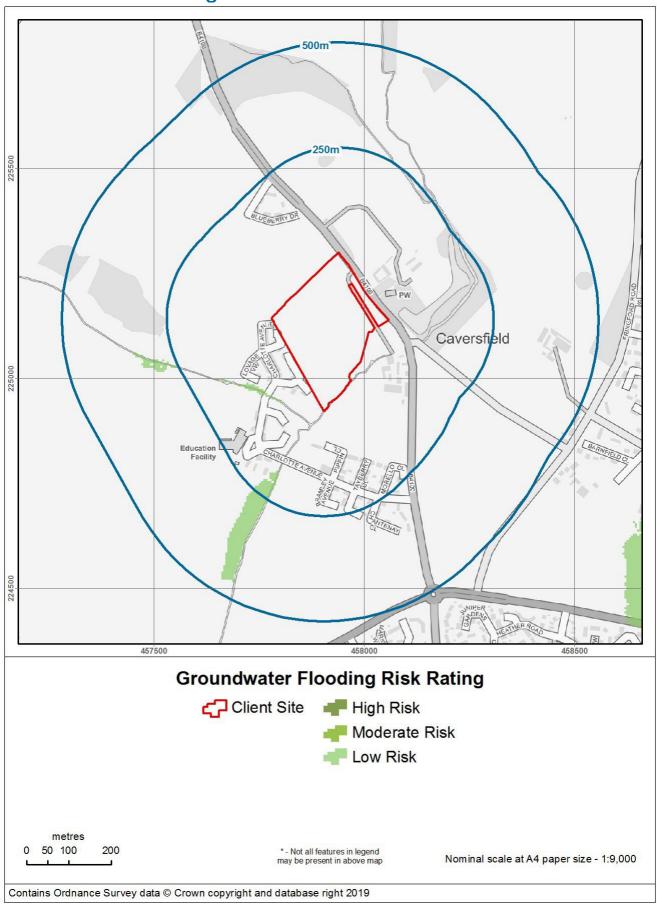

Appendix F

Fluvial Flood Map

Appendix G

Site Solutions Report

Details	Distance	Reply or Direction
What is the risk of groundwater flooding at the Site?	On Site	_



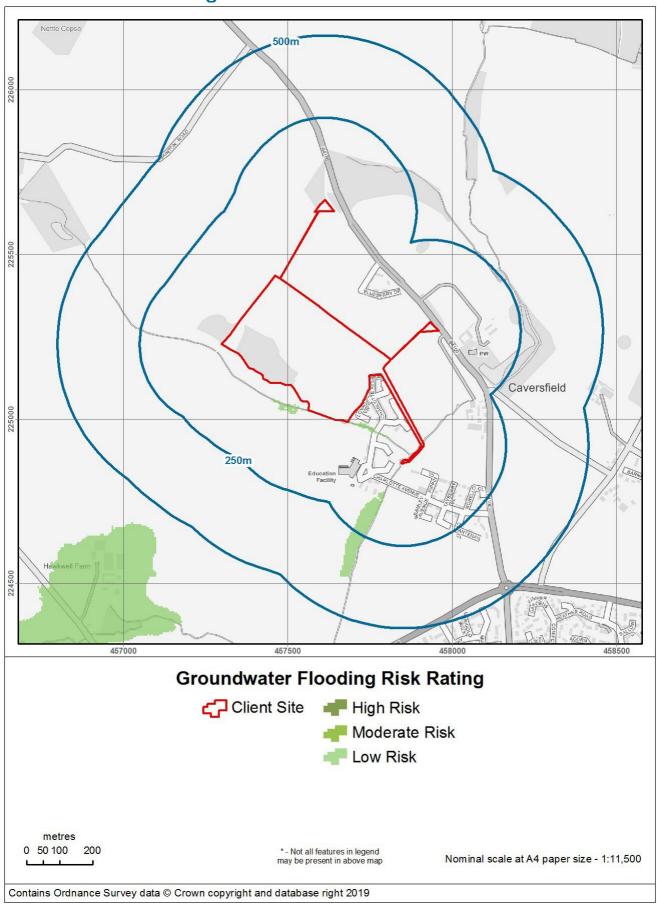
Information from GeoSmart Information Ltd indicates that there is a negligible risk of groundwater flooding in this area and any groundwater flooding incidence will be less frequent than 1 in 100 years return period. No further investigation of risk is deemed necessary unless the proposed site use is unusually sensitive. However, data may be lacking in some areas, so assessment as 'negligible risk' on the basis of the map does not rule out local flooding due to features not currently represented in the national datasets used to generate this version of the map.

GeoSmart Information Ltd Data

GeoSmart Information Ltd provides data to Argyll in relation to groundwater flooding. Through research and development, building on their expertise in addressing groundwater flooding issues for The Environment Agency and other clients in the UK, GeoSmart Information Ltd has developed algorithms and calibrated predictions of the risk of groundwater flooding occurring in England and Wales. This differs from other suppliers of data regarding groundwater flooding which only report on the susceptibility of groundwater flooding. Susceptibility merely has to be identified, whereas risk must be quantified. The resulting map is a 5x5m classification of groundwater flooding risk into four categories (Negligible, Low, Moderate and High). GeoSmart Information Ltd's classifications are based on the level of risk, combining severity and uncertainty that a site will suffer groundwater flooding within a return period of about 100 years.

The map is a general purpose indicative screening tool, and is intended to provide a useful initial view for a wide variety of applications. However, it does not provide an alternative to a site specific assessment, and a detailed risk assessment should be used for any site where the impact of groundwater flooding would have significant adverse consequences.

Details	Distance	Reply or Direction
What is the risk of groundwater flooding at the Site?	On Site	-



Information from GeoSmart Information Ltd indicates that there is a negligible risk of groundwater flooding in this area and any groundwater flooding incidence will be less frequent than 1 in 100 years return period. No further investigation of risk is deemed necessary unless the proposed site use is unusually sensitive. However, data may be lacking in some areas, so assessment as 'negligible risk' on the basis of the map does not rule out local flooding due to features not currently represented in the national datasets used to generate this version of the map.

