Contaminated Land Air Quality Environmental Audit

Partnership No: OC 300776

Our ref: R1742B-L07

Your ref:

07th August 2018

Andy Walker Urban Regen 23 Springvale Bolton BL7 0FS

by e-mail: andy.walker@urbanregen.co.uk

Dear Andy

Upper Heyford – Dorchester Phase 9 – Basketball Pitch Supplementary Site Investigation

SGP have been instructed to produce a validation report for a parcel of land formerly occupied by a baseball pitch associated with RAF Heyford which is currently utilised as a public open space for recreational use. This parcel of land forms the north-west corner of the wider Phase 9 area (see Drawing D01).

The site is part of a wider area covered by a Hydrock Remediation Strategy (ref. HPW-HYD-PX-REM-RP-GE-3000-P1-S2, April 2017) which states that a site wide engineered cover system is required to comprise of a 200mm hard dig layer, geotextile and 400mm clean soil cover. At present it is unknown whether the Strategy has been approved, however it is proposed that a revised Strategy to cover the Phase 9 area is appropriate given the absence of made ground in some locations and that the made ground consists largely of placed uncontaminated natural soils. These remedial recommendations are consistent with those made with the approved Remediation Strategy (R1742-R01-v3) which covers other phases of the Heyford Park New Settlement Area. This report has therefore been produced to satisfy the proposed remedial recommendations.

No potential contaminative activities such as the storage of fuels (ASTs, USTs, boiler house etc.) was identified within previous reporting with historical mapping confirming the site remained undeveloped until the construction of a baseball pitch sometime between 1979 and 1992.

Given the effective Greenfield history of the site it may be underlain by natural soils or made ground comprising of reworked natural soils, negating the requirement for an engineered cover system.

In-situ sampling was therefore completed to ascertain whether the natural soils were suitable for retention within shallow garden soils and to also determine the extent and chemistry of shallow made ground soils present across the site.

In-situ Topsoil Testing

It is a requirement under the Hydrock Strategy that site won soils are sampled at a minimum test frequency of 1 sample per 250m³, however proposed recommendations under a revised Strategy and in line with previous remedial works within the Heyford development specify testing of site won soils at a frequency of 1 per 500m³.

Assuming an approximate site area of 14,650m² and a nominal topsoil thickness of 0.3m, this equivalates to an approximate volume of 4,395m³. Sampling was carried out in-situ with the proposed

sampling frequency of 1 sample per 500m³ resulting in the collection of 9 samples (achieving a frequency of 1 per 488m³) to assess the potential for recovery and reuse within the development.

Samples were collected by SGP and were placed in appropriate laboratory-provided containers and stored in cooled boxes. Samples submitted for chemical analysis were delivered to Exova-Jones Environmental Ltd (EJEL) within 24 hours of collection and samples for asbestos screen were sent to Chemtest within 48 hours of collection. SGP retains chain of custody documentation.

The results of the soil analyses are compared to human health critical values (CVs) for initial screening purposes. The CVs adopted are appropriate to the environmental setting and proposed future residential use of the site and are taken primarily from the LQM / CIEH Suitable for Use Levels (S4ULs) which are used to define land that is 'not contaminated'. These a derived for a sandy loam soil; reference is initially made to the S4ULs derived for a soil with 1% organic matter as a conservative assumption for screening purposes.

The Defra Category 4 Screening Level (C4SL) for lead in soils under residential land-use has been utilised to allow an initial screening for risk to human health. This is intended to demonstrate that land is definitely not Contaminated Land as defined under Part IIA of the Environmental Protection Act. The adoption of the C4SL in a planning scenario has not been universally accepted, however in the absence of other generic screening criteria for lead following the withdrawal of the SGV by the EA it is considered appropriate to utilise the screening criterion.

Chemical laboratory certificate (18-7823) and asbestos laboratory certificate (18-14613) are attached. Results are summarised in the table below and are compared to assessment criteria for garden cover soils as per above.

It is noted that published criteria have been utilised to reflect those proposed within a revised Strategy with some values differing slightly from those within the current Hydrock Strategy.

