

Brooklands Barn Garage, Bodicote Drainage Strategy

 Solid Job No:
 1669S

 Solid Doc Ref:
 BBG-SOLID-XX-XX-RP-C-0001

 Date:
 05/08/2019

Solid Structures (UK) Ltd Solid Studio 12 Albion Street Chipping Norton Oxfordshire OX7 5BJ

Telephone: 01608 690858 Email: info@solid-structures.com

www.solid-structures.com

This is a template document for use in all calculations and reports requiring internal review and approval. All areas are to be reviewed for specific project applicability, including but not limited to those elements of highlighted text. The detailed contents section is optional. All text style and sizes and the document layout should be followed.

APPROVAL Prepared by: Reviewed by: Image: Control of the second				
Date: 05/08/2019 Status: S2 – For Information Rev: P02 Issued by: ARD CONTENTS 1.0 Introduction 2.0 Site Assessment 3.0 Flood Risk 4.0 Sustainable Surface Water Strategy 5.0 Foul Water Drainage Strategy 5.0 Foul Water Drainage Strategy 6.0 Conclusions Appendices Appendeces APPROVAL Reviewed by: Prepared by: Reviewed by: Arge Rivera - Associate Arge Rivera - A	Sustainable Drair	nage System F	Report	
Rev: P02 Issued by: ARD CONTENTS 1.0 Introduction 2.0 Site Assessment 3.0 Flood Risk 4.0 Sustainable Surface Water Strategy 5.0 Foul Water Drainage Strategy 6.0 Conclusions Appendices Appendices APPROVAL Prepared by: Reviewed by: Approved by: Diane Ochse - Engineer Arge Rivera - Associate Arge Rivera - A	Job No: 1669S		Solid Doc Ref: BBG-SC	DLID-XX-XX-RP-C-0001
CONTENTS 1.0 Introduction 2.0 Site Assessment 3.0 Flood Risk 4.0 Sustainable Surface Water Strategy 5.0 Foul Water Drainage Strategy 6.0 Conclusions Appendices ApprovAL Prepared by: Reviewed by: Approved by: Arge Rivera - Associate Arge Rivera - Associate Arge Rivera - Associate	05/08/2019		Status: S2 – For Inform	nation
1.0 Introduction 2.0 Site Assessment 3.0 Flood Risk 4.0 Sustainable Surface Water Strategy 5.0 Foul Water Drainage Strategy 6.0 Conclusions Appendices APPROVAL Prepared by: Reviewed by: Diane Ochse - Engineer Arge Rivera - Associate	202		Issued by: ARD	
2.0 Site Assessment 3.0 Flood Risk 4.0 Sustainable Surface Water Strategy 5.0 Foul Water Drainage Strategy 6.0 Conclusions Appendices Appendices Approval Prepared by: Prepared by: Approved by: Arge Rivera - Associate Arge Rivera - Associate	TENTS			
 3.0 Flood Risk 4.0 Sustainable Surface Water Strategy 5.0 Foul Water Drainage Strategy 6.0 Conclusions Appendices Appended APPROVAL Prepared by: Reviewed by: Approved by: Diane Ochse - Engineer Arge Rivera - Associate Arge Rivera - A	ntroduction			
4.0 Sustainable Surface Water Strategy 5.0 Foul Water Drainage Strategy 6.0 Conclusions Appendices Appendices ApprovAL Prepared by: Diane Ochse - Engineer Arge Rivera - Associate	ite Assessment			
5.0 Foul Water Drainage Strategy 6.0 Conclusions Appendices APPROVAL Prepared by: Reviewed by: Approved by: Diane Ochse - Engineer Arge Rivera - Associate Arge Rivera - A	lood Risk			
6.0 Conclusions Appendices APPROVAL Prepared by: Diane Ochse - Engineer Reviewed by: Arge Rivera - Associate Arge Rivera - A	ustainable Surface	e Water Strate	эду	
Appendices APPROVAL Prepared by: Reviewed by: Approved by: Diane Ochse - Engineer Arge Rivera - Associate Arge Rivera - A	oul Water Draina	ge Strategy		
APPROVAL Prepared by: Reviewed by: Diane Ochse - Engineer Arge Rivera - Associate	Conclusions			
Prepared by: Reviewed by: Approved by: Diane Ochse - Engineer Arge Rivera - Associate Arge Rivera - A	ndices			
Prepared by: Reviewed by: Approved by: Diane Ochse - Engineer Arge Rivera - Associate Arge Rivera - A				
Diane Ochse - Engineer Arge Rivera - Associate Arge Rivera - A	OVAL			
	Prepared by:		Reviewed by:	Approved by:
REVISION HISTORY				Arge Rivera - Associate
	Diane Ochse - Engi	neer	Arge Rivera - Associate	
Rev: Comment: Approved by:		neer	Arge Rivera - Associate	
Rev: Comment: Approved by:	SION HISTORY		Arge Rivera - Associate	Approved by:
Rev: Comment: Approved by:	SION HISTORY Rev:	Comment:	Arge Rivera - Associate	
INSTRUCTION AND WARRANTY	Rev:	Comment: Comment:	Arge Rivera - Associate	Approved by:
	Rev: Rev: Rev: Rev:	Comment: Comment: Comment:	Arge Rivera - Associate	Approved by:

This Drainage Strategy Report is for the sole and specific use of the client and Solid Structures Ltd shall not be responsible for any use of the contents for any purpose other than that for which it was prepared and provided. Should the client require to pass copies of this document in part or full to other parties for information, then no professional liability or warranty shall be extended to other parties by Solid Structures Ltd in this connection without the explicit agreement thereto by Solid Structures Ltd.

1 INTRODUCTION

Appointment and Brief

1.1 Solid Structures has been appointed by Rowland Bratt to undertake a Sustainable Drainage Strategy for Brooklands Barn Garage, Bodicote.

