

RIDGE

BICESTER MOTION
THE EXPERIENCE QUARTER

FLOOD RISK AND DRAINAGE ASSESSMENT

03 December 2021

BICESTER MOTION THE EXPERIENCE QUARTER

FLOOD RISK AND DRAINAGE ASSESSMENT

Ref: 5013594-RDG-XX-XX-DOC-C-0550

3 December 2021

Prepared for

Bicester Motion Buckingham Road Bicester, Oxfordshire OX27 8AL

Prepared by

Ridge and Partners LLP The Cowyards Blenheim Park Oxford Road Woodstock OX20 1QR

Tel: 01993815000

Contact

Stephen Watts Associate Civil Engineer swatts@ridge.co.uk 07585803433

VERSION CONTROL

VERSION	DATE	DESCRIPTION	CREATED BY	REVIEWED BY
1.0	27/11/2020	First Issue	BN	SW
2.0	09/12/2020	Updated in line with client's comments	BN	SW
3.0	03/12/2021	Updated in response to the LLFA's comments	AC	SW
	-			
	_			
	_			
-				
	_			
	_			

CONTENTS

1. SUMM	ARY	4
2. INTRO	DUCTION	5
3. SITE D	ESCRIPTION	6
3.1.	Site Location	6
3.2.	Land Use and Topography	6
3.3.	Hydrology	7
3.4.	Geology	7
3.5.	Hydrogeology	9
3.6.	Existing Drainage	10
3.7.	Other Site constraints	10
4. DEVEL	OPMENT PROPOSALS	12
5. SOURC	CES OF FLOOD RISK	13
5.1.	Flooding from rivers (fluvial flood risk)	13
5.2.	Flooding from the sea (tidal flood risk)	13
5.3.	Flooding from the land (overland pluvial flood risk)	14
5.4.	Flooding from groundwater	14
5.5.	Flooding from sewers	15
5.6.	Flooding from Artificial Sources	15
5.7.	Flooding History	15
5.8.	Sequential Test	15
6. SURFA	CE WATER DRAINAGE PROPOSALS	16
7. FOUL [DRAINAGE PROPOSALS	21
7.1.	Proposed Foul Network	21
7.2.	Limitations with the Existing Foul Network	21
8. CONCL	LUSION	22
	IX A – TOPOGRAPHICAL SURVEY	23
	IX B – BGS BOREHOLE SCAN SP52SE174	24
	IX C – THAMES WATER SEWER RECORDS	25
	IX D – OUTLINE DRAINAGE STRATEGY	26
	IX E – ARCHITECTS SITE LAYOUT IX E – PERCOLATION TEST RESULTS	27 28
APPENIII	IA C = CCKLUI ATIUN TEST KESULTS	/X

1. SUMMARY

Ridge and Partners LLP have been commissioned to prepare a Flood Risk and Drainage Assessment in support of the Bicester Motion Experience Quarter development at the former RAF Bicester site, Buckingham Road, Bicester, Oxfordshire, OX27 8AL.

This report has been prepared to provide a Flood Risk and drainage overview for an outline planning application with the Local Planning Authority (LPA), Cherwell District Council (CDC) for the proposed Experience Quarter development at the former RAF site. The report has been updated to address the comments raised by Sujeenthan Jeevarangan, the Lead Local Flood Authority's planning engineer, provided in May 2021.

The site is located within Flood Zone 1 as defined in the NPPF and has not been identified as being at risk of flooding associated with fluvial, pluvial, tidal, sewers or groundwater. As the site is located within Flood Zone 1, the Sequential Test was passed and there is no requirement to apply the Exception Test.

Proposals for the surface water drainage require the use of Sustainable Urban Drainage Systems (SuDS) as these will not only manage surface water run-off but also offer benefits in pollution prevention creating and sustaining better places for people and nature.

There are known capacity constraints in Thames Water's foul sewer network therefore discussions will be required with Thames Water via a predevelopment enquiry to establish how additional capacity can be provided to accommodate the development.

It is proposed to drain the foul sewage from the site to the public foul sewer network in Buckingham Road.

2. INTRODUCTION

Ridge and Partners LLP have been commissioned to prepare a Flood Risk and Drainage Assessment in support of the Bicester Motion Experience Quarter development at the former RAF Bicester site, Buckingham Road, Bicester, Oxfordshire, OX27 8AL.

This report has been prepared to provide a Flood Risk and drainage overview for an outline planning application with the Local Planning Authority (LPA), Cherwell District Council (CDC) for the proposed Experience Quarter development at the former RAF site.

The National Planning Policy Framework (NPPF) states that a site-specific Flood Risk Assessment (FRA) is required in the following circumstances:

- For proposals of 1 hectare or greater in Flood Zone 1,
- All proposals for new development (including minor development and change of use) in Flood Zones 2 and 3, or in an area within Flood Zone 1 which has critical drainage problems (as notified to the LPA by the Environment Agency); and,
- Where proposed development or a change of use to a more vulnerable class may be subject to other sources of flooding.

This site falls within the Flood Zone 1 and is greater than 1ha in size. Therefore, a Site-Specific FRA is required to ensure the development is safe from flooding and will not increase the risk of flooding elsewhere.

This FRA assesses the flood risk of the existing site whilst setting out the parameters for the drainage design of the future development to minimise flood risk on the site and the neighbouring properties. It not only considers the risk of fluvial flooding on the development, but also the risk of flooding from the non-fluvial sources, including overland flows, groundwater, sewer flooding and flooding from artificial sources.

The report includes a review of the existing foul flows and identifies the need for a Pre-development Enquiry with Thames Water to establish the likely capacity constraints and identify any off-site improvements that may be required to accommodate the development.

3. SITE DESCRIPTION

3.1. Site Location

Site Name: Bicester Motion at the former RAF Bicester site

Site Address: Buckingham Road, Bicester, Oxfordshire, OX27 8AL

Site National Grid Reference: Eastings: 459859, Northings: 224563

The site lies to the north of Bicester town centre within the boundary of the former RAF Bicester Site. Buildings in the south west corner of the site are currently occupied by Bicester Heritage and the existing hangars occupied by the Bicester Gliding Club. Scattered around the site are a number of listed defence structures and to the east of the site there are a number of bomb stores. The airfield taxiway is located to the east of the existing buildings and west of the bomb stores.

The site is bounded by Buckingham Road (A4421) to the west, Skimmingdish Lane to the south and Bicester Road (road to Stratton Audley) to the North. The south east corner of the site is bounded by the newly constructed Bakels factory and to the north east, the site is bounded by agricultural land. The site benefits from three vehicular entrances, two from the A4421 Buckingham Road and one from Skimmingdish Lane.

The wider surrounding area is characterised by residential, commercial, agricultural land and associated road networks as illustrated below in Figure 1.

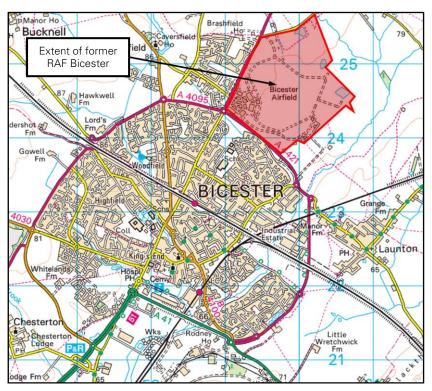


Figure 1 – Site Location

3.2. Land Use and Topography

The existing site is relatively level with ground levels sloping from 83.0m above ordnance datum (mAOD) along the western side of the site to 73.0mAOD along the eastern boundary. This equates to an average gradient across the site of approximately 1:100.

The former RAF site is approximately 1.3km wide and 1.3km in length. The approximate area of the site is 171 hectares.

Appendix A shows the topographic survey and the existing site layout.

3.3. Hydrology

The closest main river to the site is Langford Brook, which is located approximately 500m to the east of the site and is designated as Main River by the EA. This watercourse flows north to south before it joins the River Ray approximately 7.5km downstream of the site to the south.

The closest watercourse is located to the north of the site. The watercourse runs from north to south towards the centre of the site. It is currently unclear on the route the watercourse takes through the site but the topography of the site suggests the watercourse drains to the east. Further investigation is required.

The nearest standing water body is located within the site. There are three lakes adjacent to the north east boundary of the site which are former quarry pits that have been filed with water.

There are no canals within the proximity of the proposed development.

3.4. Geology

Based on published geological records for the area (British Geological Survey online mapping), the site is underlain by Jurassic bedrock of the Cornbrash Formation, overlying the Forest Marble Formation. No significant superficial deposits are recorded locally. Refer to Figure 2 below:

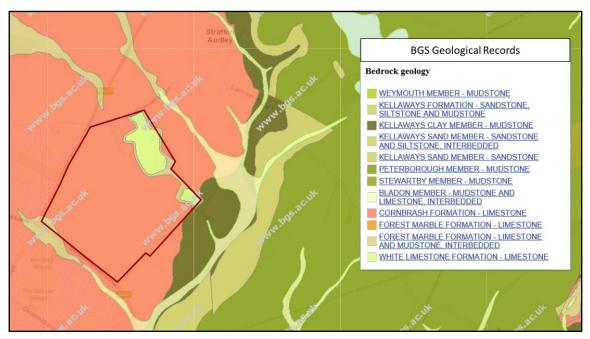


Figure 2 – British Geological Survey Records for North east Bicester (sourced from BGS website 01/02/2019)

Reference to BGS borehole scan SP52SE174, enclosed in Appendix B, located in the south east corner of the site, confirms the presence of the Cornbrash Formation layer approx. 9ft deep, Forest Marble formation layer approximately 10ft deep and white limestone layer approximately 38ft deep. The borehole also indicates that groundwater was encountered which varied during the time of year from 3ft to 12ft deep below ground level (mBGL).

Percolation tests were undertaken across the site in June 2021 to address the concerns set out in the Lead Local Flood Authority's report dated 14/5/21. The location and depths of the percolation tests are shown on the drainage strategy plan enclosed in Appendix D and the results of the percolation tests are enclosed in Appendix F. A summary of the results is outlined below:

 $TP01 - 1.63 \times 10^{-3} \text{ m/s}$

TP02 - Not undertaken

 $TP03 - 1.42 \times 10^{-5} \text{ m/s}$

TP04 – Unable to complete due to high groundwater.

The results indicate that soakage is available across the site accept where the ground water was encountered.

A series of site investigations have already been undertaken to inform the design of other developments across the Bicester Motion site. These include the Command Works and the Innovation Quarter where a full investigation was undertaken and infiltration tests in the vicinity of the hotel. Outlined below is a summary of the results together with a plan showing the location of these developments.

Figure 3 – Development location plan on the Bicester Motion site

The Command Works - The exploratory field work identified that the site is generally underlain by thin Topsoil (down to a maximum depth of 0.40m bgl), overlying localised Made Ground (encountered down to a maximum depth of 0.40m bgl), overlying a weathered Cornbrash Formation (down to a maximum depth of 1.0m bgl) becoming unweathered Cornbrash Formation. Rock quality strata was then proven down to 1.60m and 2.0m bgl across the site. However, no Forest Marble Formation soils were encountered. Monitoring of the groundwater level was carried out between September 2018 and January 2019 which recorded the groundwater level between 1.1 and 1.71m below ground level. A supplementary sampling exercise was carried out in August 2019 which indicated groundwater levels of between 1.4m and 2.02m below ground level. Furthermore, the composition of the underlying groundwater was deemed to be consistent of that with uncontaminated groundwater. Three infiltration tests were carried out in accordance with the BRE365 standard with infiltration rates of between 1.02x10⁻⁴ m/s to 9.78x10⁻⁵ m/s within the Cornbrash Formation being achieved.

Innovation Quarter – The site investigation was undertaken in May 2021. A series of trial pits and boreholes were carried out across the site which identified topsoil/ made ground overlying silty clay and then Cornbrash gravel. Six percolation tests up to 2.5m deep were undertaken in accordance with BRE Digest 365 and these identified soakage potential in three of trial holes that ranged from 1.64×10^{-5} m/s to 7.75×10^{-5} m/s. The remaining trial pits resulted in an invalid test due to a limited drop in water level after 6 hours. Ground water

monitoring was undertaken between May and June and the average water depth was between 1.08m and 1.45m below ground level.

Hotel - The drainage strategy, prepared by AKS ward, in support of the planning application for the Bicester Heritage Hotel, references two soakaway tests in accordance with BRE365 Digest. These tests were recorded approximately 300m south of the proposed Experience Quarter buildings. The results of the tests report a soil infiltration rate of between 1.43x10-6m/s and 1.81x10-6m/s at a depth of 1 metre.

Upon gaining outline planning approval, a detailed site-specific geotechnical investigation shall be carried out to determine the soil properties of the site. The site investigation will include but not be limited to the following:

- Infiltration testing to BRE 365 Digest.
- Groundwater monitoring over the winter period.
- Soil testing and assessment on locations of contaminations.

3.5. Hydrogeology

According to the MAGiC database which reference Environment Agency records on Aquifer Designations, the majority of the site falls within a Secondary A bedrock aquifer and a small area towards the north east boundary of the site is designated as a Principal bedrock aquifer. No superficial aquifers fall within the vicinity of the site. In addition, there are no Groundwater Source Protection Zones within the site vicinity. An extract from the MAGiC database is shown below in Figure 4.

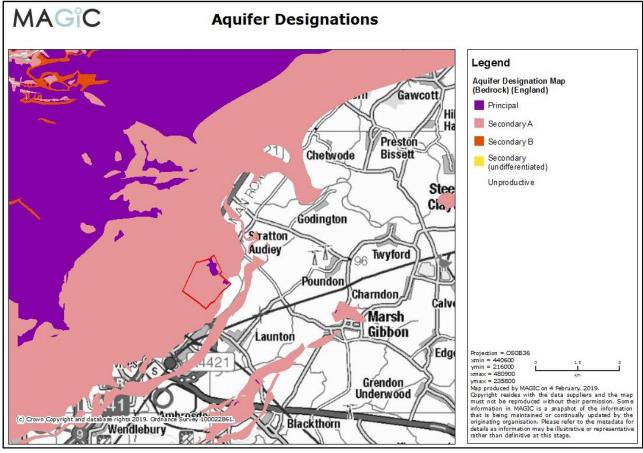


Figure 4 – Aquifer Designations (sourced from MAGiC database 04/02/2019)

3.6. Existing Drainage

Public sewer

Sewer details have been referenced from Thames Water sewer records, found in Appendix C.

Foul water

The sewer records indicate that there is a 225mm diameter foul water sewer that runs along the westerly edge of the site and then cuts across the south west corner of the site. The sewer flows from north to south.

A 450mm diameter foul water sewer is located beneath the A4421 Buckingham Road to the west of the site. This sewer runs from north to south and continues to run along the Buckingham Road towards Bicester Town.

It is understood that the sewer drains to the sewage treatment works located to the south of Bicester Town, adjacent to the Tesco Superstore.

It is apparent, based on our knowledge from the Command Works development that the Thames Water's foul sewer network in Bicester has limited capacity for future development and therefore further discussions with Thames Water Development Team will be required through the Pre-development Enquiry application process to establish how the additional capacity can be provided.

Surface water

The sewer records do not indicate any surface water sewers within the vicinity of the site.

Private drainage

There are a number of internal foul and surface water drains that serve the former Bicester RAF site. Typically, the surface water within the site is managed using soakaways.

The network of internal foul drains connects to the foul sewers within the site.

3.7. Other Site constraints

According to the MAGiC database the site is home to a number of grade 2 listed buildings and scheduled monuments. In addition to this, there are two areas on the site that are designated as a Site of Special Scientific Interest (SSSI) which are the Stratton Audley Quarries 1 and 2. The SSSI sites are classified as destroyed which mean that lasting damage has occurred to the designated feature such that the feature has been irretrievably lost (no amount of management will bring this feature back). An Extract from the MAGiC database can be seen below in Figure 5.

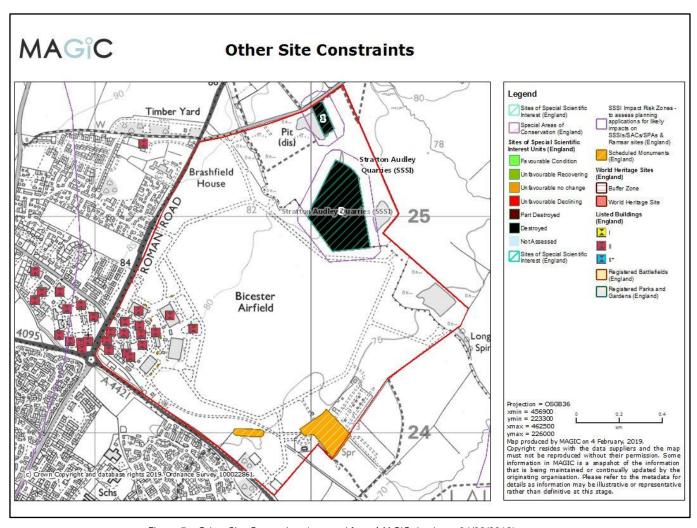


Figure 5 – Other Site Constraints (sourced from MAGiC database 04/02/2019)

4. DEVELOPMENT PROPOSALS

The proposed Bicester Motion Narrative is as follows:

The Experience Quarter

The Experience Quarter will be formed as a cluster of high-quality buildings that will house world-leading brands across the Motion sector with each building providing views across the airfield, towards the vibrant activities taking place in the air and on the tracks, visitors can enjoy wings and wheels technology.

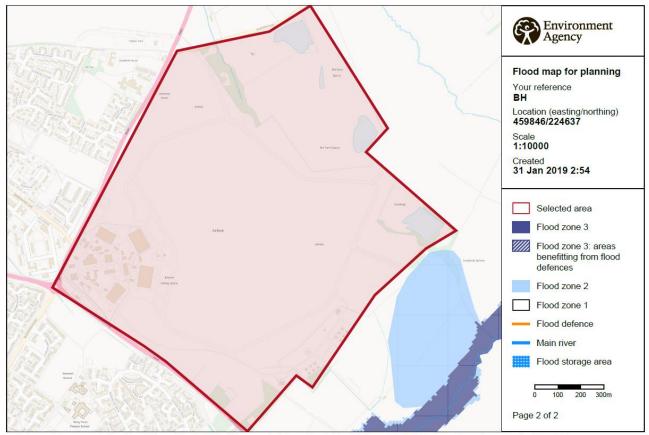
New driver training and handling tracks will be formed for visitors to learn new skills in a safe and family focused environment, guests of all ages can get behind the wheel or simply enjoy the show from the viewing points and walkways planned.