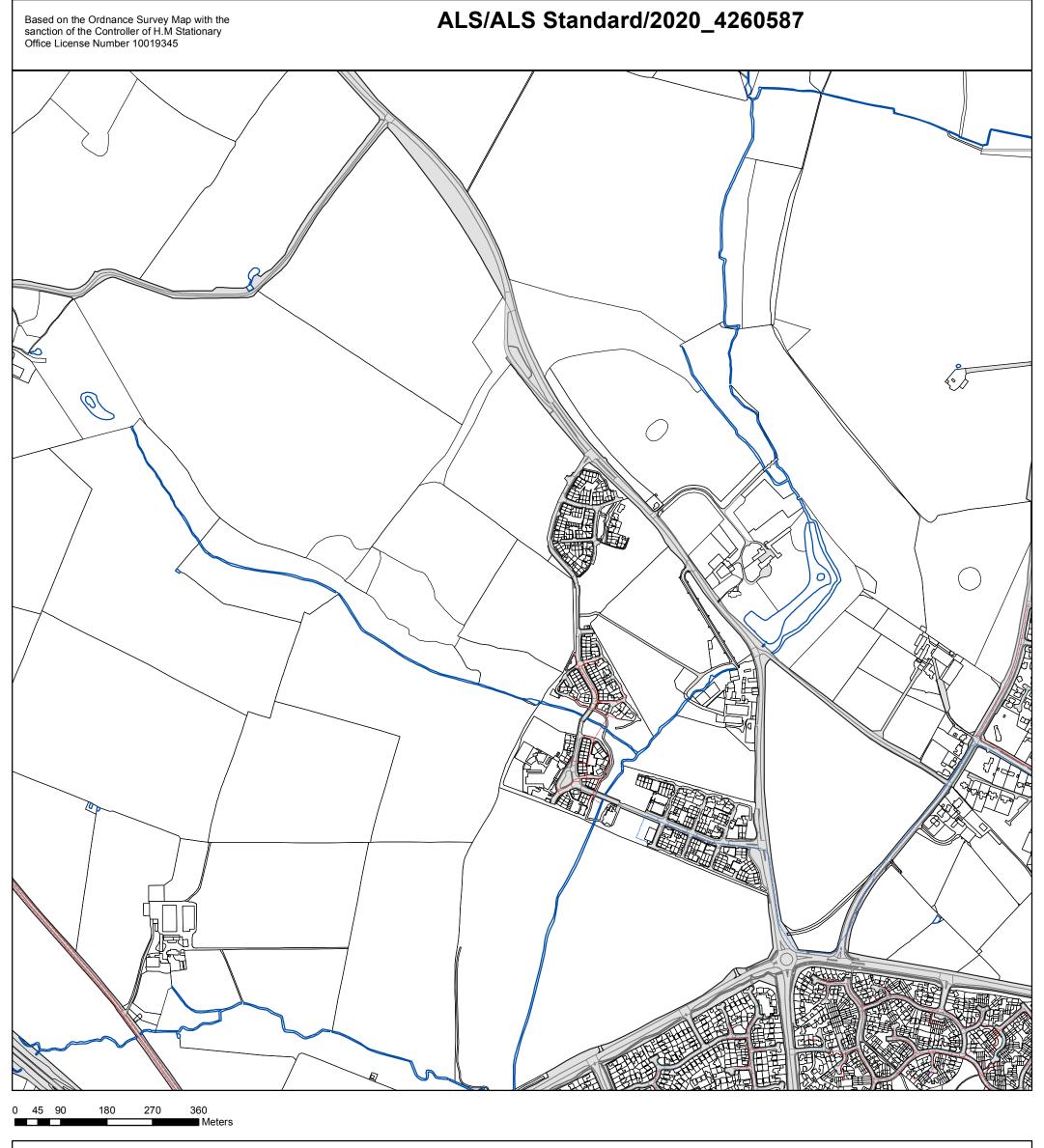
GeoSmart Information Ltd Data

GeoSmart Information Ltd provides data to Argyll in relation to groundwater flooding. Through research and development, building on their expertise in addressing groundwater flooding issues for The Environment Agency and other clients in the UK, GeoSmart Information Ltd has developed algorithms and calibrated predictions of the risk of groundwater flooding occurring in England and Wales. This differs from other suppliers of data regarding groundwater flooding which only report on the susceptibility of groundwater flooding. Susceptibility merely has to be identified, whereas risk must be quantified. The resulting map is a 5x5m classification of groundwater flooding risk into four categories (Negligible, Low, Moderate and High). GeoSmart Information Ltd's classifications are based on the level of risk, combining severity and uncertainty that a site will suffer groundwater flooding within a return period of about 100 years.

The map is a general purpose indicative screening tool, and is intended to provide a useful initial view for a wide variety of applications. However, it does not provide an alternative to a site specific assessment, and a detailed risk assessment should be used for any site where the impact of groundwater flooding would have significant adverse consequences.

Details	Distance	Reply or Direction
What is the risk of groundwater flooding at the Site?	On Site	low

Information from GeoSmart Information Ltd indicates that there is a low risk of groundwater flooding in this area with a return period of 1 in 100 years. There will be a remote possibility that incidence of groundwater flooding could lead to damage to property or harm to other sensitive receptors at, or near, this location. For sensitive land uses further consideration of site topography, drainage, and historical information on flooding in the local area should be undertaken by a suitably qualified professional. Should there be any flooding it is likely to be limited to seepages and waterlogged ground, damage to basements and subsurface infrastructure, and should pose no significant risk to life. Surface water flooding, however, may be exacerbated when groundwater levels are high.

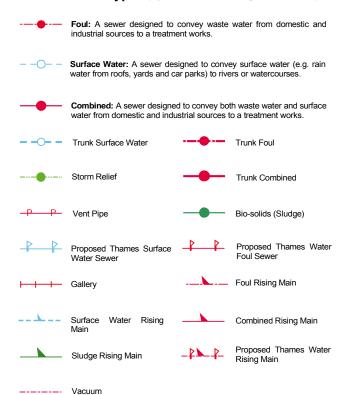

GeoSmart Information Ltd Data

GeoSmart Information Ltd provides data to Argyll in relation to groundwater flooding. Through research and development, building on their expertise in addressing groundwater flooding issues for The Environment Agency and other clients in the UK, GeoSmart Information Ltd has developed algorithms and calibrated predictions of the risk of groundwater flooding occurring in England and Wales. This differs from other suppliers of data regarding groundwater flooding which only report on the susceptibility of groundwater flooding. Susceptibility merely has to be identified, whereas risk must be quantified. The resulting map is a 5x5m classification of groundwater flooding risk into four categories (Negligible, Low, Moderate and High). GeoSmart Information Ltd's classifications are based on the level of risk, combining severity and uncertainty that a site will suffer groundwater flooding within a return period of about 100 years.

The map is a general purpose indicative screening tool, and is intended to provide a useful initial view for a wide variety of applications. However, it does not provide an alternative to a site specific assessment, and a detailed risk assessment should be used for any site where the impact of groundwater flooding would have significant adverse consequences.

Appendix H

Thames Water Asset Maps


The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

Scale:	1:7158
Width:	2000m
Printed By:	G1KANAGA
Print Date:	23/09/2020
Map Centre:	457647,225228
Grid Reference:	SP5725SE

Con	nme	nte:	

Public Sewer Types (Operated & Maintained by Thames Water)

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Air Valve

Dam Chase

Fitting

Meter

♦ Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Control Valve

Drop Pipe

Ancillary

✓ Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Outfall

Undefined End

✓ Inle

Notes:

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Other Symbols

Symbols used on maps which do not fall under other general categories

/ A Public/Private Pumping Station

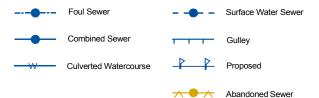
* Change of characteristic indicator (C.O.C.I.)

Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement


Operational Site

:::::: Chamber

Tunnel

Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Appendix I

Surface Water Drainage Calculations

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Nick Bosanko
Site name:	NW Bicester
Site location:	Bicester

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be

the basis for setting consents for the drainage of surface water runoff from sites.

estimation for sites

Site Details

Latitude: 51.92217° N

Longitude: 1.16466° W

Reference: 1674798360

Date: Feb 02 2021 14:37

Runoff estimation approach

IH124

Site characteristics

Notes

Total site area (ha):

Edited

2

N/A

0.3

(1) Is $Q_{BAR} < 2.0 \text{ I/s/ha}$?

