AMBIENTAL ASSESSMENT

Flood Risk Assessment

St Georges Chapel, Round Close Road, Adderbury, Banbury, OX17 3EP

Ambiental Environmental Assessment Sussex Innovation Centre, Science Park Square, Brighton, BN1 9SB

i

Document Issue Record

Project: Phase 1 Flood Risk Assessment

Prepared for: Tim Catling

Reference: 4749

Site Location: St Georges Chapel, Round Close Road, Adderbury, Banbury, OX17 3EP

Proposed Development: It is understood that the development is for the demolition of the existing chapel and construction of a new residential dwelling.

Consultant		Date	Signature
Author	Sophie Isaacs Oliver Harvey	09/09/2019	
Document Check	Mona Cowman	12/09/2019	
Authorisation	Steven Brown	1309/2019	

Please Note:

This report has been prepared for the exclusive use of the commissioning party and may not be reproduced without prior written permission from Ambiental Environmental Assessment. All work has been carried out within the terms of the brief using all reasonable skill, care and diligence. No liability is accepted by AMBIENTAL for the accuracy of data or opinions provided by others in the preparation of this report, or for any use of this report other than for the purpose for which it was produced.

Contact Us:

Ambiental Environmental Assessment Sussex Innovation Centre, Science Park Square, Brighton, BN1 9SB

www.ambiental.co.uk

UK Office: +44 (0) 203 857 8540 or +44 (0) 203 857 8530

Contents

1.	Summary	1
2.	Policy Compliance	3
3.	Development Description and Site Area	1
	Proposed Development and Location	4
	Vulnerability Classification	5
	Geology	5
4.	Site Flood Hazards	6
	Sources of Flooding	6
	Fluvial	6
	Surface Water (Pluvial)	7
	Groundwater	0
	Sewer	1
	Surface Water Drainage Strategy12	2
	Records of Historical Flooding	2
5.	SUDS Assessment	3
6.	Surface Water Drainage Strategy 10	6
	Runoff rates	6
	Drainage Strategy	7
	Attenuation1	7
	Design Exceedance	7
	Water Quality	8
	Adoption and Maintenance	8
7.	Conclusion	9
Appe	ndix I - Site Plans ndix II - EA Data ndix III - Calculations	

1. Summary

- 1.1 Ambiental Environmental Assessment has been appointed to undertake a National Planning Policy Framework (NPPF) compliant Flood Risk Assessment (FRA) for the proposed development at St Georges Chapel, Round Close Road, Adderbury, Banbury, OX17 3EP.
- 1.2 The site is currently a chapel. It is understood that the development is for the demolition of the existing chapel and construction of a new residential dwelling.
- 1.3 With reference to the Environment Agency (EA) Flood Map for Planning, the proposed development is located within Flood Zone 1. The proposed development is considered 'More Vulnerable' under the National Planning Policy Framework (NPPF).
- 1.4 The site has a small watercourse passing through it and the nearby town of Adderbury has experienced severe flooding in the past. Therefore, in accordance with the Cherwell District Council Adopted Local Plan 2011-2031 and the National Planning Policy Framework (NPPF), the proposed development requires a flood risk assessment to accompany its planning application.
- 1.5 The EA Flood Map for Planning data and LiDAR data indicate that the edges of Flood Zones 2 and 3 are elevated at approximately 87.8mAOD, whilst the site has an elevation between approximately 89.34mAOD and 90.08mAOD, more than 1 metre higher than the edge of the Flood Zones. Using this evidence, it can be concluded that the site is at low risk of fluvial flooding.
- 1.6 Following the SuDS drainage hierarchy, infiltration has been considered. Based on desktop geology information, infiltration techniques could be viable at the site, however no site-specific ground investigations have been undertaken to determine a soakage rate or groundwater levels.
- 1.7 The next alternative option in the hierarchy above is to discharge runoff into surface waters (ditch/watercourse/waterbody). There is an adjacent ordinary water course that runs through the site and the existing building currently drains into the watercourse. Therefore, it is proposed to reuse this method of surface water runoff post-development.
- 1.8 The roof areas currently drain at an unrestricted rate into the adjacent watercourse. The existing runoff from the roof areas are positively drained; consequently, a reduction in the peak rate of surface water discharge will reduce the risk of flooding locally, providing betterment compared to the existing situation.
- 1.9 The existing site is brownfield and currently drains unrestricted to the adjacent watercourse. It is impractical to provide large amounts of storage given the size of the site and relatively low existing runoff rates. Therefore, an orifice plate 0.02m in diameter has been used as a primary method of flow control. This would result in a discharge rate below 1l/s for all storms up to the 1:100+40%CC event.
- 1.10 The proposal is to provide permeable paving across the hardstanding/driveway area adjacent to the proposed building. The permeable paving would be required to provide 9.2m³ of storage in the subbase. The total plan area for the permeable paving is approximately 100m² and the required depth is approximately 400mm. The subbase should be laid flat to maximise storage.
- 1.11 The runoff from parts of the trafficked areas of the proposed site is to be treated through permeable paving. Analysis of the Mitigation Indices of the proposed SuDS techniques shows water treatment provided by the permeable pavement is sufficient to remove the pollutants.

- 1.12 Runoff from the roof hardstanding areas is considered to generally be uncontaminated. However, to prevent any potential sediment from impacting on the storage structure, sediment traps should be provided on the underground drainage at suitable locations to prevent sedimentation.
- 1.13 All onsite SuDS and drainage systems will be privately maintained. A long-term maintenance regime should be agreed with the site owners before adoption. In addition to a long-term maintenance regime, it is recommended that all drainage elements implemented on site should be inspected following the first rainfall event post construction and monthly for the first quarter following construction

Following the guidelines contained within the NPPF, the proposed development is considered to be suitable assuming appropriate mitigation (including adequate warning procedures) can be maintained for the lifetime of the development.

2. Policy Compliance

- 2.1 The proposed development site is located in Flood Zone 1, which is the zone of lowest flood risk, as defined by the Environment Agency (EA).
- 2.2 The site has a small watercourse passing through it and the nearby town of Adderbury has experienced severe flooding in the past.
- 2.3 The Cherwell District Council Adopted Local Plan 2011-2031 states in Policy ESD 6 that site-specific flood risk assessments are required to accompany development proposals for development sites located within 9m of any watercourses. In accordance with this policy, the proposed development must have a flood risk assessment to accompany its planning application, as a small watercourse/drain passes directly through the site.
- 2.4 The Oxfordshire LLFA Local Standard and Guidance for Surface Water Drainage (2018) and the Ciria SuDS manual advises that runoff rates should be limited to greenfield runoff rates or as close as possible and states the following:

'Brownfield sites are strongly encouraged to discharge at the greenfield rate wherever possible. Where proven that greenfield rates cannot be achieved the best discharge rate needs to be quantified. As a minimum, brownfield sites should reduce the discharge by 40% to account for the impacts of climate change, from the existing site runoff OR from the original un-surcharged pipe-full capacity of the existing system, whichever is the lowest.'

