

Project name	Ocado, Bicester Plot B					
Design note title	Drainage Strategy Technical Note					
Document reference	Drainage Strategy Technical Note					
Author	James Welch					
Revision	P03					
Date	19 January 2021 Approved ✓					

Revision P03 dated 19.01.21 - updates shown in red in response to LLFA comments dated 4.01.21

Hydrock Consultants have been commission to complete the detailed design of the foul and storm water drainage to accommodate the extension of the external yard and parking for Plot B at Symmetry Park, Bicester. The proposed works included additional parking area, out buildings, vehicle wash down, refuelling and storage zones.

This technical note is to be read in accordance with Hydrock drawings C-13482-HYD-00-ZZ-DR-7000 and 7001 - Drainage Strategy Sheets 1 and 2 respectively and additionally drawing C-13482-HYD-00-ZZ-DR-7003, the catchment plan.

EXISTING STORM DRAINAGE

The existing storm water system for Plot B has been designed and installed to accommodate a 1in100yr+20% climate change storm event. The existing network has a pumped outfall with a pump rate of 5.5l/s for storms up to and including a 1in2yr event and 12.5l/s for all storms exceeding this event. The existing as built system when modelled for a 1 in 100yr +20%CC storm event has 29.8m3 of flooding in total (See Appendix A for MicroDrainage Results). When modelled for the 1 in 100yr +40%CC event as required to comply with current legislation the existing system floods to a volume of 360.4m3 (See Appendix B for MicroDrainage Results). Regardless of any planned extension or development this flooding would be the case for such a storm event. This additional flooding can be accommodated safely within the yard docks and car park.

PROPOSED STORM WATER STRATEGY

Refer drawing C-13482-HYD-00-ZZ-DR-7003. This drawing illustrates the existing catchment (2.677Ha) and the additional catchment (0.67Ha) which is to be construction following this planning application.

It is proposed to limit any impact on the existing as built drainage as a result of the proposed works. With the exception of minor diversion to avoid proposed out buildings the existing network is to remain unchanged. This approach includes the existing pumping station and rising main that will remain as per the previously approved discharge rates and not increasing as a result of the increased impermeable area.

The proposed system primarily consists of a network of drainage channel with the surface levels graded to ensure car parking and yard areas fall towards the above-mentioned channels. Any rainwater pipes are connected via a traditional manhole and piped gravity system. The point of connection to the existing storm system is downstream of the existing petrol interceptor (to avoid overloading the existing

interceptor) but upstream of the existing attenuation tank. The proposed system drains to the existing pump via the existing network with the existing pump acting as the flow control device for the complete site (existing and proposed); there is therefore no requirement for a flow control device on the proposed network.

With the existing discharge rate not increasing but additional impermeable area draining to the system there is a need for additional attenuation to control flooding. Attenuation is provided in the form of an offline tank located on the proposed system. The required attenuation volume is 665m3 to ensure the extent of flooding on the proposed system is controlled and that the flooding on the existing system does not increase.

When modelling for a 1 in 100yr + 40%CC event the proposed system does not discharge at an increased rate from existing and has 20.1m3 of flooding. This flooding can be accommodated within the natural valley/low point of the proposed car park above ground. The existing system has 328.9m3 of flooding which is a decrease of 31.5m3 from the existing situation (See Appendix C for MicroDrainage Results).

The majority of the flood water (252.4m3) shall be retained within the docks at a depth less than 300mm. The remaining floodwater shall be retained against kerbs within the service yard and the car park.

There is no flooding during for any event up to and including the 1in30yr return period storm.

There is therefore no increase in discharge rate and no increase in flooding from the plot B site as a result of the increase in impermeable area.

2.1 Exceedance and pump failure

The site is to drain via the existing pumping station. The pumpstation comprises a duty and standby pump. In the unlikely event of both pumps failing the surface water run off shall follow the exceedance routes. Arrows have been added to the drainage plans to illustrate the exceedance routes.

The arrows show the all flows to either be away from the building or into the docks.

POLLUTION CONTROL AND SUDS FEATURES

Due to the nature of the development (primarily external yard and parking) the proposed works are to drain via a suitably sized full retention petrol interceptor.

The refuelling area is to drain via a class 1 forecourt interceptor that is sufficient to discharge to the storm water network.

The wash down area is to drain via a washdown silt trap interceptor and to a below ground holding tank. The water is to be reused within the wash facility but once full the waste water within the holding tank is to be tankered from site.

Both the wash down and fuelling areas are to have canopies to prevent rainwater from filling or diluting the washdown and forecourt interceptors. All interceptor and washdown units are to be alarmed.

3.1 Water Quality Assessment

A Water quality assessment has been carried out in accordance with section 26 of the CIRIA SuDS Manual.

Following the Simple index approach as specified by section 26.7.1:

Total SuDS mitigation index ≥ pollution hazard index

Pollution hazard index:

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Other roofs (typically commercial/industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways ¹	High	0.82	0.82	0.92

Total hazard index 1.1 1.0 0.95

SuDs mitigation index:

		Mitigation indices ¹						
Type of SuDS component	TSS	Metals	Hydrocarbons					
Swale	0.5	0.6	0.6					
Proprietary treatment systems ^{5,6}								
	0.8	0.65	0.9					
otal SuDS mitigation index	1.3	1.25	1.5					

4.05 (SUDS mitigation index) > 3.05 (Total hazard index).

Suds mitigation index for each contaminant is also greater than the pollution hazard index.