Table 2. Analysis Summary for in-situ Topsoil

Tuble 2. Analysis outilit		Range of	Resi	dential Use
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances
SOM	9	1.5-3.8	-	None
рН	9	7.74-8.25	-	None
asbestos fibre*	9	NAD	<0.001%	None
antimony	9	2-5	550 (GAC)	None
arsenic	9	15.2-52.1	37 (S4UL)	(1): Ph9-S9A
barium	9	59-107	1300 (GAC)	None
beryllium	9	0.9-3.0	1.7 (S4UL)	(1): Ph9-S9A
cadmium	9	0.1-0.2	11 (S4UL)	None
chromium	9	36.9-82.2	910 (S4UL)	None
chromium IV	9	<0.3	6 (S4UL)	None
cobalt	9	7.6-13.6	-	None
copper	9	10-29	2400 (S4UL)	None
lead	9	17-88	200 (C4SL)	None
mercury	9	<0.1	170 (S4UL)	None
molybdenum	9	1.5-2.3	670 (GAC)	None
nickel	9	18.3-51.50	180 (S4UL)	None

		Range of	Reside	ential Use
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances
selenium	9	<1-2	250 (S4UL)	None
vanadium	9	52-119	410 (S4UL)	None
water soluble boron	9	0.9-2.9	290 (S4UL)	None
zinc	9	64-174	3700 (S4UL)	None
naphthalene	9	<0.04	2.3 (S4UL)	None
acenaphthylene	9	<0.03	170 (S4UL)	None
acenaphthene	9	<0.05	210 (S4UL)	None
fluorene	9	<0.04	170 (S4UL)	None
phenanthrene	9	<0.03-0.26	95(S4UL)	None
anthracene	9	<0.04-0.09	280 (S4UL)	None
fluoranthene	9	0.09-0.95	2400 (S4UL)	None
pyrene	9	0.09-0.87	620 (S4UL)	None
benzo(a)anthracene	9	0.06-0.59	7.2 (S4UL)	None
chrysene	9	0.06-0.46	15 (S4UL)	None
benzo(bk)fluoranthene	9	0.11-1.09	-	-
benzo(a)pyrene	9	0.06-0.59	2.2 (S4UL)	None
indeno(123cd)pyrene	9	0.04-0.44	27 (S4UL)	None
dibenzo(ah)anthracene	9	0.04-0.09	0.24(S4UL)	None
benzo(ghi)perylene	9	0.04-0.4	320 (S4UL)	None
aliphatic C5-C6	9	<0.1	42 (S4UL)	None
aliphatic C6-C8	9	<0.1	100 (S4UL)	None
aliphatic C8-C10	9	<0.1	27 (S4UL)	None
aliphatic C10-C12	9	<0.2	130 (S4UL)	None
aliphatic C12-C16	9	<4	1100 (S4UL)	None
aliphatic C16-C21	9	<7	5000 (S4UL)	None
aliphatic C21-C35	9	<7	5000 (S4UL)	None
aromatic C5-C7	9	<0.1	70 (S4UL)	None
aromatic C7-C8	9	<0.1	130 (S4UL)	None
aromatic C8-C10	9	<0.1	34 (S4UL)	None
aromatic C10-C12	9	<0.2	74 (S4UL)	None
aromatic C12-C16	9	<4	140 (S4UL)	None
aromatic C16-C21	9	<7	260 (S4UL)	None
aromatic C21-C35	9	<7	1100 (S4UL)	None
benzene	9	<0.005	0.08 (S4UL)	None
toluene	9	<0.005	130 (S4UL)	None
ethylbenzene	9	<0.005	47 (S4UL)	None
o-xylene	9	<0.005	60 (S4UL)	None
m-xylene	9	<0.005	56 (S4UL)	None
p-xylene	9	<0.005	56 (S4UL)	None
methyl tert butyl ether	9	<0.005	, ,	None

Notes to table:

Suitable For Use Levels published by Chartered Institute of Environmental Health and Land Quality Management Ltd, residential with plant uptake scenario (1% SOM); copyright Land Quality Management S4UL:

Ltd reproduced with permission publication number S4UL3102. All rights reserved.

GAC: Generic Assessment Criteria published by CL:AIRE for human health risk assessment for a residential

scenario with consumption of homegrown produce (1% SOM).

