FOXDEN WAY, GREAT BOURTON TECHNICAL NOTE: DRAINAGE STATEMENT MARCH 2021 REF: 264337-01-TN-01 REV A

01530 264 753 group@m-ec.co.uk www.m-ec.co.uk

Introduction

Mewies Engineering Consultants Ltd (M-EC) has been commissioned by Fernhill Estates to produce a Drainage Statement in support of a proposed residential development at Foxden Way, Great Bourton. A site location plan is provided in Appendix A.

The proposed residential development will comprise up to 9 dwellings, with associated infrastructure, parking and access to Foxden Way. The development will take place on the Greenfield site west of Foxden Way, south of Great Bourton and is centred on OS grid reference 445709, 245315. The total site area is approximately 0.92ha and is shown indicatively in red in Figure 1 below. A proposed site layout is contained in Appendix B.

Figure 1: Site location plan

Civil Engineering Transport | Road Safety | Flood Risk & Drainage | Structures | Geo-Environmental | Acoustic Air | Utilities | Geomatics | Street Lighting

Foxden Way, Great Bourton Technical Note: Surface Water Drainage March 2021 Ref: 26437-01-TN-01 REV A

A review of the Flood Maps for Planning shows the site lies wholly within Flood Zone 1 (FZ1). Flood Zone 1 is defined as land assessed as having an annual probability of river flooding less than 0.1%. The Environment Agency Flood Risk from Surface Water Map indicates there is generally a very low risk of surface water flooding within the site.

Surface Water Management Strategy

It is essential that the proposed development does not increase flood risk to adjacent land or downstream of the site, as well as protecting the development from flooding itself. To ensure that the flood risk is minimised, the drainage design will incorporate the following flood mitigation measures:

- Finished floor levels will be designed to retain and direct all overland surface water flows away from the dwellings following the natural topography of the land.
- The proposed development will include a surface water drainage system that will intercept the runoff generated within the development. This will minimise the risk to the new buildings and also reduce the incidence of overland flows.
- The surface water drainage system will convey flows to an attenuation basin on site. The surface water flows generated from the development up to and including a 1 in 100-year return period, plus 40% climate change, will be stored on-site and discharged at a restricted rate of 3I/s.

Surface water arising from developed sites should, as far as practical, be managed in a sustainable manner to mimic the surface water flows arising from the undeveloped site. When considering the surface water discharge the SuDS hierarchy needs to be adhered to. The SuDS hierarchy states that the top option has to be adhered to or evidenced otherwise before moving down the hierarchy. Each option is considered below:

- **Discharge to a source (soakaway)**: The local geology comprises mudstone (clay) and is therefore considered impermeable. Soakage testing completed on land to this north of this site and for a different development proposal confirms soakage isn't feasible. Soakage testing can be conditioned to any planning permission and completed in due course as part of a detailed site investigation. For the purpose of this assessment soakage is not considered feasible.
- **Watercourse**: A ditch is noted along Foxden Way and adjacent to the eastern boundary of the site. This is considered to be a viable outfall route for surface water flows from the site and is likely to receive existing overland flows from the site. This ditch course will therefore be the outfall location for surface water flows from the proposed development.
- **Public Sewer**: No sewers are noted close to the site and as a discharge option is available higher up the hierarchy this option is not considered further.

Land Use

In order to calculate the drainage requirements, an understanding of the land uses on-site needs to be known. Table 1, below summarises the proposed land uses within the site. The current site is 100% Greenfield and the current land use has been calculated using the existing site plan and the post-development land use has been measured from the proposed layout.

Land Use Type	Existing Site Areas		Proposed Site Areas	
	Ha	%	Ha	%
Impermeable Areas	0.00	0	0.36	39
Green Landscape / Permeable	0.92	100	0.56	61
areas TOTAL	0.92	100	0.92	100

Table 1: Existing and Proposed Land Use Summary

Urban Creep Allowances

Urban creep is the conversion of permeable surfaces to impermeable ones over time, e.g. extensions to existing buildings. It has been shown that, over the lifetime of development, urban creep can increase impermeable areas by as much as 10%. An allowance of 10% for increases in the impermeable area

due to urban creep over the lifetime of the development will be included in the drainage calculations and the total calculated impermeable area will be 0.39ha based on a 10% increase to proposed values

Drainage Strategy

The overall drainage strategy has been based on the land use table, discharge rate and the current site layout presented in Appendix B. In accordance with the National SuDS Standards strategy involves conveying surface water flows to an attenuation pond on-site, which will discharge into the existing ditch network along the eastern boundary of the site at a restricted rate of 3l/s.