Therefore, pollution mitigation is acceptable

Attenuation is primarily provided within a below ground storage crate due to the limited space available on site and the need for all external areas to be treated. There is a swale to collect runoff from the footpath area as an additional SUDs item.

4. FOUL DRAINAGE SYSTEM

Additional foul connections have been provided to proposed buildings that will require foul outlets. All connections can drain via gravity to the existing system.

At the time of writing this report the exact staff number is unknown. Subject to confirmation of this number the existing foul treatment facility may need to be upgraded.

Appendix A

Existing drainage network results modelled for a 1 in 100 yr +20% climate change

Hydrock Consultants Ltd						
	Symmetry Park					
	Bicester					
	Zone 2	Mirro				
Date 19/01/2021 20:58	Designed by Alex Badek	Drainage				
File Network_rev14_as built.mdx	Checked by John Hayden	Dialilade				
Innovyze	Network 2018.1.1					

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.403
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 200.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status OFF

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 100
Climate Change (%) 20

PN	US/MH Name	s			Climate Change		First (X) Surcharge		(Y) od	First (Z) Overflow	Overflow Act.
1.000	1	15	Winter	100	+20%	100/15	Summer	100/15	Winter		
1.001	2	15	Winter	100	+20%	100/15	Summer				
1.002	3	15	Winter	100	+20%	100/15	Summer				
1.003	4	960	Winter	100	+20%	100/15	Summer				
1.004	5	960	Winter	100	+20%	100/15	Summer				
1.005	6	960	Winter	100	+20%	100/15	Summer				
2.000	7	960	Winter	100	+20%	100/15	Summer	100/480	Winter		
3.000	8	960	Winter	100	+20%	100/360	Winter				
1.006	7	960	Winter	100	+20%	100/15	Summer				
1.007	8	960	Winter	100	+20%	100/15	Summer				
1.008	9	960	Winter	100	+20%	100/15	Summer				
1.009	10	960	Winter	100	+20%	100/15	Summer				
4.000	13	15	Winter	100	+20%	100/15	Summer				
4.001	14	15	Winter	100	+20%	100/15	Summer				
4.002	15	15	Winter	100	+20%	100/15	Summer				
4.003	16	15	Winter	100	+20%	100/15	Summer				
4.004	17	960	Winter	100	+20%	100/15	Summer				
4.005	18	960	Winter	100	+20%	100/15	Summer				
1.010	11	960	Winter	100	+20%	100/15	Summer				
					©1982	-2018 I	nnovyz	ze			

Hydrock Consultants Ltd						
	Symmetry Park					
	Bicester					
	Zone 2	Micro				
Date 19/01/2021 20:58	Designed by Alex Badek	Drainage				
File Network_rev14_as built.mdx	Checked by John Hayden	Dialilade				
Innovyze	Network 2018.1.1					

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	1	65.470	1.005	0.424	1.00		40.8	FLOOD	1
1.001	2	65.296	1.136	0.000	1.14		84.0	FLOOD RISK	
1.002	3	64.993	1.073	0.000	1.49		100.0	SURCHARGED	
1.003	4	64.911	1.081	0.000	0.12		9.2	SURCHARGED	
1.004	5	64.926	1.556	0.000	0.11		8.7	SURCHARGED	
1.005	6	64.925	1.670	0.000	0.08		15.9	SURCHARGED	
2.000	7	64.811	1.216	52.448	0.16		11.7	FLOOD	5
3.000	8	64.929	0.629	0.000	0.04		6.9	SURCHARGED	
1.006	7	64.925	1.820	0.000	0.16		30.5	SURCHARGED	
1.007	8	64.953	1.897	0.000	0.12		30.0	SURCHARGED	
1.008	9	64.963	2.207	0.000	0.12		29.8	SURCHARGED	
1.009	10	64.965	2.259	0.000	0.12		29.5	SURCHARGED	
4.000	13	65.636	0.706	0.000	0.39		119.1	SURCHARGED	
4.001	14	65.611	0.761	0.000	1.23		363.2	SURCHARGED	
4.002	15	65.489	0.719	0.000	2.19		601.1	SURCHARGED	
4.003	16	65.140	0.440	0.000	1.79		717.6	SURCHARGED	
4.004	17	64.953	0.413	0.000	0.05		50.7	SURCHARGED	
4.005	18	64.962	1.362	0.000	0.15		50.5	SURCHARGED	
1.010	11	64.965	2.915	0.000	0.84		12.8	SURCHARGED	

Hydrock Consultants Ltd						
	Symmetry Park					
	Bicester					
	Zone 2	Micro				
Date 19/01/2021 20:58	Designed by Alex Badek	Drainage				
File Network_rev14_as built.mdx	Checked by John Hayden	pramade				
Innovyze	Network 2018.1.1					

									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
5.000	21	15 Winter	100	+20%	100/15 Sumr	mer			64.937
5.001	22	960 Winter	100	+20%	100/15 Sumr	mer			64.853
5.002	23	960 Winter	100	+20%	100/15 Sumr	mer			64.878
1.011	13	1440 Winter	100	+20%	100/15 Sumr	mer			64.943
1.012	14	480 Summer	100	+20%	100/480 Sumr	mer			64.920

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
5.000	21	0.282	0.000	1.12		40.0	SURCHARGED	
5.001	22	0.598	0.000	0.07		3.9	SURCHARGED	
5.002	23	1.293	0.000	0.15		6.0	SURCHARGED	
1.011	13	3.063	0.000	2.30		12.5	SURCHARGED	
1.012	14	0.000	0.000	1.04		12.5	SURCHARGED	