C4SL: Category 4 Screening Levels published by CL:AIRE (C4SLs); 'residential without home grown produce land

use' (at 1% SOM)

Two minor exceedances were reported and were limited to a single sample (Ph9-S9A). Arsenic was recorded at 52.1 mg/kg (criteria of 37 mg/kg), and beryllium at 3 mg/kg (criteria of 1.7 mg/kg). In the absence of anthropogenic material, statistical analysis has been carried out on the sample mean, the results are tabulated in the table below:

Table 3. Statistical Analysis of Arsenic and

statistic	arsenic (mg/kg)	beryllium (mg/kg)
criterion	37	1.7
no. of samples	9	9
Grubbs outlier test for highest value (P0.05)	Ph9-S9A (max value 52.1	Ph9-S9A (max value 3.0
	mg/kg) is an outlier	mg/kg) is an outlier
arithmetic mean, including outlier	22.42	1.36
upper confidence limit (UCL 0.95) including outlier	39.09 (fail)	2.28 (fail)
arithmetic mean, excluding Ph9-S9A outlier	18.71	1.15
upper confidence limit (UCL 0.95) excluding Ph9-S9A outlier	23.26 (pass)	1.25 (pass)

Statistical analysis confirms that both exceedances are outliers of the dataset and are not representative of the soil concentrations and can therefore be excluded from the dataset. When these exceedances are removed, the UCL (0.95) for arsenic is 23.26 mg/kg and 1.25 mg/kg for beryllium resulting in no exceedances.

In-Situ Future Formation Soil Validation

Under a revised Strategy and in accordance with validation works within the wider Heyford Park development, sampling of the underlying 400mm subsoil beneath any topsoil or removed hardstanding would be sampled to determine its retention as part of the 600mm garden cover providing that it is uncontaminated and suitable for such use.

In-situ sampling of subsoils below the topsoil cover was completed through the excavation and sampling of the top 400mm of soil. Sampling was completed at a test frequency of 1 sample per 500m³, the residual depth of 400mm equating to 1 sample per 1,250m² plan area of development.

Twelve in-situ samples were collected from the underlying soil with depth validation photos showing the extent of the 400mm depth range appended to this report with sampling locations reproduced in Drawing D01. Assuming an approximate site area of 14,650m², the volume of validated soils is effectively 5,860m³, exceeding the specified sampling rate of 1 sample per 500m³ (1 per 488m³ achieved).

Sampled soils generally comprised of a dark brown clay soil with coarse gravel of limestone although inclusions of brick fragments (S5, S6, S11 and S12) and tarmac (S7 and S11) were observed. No inclusions of ash, slag or clinker were observed but it is noted that Hydrock reported ash within 2 locations. A plan detailing the validation entries with Hydrock's trial-pits is provided in Drawing D01.

Table 4. Analysis Summary of Formation Soils

		Range of	Resid	dential Use
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances
SOM	12		-	None
рН	12	7.53-8.47	-	None
asbestos fibre*	12	NAD	<0.001%	None
antimony	12	1-3	550 (GAC)	None
arsenic	12	14.3-25.1	37 (S4UL)	None
barium	12	49.119	1300 (GAC)	None
beryllium	12	0.9-1.4	1.7 (S4UL)	None
cadmium	12	<0.1-0.2	11 (S4UL)	None
chromium	12	32.3-47	910 (S4UL)	None
chromium IV	12	<0.3	6 (S4UL)	None
cobalt	12	6.3-12.5	-	None
copper	12	9-57	2400 (S4UL)	None
lead	12	11-59	200 (C4SL)	None
mercury	12	<0.1	170 (S4UL)	None
molybdenum	12	1.2-2.6	670 (GAC)	None
nickel	12	16.3-31.6	180 (S4UL)	None
selenium	12	<1	250 (S4UL)	None
vanadium	12	42-69	410 (S4UL)	None
water soluble boron	12	0.7-3.4	290 (S4UL)	None
zinc	12	52-204	3700 (S4UL)	None
naphthalene	12	<0.04-0.06	2.3 (S4UL)	None
acenaphthylene	12	<0.03-0.08	170 (S4UL)	None
acenaphthene	12	<0.05-0.23	210 (S4UL)	None
fluorene	12	<0.04-0.15	170 (S4UL)	None
phenanthrene	12	<0.03-2.93	95(S4UL)	None
anthracene	12	<0.04-0.87	280 (S4UL)	None
fluoranthene	12	<0.03-6.08	2400 (S4UL)	None
pyrene	12	<0.03-6.08	620 (S4UL)	None
benzo(a)anthracene	12	<0.06-2.15	7.2 (S4UL)	None
chrysene	12	<0.02-2.15	15 (S4UL)	None
benzo(bk)fluoranthene	12	<0.07-3.83	-	-
benzo(a)pyrene	12	<0.04-2.22	2.2 (S4UL)	(2) Ph9-S4
indeno(123cd)pyrene	12	<0.04-1.60	27 (S4UL)	None
dibenzo(ah)anthracene	12	<0.04-0.28	0.24(S4UL)	(2) Ph9-S4 & Ph9-S11
benzo(ghi)perylene	12	<0.04-1.51	320 (S4UL)	None
aliphatic C5-C6	12	<0.1	42 (S4UL)	None
aliphatic C6-C8	12	<0.1	100 (S4UL)	None
aliphatic C8-C10	12	<0.1	27 (S4UL)	None