2.5 In accordance with the National Planning Policy Framework (NPPF), this site requires a site-specific flood risk assessment, to identify flood risks posed to the development and set out proposed measures to mitigate those risks.

3. Development Description and Site Area

Proposed Development and Location

- 3.1 The proposed development is located at St Georges Chapel, Round Close Road, Adderbury, Banbury, OX17 3EP (Figure 1 and Figure 2).
- 3.2 The site is currently a chapel. It is understood that the proposed development is for the demolition of the existing chapel and construction of a new residential dwelling.
- 3.3 Elevations on site vary between approximately 89.34mAOD and 90.08mAOD (2m LiDAR data).

Figure 1 Location Map, identifying the location of the proposed development (Source: OS)

Figure 2 Aerial Imagery: identifying the location of the proposed development (Source: GlobalMapper)

Vulnerability Classification

- 3.4 The EA Flood Map for Planning (Figure 3) demonstrates that the proposed development lies within Fluvial Flood Zone 1 with a low probability of less than 1 in 1,000 (0.1%) of river flooding in any year. The EA Flood Map for Planning also indicates that the site location is situated very close to EA Main Rivers and to areas located within Flood Zone 3.
- 3.5 Whilst the map shows that the site is situated within Flood Zone 1 and at the lowest risk of flooding, there is a partially open and partially culverted watercourse that passes directly through the site, which could be a potential source of flooding.
- 3.6 Under the principles of NPPF, the proposed development is 'More Vulnerable', as it is a residential building, and the existing building is 'Less Vulnerable'. This demonstrates an increase in the level of flood risk vulnerability to the site. Also, with this change of use from a chapel to a residential dwelling, the number of occupants residing at the property will increase.

Figure 3 EA Flood Map for Planning (Source: EA)

Geology

- 3.7 The British Geological Survey (BGS) Geology of Britain Viewer indicates that the bedrock underlying the site is the Dyrham Formation, comprising interbedded Siltstone and Mudstone. This formation is considered to be a Secondary undifferentiated aquifer (Source: Magic Map online resource). A Secondary undifferentiated aquifer is permeable, supporting water supplies at a local scale and may contribute to base flow of rivers and/or low permeability but with limited groundwater available in fissures or thin geological horizons.
- 3.8 The BGS Geology of Britain Viewer indicates that there are no records for superficial deposits underlying the site.
- 3.9 The site is not within an EA groundwater Source Protection Zone.

4.

4. Site Flood Hazards

Sources of Flooding

4.1 The proposed development is located within Flood Zone 1 (low risk of flooding) and is considered to be 'More Vulnerable' according to NPPF guidelines. Table 1 summarises the potential sources of flooding to the site:

Source	Description
Fluvial/Tidal	N/A – Flood Zone 1
Surface	On site
Groundwater	Low risk
Sewer	Low risk

Table 1 Summary of flood sources.

Fluvial

- 4.2 A partially open and partially culverted watercourse is present on the site. Sor Brook (EA Main River), is located approximately 170m east of the development site. Bloxham Brook (EA Main River) is located approximately 420m north-west of the site.
- 4.3 The EA Flood Map for Planning (Figure 3) demonstrates that the proposed development lies within Flood Zone 1 with a low probability of less than 1 in 1,000 (0.1%) of flooding from rivers or seas in any year. The site is located approximately 60m west of the nearest Flood Zone 2 and 3 area.
- 4.4 After reviewing the EA Flood Map for Planning data and LiDAR, the data illustrates that the edges of Flood Zones 2 and 3 are elevated at approximately 87.8mAOD and the site has an elevation between approximately 89.34mAOD and 90.08mAOD, more than 1 metre higher than the edge of the Flood Zones. This is shown in Figure 4 below. Using this evidence, it can be concluded that the site is at low risk of fluvial flooding. This is supported by the EA flood mapping, which also indicates that the site is at a low risk of fluvial flooding.

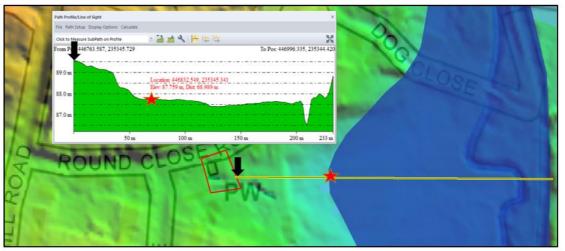


Figure 4 Elevations of site boundary and flood zone boundary, where black arrow indicates the site boundary and red star indicates edge of flood zones 2 and 3

Surface Water (Pluvial)

- 4.5 The Environment Agency Flood Risk from Surface Water map (Figure 5) shows that the majority of the proposed development is within an area of 'Low' risk of flooding from surface water. The south-eastern part of the site is within an area of 'Medium' risk of flooding from surface water, whilst Round Close Road at the entrance/exit of the site is within an area of 'High' risk of flooding from surface water. Areas identified to be at 'Low' risk have a 0.1% to 1% annual risk of flooding from this source. Areas identified to be at 'Medium' risk have a 1% to 3.3% annual risk of flooding from this source.
- 4.6 The EA Surface Water Flood Depth Map for the High Risk Scenario (Figure 6) indicates that the proposed development is not affected in this event. However, Round Close Road at the entrance/exit of the site may experience flood depths of less than 300mm in this event. A Low Risk Scenario has a 0.1% to 1% annual risk of occurring.
- 4.7 The EA Surface Water Flood Depth Map for the Medium Risk Scenario (Figure 7) indicates that the proposed development may experience flood depths of less than 300mm in this event, mainly in the south-eastern part of the site and on Round Close Road at the entrance/exit. A Medium Risk Scenario has a 1% to 3.3% annual risk of occurring.
- 4.8 The EA Surface Water Flood Depth Map for the Low Risk Scenario (Figure 8) indicates that the majority of the proposed development may experience flood depths below 300mm, whilst the south-eastern part close to the watercourse/drain and Round Close Road at the entrance/exit may experience flood depths from 300mm to 900mm in this event. A Low Risk Scenario has a 0.1% to 1% annual risk of occurring.