Appendix B

Existing drainage network results modelled for a 1 in 100 yr +40% climate change

Hydrock Consultants Ltd					
	Symmetry Park				
	Bicester				
	Zone 2	Micro			
Date 19/01/2021 19:10	Designed by Alex Badek	Desinado			
File Network_rev13.mdx	Checked by John Hayden	Dialilade			
Innovyze	Network 2018.1.1				

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.403
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 200.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status OFF

DVD Status ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 100
Climate Change (%) 40

PN	US/MH Name	s	torm		Climate Change		t (X) narge		(Y) od	First (Z) Overflow	Overflow Act.
1.000	1	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
1.001	2	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
1.002	3	15	Winter	100	+40%	100/15	Summer				
1.003	4	15	Winter	100	+40%	100/15	Summer				
1.004	5	960	Winter	100	+40%	100/15	Summer				
1.005	6	960	Winter	100	+40%	100/15	Summer				
2.000	7	960	Winter	100	+40%	100/15	Summer	100/180	Winter		
3.000	8	960	Winter	100	+40%	100/15	Summer				
1.006	7	960	Winter	100	+40%	100/15	Summer				
1.007	8	960	Winter	100	+40%	100/15	Summer				
1.008	9	960	Winter	100	+40%	100/15	Summer				
1.009	10	960	Winter	100	+40%	100/15	Summer				
4.000	13	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
4.001	14	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
4.002	15	15	Winter	100	+40%	100/15	Summer	100/15	Winter		
4.003	16	15	Winter	100	+40%	100/15	Summer				
4.004	17	960	Winter	100	+40%	100/15	Summer				
					@1982-	-2018	Tnnowy	7.0			

©1982-2018 Innovyze

Hydrock Consultants Ltd		Page 2
	Symmetry Park	
	Bicester	
	Zone 2	Mirro
Date 19/01/2021 19:10	Designed by Alex Badek	Drainage
File Network_rev13.mdx	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	1	65.479	1.014	8.715	1.57		63.9	FLOOD	4
1.001		65.482	1.322	1.580	1.18		86.9	FLOOD	2
1.002		65.374	1.454	0.000	1.55			FLOOD RISK	
1.003	4	65.198	1.368	0.000	1.24		93.6	SURCHARGED	
1.004	5	65.139	1.744	0.000	0.13		9.9	SURCHARGED	
1.005	6	65.137	1.882	0.000	0.09		18.6	SURCHARGED	
2.000	7	65.128	1.533	327.917	0.15		11.7	FLOOD	18
3.000	8	65.138	0.838	0.000	0.05		8.1	SURCHARGED	
1.006	7	65.136	2.030	0.000	0.20		37.7	SURCHARGED	
1.007	8	65.135	2.079	0.000	0.15		37.5	SURCHARGED	
1.008	9	65.135	2.379	0.000	0.15		37.3	SURCHARGED	
1.009	10	65.135	2.429	0.000	0.15		37.1	SURCHARGED	
4.000	13	65.843	0.913	14.178	0.47		137.0	FLOOD	2
4.001	14	65.835	0.985	7.887	1.24		367.6	FLOOD	2
4.002	15	65.827	1.057	0.073	2.31		635.0	FLOOD	
4.003	16	65.453	0.753	0.000	1.89		759.0	SURCHARGED	
4.004	17	65.137	0.597	0.000	0.06		59.5	SURCHARGED	

Hydrock Consultants Ltd		Page 3
	Symmetry Park	
	Bicester	
	Zone 2	Micro
Date 19/01/2021 19:10	Designed by Alex Badek	Drainage
File Network_rev13.mdx	Checked by John Hayden	Diamade
Innovyze	Network 2018.1.1	

											Water
	US/MH			Return	${\tt Climate}$	First	t (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	St	torm	Period	Change	Surch	narge	Flood	Overflow	Act.	(m)
4.005	18	960	Winter	100	+40%	100/15	Summer				65.136
1.010	11	960	Winter	100	+40%	100/15	Summer				65.135
5.000	21	15	Winter	100	+40%	100/15	Summer				65.155
5.001	22	960	Winter	100	+40%	100/15	Summer				65.103
5.002	23	960	Winter	100	+40%	100/15	Summer				65.101
1.011	13	960	Winter	100	+40%	100/15	Summer				65.099
1.012	14	2880	Summer	100	+40%						65.020

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
4.005	18	1.536	0.000	0.18		58.9	SURCHARGED	
1.010	11	3.085	0.000	1.62		24.8	SURCHARGED	
5.000	21	0.460	0.000	1.10		45.8	SURCHARGED	
5.001	22	0.948	0.000	0.11		4.6	SURCHARGED	
5.002	23	1.266	0.000	0.12		4.6	SURCHARGED	
1.011	13	3.099	0.000	2.30		12.5	SURCHARGED	
1.012	14	0.000	0.000	1.04		12.5	OK	

Appendix C

Microdrainage results for 1 in 2, 30 and 100 +40%CC for drainage network incorporating additional impermeable area

Hydrock Consultants Ltd		Page 1
	Symmetry Park	
	Bicester	
	Zone 2	Mirro
Date 19/01/2021 23:23	Designed by Alex Badek	Designation
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 2 PIMP (%) 100

M5-60 (mm) 20.000 Add Flow / Climate Change (%) 0

Ratio R 0.403 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 200 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Min Slope for Optimisation (1:X)