Objective and Scope of this report

- 1.2 The objective of this report is to identify the drainage regime of the site at a desk top level. Finally, the report proposes a Sustainable Drainage Systems (SuDS) that can be used on this site.
- 1.3 To achieve this objective the following documents have been consulted and/or referenced:
 - The National Planning Policy Framework (NPPF)
 - CIRIA C753 document The SuDS Manual, 2015
 - The CIRIA publication 'C635 Designing for exceedance in urban drainage— Good practice'
 - Aerial photographs and topographical survey of the site
 - British Geological Society Records
 - Environment Agency flood maps

2 SITE ASSESSMENT

Existing Site

2.1 The proposed Barn is situated on the side of a valley along Church Street, post code OX15 4DR, coordinates X(Easting):446037; Y(Northing): 237195. The development is bordered on Fairholme House to the east. Access to the site is via Church Street. Refer to figure 1 for details.

Figure 1: Existing Site (Left). Proposed Site Location (right)

2.2 The existing site has a footprint of 1630m². The distribution of permeable and impermeable area is as per Table 1. See **Appendix A** for further details.

Hydrogeology, Geology and Hydrology of the site

- 2.3 The ground conditions are based on soakaway test undertaken on site. An overview of the finding is shown below. Refer to appendix B for a copy of the report.
- 2.4 Hydrogeology

Aquifer	The development is outside of an aquifer zone.
Source Protection Zone	The site is not located within a Source Protection Zone.
Ground Water Levels	No Groundwater was recorded at 1.47m and 0.7m bgl.
Groundwater Flooding Incidents	No record.

2.5 Geology

Bedrock & Superficial Deposits	Bedrock: Charmouth Mudstone Formation – Mudstone & Durham Formation – Siltstone and Mudstone Interbedded. Superficial Deposits: Alluvium – Clay, Silt Sand and Gravel.
Soakaway Potential	The soils are considered to be effectively permeable and likely to be conducive to infiltration systems. The two soakaway tests confirm this. The 2 soakaway test pits investigation was carried out by B C Coleman Contracting dated 03/07/19.
Contaminated Land	No records

2.6 Hydrology

Surface Water	The Sor Brook is 140m from the Barn.
Existing Flood Defences	The site is not protected by flood defences.
Surface water drainage network	No records

Proposed Development

- 2.7 The proposed development comprises of one new building with an access road on the west of the existing barn. The whole site retains the same use class as per existing.
- 2.8 The estimated lifetime of the proposed development is likely to be between 50-100 years. The distribution of permeable and impermeable areas is as per Table 1. Refer to Appendix A for details.

Areas Description	Existing Site (Ha)	Redeveloped Site (Ha)
Total Site Area	0.163	0.163
Area Positively drained	0.000	0.058
Percentage of drained area that is impermeable	0%	34%
Percentage of drained area that is permeable	100%	66%

Table1: Existing and Proposed distribution of permeable and impermeable areas

3 FLOOD RISK ASSESSMENT

Table 2: Sources of flooding high level	l assessment and mitigation
---	-----------------------------

Source of Flooding Assessment		Flood Risk Reduction & Mitigation
Fluvial water (river flows)	Site is located within zone 1	None
Surface water (overland flows)	There are no records of the site flooding.	Based on the permeability tests the proposed SUDS will be able to reduce the post development surface water runoff.
Flooding from Groundwater	There are no records of flooding within the site.	No mitigation is required
Tidal/coastal	Tidal/coastal The site is not near the coast	
Canals	The site is not near a canal	Not applicable
Reservoirs There are no records of the reservoir flooding within the site.		No mitigation is required
Flooding from sewers There are no records of sewer flooding within the site.		No mitigation is required

4 SUSTAINABLE SURFACE WATER STRATEGY

4.1 The NPPF states that developers should "seek opportunities to reduce the overall level of flood risk in the area through the layout and form of the development and the appropriate application of SuDS". The surface water drainage is designed in accordance with the Environment Agency and CIRIA C753 SuDS manual.

Sustainable Drainage System (SuDS) Discharge Hierarchy Evaluation

- 4.2 The evaluation also takes into account the NPPF guidance and Building Regulations Section H3 which stipulates that 'rainwater from roofs and paved areas is carried away from the surface to discharge to one of the following in order of priority:
 - An adequate soakaway or some other infiltration system,
 - o a watercourse, or where that is not practical,
 - o A sewer.'

Discharge Point	Assessment	Conclusion	
Infiltrate to Ground	It is possible to infiltrate to ground at shallow and deep depth	Use as a main discharge system. See SuDS evaluation for more details	
Discharge to watercourse	The watercourse id too far away for a sensible discharge.	N/A Infiltration is possible	
Discharge to a Surface Water Sewer	There are not sewers in the proximity to site	N/A Infiltration is possible	
Discharge to a combined sewer	There are not sewers in the proximity to site	N/A Infiltration is possible	

Table 3: Discharge Hierarchy Evaluation

4.3 The SuDS techniques were evaluated in relation to the available site information and the discharge evaluation. The aim is to provide a sustainable design that could attenuate the flows produced by the proposed development and avoid increasing the flood risk to the properties downstream.

4.4 The potential SuDS options that could be used onsite are discussed as follow.

Living Roofs

Green roofs are a multi-layered system that covers the roof of a building with vegetation cover, landscaping or permeable drainage layer. They are designed to intercept and retain precipitation, reducing the volume of runoff and attenuating peak flows.

Basins and Ponds

Detention basins and Ponds are vegetated depressions which are used to store runoff, gradually releasing it in a controlled manner and reducing peak flow rates. Basins are designed to provide attenuation, but have the added benefit of allowing settlement of suspended material.

Filter Strips and Swales

Filter strips are uniformly graded and gently sloping strips of grass or other dense vegetation. Strips are designed to allow runoff from adjacent impermeable areas to flow across its surface at a sufficiently low velocity so that sediment and associated pollutants are filtered out.

Swales are vegetated, trapezoidal shallow depressions, which can be designed to attenuate runoff, convey runoff and can also be used to provide water quality improvements by filtering

pollutants.

Infiltration

Soakaways are excavations filled with rubble or lined with brickwork, precast concrete, modular plastic geocellular systems, or perforated pipe system surrounded by granular backfill. Infiltration/Filtration Trenches are shallow excavations filled with rubble or stone that create temporary subsurface storage for either infiltration or filtration.

Site Application

Not applicable as roof does not allow for living roofs.

Site Application

Basin and ponds are not recommended due to limited available space.