Existing runoff conditions have been calculated using the ICP SuDS module of MicroDrainage to calculate the Greenfield discharge rate for the developable site area of 0.92ha, the QBAR Greenfield rate has been calculated as 0.4l/s Calculation of Greenfield rate is included in Appendix F. As this rate represent a rate that would lead to increase of blockages within the outfall discharge rates will be restricted to 3l/s to serve as a practicable minimum.

A total storage volume of 220.3m³ will be available for surface water storage within the attenuation basin to accommodate flows generated by an impermeable area of 0.39ha. This is to allow sufficient time for all surface water to discharge at the proposed rates and cater for all events up to the 1 in 100-year return period with a 40% climate change allowance. Calculations can be found in Appendix G. Additional attenuation storage will be provided within permeable paving, but have not been included in the drainage calculations at this stage.

In the event that there is a failure of the drainage system or an event exceeding the design storm any exceedance flows and overland flows will be routed away from dwelling houses to the areas of lowest risk on the site.

A drainage strategy based on the principles above is shown on drawing 26437_01_230_01 in Appendix

G.

Surface Water Quality

The CIRIA SuDS Manual, C753, indicates the minimum treatment indices appropriate for contributing pollution hazards for different land use classifications. Surface water runoff from the residential roofs has a very low pollution hazard, while the minor road and parking areas have a low pollution hazard. As shown in Table 2 from the CIRIA SuDS Manual, the Mitigation Indices provided by the infiltration basin are greater than or equal to the Pollution Hazard Indices for each component, ensuring the proposed system provides adequate water quality treatment for surface water runoff.

Pollution Hazard Indices							
Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons			
Residential roofs	Very Low	0.2	0.2	0.05			
Individual property driveways, residential car parks, low traffic roads (e.g. cul-de-sacs, home zones and general access roads) and non-residential car parking with infrequent change (e.g. schools, offices) i.e. < 300 traffic movements/day	Low	0.5	0.4	0.4			
SuDS Mitigation indices for SuDS components for discharging surface water							
Attenuation Basin		0.5	0.5	0.6			
Permeable Paving		0.7	0.6	0.7			

Table 2: CIRIA C753 Pollution Hazard Indices and SuDS Mitigation Indices

Maintenance and Management

The continued maintenance of any adopted sewer will be the responsibility of Thames Water. Private drainage systems will be maintained by the landowners and a management company appointed on their behalf.

The detention basin will first be offered to bodies such as the Local Authority for adoption and future maintenance. Should this not be taken up, a management company will be employed. Full details will be provided of the responsible body to conduct the maintenance activities identified in Table 3.

Drainage Asset	Responsible Organisation	Maintenance Work	Frequency
Pipework /	Private Ownership	Inspect pipework and clear blockages	Annually on often
Manholes	/ Management Company / Thames Water	Inspect manholes and clear blockages	Annually or after severe storms.
		Repair any defects in the network	
Headwalls	Local Authority/ Management Company	Inspect structure and remove any debris/litter on structure	Monthly or after severe storms.
	Local Authority/	Amenity grass cutting of surrounding green spaces	As required
Attenuation Basin	Management Company	Litter and debris removal	Monthly
		Inspect and clear inlets, outlets and overflows	6 Monthly

Table 3: Proposed Maintenance Regime

Foul Water Drainage

Foul water generated by the site will be collected and treated on-site via a Klargerster Sewage Treatment Plant or similar and will be discharged as clean water into the existing ditch network along the eastern boundary via the proposed attenuation basin.