AMBIENTAL ENVIRONMENTAL ASSESSMENT

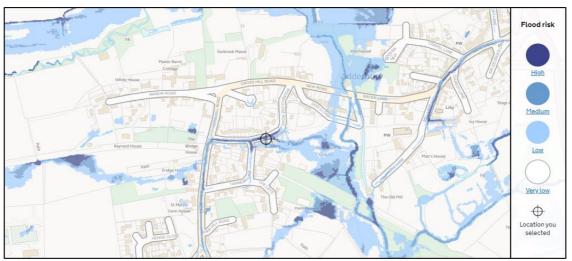


Figure 5 EA Surface Water Flood Risk Map. (Source: EA)

Figure 6 Surface Water Depths for a High Risk Scenario. (Source: EA)

Figure 7 Surface Water Depths for a Medium Risk Scenario. (Source: EA)

AMBIENTAL ENVIRONMENTAL ASSESSMENT

Figure 8 Surface Water Depths for a Low Risk Scenario. (Source: EA)

- 4.9 The Risk of Flooding from Surface Water (RoFSW) map, during a 1 in 30 year event, indicates that the majority of the site would remain unaffected by this event (Figure 9). Round Close Road could experience a flood depth up to 0.30m.
- 4.10 The RoFSW map, during a 1 in 100 year event, indicates that the site could experience flood depths up to 0.60m (Figure 10). The site may experience flood depths up to 0.30m, around the boundaries of the site, and there may also be some flooding where the drain/watercourse passes through, at a maximum depth of 0.60m. Also, Round Close Road could experience flood depths up to 0.30m.
- 4.11 The RoFSW map, during a 1 in 1000 year event, indicates that the majority of the proposed site could experience surface water flooding, up to flood depths of 0.60m (Figure 11). The entire garden could experience flooding, with the highest depths being around the drain/watercourse. Also, Round Close Road could experience depths up to 0.60m.
- 4.12 Overall, the risk of flooding from surface water sources to the proposed development could be considered **moderate**.

Figure 9 Risk of Flooding from Surface Water, 1 in 30 year

Figure 10 Risk of Flooding from Surface Water, 1 in 100 year

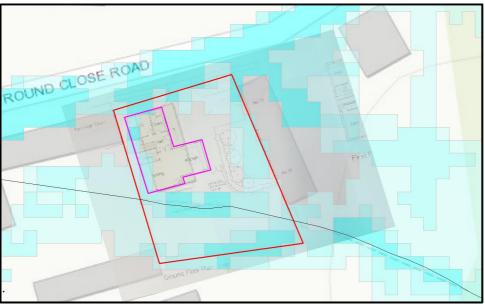


Figure 11 Risk of Flooding from Surface Water, 1 in 1000 year

Groundwater

- 4.13 The Cherwell Level 1 SFRA 2017 Update indicates that the proposed development site is located within a 1km grid square of which 25-50% is considered susceptible to groundwater flooding (Figure 12).
- 4.14 The site is not within an EA groundwater Source Protection Zone.
- 4.15 Thus, it can be considered that the proposed development site is at a **relatively low to moderate** risk of flooding from groundwater sources.

AMBIENTAL ENVIRONMENTAL ASSESSMENT

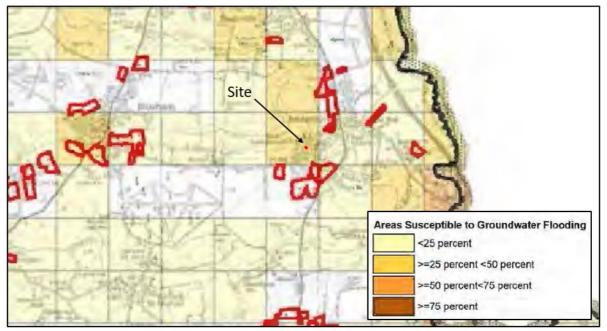


Figure 12 Groundwater Susceptibility (Source: Cherwell SFRA 2017)

Sewer

- 4.16 The Cherwell Level 1 SFRA 2017 Update maps records sewer flooding by postcode areas. The proposed development site is located within an area that has been affected by a total of 5 to 10 sewer flooding incidents, according to DG5 records (Figure 13).
- 4.17 No records could be found to indicate historical sewer flooding at the proposed development site or within its immediate vicinity.
- 4.18 Therefore, the risk of flooding from sewer sources could be considered **low**.
- 4.19 Any new sewer connection from the site should be agreed with the local sewer provider and fitted with non-return valves to mitigate the risk of sewer flooding.

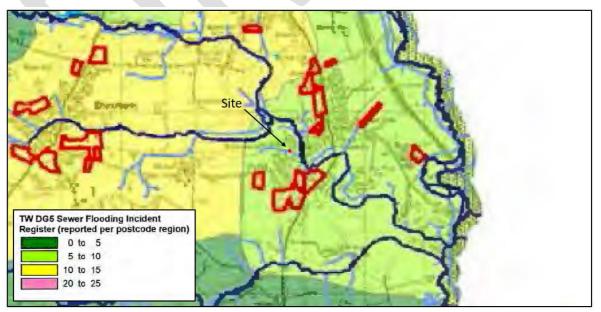


Figure 13 Sewer. (Source: SFRA, based on DG5 Register)

Records of Historical Flooding

- 4.20 The Cherwell Level 1 SFRA 2017 Update maps records sewer flooding by postcode areas. The proposed development site is located within an area that has been affected by a total of 5 to 10 sewer flooding incidents, according to DG5 records (Figure 13).
- 4.21 The EA Recorded Flood Outlines dataset indicates that there were several large flooding events that affected areas close to the site location. When compared with the EA Flood Map for Planning dataset, the EA Recorded Flood Outlines mainly corresponded with Flood Zones 2 and 3.
- 4.22 The Cherwell Level 1 SFRA 2017 provides information on flood history within the Cherwell District and shows records of flooding events that affected areas within the township of Adderbury.
- 4.23 There are no records of previous flooding at the proposed development site.

5. SUDS Assessment

- 5.1 In accordance with the SuDS management train approach, the use of various SuDS measures to reduce and control surface water flows have been considered in detail for the development.
- 5.2 The management of surface water has been considered in respect to the SuDS hierarchy (below) (as detailed in the *CIRIA 753 'The SUDS Manual', Section 3.2.3*):

SuDS Drainage Hierarchy						
			Suitability	Comment		
	1.	Infiltration	✓/x (to be confirmed)	Potentially viable, however given the proximity of the adjacent watercourse, the groundwater levels are currently unknown		
	2.	Discharge to Surface Waters	✓	Existing connection from building into adjacent watercourse. Proposed to reuse this connection		
	3.	Discharge to Surface Water Sewer, Highway Drain or another Drainage System	adjacent watercourse is a preferr r the drainage hierarchy compared	Proposed reuse of existing connection to adjacent watercourse is a preferred option in the drainage hierarchy compared to discharge to surface water sewer		
	4.	Discharge to Combined Sewer	-	Proposed reuse of existing connection to adjacent watercourse is a preferred option in the drainage hierarchy, compared to discharge to combined sewer		
	5.	Discharge to a foul sewer (should not be considered as a possible option)	-	Proposed reuse of existing connection to adjacent watercourse is a preferred option in the drainage hierarchy, compared to discharge to foul sewer		