Demonstration and event areas are planned enabling brands to showcase new and exciting technologies to the public. As we move towards a greener future we aspire that the Experience Quarter will be internationally recognised as the leading site for sustainable transport product launch and demonstrations with the benefit of the on-road and off-road tracks, demonstration zones and airfield.

The creation of new walkways and cycleways connecting the four Quarters of the site (Heritage, Innovation, Wilderness & Experience) will enable visitors to explore on foot, cycle, scooters or shuttle promoting health and well-being through the enjoyment of open green space filled with vibrant activities for all of the family.

The Airfield

The airfield operated by the Bicester Aerodrome company (a wholly owned subsidiary of Bicester Motion) will host a wide range of aviators who will demonstrate and promote aviation's past present and future bringing the history of the site to life.


5. SOURCES OF FLOOD RISK

5.1. Flooding from rivers (fluvial flood risk)

The Environment Agency online Flood Map identifies the site outside the 0.1% Annual Exceedance Probability (AEP) flood extent associated with the Langford Brook. Refer to Figure 6 below. To the east of the site, the adjacent land is situated within an area of Flood Zone 2. The Flood Zone 2 does not fall within the site extents.

Furthermore, site contours from the topographical survey show that the site is approximately 3-10m above the Langford Brook level which was obtained from the Ordnance Survey contours for the brook. This natural topography provides protection to the former RAF site as the majority of Bicester and surrounding land would flood before the proposed development site.

On the basis of these findings, it can be determined the site is not at risk of fluvial flooding.

© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

Figure 6 – Fluvial Flood Risk (sourced from EA website 31/01/2019)

5.2. Flooding from the sea (tidal flood risk)

The site is a considerable distance from the sea and therefore is not currently identified at risk of coastal or tidal flooding.

5.3. Flooding from the land (overland pluvial flood risk)

In the event of intense rainfall and when the infiltration capacity of the land has been exceeded, rainwater will flow overland. This rainwater will collect in depressions of the topography and at obstructions, which can inundate development in low lying areas.

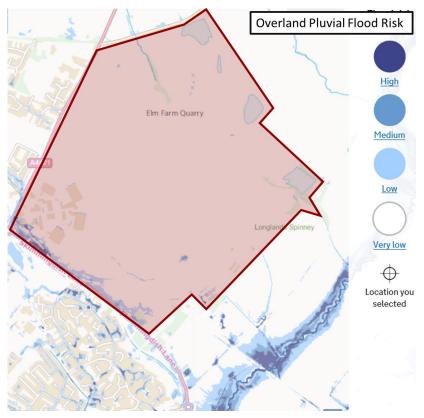


Figure 7 – Overland Pluvial Flood Risk (sourced from EA website 31/01/2019)

The Environment Agency Flood Maps for Surface Water (as shown in Figure 7) show the approximate areas that could experience surface water flooding from a range of AEP's, which is used to categorise the risk. The surface water maps identify that there is a very low risk of surface water flooding (<0.1% AEP) for the majority of the airfield. The northern side of Skimmingdish Lane, however, has been identified as medium to high risk, part of which falls within the boundary of the proposed Command Works development. These overland pluvial flood flows are managed on the site site through the use of an attenuation basin and a conveyance swale.

5.4. Flooding from groundwater

According to the Cherwell District Council Strategic Flood Risk Assessment (SFRA) (2017) Plan B8, the northeast quadrant of Bicester, which includes the site and surrounding area, is not considered at risk from groundwater flooding. The site is located within the wider slope of the valley, and as such any emerging groundwater would flow under gravity to the east, resulting in minimal flood levels if groundwater did emerge.

Monitoring of the groundwater level was carried out for The Command Works development between September 2018 and January 2019. The results of which recorded the groundwater level between 1.1 and 1.71m below ground level. Monitoring on the Innovation Quarter site recorded average groundwater depths of between 1.08m and 1.45m below ground level during May and June 2021.

On the basis of these findings, the risk of groundwater flooding is understood to be low.

5.5. Flooding from sewers

According to the Cherwell SFRA Plan B-10, the site has had 0-5 sewer flooding incidents due to failure or capacity issues. Therefore, the site is deemed to be at low risk of sewer flooding.

5.6. Flooding from Artificial Sources

The site is not identified as being at risk of reservoir flooding from the Environment Agency Reservoir Flood Map as shown in Figure 8. The site is located a considerable distance from any canal and therefore not at risk from flooding from this source.

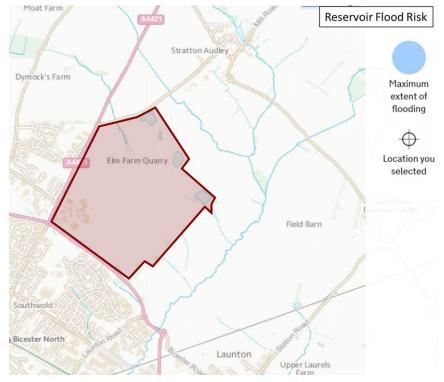


Figure 8 – Reservoir Flood Risk (sourced from EA website 31/01/2019)

5.7. Flooding History

No historic flooding has been recorded within the Cherwell SFRA for the site or surrounding area of north east Bicester. Flooding has been limited to the southern reaches of the Langford Brook floodplain within Bicester which is located over 500m east of the site, and roughly 3m lower than the lowest site levels.

5.8. Sequential Test

The NPPF follows a sequential risk-based approach in determining the suitability of land for development in flood risk areas, with the intention of directing development to areas at little or no risk of flooding from any source in preference to areas at higher risk. NPPF Table 2 confirms the 'Flood risk vulnerability classification' of a site, depending upon the proposed usage. This classification is subsequently applied to Table 3 'Flood risk vulnerability and flood zone compatibility' to determine whether:

- The development is suitable for the flood zone in which it is located; and
- Whether an Exception Test is required for the proposed development.

The proposed development has a mixture of 'less vulnerable' commercial uses and 'more vulnerable' accommodation/resort-based development.

As the entire site lies within Flood Zone 1, the Sequential Test is passed and there is no requirement to apply the Exception Test.

6. SURFACE WATER DRAINAGE PROPOSALS

The Experience Quarter development is designated as a major planning development. The NPPF sets out the requirement for all major development to include Sustainable Urban Drainage Systems (SuDS).

The SuDS systems aim to deal with rainwater where it falls (at source), allowing as much water as possible to either evaporate or soak into the ground. Remaining runoff is then drained to the nearest water body, ideally via other forms of SuDS, at the same rate and volume or lower as would naturally have occurred prior to development. During this process, SuDS reduce pollutants in the water, such as hydrocarbons, nutrients and heavy metals, by filtering and treating runoff. This ensures that the water soaking into the ground and discharging to nearby watercourses or sewers is cleaner, protecting water quality and wildlife.

Management of surface water run-off using SuDS is just one aspect of SuDS design. If managed appropriately, SuDS can offer real value to a development through enhancing green space which supports the provision of habitats and places for wildlife to live and flourish.

The use of SuDS is also highly encouraged by the Lead Local Flood Authority (LLFA). The SuDS applications proposed on this development is outlined in Table 1 below:

SUDS FEATURE	DESCRIPTION
Permeable Surfaces	Permeable surfaces allow rainwater to infiltrate through the surface into an underlying storage layer, where water is stored before infiltration to the ground, reuse, or release to surface water.
Filter Drains	Linear drains/trenches filled with a permeable material, often with perforated pipe in the base of the trench. Surface water from the edge of paved areas flows into the trenches, is filtered and conveyed to other parts of the site.
Ponds	Depressions used for storing and treating water.
Detention Basin	Dry depressions designed to store water for a specified retention time.
Swales	Shallow vegetated channels that convey and/or retain water and can permit infiltration when unlined.

Table 1 – Description of SuDS Features proposed

An outline drainage strategy has been prepared for the proposed Experience Quarter development which is presented in Appendix D and detailed below.

The outline drainage strategy has been prepared with the view of using SuDS systems as referenced above. As areas around the site are recorded to have infiltration rates generally greater than 1x10⁻⁵m/s (Refer to section 3.4), it is therefore proposed to use soakage systems to manage the run-off from the development. As limited soakage was identified in a few locations across the wider development it is proposed to undertake infiltration tests and groundwater monitoring upon approval of the outline application.

Experience Quarter Driver Training School – It is proposed to drain the buildings to the north of the development via a network of pipes, manholes and potentially swales to 2 no. infiltration basins with permeable surfaces proposed for the parking areas. The use of permeable paving will not only allow rainwater to be stored in the granular sub-base but also improves water quality by trapping heavy metals in low concentrations whilst allowing hydrocarbons to be broken down naturally in the sub-base.

Automotive/ Aviation Clubhouse - It is proposed to drain the buildings located along the north-eastern edge of the development via a network of pipes, manholes and potentially swales to an adjacent infiltration basin.

Track side drainage – It is proposed to drain the surface run-off to a filter drain on the low side of the track, which will allow infiltration into the ground. To prevent a significant quantity of surface water draining to the low point of the filter drain, impermeable membranes will be installed at suitable intervals to encourage infiltration at the higher areas of the track. At the low point of the track a shallow basis will be provided to capture any exceedance flows.

Design Requirements

The surface water drainage systems have been designed in accordance with the Local Standards and Guidance for Surface Water Drainage on Major Development in Oxfordshire (Oxfordshire County Council).

The peak surface water run-off rate from the proposed development for the 1 in 1 year rainfall event and the 1 in 100-year rainfall event should never exceed the peak greenfield run-off rate for the same event

Attenuation or infiltration structures shall accommodate up to a 1in100-year plus 40% for climate change storm event and the upstream drainage networks will not flood in a 1:30 year return period, which includes the track side filter drains.

The layout of the development will be designed so that any surface run and exceedance overland flows caused by rainfall events that exceed the design capacity are directed away from sensitive areas and conveyed to SuDS systems. The exceedance routes are shown on the drainage strategy plan enclosed in Appendix D.

A copy of the hydraulic (Microdrainage) calculations for the infiltration basins, permeable parking areas and track side filter drains are enclosed in Appendix G.

Management and Maintenance Plan

Regular inspections and maintenance of the surface water drainage system is essential to ensure the effective operation of the drainage systems. As the development will remain in Bicester Motion's ownership a management company will be set up to maintain the SuDS systems in perpetuity on Bicester Motion's behalf.

Outlined below are details of the proposed maintenance regime, which is in accordance with the guidance provided in the SUDS manual, CIRIA publication C753.

Infiltration Basin

The proposed attenuation basins will require regular ongoing maintenance to ensure continuing operation to the design performance standards.

The basin should be inspected on a regular basis (typically monthly) and any build-up of litter (including leaf litter in the autumn), debris and trash should be removed as required.

Routine maintenance of the landscaped areas, including grass cutting and the aquatic vegetation will also be required on a regular basis particularly during the growing season. Slope areas that have become bare should be re-vegetated and any eroded areas should be regraded before replanting.

Silt removal should be undertaken, as required, to ensure the effective operation of the basin and to maintain aesthetic appearance of the site. Care should be taken to avoid disturbance to nesting birds during the breeding season and habitats of target species at critical times. The window for carrying out maintenance to achieve this is usually towards the end of the growing season (typically September/ October). Invasive silt and

vegetation removal should only be carried out to limited areas at a time (25/30% of the basin on one occasion each year) to minimise the impact on biodiversity.

A summary of the maintenance requirements are provided in the schedule below:

Maintenance schedule	Required action	Typical frequency		
	Remove litter and debris	Monthly		
	Cut grass – for spillways and access routes	Monthly (during growing season), or as required		
	Cut grass – meadow grass in and around basin	Half yearly (spring – before nesting season, and autumn)		
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)		
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly		
Regular maintenance	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly		
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly (for first year), then annually or as required		
	Check any penstocks and other mechanical devices	Annually		
	Tidy all dead growth before start of growing season	Annually		
	Remove sediment from inlets, outlet and forebay	Annually (or as required)		
	Manage wetland plants in outlet pool – where provided	Annually (as set out in Chapter 23)		
	Reseed areas of poor vegetation growth	As required		
	Prune and trim any trees and remove cuttings	Every 2 years, or as required		
Occasional maintenance	Remove sediment from inlets, outlets, forebay and main basin when required	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided)		
	Repair erosion or other damage by reseeding or re-turfing	As required		
Remedial actions	Realignment of rip-rap	As required		
	Repair/rehabilitation of inlets, outlets and overflows	As required		
	Relevel uneven surfaces and reinstate design levels	As required		

Overland Flow Conveyance Features

Conveyance features installed within the site such as the Swales, depressions and ditches will be maintained and managed in perpetuity by the site owner. These features are required to ensure overland flows are conveyed to the infiltration basins.

Regular inspection and maintenance are required to ensure the conveyance features operate to their design performance standards.

Inspections will be required on a regular monthly basis which will require the removal of any litter or debris within the conveyance features. This shall include inspection to the culvert and any blockages or sediment removed.

The major maintenance requirement is to mow the grass of the conveyance features to achieve a grass length of between 75-150mm. This shall be carried out on a monthly basis through growing season. All grass clippings shall be removed from the extents of the swales.

Any sediment within the conveyance features shall be removed when it exceeds 25mm in depth.

A summary of the maintenance requirements are provided in the schedule below:

Maintenance schedule	Required action	Typical frequency		
	Remove litter and debris	Monthly, or as required		
	Cut grass – to retain grass height within specified design range	Monthly (during growing season), or as required		
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required		
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly		
Regular maintenance	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for > 48 hours	Monthly, or when required		
	Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly		
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly		
Occasional maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	As required or if bare soil is exposed over 10% or more of the swale treatment area		
	Repair erosion or other damage by re-turfing or reseeding	As required		
	Relevel uneven surfaces and reinstate design levels	As required		
Remedial actions	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required		
	Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required		
	Remove and dispose of oils or petrol residues using safe standard practices	As required		

Permeable Paving

The permeable paving should be inspected regularly, preferably during and after heavy rainfall, to check for effective operation and identify any areas of surface ponding.

Permeable paving should be regularly cleaned of silt and other sediment to preserve its infiltration capability.

Care should be taken to avoid stockpiling any materials, in particular granular material or soil, on the permeable paving to avoid contaminating the underlying granular sub-base and laying course. In the event of a spillage, vacuum sweeping of the affected area should be undertaking immediately.

A summary of the maintenance requirements is provided in the schedule below:

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
	Stabilise and mow contributing and adjacent areas	As required
Occasional maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
	Initial inspection	Monthly for three months after installation
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 h after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

Filter Drains

Filter drains require regular maintenance to ensure that they operate effectively throughout the lifetime of the development. The recommended maintenance regime is summarised in the table below.

Maintenance schedule	Required action	Typical frequency	
	Remove litter (including leaf litter) and debris from filter drain surface, access chambers and pre-treatment devices	Monthly (or as required)	
	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly	
Regular maintenance	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly	
	Remove sediment from pre-treatment devices	Six monthly, or as required	
	Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (eg NJUG, 2007 or BS 3998:2010)	As required	
Occasional maintenance	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required	
	Clear perforated pipework of blockages	As required	

7. FOUL DRAINAGE PROPOSALS

7.1. Proposed Foul Network

The existing site has a network of private foul water drains in the southwest corner of the site which connect to the foul sewer. The Experience Quarter is mostly situated towards the north of the former RAF site and has no existing foul drainage infrastructure.

For the Experience Quarter, there is potential to connect to the gravity sewer that is located in Buckingham Road on the north-western boundary, although it is likely that a foul pumping station will be required.

An assessment of the potential foul flows from the development has been calculated as per the Table 3 below. As occupancy values for development are currently unknown, the Sewers for Adoption flow rates for use class have been used as a means of calculating the development flows.

DEVELOPMENT AREA	APPROX. FOOTPRINT (M²)	NO. OF FLOORS	FLOOR AREA	DESIGN FLOW (L/S/HA)	TOTAL FLOW RATE (L/S)
Experience Quarter					
Single Storey	4,136	1	4,136	0.6	0.25
Two storeys	9,475	2	18,950	0.6	1.14
Trackside Pavilions	1,800	1	1,800	0.6	0.11
Total Foul Flow Rate for the Development	15,411		24,886		1.5

Table 3 – Estimated Foul Flow Rate

The total flow rate referenced in Table 3 above is based on a gravity connection to the mains sewer.

7.2. Limitations with the Existing Foul Network

A Pre-development Enquiry with Thames Water shall be requested to understand whether the sewer network has capacity whilst informing Thames Water of the proposed development so that their programme of network improvements consider this site.

