

DRAINAGE STATEMENT
PROPOSED RESIDENTIAL DEVELOPMENT
LAND AT HEMPTON ROAD, DEDDINGTON
20/03660/REM

Proposed Residential Development

Drainage Statement

Issued by: Expedite

35 Southernhay East

Exeter EX1 1NX

Client: Burrington Estates Ltd

Project Reference: ES20.020-0060

Project Title: Land at Hempton Road, Deddington

Revision: D

Date: 1st September 2021

Prepared by: Kevin Ritter

Checked by: Kris Tovey

Approved by: Simon Lancaster

1.0 Introduction

1.1 This Drainage Statement has been prepared on behalf of Burrington Estates Ltd by Expedite Engineering Services Ltd to describe the proposed drainage strategy for the proposed residential development at Hempton Road, Deddington.

2.0 Proposed Surface Water Drainage Strategy

The drainage layout is included within Appendix A.

Method of Discharge

- 2.1 The underlying soil of the development site has good infiltration characteristics and therefore infiltration is proposed to be the method of surface water discharge for the development.
- 2.2 Infiltration testing was carried out in June 2018 by M-EC within two trial pits in the south-eastern corner of the site, at the location of the proposed infiltration feature. Encountered rates were between 7.35x10⁻³m/s and 7.77x10⁻⁴m/s.
- 2.3 An infiltration rate of 7.77x10⁻⁴m/s was taken forward for design as this was the lowest tested infiltration rate.

Discharge Rates

2.4 Surface water drainage will be directed to the proposed infiltration basin and as such no restriction of discharge rates will be required. The modelled infiltration flow through the basin is shown in the MicroDrainage calculations in **Appendix B**.

Discharge Volume

2.5 The proposed infiltration basin will ensure that no additional volume of surface water leaves the site under any design storm event. All surface water drainage shall be conveyed to the infiltration basin and discharged directly to the underlying subsoil. Permeable paving is proposed for all private driveway and parking areas, which will discharge surface water at source rather than conveying to the basin.

Overland/Exceedance Flows

- 2.6 In the event of extremely short and intense storms, the surface water drainage system may become overwhelmed, resulting in small levels of temporary above-ground surface water flooding.
- 2.7 Site and road levels have been designed to be commensurate with existing ground levels whilst ensuring that overland flows are directed towards the infiltration basin, with any areas of flooding able to overflow into the basin. There is no proposed pathway for overland flows to exit the development site.

- 2.8 Due to the good infiltration characteristics of the site's subsoil, it is unlikely that overland surface water flow is able to occur across areas of permeable soft landscaping.
- 2.9 A plan showing the likely flow routes of overland surface water flows is shown in **Appendix C**.

Infiltration Basin Sizing

- 2.10 The basin has been sized using the MicroDrainage software package. The modelled basin uses the design infiltration rate of 7.77x10⁻⁴m/s, a safety factor of 2.0, and assumes that there is no infiltration through the base of the basin (to account for a possible long-term reduction in infiltration performance due to sedimentation).
- 2.11 The design infiltration rate is based on testing carried out to BRE Digest 365 methodology by Mewies Engineering Consultants in June 2018, at the location of the proposed infiltration basin (south-east corner of the site). 7.77 x 10⁻⁴m/s was the lowest encountered rate during the total of 10 tests carried out between two test pits.
- 2.12 A copy of the infiltration testing results are included with **Appendix D**.
- 2.13 A catchment area of 5740m² was used to account for the proposed development in addition to the possible future addition of 14 dwellings in the plot of land to the north of the development (Cherwell application 20/02083/OUT). The breakdown of areas is as follows:

This Development (21 dwellings)

Impermeable area 3540m²

Potential Future Development (14 dwellings)

Impermeable area 2200m²

Total impermeable area 5740m²

- 2.14 The impermeable area was increased by 10% for the hydraulic modelling, to account for urban creep (a long-term increase in the site's impermeable catchment area due to additional paving, building extensions etc).
- 2.15 The above information gives a conservative infiltration basin design with capacity to safely store excess flows in the 1 in 100yr (+40% climate change) design storm, whilst retaining a minimum of 300mm of freeboard.

- 2.16 The proposed basin shall have a maximum water depth of 1.0 metres and maximum side slopes of 1:4.
- 2.17 Due to the favourable infiltration rates the modelled basin achieves a half-drain time of 34 minutes for the 1 in 100yr (+40%) design storm event, comfortably within the generally specified 24-hour half-drain time target.
- 2.18 MicroDrainage calculations are included within **Appendix B**, which show no surcharging of the surface water drainage system for the 1yr design storm event, and no flooding for the 30yr event.

3.0 Proposed Foul Water Drainage Strategy

- 3.1 Foul drainage shall be conveyed to the south-eastern corner of the site and connected to an existing foul sewer in Wimborn Close, manhole reference 0701.
- 3.2 A copy of the Thames Water asset records is shown in **Appendix E**.

4.0 Operation and Maintenance

- 4.1 Maintenance of SuDS features is essential to ensure that the surface water drainage system operates effectively and that flooding of the site and surrounding areas is prevented.
- 4.2 The responsibility of maintaining the drainage components would lie with the landowner unless responsibility has been delegated to an appointed external Management Company.
- 4.3 A full maintenance regime should be carried out to ensure that the drainage system remains operational over its lifetime. Table 1 summarises an initial maintenance plan for the drainage components proposed within this development. The SuDS Manual (CIRIA C753) and manufacturer's guidelines should be referred to for further information.