500

Designed with Level Soffits

Volumetric Runoff Coeff. 0.850

Network Design Table for Storm

« - Indicates pipe capacity < flow</pre>

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1.000	45.400	0.305	148.9	0.101	4.00		0.0	0.600	0	225	Pipe/Conduit	<u> </u>
	48.040			0.122	0.00			0.600	0		Pipe/Conduit	ă
1.002	18.000	0.090	200.0	0.052	0.00		0.0	0.600	0	300	Pipe/Conduit	ă
1.003	86.800	0.460	188.7	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ă
1.004	11.000	0.050	220.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ē
1.005	19.900	0.095	209.5	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	0
1.006	56.170	0.119	472.0	0.228	0.00		0.0	0.600	0	525	Pipe/Conduit	0
2.000	49.800	1.194	41.7	0.205	4.00		0.0	0.600	0	300	Pipe/Conduit	•
1.007	18.600	0.050	372.0	0.350	0.00		0.0	0.600	0	525	Pipe/Conduit	0

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	72.33 68.06	5.43	64.240 63.860	0.101	0.0	0.0	0.0	1.07	42.5	22.4
1.002 1.003 1.004	66.61 60.65 59.93	6.97 7.14	63.620 63.530 63.070	0.275 0.275 0.275	0.0	0.0	0.0	1.11 1.14 1.06	78.3 80.7 74.6	56.2 56.2 56.2
1.005	58.70 55.36		63.020	0.275	0.0	0.0	0.0	1.08	76.5 221.7	56.2 85.5
2.000	74.75 54.46		64.000 62.581	0.205 1.058	0.0	0.0	0.0	_,	172.6 250.1	47.0 176.9

©1982-2018 Innovyze

Hydrock Consultants Ltd		Page 2
	Symmetry Park	
	Bicester	
	Zone 2	Micro
Date 19/01/2021 23:23	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

Network Design Table for Storm

PN	Length (m)	Fall	Slope (1:X)	I.Area (ha)	T.E.	Base Flow (1/	k s) (mm	HYD) SECT	DIA (mm)	Section Type	Auto Design
1.008	5.250 5.250		105.0 105.0	0.000	0.00		.0 0.60			Pipe/Conduit Pipe/Conduit	6
3.000	85.700	0.355	241.4	0.229	4.00	0	.0 0.60	0 0	300	Pipe/Conduit	0
4.000	57.300	0.355	161.4	0.412	4.00	0	.0 0.60	0 0	300	Pipe/Conduit	0
3.001	21.900	1.814	12.1	0.000	0.00	0	.0 0.60	0 0	300	Pipe/Conduit	0
5.000	21.300	1.789	11.9	0.052	4.00	0	.0 0.60	0 0	150	Pipe/Conduit	0
6.000	5.000	0.020	250.0	0.000	4.00	0	.0 0.60	0 0	300	Pipe/Conduit	0
3.002	12.100	0.030	403.3	0.000	0.00	0	.0 0.60	0 0	525	Pipe/Conduit	0
1.010	5.250	0.050	105.0	0.000	0.00	0	.0 0.60	0 0	525	Pipe/Conduit	0
	27.910	0.080 0.070 0.100	352.3 348.9 404.3 197.0 210.0	0.237 0.484 0.484 0.245 0.000	4.00 0.00 0.00 0.00 0.00	0	.0 0.60 .0 0.60 .0 0.60	0 0	600 600 600	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	0

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)		Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
1.008	54.33 54.20		62.531 62.231	1.058 1.058	0.0	0.0	0.0		473.2 473.2		
3.000	68.13	5.42	64.705	0.229	0.0	0.0	0.0	1.01	71.2	47.9	
4.000	71.91	4.77	64.705	0.412	0.0	0.0	0.0	1.23	87.3«	90.9	
3.001	67.69	5.50	64.350	0.641	0.0	0.0	0.0	4.55	321.6	133.2	
5.000	76.28	4.12	64.375	0.052	0.0	0.0	0.0	2.94	51.9	12.2	
6.000	76.54	4.08	62.231	0.000	0.0	0.0	0.0	0.99	70.0	0.0	
3.002	66.72	5.68	62.211	0.693	0.0	0.0	0.0	1.11	240.1	141.9	
1.010	54.07	8.75	62.181	1.751	0.0	0.0	0.0	2.19	473.2	290.6	
7.000	74.59	4.36	64.330	0.237	0.0	0.0	0.0	1.29	365.2	54.3	
7.001	72.24	4.72	64.250	0.721	0.0	0.0	0.0	1.30	367.0	159.9	
7.002	69.86	5.11	64.170	1.205	0.0	0.0	0.0	1.20	340.7	258.4	
7.003	68.77	5.30	64.100	1.450	0.0	0.0	0.0	1.73	489.6	306.1	
7.004	68.07	5.43	64.000	1.450	0.0	0.0	0.0	1.68	474.1	306.1	
				©1982-2	2018 Innov	yze					

Hydrock Consultants Ltd		Page 3
	Symmetry Park	
	Bicester	
	Zone 2	Mirro
Date 19/01/2021 23:23	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	niairiade
Innovyze	Network 2018.1.1	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
7.005	19.430	0.890	21.8	0.063	0.00	0.0	0.600	0	600	Pipe/Conduit	0
7.006	6.000	0.050	120.0	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ě
1.011	4.670	0.050	93.4	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	0
8.000	80.030	0.400	200.1	0.083	4.00	0.0	0.600	0	225	Pipe/Conduit	<u> </u>
8.001	47.300	0.650	72.8	0.033	0.00	0.0	0.600	0	225	Pipe/Conduit	ă
8.002	25.000	1.650	15.2	0.050	0.00	0.0	0.600	0	225	Pipe/Conduit	Õ
1.012	10.000	0.100	100.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	0