8. CONCLUSION

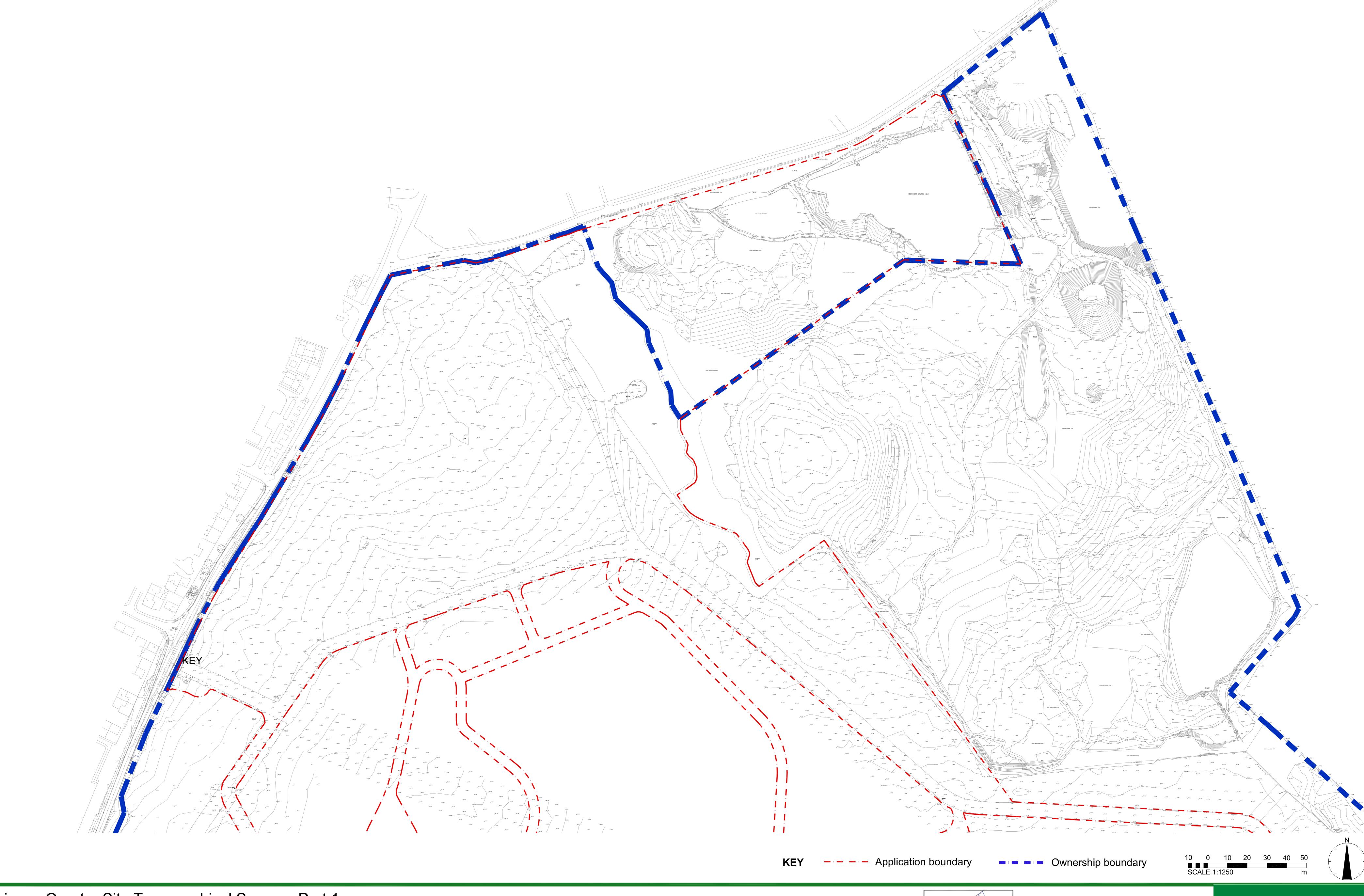
This flood risk and drainage assessment report has been prepared in support of an outline planning application for the Bicester Motion Experience Quarter development at the former RAF Bicester Airfield, Bicester, OX26 5HA.

Based on the information available from the Environment Agency, Cherwell District Council, County Council (Lead Local Flood Authority) and MAGiC Database, the site, which is located in Flood Zone 1, as defined in the NPPF, is not identified as being at risk of flooding associated with fluvial, pluvial, tidal, sewers or groundwater. There is an overland pluvial flood risk within the south west part of the development but the proposed drainage strategy for the Command Works Site will manage the overland flows.

As the entire site lies within Flood Zone 1, the Sequential Test was passed and there is no requirement to apply the Exception Test.

Surface water runoff from the proposed development should be managed using Sustainable Urban Drainage Systems (SuDS) as these will not only manage surface water run-off, but also offer benefits in pollution prevention creating and sustaining better places for people and nature. SuDS systems identified to manage the surface water run-off from the Bicester Motion development have been detailed on the outline drainage strategy drawing provided in Appendix D. The underlying geology across the site comprises of Cornbrash formation and the soakage tests undertaken across the wider development indicate that the use of infiltration systems is an appropriate means of surface water disposal. Upon planning approval being granted, a comprehensive site investigation will be undertaken across the site that will include soakage tests to BRE Digest 365, groundwater monitoring and contamination testing to confirm the size of the infiltration systems.

The peak rate of surface water run-off from the development will not exceed the peak greenfield run-off rate from the existing site for the 1in1-year and 1in100-year rainfall events.

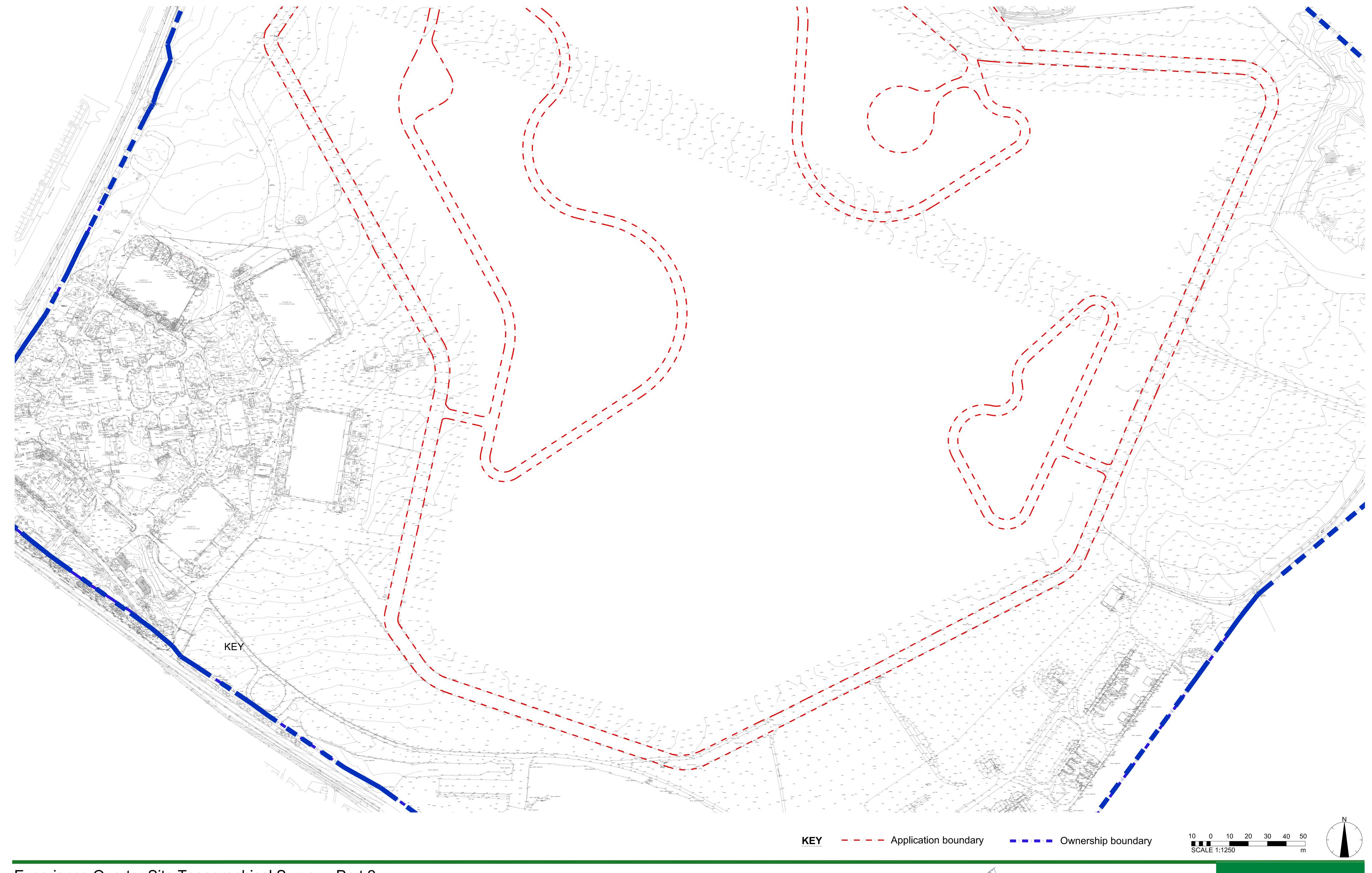

The infiltration systems will be designed to accommodate up to the 1in100-year return period plus climate change storm event with any surface run-off and overland flow caused by exceedance events being conveyed to the SuDS systems and contained on-site.

The existing foul sewer network is likely to have capacity issues; therefore, a pre-development enquiry will be carried out with Thames Water to establish how additional capacity can be provided to accommodate the development.

The majority of the development is located in areas where access to a foul sewer by gravity is limited. therefore, if a gravity connection is not feasible then a pumped system will be provided to serve the development.

The anticipated foul flow from the development is approximately 1.5l/s for a gravity connection.

APPENDIX A - TOPOGRAPHICAL SURVEY


Experience Quarter Site Topographical Survey - Part 1

DRAWN BY: JY CHECKED BY

5002854-RDG-Z01-ST-PL-A-0015 REV:- 20/11/2020 SCALE 1:1250 @ A0

Experience Quarter Site Topographical Survey - Part 2

PLANNING

5002854-RDG-Z01-ST-PL-A-0016 REV:- 20/11/2020 SCALE 1:1250 @ A0

APPENDIX B - BGS BOREHOLE SCAN SP52SE174

	R.A.F. Station solo, sales is 5 710	5	Ref	210	24
Town or Village	Biaster County Oxon	Six-inch qu			
Exact site E. M.	ide of Roman Way, 1650 yes NE of the raw	lway.	(A T	tra cin	ŋ
······································	in parish of SP 59 10	2446	, .	s very	7
	urface above sea-level (O.D.) <u>c240</u> ft. If well starts below ground				V
haft Britisft-Ger	diameter ft. Bore 140 ft. Diameter of bore: at	topins.	.; at bot	ttomaing/	
etails of perman	ent lining tubes (internal diameters preferred) 30/x/5/m.,	from surface	i Then	18 in	10 10
bottom, per	1 perforated. (101-120) See one page	CPCT	140		
Vater struck at d	epths of (feet)	3134	17		
est-level of water	er below top of well 3-13 feet. Suction at	feet. Yield	on		u rs' .ys' test
4000 gallons	per h (with pump of capacityg.p.h.); de	pressing water	level to.	110	feet
Geological Survey elow top. Tir	me of recovery hrs. Amount normally pumped da	British Geol	ogical Survey .p.h. for		hours.
	ppy of analysis if available)				
	rdson-Timmins, Ltd. for Mr.	Date of	f well	1939	
	T. Richardson, Ut.				
For Survey use only)		THIC	KNESS	DEI	TH
GEOLOGICAL CLASSIFICATION.	(and any additional remarks)	Feet.	Inches.	Feet.	Inches.
Button Gov	olygical Sueray Dritish Seuloyical Survey		Bri	ish Geologic	al Survey
	Jon soil		6	/	6
,	Brish	#	•	5	6
ornbrash	Hard brash	3	. ,	8	6
9/E.	Light blue rock	2	,	6	6
0	Light blue clay	2		13	6
Survey	Blue rock and layers of clay	. Britis Ø eol	ogical*Survey	14	- 6
Marble	Very hard grey rock	3	ļ.,	14	6_
10/2 St.	Yes clay	3	6	31	•
	Giey hard limestone Book	5^	-	26	;
while	Blue, sandy clay		6	27	6
Limestone	Light linesbone rock	7	6	35	6
383 Jun Geo	Sillish Geological Suprey	24	6	59 61	h-Burney
,	Blue, clay	2	6	63	
Hampen	Light gray rock		6	64	6
Marly Beds	Light blue rock	1 2	6.		-0
21st.	lily rak		0	64	
7	Blu clay layers of rak	14		86	
Payalon		British Gen	gical Survey	94	
Stone	Rock with layers of clay	4		101	
20 ft.	Grey rock	H	,	105	
	Line grey sandstone	,	6	106	6
***************************************	Sark brown clay since grey sandstone	H	-	110	6
Twestood and		4	•	114	6
Hook Norton	Drille Content of Cont	6	- 6 Bri	sh Geograpia	al-Survey
Beds.		3	6		
232 ft.	Blue clay				
	June frey sandone	6	6	121	,
	Hard Sanislone	3	6	124	6
	Blue clay	5		109	6
			/	5 -	
lpper Lies	Hard dark greg hock Blue clay R.W.L. 12ft down in May 1940, 3ft. do.	British 32		132	

APPENDIX C - THAMES WATER SEWER RECORDS

Asset location search

Andrew Collins
Ridge & Partners LLP
The Cowyards The Cowyards, Blenheim Road
Oxford Road
WOODSTOCK
OX20 1QR

Search address supplied 459787 223840

Land Adjacent To Oxford Vitality

Unit 4

Longlands Road

Launton Bicester OX26 5AH

Your reference 5012836

Our reference ALS/ALS Standard/2020_4232200

Search date 14 August 2020

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Search address supplied: 459787 223840, Land Adjacent To Oxford Vitality, Unit 4, Longlands Road, Launton, Bicester, OX26 5AH

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: searches@thameswater.co.uk

Web: <u>www.thameswater-propertysearches.co.uk</u>

Waste Water Services

Please provide a copy extract from the public sewer map.

The following quartiles have been printed as they fall within Thames' sewerage area:

SP5924SW SP5923NW SP5923NE

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

The following quartiles have not been printed as they contain no assets:

SP6023NW SP5924SE

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts
 or highway drains. If any of these are shown on the copy extract they are shown for
 information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

The following quartiles have been printed as they fall within Thames' water area:

SP6023NW SP5924SW SP5923NW SP5923NE

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

The following quartiles have not been printed as they contain no assets:

SP5924SE

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public
 water mains in the vicinity of the property. It should be possible to estimate the
 likely length and route of any private water supply pipe connecting the property to
 the public water network.

Payment for this Search

Thank you for your payment covering the cost of this enquiry. We have enclosed a VAT Receipt for your records.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

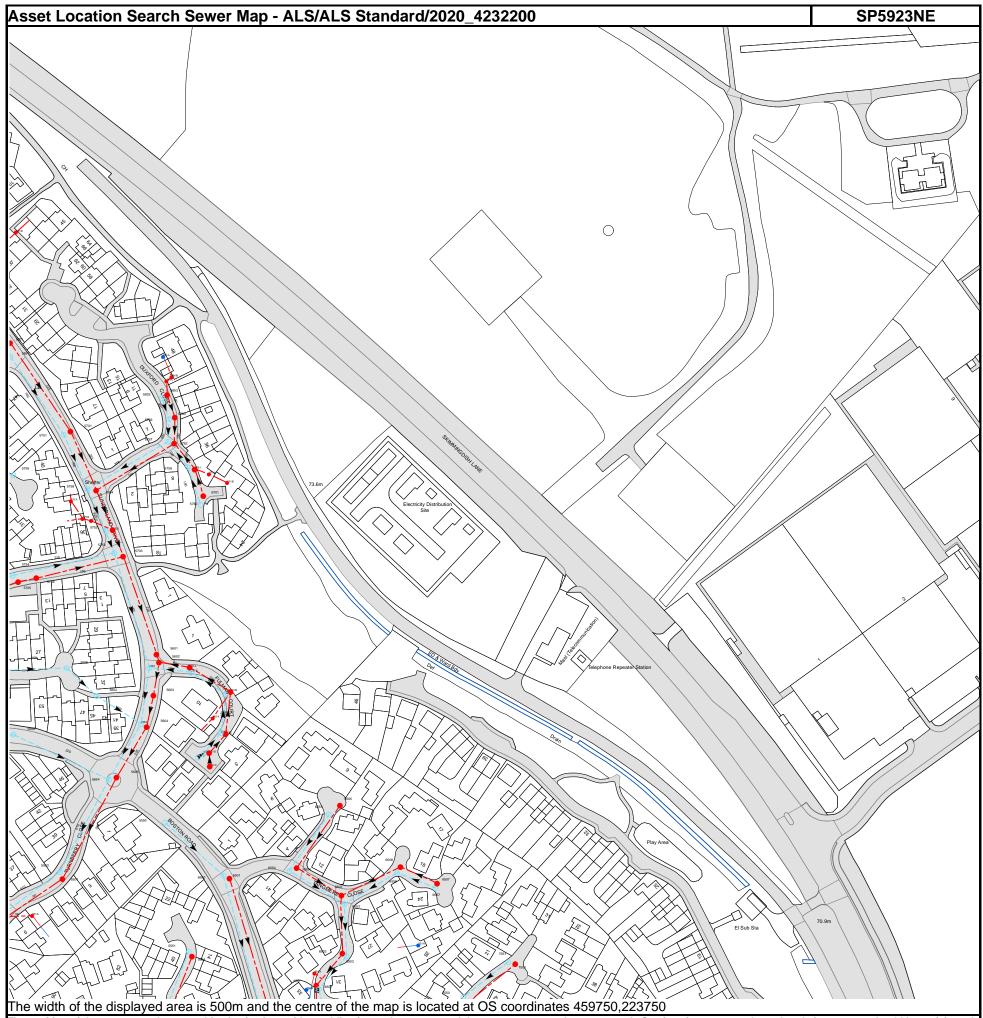
Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

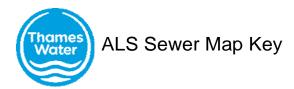
Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk

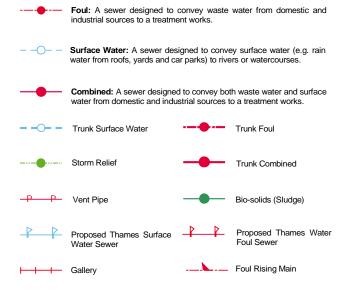
ed on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

Manhole Reference	Manhole Cover Level	Manhole Invert Level
301B	n/a	n/a
301H	n/a	n/a
301C	n/a	n/a
301D	n/a	n/a
301A	n/a	n/a
301G	n/a	n/a
0106	n/a	n/a
0102	77.87	76.65
0108	n/a	n/a
0114	n/a	n/a
0104	n/a	n/a
0105	n/a	n/a
0109	n/a	n/a
0113	n/a	n/a
0107	n/a	n/a
0101	n/a	n/a
0202	n/a	n/a
0201	n/a	n/a
0002	n/a	n/a
0001	77.72	76.44
1001	n/a	n/a
0303	n/a	n/a
0305	n/a	n/a
0304	79.42	78.28
0302	79.52	78.48
0301	79.67	78.03
0402	80.37	78.27
0401	80.61	79.04


The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.