Drainage Component	Required Action	Typical Frequency
	Stabilise adjacent areas	As required
	Remove weeds	As required
Pipework,	Clear any poor performing structures.	As required
manholes, chambers, catch pits and silt traps	Inspect all structures for poor operation	Six monthly, 48 hours after large storms in first six months
	Monitor inspection chambers. Inspect silt accumulation rates and determine silt clearance frequencies	Annually
Surface Water Infiltration Basin	Inspect for sediment and debris in pre- treatment components and remove. Note rate of sediment accumulation	As required
Busin	Check basin to ensure emptying is occurring	Annually

Table 1 - Operation and Maintenance Summary

Appendix A – Drainage Layout

Appendix B – MicroDrainage Calculations

Cotswold Transport Planning	Page 0	
CTP House, Knapp Road	SW Calculations	
Cheltenham	Land at Hempton Road	
Gloucestershire, GL50 3QQ	Deddington - Rev C	Micro
Date 28/07/2021	Designed by PG	
File SW Network Model.mdx	Checked by KR	Drainage
Innovyze	Network 2020.1.3	-

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for SW Network

Pipe Sizes CTP Manhole Sizes CTP

FSR Rainfall Model - England and Wales

Return Period (years) 30 PIMP (%) 100

M5-60 (mm) 20.000 Add Flow / Climate Change (%) 10

Ratio R 0.409 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for SW Network

Time	Area		Area
(mins)	(ha)	(mins)	(ha)
0-4	0.372	4-8	0.199

Total Area Contributing (ha) = 0.571

Total Pipe Volume $(m^3) = 15.335$

Network Design Table for SW Network

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	28.106	0.432	65.1	0.052	5.00	0.0	0.600	0	150	Pipe/Conduit	a
1.001	12.296	0.118	104.2	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	ē
1.002	15.735	0.200	78.7	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	ă
1.003	25.466	0.525	48.5	0.035	0.00	0.0	0.600	0	150	Pipe/Conduit	ĕ
1.004	10.119	0.583	17.4	0.013	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
											_
2.000	20.078	0.135	148.7	0.247	5.00	0.0	0.600	0	375	Pipe/Conduit	0
2.001	42.445	0.283	150.0	0.082	0.00	0.0	0.600	0	375	Pipe/Conduit	₫*
2.002	20.985	0.140	149.9	0.077	0.00	0.0	0.600	0	375	Pipe/Conduit	0
1.005	23.673	0.118	200.6	0.013	0.00	0.0	0.600	0	375	Pipe/Conduit	<u> </u>
1.006	10.680	0.053	201.5	0.052	0.00	0.0	0.600	0	375	Pipe/Conduit	ă

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000 1.001 1.002	50.00 50.00 50.00	5.58 5.81	137.350 136.918 136.800	0.052 0.052 0.052	0.0 0.0 0.0	0.0	0.7 0.7 0.7	1.25 0.98 1.13	22.1 17.4 20.0	7.7 7.7 7.7
1.003	50.00	6.16	136.600	0.087	0.0	0.0	1.2		25.6 125.5	13.0
2.000 2.001 2.002	50.00 50.00 50.00	5.70	135.825 135.690 135.407	0.247 0.329 0.406	0.0	0.0	3.3 4.5 5.5	1.48	163.8 163.2 163.2	36.8 49.0 60.5
1.005 1.006	50.00		135.267 135.149	0.519 0.571	0.0	0.0	7.0 7.7		140.9 140.6	77.3 85.1

©1982-2020 Innovyze

Cotswold Transport Planning	Page 1	
CTP House, Knapp Road	SW Calculations	
Cheltenham	Land at Hempton Road	
Gloucestershire, GL50 3QQ	Deddington - Rev C	Micro
Date 28/07/2021	Designed by PG	
File SW Network Model.mdx	Checked by KR	Drainage
Innovyze	Network 2020.1.3	1

Network Design Table for SW Network

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design

1.007 4.287 0.043 100.0 0.000 0.00

0.0 0.600 o 375 Pipe/Conduit

Network Results Table

PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (1/s)

1.007 50.00 6.65 134.900 0.571 0.0 0.0 7.7 1.81 200.1 85.1

Simulation Criteria for SW Network

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 10.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Profile Type Summer Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Storm Duration (mins) 30
Ratio R 0.409

Cotswold Transport Planning	Page 2	
CTP House, Knapp Road	SW Calculations	
Cheltenham	Land at Hempton Road	
Gloucestershire, GL50 3QQ	Deddington - Rev C	Micro
Date 28/07/2021	Designed by PG	Drainage
File SW Network Model.mdx	Checked by KR	niairiade
Innovyze	Network 2020.1.3	1

Online Controls for SW Network

Weir Manhole: S12, DS/PN: 1.007, Volume (m³): 3.0

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 136.600

Cotswold Transport Planning	Page 3	
CTP House, Knapp Road	SW Calculations	
Cheltenham	Land at Hempton Road	
Gloucestershire, GL50 3QQ	Deddington - Rev C	Micro
Date 28/07/2021	Designed by PG	Drainage
File SW Network Model.mdx	Checked by KR	Dialilade
Innovyze	Network 2020.1.3	1

Storage Structures for SW Network

Infiltration Basin Manhole: S12, DS/PN: 1.007

Invert Level (m) 134.900 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 2.79700

Depth (m)	Area (m²)								
0.000	66.0	0.400	126.0	0.800	205.0	1.200	309.0	1.600	444.0
0.100	80.0	0.500	144.0	0.900	229.0	1.300	340.0	1.700	560.0
0.200	94.0	0.600	166.0	1.000	254.0	1.400	373.0		
0.300	109.0	0.700	184.0	1.100	281.0	1.500	407.0		

Cotswold Transport Planning		Page 4
CTP House, Knapp Road	SW Calculations	
Cheltenham	Land at Hempton Road	
Gloucestershire, GL50 3QQ	Deddington - Rev C	Micro
Date 28/07/2021	Designed by PG	Drainage
File SW Network Model.mdx	Checked by KR	Drainage
Innovyze	Network 2020.1.3	

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for SW Network

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 10.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.410 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