		Range of	Resid	dential Use
Contaminant	Samples	Concentrations (mg/kg unless stated)	Screening criteria (mg/kg unless stated)	Exceedances
aliphatic C10-C12	12	<0.2	130 (S4UL)	None
aliphatic C12-C16	12	<4	1100 (S4UL)	None
aliphatic C16-C21	12	<7	5000 (S4UL)	None
aliphatic C21-C35	12	<7-11	5000 (S4UL)	None
aromatic C5-C7	12	<0.1	70 (S4UL)	None
aromatic C7-C8	12	<0.1	130 (S4UL)	None
aromatic C8-C10	12	<0.1	34 (S4UL)	None
aromatic C10-C12	12	<0.2-0.3	74 (S4UL)	None
aromatic C12-C16	12	<4	140 (S4UL)	None
aromatic C16-C21	12	<7-20	260 (S4UL)	None
aromatic C21-C35	12	<7-97	1100 (S4UL)	None
benzene	12	<0.005	0.08 (S4UL)	None
toluene	12	<0.005	130 (S4UL)	None
ethylbenzene	12	<0.005	47 (S4UL)	None
o-xylene	12	<0.005	60 (S4UL)	None
m-xylene	12	<0.005	56 (S4UL)	None
p-xylene	12	<0.005	56 (S4UL)	None
methyl tert butyl ether	12	<0.005	-	None

Notes to table:

S4UL: Suitable For Use Levels published by Chartered Institute of Environmental Health and Land Quality

Management Ltd, residential with plant uptake scenario (1% SOM); copyright Land Quality Management

Ltd reproduced with permission publication number S4UL3102. All rights reserved.

GAC: Generic Assessment Criteria published by CL:AIRE for human health risk assessment for a residential

scenario with consumption of homegrown produce (1% SOM).

C4SL: Category 4 Screening Levels published by CL:AIRÈ (C4SLs); 'residential without home grown produce land

use' (at 1% SOM)

Exceedances were limited to a very minor elevated concentrations of benzo(a)pyrene within sample Ph9-S4 with a concentration of 2.22 mg/kg compared to the criteria of 2.2 mg/kg, and dibenzo(ah)anthracene with concentrations of 0.28 mg/kg (criteria of 0.24 mg/kg) with both Ph9-S4 and Ph9-S11.

PAH ratio analysis was completed on the exceeded samples to determine the source of the elevated PAHs, a copy of the plot is attached to this report. Source identification confirms a coal signature, no anthropogenic material such as ash or clinker were observed within Ph9-S4 whilst fragments of tarmac were recorded within Ph9-S11. Source identification indicates a likely low bio-availability due to the sequestration of PAHs within a carbon or vitrified matrix, with B(a)P concentrations below the DEFRA C4SL criteria of 5 mg/kg for garden soils. The minor PAH exceedances are unlikely to represent an unacceptable risk to human health.

Conclusions

Topsoil cover was present across the site (with exception of entry S29) extending to depths of 0.2 and 0.3m bgl. Minor exceedances of site topsoil were initially recorded for both arsenic and beryllium within sample Ph9-S9A, however further statistical analysis confirmed the exceedances are not

representative of the dataset and when removed the UCL (0.95) did not result in any exceedances. It is concluded that the topsoil is suitable for recovery and reuse within the development.