Site Application

These systems are not recommended due to limited available space onsite.

Site Application

Infiltration works on this site, a permeable surface is more appropriate.

Permeable / Bio-retention Surfaces

Pervious pavements provide a pavement suitable for pedestrian and/or vehicular traffic, while allowing rainwater to infiltrate through the surface and underlying layers. The water is temporarily stored before infiltration to the ground, reuse or being discharged to a watercourse or other drainage system

Tanked Systems

Oversized pipes, water harvesting tanks or modular plastic geocellular systems wrapped in impermeable membrane are systems with a high void ratio that can be used to create a below ground storage structure. The discharge flow is controlled via a hydrobrake or similar flow control device. The storage systems can be installed beneath trafficked and soft landscaped areas but produce limited water treatment.

Site Application

Permeable materials are being used for open areas as infiltration and attenuation.

Site Application

Tanked systems are not recommended as it is possible to infiltrate the flow produced by the development.

Climate Change Allowance

4.5 Following the climate change allowances guidance given by the Environment Agency, both the central and upper end allowances have been considered for the assumed 50-year lifespan of the design. See Table 4 below. Due to the location and importance of the development a 40% climate change allowance should be accommodated within the drainage design for the site.

Table 4: Peak rainfall intensity climate change allowances

Applies across all of England	Total potential change anticipated for 2015 to 2039	Total potential change anticipated for 2040 to 2069	Total potential change anticipated for 2070 to 2115	
Upper End	10%	20%	40%	
Central	5%	10%	20%	

SuDS design and Capacity

- 4.6 Infiltration can be achieved on this site as confirmed by the permeability tests; therefore the surface strategy will be as follow:
 - Attenuation of all flows from the new roof and infiltrate them into the ground by using the permeable access road and parking area in front of the garage.
- 4.7 As the proposed development area is less than 50ha, the Micro Drainage ICP SUDS (FSR Method) has been used to estimate the existing site peak flow rates. The results for this development are summarised within Table 5. Full calculations can be found within Appendix C.
- 4.8 The Design Suite for Micro Drainage has been used to calculate the size of the attenuation and infiltration system for all events up to the 1 in 100 rainfall event including an allowance for climate change. The results are summarised within Table 5. Calculations can be found in Appendix C.

Return Period Event	Existing Peak Discharge Rate (I/s)	Proposed Peak Discharge Rate or Infiltration rate (m/s)	Anticipated attenuation volume (m3)
QBAR (1 in 2)	28.2	6.78 x 10^-5	
30	50.1	6.78 x 10^-5	
100	54.5	6.78 x 10^-5	
100+40%CC	N/A	6.78 x 10^-5	9.76

Table 5: Peak discharge rates and anticipated attenuation volumes for SuDS

4.9 The attenuation and infiltration storage can be provided by the permeable paving sub-base. See Table 6 and Appendix D for locations and details of the SuDS used in the site.

Table 6: Storage Volume Distribution within SuDS				
Sustainable Drainage Systems	Volume (m³)			
Bio-retention areas with 350mm subbase	39.795			
TOTAL STORAGE VOLUME PROVIDED	39.795			

- 4.10 The surface water drainage strategy is prepared in outline only to demonstrate that the proposed development can meet national and local requirements. Further development of the strategy will be undertaken at the detailed design.
- 4.11 It should be noted that the above presents one possible solution to demonstrate that the development can be sustainably drained and comply with the requirements of the NPPF. Other solutions may be feasible that would meet these criteria and may prove to be better suited for the site. These will become apparent during the detailed design stage. The strategy above should therefore not be interpreted as the definitive scheme solution

Maintenance of Drainage System

4.12 Maintenance and Management Plan Guidance from the SuDS Manual, CIRIA C753 (CIRIA, 2015) is to be followed for the effective maintenance of the proposed SuDS techniques outlined throughout Section 4. Maintenance activities will be dependent on the drainage scheme installed following detailed design. A detailed maintenance manual should be provided during the detailed design of the project.

Management of Exceedance

- 4.13 The drainage network has been designed to attenuate surface runoff for all events up to and including the 1% AEP (1 in 100 years), plus 40% climate change allowance event. However consideration has been given to what may happen when the design capacity of the surface water drainage network is exceeded.
- 4.14 Surface water will flow to the lowest points within the site located to the south of the site resulting in flows moving away from the buildings and into natural permeable open field. The flood risk to the buildings would therefore remain very low.

5 FOUL WATER DRAINAGE STRATEGY

5.1 The foul water sewer from the Barn Garage will connect into the existing foul water sewer at the main residence. Refer to **Appendix D** for more details.

6 CONCLUSIONS

- 6.1 This drainage strategy demonstrates that the proposed development site can be drained in a sustainable manner without increasing flood risk to other parties or contaminating the environment. This design aims to attenuate the surface water runoff within the gravel sub-base of permeable areas.
- 6.2 The proposed drainage strategy does not attempt to present a final design of the foul and surface water system nor the most value engineered design. This procedure is left until the detailed design stage where other systems will be evaluated following the completion of the site investigation.

APPENDICES

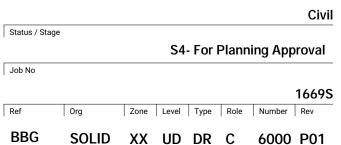
Appendix A: Existing and Proposed Development Areas

Appendix B: Soil Infiltration Rate

Appendix C: Run off Model Results

Appendix D: Proposed Surface and Foul Drainage Strategy

Appendix A: Existing and Proposed Development Area



NOTES

1. All Structural Engineer's drawings are to be read in conjunction with all relevant Architect's & Services Engineer's drawings and specifications.