OFF

Inertia Status

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40

PN	US/MH Name	Stor		Climate Change	First Surch		First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)		Flow / Cap.
1.000	S2	15 Win	ter 1	+0%	100/15	Summer				137.414	-0.086	0.000	0.37
1.001	s3	15 Win	ter 1	+0%	30/15	Summer				136.994	-0.074	0.000	0.50
1.002	S4	15 Win	ter 1	+0%	30/15	Summer				136.869	-0.081	0.000	0.43
1.003	S5	15 Win	ter 1	+0%	30/15	Summer				136.676	-0.074	0.000	0.51
1.004	S6	15 Win	ter 1	+0%	100/15	Summer				136.055	-0.170	0.000	0.13
2.000	s7	15 Win	ter 1	+0%	30/15	Summer				135.960	-0.240	0.000	0.28
2.001	S8	15 Win	ter 1	+0%	30/15	Summer				135.838	-0.227	0.000	0.32
2.002	S8A	15 Win	ter 1	+0%	30/15	Summer				135.576	-0.206	0.000	0.42
1.005	S9	15 Win	ter 1	+0%	30/15	Summer				135.479	-0.163	0.000	0.60
1.006	S11	15 Win	ter 1	+0%	30/15	Summer				135.393	-0.131	0.000	0.75
1.007	S12	30 Win	ter 1	+0%	30/15	Summer				135.263	-0.012	0.000	0.00

	US/MH	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	S2			7.9	OK	
1.001	s3			8.0	OK	
1.002	S4			8.0	OK	
1.003	S5			12.4	OK	
1.004	S6			14.0	OK	
2.000	s7			38.0	OK	
2.001	S8			48.3	OK	
2.002	S8A			57.6	OK	
1.005	S9			73.2	OK	
1.006	S11			78.8	OK	
1.007	S12		24	0.0	OK	

Cotswold Transport Planning		Page 5
CTP House, Knapp Road	SW Calculations	
Cheltenham	Land at Hempton Road	
Gloucestershire, GL50 3QQ	Deddington - Rev C	Micro
Date 28/07/2021	Designed by PG	Drainage
File SW Network Model.mdx	Checked by KR	pramage
Innovyze	Network 2020.1.3	,

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for SW Network

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 10.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.410 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

OFF

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

											Water	Surcharged	Flooded	
	US/MH			Return	Climate	First	t (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /
PN	Name	s	torm	Period	Change	Surch	narge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.
	~ ^	4.5		0.0	. 0.0	100/15	_				105 105	0.015		0 01
1.000	S2	15	Winter	30	+0%	100/15	Summer				137.485	-0.015	0.000	0.91
1.001	s3	15	Winter	30	+0%	30/15	Summer				137.175	0.107	0.000	1.10
1.002	S4	15	Winter	30	+0%	30/15	Summer				137.032	0.082	0.000	0.97
1.003	S5	15	Winter	30	+0%	30/15	Summer				136.871	0.121	0.000	1.11
1.004	S6	15	Winter	30	+0%	100/15	Summer				136.085	-0.140	0.000	0.30
2.000	s7	15	Winter	30	+0%	30/15	Summer				136.272	0.072	0.000	0.65
2.001	S8	15	Winter	30	+0%	30/15	Summer				136.157	0.092	0.000	0.73
2.002	S8A	15	Winter	30	+0%	30/15	Summer				136.002	0.220	0.000	0.93
1.005	S9	15	Winter	30	+0%	30/15	Summer				135.878	0.236	0.000	1.34
1.006	S11	15	Winter	30	+0%	30/15	Summer				135.663	0.139	0.000	1.68
1.007	S12	30	Winter	30	+0%	30/15	Summer				135.562	0.287	0.000	0.00

			Half Drain	Pipe		_
	US/MH	Overflow	Time	Flow		Level
PN	Name	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	S2			19.1	OK	
1.001	s3			17.3	SURCHARGED	
1.002	S4			18.0	SURCHARGED	
1.003	S5			27.0	SURCHARGED	
1.004	S6			31.4	OK	
2.000	s7			89.1	SURCHARGED	
2.001	S8			108.4	SURCHARGED	
2.002	S8A			127.7	SURCHARGED	
1.005	S9			162.6	SURCHARGED	
1.006	S11			176.6	SURCHARGED	
1.007	S12		31	0.0	SURCHARGED	

Cotswold Transport Planning		Page 6
CTP House, Knapp Road	SW Calculations	
Cheltenham	Land at Hempton Road	
Gloucestershire, GL50 3QQ	Deddington - Rev C	Micro
Date 28/07/2021	Designed by PG	Drainage
File SW Network Model.mdx	Checked by KR	nialilade
Innovyze	Network 2020.1.3	,

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for SW Network

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 10.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 20.000 Cv (Summer) 0.750 Region England and Wales Ratio R 0.410 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

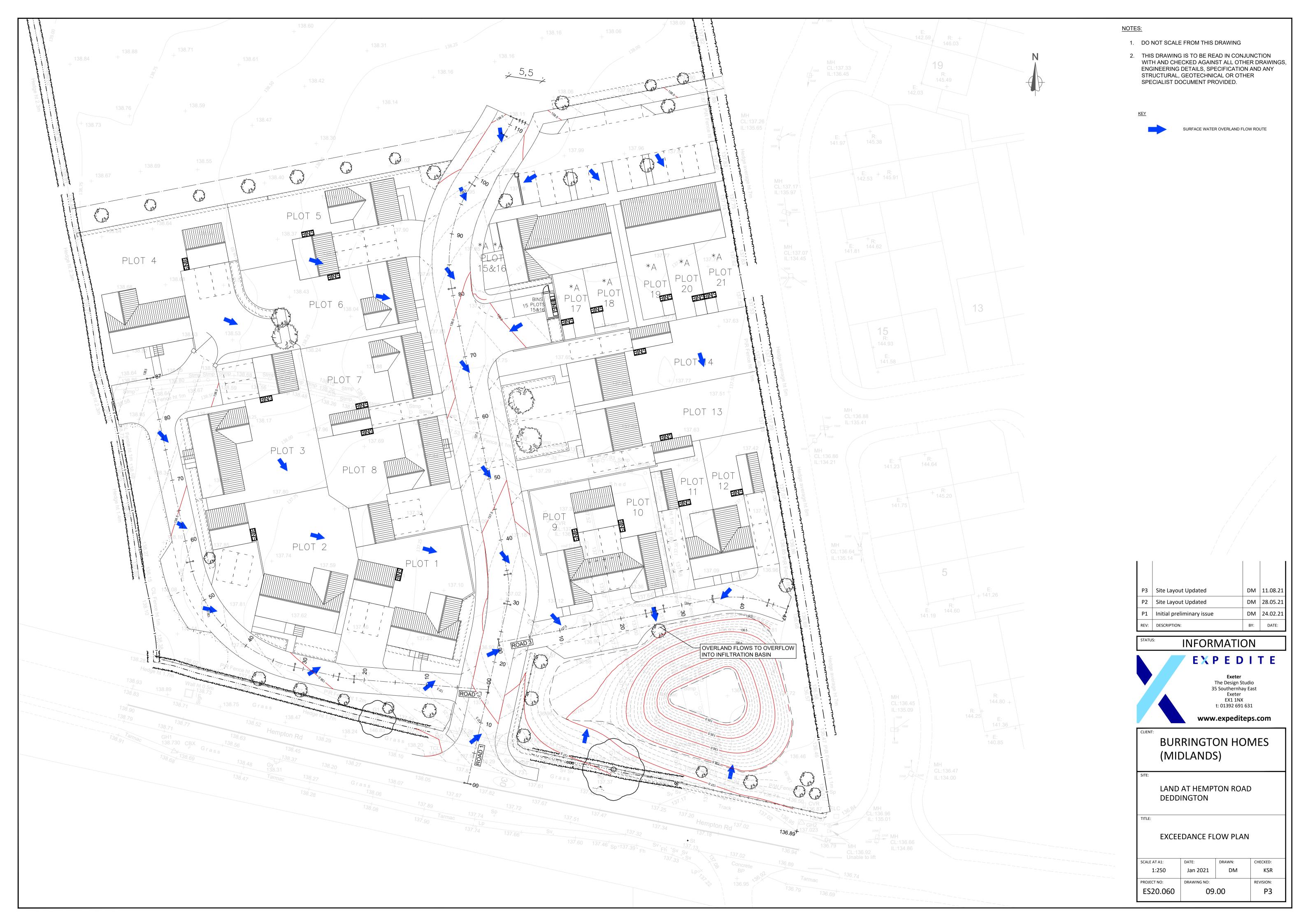
Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON


Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 40

											Water	Surcharged	Flooded	
	US/MH			Return	Climate	First	(X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /
PN	Name	St	torm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.
1.000	S2	15 V	Winter	100	+40%	100/15	Summer				138.701	1.201	0.000	1.17
1.001	s3	15 V	Winter	100	+40%	30/15	Summer				138.205	1.137	0.000	1.41
1.002	S4	15 V	Winter	100	+40%	30/15	Summer				137.970	1.020	0.000	1.35
1.003	S5	15 V	Winter	100	+40%	30/15	Summer				137.710	0.960	0.000	1.43
1.004	S6	15 V	Winter	100	+40%	100/15	Summer				136.802	0.577	0.000	0.42
2.000	s7	15 V	Winter	100	+40%	30/15	Summer				137.793	1.593	0.000	1.10
2.001	S8	15 V	Winter	100	+40%	30/15	Summer				137.628	1.563	0.000	1.30
2.002	S8A	15 V	Winter	100	+40%	30/15	Summer				137.130	1.348	0.000	1.69
1.005	S9	15 V	Winter	100	+40%	30/15	Summer				136.727	1.085	0.000	2.28
1.006	S11	15 V	Winter	100	+40%	30/15	Summer				136.141	0.617	0.000	2.84
1.007	S12	60 V	Winter	100	+40%	30/15	Summer				135.914	0.639	0.000	0.00

			Half Drain	Pipe		
	US/MH	Overflow	Time	Flow		Level
PN	Name	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	S2			24.6	FLOOD RISK	
1.001	s3			22.3	FLOOD RISK	
1.002	S4			25.1	FLOOD RISK	
1.003	S5			34.9	FLOOD RISK	
1.004	S6			43.9	SURCHARGED	
2.000	s7			151.6	SURCHARGED	
2.001	S8			193.2	SURCHARGED	
2.002	S8A			233.2	SURCHARGED	
1.005	S9			275.6	SURCHARGED	
1.006	S11			298.8	SURCHARGED	
1.007	S12		37	0.0	SURCHARGED	

Appendix C – Overland Flow Route Plan

Appendix D – Infiltration Testing Results

Hempton Road, Deddington, Oxfordshire Flood Risk and Drainage Technical Note June 2018 Ref. 23933/05-18/6010 – Rev C

The proposed development area will be located wholly within Flood Zone 1 (less than 0.1% chance of flooding). In accordance with Table 3 of the Planning Practice Guidance the development is therefore "sequentially acceptable".

Geology & Ground Conditions

Geological mapping indicates that the site is underlain by two types of solid geology; the north of the site is underlain by Whitby Mudstone Formation while the south of the site is Marlstone Rock Formation – Ferruginous Limestone and Ironstone. No superficial deposits are present within the site's boundaries.

Soakage testing was undertaken in June 2018 with two trial pits in the site's south-east corner. Both pits were found to infiltrate very well (findings are summarised in Table 1). As a result of this the site's proposed drainage strategy has been revised to be based on infiltration.

Table 1: Soakage Test Summary

SA01		SAO	2			
m/s	m/hr	m/s	m/hr			
1.27×10^{-3}	4.572	5.93 x 10 ⁻³	21.348			
9.55 x 10 ⁻⁴	3.438	7.35×10^{-3}	26.460			
7.77×10^{-4}	2.797	1.84×10^{-3}	6.624			
		1.67×10^{-3}	6.012			
		1.57×10^{-3}	5.652			
		1.67×10^{-3}	6.012			
		1.66 x 10 ⁻³	5.976			

Drainage Strategy

No ditches or significant drainage features are located within the site and therefore existing surface water runs off directly downhill towards Hempton Road along the southern boundary.

Given the confirmation of viable infiltration and the lack of nearby watercourses, surface water runoff from the site will be attenuated on-site and then discharged into the underlying ironstone bedrock. No existing public surface water sewers are present within the site's boundaries.

The proposed surface water strategy for the site will comprise of a single infiltration basin with a total storage capacity of $156m^3$ based on an impermeable area of 0.74ha inclusive of 10% urban creep. This system will have sufficient capacity for the 1 in 100 year storm event (plus a 40% allowance of climate change).