Table 2 SuDS Hierarchy

- 5.3 Following the SuDS drainage hierarchy, infiltration has been considered. Based on desktop geology information infiltration techniques could be viable at the site, however no site-specific ground investigations have been undertaken to determine a soakage rate or groundwater levels.
- 5.4 The next alternative option in the hierarchy above is to discharge runoff into surface waters (ditch/watercourse/waterbody). There is an adjacent ordinary water course that runs through the site and the existing building currently drains into the watercourse. Therefore, it is proposed to reuse this method of surface water runoff post-development.
- 5.5 The suitability of SuDS components has been assessed in order to provide a sustainable means of providing the required attenuation volumes. The following components have been assessed as in the below table:

	Suitability of SuDS Components	
SuDS Component	Description	Suitability
Infiltrating SuDS	Infiltration can contribute to reducing runoff rates and volumes while supporting baseflow and groundwater recharge processes. The suitability and infiltration rate depends on the permeability of the surrounding soils	x
Permeable Pavement	Pervious surfaces can be used in combination with aggregate sub-base and/or geocellular/modular storage to attenuate and/or infiltrate runoff from surrounding surfaces and roofs. Liners can be used where ground conditions are not suitable for infiltration	✓
Green / Blue Roofs	Green Roofs provide areas of visual benefit, ecological value, enhanced building performance and the reduction of surface water runoff. They are generally more costly to install and maintain than conventional roofs but can provide many long-term benefits and reduce the on-site storage volumes. Blue roofs provide additional attenuation by storing the rainwater in crates located in the roof structure. Runoff from these structures can be reduced significantly using small orifice devices due to the low risk of blockage.	x
Rainwater Harvesting	Rainwater Harvesting is the collection of rainwater runoff for use. It can be collected form roofs or other impermeable area, stored, treated (where required) and then used as a supply of water for domestic, commercial and industrial properties	✓
Swales	Swales are designed to convey, treat and attenuate surface water runoff and provide aesthetic and biodiversity benefits. They can replace conventional pipework as a means of conveying runoff, however space constraints of some sites can make it difficult incorporating them into the design	x
Rills and Channels	Rills and Channels keep runoff on the surface and convey runoff along the surface to downstream SuDS components. They can be incorporated into the design to provide a visually appealing method of conveyance, they also provide effectiveness in pre-treatment removal of silts	х
Bioretention Systems	Bioretention systems can reduce runoff rates and volumes and treat pollution through the use of engineer soils and vegetation. They are particularly effective in delivering interception, but can also be an attractive landscape feature whilst providing habitat and biodiversity	х
Retention Ponds and Wetlands	Ponds and Wetlands are features with a permanent pool of water that provide both attenuation and treatment of surface water runoff. They enhance treatment processes and have great amenity and biodiversity benefits. Often a flow control system at the outfall controls the rates of discharge for a range of water levels during storm events	x
Detention Basins	Detention Basins are landscaped depressions that are usually dry except during and immediately following storm events, and can be used as a recreational or other amenity facility. They generally appropriate to manage high volumes of surface water from larger sites such as a neighbourhoods	х
Geocellular Systems	Attenuation storage tanks are used to create a below-ground void space for the temporary storage of surface water before infiltration, controlled release or use. The inherent flexibility in size and shape means they can be tailored to suit the specific characteristics and requirements of any site	if required could be implemented
Proprietary Treatment Systems	Proprietary treatment systems are manufactured products that remove specific pollutants from surface water runoff. They are especially useful where site constraints preclude the use of other methods and can be useful in reducing the maintenance requirements of downstream SuDS	х
Filter Drains and Filter Strips	Filter drains are shallow trenches filled with stone, gravel that cerate temporary subsurface storage for the attenuation, conveyance and filtration of surface water runoff. Filter strips are uniformly graded and gently sloping strips of grass or dense vegetation, designed to treat runoff from adjacent impermeable areas by promoting sedimentation, filtration and infiltration	x

Table 3: Suitability of SuDS Components

5.6 Permeable paving would be suitable for use across the site. The permeable paving would be a type C lined system to provide attenuation prior to outfall to the watercourse. Permeable paving would provide treatment to the remaining hardstanding areas around the site and provide adequate treatment to mitigate against pollutants entering the watercourse.

- 5.7 Large scale SuDS devices such as swales, ponds, wetland and detention basins have been discounted on this site as they require large land take. These types of SuDS are better suited to large residential developments.
- 5.8 As such, permeable pavement is deemed the most suitable form of SUDs for the site.

6. Surface Water Drainage Strategy

6.1 In order to mitigate flood risk posed by the proposed development, adequate control measures are required to be considered. This will ensure that surface water runoff is dealt with at source and the flood risk on/off site is not increased over the lifetime of the development.

Runoff rates

- 6.2 Greenfield runoff rates have been calculated using Micro Drainage Software and applying the *Institute of Hydrology Report 124* (Marshall and Bayliss, 1994), as recommended in *CIRIA 753 'The SUDS Manual'* for calculating the greenfield runoff rates. *Calculations are included in Appendix 3.*
- 6.3 In addition, the existing brownfield runoff rates have also been calculated using a network simulation in Micro Drainage (see Table 4 below and Appendix 3).
- 6.4 The existing site has a curtilage of approximately 240m². The existing building is approximately 90m² and post development, the built footprint would be approximately 90m². Post development it is recommended that approximately 100m² permeable paving is adopted for the driveway area.

SURFACE WATER DISCHARGE RATES SUMMARY								
Impermeable Area (m ²) Discharge Rates (I/s)								
Impermeable		1 year	30 year	100 year				
Greenfield	240	0.0	0.01	0.03	0.03			
Existing Brownfield	90		1.3	3.3	4.3			
Limiting Runoff (greenfield) ¹	196		0.098	0.025	0.025			

Table 4: Runoff rates

6.5 The Oxfordshire LLFA Local Standard and Guidance for Surface Water Drainage (2018) and the Ciria SuDS manual advises that runoff rates should be limited to greenfield runoff rates or as close as possible and states the following:

'Brownfield sites are strongly encouraged to discharge at the greenfield rate wherever possible. Where proven that greenfield rates cannot be achieved the best discharge rate needs to be quantified. As a minimum, brownfield sites should reduce the discharge by 40% to account for the impacts of climate change, from the existing site runoff OR from the original un-surcharged pipe-full capacity of the existing system, whichever is the lowest.