The 0.4m of soils present beneath the topsoil layer were a brown clay with frequent limestone gravel (possible weathered bedrock) and rare inclusions of brick and tarmac, tarmac fragments were limited to entries S7 and S11. It is anticipated that the clay layer may have been placed in part during construction of the baseball pitch where soils from the wider Heyford area may have been placed.

Concentrations of determinants were below the assessment criteria except with 3 minor exceedances for the PAHs benzo(a)pyrene (no 1) and dibenzo(ah)anthracene (no 2) in entries S4 and S11. Further assessment has confirmed a coal signature, possibly associated with minor tarmac inclusions and concluded that the identified sources are likely to be below significant in terms of solubility and bioavailability due to the sequestration within coal / tarmac.

SGP considers that the risk associated to future site occupants to concentrations to be negligible and that the site soils (topsoil and subsoil) are suitable for retention in future garden areas. The recommended remedial measures (i.e. engineered cover system) may be revised to be consistent with those applied to other similar areas i.e. no specific requirement for cover soils.

Recommendations

It is recommended that in the absence of a revised Strategy being produced and issued for the Phase 9 area that this report be submitted to CDC for approval, however further justification to the deviation from the submitted Strategy may be required.

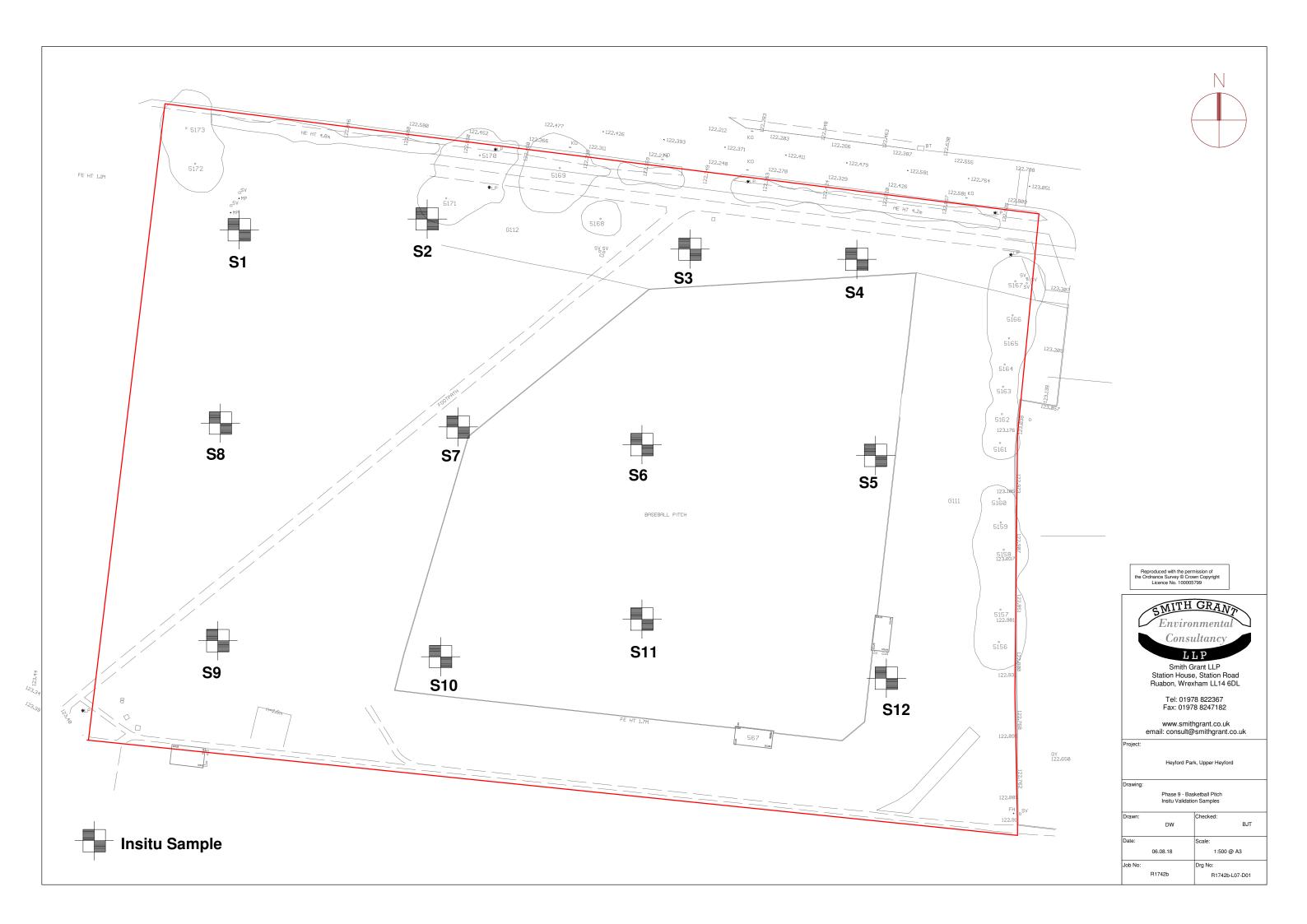
Assessment of risks associated with occasional exceedances and conclusions regarding suitability for retention at shallow depths should be provided to CDC for approval.