4655	Manhole Reference	Manhole Cover Level	Manhole Invert Level
461C			
461B n/a n/a 461A n/a n/a 4604 73.83 72.72 4604 73.82 72.71 4605 73.32 71.97 4605 73.32 71.97 4605 73.32 71.97 4753 74.05 72.35 4742 73.37 72.93 4754 73.37 72.93 4744 73.23 77.66 4755 74 73.22 4703 74.02 71.7 4703 74.02 71.7 4704 73.35 72.24 4701 73.38 72.24 4701 73.38 72.24 4701 73.38 72.24 4701 73.38 72.24 4701 73.38 72.24 4701 73.38 72.22 4701 73.38 72.24 4701 73.38 72.32 4701 73.33	461D	n/a	n/a
461A nia n/a 460A 73.39 77.72 4656 73.396 77.27 4656 73.396 72.27 4633 73.22 77.197 4753 74.05 72.35 4754 72.39 72.29 4752 72.30 72.29 4742 73.30 74.00 4755 74 73.23 4755 74 73.23 4750 73.38 72.21 4750 73.38 72.24 4750 73.38 72.21 4750 73.38 72.24 4701 73.38 72.21 4701 73.38 72.22 4701 73.38 72.24 4701 73.38 72.22 4701 73.38 72.22 4701 73.38 72.24 4701 73.38 72.22 4701 73.34 73.23 4802 74.51 </td <td></td> <td></td> <td></td>			
4604 4636 73.38 72.79 73.72 73.72 73.73 73.73 73.73 73.75 73.77 73.77 73.77 73.77 73.77 73.77 73.77 73.77 73.77 73.77 73.77 73.78 73			
4655 73.96 72.71 4603 73.92 71.97 4733 74.05 72.35 4743 74.05 72.35 4741			
4690			
4753 74,05 72,35 4764 73,97 72,33 4702 73,89 72,66 4703 74 73,23 4755 74 73,23 4766 73,55 72,24 4766 73,55 72,24 4767 73,85 72,24 4858 74,54 73,16 4858 74,54 73,16 4858 74,66 73,35 4818 nla nla 4858 nla nla 4859 nla nla 4850 nla nla 4851 nla nla 4852 nla nla 4853 nla nla 4854 nla nla			
73.89			
771A			
1755			
4705	3755	n/a	n/a
4756 73.56 72.34 4751 73.86 72.51 4805 74.54 73.16 4805 74.54 73.16 4805 74.54 73.16 4806 74.67 73.31 4808 74.84 72.32 3856 74.84 72.32 3806 74.84 72.32 3806 74.87 73.31 4857 74.67 73.31 4857 74.67 73.31 4858 74.84 74.87 4803 74.84 74.87 4853 74.84 74.87 4855 74.84 74.87 4853 74.84 74.87 4854 74.84 74.87 4855 74.84 74.87 4851 74.84 74.87 4852 74.84 74.84 4802 74.84 74.84 4802 74.84 74.84 74.87 <td< td=""><td></td><td></td><td></td></td<>			
4751			
4856 74.54 73.16 4806 74.6 73.68 73.68 4818 n/a	4751	73.8	72.2
4805 74,6 73,58 4818 n/a n/a n/a 4858 n/a n/a 4804 73,84 72,32 3858 n/a n/a 3808 n/a n/a 4854 n/a 4854 n/a 3808 n/a n/a 4855 n/a n/a 4853 n/a n/a 4853 n/a n/a 4860 n/a n/a 4801 n/a n/a 4802 n/a n/a 4802 n/a n/a 3058 n/a n/a 3058 n/a n/a 3058 n/a n/a 3059 n/a n/a 3050 n/a n/a 3050 n/a n/a 3060 n/a n/a 3070 n/a n/a 3080 n/a n/a 3090 n/a 3090 n/a n/a 3090 n/a 3090 n/a n/a 3090 n/a 300 n/a			
481B n/a n/a 4858 n/a n/a 4804 73.84 72.32 3856 n/a n/a 3808 n/a n/a 3808 n/a n/a 4857 73.51 n/a 4803 n/a n/a 4804 n/a n/a 4855 n/a n/a 4853 n/a n/a 4850 n/a n/a 4851 n/a n/a 4860 n/a n/a 4851 n/a n/a 4852 n/a n/a n/a n/a n/a 4852 n/a n/a n/a n/a n/a 3808 n/a n/a 3808 n/a n/a 3808 n/a n/a 3809 n/a n/a 3801 n/a n/a 3802 n/a </td <td></td> <td></td> <td></td>			
4804 73.84 72.32 3356 10/a	481B	n/a	n/a
3856			
1806			
4803	3806	n/a	n/a
4854			
3808			
4853 n/a n/a n/a n/a n/a 4860 n/a n/a n/a 4801 n/a n/a<	3808	n/a	n/a
4860 n/a n/a 3851 n/a n/a 3851 n/a n/a 3851 n/a n/a 4852 n/a n/a 4852 n/a n/a 3958 n/a n/a 3957 n/a n/a 4851 n/a n/a 4951 n/a n/a 3906 n/a n/a 3907 n/a n/a 3908 n/a n/a 3909 n/a n/a 3900 n/a n/a 3955 n/a n/a 3904 n/a n/a n/a n/a n/a 3953 n/a n/a 3954 n/a n/a 3955 n/a n/a 3951 n/a n/a 3951 n/a n/a 3952 n/a n/a 491 n/a			
4801			
3801 n/a n/a 4852 n/a n/a 4802 n/a n/a 3958 n/a n/a 3957 n/a n/a 3958 n/a n/a 3906 n/a n/a 3906 n/a n/a 3907 n/a n/a 3908 n/a n/a 3909 n/a n/a 3905 n/a n/a 3904 n/a n/a 3903 n/a n/a 3904 n/a n/a 3904 n/a n/a 3904 n/a n/a 3924 n/a n/a 3925 n/a n/a 3926 n/a n/a 3927 n/a n/a 3928 n/a n/a 3929 n/a n/a 3929 n/a n/a 3929 n/a	4801	n/a	n/a
4852 n/a n/a 3958 n/a n/a 3957 n/a n/a 4951 n/a n/a 4951 n/a n/a 3906 n/a n/a 3907 n/a n/a 3908 n/a n/a 3909 n/a n/a 3955 n/a n/a 3904 n/a n/a 3953 n/a n/a 3954 n/a n/a 3951 n/a n/a 3951 n/a n/a 3951 n/a n/a 391F n/a n/a n/a n/a n/a 491F n/a n/a 491F n/a n/a 490F n/a			
10			
1987	4802	n/a	n/a
1951			
3906 n/a			
1995 10	3906	n/a	n/a
3955 n/a n/a 3904 n/a n/a 3904 n/a n/a 3953 n/a n/a 3951 n/a n/a 3951 n/a n/a 3951 n/a n/a 391E n/a n/a n/a n/a n/a 491F n/a n/a 4905 n/a n/a 4901 n/a n/a 4902 74.27 72.99 4904 n/a n/a 491D 74.73 73.34 491B n/a n/a 491B n/a n/a 491B n/a n/a 491A n/a n/a 2703 n/a n/a 2704 n/			
1994			
3953 n/a n/a n/a n/a 3901 n/a n/a n/a 3901 n/a n/a n/a 3911 n/a n/a n/a n/a n/a n/a 1915 n/a n/a n/a 1916 1917 192 193 194			
3954 n/a n/a n/a n/a n/a 3951 n/a n/a </td <td></td> <td></td> <td></td>			
3951	3954	n/a	
391E			
391F			
4905 n/a n/a 4901 n/a n/a 491E n/a n/a 4902 74.27 72.99 4904 n/a n/a 491D n/a n/a 491C n/a n/a 491D n/a n/a 491C n/a n/a 491C n/a n/a 491C n/a n/a 491B n/a n/a 491C n/a n/a 191A n/a </td <td>391F</td> <td>n/a</td> <td>n/a</td>	391F	n/a	n/a
4901 n/a n/a 491E n/a n/a 4902 74.27 72.99 4904 n/a n/a 491D n/a n/a 491C n/a n/a 491B n/a n/a 491A n/a n/a 491A n/a n/a 2755 n/a n/a 2703 n/a n/a 2703 n/a n/a 2704 n/a n/a 2705 n/a n/a 2706 n/a n/a 2707 n/a n/a 2708 n/a n/a 2709 n/a n/a 2700 n/a n/a 2703 n/a n/a 2765 n/a n/a n/a n/a n/a 2753 n/a n/a 2754 n/a n/a 3756 n/a <td></td> <td></td> <td></td>			
491E n/a n/a 4902 74.27 72.99 4904 n/a n/a 491D n/a n/a 4910 74.73 73.34 491C n/a n/a 491B n/a n/a 491A n/a n/a 2755 n/a n/a 2708 n/a n/a 2708 n/a n/a 2708 n/a n/a 2708 n/a n/a 2709 n/a n/a 2700 n/a n/a 2703 n/a n/a 2704 n/a n/a 2862 n/a n/a n/a 2753 n/a n/a n/a 2704 n/a n/a n/a 2704 n/a n/a n/a 2754 n/a n/a n/a 3751 n/a n/a n/a 3701 n/a n/a n/a 3702 n/a <td></td> <td></td> <td></td>			
4904 n/a n/a n/a 491D n/a n/a n/a 491C n/a n/a n/a 491B n/a n/a n/a 491A n/a n/a n/a 2755 n/a n/a n/a 2708 n/a n/a n/a 2709 n/a n/a n/a 2703 n/a n/a n/a 2765 n/a n/a n/a 2765 n/a n/a n/a 2862 n/a n/a n/a 2753 n/a n/a n/a 2805 n/a n/a n/a 2704 n/a n/a n/a 2754 n/a n/a n/a 3756 n/a n/a n/a 3701 n/a n/a n/a 3704 n/a n/a n/a 3705 n/a n/a n/a 3702 n/a n/a n/a <td< td=""><td>491E</td><td>n/a</td><td>n/a</td></td<>	491E	n/a	n/a
491D n/a n/a 4910 74.73 73.34 491E n/a n/a 491B n/a n/a 491A n/a n/a 2755 n/a n/a 2708 n/a n/a 2703 n/a n/a 2765 n/a n/a 2862 n/a n/a 2753 n/a n/a 2805 n/a n/a 2704 n/a n/a 2754 n/a n/a 3756 n/a n/a 3701 n/a n/a 3704 n/a n/a 3704 n/a n/a 3705 n/a n/a 3702 n/a n/a 3703 n/a n/a 3705 n/a n/a 3706 n/a n/a 371B n/a n/a 3703 n/a n/a 3754 n/a n/a			
4910 74.73 73.34 491C n/a n/a 491B n/a n/a 491A n/a n/a 2755 n/a n/a 2708 n/a n/a 2703 n/a n/a 2765 n/a n/a 2862 n/a n/a 2753 n/a n/a 2805 n/a n/a 2704 n/a n/a 2754 n/a n/a 3756 n/a n/a 3701 n/a n/a 3751 n/a n/a 3704 n/a n/a 3705 n/a n/a 3702 n/a n/a 3703 n/a n/a 3705 n/a n/a 371B n/a n/a 3754 n/a n/a 3754 n/a n/a			
491B n/a n/a 491A n/a n/a 2755 n/a n/a 2708 n/a n/a 2703 n/a n/a 2704 n/a n/a 2753 n/a n/a 2805 n/a n/a 2704 n/a n/a 2754 n/a n/a 3756 n/a n/a 3701 n/a n/a 3751 n/a n/a 3704 n/a n/a 3857 n/a n/a 3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3757 n/a n/a 371B n/a n/a 3754 n/a n/a 3754 n/a n/a	4910	74.73	73.34
491A n/a n/a 2755 n/a n/a 2708 n/a n/a 2703 n/a n/a 2765 n/a n/a 2862 n/a n/a 2753 n/a n/a 2805 n/a n/a 2704 n/a n/a 2754 n/a n/a 3756 n/a n/a 3701 n/a n/a 3704 n/a n/a 3704 n/a n/a 3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 371B n/a n/a 3754 n/a n/a			
2755 n/a n/a 2708 n/a n/a 2703 n/a n/a 2765 n/a n/a 2862 n/a n/a 2753 n/a n/a 2805 n/a n/a 2704 n/a n/a 2754 n/a n/a 3756 n/a n/a 3701 n/a n/a 3701 n/a n/a 3704 n/a n/a 3704 n/a n/a 3704 n/a n/a 3702 n/a n/a 3703 n/a n/a 3757 n/a n/a 3705 n/a n/a 3710 n/a n/a 3703 n/a n/a 3754 n/a n/a	491A	n/a	n/a
2703 n/a n/a 2765 n/a n/a 2862 n/a n/a 2753 n/a n/a 2805 n/a n/a 2704 n/a n/a 2754 n/a n/a 3756 n/a n/a 3701 n/a n/a 3701 n/a n/a 3751 n/a n/a 3704 n/a n/a 3857 n/a n/a 3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3706 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a		n/a	
2765 n/a n/a 2862 n/a n/a 2753 n/a n/a 2805 n/a n/a 2704 n/a n/a 2754 n/a n/a 3756 n/a n/a 3701 n/a n/a 3701 n/a n/a 3751 n/a n/a 3704 n/a n/a 3857 n/a n/a 3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a			
2753 n/a n/a 2805 n/a n/a 2704 n/a n/a 2754 n/a n/a 3756 n/a n/a 3701 n/a n/a 3751 n/a n/a 3704 n/a n/a 3704 n/a n/a 3702 n/a n/a 3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a	2765	n/a	n/a
2805 n/a n/a n/a 2704 n/a n/a n/a 2754 n/a n/a n/a 3756 n/a n/a n/a 3701 n/a n/a n/a 3751 n/a n/a n/a 3704 n/a n/a n/a 3857 n/a n/a n/a 3702 n/a n/a n/a 3807 n/a n/a n/a 3752 n/a n/a n/a 3753 n/a n/a n/a 3706 n/a n/a n/a 371B n/a n/a n/a 3703 n/a n/a n/a 3754 n/a n/a n/a			
2704 n/a n/a 2754 n/a n/a 3756 n/a n/a 3701 n/a n/a 3701 n/a n/a 3702 n/a n/a 3857 n/a n/a 3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 371B n/a n/a 3703 n/a n/a 3754 n/a n/a			
3756 n/a n/a 3701 n/a n/a 3751 n/a n/a 3704 n/a n/a 3857 n/a n/a 3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 3757 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a	2704	n/a	n/a
3701 n/a n/a 3751 n/a n/a 3704 n/a n/a 3857 n/a n/a 3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 3757 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a			
3751 n/a n/a 3704 n/a n/a 3857 n/a n/a 3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 3757 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a	3701		
3857 n/a n/a 3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 3757 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a	3751	n/a	n/a
3702 n/a n/a 3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 3757 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a			
3807 n/a n/a 3752 n/a n/a 3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 3757 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a	3702	n/a	n/a
3753 n/a n/a 3705 n/a n/a 3706 n/a n/a 3757 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a	3807	n/a	n/a
3705 n/a n/a 3706 n/a n/a 3757 n/a n/a 371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a			
3757n/an/a371Bn/an/a3703n/an/a371Cn/an/a3754n/an/a	3705	n/a	n/a
371B n/a n/a 3703 n/a n/a 371C n/a n/a 3754 n/a n/a			
3703 n/a n/a 371C n/a n/a 3754 n/a n/a			
3754 n/a n/a	3703	n/a	n/a
T 11/4	3754 371A	n/a n/a	n/a n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
3758	n/a	n/a
1652	75.9	74.51
1855	n/a	n/a
1852 1702	n/a n/a	n/a n/a
1701	76.08	74.43
2654 2855	75.7 n/a	74.3 n/a
2653	75.82	74.39
2656	75.7	74.62
271C 2707	n/a n/a	n/a n/a
2706	n/a	n/a
2757 2756	n/a n/a	n/a n/a
2851	n/a	n/a
2705	75.21	73.49
2801 2601	n/a n/a	n/a n/a
2651	n/a	n/a
271B 2701	n/a n/a	n/a n/a
2751	n/a	n/a
2702	n/a	n/a
2804 2863	n/a n/a	n/a n/a
271A	n/a	n/a
2752 1951	n/a n/a	n/a
1951	n/a n/a	n/a n/a
291C	n/a	n/a
291B 291D	n/a n/a	n/a n/a
2955	n/a	n/a
2903 2953	n/a n/a	n/a n/a
2902	n/a	n/a n/a
2952	n/a	n/a
29608 2956	n/a n/a	n/a n/a
2909	n/a	n/a
2901 2951	n/a n/a	n/a n/a
291A	n/a	n/a
3956	n/a	n/a
391A 391B	n/a n/a	n/a n/a
391C	n/a	n/a
391D 3952	n/a n/a	n/a n/a
1853	n/a	n/a
1801	n/a	n/a
2906 2854	n/a n/a	n/a n/a
2803	n/a	n/a
2905 2904	n/a n/a	n/a n/a
2860	n/a	n/a
2853 2802	n/a n/a	n/a n/a
2954	n/a n/a	n/a
2852	n/a	n/a
2907 2856	n/a n/a	n/a n/a
2806	n/a	n/a
2859 2857	n/a n/a	n/a n/a
2858	n/a	n/a
281A	n/a	n/a
291E 2861	n/a n/a	n/a n/a
3805	n/a	n/a
3855 3854	n/a n/a	n/a n/a
3804	n/a	n/a
3858	n/a	n/a
3803 3802	n/a n/a	n/a n/a
3852	n/a	n/a
0801 1651	n/a 75.93	n/a 74.58
1551	75.64	74.66
1851 0802	n/a n/a	n/a n/a
0901	n/a n/a	n/a n/a
0902	n/a	n/a
1954 1955	n/a n/a	n/a n/a
1854	n/a	n/a
1953 1952	n/a n/a	n/a n/a
1902	n/a	n/a
4501	72.26	70.8


Manhole Reference	Manhole Cover Level	Manhole Invert Level
451B	n/a	n/a
4654	74.27	72.8
4602	74.2	72.05
4553	73.2	71.65
4652	74.11	72.36
4508	n/a	n/a
		70.89
4452	n/a	
4601	74.05	72.33
4552	72.4	70.88
4502	n/a	n/a
451A	n/a	n/a
351D	n/a	n/a
351A	n/a	n/a
4506	73.07	71
351B	n/a	n/a
4554	72.75	71.38
3557	73.37	71.93
351H	n/a	n/a
4555	73.15	71.55
3505	n/a	n/a
3555	n/a	n/a
3602	n/a	n/a
461E	n/a	n/a
461F	n/a	n/a
4651	n/a	n/a
2501	74.36	72.4
3550	74.35	72.69
3501	74.39	72.46
351C	n/a	n/a
3502	n/a	n/a
3551	74.36	72.52
351G	n/a	n/a
351F	n/a	n/a
3503	n/a	n/a
3553	n/a	n/a
351E	n/a	n/a
3504	n/a	n/a
3554	n/a	n/a
3506	n/a	n/a
3556	n/a	n/a
2652	n/a	n/a
3603	n/a	n/a
3652	n/a	n/a
3601	n/a	n/a
3651	n/a	n/a
1650	75.49	74.53
2550	75.19	73.67
251B	n/a	n/a
2503	75.06	73.66
251A	n/a	n/a
2502	74.79	73.48
2551	74.76	73.13
251C	n/a	n/a
0550	76.63	75.2
1550	75.62	74.47
The position of the apparatus shown on this plan i		