The SUDS scheme will be offered to the Borough Council or other local bodies such as the Town or Parish Council for adoption and future maintenance. A proposed maintenance plan shown in Table 2 breaks down the maintenance responsibility of the various assets.

The Old Chapel, Station Road, Hugglescote, Leicestershire, LE67 2GB Telephone 01530 264753 email group@m-ec.co.uk

Scheme Hempton Road, Deddington

Client Robert Webb

Job ref. **23933**

 Page No.
 1

 Calcs by
 CN

 Date
 14/06/18

 Test Number
 1

1.27E-03 m/s

Soil infiltration test

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.

Length

Width

Depth

Ground water level

SA01

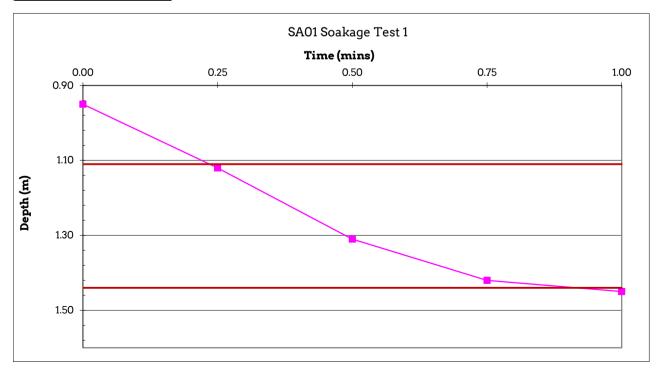
1.80 m

0.45 m

N/A

Ground conditions 0.00 - 0.20 TOPSOIL comprising reddish brown, clayey, gravelly, SAND.

0.20 - 0.50 Reddish brown, gravelly SAND with a low cobble content.


SOIL INFILTRATION RATE =

0.50 - 1.60 Reddish brown, sandy, fine to coarse angular GRAVEL with high cobble and low boulder content.

Weather Conditions: Overcast

Time	Depth to
mins	water
0.00	0.95
0.25	1.12
0.50	1.31
0.75	1.42
1.00	1.45

Effective storage depth =	0.65 m
75% effective storage depth =	0.49 m
(ie depth below GL) =	1.11 m
25% effective storage depth =	0.16 m
(ie depth below GL) =	1.44 m
effective storage depth 75%-25% =	0.33 m
Time to fall to 75% offective depth -	0.2/
Time to fall to 75% effective depth =	0.24 mins
Time to fall to 75% effective depth =	0.24 mins 0.85 mins
• • • • • • • • • • • • • • • • • • •	
Time to fall to 25% effective depth =	0.85 mins
Time to fall to 25% effective depth = Void Ratio =	0.85 mins 40%
Time to fall to 25% effective depth = Void Ratio = V (75%-25%) =	0.85 mins 40% 0.1053 m3

The Old Chapel, Station Road, Hugglescote, Leicestershire, LE67 2GB Telephone 01530 264753 email group@m-ec.co.uk

Scheme Hempton Road, Deddington

Client Robert Webb

Job ref. **23933**

 Page No.
 2

 Calcs by
 CN

 Date
 14/06/18

 Test Number
 2

Soil infiltration test

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.

Length

Width

Depth

Ground water level

SA01

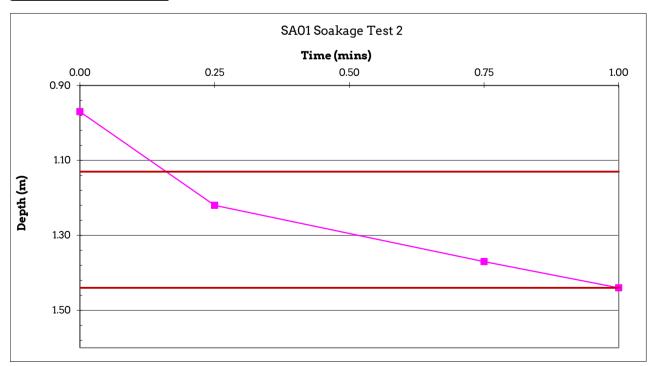
1.80 m

0.45 m

N/A

Ground conditions 0.00 - 0.20 TOPSOIL comprising reddish brown, clayey, gravelly, SAND.

0.20 - 0.50 Reddish brown, gravelly SAND with a low cobble content.


0.50 - 1.60 Reddish brown, sandy, fine to coarse angular GRAVEL with high cobble and low boulder content.

Weather Conditions: Overcast

Time	Depth to
mins	water
0.00	0.97
0.25	1.22
0.75	1.37
1.00	1.44

Effective storage depth =	0.63 m
75% effective storage depth =	0.47 m
(ie depth below GL) =	1.13 m
25% effective storage depth =	0.16 m
(ie depth below GL) =	1.44 m
effective storage depth 75%-25% =	0.32 m
Time to fall to 75% effective depth =	0.20 mins
Time to fall to 25% effective depth =	1.00 mins
Void Ratio =	40%
V (75%-25%) =	0.1021 m3
a (50%) =	2.2275 m2
t (75%-25%) =	0.80 mins

SOIL INFILTRATION RATE = 9.55E-04 m/s

The Old Chapel, Station Road, Hugglescote, Leicestershire, LE67 2GB Telephone 01530 264753 email group@m-ec.co.uk

Scheme Hempton Road, Deddington

Client Robert Webb

Job ref. **23933**

Page No. 3
Calcs by CN
Date 14/06/18
Test Number 3

7.77E-04 m/s

Soil infiltration test

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref. SA01

Length 1.80 m

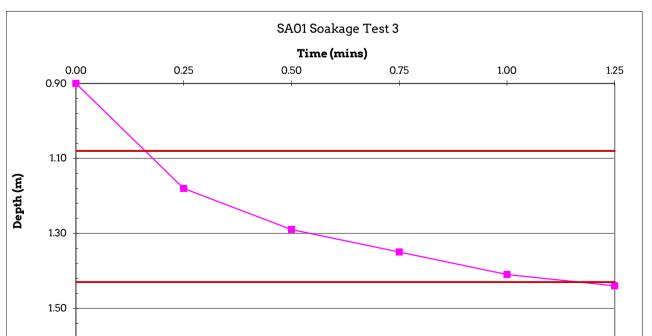
Width 0.45 m

Depth 1.60 m

Ground water level N/A

Ground conditions 0.00 - 0.20 TOPSOIL comprising reddish brown, clayey, gravelly, SAND.