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR

Default

1

N/A

0.1

Calculate from SOIL type

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

SOIL type:

HOST class:

SPR/SPRHOST:

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

Hydrological characteristics

SAAR (mm):

Hydrological region:

Growth curve factor 1 year:

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

Default	Edited
635	635
6	6
0.85	0.85
2.3	2.3
3.19	3.19
3.74	3.74

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

Q_{BAR} (I/s):

1 in 1 year (I/s):

1 in 30 years (I/s):

1 in 100 year (I/s):

1 in 200 years (I/s):

Default	Edited
0.15	1.63
0.13	1.38
0.34	3.74
0.48	5.19
0.56	6.08

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Vectos (South) Limited				
Unit 704	NWB			
The Paintworks	C1			
Bristol BS4 3EH		Micro		
Date 01/03/2021	Designed by NB	Drainage		
File Catchment1_Attenuation	Checked by	Drairiage		
XP Solutions	Source Control 2019.1			

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)		Status
15	min	Summer	8.995	0.495	6.3	583.4	O K
30	min	Summer	9.128	0.628	6.3	758.8	O K
60	min	Summer	9.258	0.758	6.3	936.9	O K
120	min	Summer	9.380	0.880	6.3	1112.6	O K
180	min	Summer	9.448	0.948	6.3	1213.3	O K
240	min	Summer	9.491	0.991	6.3	1277.9	O K
360	min	Summer	9.538	1.038	6.3	1350.1	O K
480	min	Summer	9.562	1.062	6.3	1387.1	O K
600	min	Summer	9.574	1.074	6.3	1404.4	O K
720	min	Summer	9.577	1.077	6.3	1409.9	O K
960	min	Summer	9.570	1.070	6.3	1398.4	O K
1440	min	Summer	9.535	1.035	6.3	1344.0	O K
2160	min	Summer	9.472	0.972	6.3	1248.2	O K
2880	min	Summer	9.422	0.922	6.3	1174.4	O K
4320	min	Summer	9.349	0.849	6.3	1067.3	O K
5760	min	Summer	9.290	0.790	6.3	982.7	O K
7200	min	Summer	9.234	0.734	6.3	903.2	O K
8640	min	Summer	9.183	0.683	6.3	832.6	O K
10080	min	Summer	9.139	0.639	6.3	773.0	O K
15	min	Winter	9.049	0.549	6.3	654.2	O K
30	min	Winter	9.196	0.696	6.3	851.3	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	152.077	0.0	500.6	27
30	min	Summer	99.113	0.0	528.1	41
60	min	Summer	61.510	0.0	906.9	72
120	min	Summer	36.942	0.0	994.8	130
180	min	Summer	27.163	0.0	985.2	190
240	min	Summer	21.700	0.0	974.6	250
360	min	Summer	15.627	0.0	959.7	368
480	min	Summer	12.308	0.0	949.2	488
600	min	Summer	10.189	0.0	940.5	606
720	min	Summer	8.711	0.0	932.6	726
960	min	Summer	6.770	0.0	917.6	964
1440	min	Summer	4.735	0.0	889.8	1442
2160	min	Summer	3.315	0.0	1793.7	1856
2880	min	Summer	2.584	0.0	1799.3	2224
4320	min	Summer	1.843	0.0	1645.4	3024
5760	min	Summer	1.464	0.0	2174.5	3864
7200	min	Summer	1.234	0.0	2289.7	4680
8640	min	Summer	1.079	0.0	2400.6	5440
10080	min	Summer	0.967	0.0	2505.9	6160
15	min	Winter	152.077	0.0	524.8	27
30	min	Winter	99.113	0.0	520.5	41

Vectos (South) Limited				
Unit 704	NWB			
The Paintworks	c1			
Bristol BS4 3EH		Mirro		
Date 01/03/2021	Designed by NB	Drainage		
File Catchment1_Attenuation	Checked by	Dialilade		
XP Solutions	Source Control 2019.1			

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	9.338	0.838	6.3	1051.5	O K
120	min	Winter	9.472	0.972	6.3	1249.4	O K
180	min	Winter	9.547	1.047	6.3	1363.9	O K
240	min	Winter	9.595	1.095	6.3	1438.1	O K
360	min	Winter	9.649	1.149	6.3	1522.6	O K
480	min	Winter	9.677	1.177	6.3	1567.7	O K
600	min	Winter	9.691	1.191	6.3	1590.7	O K
720	min	Winter	9.697	1.197	6.3	1600.4	O K
960	min	Winter	9.693	1.193	6.3	1594.4	O K
1440	min	Winter	9.664	1.164	6.3	1547.2	O K
2160	min	Winter	9.602	1.102	6.3	1448.3	O K
2880	min	Winter	9.541	1.041	6.3	1353.3	O K
4320	min	Winter	9.451	0.951	6.3	1216.8	O K
5760	min	Winter	9.370	0.870	6.3	1098.3	O K
7200	min	Winter	9.294	0.794	6.3	988.8	O K
8640	min	Winter	9.209	0.709	6.3	869.5	O K
10080	min	Winter	9.133	0.633	6.3	765.3	O K

	Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60			61 510	0 0	001 1	7.0
		Winter		0.0	981.1	70
120	min	Winter	36.942	0.0	988.1	128
180	min	Winter	27.163	0.0	974.7	188
240	min	Winter	21.700	0.0	967.1	246
360	min	Winter	15.627	0.0	959.5	362
480	min	Winter	12.308	0.0	955.7	480
600	min	Winter	10.189	0.0	953.2	596
720	min	Winter	8.711	0.0	951.3	714
960	min	Winter	6.770	0.0	947.7	944
1440	min	Winter	4.735	0.0	933.7	1396
2160	min	Winter	3.315	0.0	1898.9	2036
2880	min	Winter	2.584	0.0	1839.5	2316
4320	min	Winter	1.843	0.0	1694.8	3244
5760	min	Winter	1.464	0.0	2435.2	4160
7200	min	Winter	1.234	0.0	2563.6	5112
8640	min	Winter	1.079	0.0	2687.7	5888
10080	min	Winter	0.967	0.0	2807.3	6656

Vectos (South) Limited	Page 3	
Unit 704	NWB	
The Paintworks	C1	
Bristol BS4 3EH		Micro
Date 01/03/2021	Designed by NB	Drainage
File Catchment1_Attenuation	Checked by	Dialilade
XP Solutions	Source Control 2019.1	

Rainfall Details

Rainfall Model						FEH
Return Period (years)						100
FEH Rainfall Version						2013
Site Location	GB	457626	225232	SP	57626	25232
Data Type						Point
Summer Storms						Yes
Winter Storms						Yes
Cv (Summer)						0.750
Cv (Winter)						0.840
Shortest Storm (mins)						15
Longest Storm (mins)						10080
Climate Change %						+40