Manhole Reference	Manhole Cover Level	Manhole Invert Level
6503	n/a	n/a
6557	n/a	n/a
6507 6501	n/a n/a	n/a n/a
6550	n/a	n/a
6556	n/a	n/a
6554	n/a	n/a
6504	n/a	n/a
6506	n/a	n/a
5550	n/a	n/a
6555 6505	n/a n/a	n/a n/a
5654	73.28	71.07
5605	73.18	69.18
661C	n/a	n/a
561C	n/a	n/a
661H	n/a	n/a
661D	n/a	n/a
661E 661G	n/a n/a	n/a n/a
5604	73.08	70.11
5653	73.07	71.09
661A	n/a	n/a
5652	73.72	71.92
5603	73.2	70.26
661F	n/a	n/a
661B 5758	n/a	n/a
5758 571C	n/a n/a	n/a n/a
5764	n/a	n/a
5752	73.67	71.27
5702	73.65	70.6
5753	73.7	71.25
5703	73.7	70.55
5651	73.37	71.17
5601 5602	73.47 73.32	70.32 70.32
5852	n/a	n/a
581A	n/a	n/a
581C	n/a	n/a
5853	n/a	n/a
5757	n/a	n/a
5756	n/a	n/a
581B 5762	n/a n/a	n/a n/a
5763	n/a	n/a
5759	n/a	n/a
561A	n/a	n/a
561B	n/a	n/a
5761	n/a	n/a
5760 6701	n/a n/a	n/a n/a
6701 671A	n/a	n/a n/a
671B	n/a	n/a
5656	73.71	72.13
5705	74.12	71.32
5704	74.05	71.15
5754 574 B	74.13	71.98
571B 571A	n/a n/a	n/a n/a
571A 5755	73.38	72.58
5751	73.41	71.45
5701	73.38	70.88
5851	73.65	71.57
5801	73.66	71.09
581D	n/a	n/a
7550 7551	n/a n/a	n/a n/a
7501 7501	n/a n/a	n/a n/a
5551	n/a	n/a
5554	n/a	n/a
651B	n/a	n/a
651A	n/a	n/a
6557	n/a	n/a
6551 6502	n/a	n/a
6502 6553	n/a n/a	n/a n/a
6552	n/a n/a	n/a n/a
751A	n/a	n/a
5655	73.77	71.9
	n/a	n/a
551A		
551A 5553 5501	72.54 72.36	70.01 69.84

Public Sewer Types (Operated & Maintained by Thames Water)

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Air Valve

Dam Chase

Fitting

Meter

♦ Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Control Valve

Drop Pipe

Ancillary

✓ Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

**** ✓ Outfall

Combined Rising Main

Proposed Thames Water

Undefined End

✓ Inle

Notes:

----- Vacuum

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.

Surface Water Rising

Sludge Rising Main

- Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Other Symbols

Symbols used on maps which do not fall under other general categories

▲ / ▲ Public/Private Pumping Station

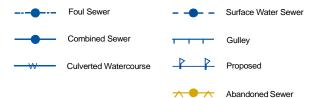
* Change of characteristic indicator (C.O.C.I.)

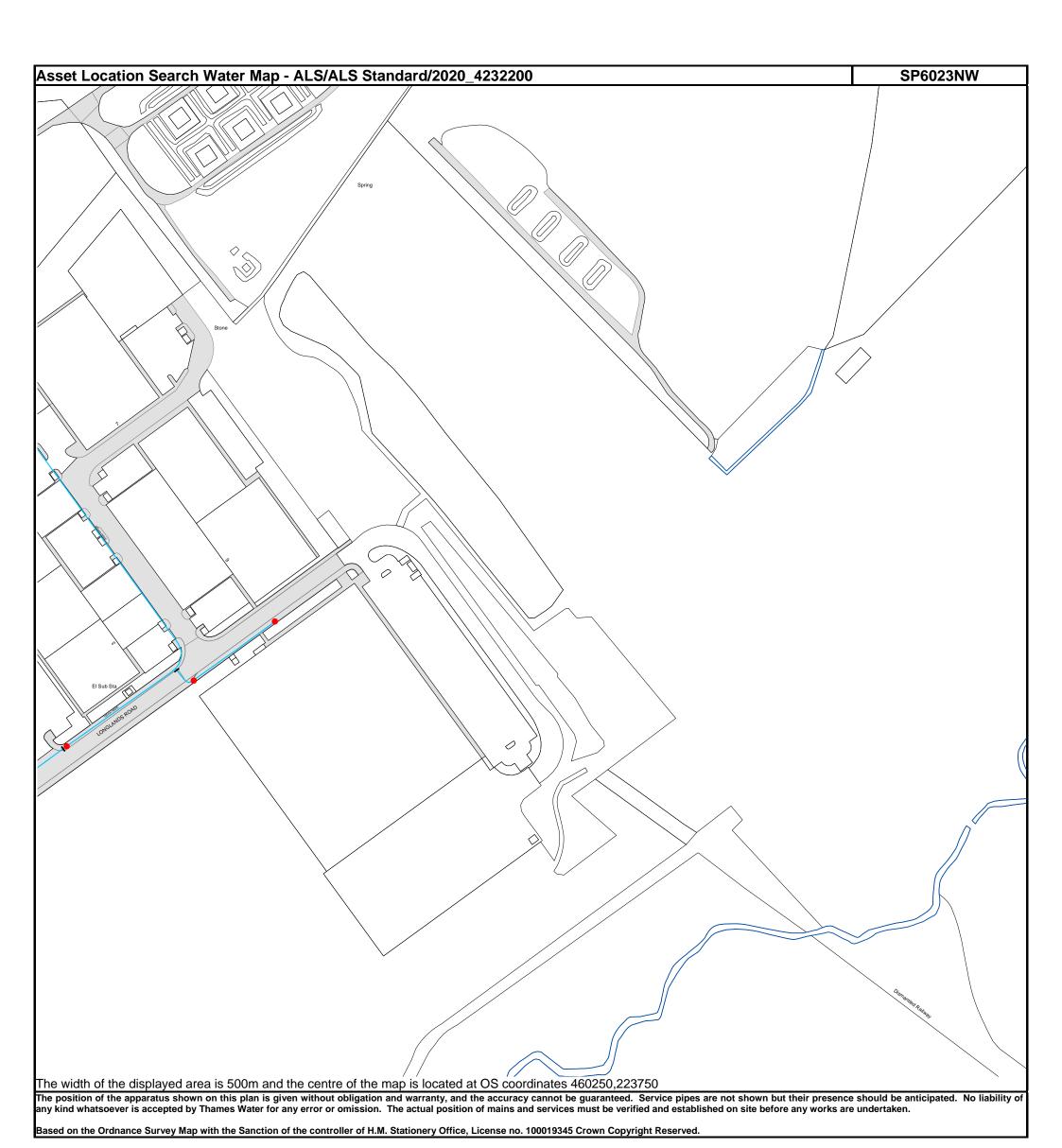
< Summit

Areas

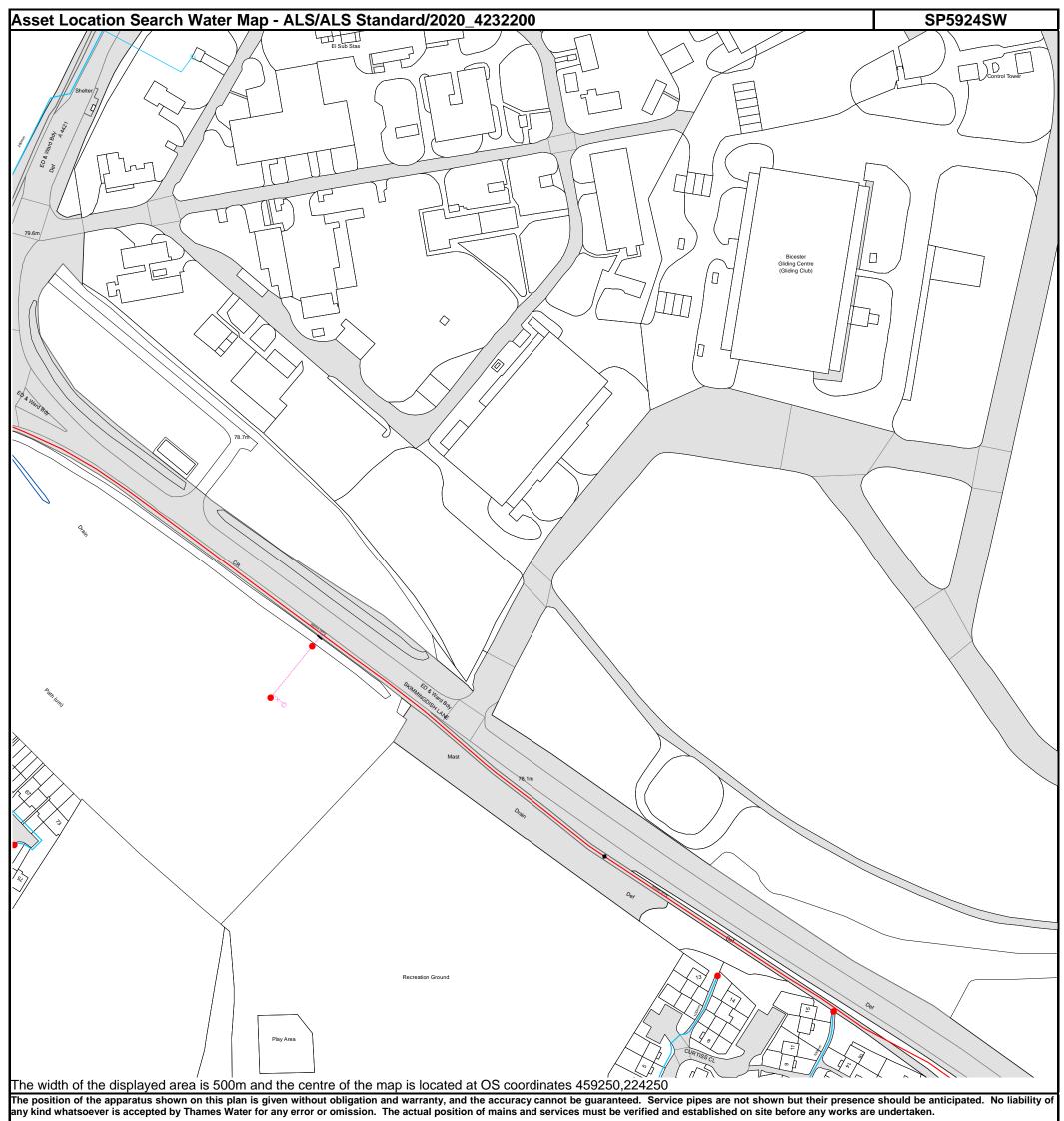
Lines denoting areas of underground surveys, etc.

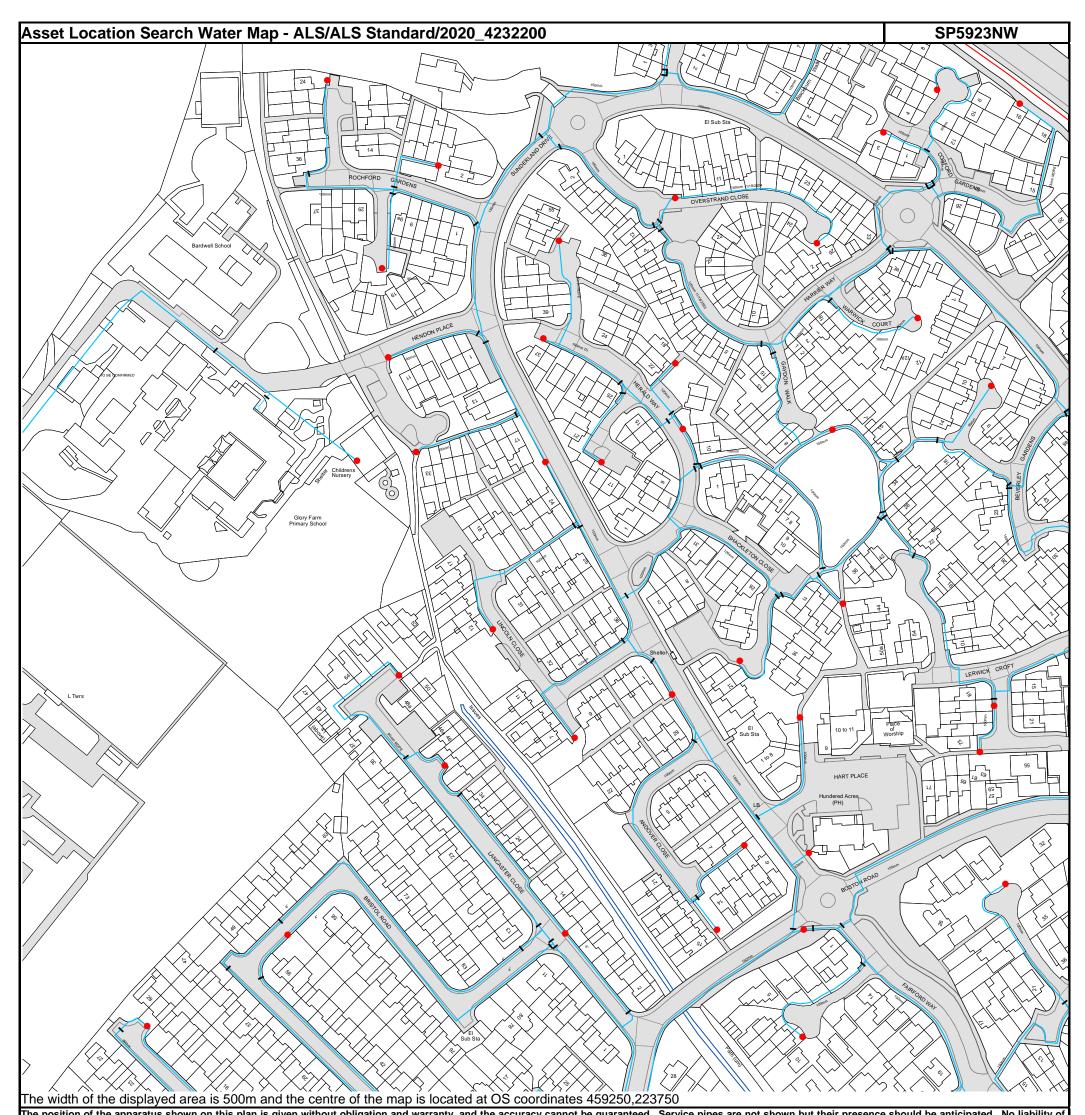
Agreement

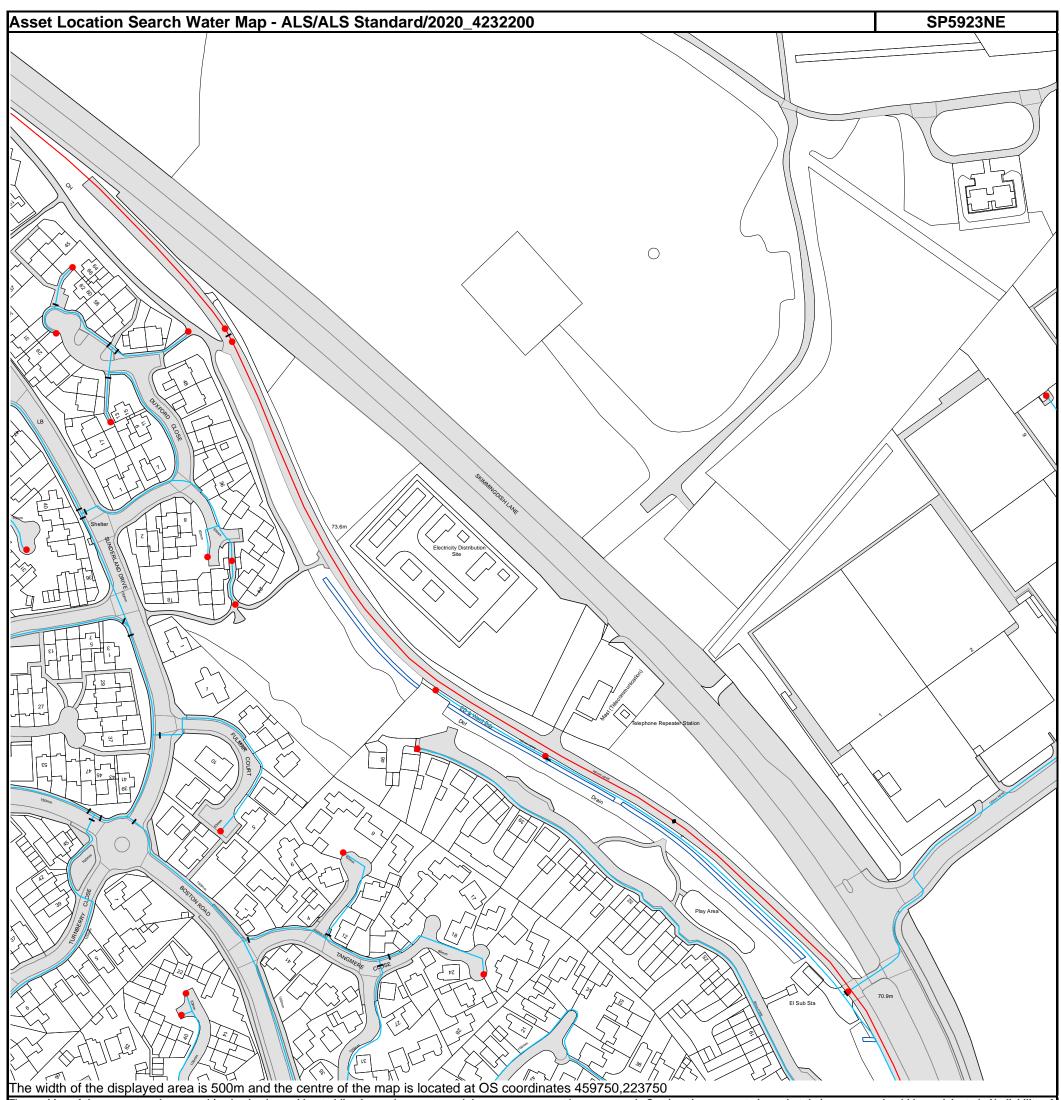

/// Operational Site


:::::: Chamber

Tunnel


Conduit Bridge


Other Sewer Types (Not Operated or Maintained by Thames Water)



<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

Water Pipes (Operated & Maintained by Thames Water)

	F (-)
4"	Distribution Main: The most common pipe shown on water maps. With few exceptions, domestic connections are only made to distribution mains.
16"	Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
3" SUPPLY	Supply Main: A supply main indicates that the water main is used as a supply for a single property or group of properties.
3" FIRE	Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
3" METERED	Metered Pipe: A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
	Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
	Proposed Main: A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND
Up to 300mm (12")	900mm (3')
300mm - 600mm (12" - 24")	1100mm (3' 8")
600mm and bigger (24" plus)	1200mm (4')

Valves Operational Sites General PurposeValve **Booster Station** Air Valve Other Pressure ControlValve Other (Proposed) Customer Valve Pumping Station Service Reservoir **Hydrants** Shaft Inspection Single Hydrant Treatment Works Meters Unknown Meter Water Tower **End Items Other Symbols** Symbol indicating what happens at the end of ^L a water main. Data Logger Blank Flange Capped End Emptying Pit Undefined End Manifold Customer Supply

Fire Supply

Other \	Water Pipes (Not Operated or Maintained by Thames Water
	water pipes may o area. These mains	pany Main: Occasionally other water company verlap the border of our clean water coverage are denoted in purple and in most cases have be displayed along them.
	by Thames Water.	tes that the water main in question is not owned These mains normally have text associated with diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to 'Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

INVOICE

Andrew Collins

Ridge & Partners LLP Thames Water Utilities Ltd.