0.20 - 0.50 Reddish brown, gravelly SAND with a low cobble content.

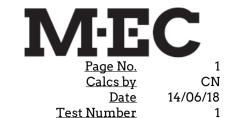

SOIL INFILTRATION RATE =

0.50 - 1.60 Reddish brown, sandy, fine to coarse angular GRAVEL with high cobble and low boulder content.

Weather Conditions: Overcast

Time	Depth to
mins	water
0.00	0.90
0.25	1.18
0.50	1.29
0.75	1.35
1.00	1.41
1.25	1.44

Effective storage depth = 75% effective storage depth = (ie depth below GL) = 25% effective storage depth = (ie depth below GL) = effective storage depth 75%-25% =	0.70 m 0.53 m 1.08 m 0.18 m 1.43 m 0.35 m
Time to fall to 75% effective depth = Time to fall to 25% effective depth = Void Ratio = V (75%-25%) = a (50%) = t (75%-25%) =	0.13 mins 1.15 mins 40% 0.1134 m3 2.3850 m2 1.02 mins



The Old Chapel, Station Road, Hugglescote, Leicestershire, LE67 2GB Telephone 01530 264753 email group@m-ec.co.uk

Scheme Hempton Road, Deddington

Client Robert Webb

<u>Job ref.</u> **23933**

5.93E-03 m/s

Soil infiltration test

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.

Length

Width

Depth

Ground water level

SA02

1.80 m

0.45 m

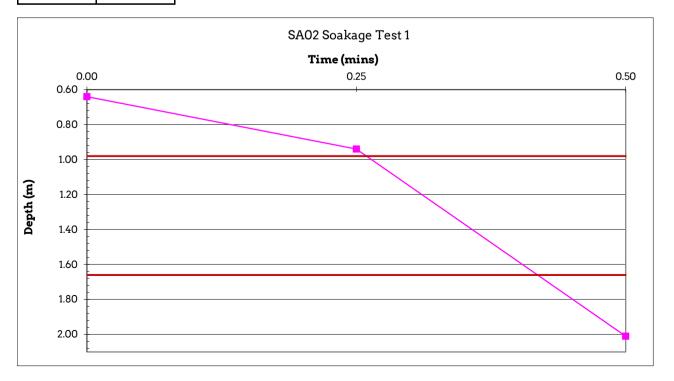
2.00 m

Ground conditions 0.00 - 0.20 TOPSOIL comprising reddish brown, clayey, gravelly, SAND.

 ${\bf 0.20 - 0.60 \ Reddish \ brown, clayey, gravelly \, SAND \ with a \ low \ cobble \ content.}$

 ${\bf 0.60 - 0.90 \ Reddish \ brown, sandy, fine \ to \ coarse \ angular \ GRAVEL \ with \ a \ high}$

cobble and low boulder content.


0.90 - 2.00 Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

SOIL INFILTRATION RATE =

Weather Conditions: Overcast

Time	Depth to
mins	water
0.00	0.64
0.25	0.94
0.50	2.01

Effective storage depth =	1.36 m
75% effective storage depth =	1.02 m
(ie depth below GL) =	0.98 m
25% effective storage depth =	0.34 m
(ie depth below GL) =	1.66 m
effective storage depth 75%-25% =	0.68 m
Time to fall to 75% effective depth =	0.26 mins
Time to fall to 25% effective depth =	0.42 mins
Void Ratio =	40%
V (75%-25%) =	0.2203 m3
a (50%) =	3.8700 m2
t (75%-25%) =	0.16 mins

The Old Chapel, Station Road, Hugglescote, Leicestershire, LE67 2GB Telephone 01530 264753 email group@m-ec.co.uk

Scheme Hempton Road, Deddington

Client **Robert Webb**

Job ref. 23933

Soil infiltration test

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref. **SA02** Length **1.80** m Width **0.45** m **2.00** m Depth N/A Ground water level

 ${\bf 0.00 - 0.20\ TOPSOIL\ comprising\ reddish\ brown,\ clayey,\ gravelly,\ SAND.}$ Ground conditions

0.20 - 0.60 Reddish brown, clayey, gravelly SAND with a low cobble content.

0.60 - 0.90 Reddish brown, sandy, fine to coarse angular GRAVEL with a high

cobble and low boulder content.

0.90 - 2.00 Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

Weather Conditions: Overcast

Time	Depth to
mins	water
0.00	0.59
0.25	1.76
0.50	1.89
0.75	2.01

1.10

1.30

1.50

1.70

1.90

2.10

Effective storage depth =	1.41 m
75% effective storage depth =	1.06 m
(ie depth below GL) =	0.94 m
25% effective storage depth =	0.35 m
(ie depth below GL) =	1.65 m
effective storage depth 75%-25% =	0.71 m
Time to fall to 75% effective depth =	0.08 mins
Time to fall to 25% effective depth =	0.21 mins
Void Ratio =	40%
V (75%-25%) =	0.2284 m3
a (50%) =	3.9825 m2
t (75%-25%) =	0.13 mins
SOIL INFILTRATION RATE =	7.35E-03 m/s

SA02 Soakage Test 2 Time (mins) 0.00 0.25 0.50 0.75 0.50 0.70 0.90 Depth (m)

The Old Chapel, Station Road, Hugglescote, Leicestershire, LE67 2GB Telephone 01530 264753 email group@m-ec.co.uk

Scheme Hempton Road, Deddington

Client Robert Webb

Job ref. **23933**

Page No. 3
Calcs by CN
Date 14/06/18
Test Number 3

1.84E-03 m/s

Soil infiltration test

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.

Length

Width

Depth

Ground water level

SA02

1.80 m

0.45 m

2.00 m

Ground conditions 0.00 - 0.20 TOPSOIL comprising reddish brown, clayey, gravelly, SAND.