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
7.005	67.73	5.49	63.940	1.513	0.0	0.0	0.0	5.23	1477.9	314.5
7.006	67.49	5.54	63.050	1.513	0.0	0.0	0.0	2.22	628.3	314.5
1 011	F2 04	0.00	61 000	3.264	0 0	0 0	0 0	1 04	10 4	F20 2
1.011	53.84	8.83	61.900	3.264	0.0	0.0	0.0	1.04	18.4«	539.3
8.000	67.96	5.45	64.430	0.083	0.0	0.0	0.0	0.92	36.6	17.3
8.001	65.27	5.96	64.030	0.116	0.0	0.0	0.0	1.53	61.0	23.2
8.002	64.66	6.09	63.380	0.166	0.0	0.0	0.0	3.38	134.3	32.9
1.012	53.32	0 00	61.730	3,430	0.0	0.0	0.0	1.00	17.8«	561 /
1.012	JJ.3Z	0.99	01.730	3.430	0.0	0.0	0.0	1.00	⊥/.0≪	JUL.4

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.900 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 0.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Profile Type Summer Return Period (years) 2 Cv (Summer) 0.900 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.000 Storm Duration (mins) 30 Ratio R 0.403

©1982-2018 Innovyze

Hydrock Consultants Ltd	Page 4	
	Symmetry Park	
	Bicester	
	Zone 2	Mirro
Date 19/01/2021 23:23	Designed by Alex Badek	Designation
File Zone 2 Proposed as buil	Checked by John Hayden	niairiade
Innovyze	Network 2018.1.1	

Online Controls for Storm

Complex Manhole: 13, DS/PN: 1.012, Volume (m³): 6.0

Pump

Invert Level (m) 61.730

			Flow (1/s)				
0.001	5.5000	1.370	5.5000	1.371	12.5000	3.560	12.5000

Weir

Discharge Coef 0.544 Width (m) 1.500 Invert Level (m) 66.110

Hydrock Consultants Ltd	Page 5	
	Symmetry Park	
	Bicester	
	Zone 2	Micro
Date 19/01/2021 23:23	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

Storage Structures for Storm

Cellular Storage Manhole: 16, DS/PN: 6.000

Invert Level (m) 62.231 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 350.0 0.0 2.001 0.0 0.0 2.000 350.0 0.0 0.0 0.0 0.0

Cellular Storage Manhole: 11, DS/PN: 1.011

Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	758.0		0.0	2.	010		0.0			0.0
2.000	758.0		0.0							

Hydrock Consultants Ltd	Page 6	
	Symmetry Park	
	Bicester	
	Zone 2	Micro
Date 19/01/2021 23:23	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

2 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 0.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.403 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 200.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status OFF

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 2, 30
Climate Change (%) 0, 0

													Water
	US/MH			Return	Climate	Firs	t (X)	First	(Y)	First	(Z)	Overflow	Level
PN	Name	s	torm	Period	Change	Surc	harge	Flood		Overflow		Act.	(m)
1.000	1	15	Winter	2.	+0%								64.350
1.001	2		Winter	2		30/15	Summer						64.013
1.002	3		Winter	2			Summer						63.798
1.002	4		Winter	2			Summer						63.692
1.003	5		Winter	2			Summer						63.255
1.004	5A		Winter	2			Summer						63.191
1.005	6		Winter	2			Summer						62.964
2.000	7		Winter	2	+0%	30/13	Dunnier						64.100
1.007	7		Winter	2		30/15	Summer						62.914
1.007	8		Winter	2			Summer						62.811
1.009			Winter	2			Summer						62.665
3.000	N1		Winter	2			Summer						64.880
4.000	N2	15	Winter	2	+0%	30/15	Summer						64.938
3.001	N3	15	Winter	2	+0%								64.485
5.000	N5	15	Winter	2	+0%								64.421
6.000	16	960	Winter	2	+0%	2/180	Winter						62.665
3.002	N6	960	Winter	2	+0%	30/15	Summer						62.665
1.010	10	960	Winter	2	+0%	30/15	Summer						62.665
7.000	11	15	Winter	2	+0%	30/15	Summer						64.602
					©1982	-2018	Innov	yze					

Hydrock Consultants Ltd	Page 7	
	Symmetry Park	
	Bicester	
	Zone 2	Mirro
Date 19/01/2021 23:23	Designed by Alex Badek	Desinado
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	1	-0.115	0.000	0.47		18.9	OK	
	_							
1.001	2	-0.147		0.50		36.8	OK	
1.002	3	-0.122	0.000	0.65		43.8	OK	
1.003	4	-0.138	0.000	0.53		41.5	OK	
1.004	5	-0.115	0.000	0.69		41.0	OK	
1.005	5A	-0.129	0.000	0.62		41.2	OK	
1.006	6	-0.261	0.000	0.33		65.5	OK	
2.000	7	-0.200	0.000	0.24		39.5	OK	
1.007	7	-0.192	0.000	0.72		138.5	OK	
1.008	8	-0.245	0.000	0.55		137.8	OK	
1.009	9	-0.091	0.000	0.05		13.1	OK	
3.000	N1	-0.125	0.000	0.58		40.1	OK	
4.000	N2	-0.067	0.000	0.92		76.3	OK	
3.001	N3	-0.165	0.000	0.41		116.6	OK	
5.000	N5	-0.104	0.000	0.21		10.0	OK	
6.000	16	0.134	0.000	0.04		1.7	SURCHARGED	
3.002	N6	-0.071	0.000	0.05		6.9	OK	
1.010	10	-0.041	0.000	0.08		18.9	OK	
7.000	11	-0.328	0.000	0.15		44.3	OK	