PO Box 3189

Oxford Road Slough Woodstock SL1 4WW

OX20 1QR

Invoice No: ADS20405852

Our Ref: ALS/ALS

Standard/2020_4232200

Customer Number: ADS119185 Posting Date: 14-08-2020 Purchase Order No: Due Date: 28-08-2020

Search Address Supplied: 459787 223840, Land Adjacent To Oxford Vitality, Unit 4, Longlands

Road, Launton, Bicester, OX26 5AH

Description of ChargesQtyUnit PriceVAT (20%)Amount (Inc VAT)Asset Location Search1£49.80£9.96£59.76

Thank you for your payment of 000000,1111111

Customer Reference: 5012836

£59.76

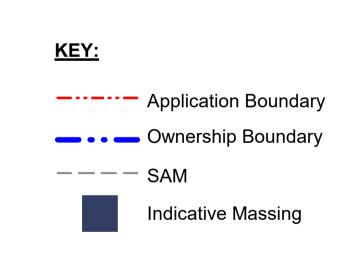
OUTSTANDING AMOUNT (Inc. VAT)

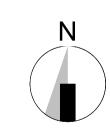
£0.00

Please send any outstanding amount to Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW.

For queries please contact the Property Searches Customer Support Team on Tel: 0845 070 9148.

VAT Reg. No GB 537456915


 \gg


APPENDIX D - OUTLINE DRAINAGE STRATEGY

APPENDIX E - ARCHITECTS SITE LAYOUT

Experience Quarter - Indicative Layout Plan

PLANNING

PROJECT: ORG: ZONE: LEVEL: TYPE: 5002854-RDG-Z01-ST-PL-A-0030 REV: G 15/04/2019

G Car park Update
F Application Boundary Line, Buckingham Road Entrance Update
E Runway & Tracks Update
D Status and Graphic Update
C Track naming updated
B Application boundary line and ownership boundary line updated
A

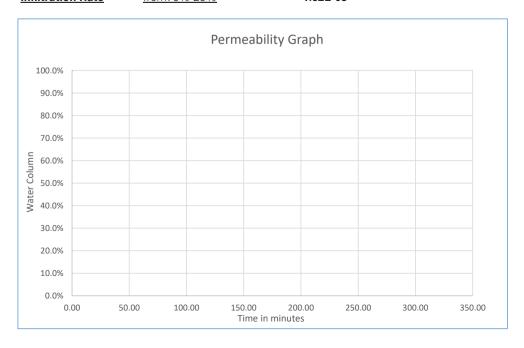
THE COWYARDS BLENHEIM PARK, OXFORD ROAD WOODSTOCK OX20 1QR

TEL NO: 01993815000 WWW.RIDGE.CO.UK

RIDGE

APPENDIX F - PERCOLATION TEST RESULTS

Soakaway Test Results & Soil Infiltration Rate Bicester Heritage - Experience Quarter Project: 5013504 Hole ID: TP1


Test 1

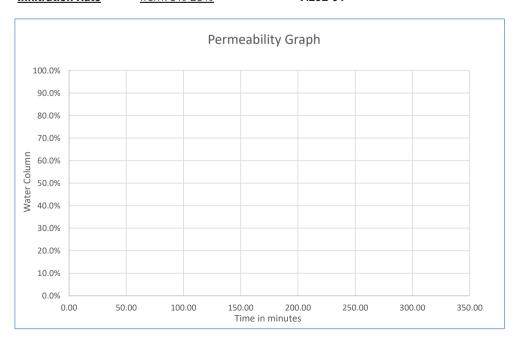
Time in minutes	Depth in metres to	Depth in metres of	Percentage of water
Time in minutes	water surface	water	depth at start
0.00	0.140	0.46	100.0%
2.00	0.005	0.60	129.3%
2.20	0.000	0.60	130.4%
		0.60	130.4%
		0.60	130.4%
		0.60	130.4%
		0.60	130.4%
		0.60	130.4%
		0.60	130.4%
		0.60	130.4%
		0.60	130.4%
		0.60	130.4%
		0.60	130.4%
		0.60	130.4%
	- 	0.60	130.4%
		0.60	130.4%
	; 	0.60	130.4%
	<u> </u>	0.60	130.4%
		0.60	130.4%
	.		100.470
			<u> </u>
			ļ
	<u> </u>	 	! !
		 	i
		i 	i !
		 	¦
		 	
	<u> </u>	i 	<u> </u>
	<u> </u>	 	<u> </u>
	 	 	<u> </u>
	-	i 	ļ
305.00	1.820	-1.22	-265.2%

INFILTRATION CALCULATED FROM 75%-25% WATER DEPTH RANGE

Pit Size		Time in mins
Length	1.20	0.55 75%
Width	0.60	1. <mark>65</mark> 25%
Depth	0.60	

Infiltration Rate from 75%-25% 1.62E-03

Soakaway Test Results & Soil Infiltration Rate Bicester Heritage - Experience Quarter Project: 5013504 Hole ID: TP1


Test

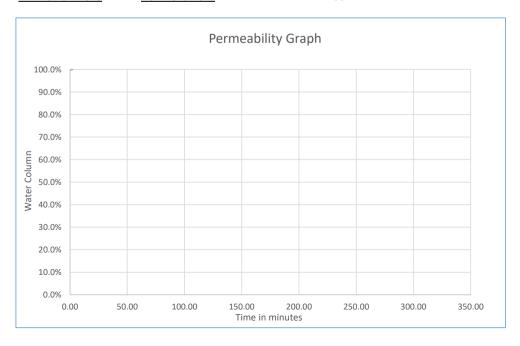
Time in minutes	Depth in metres to	Depth in metres of	Percentage of water
Time in minutes	water surface	water	depth at start
0.00	0.150	0.45	100.0%
2.00	0.080	0.52	115.6%
4.00	0.005	0.60	132.2%
4.87	0.000	0.60	133.3%
	 	0.60	133.3%
	 	0.60	133.3%
	1 	0.60	133.3%
	1 !	0.60	133.3%
	†	0.60	133.3%
	 	0.60	133.3%
	 	0.60	133.3%
	†	0.60	133.3%
	 	0.60	133.3%
	!	0.60	133.3%
	†	0.60	133.3%
		0.60	133.3%
	!	0.60	133.3%
	¦ ¦	0.60	133.3%
		0.60	133.3%
	† !		
	<u> </u>		
			
	 	} !	
	!		<u> </u>
		 	<u> </u>
	i !	i 	i ! !
	 		ļ
]	 	! !
	!	 	
	<u>i</u>	 	i !
	1	L	
205.00	1 020	1 22	271 10/
305.00	1.820	-1.22	-271.1%

INFILTRATION CALCULATED FROM 75%-25% WATER DEPTH RANGE

Pit Size		Time in mins
Length	1.20	1. 22 75%
Width	0.60	3.65 25%
Depth	0.60	

<u>Infiltration Rate</u> <u>from75%-25%</u> **7.26E-04**

Soakaway Test Results & Soil Infiltration Rate Bicester Heritage - Experience Quarter Project: 5013504 Hole ID: TP3


Test 1

Time in minutes	Depth in metres to	Depth in metres of	Percentage of water
	water surface	water	depth at start
0.00	0.300	0.90	100.0%
2.00	0.300	0.90	100.0%
4.00	0.293	0.91	100.8%
6.00	0.293	0.91	100.8%
8.00	0.293	0.91	100.8%
10.00	0.293	0.91	100.8%
15.00	0.293	0.91	100.8%
20.00	0.293	0.91	100.8%
25.00	0.291	0.91	101.0%
30.00	0.291	0.91	101.0%
40.00	0.291	0.91	101.0%
50.00	0.290	0.91	101.1%
60.00	0.290	0.91	101.1%
80.00	0.285	0.92	101.7%
100.00	0.281	0.92	102.1%
134.00	0.255	0.95	105.0%
324.00	0.170	1.03	114.4%
		1.20	133.3%
	 	1.20	133.3%
			!
	<u> </u>		i
	 		
			 !
	<u> </u>		<u>i</u>
			! !
	 		
			i
	 		
	ļ		
		<u> </u>	i !
	ļ		
305.00	1.820	-0.62	-68.9%

INFILTRATION CALCULATED FROM 75%-25% WATER DEPTH RANGE

	Pit Size	Time in mins
Length	1.20	81 75%
Width	0.60	243 25%
Depth	1.20	

<u>Infiltration Rate</u> <u>from75%-25%</u> **1.42E-05**

APPENDIX G - MICRODRAINAGE CALCULATIONS

Ridge and Partners LLP		Page 1
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Eastern Infiltration Basin	Micro
Date 03/12/2021 10:38	Designed by A Collins	Drainage
File 5013504 Eastern Infiltration Basin P01.SRCX	Checked by S Watts	Diamage
Innovyze	Source Control 2020.1	

Rainfall Details

Rainfall Model FSR M5-60 (mm) 20.000 Winter Storms Yes Shortest Storm (mins) 15
Return Period (years) 100 Ratio R 0.400 Cv (Summer) 1.000 Longest Storm (mins) 10080
Region England and Wales Summer Storms Yes Cv (Winter) 1.000 Climate Change % +40

Time Area Diagram

Total Area (ha) 0.185

				(mins)				
From:				To:				
0	5	0.063	5	10	0.061	10	15	0.061

Ridge and Partners LLP	Page 2	
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Eastern Infiltration Basin	Micro
Date 03/12/2021 10:38	Designed by A Collins	Drainage
File 5013504 Eastern Infiltration Basin P01.SRCX	Checked by S Watts	Dialiage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 78.100

<u>Infiltration Basin Structure</u>

Invert Level (m) 76.100 Infiltration Coefficient Side (m/hr) 0.03600 Porosity 1.00 Infiltration Coefficient Base (m/hr) 0.03600 Safety Factor 2.0

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 12.5 2.000 314.0

Pump Outflow Control

Invert Level (m) 76.100

Depth (m)	Flow (1/s)	Depth (m)	Flow $(1/s)$	Depth (m)	Flow (1/s)						
0.100	0.0000	0.600	0.0000	1.100	0.0000	1.600	0.0000	2.100	0.0000	2.600	0.0000
0.200	0.0000	0.700	0.0000	1.200	0.0000	1.700	0.0000	2.200	0.0000	2.700	0.0000
0.300	0.0000	0.800	0.0000	1.300	0.0000	1.800	0.0000	2.300	0.0000	2.800	0.0000
0.400	0.0000	0.900	0.0000	1.400	0.0000	1.900	0.0000	2.400	0.0000	2.900	0.0000
0.500	0.0000	1.000	0.0000	1.500	0.0000	2.000	0.0000	2.500	0.0000	3.000	0.0000

Ridge and Partners LLP		Page 1
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Eastern Infiltration Basin	Micro
Date 03/12/2021 10:35	Designed by A Collins	Drainage
File 5013504 Eastern Infiltration Ba	Checked by S Watts	Diali lade
Innovyze	Source Control 2020.1	

Half Drain Time : 607 minutes.

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
1 -		~	77 160	1 060	1 4	0 0	1 4	60.4	0 77
			77.168		1.4		1.4		0 K
			77.308		1.7		1.7		O K
			77.428		1.9	0.0	1.9		O K
			77.524		2.0	0.0	2.0		O K
			77.566		2.1	0.0	2.1		O K
240	min S	Summer	77.586	1.486	2.1	0.0	2.1	128.9	O K
360	min S	Summer	77.602	1.502	2.2	0.0	2.2	132.1	O K
480	min S	Summer	77.603	1.503	2.2	0.0	2.2	132.4	O K
600	min S	Summer	77.601	1.501	2.2	0.0	2.2	132.1	O K
720	min S	Summer	77.598	1.498	2.2	0.0	2.2	131.4	O K
960	min S	Summer	77.589	1.489	2.1	0.0	2.1	129.6	O K
1440	min S	Summer	77.563	1.463	2.1	0.0	2.1	124.4	O K
2160	min S	Summer	77.515	1.415	2.0	0.0	2.0	115.4	O K
2880	min S	Summer	77.467	1.367	1.9	0.0	1.9	106.7	O K
4320	min S	Summer	77.376	1.276	1.8	0.0	1.8	91.7	ОК
5760	min S	Summer	77.297	1.197	1.6	0.0	1.6	79.7	ОК
7200	min S	Summer	77.227	1.127	1.5	0.0	1.5	70.0	ОК
8640	min S	Summer	77.166	1.066	1.4	0.0	1.4	62.1	ОК
10080	min S	Summer	77.111	1.011	1.4	0.0	1.4	55.6	ОК
15	min V	Winter	77.168	1.068	1.4	0.0	1.4	62.4	ОК
30	min V	Winter	77.309	1.209	1.7	0.0	1.7	81.4	ОК
60	min V	Winter	77.428	1.328	1.9	0.0	1.9	100.1	ОК
			77.525		2.0	0.0	2.0	117.3	ОК
			77.568		2.1	0.0	2.1	125.3	O K
			77.589		2.1	0.0	2.1	129.5	O K
			77.606		2.2	0.0	2.2	133.0	O K
200	111211 1	******	, , . 000	± . 5 0 0	2.2	0.0	2.2	100.0	0 10

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			138.153	0.0	63.0	29
			90.705	0.0	80.4	43
			56.713		104.9	72
			34.246	0.0	126.7	130
180	min	Summer	25.149	0.0	139.6	188
240	min	Summer	20.078	0.0	148.6	246
360	min	Summer	14.585	0.0	161.9	362
480	min	Summer	11.622	0.0	172.0	446
600	min	Summer	9.738	0.0	180.0	500
720	min	Summer	8.424	0.0	186.8	562
960	min	Summer	6.697	0.0	197.0	690
1440	min	Summer	4.839	0.0	208.7	964
2160	min	Summer	3.490	0.0	232.5	1372
2880	min	Summer	2.766	0.0	245.6	1784
4320	min	Summer	1.989	0.0	265.0	2560
5760	min	Summer	1.573	0.0	279.4	3344
7200	min	Summer	1.311	0.0	290.9	4104
8640	min	Summer	1.129	0.0	300.6	4840
10080	min	Summer	0.994	0.0	309.0	5552
15	min	Winter	138.153	0.0	63.0	29
30	min	Winter	90.705	0.0	80.4	43
60	min	Winter	56.713	0.0	104.9	72
120	min	Winter	34.246	0.0	126.7	128
180	min	Winter	25.149	0.0	139.6	184
240	min	Winter	20.078	0.0	148.6	240
360	min	Winter	14.585	0.0	161.9	352
		(C)	1982-20	20 Inno	VVZE	

©1982-2020 Innovyze

Ridge and Partners LLP		Page 2
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Eastern Infiltration Basin	Micro
Date 03/12/2021 10:35	Designed by A Collins	Drainage
File 5013504 Eastern Infiltration Ba	Checked by S Watts	Dialilade
Innovyze	Source Control 2020.1	

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
480 min Winte	r 77.608	1.508	2.2	0.0	2.2	133.4	O K
600 min Winte	r 77.603	1.503	2.2	0.0	2.2	132.3	O K
720 min Winte	r 77.598	1.498	2.2	0.0	2.2	131.3	O K
960 min Winte	r 77.584	1.484	2.1	0.0	2.1	128.6	O K
1440 min Winte	r 77.546	1.446	2.1	0.0	2.1	121.2	O K
2160 min Winte	r 77.479	1.379	2.0	0.0	2.0	108.9	O K
2880 min Winte	r 77.412	1.312	1.8	0.0	1.8	97.5	O K
4320 min Winte	r 77.291	1.191	1.6	0.0	1.6	78.7	O K
5760 min Winte	r 77.186	1.086	1.5	0.0	1.5	64.7	O K
7200 min Winte	r 77.097	0.997	1.3	0.0	1.3	54.0	O K
8640 min Winte	r 77.019	0.919	1.2	0.0	1.2	45.7	O K
10080 min Winte	r 76.952	0.852	1.1	0.0	1.1	39.2	O K

	Stor	m	Rain		Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
480	min	Winter	11.622	0.0	172.0	460
600	min	Winter	9.738	0.0	180.0	554
720	min	Winter	8.424	0.0	186.8	576
960	min	Winter	6.697	0.0	197.0	730
1440	min	Winter	4.839	0.0	208.8	1034
2160	min	Winter	3.490	0.0	232.5	1472
2880	min	Winter	2.766	0.0	245.6	1888
4320	min	Winter	1.989	0.0	265.0	2692
5760	min	Winter	1.573	0.0	279.4	3464
7200	min	Winter	1.311	0.0	290.9	4248
8640	min	Winter	1.129	0.0	300.6	4936
10080	min	Winter	0.994	0.0	309.0	5656

Ridge and Partners LLP		Page 1
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Northern Infiltration Basin	Micro
Date 03/12/2021 12:11	Designed by A Collins	Drainage
File 5013504 Northern Infiltration B	Checked by S Watts	pianiade
Innovyze	Source Control 2020.1	1

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 100 Cv (Summer) 1.000
Region England and Wales Cv (Winter) 1.000
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.600

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	5	0.200	5	10	0.200	10	15	0.200

Ridge and Partners LLP		Page 2
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Northern Infiltration Basin	Micro
Date 03/12/2021 12:11	Designed by A Collins	Drainage
File 5013504 Northern Infiltration B	Checked by S Watts	niailiade
Innovvze	Source Control 2020.1	1

Model Details

Storage is Online Cover Level (m) 82.590

<u>Infiltration Basin Structure</u>

Invert Level (m) 80.590 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.03600

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 113.0 2.000 615.5

Pump Outflow Control

Invert Level (m) 80.590

Depth (m)	Flow (1/s)								
0.100	0.0000	0.700	0.0000	1.300	0.0000	1.900	0.0000	2.500	0.0000
0.200	0.0000	0.800	0.0000	1.400	0.0000	2.000	0.0000	2.600	0.0000
0.300	0.0000	0.900	0.0000	1.500	0.0000	2.100	0.0000	2.700	0.0000
0.400	0.0000	1.000	0.0000	1.600	0.0000	2.200	0.0000	2.800	0.0000
0.500	0.0000	1.100	0.0000	1.700	0.0000	2.300	0.0000	2.900	0.0000
0.600	0.0000	1.200	0.0000	1.800	0.0000	2.400	0.0000	3.000	0.0000

Ridge and Partners LLP		Page 1
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Northern Infiltration Basin	Micro
Date 03/12/2021 12:11	Designed by A Collins	Drainage
File 5013504 Northern Infiltration B	Checked by S Watts	pianiade
Innovyze	Source Control 2020.1	

Half Drain Time : 1025 minutes.