<u>Time Area Diagram</u>

Total Area (ha) 2.070

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.690	4	8	0.690	8	12	0.690

Vectos (South) Limited		Page 4
Unit 704	NWB	
The Paintworks	C1	
Bristol BS4 3EH		Micro
Date 01/03/2021	Designed by NB	Drainage
File Catchment1_Attenuation	Checked by	Dialilade
XP Solutions	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 10.000

Tank or Pond Structure

Invert Level (m) 8.500

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 1075.0 1.500 1771.8

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0115-6300-1200-6300 Design Head (m) 1.200 Design Flow (1/s) 6.3 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Diameter (mm) 115 Invert Level (m) 8.500 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.200 6.3 Flush-Flo $^{\text{m}}$ 0.355 6.3 Kick-Flo $^{\text{m}}$ 0.754 5.1 Mean Flow over Head Range - 5.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	4.0	1.200	6.3	3.000	9.7	7.000	14.5
0.200	6.0	1.400	6.8	3.500	10.4	7.500	15.0
0.300	6.3	1.600	7.2	4.000	11.1	8.000	15.5
0.400	6.3	1.800	7.6	4.500	11.7	8.500	15.9
0.500	6.2	2.000	8.0	5.000	12.3	9.000	16.4
0.600	6.0	2.200	8.4	5.500	12.9	9.500	16.8
0.800	5.2	2.400	8.7	6.000	13.5		
1.000	5.8	2.600	9.1	6.500	14.0		

Vectos (South) Limited		Page 1
Unit 704	NWB	
The Paintworks	C2	
Bristol BS4 3EH		Micro
Date 01/03/2021	Designed by NB	Drainage
File Catchment2_Attenuation	Checked by	Drairiage
XP Solutions	Source Control 2019.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	8.977	0.477	13.3	1243.7	O K
30	min	Summer	9.110	0.610	13.3	1617.5	O K
60	min	Summer	9.241	0.741	13.3	1997.1	O K
120	min	Summer	9.368	0.868	13.3	2374.5	O K
180	min	Summer	9.439	0.939	13.3	2591.5	O K
240	min	Summer	9.484	0.984	13.3	2731.3	O K
360	min	Summer	9.535	1.035	13.3	2889.1	O K
480	min	Summer	9.561	1.061	13.3	2971.6	O K
600	min	Summer	9.574	1.074	13.3	3012.2	O K
720	min	Summer	9.579	1.079	13.3	3027.4	O K
960	min	Summer	9.573	1.073	13.3	3009.6	O K
1440	min	Summer	9.540	1.040	13.3	2905.9	O K
2160	min	Summer	9.479	0.979	13.3	2716.1	O K
2880	min	Summer	9.431	0.931	13.3	2568.4	O K
4320	min	Summer	9.359	0.859	13.3	2347.8	O K
5760	min	Summer	9.297	0.797	13.3	2163.7	O K
7200	min	Summer	9.239	0.739	13.3	1992.2	O K
8640	min	Summer	9.191	0.691	13.3	1849.9	O K
10080	min	Summer	9.149	0.649	13.3	1729.4	O K
15	min	Winter	9.031	0.531	13.3	1394.3	O K
30	min	Winter	9.178	0.678	13.3	1814.3	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	152.077	0.0	1018.7	27
30	min	Summer	99.113	0.0	1121.1	41
60	min	Summer	61.510	0.0	1884.4	72
120	min	Summer	36.942	0.0	2116.1	130
180	min	Summer	27.163	0.0	2112.2	190
240	min	Summer	21.700	0.0	2088.9	250
360	min	Summer	15.627	0.0	2053.6	368
480	min	Summer	12.308	0.0	2027.0	488
600	min	Summer	10.189	0.0	2004.3	606
720	min	Summer	8.711	0.0	1983.1	726
960	min	Summer	6.770	0.0	1942.1	964
1440	min	Summer	4.735	0.0	1862.6	1442
2160	min	Summer	3.315	0.0	3758.1	1860
2880	min	Summer	2.584	0.0	3771.6	2224
4320	min	Summer	1.843	0.0	3452.6	3024
5760	min	Summer	1.464	0.0	4617.4	3864
7200	min	Summer	1.234	0.0	4860.1	4616
8640	min	Summer	1.079	0.0	5092.1	5376
10080	min	Summer	0.967	0.0	5306.6	6160
15	min	Winter	152.077	0.0	1091.0	27
30	min	Winter	99.113	0.0	1115.9	41

Vectos (South) Limited		Page 2
Unit 704	NWB	
The Paintworks	C2	
Bristol BS4 3EH		Mirro
Date 01/03/2021	Designed by NB	Drainage
File Catchment2_Attenuation	Checked by	Dialilade
XP Solutions	Source Control 2019.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	9.323	0.823	13.3	2241.6	O K
120	min	Winter	9.463	0.963	13.3	2665.6	O K
180	min	Winter	9.542	1.042	13.3	2911.3	O K
240	min	Winter	9.592	1.092	13.3	3071.1	O K
360	min	Winter	9.650	1.150	13.3	3254.5	O K
480	min	Winter	9.680	1.180	13.3	3353.6	O K
600	min	Winter	9.696	1.196	13.4	3405.6	O K
720	min	Winter	9.704	1.204	13.4	3429.1	Flood Risk
960	min	Winter	9.701	1.201	13.4	3422.0	Flood Risk
1440	min	Winter	9.674	1.174	13.3	3332.0	O K
2160	min	Winter	9.612	1.112	13.3	3134.8	O K
2880	min	Winter	9.552	1.052	13.3	2943.0	O K
4320	min	Winter	9.462	0.962	13.3	2663.4	O K
5760	min	Winter	9.381	0.881	13.3	2413.6	O K
7200	min	Winter	9.301	0.801	13.3	2173.6	O K
8640	min	Winter	9.216	0.716	13.3	1923.1	O K
10080	min	Winter	9.144	0.644	13.3	1715.5	O K

	Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60		T-7	C1 E10	0 0	2053.5	70
		Winter		0.0		
120	mın	Winter	36.942	0.0	2121.1	128
180	min	Winter	27.163	0.0	2092.3	188
240	min	Winter	21.700	0.0	2074.1	246
360	min	Winter	15.627	0.0	2053.2	362
480	min	Winter	12.308	0.0	2039.2	480
600	min	Winter	10.189	0.0	2027.0	596
720	min	Winter	8.711	0.0	2015.6	714
960	min	Winter	6.770	0.0	1992.6	944
1440	min	Winter	4.735	0.0	1949.7	1396
2160	min	Winter	3.315	0.0	4009.1	2036
2880	min	Winter	2.584	0.0	3875.5	2316
4320	min	Winter	1.843	0.0	3558.5	3244
5760	min	Winter	1.464	0.0	5170.3	4160
7200	min	Winter	1.234	0.0	5440.5	5112
8640	min	Winter	1.079	0.0	5700.3	5880
10080	min	Winter	0.967	0.0	5945.4	6656

Vectos (South) Limited		Page 3
Unit 704	NWB	
The Paintworks	C2	
Bristol BS4 3EH		Micro
Date 01/03/2021	Designed by NB	Drainage
File Catchment2_Attenuation	Checked by	Dialilade
XP Solutions	Source Control 2019.1	