The relevant permits will be obtained from the Environmental Agency before discharging treated foul water into the existing ditch network via the proposed attenuation basin to ensure compliance with standards.

Summary

To summarise the key points outlined above:

- All development is located within Flood Zone 1 and is therefore compatible with a "more vulnerable" development in line with policy guidance.
- The risk of flooding from surface water on the site is very low.
- The risk from all other sources of flooding is very low.
- Surface water runoff generated at the site will be conveyed, stored and treated within the
 proposed attenuation basin on site. Surface water stored within the proposed attenuation basin
 will discharge into the existing ditch network along the eastern boundary of the site at a restricted
 rate of 3l/s.
- Surface Water runoff will be stored within the proposed tank and discharge into the ditch network on-site, this will cater for all events up to and including the 1 in 100 year plus 40% climate change storm.
- A total storage volume of 220.3m³ will be available within the proposed attenuation basin to manage flows generated for events up to and including the 1 in 100 year plus 40% climate change storm.
- Foul Water generated by the site will be collected and collected be treated on-site via a Klargerster Sewage Treatment Plant or similar and will be discharged as clean water via the surface water sewer network. The relevant agreements will be sought from the Environmental Agency to discharge treated foul water to the watercourse on site.

Report Prepared By:

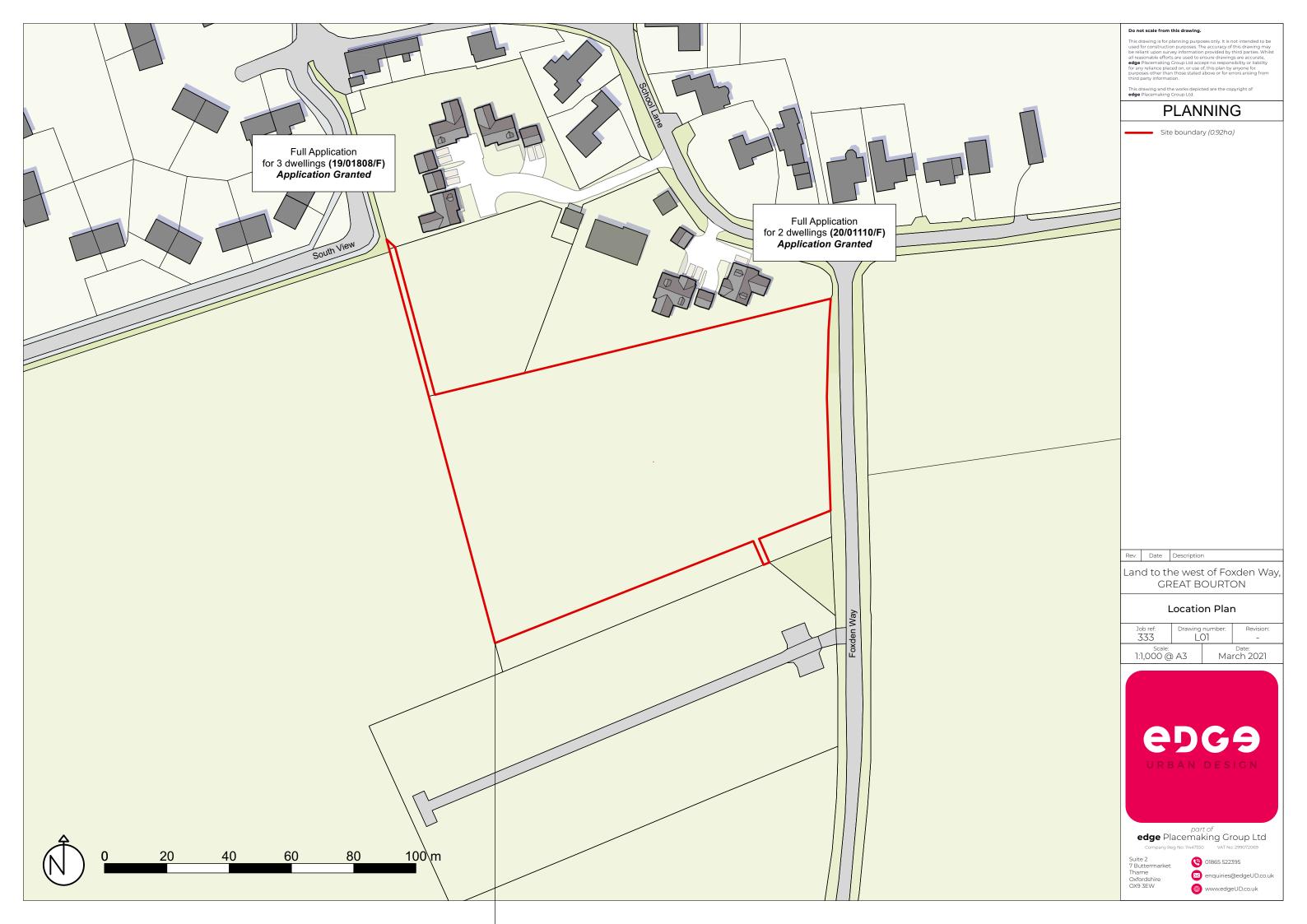
...... Ryan Chafer BSc (Hons) Assistant Flood Risk Engineer