	Storm	n	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Qummer	81.587	n 997	2.8	0.0	2.8	204.1	ОК
			81.773		3.3	0.0	3.3		O K
			81.938		3.8	0.0	3.8		O K
			82.079		4.2	0.0	4.2		O K
			82.148		4.4	0.0	4.4		0 K
			82.187		4.5	0.0	4.5		0 K
			82.231		4.6	0.0	4.6		O K
			82.252		4.7		4.7		O K
			82.261		4.7	0.0	4.7		O K
720	min	Summer	82.262	1.672	4.7	0.0	4.7	477.9	O K
960	min :	Summer	82.258	1.668	4.7	0.0	4.7	475.9	O K
1440	min	Summer	82.244	1.654	4.6	0.0	4.6	468.8	O K
2160	min :	Summer	82.211	1.621	4.5	0.0	4.5	452.6	O K
2880	min	Summer	82.171	1.581	4.4	0.0	4.4	433.4	O K
4320	min	Summer	82.088	1.498	4.2	0.0	4.2	394.6	O K
5760	min	Summer	82.008	1.418	4.0	0.0	4.0	359.4	O K
7200	min	Summer	81.934	1.344	3.8	0.0	3.8	328.8	ОК
8640	min	Summer	81.867	1.277	3.6	0.0	3.6	302.2	ОК
10080	min	Summer	81.806	1.216	3.4	0.0	3.4	279.0	ОК
15	min 1	Winter	81.587	0.997	2.9	0.0	2.9	204.2	ОК
						0.0			ОК
						0.0			OK
8640 10080 15 30 60 120 180 240	min	Summer Summer Winter Winter Winter Winter Winter Winter	81.867	1.277 1.216 0.997 1.183 1.348 1.491 1.559 1.599	3.6	0.0 0.0 0.0	3.6	302.2 279.0 204.2 266.9 330.4 391.4 423.0	O K O K O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			138.153	0.0	168.6	29
			90.705	0.0	205.1	44
60	min	Summer	56.713	0.0	338.2	74
			34.246	0.0	398.2	132
180	min	Summer	25.149	0.0	430.6	190
240	min	Summer	20.078	0.0	452.2	248
360	min	Summer	14.585	0.0	482.0	366
480	min	Summer	11.622	0.0	502.5	484
600	min	Summer	9.738	0.0	517.1	602
720	min	Summer	8.424	0.0	527.9	708
960	min	Summer	6.697	0.0	541.5	810
1440	min	Summer	4.839	0.0	548.3	1056
2160	min	Summer	3.490	0.0	753.9	1464
2880	min	Summer	2.766	0.0	795.6	1876
4320	min	Summer	1.989	0.0	819.7	2688
5760	min	Summer	1.573	0.0	906.1	3512
7200	min	Summer	1.311	0.0	943.6	4264
8640	min	Summer	1.129	0.0	975.0	5024
10080	min	Summer	0.994	0.0	1002.2	5848
15	min	Winter	138.153	0.0	168.6	29
30	min	Winter	90.705	0.0	205.1	43
60	min	Winter	56.713	0.0	338.2	72
120	min	Winter	34.246	0.0	398.2	130
180	min	Winter	25.149	0.0	430.6	186
240	min	Winter	20.078	0.0	452.2	244
			14.585	0.0	482.0	358
		©:	1982-20	20 Inno	vyze	

Ridge and Partners LLP		Page 2
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Northern Infiltration Basin	Micro
Date 03/12/2021 12:11	Designed by A Collins	Drainage
File 5013504 Northern Infiltration B	Checked by S Watts	Dialilade
Innovyze	Source Control 2020.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
480	min	Winter	82.257	1.667	4.7	0.0	4.7	475.5	O K
600	min	Winter	82.267	1.677	4.7	0.0	4.7	480.7	O K
720	min	Winter	82.270	1.680	4.7	0.0	4.7	482.0	O K
960	min	Winter	82.262	1.672	4.7	0.0	4.7	477.9	O K
1440	min	Winter	82.240	1.650	4.6	0.0	4.6	467.1	O K
2160	min	Winter	82.194	1.604	4.5	0.0	4.5	444.1	O K
2880	min	Winter	82.138	1.548	4.3	0.0	4.3	417.7	O K
4320	min	Winter	82.024	1.434	4.0	0.0	4.0	366.6	O K
5760	min	Winter	81.918	1.328	3.7	0.0	3.7	322.2	O K
7200	min	Winter	81.822	1.232	3.5	0.0	3.5	284.8	O K
8640	min	Winter	81.735	1.145	3.2	0.0	3.2	253.4	O K
10080	min	Winter	81.658	1.068	3.0	0.0	3.0	226.9	O K

Stori Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min	Winter	11.622 9.738 8.424 6.697 4.839 3.490 2.766 1.989 1.573	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	502.4 517.1 527.9 541.5 548.4 753.9 795.6 819.9 906.1	472 584 692 892 1106 1564 2020 2864 3696
7200 min 8640 min 10080 min		1.311 1.129 0.994	0.0 0.0 0.0	943.6 975.0 1002.1	4480 5280 6056

Ridge and Partners LLP		Page 1
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Permeable Car Parking	Micro
Date 03/12/2021 12:13	Designed by A Collins	Drainage
File 5013504 Permeable Car Parking (Checked by S Watts	Diamade
Innovyze	Source Control 2020.1	1

Rainfall Details

Return Period (years) 100 Cv (Summer) 1.000
Region England and Wales Cv (Winter) 1.000
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.500

Time (mins) Area From: To: (ha)

0 5 1.500

Ridge and Partners LLP		Page 2
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Permeable Car Parking	Micro
Date 03/12/2021 12:13	Designed by A Collins	Drainage
File 5013504 Permeable Car Parking (Checked by S Watts	niailiade
Innovyze	Source Control 2020.1	1

Model Details

Storage is Online Cover Level (m) 0.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.03600	Width (m)	100.0
Membrane Percolation (mm/hr)	1000	Length (m)	127.0
Max Percolation $(1/s)$	3527.8	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	-0.480	Cap Volume Depth (m)	0.350

Pump Outflow Control

Invert Level (m) -0.480

Depth (m)	Flow (1/s)								
0.100	0.0000	0.800	0.0000	2.000	0.0000	4.000	0.0000	7.000	0.0000
0.200	0.0000	1.000	0.0000	2.200	0.0000	4.500	0.0000	7.500	0.0000
0.300	0.0000	1.200	0.0000	2.400	0.0000	5.000	0.0000	8.000	0.0000
0.400	0.0000	1.400	0.0000	2.600	0.0000	5.500	0.0000	8.500	0.0000
0.500	0.0000	1.600	0.0000	3.000	0.0000	6.000	0.0000	9.000	0.0000
0.600	0.0000	1.800	0.0000	3.500	0.0000	6.500	0.0000	9.500	0.0000

Ridge and Partners LLP		Page 1
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Permeable Car Parking	Micro
Date 03/12/2021 12:12	Designed by A Collins	Drainage
File 5013504 Permeable Car Parking (Checked by S Watts	Diamage
Innovyze	Source Control 2020.1	

Half Drain Time : 96 minutes.

	Storm Max Max Max Max		Max	Max	Max	Status			
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
			-0.372		63.5	0.0	63.5		O K
			-0.338		63.5	0.0	63.5	540.0	O K
60	min :	Summer	-0.313	0.167	63.5	0.0	63.5	635.8	O K
120	min :	Summer	-0.304	0.176	63.5	0.0	63.5	671.1	O K
180	min :	Summer	-0.306	0.174	63.5	0.0	63.5	663.9	O K
240	min :	Summer	-0.312	0.168	63.5	0.0	63.5	641.2	O K
360	min :	Summer	-0.327	0.153	63.5	0.0	63.5	584.1	O K
480	min :	Summer	-0.342	0.138	63.5	0.0	63.5	524.5	O K
600	min :	Summer	-0.357	0.123	63.5	0.0	63.5	467.0	O K
720	min :	Summer	-0.371	0.109	63.5	0.0	63.5	413.9	O K
960	min :	Summer	-0.395	0.085	63.5	0.0	63.5	323.7	O K
1440	min :	Summer	-0.425	0.055	63.5	0.0	63.5	208.8	O K
2160	min :	Summer	-0.439	0.041	51.8	0.0	51.8	154.5	O K
2880	min :	Summer	-0.447	0.033	42.2	0.0	42.2	126.4	O K
4320	min :	Summer	-0.455	0.025	31.4	0.0	31.4	93.6	O K
5760	min :	Summer	-0.460	0.020	25.1	0.0	25.1	74.5	O K
7200	min :	Summer	-0.464	0.016	20.6	0.0	20.6	62.4	ОК
8640	min :	Summer	-0.466	0.014	18.1	0.0	18.1	53.5	ОК
10080	min :	Summer	-0.467	0.013	16.2	0.3	16.2	47.7	O K
15	min N	Winter	-0.372	0.108	63.5	0.0	63.5	413.3	O K
30	min N	Winter	-0.338	0.142	63.5	0.0	63.5	540.1	O K
60	min V	Winter	-0.313	0.167	63.5	0.0	63.5	635.3	ОК
			-0.306		63.5	0.0	63.5	663.4	ОК
			-0.310		63.5	0.0	63.5	646.3	ОК
			-0.320		63.5	0.0	63.5	610.6	ОК
			-0.342		63.5	0.0	63.5	524.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak					
	Even	t	(mm/hr)	Volume	Volume	(mins)				
				(m³)	(m³)					
15	min	Summer	138.153	0.0	452.2	18				
			90.705	0.0	614.0	33				
60	min	Summer	56.713	0.0	783.7	62				
			34.246	0.0	958.7	100				
180	min	Summer	25.149	0.0	1061.5	132				
240	min	Summer	20.078	0.0	1132.9	166				
360	min	Summer	14.585	0.0	1237.7	232				
480	min	Summer	11.622	0.0	1316.6	300				
600	min	Summer	9.738	0.0	1379.4	364				
720	min	Summer	8.424	0.0	1431.9	426				
960	min	Summer	6.697	0.0	1516.4	544				
1440	min	Summer	4.839	0.0	1638.4	766				
2160	min	Summer	3.490	0.0	1762.4	1112				
2880	min	Summer	2.766	0.0	1849.8	1472				
4320	min	Summer	1.989	0.0	1968.9	2204				
5760	min	Summer	1.573	0.0	2047.6	2936				
7200	min	Summer	1.311	0.0	2103.3	3672				
8640	min	Summer	1.129	0.0	2143.8	4376				
10080	min	Summer	0.994	0.0	2173.7	5120				
15	min	Winter	138.153	0.0	452.2	18				
30	min	Winter	90.705	0.0	614.0	32				
60	min	Winter	56.713	0.0	783.7	60				
120	min	Winter	34.246	0.0	958.7	104				
180	min	Winter	25.149	0.0	1061.5	138				
240	min	Winter	20.078	0.0	1132.9	176				
360	min	Winter	14.585	0.0	1237.6	248				
	©1982-2020 Innovyze									

Ridge and Partners LLP		Page 2
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Permeable Car Parking	Micro
Date 03/12/2021 12:12	Designed by A Collins	Drainage
File 5013504 Permeable Car Parking (Checked by S Watts	Diamage
Innovyze	Source Control 2020.1	1

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
480	min N	Winter	-0.365	0.115	63.5	0.0	63.5	437.2	ОК
600	min N	Winter	-0.386	0.094	63.5	0.0	63.5	357.6	O K
720	min N	Winter	-0.404	0.076	63.5	0.0	63.5	289.0	O K
960	min N	Winter	-0.428	0.052	63.5	0.0	63.5	196.4	O K
1440	min N	Winter	-0.442	0.038	48.6	0.0	48.6	145.1	O K
2160	min N	Winter	-0.452	0.028	35.9	0.0	35.9	106.7	O K
2880	min N	Winter	-0.458	0.022	28.3	0.0	28.3	84.8	O K
4320	min N	Winter	-0.464	0.016	20.6	0.0	20.6	61.0	O K
5760	min N	Winter	-0.467	0.013	16.2	0.3	16.2	47.8	O K
7200	min N	Winter	-0.469	0.011	13.7	0.3	13.7	40.1	O K
8640	min N	Winter	-0.471	0.009	11.7	0.5	11.7	34.4	O K
10080	min N	Winter	-0.472	0.008	10.5	0.7	10.5	30.5	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
480	min	Winter	11.622	0.0	1316.6	316
600	min	Winter	9.738	0.0	1379.4	378
720	min	Winter	8.424	0.0	1431.9	434
960	min	Winter	6.697	0.0	1516.4	530
1440	min	Winter	4.839	0.0	1638.5	764
2160	min	Winter	3.490	0.0	1762.5	1124
2880	min	Winter	2.766	0.0	1850.1	1496
4320	min	Winter	1.989	0.0	1969.8	2188
5760	min	Winter	1.573	0.0	2049.3	2896
7200	min	Winter	1.311	0.0	2105.7	3672
8640	min	Winter	1.129	0.0	2146.8	4360
10080	min	Winter	0.994	0.0	2177.3	5152

Ridge and Partners LLP		Page 1
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Track Filter Drain	Micro
Date 03/12/2021 15:58	Designed by A Collins	Drainage
File 5013504 Track Filter Drain (per	Checked by S Watts	Diali lade
Innovyze	Source Control 2020.1	1

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 1.000
Region England and Wales Cv (Winter) 1.000
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 0.002

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	5	0.001	5	10	0.000	10	15	0.000

Ridge and Partners LLP		Page 2
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Track Filter Drain	Micro
Date 03/12/2021 15:58	Designed by A Collins	Drainage
File 5013504 Track Filter Drain (per	Checked by S Watts	pianiade
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 0.000

Filter Drain Structure

Infiltration Coefficient Base	(m/hr)	0.03600	Pipe Diameter (r	1) 0.300
Infiltration Coefficient Side	(m/hr)	0.03600	Pipe Depth above Invert (r	n) 0.150
Safety I	Factor	2.0	Slope (1:2	0.0
Poi	rosity	0.30	Cap Volume Depth (r	n) 0.000
Invert Leve	el (m)	-1.350	Cap Infiltration Depth (r	n) 0.000
Trench Widt	th (m)	1.2	Number of Pipe	s 1
Trench Lengt	th (m)	1.0		

Pump Outflow Control

Invert Level (m) -1.350

Depth (m)	Flow (1/s)								
0.100	0.0000	0.700	0.0000	1.300	0.0000	1.900	0.0000	2.500	0.0000
0.200	0.0000	0.800	0.0000	1.400	0.0000	2.000	0.0000	2.600	0.0000
0.300	0.0000	0.900	0.0000	1.500	0.0000	2.100	0.0000	2.700	0.0000
0.400	0.0000	1.000	0.0000	1.600	0.0000	2.200	0.0000	2.800	0.0000
0.500	0.0000	1.100	0.0000	1.700	0.0000	2.300	0.0000	2.900	0.0000
0.600	0.0000	1.200	0.0000	1.800	0.0000	2.400	0.0000	3.000	0.0000

Ridge and Partners LLP		Page 1
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Track Filter Drain	Micro
Date 03/12/2021 15:57	Designed by A Collins	Drainage
File 5013504 Track Filter Drain (per	Checked by S Watts	niairiage
Innovyze	Source Control 2020.1	1

Summary of Results for 30 year Return Period

Half Drain Time : 172 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	${\tt Infiltration}$	${\tt Control}$	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
1.5			0 660	0 601	0.0	0.0	0.0	0 0	
			-0.669		0.0	0.0	0.0	0.3	0 K
			-0.447		0.0	0.0	0.0	0.4	0 K
			-0.257		0.0	0.0	0.0		Flood Risk
			-0.157		0.0	0.0	0.0		Flood Risk
			-0.139		0.0	0.0	0.0		Flood Risk
			-0.141		0.0	0.0	0.0		Flood Risk
			-0.170		0.0	0.0	0.0		Flood Risk
			-0.212		0.0	0.0	0.0		Flood Risk
600	min Su	ummer	-0.258	1.092	0.0	0.0	0.0	0.4	Flood Risk
720	min Su	ummer	-0.304	1.046	0.0	0.0	0.0	0.4	O K
960	min Su	ummer	-0.389	0.961	0.0	0.0	0.0	0.4	O K
1440	min Su	ummer	-0.529	0.821	0.0	0.0	0.0	0.3	O K
2160	min Su	ummer	-0.684	0.666	0.0	0.0	0.0	0.3	O K
2880	min Su	ummer	-0.800	0.550	0.0	0.0	0.0	0.2	O K
4320	min Su	ummer	-0.958	0.392	0.0	0.0	0.0	0.2	O K
5760	min Su	ummer	-1.043	0.307	0.0	0.0	0.0	0.1	O K
7200	min Su	ummer	-1.104	0.246	0.0	0.0	0.0	0.1	O K
8640	min Su	ummer	-1.150	0.200	0.0	0.0	0.0	0.1	O K
10080	min Su	ummer	-1.188	0.162	0.0	0.0	0.0	0.1	O K
15	min Wi	nter	-0.669	0.681	0.0	0.0	0.0	0.3	O K
30	min Wi	nter	-0.446	0.904	0.0	0.0	0.0	0.4	O K
60	min Wi	nter	-0.253	1.097	0.0	0.0	0.0	0.4	Flood Risk
120	min Wi	nter	-0.145	1.205	0.0	0.0	0.0	0.5	Flood Risk
			-0.136		0.0	0.0	0.0	0.5	Flood Risk
240	min Wi	nter	-0.145	1.205	0.0	0.0	0.0		Flood Risk
			-0.193		0.0	0.0	0.0		Flood Risk