	KE	Y:						
Ħ		Pr	opose	ed Ne	w Peri	meable	Surfa	се
Ľ	//	Pr	opose	ed Ne	w Imp	ermeabl	e Su	face
P01	leave	for Dispeters	Appress			20.07.10	DO	ARD
Rev	Descri	I for Planning <i>I</i>	Approva			30.07.19 Date	Ву	Chkd
	on Stree	et n OX7 5BJ			E	T +44((info@solid- W solid-	-structu	res.com
Project							-3110010	
Broo Bodio	cote	ls Barn G	arage	9				
Exist Area	-	nd Propo	osed I	Deve	loped			
Scale							NTS	@ A1
Role								Civi
Status	/ Stage			S4	- For F	Planning	Appr	oval
Job No)						-	
							1	669S

Appendix B: Soil Infiltration Rate

Soil Infiltration Rate: calculations for Brooklands Barn Garage, Bodicote

Solid Job No: Solid Doc Ref: Date:

1669S 1669S-BBC-SOLID-XX-XX-RP-C-0002 30/07/2019

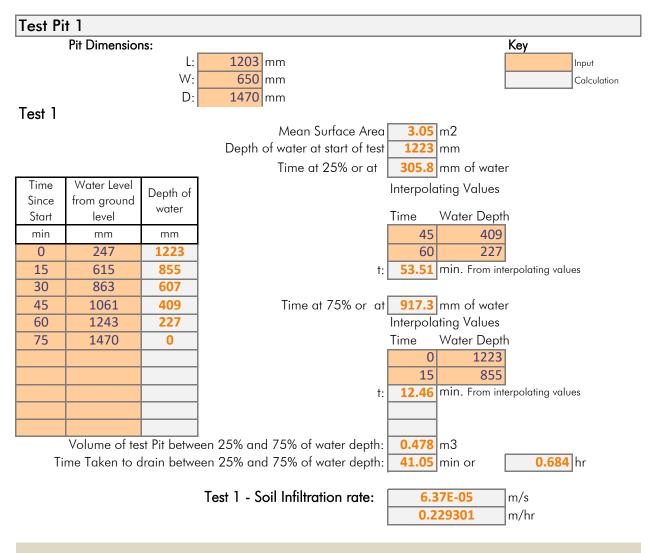
Solid Structures (UK) Ltd Solid Studio 12 Albion Street Chipping Norton Oxfordshire OX7 5BJ

Telephone: 01608 690858 Email: info@solid-structures.com

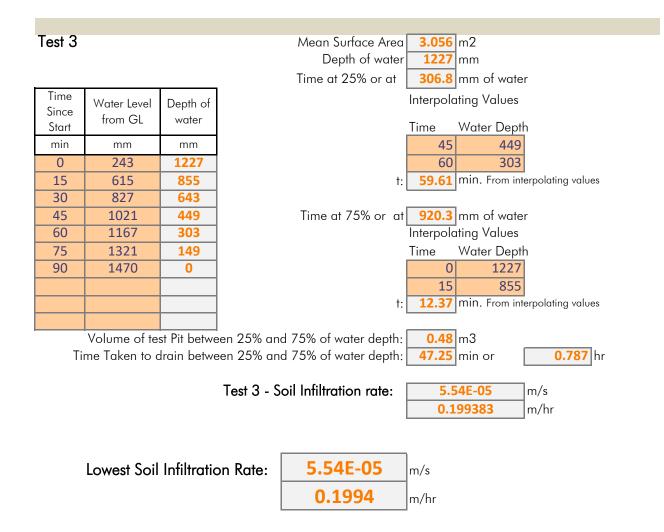
www.solid-structures.com

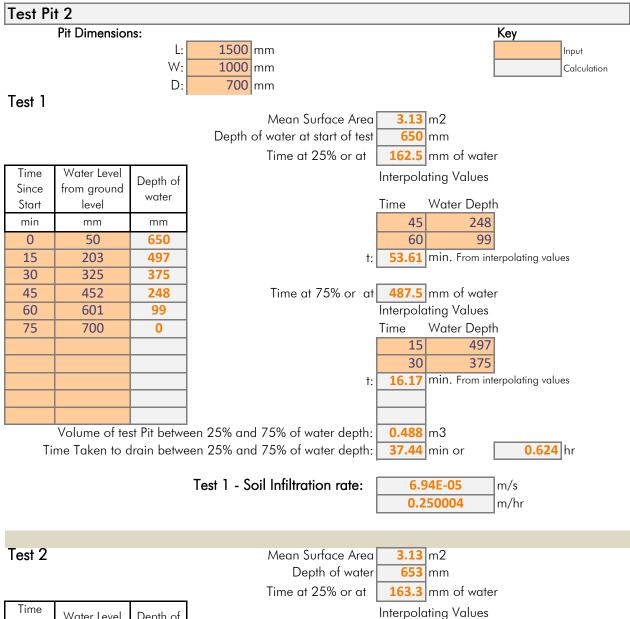
Solid Doc Ref: 1669S-BBC-SOLID-XX-XX-RP-C-0002
Status: S4 - Building Regs
Issued by: ARD

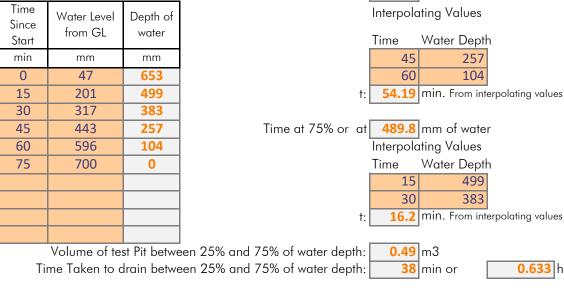
CONTENTS


APPROVAL			
Prepared by:	Reviewed by:	Approved by:	
Diane Ochse	Argemiro Rivera	Argemiro Rivera	

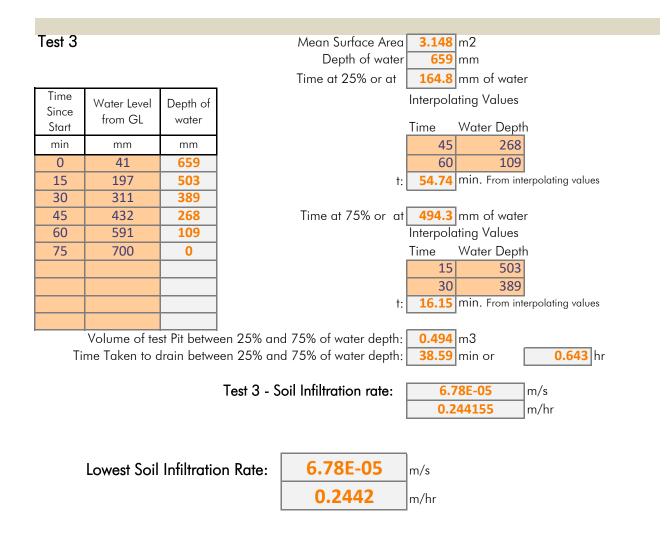
REVISION HISTORY


Rev:	Comment:	Approved by:		
Rev:	Comment:	Approved by:		
Rev:	Comment:	Approved by:		


INSTRUCTION AND WARRANTY


This "Calculation Pack" is for the sole and specific use of the client and Solid Structures Ltd shall not be responsible for any use of the contents for any purpose other than that for which it was prepared and provided. Should the client require to pass copies of this document in part or full to other parties for information, then no professional liability or warranty shall be extended to other parties by Solid Structures Ltd in this connection without the explicit agreement thereto by Solid Structures Ltd.