It is understood that some guidance recommends minimum discharge rates of 5 l/s, to minimise use of small orifice openings that could be at risk of blockages. However, appropriate consideration of filtration features to remove suspended matter and suitable maintenance regimes should minimise this risk and therefore the minimum limit of 5l/s **does not** apply in Oxfordshire.'

6.6 The roof areas currently drain at an unrestricted rate into the adjacent watercourse. The existing runoff from the roof areas are therefore positively drained, consequently, a reduction in the peak rate of surface water discharge will reduce the risk of flooding locally, providing betterment compared to the existing situation.

¹ Greenfield rate scaled to post-development 'green' area of 44m²

6.7 The existing site is brownfield and currently drains unrestricted to the adjacent watercourse. It is impractical to provide large amounts of storage given the size of the site and relatively low existing runoff rates (Table 4). Therefore, an orifice plate 0.02m in diameter is recommended as a primary method of flow control. This would result in a discharge rate below 1l/s for all storms up to the 1:100+40%CC event.

Drainage Strategy

- 6.8 Runoff from the whole site, including the roofs and the hardstanding surfaces on site would be directed to a system comprising permeable pavement.
- 6.9 The proposal is to provide permeable pavement across the hardstanding/driveway area adjacent to the proposed building. The permeable paving would be required to provide 9.2m³ of storage in the subbase. The total plan area for the permeable paving is approximately 100m² and the required depth is approximately 400mm. The subbase should be laid flat to maximise storage.
- 6.10 A Microdrainage model has been constructed to demonstrate the hydraulic behaviour of the proposed drainage network, showing the site to not be flooded for all events up to and including 1:100 +40% climate change. Full details of the results can be found in Appendix III.
- 6.11 Areas of hardstanding could either be laid to direct runoff towards areas of permeable paving or directed towards the sub-base through gullies or ACO drains. If drained through ACO drains or gullies, the runoff would need to be treated prior to entering the sub-base.
- 6.12 Runoff from the roof is to be treated through sediment traps prior to outflow. This would reduce the risk of silting in the tank and blockage of the flow control device.
- 6.13 Runoff from the hardstanding surfaces (including trafficked areas) would be treated through the proposed permeable pavement. This would both filter the runoff and provide hydrocarbon treatment.
- 6.14 An orifice plate 0.02m in diameter has been used as a primary method of flow control. The invert level of the outfall has not been provided; therefore, the permeable paving has been kept as shallow as possible.
- 6.15 The client has confirmed that the existing building currently drains into the adjacent ordinary watercourse. It is proposed to reuse this outfall post-development. The connection should be agreed with the LLFA prior to construction.

Attenuation

- 6.16 Surface water attenuation is needed to temporarily store water during periods when the runoff rates from the development site exceed the infiltration rates or the allowable discharge rates from the site.
- 6.17 Rainfall depths for the 1 in 100 years return period plus 40% of CC were produced using MicroDrainage software to estimate the largest volume, critical storm, for typical storm durations. A network model has been implemented to simulate the proposed drainage network and storage devices.
- 6.18 The total attenuation storage volume required for the site is 9.2m³. The critical storm is the 180min winter event.

Design Exceedance

6.19 In the event of drainage system failure under extreme rainfall events or blockage, flooding may occur within the site. In the event of the development's drainage system failure, the runoff direction will be dictated by topography on site.

- 6.20 A topographic survey of the site has shown the levels to be relatively flat. It is recommended to lay new hardstanding to fall away from the proposed entry points into the new dwelling to reduce the risk of flooding due to overland flows.
- 6.21 It is advised that the finished floor level of the proposed building should be 150mm above external ground level to ensure that water runoff would not impact on the building in the event of drainage system failure, extreme rainfall events or blockage.

Water Quality

- 6.22 The proposal is to discharge all runoff to the watercourse. As such, it is important to provide suitable water quality treatment, at source to minimise the overall impact on the sewerage network.
- 6.23 Adequate treatment must be delivered to the surface water runoff to remove pollutants through SuDS devices, which are able to provide pollution mitigation. Pollution Hazards and the SuDS Mitigation have been indexed in the specialized literature *CIRIA 753 'The SUDS Manual'*.

POLLUTION HAZARD INDICES FOR DIFFERENT LAND USE CLASSIFICATIONS								
LAND USE	Pollution Hazard Level	Total suspended Solids (TSS)	Metals	Hydro- carbons				
Other roofs (typically commercial/industrial roofs)	Low	0.3	0.2	0.05				
Individual property driveways, residential car parks, low traffic roads (e.g cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change. i.e. <300 traffic movements/day	Low	0.5	0.4	0.4				

Table 5: Summary of Pollution hazard Indices for different Land Use

6.24 The runoff from parts of the trafficked areas of the proposed site is to be treated through permeable paving. The Mitigation Indices of the proposed SuDS techniques are summarized in Table 6 below. It can be seen the water treatment provided by the permeable pavement is sufficient to remove the pollutants.

INDICATIVE SuDS MITIGATION INDICES FOR DISCHARGES TO SURFACE WATER						
SuDS Component Total suspended Solids (TSS) Metals Hydrocarbons						
Permeable Paving	0.7	0.6	0.7			

Table 6: Indicative SuDS Mitigation Indices

6.25 Runoff from the roof hardstanding areas is considered to generally be uncontaminated. However, to prevent any potential sediment from impacting on the storage structure, sediment traps should be provided on the underground drainage at suitable locations to prevent sedimentation.