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer		0.0	0.3	26
		Summer	49.499	0.0	0.4	38
		Summer	30.811	0.0	0.5	64
		Summer	18.615	0.0	0.6	114
		Summer	13.715	0.0	0.7	142
240	min	Summer	10.995	0.0	0.7	176
360	min	Summer	8.034	0.0	0.8	244
480	min	Summer	6.428	0.0	0.9	314
600	min	Summer	5.404	0.0	0.9	382
720	min	Summer	4.687	0.0	0.9	450
960	min	Summer	3.743	0.0	1.0	584
1440	min	Summer	2.723	0.0	1.1	846
2160	min	Summer	1.979	0.0	1.2	1232
2880	min	Summer	1.577	0.0	1.3	1612
4320	min	Summer	1.143	0.0	1.4	2344
5760	min	Summer	0.910	0.0	1.5	3064
7200	min	Summer	0.762	0.0	1.5	3816
8640	min	Summer	0.659	0.0	1.6	4504
10080	min	Summer	0.583	0.0	1.6	5240
15	min	Winter	76.035	0.0	0.3	26
30	min	Winter	49.499	0.0	0.4	38
60	min	Winter	30.811	0.0	0.5	62
120	min	Winter	18.615	0.0	0.6	116
180	min	Winter	13.715	0.0	0.7	148
240	min	Winter	10.995	0.0	0.7	186
360	min	Winter	8.034	0.0	0.8	262
		©1	L982-20	20 Inno	vyze	

Ridge and Partners LLP	Page 2	
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Track Filter Drain	Micro
Date 03/12/2021 15:57	Designed by A Collins	Drainage
File 5013504 Track Filter Drain (per	Checked by S Watts	niamade
Innovyze	Source Control 2020.1	1

Summary of Results for 30 year Return Period

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
480 min Wi	nter -0.253	1.097	0.0	0.0	0.0	0.4	Flood Risk
600 min Wi	nter -0.316	1.034	0.0	0.0	0.0	0.4	O K
720 min Wi	nter -0.376	0.974	0.0	0.0	0.0	0.4	O K
960 min Wi	nter -0.485	0.865	0.0	0.0	0.0	0.4	O K
1440 min Wi	nter -0.654	0.696	0.0	0.0	0.0	0.3	O K
2160 min Wi	nter -0.835	0.515	0.0	0.0	0.0	0.2	O K
2880 min Wi	nter -0.957	0.393	0.0	0.0	0.0	0.2	O K
4320 min Wi	nter -1.088	0.262	0.0	0.0	0.0	0.1	O K
5760 min Wi	nter -1.171	0.179	0.0	0.0	0.0	0.1	O K
7200 min Wi	nter -1.233	0.117	0.0	0.0	0.0	0.0	O K
8640 min Wi	nter -1.280	0.070	0.0	0.0	0.0	0.0	O K
10080 min Wi	nter -1.302	0.048	0.0	0.0	0.0	0.0	O K

Storm Event	Rain (mm/hr)	Flooded Volume	Discharge Volume	Time-Peak (mins)
		(m³)	(m³)	
480 min Winter	6.428	0.0	0.9	336
600 min Winter	5.404	0.0	0.9	408
720 min Winter	4.687	0.0	0.9	480
960 min Winter	3.743	0.0	1.0	618
1440 min Winter	2.723	0.0	1.1	890
2160 min Winter	1.979	0.0	1.2	1284
2880 min Winter	1.577	0.0	1.3	1676
4320 min Winter	1.143	0.0	1.4	2420
5760 min Winter	0.910	0.0	1.5	3112
7200 min Winter	0.762	0.0	1.5	3816
8640 min Winter	0.659	0.0	1.6	4496
10080 min Winter	0.583	0.0	1.6	5120

Ridge and Partners LLP	Page 1	
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Track Filter Drain	Micro
Date 03/12/2021 15:57	Designed by A Collins	Drainage
File 5013504 Track Filter Drain (per	Checked by S Watts	pramade
Innovyze	Source Control 2020.1	1

Half Drain Time : 237 minutes.

	Storm	1	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	${\tt Infiltration}$	${\tt Control}$	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min (Summer	0.000	1 350	0.0	0.0	0.0	0.5	FLOOD
		Summer		1.350	0.0	0.0	0.0	0.7	FLOOD
		Summer	0.000		0.0	0.0	0.0	0.7	FLOOD
		Summer		1.350	0.0	0.0	0.0	1.0	FLOOD
		Summer	0.000					1.0	
		Summer	0.000		0.0	0.0	0.0	1.0	FLOOD
		Summer	0.000		0.0	0.0	0.0	1.0	FLOOD FLOOD
		Summer		1.350			0.0		FLOOD
					0.0	0.0		1.0	
		Summer	0.000		0.0	0.0	0.0	0.9	FLOOD
		Summer		1.350	0.0	0.0	0.0	0.9	FLOOD
		Summer	0.000		0.0	0.0	0.0	0.8	FLOOD
		Summer	0.000		0.0	0.0	0.0	0.7	FLOOD
		Summer	0.000		0.0	0.0	0.0	0.6	FLOOD
			-0.124		0.0	0.0	0.0		Flood Risk
			-0.406		0.0	0.0	0.0	0.4	O K
			-0.596		0.0	0.0	0.0	0.3	O K
7200	min S	Summer	-0.734	0.616	0.0	0.0	0.0	0.3	O K
8640	min S	Summer	-0.843	0.507	0.0	0.0	0.0	0.2	O K
10080	min S	Summer	-0.929	0.421	0.0	0.0	0.0	0.2	O K
15	min V	Winter	0.000	1.350	0.0	0.0	0.0	0.5	FLOOD
30	min V	Winter	0.000	1.350	0.0	0.0	0.0	0.7	FLOOD
60	min V	Winter	0.000	1.350	0.0	0.0	0.0	0.8	FLOOD
120	min V	Winter	0.000	1.350	0.0	0.0	0.0	1.0	FLOOD
180	min V	Winter	0.000	1.350	0.0	0.0	0.0	1.0	FLOOD
240	min V	Winter	0.000	1.350	0.0	0.0	0.0	1.0	FLOOD
360	min V	Winter	0.000	1.350	0.0	0.0	0.0	1.0	FLOOD

Storm Event			Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.153	0.0	0.6	26
30	min	Summer	90.705	0.2	0.8	39
60	min	Summer	56.713	0.3	0.9	66
120	min	Summer	34.246	0.4	1.1	122
180	min	Summer	25.149	0.5	1.3	180
240	min	Summer	20.078	0.5	1.3	216
360	min	Summer	14.585	0.4	1.5	276
480	min	Summer	11.622	0.4	1.5	342
600	min	Summer	9.738	0.4	1.6	410
720	min	Summer	8.424	0.4	1.7	476
960	min	Summer	6.697	0.3	1.8	610
1440	min	Summer	4.839	0.2	1.9	870
2160	min	Summer	3.490	0.0	2.1	1236
2880	min	Summer	2.766	0.0	2.2	1592
4320	min	Summer	1.989	0.0	2.4	2336
5760	min	Summer	1.573	0.0	2.5	3064
7200	min	Summer	1.311	0.0	2.6	3816
8640	min	Summer	1.129	0.0	2.7	4512
10080	min	Summer	0.994	0.0	2.8	5256
15	min	Winter	138.153	0.0	0.6	27
30	min	Winter	90.705	0.2	0.8	39
60	min	Winter	56.713	0.3	0.9	66
120	min	Winter	34.246	0.4	1.1	122
180	min	Winter	25.149	0.5	1.3	176
240	min	Winter	20.078	0.5	1.3	230
360	min		14.585	0.4	1.5	286

©1982-2020 Innovyze

Ridge and Partners LLP					
The Cowyards	5013504 - Bicester Motion				
Blenheim Park, Oxford Road	Experience Quarter				
Woodstock OX20 1QR	Track Filter Drain	Micro			
Date 03/12/2021 15:57	Designed by A Collins	Drainage			
File 5013504 Track Filter Drain (per	Checked by S Watts	Dialilade			
Innovyze	Source Control 2020.1	1			

	Storm Event	:	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
480	min Win	ter	0.000	1.350	0.0	0.0	0.0	0.9	FLOOD
600	min Win	ter	0.000	1.350	0.0	0.0	0.0	0.9	FLOOD
720	min Win	ter	0.000	1.350	0.0	0.0	0.0	0.8	FLOOD
960	min Win	ter	0.000	1.350	0.0	0.0	0.0	0.8	FLOOD
1440	min Win	ter	0.000	1.350	0.0	0.0	0.0	0.6	FLOOD
2160	min Win	ter -	-0.182	1.168	0.0	0.0	0.0	0.5	Flood Risk
2880	min Win	ter -	-0.401	0.949	0.0	0.0	0.0	0.4	O K
4320	min Win	ter -	-0.683	0.667	0.0	0.0	0.0	0.3	O K
5760	min Win	ter -	-0.862	0.488	0.0	0.0	0.0	0.2	O K
7200	min Win	ter -	-0.981	0.369	0.0	0.0	0.0	0.2	O K
8640	min Win	ter -	-1.058	0.292	0.0	0.0	0.0	0.1	O K
10080	min Win	ter -	-1.116	0.234	0.0	0.0	0.0	0.1	O K

	Storm Event		Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
480 min	Winter	11.622	0.4	1.5	362
600 min	Winter	9.738	0.4	1.6	436
720 min	Winter	8.424	0.3	1.7	510
960 min	Winter	6.697	0.2	1.8	648
1440 min	Winter	4.839	0.1	1.9	904
2160 min	Winter	3.490	0.0	2.1	1276
2880 min	Winter	2.766	0.0	2.2	1648
4320 min	Winter	1.989	0.0	2.4	2392
5760 min	Winter	1.573	0.0	2.5	3168
7200 min	Winter	1.311	0.0	2.6	3904
8640 min	Winter	1.129	0.0	2.7	4664
10080 min	Winter	0.994	0.0	2.8	5344

Ridge and Partners LLP		Page 1
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Western Infiltration Basin	Micro
Date 03/12/2021 12:14	Designed by A Collins	Drainage
File 5013504 Western Infiltration Ba	Checked by S Watts	pramade
Innovyze	Source Control 2020.1	1

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 100 Cv (Summer) 1.000
Region England and Wales Cv (Winter) 1.000
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 1.150

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:				To:				
0	5	0.383	5	10	0.383	10	15	0.383

Ridge and Partners LLP		Page 2
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Western Infiltration Basin	Micro
Date 03/12/2021 12:14	Designed by A Collins	Drainage
File 5013504 Western Infiltration Ba	Checked by S Watts	niailiade
Innovvze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 83.700

<u>Infiltration Basin Structure</u>

Invert Level (m) 81.700 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.03600

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 314.0 2.000 1017.0

Pump Outflow Control

Invert Level (m) 81.700

Depth (m)	Flow (1/s)								
0.100	0.0000	0.700	0.0000	1.300	0.0000	1.900	0.0000	2.500	0.0000
0.200	0.0000	0.800	0.0000	1.400	0.0000	2.000	0.0000	2.600	0.0000
0.300	0.0000	0.900	0.0000	1.500	0.0000	2.100	0.0000	2.700	0.0000
0.400	0.0000	1.000	0.0000	1.600	0.0000	2.200	0.0000	2.800	0.0000
0.500	0.0000	1.100	0.0000	1.700	0.0000	2.300	0.0000	2.900	0.0000
0.600	0.0000	1.200	0.0000	1.800	0.0000	2.400	0.0000	3.000	0.0000

Ridge and Partners LLP		Page 1
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Western Infiltration Basin	Micro
Date 03/12/2021 12:14	Designed by A Collins	Drainage
File 5013504 Western Infiltration Ba	Checked by S Watts	Dialilade
Innovyze	Source Control 2020.1	1

Half Drain Time : 1304 minutes.

	Storm	n	Max	Max	Max	Max Max		Max	Status
	Event	:	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min 9	Qummer	82.592	n 892	4.5	0.0	4.5	392.0	ОК
			82.790		5.2	0.0	5.2		O K
			82.970		5.9	0.0	5.9		O K
			83.130		6.5	0.0	6.5		O K
			83.210		6.8	0.0	6.8		0 K
			83.258		7.0	0.0	7.0		0 K
			83.315		7.2	0.0	7.2		0 K
			83.347		7.3	0.0	7.3		O K
			83.364		7.4		7.4		O K
			83.372		7.4		7.4		O K
			83.371		7.4	0.0	7.4		O K
			83.357		7.3		7.3		O K
2160	min :	Summer	83.327	1.627	7.2	0.0	7.2	915.4	O K
2880	min :	Summer	83.290	1.590	7.1	0.0	7.1	883.8	O K
4320	min :	Summer	83.208	1.508	6.8	0.0	6.8	816.3	O K
5760	min :	Summer	83.127	1.427	6.5	0.0	6.5	752.1	O K
7200	min :	Summer	83.052	1.352	6.2	0.0	6.2	695.3	O K
8640	min :	Summer	82.984	1.284	5.9	0.0	5.9	645.7	O K
10080	min :	Summer	82.922	1.222	5.7	0.0	5.7	601.6	O K
15	min N	Winter	82.592	0.892	4.5	0.0	4.5	392.1	O K
30	min V	Winter	82.790	1.090	5.2	0.0	5.2	513.0	ОК
60	min V	Winter	82.971	1.271	5.9	0.0	5.9	636.1	ОК
120	min N	Winter	83.132	1.432	6.5	0.0	6.5	755.9	ОК
180	min N	Winter	83.212	1.512	6.8	0.0	6.8		ОК
			83.260		7.0	0.0	7.0		ОК
			83.318		7.2	0.0	7.2	907.7	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	138.153	0.0	295.9	30
30	min	Summer	90.705	0.0	349.5	44
			56.713	0.0	628.5	74
120	min	Summer	34.246	0.0	718.3	132
180	min	Summer	25.149	0.0	767.8	192
240	min	Summer	20.078	0.0	800.2	250
360	min	Summer	14.585	0.0	844.0	368
480	min	Summer	11.622	0.0	873.3	486
600	min	Summer	9.738	0.0	893.6	604
720	min	Summer	8.424	0.0	907.9	722
960	min	Summer	6.697	0.0	924.1	918
1440	min	Summer	4.839	0.0	925.5	1142
2160	min	Summer	3.490	0.0	1440.9	1524
2880	min	Summer	2.766	0.0	1482.0	1940
4320	min	Summer	1.989	0.0	1468.1	2768
5760	min	Summer	1.573	0.0	1736.8	3584
7200	min	Summer	1.311	0.0	1808.6	4400
8640	min	Summer	1.129	0.0	1868.8	5192
10080	min	Summer	0.994	0.0	1920.8	5952
15	min	Winter	138.153	0.0	295.9	29
30	min	Winter	90.705	0.0	349.5	44
60	min	Winter	56.713	0.0	628.5	72
120	min	Winter	34.246	0.0	718.3	130
180	min	Winter	25.149	0.0	767.7	188
240	min	Winter	20.078	0.0	800.1	246
360	min	Winter	14.585	0.0	843.9	360
		(C)	1982-20	20 Inno	VVZE	

©1982-2020 Innovyze

Ridge and Partners LLP		Page 2
The Cowyards	5013504 - Bicester Motion	
Blenheim Park, Oxford Road	Experience Quarter	
Woodstock OX20 1QR	Western Infiltration Basin	Micro
Date 03/12/2021 12:14	Designed by A Collins	Drainage
File 5013504 Western Infiltration Ba	Checked by S Watts	Dialilade
Innovyze	Source Control 2020.1	

	Storm	ı	Max	Max	Max	Max Max		Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
480	min V	Winter	83.351	1.651	7.3	0.0	7.3	936.0	ОК
600	min V	Winter	83.370	1.670	7.4	0.0	7.4	952.1	O K
720	min V	Winter	83.379	1.679	7.4	0.0	7.4	960.3	O K
960	min V	Winter	83.381	1.681	7.4	0.0	7.4	962.3	O K
1440	min V	Winter	83.359	1.659	7.3	0.0	7.3	942.5	O K
2160	min V	Winter	83.320	1.620	7.2	0.0	7.2	909.2	O K
2880	min V	Winter	83.270	1.570	7.0	0.0	7.0	866.9	O K
4320	min V	Winter	83.160	1.460	6.6	0.0	6.6	778.1	O K
5760	min V	Winter	83.053	1.353	6.2	0.0	6.2	696.2	O K
7200	min V	Winter	82.954	1.254	5.8	0.0	5.8	624.2	O K
8640	min V	Winter	82.865	1.165	5.5	0.0	5.5	562.7	O K
10080	min V	Winter	82.785	1.085	5.2	0.0	5.2	509.8	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
400			11 600	0 0	0.770 1	45.6
480	mın	Winter	11.622	0.0	873.1	476
600	min	Winter	9.738	0.0	893.4	590
720	min	Winter	8.424	0.0	907.6	702
960	min	Winter	6.697	0.0	923.7	918
1440	min	Winter	4.839	0.0	925.0	1164
2160	min	Winter	3.490	0.0	1440.8	1620
2880	min	Winter	2.766	0.0	1481.9	2080
4320	min	Winter	1.989	0.0	1468.0	2952
5760	min	Winter	1.573	0.0	1736.8	3816
7200	min	Winter	1.311	0.0	1808.6	4624
8640	min	Winter	1.129	0.0	1868.8	5456
10080	min	Winter	0.994	0.0	1920.7	6256

RIDGE

www.ridge.co.uk