Yours sincerely for: Smith Grant LLP

D Wayland BSc MSc MCIWEM

Attached:

Drawing D01


App A: Entry Logs & Photo Record

App B: Lab Certificate: 18-7823 & 18-14613

App C: PAH Ratio Plot & Arsenic and Beryllium CLR7 Statistics

DRAWING

APPENDIX A

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S1
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
0.2 0.6	Ph9-S1A Ph9-S1B	Heyford Suite Heyford Suite	0.2	Dark brown CLAY topsoil w MADE GROUND: Dark bro gravel (relict gas pipe at ba Base at 0.6m bgl	wn CLAY with coarse	LEGEN

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

GROUND WATER:

No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SCALE: LOGGED BY: FIGURE NO. 1:250 1 DW

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S2
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
0.3		Heyford Suite	0 _	Dark brown CLAY topsoil v	vith rootlets	
0.3	Ph9-S2A	Heyford Suite	0.3	Dark brown to red CLAY w angular limestone	ith frequent gravel of	
0.7	Ph9-S2B			Base at 0.7m bgl		
			_			
			-			
			_			
			_			
			_			
			_			
			_			
			_			
			-			
			-			
			_			
			_			
			-			
			_			

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S3
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
0.2		Heyford Suite	0 _	Dark brown CLAY topsoil w	rith rootlets	
0.2	Ph9-S3A	Heyford Suite	0.2	Dark brown CLAY with freq limestone	uent gravel of angular	
0.6	Ph9-S3B		_	Base at 0.6m bgl		
			_	Base at o.om bgi		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			-			
			-			
			_			
			_			
			_			
			_			
			_			
	літн GRA	GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

GROUND WATER:

No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SCALE: LOGGED BY: FIGURE NO. 1:250 1 DW

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S4
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
0.2		Heyford Suite	0 _	Dark brown CLAY topsoil w	vith rootlets	
0.2	Ph9-S4A	Heyford Suite	0.2	Dark brown CLAY with free limestone	uent gravel of angular	
0.6	Ph9-S4B	·	_			
	1 110 0 12		_	Base at 0.6m bgl		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			-			
			_			
			-			
			_			
			-			
			-			
			-			
	MITH GRAI	GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	legen Ltd.	DATE: 1st May	
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTION	ON OF STRATA	LEGEND
0.3		Heyford Suite	0 _	Dark brown CLAY topsoil v	vith rootlets	
0.3	Ph9-S5A	Heyford Suite	0.3	Dark brown CLAY with free limestone and rare brick fra	quent gravel of angular agments	
0.7	Ph9-S5B			Base at 0.7m bgl		
			_			
			_			
			_ _ _			
			-			
			-			
			_			
			_ _ _			
			-			