Adoption and Maintenance

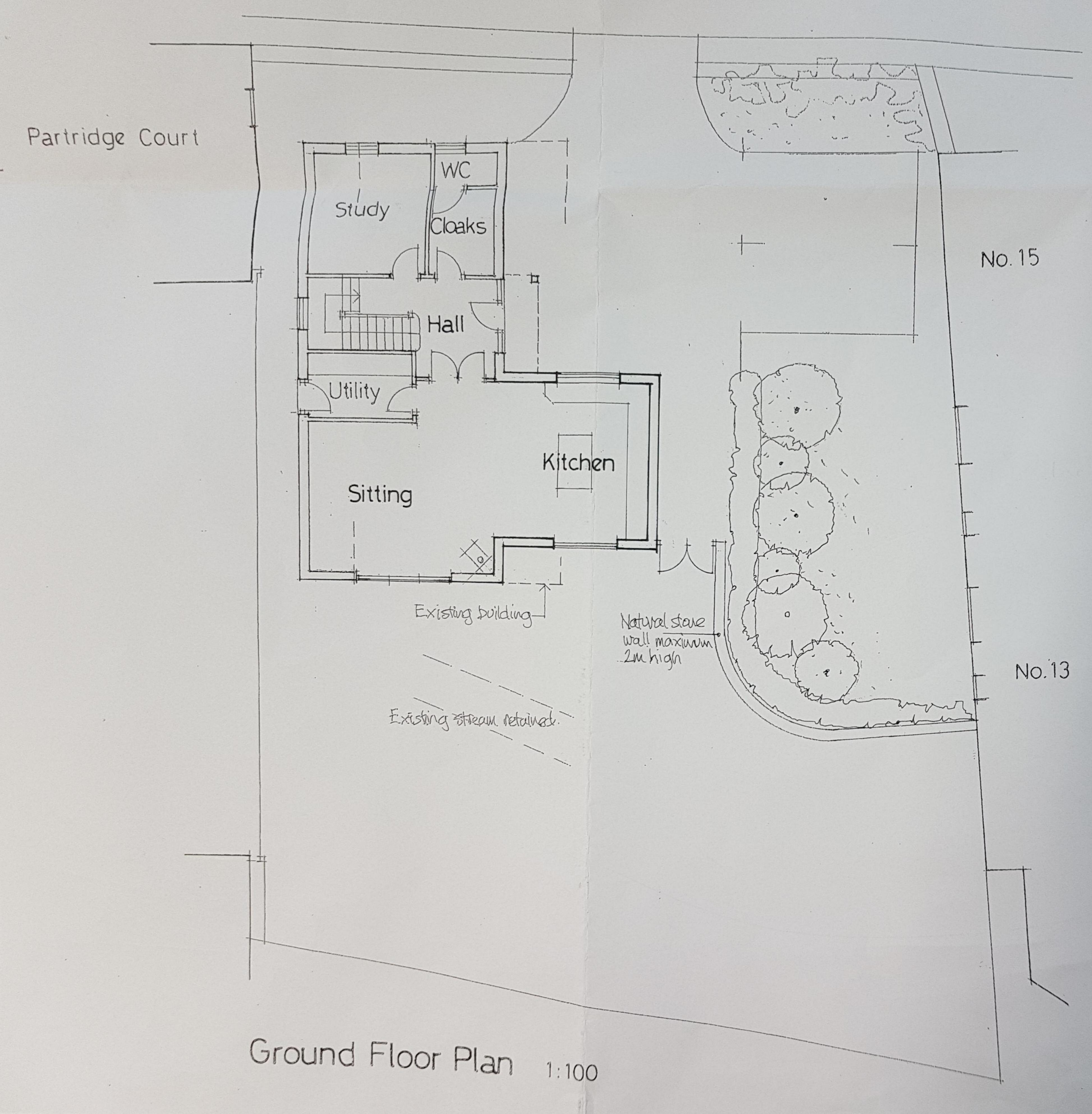
6.26 All onsite SuDS and drainage systems will be privately maintained. A long-term maintenance regime should be agreed with the site owners before occupation. In addition to a long-term maintenance regime, it is

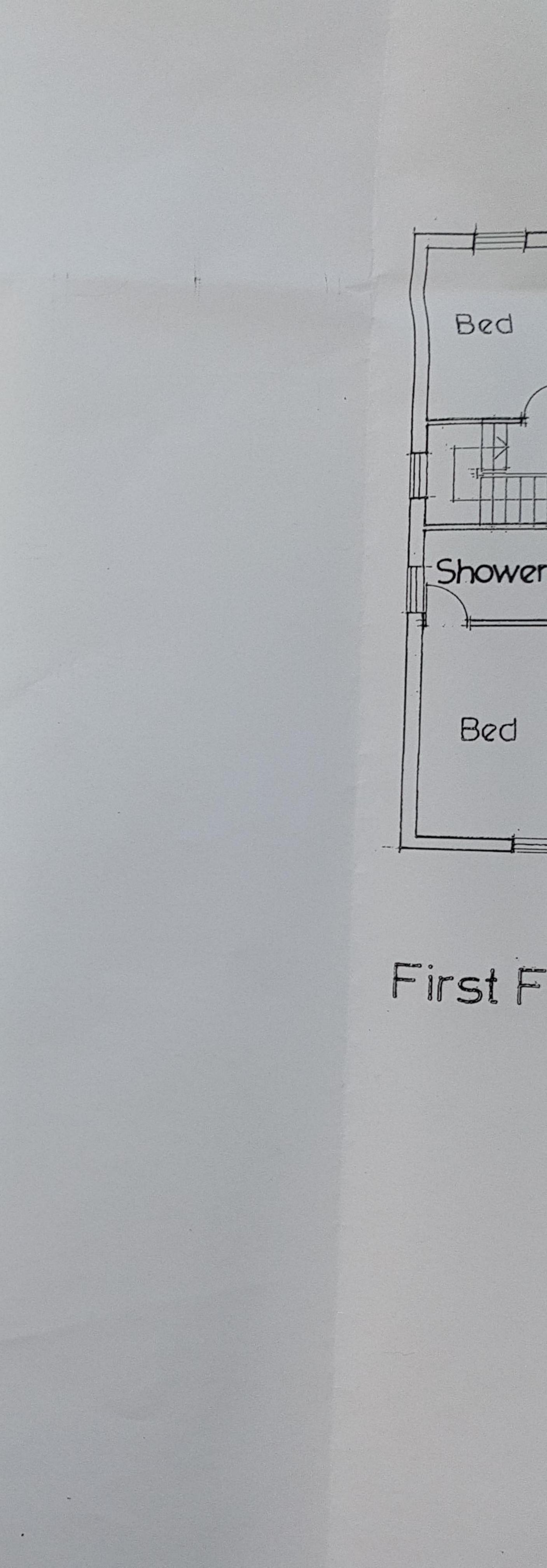
recommended that all drainage elements implemented on site should be inspected following the first rainfall event post construction and monthly for the first quarter following construction, see Appendix 4.