Rainfall Details

Rainfall Model						FEH
Return Period (years)						100
FEH Rainfall Version						2013
Site Location	GB	457626	225232	SP	57626	25232
Data Type						Point
Summer Storms						Yes
Winter Storms						Yes
Cv (Summer)						0.750
Cv (Winter)						0.840
Shortest Storm (mins)						15
Longest Storm (mins)						10080
Climate Change %						+40

<u>Time Area Diagram</u>

Total Area (ha) 4.410

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	1.470	4	8	1.470	8	12	1.470

Vectos (South) Limited		Page 4
Unit 704	NWB	
The Paintworks	C2	
Bristol BS4 3EH		Micro
Date 01/03/2021	Designed by NB	Drainage
File Catchment2_Attenuation	Checked by	Dialilade
XP Solutions	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 10.000

Tank or Pond Structure

Invert Level (m) 8.500

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 2460.0 1.500 3469.7

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0163-1340-1200-1340 Design Head (m) 1.200 Design Flow (1/s) 13.4 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Diameter (mm) 163 Invert Level (m) 8.500 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.200 13.4 Flush-Flo™ 0.363 13.3 Kick-Flo® 0.795 11.0 Mean Flow over Head Range 11.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	5.8	1.200	13.4	3.000	20.7	7.000	31.1
0.200	12.6	1.400	14.4	3.500	22.3	7.500	32.1
0.300	13.2	1.600	15.3	4.000	23.7	8.000	33.1
0.400	13.3	1.800	16.2	4.500	25.1	8.500	34.1
0.500	13.1	2.000	17.0	5.000	26.4	9.000	35.1
0.600	12.8	2.200	17.8	5.500	27.7	9.500	36.0
0.800	11.0	2.400	18.6	6.000	28.8		
1.000	12.3	2.600	19.3	6.500	30.0		

Vectos (South) Limited				
Unit 704	NWB			
The Paintworks	C3			
Bristol BS4 3EH		Micro		
Date 01/03/2021	Designed by NB	Drainage		
File Catchment3_Attenuation	Checked by	Dialilade		
XP Solutions	Source Control 2019.1			

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	9.279	0.279	2.7	251.8	O K
30	min	Summer	9.357	0.357	2.7	327.2	O K
60	min	Summer	9.434	0.434	2.7	403.6	O K
120	min	Summer	9.507	0.507	2.7	479.6	O K
180	min	Summer	9.549	0.549	2.7	523.1	O K
240	min	Summer	9.575	0.575	2.7	551.2	O K
360	min	Summer	9.605	0.605	2.7	582.8	O K
480	min	Summer	9.620	0.620	2.7	599.3	O K
600	min	Summer	9.627	0.627	2.7	607.3	O K
720	min	Summer	9.630	0.630	2.7	610.2	O K
960	min	Summer	9.626	0.626	2.7	606.1	O K
1440	min	Summer	9.606	0.606	2.7	584.5	O K
2160	min	Summer	9.570	0.570	2.7	545.5	O K
2880	min	Summer	9.541	0.541	2.7	515.3	O K
4320	min	Summer	9.498	0.498	2.7	470.3	O K
5760	min	Summer	9.462	0.462	2.7	433.0	O K
7200	min	Summer	9.428	0.428	2.7	398.3	O K
8640	min	Summer	9.400	0.400	2.7	369.4	O K
10080	min	Summer	9.375	0.375	2.7	345.0	O K
15	min	Winter	9.311	0.311	2.7	282.2	O K
30	min	Winter	9.397	0.397	2.7	366.8	O K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
				• •	` '	
15	min	Summer	152.077	0.0	207.9	19
30	min	Summer	99.113	0.0	227.5	34
60	min	Summer	61.510	0.0	383.0	64
120	min	Summer	36.942	0.0	429.0	124
180	min	Summer	27.163	0.0	428.2	184
240	min	Summer	21.700	0.0	423.6	244
360	min	Summer	15.627	0.0	416.6	362
480	min	Summer	12.308	0.0	411.4	482
600	min	Summer	10.189	0.0	406.9	602
720	min	Summer	8.711	0.0	402.8	722
960	min	Summer	6.770	0.0	394.7	962
1440	min	Summer	4.735	0.0	379.1	1440
2160	min	Summer	3.315	0.0	762.1	1856
2880	min	Summer	2.584	0.0	765.6	2220
4320	min	Summer	1.843	0.0	702.4	3024
5760	min	Summer	1.464	0.0	932.8	3856
7200	min	Summer	1.234	0.0	981.9	4608
8640	min	Summer	1.079	0.0	1029.0	5368
10080	min	Summer	0.967	0.0	1072.8	6152
15	min	Winter	152.077	0.0	221.8	19
30	min	Winter	99.113	0.0	226.3	34

Vectos (South) Limited				
Unit 704	NWB			
The Paintworks	C3			
Bristol BS4 3EH		Mirro		
Date 01/03/2021	Designed by NB	Drainage		
File Catchment3_Attenuation	Checked by	Dialilade		
XP Solutions	Source Control 2019.1			

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	9.482	0.482	2.7	452.8	O K
120	min	Winter	9.563	0.563	2.7	538.3	O K
180	min	Winter	9.609	0.609	2.7	587.7	O K
240	min	Winter	9.638	0.638	2.7	619.8	O K
360	min	Winter	9.672	0.672	2.7	656.5	O K
480	min	Winter	9.690	0.690	2.7	676.3	O K
600	min	Winter	9.699	0.699	2.7	686.6	O K
720	min	Winter	9.703	0.703	2.7	691.2	Flood Risk
960	min	Winter	9.701	0.701	2.7	689.4	Flood Risk
1440	min	Winter	9.685	0.685	2.7	670.7	O K
2160	min	Winter	9.648	0.648	2.7	630.3	O K
2880	min	Winter	9.612	0.612	2.7	591.1	O K
4320	min	Winter	9.559	0.559	2.7	533.9	O K
5760	min	Winter	9.511	0.511	2.7	483.2	O K
7200	min	Winter	9.464	0.464	2.7	434.6	O K
8640	min	Winter	9.414	0.414	2.7	383.8	O K
10080	min	Winter	9.372	0.372	2.7	341.9	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	61.510	0.0	416.9	64
		Winter	36.942	0.0	429.9	122
		Winter	27.163	0.0	424.2	182
		Winter	21.700	0.0	420.6	240
		Winter	15.627	0.0	416.4	358
		Winter	12.308	0.0	413.7	476
		Winter	10.189	0.0	411.3	594
		Winter	8.711	0.0	409.1	708
		Winter	6.770	0.0	404.7	942
		Winter	4.735	0.0	396.4	1388
		Winter	3.315	0.0	813.4	2032
		Winter	2.584	0.0	787.1	2308
		Winter	1.843	0.0	723.4	3240
		Winter	1.464	0.0	1044.5	4152
		Winter	1.234	0.0	1099.3	5112
8640		Winter	1.079	0.0	1152.0	5872
		Winter	0.967	0.0	1201.9	6656

