1.2	1.2	0	25	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2
Copper	1	35	9.4	29	0	135	20.29795	POTENTIALLY SUITABLE FOR USE	26	17	20	12
Nickel	2	35	9.6	32	0	75	26.08457	POTENTIALLY SUITABLE FOR USE	28	26	25	25
Zinc	2	35	25	97	0	300	69.92773	POTENTIALLY SUITABLE FOR USE	77	79	87	53
	Mean	i		~~~~~			:			i		:
pH (su)	7.9	;					:	,	7.7	8	7.8	8.1

Risk parameter: Plant life pH 7
Data set: Topsoil

Client: Firethorn Developments

Site: NW Bicester Job no.: C-13603

Lab. report no(s).: 20-43466-1, 20-29332-2, 20-30257-1, 20-31833-1



							1	Soil Type	NAT	1											
All values in mg/kg unless otherwise stated								Location & Depth	TP60	TP63	TP82	TP38	TP56	TP44	TP25	TP32	TP33	TP35	TP17	TP11	
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.5	0.3	0.7	0.5	0.4	0.6	0.3	0.3	0.3	0.3	0.3	0.3	
Arsenic	1	12	4.7	26	0	250	19.46684	POTENTIALLY SUITABLE FOR USE	9.1	19	16	11	4.7	15	20	20	26	24	16	15	
Boron	0.2	12	0.3	1.8	0		1.277151	POTENTIALLY SUITABLE FOR USE	1	1.5	0.3	0.5	0.6	0.6	1.8	0.7	0.8	1.5	1.3	1.6	1
Chromium (III)	1	12	6.1	34	0	400	27.18781	POTENTIALLY SUITABLE FOR USE	13	21	18	14	6.1	26	27	26	25	33	30	34	Ĭ
Chromium (VI)	1.2	12	1.2	1.2	0	25	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	
Copper	1	12	7.1	25	0		17.83941	POTENTIALLY SUITABLE FOR USE	7.1	13	9.3	13	7.6	11	19	20	20	25	16	18	
Nickel	2	12	6.2	30	0	75	24.81546	POTENTIALLY SUITABLE FOR USE	11	22	19	14	6.2	24	25	27	26	30	24	25	1
Zinc	2	12	16	78	0	300	60.47177	POTENTIALLY SUITABLE FOR USE	31	52	39	29	16	71	59	58	58	78	52	67	Ĭ
	Mean								1												
pH (su)	8.0		{		(				8.1	8.2	8.6	8.2	8.1	8.1	7.7	7.9	7.8	7.8	8.1	7.8	

Risk parameter: Plant life pH 7

Data set: Natural soils

Client: Firethorn Developments

Site: NW Bicester Job no.: C-13603

Lab. report no(s).: 20-43466-1, 20-29332-2, 20-30257-1, 20-31833-1

Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are

considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground

NAT denotes natural ground