Hydrock Consultants Ltd	Page 8	
	Symmetry Park	
	Bicester	
	Zone 2	Mirro
Date 19/01/2021 23:23	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

	US/MH			Return	Climate	Firs	t (X)	First (Y)	First (Z)	Overflow	Water Level
PN	Name	S.	torm	Period	Change	Surc	harge	Flood	Overflow	Act.	(m)
7.001	12	15	Winter	2	+0%	30/15	Summer				64.576
7.002	13	15	Winter	2	+0%	30/15	Summer				64.535
7.003	14	15	Winter	2	+0%	30/15	Summer				64.445
7.004	14A	15	Winter	2	+0%	30/15	Summer				64.362
7.005	15	15	Winter	2	+0%						64.138
7.006	16	15	Winter	2	+0%	30/15	Summer				63.413
1.011	11	960	Winter	2	+0%	2/15	Summer				62.665
8.000	17	15	Winter	2	+0%						64.536
8.001	22	15	Winter	2	+0%						64.119
8.002	23	15	Winter	2	+0%						63.451
1.012	13	1440	Winter	2	+0%	2/15	Summer				62.945

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
7.001	12	-0.274	0.000	0.38		113.4	OK	
7.002	13	-0.235	0.000	0.66		180.5	OK	
7.003	14	-0.255	0.000	0.62		216.4	OK	
7.004	14A	-0.238	0.000	0.68		215.8	OK	
7.005	15	-0.402	0.000	0.24		223.1	OK	
7.006	16	-0.237	0.000	0.67		223.7	OK	
1.011	11	0.615	0.000	0.39		5.5	SURCHARGED	
8.000	17	-0.119	0.000	0.41		14.5	OK	
8.001	22	-0.136	0.000	0.33		19.1	OK	
8.002	23	-0.154	0.000	0.21		26.5	OK	
1.012	13	1.065	0.000	0.36		5.6	SURCHARGED	

Hydrock Consultants Ltd	Page 9	
	Symmetry Park	
	Bicester	
	Zone 2	Micro
Date 19/01/2021 23:23	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilage
Innovyze	Network 2018.1.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 0.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.403
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 200.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status OFF

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 2, 30
Climate Change (%) 0, 0

												Water
	US/MH			Return	Climate	Firs	t (X)	First	(Y)	First (Z)	Overflow	Level
PN	Name Storm		torm	Period	Change	Surc	harge	Floo	d	Overflow	Act.	(m)
1.000	1	15	Winter	30	+0%							64.445
1.001	2	15	Winter	30	+0%	30/15	Summer					64.223
1.002	3	15	Winter	30	+0%	30/15	Summer					64.058
1.003	4	15	Winter	30	+0%	30/15	Summer					63.938
1.004	5	15	Winter	30	+0%	30/15	Summer					63.508
1.005	5A	15	Winter	30	+0%	30/15	Summer					63.418
1.006	6	15	Winter	30	+0%	30/15	Summer					63.356
2.000	7	15	Winter	30	+0%							64.143
1.007	7	15	Winter	30	+0%	30/15	Summer					63.285
1.008	8	720	Winter	30	+0%	30/15	Summer					63.208
1.009	9	720	Winter	30	+0%	30/15	Summer					63.207
3.000	N1		Winter	30			Summer					65.165
4.000	N2	15	Winter	30			Summer					65.804
3.001	N3	1.5	Winter	30	+0%							64.549
5.000	N5		Winter	30	+0%							64.440
6.000	16		Winter	30		2/180	Winter					63.207
3.002	N6		Winter	30			Summer					63.207
1.010	10		Winter	30			Summer					63.207
7.000												
7.000	11	13	Summer	30	+0%	30/15	Summer					65.275
					©1982	-2018	Innov	yze				

Hydrock Consultants Ltd	Page 10	
	Symmetry Park	
	Bicester	
	Zone 2	Micro
Date 19/01/2021 23:23	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