Appendix:

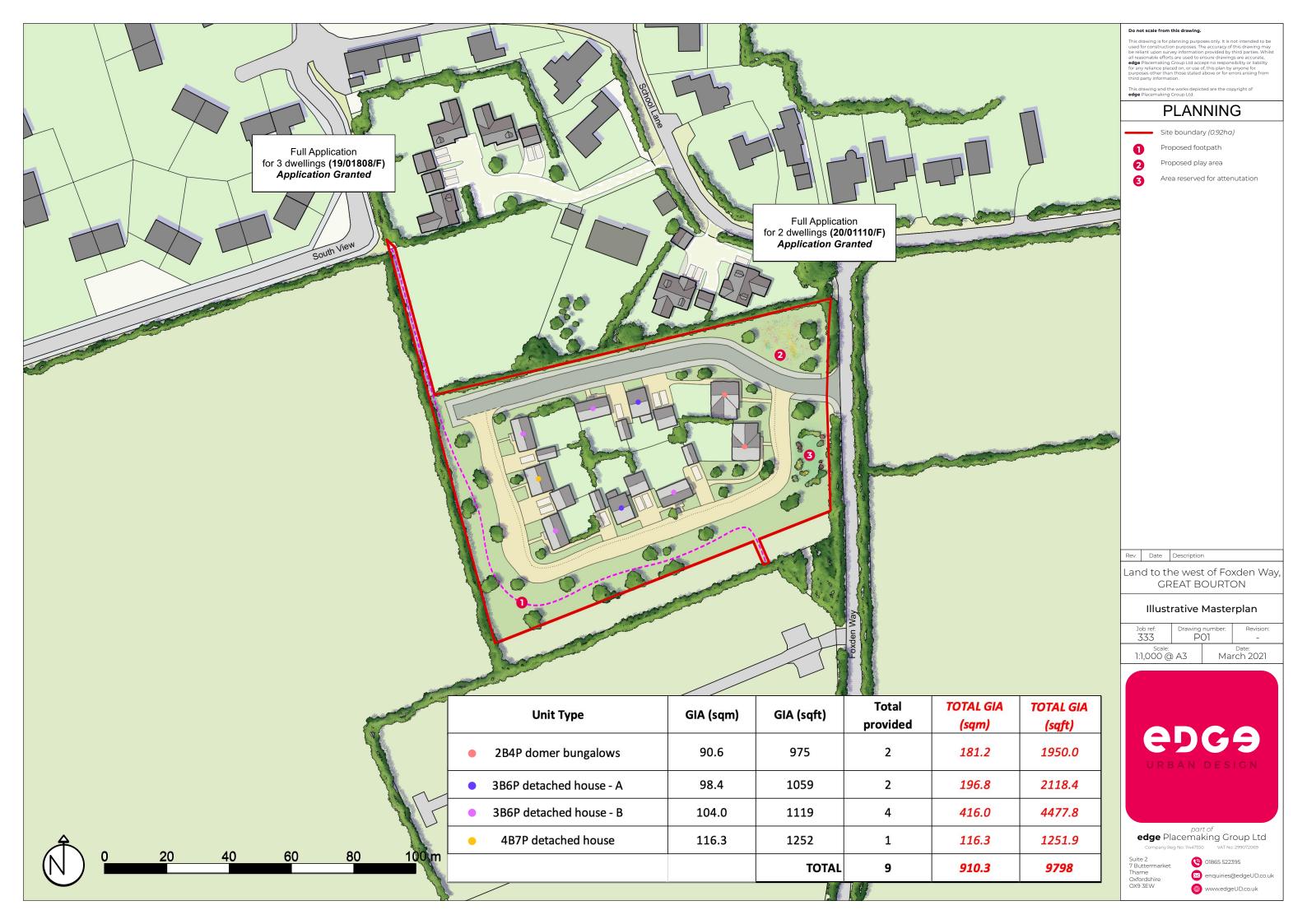
- A. Site Location Plan
- B. Proposed Site Layout Plan
- C. Greenfield Calculations
- D. Surface Water Attenuation Calculations
- E. Drainage Strategy Drawing 26437_01_230_01a