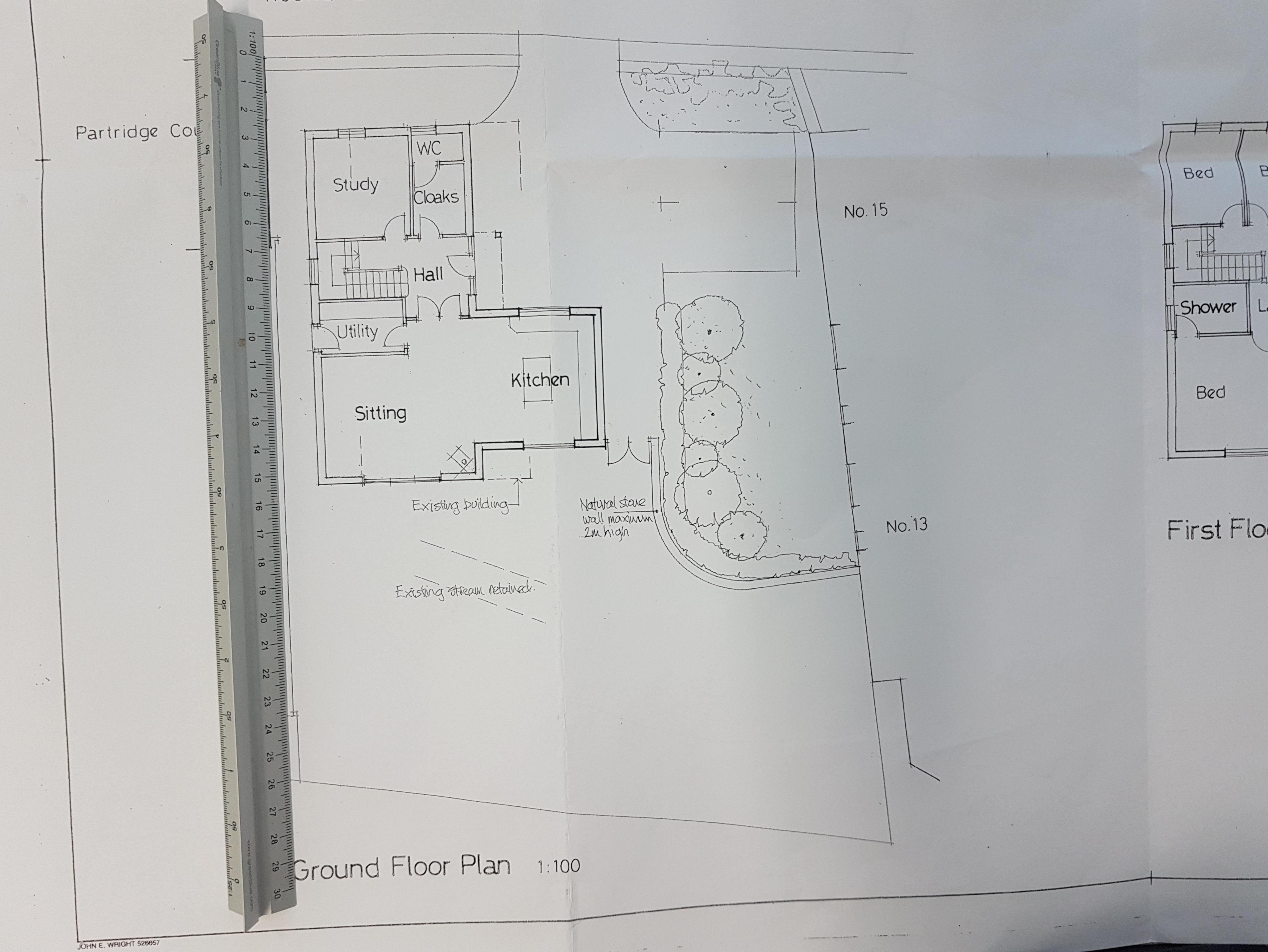
6.27 The maintenance of the proposed permeable paving is to be in accordance with manufacturer's instructions.

7. Conclusion

- 7.1 Ambiental Environmental Assessment has been appointed to undertake a National Planning Policy Framework (NPPF) compliant Flood Risk Assessment (FRA) for the proposed development at St Georges Chapel, Round Close Road, Adderbury, Banbury, OX17 3EP.
- 7.2 The site is currently a chapel. It is understood that the development is for the demolition of the existing chapel and construction of a new residential dwelling.
- 7.3 With reference to the Environment Agency (EA) Flood Map for Planning, the proposed development is located within Flood Zone 1. The proposed development is considered 'More Vulnerable' under the National Planning Policy Framework (NPPF).
- 7.4 The site has a small watercourse passing through it and the nearby town of Adderbury has experienced severe flooding in the past. Therefore, in accordance with the Cherwell District Council Adopted Local Plan 2011-2031 and the National Planning Policy Framework (NPPF), the proposed development requires a flood risk assessment to accompany its planning application.
- 7.5 The EA Flood Map for Planning data and LiDAR data indicate that the edges of Flood Zones 2 and 3 are elevated at approximately 87.8mAOD, whilst the site has an elevation between approximately 89.34mAOD and 90.08mAOD, more than 1 metre higher than the edge of the Flood Zones. Using this evidence, it can be concluded that the site is not at risk of fluvial flooding.
- 7.6 Following the SuDS drainage hierarchy, infiltration has been considered. Based on desktop geology information infiltration techniques could be viable at the site, however no site-specific ground investigations have been undertaken to determine a soakage rate or groundwater levels.
- 7.7 The next alternative option in the hierarchy above is to discharge runoff into surface waters (ditch/watercourse/waterbody). There is an adjacent ordinary water course that runs through the site and the existing building currently drains into the watercourse. Therefore, it is proposed to reuse this method of surface water runoff post-development.
- 7.8 The roof areas currently drain at an unrestricted rate into the adjacent watercourse. The existing runoff from the roof areas are therefore positively drained, consequently, a reduction in the peak rate of surface water discharge will reduce the risk of flooding locally, providing betterment compared to the existing situation.
- 7.9 The existing site is brownfield and currently drains unrestricted to the adjacent watercourse. It is impractical to provide large amounts of storage given the size of the site and relatively low existing runoff rates. Therefore, an orifice plate 0.02m in diameter has been used as a primary method of flow control. This would result in a discharge rate below 11/s for all storms up to the 1:100+40%CC event.
- 7.10 The proposal is to provide permeable across the hardstanding/driveway area adjacent to the proposed building. The permeable paving would be required to provide 9.2m³ of storage in the subbase. The total plan area for the permeable paving is approximately 100m² and the required depth is approximately 400mm. The subbase should be laid flat to maximise storage.