Vectos (South) Limited			
Unit 704	NWB		
The Paintworks	C3		
Bristol BS4 3EH		Micro	
Date 01/03/2021	Designed by NB	Drainage	
File Catchment3_Attenuation	Checked by	Dialilade	
XP Solutions	Source Control 2019.1		

Rainfall Details

Rainfall Model						FEH
Return Period (years)						100
FEH Rainfall Version						2013
Site Location	GB	457626	225232	SP	57626	25232
Data Type						Point
Summer Storms						Yes
Winter Storms						Yes
Cv (Summer)						0.750
Cv (Winter)						0.840
Shortest Storm (mins)						15
Longest Storm (mins)						10080
Climate Change %						+40

Time Area Diagram

Total Area (ha) 0.890

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.890

Vectos (South) Limited		Page 4
Unit 704	NWB	
The Paintworks	C3	
Bristol BS4 3EH		Micro
Date 01/03/2021	Designed by NB	Drainage
File Catchment3_Attenuation	Checked by	Dialilade
XP Solutions	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 10.000

Tank or Pond Structure

Invert Level (m) 9.000

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 850.0 1.000 1250.2

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0083-2700-0700-2700 Design Head (m) 0.700 Design Flow (1/s) 2.7 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Diameter (mm) 83 Invert Level (m) 9.000 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.700 2.7 Flush-Flo $^{\text{TM}}$ 0.208 2.7 Kick-Flo $^{\text{RO}}$ 0.459 2.2

Mean Flow over Head Range - 2.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	2.4	1.200	3.5	3.000	5.3	7.000	7.9
0.200	2.7	1.400	3.7	3.500	5.7	7.500	8.2
0.300	2.6	1.600	3.9	4.000	6.1	8.000	8.4
0.400	2.5	1.800	4.2	4.500	6.4	8.500	8.7
0.500	2.3	2.000	4.4	5.000	6.7	9.000	8.9
0.600	2.5	2.200	4.6	5.500	7.0	9.500	9.2
0.800	2.9	2.400	4.8	6.000	7.3		
1.000	3.2	2.600	4.9	6.500	7.6		

Vectos (South) Limited		Page 1
Unit 704	NWB	
The Paintworks	C4	
Bristol BS4 3EH		Micro
Date 01/03/2021	Designed by NB	Drainage
File Catchment4_Attenuation	Checked by	Drairiage
XP Solutions	Source Control 2019.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	9.046	0.546	1.7	181.2	O K
30	min	Summer	9.178	0.678	1.7	235.4	O K
60	min	Summer	9.301	0.801	1.7	290.3	O K
120	min	Summer	9.415	0.915	1.7	344.4	O K
180	min	Summer	9.477	0.977	1.7	375.5	O K
240	min	Summer	9.516	1.016	1.8	395.5	O K
360	min	Summer	9.559	1.059	1.8	417.9	O K
480	min	Summer	9.580	1.080	1.8	429.4	O K
600	min	Summer	9.590	1.090	1.8	434.9	O K
720	min	Summer	9.594	1.094	1.8	436.7	O K
960	min	Summer	9.587	1.087	1.8	433.3	O K
1440	min	Summer	9.556	1.056	1.8	416.7	O K
2160	min	Summer	9.500	1.000	1.7	387.0	O K
2880	min	Summer	9.455	0.955	1.7	364.4	O K
4320	min	Summer	9.393	0.893	1.7	333.8	O K
5760	min	Summer	9.348	0.848	1.7	312.0	O K
7200	min	Summer	9.312	0.812	1.7	295.0	O K
8640	min	Summer	9.281	0.781	1.7	280.8	O K
10080	min	Summer	9.254	0.754	1.7	268.5	O K
15	min	Winter	9.101	0.601	1.7	203.1	O K
30	min	Winter	9.243	0.743	1.7	263.9	O K

	Storm Event				Flooded Discharge Volume Volume (m³) (m³)		Time-Peak (mins)
				(1111-)	(1111-)		
15	min	Summer	152.077	0.0	136.6	19	
30	min	Summer	99.113	0.0	127.2	34	
60	min	Summer	61.510	0.0	263.3	64	
120	min	Summer	36.942	0.0	263.6	124	
180	min	Summer	27.163	0.0	264.4	184	
240	min	Summer	21.700	0.0	266.0	244	
360	min	Summer	15.627	0.0	270.2	362	
480	min	Summer	12.308	0.0	274.2	482	
600	min	Summer	10.189	0.0	276.4	602	
720	min	Summer	8.711	0.0	277.4	722	
960	min	Summer	6.770	0.0	277.3	962	
1440	min	Summer	4.735	0.0	273.2	1440	
2160	min	Summer	3.315	0.0	526.8	1860	
2880	min	Summer	2.584	0.0	511.0	2220	
4320	min	Summer	1.843	0.0	473.5	3024	
5760	min	Summer	1.464	0.0	673.8	3856	
7200	min	Summer	1.234	0.0	709.5	4680	
8640	min	Summer	1.079	0.0	743.9	5528	
10080	min	Summer	0.967	0.0	776.6	6352	
15	min	Winter	152.077	0.0	132.5	19	
30	min	Winter	99.113	0.0	125.2	34	

Vectos (South) Limited		Page 2
Unit 704	NWB	
The Paintworks	C4	
Bristol BS4 3EH		Mirro
Date 01/03/2021	Designed by NB	Drainage
File Catchment4_Attenuation	Checked by	niailiade
XP Solutions	Source Control 2019.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	9.376	0.876	1.7	325.6	ОК
120	min	Winter	9.499	0.999	1.7	386.8	O K
180	min	Winter	9.567	1.067	1.8	422.3	O K
240	min	Winter	9.610	1.110	1.8	445.3	O K
360	min	Winter	9.657	1.157	1.9	471.7	O K
480	min	Winter	9.682	1.182	1.9	485.9	O K
600	min	Winter	9.695	1.195	1.9	493.3	O K
720	min	Winter	9.701	1.201	1.9	496.6	Flood Risk
960	min	Winter	9.699	1.199	1.9	495.3	O K
1440	min	Winter	9.675	1.175	1.9	481.8	O K
2160	min	Winter	9.623	1.123	1.8	452.4	O K
2880	min	Winter	9.570	1.070	1.8	423.8	O K
4320	min	Winter	9.496	0.996	1.7	385.0	O K
5760	min	Winter	9.434	0.934	1.7	353.9	O K
7200	min	Winter	9.381	0.881	1.7	327.7	O K
8640	min	Winter	9.333	0.833	1.7	304.8	O K
10080	min	Winter	9.288	0.788	1.7	284.3	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	61.510	0.0	264.2	64
		Winter	36.942	0.0	265.8	122
		Winter	27.163	0.0	270.3	182
240	min	Winter	21.700	0.0	276.1	240
360	min	Winter	15.627	0.0	283.7	358
480	min	Winter	12.308	0.0	287.6	476
600	min	Winter	10.189	0.0	289.5	594
720	min	Winter	8.711	0.0	290.2	708
960	min	Winter	6.770	0.0	289.4	942
1440	min	Winter	4.735	0.0	284.3	1396
2160	min	Winter	3.315	0.0	538.0	2032
2880	min	Winter	2.584	0.0	524.8	2336
4320	min	Winter	1.843	0.0	501.1	3240
5760	min	Winter	1.464	0.0	754.6	4152
7200	min	Winter	1.234	0.0	794.5	5048
8640	min	Winter	1.079	0.0	832.5	5968
10080	min	Winter	0.967	0.0	863.3	6856