<u>COPYRIGHT</u> The contents of this document must not be copied or reproduced in whole or part without the written consent of Mewies Engineering Consultants Ltd.

Registration of Amendments


Revision	Comments	Prepared By:	Checked By:
-	Initial submission	RC	AB
March 2020			
A	Addition of permeable paving	RC	AB
March 2020			

Report Checked By:



...... Alexander Bennett BSc (Hons) MCIHT MTPS Director

APPENDIX A

APPENDIX B

APPENDIX C

M-EC		Page 1
The Old Chapel	26437	
Station Road, Hugglescote	Foxden Way	
Leicestershire LE67 2GB	Great Bourton	Mirro
Date 15/03/2021 09:59	Designed by R.Chafer	Drainage
File QBAR.SRCX	Checked by A.Bennett	Diamaye
XP Solutions	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 SAAR (mm) 700 Urban 0.000 Area (ha) 0.920 Soil 0.150 Region Number Region 4

Results 1/s

QBAR Rural 0.4 QBAR Urban 0.4 Q100 years 1.0 Q1 year 0.3 Q30 years 0.7 Q100 years 1.0 APPENDIX D

Project No	26437
Sheet	1 of 5
Engineer	R.Chafer
Date	March 2021
Revision	-

DESIGN CALCULATIONS FRONT SHEET

SCHEME	Foxden Way, Great Bourton
CLIENT	Fernhill Estates
ASPECTS OF SCHEME TO BE DESIGNED	 Surface water attenuation design/simulations for the 1 in 100 year + 40% climate change design event for the development site.
CODES OF PRACTICE, DESIGN SPECIFICATIONS & BRITISH STANDARDS	 Design and analysis of urban storm drainage. Wallingford Procedure Vol. 1. Sustainable Drainage Systems - Non-statutory technical standards for sustainable drainage systems – 2015 The SuDS Manual – CIRIA C753.
NOTES	Calculations carried out using the Source Control system within MicroDrainage computer program.

INDEX

Pages	Calculations	Checked by	Date
2 –5	Attenuation Basin source control design details results for the 1 in 100 year + 40% climate change event.	AB	15.03.2021

M-EC		Page 2
The Old Chapel	26437	
Station Road, Hugglescote	Foxden Way	
Leicestershire LE67 2GB	Great Bourton	Micro
Date 12/03/2021 17:24	Designed by R.Chafer	Drainage
File 11-03-2021 - ATTENUAION	Checked by H.Rai	Diamaye
XP Solutions	Source Control 2020.1	