_			
Test 2			Mean Surface Area 3.06 m2
			Depth of water 1229 mm
			Time at 25% or at 307.3 mm of water
Time	Water Level	Depth of	Interpolating Values
Since	from GL	water	
Start		water	Time Water Depth
min	mm	mm	45 446
0	241	1229	60 296
15	617	853	t: 58.88 min. From interpolating values
30	841	629	
45	1024	446	Time at 75% or at 921.8 mm of water
60	1174	296	Interpolating Values
75	1323	147	Time Water Depth
90	1470	0	0 1229
			15 853
			t: 12.26 min. From interpolating values
	Volume of te	st Pit betwe	een 25% and 75% of water depth: 0.481 m3
Ti	me Taken to a	drain betwe	een 25% and 75% of water depth: 46.62 min or 0.777 hr
			Test 2 - Soil Infiltration rate: 5.62E-05 m/s
			0.202153 m/hr



0.633 hr

Appendix C: Micro Drainage Run off

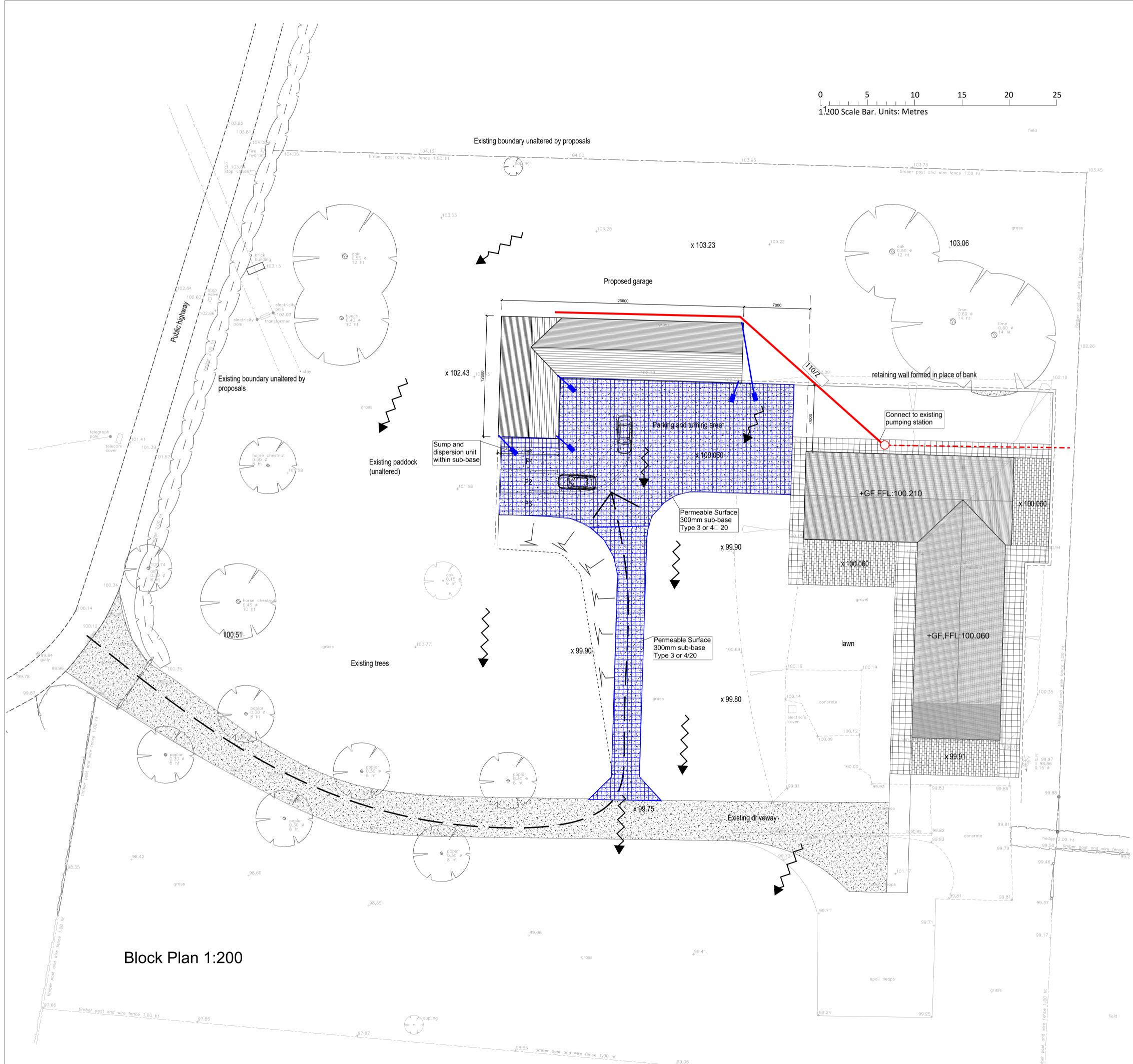
Existing Run-off Results

Solid Structures		Page 1
Solid Studio, Chipping Norton		Page 1
Oxfordshire		
OX7 5BJ		and the
Date 30/07/2019 11:47	Designed by Diane	Micro
File	Checked by	Drainage
Innovyze	Source Control 2018.1.1	
ICP SUD	<u>S Mean Annual Flood</u>	
	Input	
	rs) 2 Soil 0.470 ha) 0.163 Urban 0.000 mm) 654 Region Number Region 6	
	Results 1/s	
	QBAR Rural 0.7 QBAR Urban 0.7	
	Q2 years 0.6	
	Q1 year 0.6 Q30 years 1.6 Q100 years 2.3	
©198	32-2018 Innovyze	