	Surcharged	Flooded			Pipe		
US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1	-0.020	0 000	0 88		35 6	OK	
	0.108	0.000	0.95		73.9	SURCHARGED	
5	0.138	0.000	1.37		81.6	SURCHARGED	
5A	0.098	0.000	1.22		81.1	SURCHARGED	
6	0.131	0.000	0.58		115.9	SURCHARGED	
7	-0.157	0.000	0.46		75.0	OK	
7	0.179	0.000	1.47		282.8	SURCHARGED	
8	0.152	0.000	0.11		27.8	SURCHARGED	
9	0.451	0.000	0.11		27.6	SURCHARGED	
N1	0.160	0.000	1.11		76.4	SURCHARGED	
N2	0.799	0.000	1.73		143.6	SURCHARGED	
N3	-0.101	0.000	0.78		219.7	OK	
N5	-0.085	0.000	0.39		19.1	OK	
16	0.676	0.000	0.08		3.8	SURCHARGED	
N6	0.471	0.000	0.07		9.8	SURCHARGED	
10	0.501	0.000	0.11		27.6	SURCHARGED	
11	0.345	0.000	0.26		76.7	SURCHARGED	
	Name 1 2 3 4 5 5A 6 7 7 8 9 N1 N2 N3 N5 16 N6 10	US/MH Depth Name (m) 1	Name (m) (m³) 1 -0.020 0.000 2 0.063 0.000 3 0.138 0.000 4 0.108 0.000 5 0.138 0.000 6 0.131 0.000 7 -0.157 0.000 8 0.152 0.000 9 0.451 0.000 N1 0.160 0.000 N2 0.799 0.000 N3 -0.101 0.000 N5 -0.085 0.000 N6 0.471 0.000 10 0.501 0.000	US/MH Depth (m) Volume (m³) Flow / Cap. 1 -0.020 0.000 0.88 2 0.063 0.000 0.98 3 0.138 0.000 1.19 4 0.108 0.000 0.95 5 0.138 0.000 1.37 5A 0.098 0.000 1.22 6 0.131 0.000 0.58 7 -0.157 0.000 0.46 7 0.179 0.000 0.11 9 0.451 0.000 0.11 N1 0.160 0.000 1.11 N2 0.799 0.000 1.73 N3 -0.101 0.000 0.78 N5 -0.085 0.000 0.39 16 0.676 0.000 0.07 10 0.501 0.000 0.11	US/MH Name Depth (m) Volume (m³) Flow / Overflow (1/s) 1 -0.020 0.000 0.88 2 0.063 0.000 0.98 3 0.138 0.000 1.19 4 0.108 0.000 1.37 5A 0.098 0.000 1.22 6 0.131 0.000 0.58 7 -0.157 0.000 0.46 7 0.179 0.000 1.47 8 0.152 0.000 0.11 9 0.451 0.000 0.11 N1 0.160 0.000 1.73 N3 -0.101 0.000 0.78 N5 -0.085 0.000 0.39 16 0.676 0.000 0.07 10 0.501 0.000 0.11	US/MH Name Depth (m) Volume (m³) Flow / Cap. Overflow Flow (1/s) Flow (1/s) 1 -0.020 0.000 0.88 35.6 2 0.063 0.000 0.98 72.1 3 0.138 0.000 1.19 80.0 4 0.108 0.000 0.95 73.9 5 0.138 0.000 1.37 81.6 5A 0.098 0.000 1.22 81.1 6 0.131 0.000 0.58 115.9 7 -0.157 0.000 0.46 75.0 7 0.179 0.000 0.147 282.8 8 0.152 0.000 0.11 27.8 9 0.451 0.000 0.11 27.6 N1 0.160 0.000 1.73 143.6 N2 0.799 0.000 1.73 143.6 N3 -0.101 0.000 0.78 219.7 N5 -	US/MH Name Depth (m) Volume (m³) Flow / Cap. Overflow (1/s) Flow (1/s) Status 1 -0.020 0.000 0.88 35.6 OK 2 0.063 0.000 0.98 72.1 SURCHARGED 3 0.138 0.000 1.19 80.0 SURCHARGED 4 0.108 0.000 0.95 73.9 SURCHARGED 5 0.138 0.000 1.37 81.6 SURCHARGED 5A 0.098 0.000 1.22 81.1 SURCHARGED 6 0.131 0.000 0.58 115.9 SURCHARGED 7 -0.157 0.000 0.46 75.0 OK 7 0.179 0.000 0.147 282.8 SURCHARGED 8 0.152 0.000 0.11 27.6 SURCHARGED N1 0.160 0.000 1.11 76.4 SURCHARGED N2 0.799 0.000 1.73 143.6

Hydrock Consultants Ltd	Page 11	
	Symmetry Park	
	Bicester	
	Zone 2	Micro
Date 19/01/2021 23:23	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

											Water
	US/MH			Return	Climate	Firs	t (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	S	torm	Period	Change	Surc	harge	Flood	Overflow	Act.	(m)
7.001	12	15	Summer	30	+0%	30/15	Summer				65.225
7.002	13	15	Winter	30	+0%	30/15	Summer				65.157
7.003	14	15	Winter	30	+0%	30/15	Summer				64.982
7.004	14A	15	Winter	30	+0%	30/15	Summer				64.744
7.005	15	15	Winter	30	+0%						64.249
7.006	16	15	Winter	30	+0%	30/15	Summer				63.818
1.011	11	720	Winter	30	+0%	2/15	Summer				63.206
8.000	17	15	Winter	30	+0%						64.590
8.001	22	15	Winter	30	+0%						64.165
8.002	23	15	Winter	30	+0%						63.486
1.012	13	1440	Winter	30	+0%	2/15	Summer				63.199

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
7.001	12	0.375	0.000	0.79		231 9	SURCHARGED	
7.002	13	0.373	0.000	1.45			SURCHARGED	
7.003	14	0.282	0.000	1.37		476.1	SURCHARGED	
7.004	14A	0.144	0.000	1.49		474.6	SURCHARGED	
7.005	15	-0.291	0.000	0.52		490.2	OK	
7.006	16	0.168	0.000	1.47		489.9	SURCHARGED	
1.011	11	1.156	0.000	0.89		12.5	SURCHARGED	
8.000	17	-0.065	0.000	0.77		27.5	OK	
8.001	22	-0.090	0.000	0.65		38.0	OK	
8.002	23	-0.119	0.000	0.44		54.0	OK	
1.012	13	1.319	0.000	0.79		12.5	SURCHARGED	

Hydrock Consultants Ltd	Page 1	
	Symmetry Park	
	Bicester	
	Zone 2	Micro
Date 19/01/2021 23:10	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.403 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 200.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 100
Climate Change (%) 40