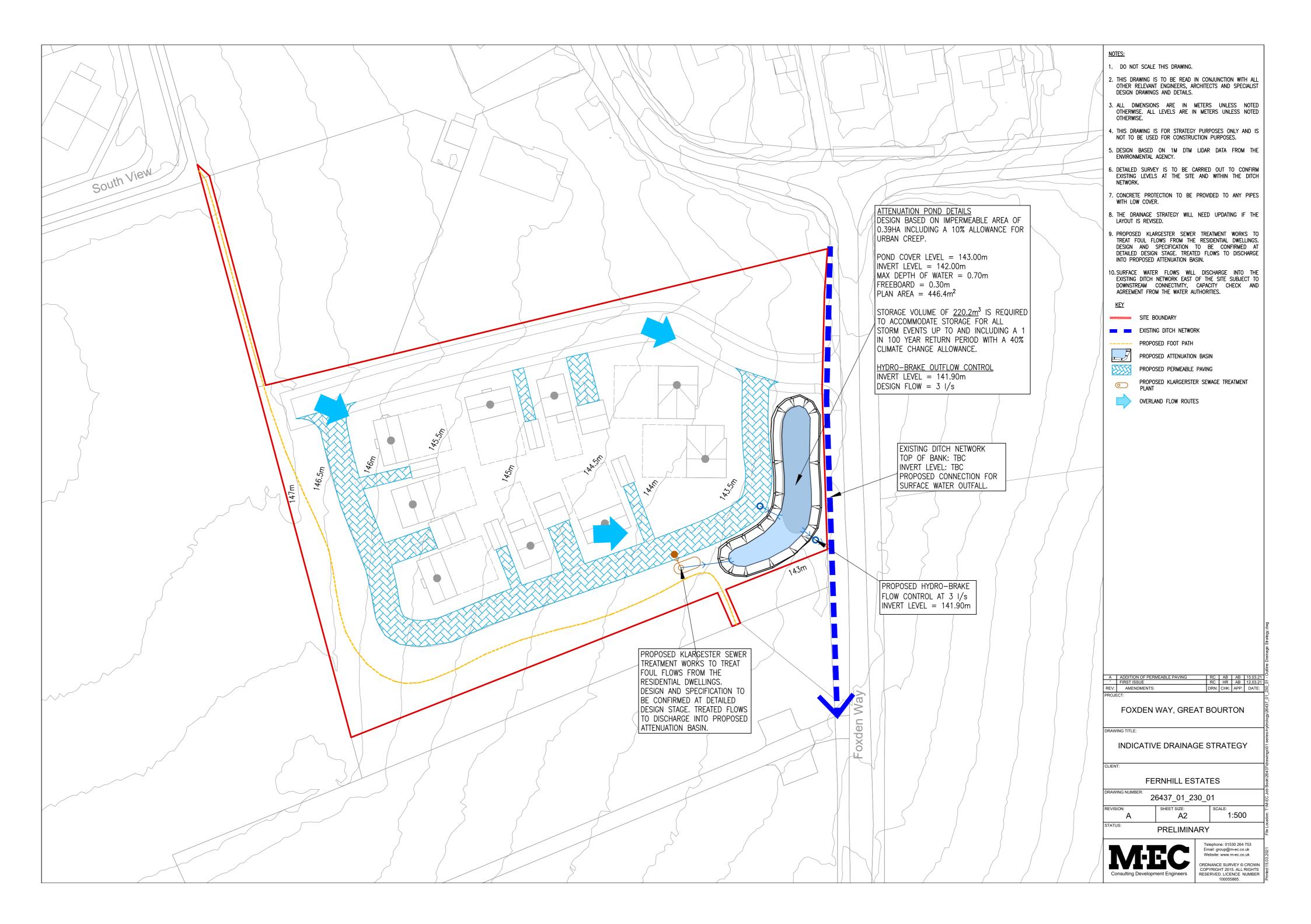
Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	142.342	0.342	3.0	95.7	ОК
30	min	Summer	142.432	0.432	3.0	124.4	ΟK
60	min	Summer	142.514	0.514	3.0	151.9	ΟK
120	min	Summer	142.581	0.581	3.0	175.4	ΟK
180	min	Summer	142.608	0.608	3.0	185.2	ΟK
240	min	Summer	142.619	0.619	3.0	189.1	ΟK
360	min	Summer	142.619	0.619	3.0	189.4	ΟK
480	min	Summer	142.608	0.608	3.0	185.3	ΟK
600	min	Summer	142.592	0.592	3.0	179.3	ΟK
720	min	Summer	142.577	0.577	3.0	174.1	ΟK
960	min	Summer	142.553	0.553	3.0	165.4	ΟK
1440	min	Summer	142.511	0.511	3.0	150.9	ΟK
2160	min	Summer	142.450	0.450	3.0	130.3	ΟK
2880	min	Summer	142.381	0.381	3.0	108.0	ΟK
4320	min	Summer	142.258	0.258	3.0	70.4	ΟK
5760	min	Summer	142.163	0.163	3.0	42.9	ΟK
7200	min	Summer	142.094	0.094	3.0	24.4	ΟK
8640	min	Summer	142.049	0.049	2.9	12.5	ΟK
10080	min	Summer	142.020	0.020	2.8	5.1	ΟK
15	min	Winter	142.380	0.380	3.0	107.8	ΟK
30	min	Winter	142.479	0.479	3.0	140.2	ΟK
60	min	Winter	142.570	0.570	3.0	171.6	ΟK
120	min	Winter	142.646	0.646	3.0	199.3	ΟK