Vectos (South) Limited		
Unit 704	NWB	
The Paintworks	C4	
Bristol BS4 3EH		Micro
Date 01/03/2021	Designed by NB	Drainage
File Catchment4_Attenuation	Checked by	Dialilade
XP Solutions	Source Control 2019.1	

Rainfall Details

Rainfall Model						FEH
Return Period (years)						100
FEH Rainfall Version						2013
Site Location	GB	457626	225232	SP	57626	25232
Data Type						Point
Summer Storms						Yes
Winter Storms						Yes
Cv (Summer)						0.750
Cv (Winter)						0.840
Shortest Storm (mins)						15
Longest Storm (mins)						10080
Climate Change %						+40

Time Area Diagram

Total Area (ha) 0.640

Time (mins) Area (ha)

To: (ha)

0 4 0.640

Vectos (South) Limited		Page 4
Unit 704	NWB	
The Paintworks	C4	
Bristol BS4 3EH		Micro
Date 01/03/2021	Designed by NB	Drainage
File Catchment4_Attenuation	Checked by	Dialilade
XP Solutions	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 10.000

Tank or Pond Structure

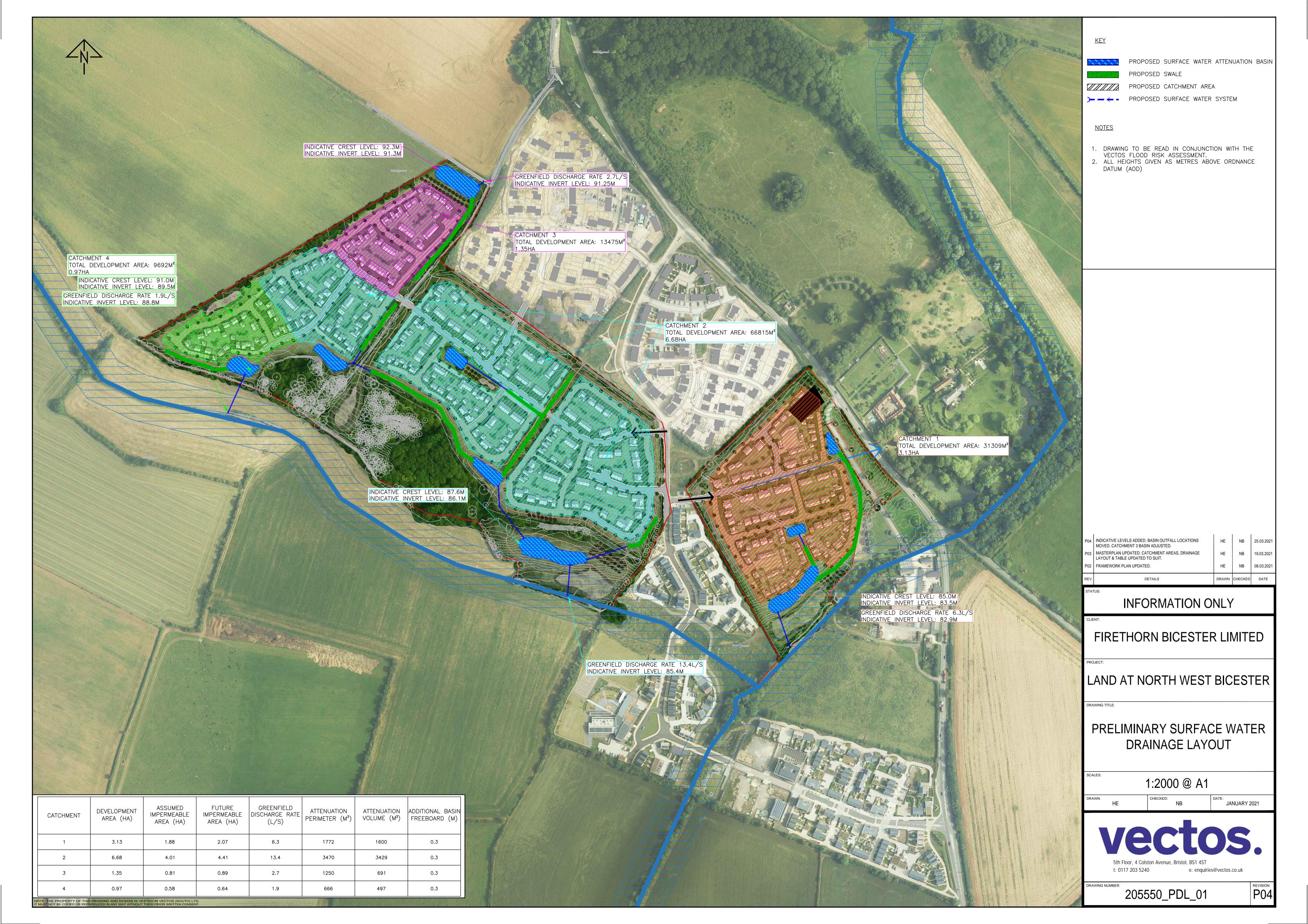
Invert Level (m) 8.500

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 272.0 1.500 665.5

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0063-1900-1200-1900 Design Head (m) 1.200 Design Flow (1/s) 1.9 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Diameter (mm) 63 Invert Level (m) 8.500 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.200 1.9 Flush-Flo™ 0.274 1.7 Kick-Flo® 0.558 1.3 Mean Flow over Head Range 1.5


The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Fl	Low (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.4	1.200	1.9	3.000	2.9	7.000	4.3
0.200	1.6	1.400	2.0	3.500	3.1	7.500	4.4
0.300	1.7	1.600	2.2	4.000	3.3	8.000	4.6
0.400	1.6	1.800	2.3	4.500	3.5	8.500	4.7
0.500	1.5	2.000	2.4	5.000	3.7	9.000	4.8
0.600	1.4	2.200	2.5	5.500	3.8	9.500	5.0
0.800	1.6	2.400	2.6	6.000	4.0		
1.000	1.7	2.600	2.7	6.500	4.1		

	Dev Area (ha)	Impermable Factor	Urban Creep Factor	Current Impermable Area (ha)	Future Impermable Area (ha)	Min Rate (I/s)
Catchment 1	3.13	0.6	1.1	1.88	2.07	6.3
Catchment 2	6.68	0.6	1.1	4.01	4.41	13.4
Catchment 3	1.35	0.6	1.1	0.81	0.89	2.7
Catchment 4	0.97	0.6	1.1	0.58	0.64	1.9

Appendix J

Preliminary Surface Water Drainage Strategy

Appendix K

SuDS Proforma

Oxfordshire County Council LLFA

SuDS Flows and Volumes - LLFA Technical Assessment Pro-forma

This form identifies the information required by Oxfordshire County Council LLFA to enable technical assessment of flows and volumes determined as part of drainage I SuDS calculations.

Note: * means delete as appropriate; Numbers in brackets refer to accompanying notes.