 ${\bf 0.20 - 0.60 \ Reddish \ brown, clayey, gravelly \ SAND \ with a \ low \ cobble \ content.}$

0.60 - $0.90\,$ Reddish brown, sandy, fine to coarse angular GRAVEL with a high

cobble and low boulder content.

0.90 - 2.00 Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

SOIL INFILTRATION RATE =

Weather Conditions: Overcast

Time	Depth to
mins	water
0.00	0.59
0.25	1.35
0.50	1.55
0.75	1.72
1.00	1.84
1.25	1.97
1.50	2.01

1.90

2.10

Effective storage depth =	1.41 m
75% effective storage depth =	1.06 m
(ie depth below GL) =	0.94 m
25% effective storage depth =	0.35 m
(ie depth below GL) =	1.65 m
effective storage depth 75%-25% =	0.71 m
Time to fall to 75% effective depth =	0.12 mins
Time to fall to 25% effective depth =	0.64 mins
Void Ratio =	40%
V (75%-25%) =	0.2284 m3
a (50%) =	3.9825 m2
t (75%-25%) =	0.52 mins

SA02 Soakage Test 3 Time (mins) 1.50 0.50 0.75 0.00 0.25 1.00 1.25 0.50 0.70 0.90 Depth (m) 1.10 1.30 1.50 1.70

The Old Chapel, Station Road, Hugglescote, Leicestershire, LE67 2GB Telephone 01530 264753 email group@m-ec.co.uk

Hempton Road, Deddington Scheme

Client **Robert Webb**

Job ref. 23933

CN Date 14/06/18 Test Number

Soil infiltration test

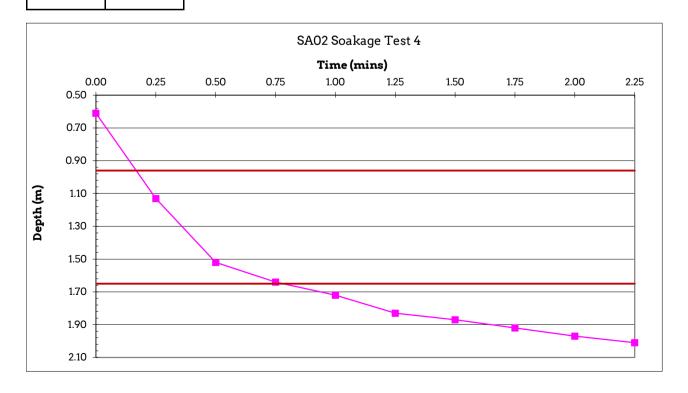
(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref. **SA02** Length **1.80** m Width **0.45** m **2.00** m Depth N/A Ground water level

0.00 - 0.20 TOPSOIL comprising reddish brown, clayey, gravelly, SAND. Ground conditions

0.20 - 0.60 Reddish brown, clayey, gravelly SAND with a low cobble content.

0.60 - 0.90 Reddish brown, sandy, fine to coarse angular GRAVEL with a high


cobble and low boulder content.

0.90 - 2.00 Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

Weather Conditions: Overcast

Effective storage de	Depth to	Time
75% effective storage de	water	mins
(ie depth below	0.61	0.00
25% effective storage de	1.13	0.25
(ie depth below	1.52	0.50
effective storage depth 75%-2	1.64	0.75
	1.72	1.00
Time to fall to 75% effective de	1.83	1.25
Time to fall to 25% effective de	1.87	1.50
Void R	1.92	1.75
V (75%-2	1.97	2.00
a (5	2.01	2.25
t (75%-2		
·		
SOIL INFILTRATION RA		

Effective storage depth = 75% effective storage depth = (ie depth below GL) = 25% effective storage depth = (ie depth below GL) = effective storage depth 75%-25% =	1.39 m 1.04 m 0.96 m 0.35 m 1.65 m 0.70 m
Time to fall to 75% effective depth = Time to fall to 25% effective depth = Void Ratio = V (75%-25%) = a (50%) = t (75%-25%) =	0.19 mins 0.76 mins 40% 0.2252 m3 3.9375 m2 0.57 mins
SOIL INFILTRATION RATE =	1.67E-03 m/s

The Old Chapel, Station Road, Hugglescote, Leicestershire, LE67 2GB Telephone 01530 264753 email group@m-ec.co.uk

Scheme Hempton Road, Deddington

Client Robert Webb

<u>Job ref.</u> **23933**

Page No. 5
Calcs by CN
Date 14/06/18
Test Number 5

Soil infiltration test

(In general accordance with BRE Digest 365, 2016, Soakaway Design)

Trial pit ref.

Length

Width

Depth

Ground water level

SA02

1.80 m

0.45 m

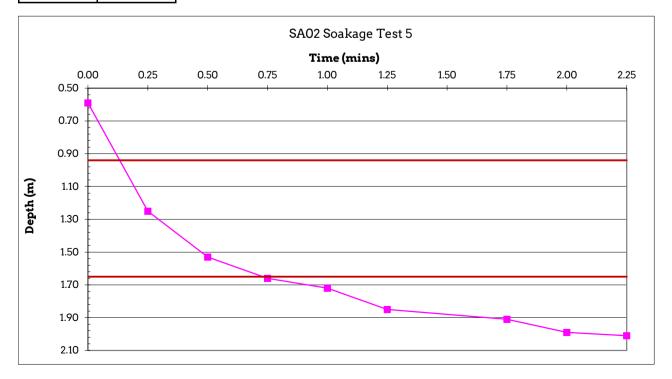
2.00 m

Ground conditions 0.00 - 0.20 TOPSOIL comprising reddish brown, clayey, gravelly, SAND.