180	min	Winter	142.679	0.679	3.0	211.6	ΟK
240	min	Winter	142.695	0.695	3.0	217.4	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	136.945	0.0	100.0	26
30	min	Summer	89.598	0.0	130.9	41
60	min	Summer	55.837	0.0	163.2	70
120	min	Summer	33.631	0.0	196.5	128
180	min	Summer	24.676	0.0	216.4	186
240	min	Summer	19.697	0.0	230.3	246
360	min	Summer	14.271	0.0	250.2	362
480	min	Summer	11.359	0.0	265.7	480
600	min	Summer	9.509	0.0	278.2	554
720	min	Summer	8.220	0.0	288.4	610
960	min	Summer	6.527	0.0	305.5	734
1440	min	Summer	4.709	0.0	330.5	1002
2160	min	Summer	3.392	0.0	356.8	1416
2880	min	Summer	2.685	0.0	377.0	1816
4320	min	Summer	1.929	0.0	406.3	2548
5760	min	Summer	1.524	0.0	428.1	3232
7200	min	Summer	1.269	0.0	445.0	3896
8640	min	Summer	1.092	0.0	459.8	4576
10080	min	Summer	0.962	0.0	472.5	5240
15	min	Winter	136.945	0.0	112.0	26
30	min	Winter	89.598	0.0	146.6	40
60	min	Winter	55.837	0.0	182.8	68
120	min	Winter	33.631	0.0	220.1	126
180	min	Winter	24.676	0.0	242.5	184
240	min	Winter	19.697	0.0	258.0	240