1.1	Planning application reference		
1.2	Site name		
1.3	Total application site area (1	North West Bicester 222372 m2 22.2. ha	
1.4	Is the site located in a CDA or LFRZ	N	
1.5	Is the site located in a SPZ	N	
VOLU	IME AND FLOW DESIGN INPUTS		
2.1 Sit	e area which is positively drained by SuD	S (2121300 .m ²	
2.2 lmp	permeable area drained pre development	$(3 o m^2)$	
2.3 lm	permeable area drained post develor	oment (372800m ²	
2.4 Additional impermeable area (2.3 minus 2.2)72800 m ²			
2.5	Predevelopment use (4	Greenfield	
2.6	Method of discharge (5	waterbody (limited infiltration for smaller events)	
2.7	Infiltration rate (where applicable)	m/hr	

Default values have been used from MicroDrainage

Similar to table 11.4 of SuDS manual and methods

- 2.11 Justification for Cv used used on nearby applications. Swales used to convey so the Cv values allow for infiltration losses.
- 2.12 FEH rainfall data used (Note that FSR is no longer the preferred rainfall calculation method) Y

2.9 Depth to highest known ground water table...0.1 m bgl in isolated part of site

- 2.13 Will storage be subject to surcharge by elevated water levels in watercourse/ sewer N
- 2.14 Invert level at outlet (invert level of final flow control)variable (see drawing)...mAOD
- 2.15 Design level used for surcharge water level at point of discharge(141.....NA mAOD

Influencing factors on infiltration

Coefficient of runoff (Cv) (6

2.8

2.10

SITE DETAILS

SuDS Flows and Volumes - LLFA Technical Assessment Pro-forma

CALCULATION OUTPUTS

Sections 3 and 4 refer to site where storage is provided by attenuation and I or partial infiltration. Where all flows are infiltrated to ground omit Sections 3-5 and complete Section 6.

3.0	Defining rate of runoff from the site
3.2 M	ax. discharge for 1 in 1 year rainfall2
3.2 Ma	x. discharge for Qmed rainfall2
3.3 Ma	x. discharge for 1 in 30 year rainfall2
3.4 Ma	ax. discharge for 1 in 100 year rainfall2
3.5 Ma	x. discharge for 1 in 100 year plus 40%CC2
4.0	Attenuation storage to manage peak runoff rates from the site
4.1	Storage - 1 in 1 yearm ³ m ³ /m ² (of developed impermeable area)
4.2	Storage -1in 30 year (7m3/m2
4.3	$Storage - 1 in 100 \ year \ (^8) \qquad \qquadm3/m2$
4.4 St	corage - 1 in 100 year plus 40%CC (9) 6214 m3m3/m2
5.0	Controlling volume of runoff from the site
5.1 Pre	e development runoff volume(1
5.1 Pre 5.2	e development runoff volume (b_1 112
5.2	Post development runoff volume (unmitigated) ($b_1 \dots \dots m^3$ for the site Refer to FRA
5.2 5.3	Post development runoff volume (unmitigated) (b_1
5.2 5.3 5.4	Post development runoff volume (unmitigated) (b_1
5.25.35.45.5	Post development runoff volume (unmitigated) (b m³ for the site Refer to FRA Volume to be controlled/does not leave site (5.2-5.1) m³ for the site Refer to FRA Volume control provided by Interception losses(11)

Oxfordshire County Council LLFA

SuDS Flows and Volumes - LLFA Technical Assessment Pro-forma

Notes

- 1. All area with the proposed application site boundary to be included.
- 2. The site area which is positively drained includes all green areas which drain to the SuDS system and area of surface SuDS features. It excludes large open green spaces which do not drain to the SuDS system.
- 3. Impermeable area should be measured pre and post development. Impermeable surfaces includes, roofs, pavements, driveways and paths where runoff is conveyed to the drainage system.
- 4. Predevelopment use may impact on the allowable discharge rate. The LLFA will seek for reduction in flow rates to GF status in all instances. The design statement and drawings explain/ demonstrate how flows will be managed from the site.
- 5. Runoff may be discharge via one or a number of means.
- 6. Sewers for Adoption 6th Edition recommends a Cv of 100% when designing drainage for impermeable area (assumes no loss of runoff from impermeable surfaces) and 0% for permeable areas. Where lower Cv's are used the application should justify the selection of Cv.
- 7. Storage for the 1 in 30 year must be fully contained within the SuDS components. Note that standing water within SuDS components such as ponds, basins and swales is not classified as flooding. Storage should be calculated for the critical duration rainfall event.
- 8. Runoff generated from rainfall events up to the 1 in 100 year will not be allowed to leave the site in an uncontrolled way. Temporary flooding of specified areas to shallow depths (150-300mm) may be permitted in agreement with the LLFA.
- 9. Climate change is specified as 40% increase to rainfall intensity, unless otherwise agreed with the LLFA / EA.
- 10. To be determined using the 100 year return period 6 hour duration rainfall event.
- 11. Where Source Control is provided Interception losses will occur. An allowance of <u>5mm rainfall depth</u> can be subtracted from the net inflow to the storage calculation where interception losses are demonstrated. The Applicant should demonstrate use of subcatchments and source control techniques.
- 12. Please refer to Rain harvesting BS for guidance on available storage.
- 13. Flow diverted to Long term storage areas should be infiltrated to the ground, or where this is not possible, discharged to the receiving water at slow flow rates (maximum 2 l/s/ha). LT storage would not be allowed to empty directly back into attenuation storage and would be expected to drain away over 5-10 days. Typically LT storage may be provided on multi-functional open space or sacrificial car parking areas.
- 14. Careful consideration should be used for calculations where flow control/storage is likely to be influenced by surcharged sewer or peak levels within a watercourse. Storm sewers are designed for pipe full capacity for 1 in 1 to 1 in 5 year return period. Beyond this, the pipe network will usually be in conditions of surcharge. Where information cannot be gathered from Thames Water, engineering judgement should be used to evaluate potential impact (using sensitivity analysis for example).
- 15. In controlling the volume of runoff the total volume from mitigation measures should be greater than or equal to the additional volume generated.

Design and Credit to: McCloy Consulting Ltd

Contact

London

Network Building, 97 Tottenham Court Road, London W1T 4TP. Tel: 020 7580 7373

Bristol

5th Floor, 4 Colston Avenue, Bristol BS1 4ST Tel: 0117 203 5240

Cardiff

Helmont House, Churchill Way, Cardiff CF10 2HE Tel: 029 2072 0860

Exeter

6 Victory House, Dean Clarke Gardens, Exeter EX2 4AA Tel: 01392 422 315

Birmingham

Great Charles Street, Birmingham B3 3JY Tel: 0121 2895 624

Manchester

Oxford Place, 61 Oxford Street, Manchester M1 6EQ. Tel: 0161 228 1008

Leeds

7 Park Row, Leeds LS1 5HD Tel: 0113 512 0293

Bonn

Stockenstrasse 5, 53113, Bonn, Germany Tel: +49 176 8609 1360 www.vectos.eu

Registered Office Vectos (South) Limited Network Building, 97 Tottenham Court Road, London W1T 4TP Company no. 7591661