Proposed Run-off Results

13Minimun50Maximun30Min Design Depth00Min Vel for Au	DARD es / Climate Chang h Backdrop Heigh h Backdrop Heigh for Optimisatio	ht (m) 0.200
cked by work 2018.1.1 <u>he Modified Ratio</u> ceria for Storm 0 Manhole Sizes STAN e1 - England and Wal 5 00 Add Flow 13 Minimum 50 Maximum 30 Min Design Depth 00 Min Vel for Au	DARD es / Climate Chang h Backdrop Heigh h Backdrop Heigh for Optimisatio	Drainag MP (%) 100 ge (%) 0 nt (m) 0.200
cked by work 2018.1.1 <u>he Modified Ratio</u> ceria for Storm 0 Manhole Sizes STAN e1 - England and Wal 5 00 Add Flow 13 Minimum 50 Maximum 30 Min Design Depth 00 Min Vel for Au	DARD es / Climate Chang h Backdrop Heigh h Backdrop Heigh for Optimisatio	Drainag MP (%) 100 ge (%) 0 nt (m) 0.200
cked by work 2018.1.1 <u>he Modified Ratio</u> ceria for Storm 0 Manhole Sizes STAN e1 - England and Wal 5 00 Add Flow 13 Minimum 50 Maximum 30 Min Design Depth 00 Min Vel for Au	DARD es / Climate Chang h Backdrop Heigh h Backdrop Heigh for Optimisatio	Drainag MP (%) 100 ge (%) 0 nt (m) 0.200
work 2018.1.1 he Modified Ratio ceria for Storm Manhole Sizes STAN al - England and Walk 5 00 Add Flow 13 Minimum 50 Maximum 30 Min Design Depth 00 Min Vel for Au	DARD es / Climate Chang h Backdrop Heigh h Backdrop Heigh for Optimisatio	MP (%) 100 ge (%) (ht (m) 0.200
he Modified Ratio	DARD es / Climate Chang h Backdrop Heigh h Backdrop Heigh for Optimisatio	ge (%) (ht (m) 0.200
Deria for Storm Manhole Sizes STAN El - England and Wal 5 00 Add Flow 13 Minimum 50 Maximum 30 Min Design Depth 00 Min Vel for Au	DARD es / Climate Chang h Backdrop Heigh h Backdrop Heigh for Optimisatio	ge (%) (ht (m) 0.200
Manhole Sizes STAN 5 00 Add Flow 13 Minimun 50 Maximun 30 Min Design Depth 00 Min Vel for Au	es PIN / Climate Chang n Backdrop Heigh n Backdrop Heigh for Optimisatio	ge (%) (ht (m) 0.200
el - England and Wal 5 00 Add Flow 13 Minimum 50 Maximum 30 Min Design Depth 00 Min Vel for Au	es PIN / Climate Chang n Backdrop Heigh n Backdrop Heigh for Optimisatio	ge (%) (ht (m) 0.200
5 00 Add Flow 13 Minimum 50 Maximum 30 Min Design Depth 00 Min Vel for Au	PIN / Climate Chang n Backdrop Heigh n Backdrop Heigh for Optimisatio	ge (%) (ht (m) 0.200
5 00 Add Flow 13 Minimum 50 Maximum 30 Min Design Depth 00 Min Vel for Au	PIN / Climate Chang n Backdrop Heigh n Backdrop Heigh for Optimisatio	ge (%) (ht (m) 0.200
13Minimun50Maximun30Min Design Depth00Min Vel for Au	n Backdrop Heigh n Backdrop Heigh for Optimisatio	ht (m) 0.200
50 Maximun 30 Min Design Depth 00 Min Vel for Au	n Backdrop Heigh for Optimisatio	
30 Min Design Depth 00 Min Vel for Au	for Optimisatio	(m) 1.500
00 Min Vel for Au	-	
50 Min Slope fo	ico Design oniry	
	or Optimisation	
th Level Inverte		
CH Devel Inverts		
Clow (1/s) (mm) SEC	F (mm) o 100 Pipe/Con	Desigr
	o 100 Pipe/Con	iduit 🧬
Results Table		
		ap Flow
?low (l/s) (l/s) (1	l/s) (m/s) (l,	/s) (l/s)
0.0 0.0	0.0 1.01	7.9 2.7
0.0 0.0	0.0 1.01	7.9 5.1
all Details for S	Storm	
vel I. Level Min (m) I. Leve	D,L W 1 (mm) (mm)	
vel I. Level Min	1 (mm) (mm)	
.g F	Base k HYD Flow (1/s) (mm) SEC 0.0 0.600 0.0 0.600 Results Table E Base Foul Add Flow (1/s) (1/s) (1/s) (1) 0.0 0.0	Image: sqn Table for Storm Base k HYD DIA Section Flow (1/s) (mm) SECT (mm) 0.0

©1982-2018 Innovyze


Solid Structures	I	Page 2
Solid Studio, Chipping Norton	[
Oxfordshire		
OX7 5BJ		Micro
Date 30/07/2019 16:44	Decimped by Diene	
File PROPOSED.MDX	Checked by	Drainage
Innovyze	Network 2018.1.1	
Simulatio	on Criteria for Storm	
Areal Reduction Factor Hot Start (mins)	0 Inlet Coeffiecient 0 Flow per Person per Day (l/per/day) 0.500 Run Time (mins)	e 2.000 0.800 0.000 60
Number of Online Cont	aphs 0 Number of Storage Structures 1 rols 1 Number of Time/Area Diagrams 0 rols 0 Number of Real Time Controls 0	
Synthet	ic Rainfall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	FSR Profile Type Summe 5 Cv (Summer) 0.75 and and Wales Cv (Winter) 0.84 19.900 Storm Duration (mins) 3 0.413	0 0

©1982-2018 Innovyze

Appendix D: Proposed Drainage Strategy

NOTES

1. All dimensions are in millimetres and levels in m AOD unless stated otherwise.

2. Do not scale. If in any doubt, consult Engineer.

3. Read in conjunction with the architects and engineers schedule drawings.

4. Check inverts and sizes of existing pipes prior to the commencement of any work. Report any discrepancies to the engineer and await instructions.