M-EC		Page 3
The Old Chapel	26437	
Station Road, Hugglescote	Foxden Way	
Leicestershire LE67 2GB	Great Bourton	Micro
Date 12/03/2021 17:24	Designed by R.Chafer	Drainage
File 11-03-2021 - ATTENUAION	Checked by H.Rai	Diamage
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)


Storm Event	Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
360 min Winter	142.702	0.702	3.0	220.2	Flood Risk
480 min Winter	142.697	0.697	3.0	218.2	O K
600 min Winter	142.684	0.684	3.0	213.4	O K
720 min Winter	142.667	0.667	3.0	207.1	ОК
960 min Winter	142.633	0.633	3.0	194.3	ОК
1440 min Winter	142.579	0.579	3.0	174.8	ОК
2160 min Winter	142.494	0.494	3.0	145.2	O K
2880 min Winter	142.394	0.394	3.0	112.2	O K
4320 min Winter	142.207	0.207	3.0	55.5	O K
5760 min Winter	142.083	0.083	3.0	21.4	O K
7200 min Winter	142.019	0.019	2.8	4.7	O K
8640 min Winter	142.000	0.000	2.5	0.0	ОК
10080 min Winter	142.000	0.000	2.2	0.0	0 K

	Stor Iven		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m ³)	Time-Peak (mins)
360 1	min	Winter	14.271	0.0	280.4	356
480 1	min	Winter	11.359	0.0	297.4	468
600 1	min	Winter	9.509	0.0	311.5	576
720 1	min	Winter	8.220	0.0	323.0	678
960 1	min	Winter	6.527	0.0	341.9	770
1440 1	min	Winter	4.709	0.0	370.1	1078
2160 1	min	Winter	3.392	0.0	399.8	1540
2880 1	min	Winter	2.685	0.0	422.0	1968
4320 1	min	Winter	1.929	0.0	454.8	2648
5760 1	min	Winter	1.524	0.0	479.4	3288
7200 1	min	Winter	1.269	0.0	498.8	3832
8640 1	min	Winter	1.092	0.0	515.2	0
10080 1	min	Winter	0.962	0.0	529.3	0

-EC		Page 4
he Old Chapel	26437	
tation Road, Hugglescote	Foxden Way	
eicestershire LE67 2GB	Great Bourton	- Micro
ate 12/03/2021 17:24	Designed by R.Chafer	
ile 11-03-2021 - ATTENUAION	Checked by H.Rai	Drainage
P Solutions	Source Control 2020.1	
P Solutions A Solutions P Solutions Reading Model Return Period (years) Region End M5-60 (mm) Ratio R Summer Storms T T T T T T T T T T T T T	Source Control 2020.1 Rainfall Details FSR Winter Storms Yes 100 Cv (Summer) 0.750 gland and Wales Cv (Winter) 0.840 19.700 Shortest Storm (mins) 15	

M-EC			Page 5				
The Old Chapel	26437						
Station Road, Hugglescote	Foxden Way						
Leicestershire LE67 2GB	_	Great Bourton					
Date 12/03/2021 17:24		Designed by R.Chafer					
File 11-03-2021 - ATTENUAION		Checked by H.Rai					
XP Solutions	Source Contro						
	<u>Model Details</u>						
Storage	is Online Cover Level	(m) 143.000					
	Tank or Pond Struc	<u>ture</u>					
	Invert Level (m) 142	.000					
Depth (m) Area (m	²) Depth (m) Area (m) Depth (m) Area (m²)				
0.000 250	.0 0.700 381	6 1.000 44	6.4				
Hydro-Brake® Optimum Outflow Control							
Unit Reference MD-SHE-0085-3000-0800-3000							
Design Head (m) 0.800							
Design Flow (1/s) 3.0							
Flush-Flo™ Calculated Objective Minimise upstream storage							
Application Surface							
	Sump Available		Yes				
Diameter (mm) 85							
Invert Level (m) 141.900 Minimum Outlet Pipe Diameter (mm) 100							
Suggested Manhole Diameter (mm) 1200							
Control Points Head (m	a) Flow (l/s) Co	ntrol Points	Head (m) Flow (l/s)				
Design Point (Calculated) 0.80	0 3.0	Kick-Flo®	0.517 2.5				
Flush-Flo™ 0.23	9 3.0 Mean Flo	w over Head Range	- 2.6				
The hydrological calculations have beer	based on the Head/Di	scharge relationshi	p for the Hydro-Brake®				
Optimum as specified. Should another t							
then these storage routing calculations	will be invalidated						
Depth (m) Flow (l/s) Depth (m) Flow (l/	s) Depth (m) Flow (1/	s) Depth (m) Flow	(l/s) Depth (m) Flow (l/s)				
0.100 2.6 0.800 3	.0 2.000 4	.6 4.000	6.3 7.000 8.3				
		.8 4.500	6.7 7.500 8.5				
		.0 5.000	7.0 8.000 8.8				
		.2 5.500 .5 6.000	7.4 8.500 9.0 7.7 9.000 9.3				
		.0 6.500	8.0 9.500 9.6				
	1						

APPENDIX E

Civil Engineering

Transport

Road Safety

Flood Risk & Drainage

Structures

Geo-Environmental

M-EC Acoustic Air

Utilities

M-EC Geomatics

Street Lighting

Expert Witness

Brighton Leicester

T: 01530 264 753 group@m-ec.co.uk www.m-ec.co.uk

Consulting **Development** Engineers