PN	US/MH Name		torm		Climate Change		(X) arge	First Flo	(Y) od	First (Z) Overflow	Overflow Act.
1.000	1	1440	Winter	100	+40%	100/15	Summer	100/15	Summer		
1.001	2	1440	Winter	100	+40%	100/15	Summer	100/15	Summer		
1.002	3	1440	Winter	100	+40%	100/15	Summer				
1.003	4	1440	Winter	100	+40%	100/15	Summer				
1.004	5	1440	Winter	100	+40%	100/15	Summer				
1.005	5A	960	Winter	100	+40%	100/15	Summer				
1.006	6	960	Winter	100	+40%	100/15	Summer	100/360	Winter		
2.000	7	960	Winter	100	+40%	100/15	Summer	100/960	Winter		
1.007	7	960	Winter	100	+40%	100/15	Summer	100/360	Winter		
1.008	8	960	Winter	100	+40%	100/15	Summer				
1.009	9	960	Winter	100	+40%	100/15	Summer				
3.000	N1	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
4.000	N2	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
3.001	N3	960	Winter	100	+40%	100/15	Summer				
5.000	N5	960	Winter	100	+40%	100/360	Winter				
6.000	16	960	Winter	100	+40%	100/15	Summer				
3.002	N6	960	Winter	100	+40%	100/15	Summer				
					©1982	-2018 I	nnovyz	е			

Hydrock Consultants Ltd	Page 2	
	Symmetry Park	
	Bicester	
	Zone 2	Mirro
Date 19/01/2021 23:10	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	1	65.492	1.027	21.892	0.09		3.7	FLOOD	9
1.001	2	65.493	1.333	13.318	0.09		6.3	FLOOD	7
1.002	3	65.495	1.575	0.000	0.12		7.8	SURCHARGED	
1.003	4	65.495	1.665	0.000	0.10		7.8	SURCHARGED	
1.004	5	65.497	2.127	0.000	0.13		7.8	SURCHARGED	
1.005	5A	65.498	2.178	0.000	0.15		10.0	FLOOD RISK	
1.006	6	65.500	2.275	140.414	0.09		18.0	FLOOD	8
2.000	7	65.501	1.201	1.071	0.05		8.1	FLOOD	2
1.007	7	65.501	2.395	110.928	0.20		39.1	FLOOD	8
1.008	8	65.506	2.450	0.000	0.16		38.9	SURCHARGED	
1.009	9	65.508	2.752	0.000	0.16		38.8	SURCHARGED	
3.000	N1	66.206	1.201	0.640	1.94		133.0	FLOOD	2
4.000	N2	66.224	1.219	19.475	2.08		172.5	FLOOD	4
3.001	N3	65.509	0.859	0.000	0.09		25.2	SURCHARGED	
5.000	N5	65.505	0.980	0.000	0.04		2.0	SURCHARGED	
6.000	16	65.508	2.977	0.000	0.24		11.0	SURCHARGED	
3.002	N6	65.508	2.772	0.000	0.08		11.1	SURCHARGED	

Hydrock Consultants Ltd	Page 3	
	Symmetry Park	
	Bicester	
	Zone 2	Mirro
Date 19/01/2021 23:10	Designed by Alex Badek	Drainage
File Zone 2 Proposed as buil	Checked by John Hayden	Dialilade
Innovyze	Network 2018.1.1	

PN	US/MH Name				Climate Change	First (X) Surcharge		First (Y) Flood		First (Z) Overflow	Overflow Act.
1.010	10	960	Winter	100	+40%	100/15	Summer				
7.000	11	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
7.001	12	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
7.002	13	15	Winter	100	+40%	100/15	Summer				
7.003	14	15	Winter	100	+40%	100/15	Summer				
7.004	14A	960	Winter	100	+40%	100/15	Summer				
7.005	15	960	Winter	100	+40%	100/15	Summer				
7.006	16	960	Winter	100	+40%	100/15	Summer				
1.011	11	960	Winter	100	+40%	100/15	Summer				
8.000	17	960	Winter	100	+40%	100/15	Summer				
8.001	22	960	Winter	100	+40%	100/15	Summer				
8.002	23	960	Winter	100	+40%	100/15	Summer				
1.012	13	960	Winter	100	+40%	100/15	Summer				

	US/MH	Water Level	Surcharged Depth	Volume	•		Pipe Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.010	10	65.508	2.802	0.000	0.11		28.1	SURCHARGED	
7.000	11	65.910	0.980	0.000	0.53		155.6	FLOOD RISK	
7.001	12	65.881	1.031	41.245	1.29		382.1	FLOOD	4
7.002	13	65.836	1.066	0.000	1.99		547.1	FLOOD RISK	
7.003	14	65.586	0.886	0.000	1.95		678.4	SURCHARGED	
7.004	14A	65.508	0.908	0.000	0.18		57.1	SURCHARGED	
7.005	15	65.508	0.968	0.000	0.06		59.5	SURCHARGED	
7.006	16	65.507	1.857	0.000	0.18		59.1	SURCHARGED	
1.011	11	65.507	3.457	0.000	1.05		14.7	SURCHARGED	
8.000	17	65.475	0.820	0.000	0.09		3.3	SURCHARGED	
8.001	22	65.473	1.218	0.000	0.08		4.6	SURCHARGED	
8.002	23	65.471	1.866	0.000	0.05		6.5	SURCHARGED	
1.012	13	65.468	3.588	0.000	0.79		12.5	SURCHARGED	

Appendix D

Drawings