5. The location of services is shown as indicative. This drawing should be read in conjunction with the utilities drawings. No warranty to their accuracy can be given. The contractor shall take all necessary measures to satisfy himself as to the location of the existing services and connection points. Excavation should be undertaken in compliance with HSG47.

6. Surface water Pipework to be 110mm Thermoplastics U-PVC (Polypipe or similar) installed at 1:100 slopes minimum. Pipe bedding should be class Z in pipes within 1.5m of the building or shallower than 700mm below ground level. For all other areas the pipe bedding should be class S.

7. Joints and fittings for gravity sewers shall comply with the relevant provisions of BS EN 1401-1, BS EN 1852 and BS EN 12666-1. Pipes shall have a limit of 6% deformation. Pipes shall be SN8 ring stiffness and stamped accordingly.

Pipe sections shall not be longer than 3m.

8. Plastic chambers and rings, including demarcation chambers, shall comply with BS EN 3598-1 or BS EN 13598-2 as appropriate.

9. Inspection chamber covers and frames shall comply with the relevant provisions of BS EN 124 and should be double sealed.

10. All inspection chamber covers shall be the non-ventilating type and shall have closed keyways.

11. Testing of pipelines should be as follow:

Gravity Pipework: Air pipe testing. Pipework should withstand a pressure of 100mm water gauge and this should not fall by more than 25mm in a 5minute period. However where traps or gullies are connected they should withstand a pressure of 50mm water gauge and this should not fall by more than 12mm in a 5minute period. It is recommended that pipework installations are tested in sections rather than waiting to complete in one operation.

12. Concrete structures design sulphate class and ACEC concrete class unknown.

13. Manhole covers to be set square to the building. Covers of existing manholes to be adjusted to match final ground levels.

14. Granular Bedding for pipes shall be constructed by spreading and compacting granular bedding material over the full width of the pipe trench. After the pipes have been laid, additional granular material shall, if required, be placed and compacted equally on each side of the pipes and, where practicable, this shall be done in sequence with the removal of the trench supports.

P01	Issued for Planning Approval	30.07.19	DO	ARD
Rev	Description	Date	Ву	Chkd

Solid Studio 12 Albion Street Chipping Norton OX7 5BJ

T +44(0)1608 690 858 E info@solid-structures.com W solid-structures.com

Brooklands Barn Garage

Bodicote

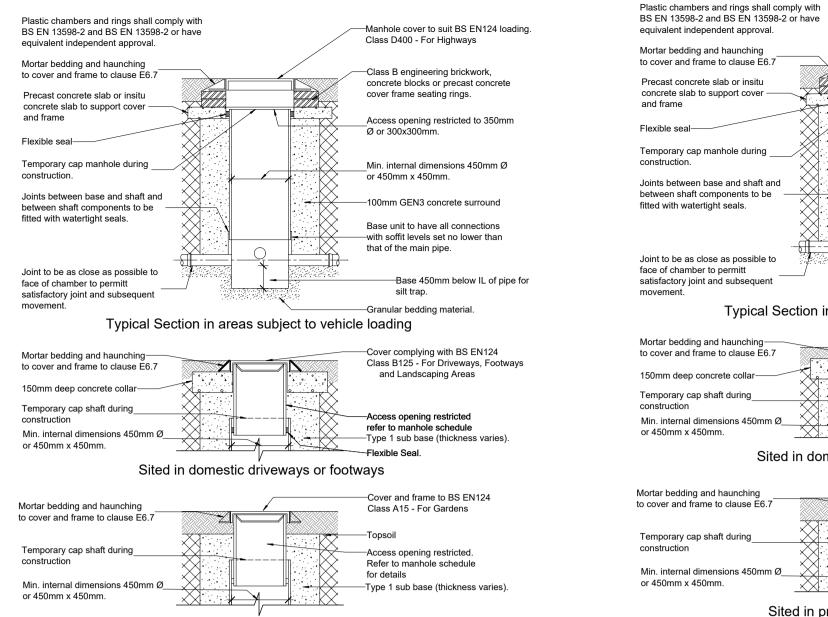
Drawing Title

Project

PROPOSED DRAINAGE NETWORK SKETCH

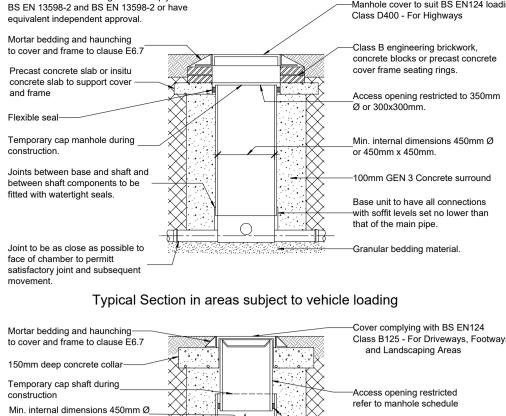
Scale							
						1:100) @ A1
Role							
							Civil
Status / Stage							
			S4	- For F	Planni	ng App	roval
Job No							
							1669S
Ref	Org	Zone	Level	Туре	Role	Number	Rev
BBG	SOLID	хх	UD	DR	С	6100	P01

KEY:



> RW ILc

External Permeable Surface Rain water Dispersion unit Proposed Surface Water Sewer Proposed Foul Water Sewer Existing Foul Water Sewer Existing Foul Water Manhole Overland Flows

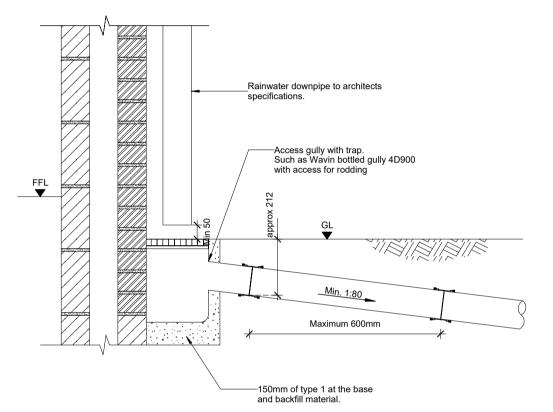

/P	Rainwater Pipe
IL	Invert Level
CL	Cover Level
oS	Top of the structure level
S	Invert Level of the structure