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S6
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
0.2		Heyford Suite	0 _	Dark brown CLAY topsoil v	vith rootlets	
0.2	Ph9-S6A	Heyford Suite	0.2	Dark brown CLAY with free limestone and rare brick fra	uent gravel of angular agments	
0.6	Ph9-S6B			Base at 0.6m bgl		
			_			
			_			
			-			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
		GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PIT
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
0.2		Heyford Suite	0 _	Dark brown CLAY topsoil v	vith rootlets	
0.2	Ph9-S7A	Heyford Suite	0.2	Dark brown CLAY with free limestone and rare brick ar	quent gravel of angular nd tarmac fragments	
0.6	Ph9-S7B			Base at 0.6m bgl		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION:	I = =		DW	JOB NO. R1742b	TRIAL PIT NO.
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban R	egen Ltd.	DATE: 1st May	Ph9-S8
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTION OF STRATA		LEGEND
0.2		Heyford Suite	0 _	Dark brown CLAY topsoil w	rith rootlets	
0.2	Ph9-S8A	Heyford Suite	0.2	Dark brown CLAY with freq limestone	uent gravel of angular	
0.6	Ph9-S8B		_	Daga at O Cas had		
			_	Base at 0.6m bgl		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
	MITH GRAI	GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk No groundwater encountered

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION: See Plan	PROJECT: Heyford Dorchester	CLIENT: Urban Regen Ltd.		JOB NO. R1742b	TRIAL PIT NO. Ph9-S9
1 of 1		EXCAVATED BY: Tracked 360			DATE: 1st May	
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTIO	ON OF STRATA	LEGEND
			0 _	Light brown CLAYbecomin gravel of angular limestone	g darker with frequent	
		Heyford Suite	_			
0.0			_			
0.6	Ph9-S9A		_	Base at 0.6m bgl		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			_			
	MITH GRAI	GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION: See Plan SAMPLES	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PI NO.
1 of 1		EXCAVATED BY: Tracked 360 Lab testing	CLIENT: Urban Regen Ltd.		DATE: 1st May	Ph9-S
DEPTH (m)			DEPTH (m)	DESCRIPTION	SCRIPTION OF STRATA	
			0 -	Dark brown CLAY topsoil v	vith rootlets	LEGEND
		Heyford Suite	0.3	Dark brown CLAY with free limestone	quent gravel of angular	
0.7	Ph9-S10A			Base at 0.7m bgl		
			-			
			-			
			-			
			-			
			-			
			_			
			-			
			- -	-		
			-			
			-	-		
			-	1		
			-			

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SHEET:	LOCATION: See Plan SAMPLES	PROJECT: Heyford Dorchester	ENGINEER:	DW	JOB NO. R1742b	TRIAL PI' NO.
1 of 1		EXCAVATED BY: Tracked 360 Lab testing	CLIENT: Urban Regen Ltd.		DATE: 1st May	Ph9-S
DEPTH (m)			DEPTH (m)	DESCRIPTION	ON OF STRATA	LEGEND
			0 _	Dark brown CLAY topsoil v	vith rootlets	
		Heyford Suite	0.3	Light brown CLAY with coa and rare brick and tarmac	arse gravel of limestone fragments	
0.7	Ph9-S11A			Base at 0.7m bgl		
			_	base at 0.7111 by		
			_			
			_			
			_			
			_			
			_			
			_			
			_			
			-			
			_			
			_			
			_			
			-			
			_			
			_			
			_			
			_	1		
			_			
			-			
			-			
			_			
			_			
	NITH GRAI	GROUND WATER:				

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

1

FIGURE NO.

SCALE: LOGGED BY: 1:250 DW

SHEET:	LOCATION:	PROJECT: Heyford Dorchester ENGINEER: DW		DW	JOB NO. R1742b	TRIAL PIT NO. Ph9-S1
1 of 1	See Plan	EXCAVATED BY: Tracked 360	CLIENT: Urban Regen Ltd.		DATE: 1st May	
DEPTH (m)	SAMPLES	Lab testing	DEPTH (m)	DESCRIPTION	ON OF STRATA	LEGEND
			0	Dark brown CLAY topsoil v	vith rootlets	
		Heyford Suite	0.3	Light brown CLAY with coa and rare brick fragments	arse gravel of limestone	
0.7	Ph9-S12A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Base at 0.7m bgl		
			_	Base at 0.7111 bgi		
			_			
			_			
			_			
			_			
			_			
			_			
			-			
			_			
			_			
			_			
			_			

Tel: 01978822367 Fax: 019788247182

www.smithgrant.co.uk email: consult@smithgrant.co.uk

REMARKS:

Sidewalls stable PID <0.1 ppm

D: small disturbed sample B: bulk disturbed sample PP: pocket penetrometer

SCALE: LOGGED BY: FIGURE NO. 1:250 1 DW