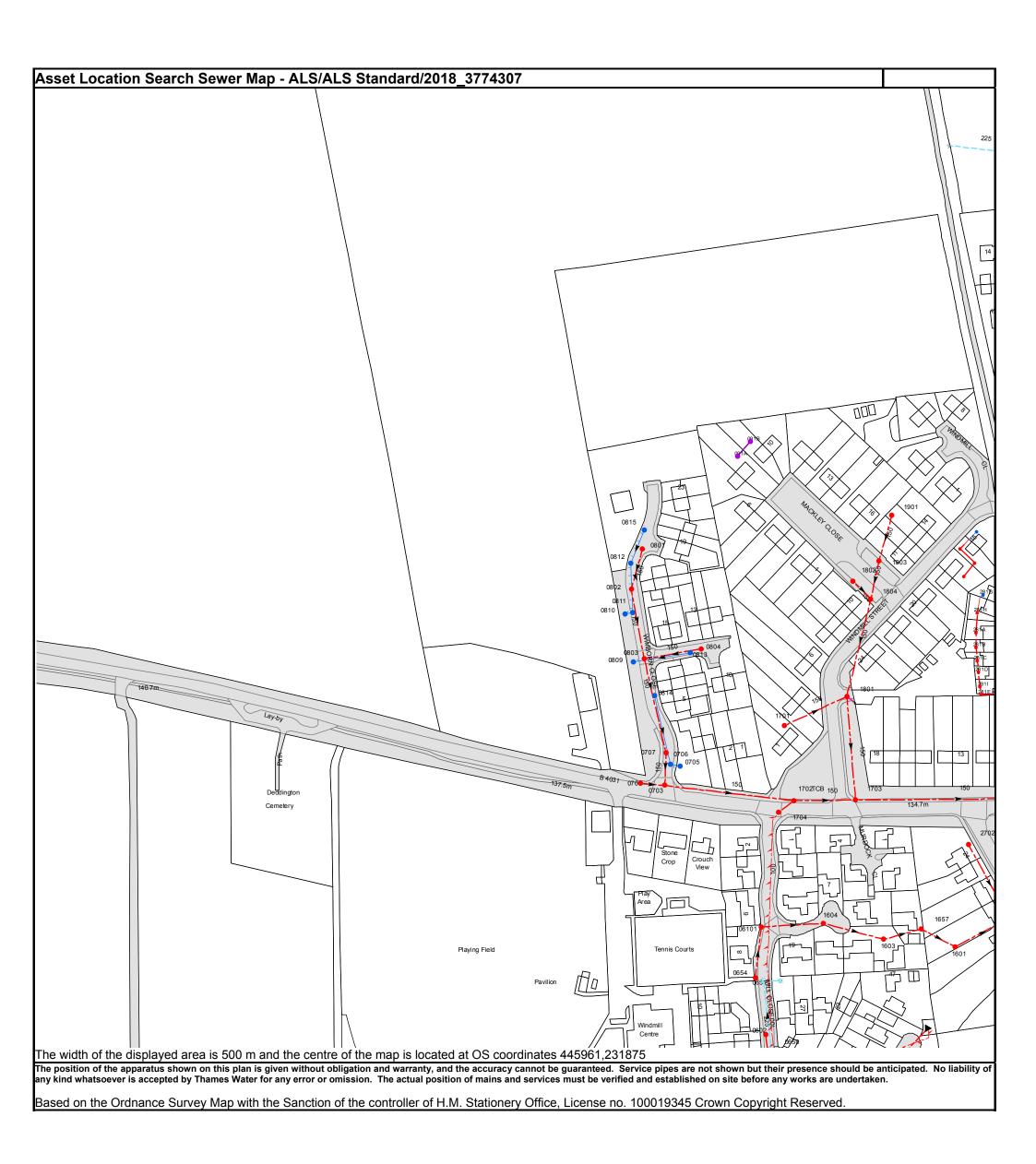
0.20 - 0.60 Reddish brown, clayey, gravelly SAND with a low cobble content.

 ${\tt 0.60-0.90\ Reddish\ brown, sandy, fine\ to\ coarse\ angular\ GRAVEL\ with\ a\ high}$

cobble and low boulder content.


0.90 - 2.00 Reddish brown, clayey, sandy, fine to coarse angular GRAVEL with a high cobble and low boulder content.

Weather Conditions: Overcast


Time	Depth to
mins	water
0.00	0.59
0.25	1.25
0.50	1.53
0.75	1.66
1.00	1.72
1.25	1.85
1.75	1.91
2.00	1.99
2.25	2.01

Effective storage depth =	1.41 m
75% effective storage depth =	1.06 m
(ie depth below GL) =	0.94 m
25% effective storage depth =	0.35 m
(ie depth below GL) =	1.65 m
effective storage depth 75%-25% =	0.71 m
Time to fall to 75% effective depth =	0.13 mins
Time to fall to 25% effective depth =	0.74 mins
Void Ratio =	40%
V (75%-25%) =	0.2284 m3
a (50%) =	3.9825 m2
t (75%-25%) =	0.61 mins

SOIL INFILTRATION RATE = 1.57E-03 m/s

Appendix E – Thames Water Asset Records

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 **T** 0845 070 9148 **E** <u>searches@thameswater.co.uk</u> **I** <u>www.thameswater-propertysearches.co.uk</u>

Manhole Reference	Manhole Cover Level	Manhole Invert Level
281H	n/a	n/a
281G	n/a	n/a
281K	n/a	n/a
281A	n/a	n/a
281C	n/a	n/a
281D	n/a	n/a
2811	n/a	n/a
281E	n/a	n/a
0810	n/a	n/a
0812	n/a	n/a
0802	137.22	135.98
0811	n/a	n/a
0809	n/a	n/a
0701	n/a	n/a
0801	137.37	136.47
0803	n/a	n/a
0815	n/a	n/a
0814	n/a	n/a
0703	n/a	n/a
0707	136.45	135.05
0706	n/a	n/a
0705	n/a	n/a
0813	n/a	n/a
0804	136.79	135.87
091A	n/a	n/a
091B	n/a	n/a
	135.86	134.66
1701		
1801	135.68	133.97
1802	136.23	134.66
1804	136.13	134.47
1803	136.03	134.67
1901	136.31	134.94
181A	n/a	n/a
181B	n/a	n/a
281L	n/a	n/a
281B	n/a	n/a
0654	134.88	133.97
06101	134.65	n/a
0651	134.84	132.52
0602	134.5	132.69
1704	135.89	134.06
1653	n/a	132.81
1702	135.88	133.95
1604	134.17	n/a
1703	135.41	133.36
1603	133.87	n/a
1657	133.82	132.94
1601	n/a	n/a
2702	134.08	132.84

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.