Number and F=Foul S= Surface Type and Material Diameter / Cover Class Cover Level Invert Level

Sited in private garden - No loading

8005 - Silt Trap Plastic

dimensions 450mm Ø_ I50mm.		Flexible Seal.
Sited	d in domestic driveways or foot	ways
g and haunching ame to clause E6.7		Cover and fram Class A15 - Fo
		—-Topsoil


Cover and frame to BS EN124 Class A15 - For Gardens -Topsoi -Access opening restricted. Refer to manhole schedule

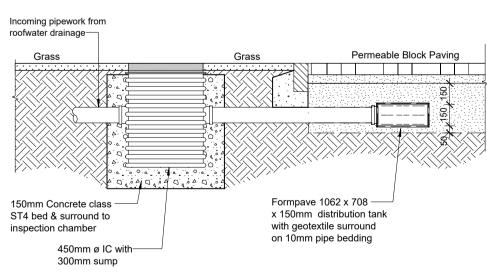
for details

Sited in private garden - No loading

Notes: 1. Refer to drawing 8193 for base layouts.

8190 - Chamber Type 3 - Flexible Material

×100 150mm Gen 3 concrete surround to required depth


NOTES:

Notes: 1. Refer to drawing 8193 for base layouts.

1. This details shows the standard generic arrangement.

2. The pipe and connector details will be different for each manufacturer of the components. They are to be in installed in accordance with the manufacturers recommendations.

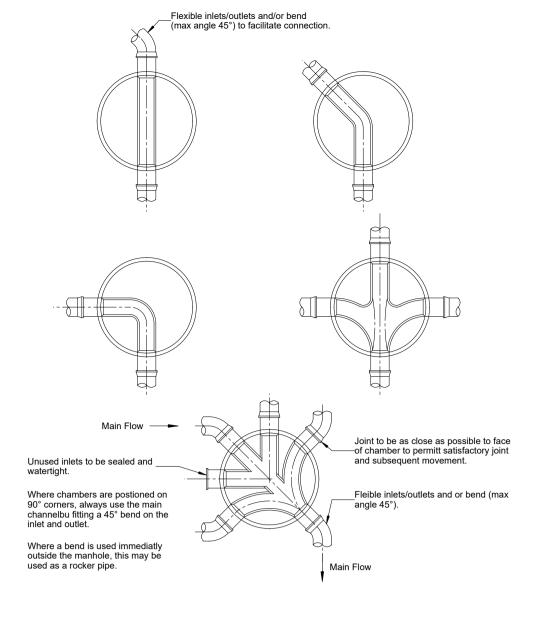
8250 - External Rainwater (High Level)

SD064 - Sump and Dispersion Unit

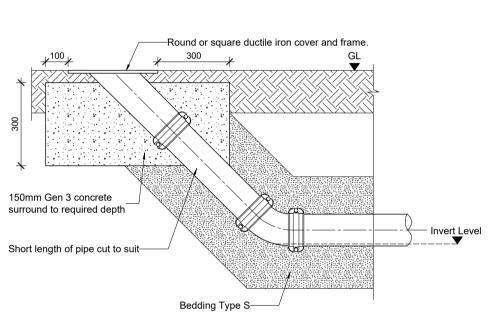
-Manhole cover to suit BS EN124 loading.

-Class B engineering brickwork, concrete blocks or precast concrete

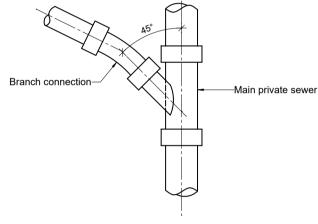
cover frame seating rings.


Min. internal dimensions 450mm Ø

-100mm GEN 3 Concrete surround


Base unit to have all connections -with soffit levels set no lower than

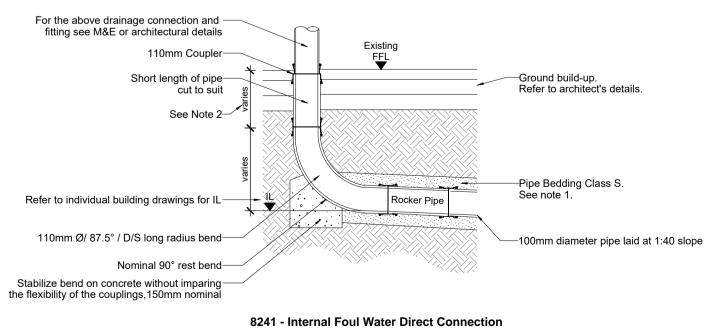
-Cover complying with BS EN124 Class B125 - For Driveways, Footways and Landscaping Areas

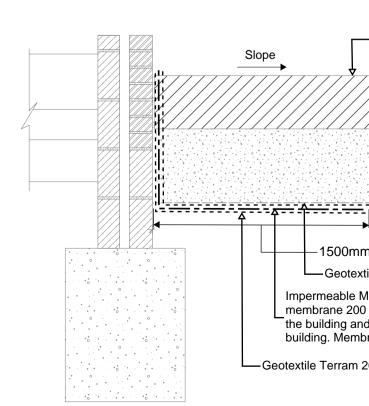

-Access opening restricted refer to manhole schedule

8193 - Chamber Type 3 Base Layouts

8230 - External Rodding Eye Detail

PLAN VIEW


 $/-30^{\circ}$ min, ideally 45°


SECTION VIEW

NOTES:

1. The vertical angle between the connecting pipe and the horizontal should be greater than 0° and not more than 60°. 2. Where the connection is being made to a sewer with a nominal internal diameter of 300 mm or less, connections should be made using 45° angle, or 90° angle, curved square junctions. Connections made with junction fittings should be made by cutting the existing pipe, inserting the junction fitting and jointing with flexible repair couplings or slip couplers.

8225 - Lateral Connection to private sewer

Topsoil/footway

SOLID XX DT DR C 3400 P01

BBC