- 7.11 The runoff from parts of the trafficked areas of the proposed site is to be treated through permeable paving. Analysis of the Mitigation Indices of the proposed SuDS techniques shows water treatment provided by the permeable pavement is enough to remove the pollutants.
- 7.12 Runoff from the roof hardstanding areas is considered to generally be uncontaminated. However, to prevent any potential sediment from impacting on the storage structure, sediment traps should be provided on the underground drainage at suitable locations to prevent sedimentation.
- 7.13 All onsite SuDS and drainage systems will be privately maintained. A long-term maintenance regime should be agreed with the site owners before adoption. In addition to a long-term maintenance regime, it is recommended that all drainage elements implemented on site should be inspected following the first rainfall event post construction and monthly for the first quarter following construction

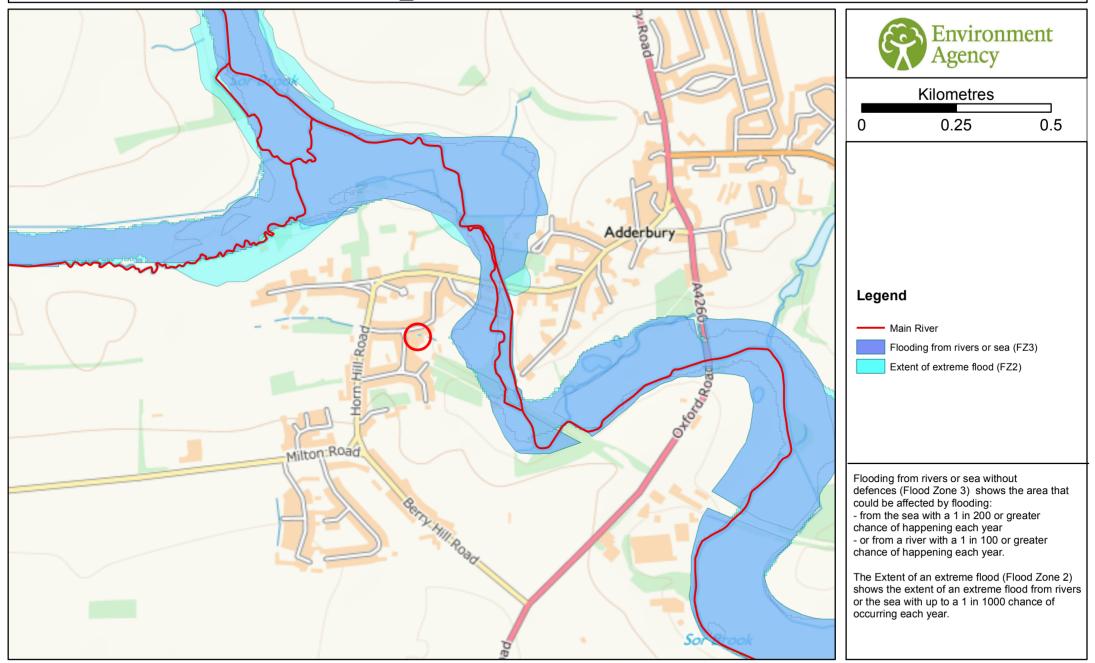

Following the guidelines contained within the NPPF, the proposed development is considered to be suitable assuming appropriate mitigation (including adequate warning procedures) can be maintained for the lifetime of the development.



Appendix I - Site Plans

Ambiental Environmental Assessment Sussex Innovation Centre, Science Park Square, Brighton, BN1 9SB

ROUND CLOSE NOAD


Reference: 4749

Appendix II - EA Data

Ambiental Environmental Assessment Sussex Innovation Centre, Science Park Square, Brighton, BN1 9SB

Flood Map for Planning centred on St Georges Chapel, Round Close Road, Adderbury Created on 01/08/2019 REF: THM_136113

Appendix III - Calculations

AEA - Ambiental		Page 1
Science Park Square	4749_Catling_Banbury	
Brighton	Greenfield 1Ha	
East Sussex		Micro
Date 13/09/2019 13:01	Designed by MC	Drainage
File	Checked by	Diamade
Innovyze	Source Control 2018.1	

ICP SUDS Mean Annual Flood

Input

Return Period (ye	ars)	100		Soil	0.150
Area	(ha)	1.000		Urban	0.000
SAAR	(mm)	700	Region	Number	Region 6

Results 1/s

QBAR Rural 0.4 QBAR Urban 0.4 Q100 years 1.3 Q1 year 0.3 Q30 years 0.9 Q100 years 1.3

AEA - Ambiental		Page 1
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Brownfield Rates	Mirro
Date 28/08/2019	Designed by SD	Drainage
File Existing.SRCX	Checked by MN	Diamage
XP Solutions	Source Control 2018.1	

Summary of Results for 1 year Return Period

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15 30 60 120 180	min min min	Summer Summer Summer Summer	99.500 99.500 99.500 99.500 99.500	0.000 0.000 0.000 0.000 0.000	1.3 1.2 0.8 0.6 0.4	0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K
480 600	min min min	Summer Summer Summer	99.500 99.500 99.500	0.000 0.000 0.000 0.000	0.4 0.3 0.2 0.2	0.0 0.0 0.0 0.0	0 K 0 K 0 K
720 960 1440 2160 2880		Summer	99.500 99.500 99.500 99.500 99.500	0.000 0.000 0.000 0.000 0.000	0.2 0.1 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K
4320 5760 7200 8640 10080 15 30	min min min min min	Summer	99.500 99.500 99.500	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0 0.0 0.0 0.0 1.3 1.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K 0 K

	Storm Event				Discharge Volume (m ³)	Time-Peak (mins)	
15	min	Summer	31.133	0.0	0.5	0	
30	min	Summer	20.212	0.0	0.7	0	
60	min	Summer	12.728	0.0	0.9	0	
120	min	Summer	7.850	0.0	1.1	0	
180	min	Summer	5.888	0.0	1.2	0	
240	min	Summer	4.795	0.0	1.3	0	
360	min	Summer	3.573	0.0	1.4	0	
480	min	Summer	2.889	0.0	1.6	0	
600	min	Summer	2.450	0.0	1.7	0	
720	min	Summer	2.141	0.0	1.7	0	
960	min	Summer	1.731	0.0	1.9	0	
1440	min	Summer	1.283	0.0	2.1	0	
2160	min	Summer	0.952	0.0	2.3	0	
2880	min	Summer	0.770	0.0	2.5	0	
4320	min	Summer	0.570	0.0	2.8	0	
5760	min	Summer	0.461	0.0	3.0	0	
7200	min	Summer	0.391	0.0	3.2	0	
8640	min	Summer	0.342	0.0	3.3	0	
10080	min	Summer	0.306	0.0	3.5	0	
15	min	Winter	31.133	0.0	0.6	0	
30	min	Winter	20.212	0.0	0.8	0	
		©l	L982-203	18 Inno	vyze		

AEA - Ambiental					
Science Park Square	4749_Catling_Banbury				
Brighton	Mr Tim Catling				
East Sussex	Brownfield Rates	Micro			
Date 28/08/2019	Designed by SD	Drainage			
File Existing.SRCX	Checked by MN	Diamage			
XP Solutions	Source Control 2018.1				

Summary of Results for 1 year Return Period

Storm Event			Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
60	min	Winter	99.500	0.000	0.7	0.0	ОК
120	min	Winter	99.500	0.000	0.4	0.0	ΟK
180	min	Winter	99.500	0.000	0.3	0.0	ΟK
240	min	Winter	99.500	0.000	0.3	0.0	ΟK
360	min	Winter	99.500	0.000	0.2	0.0	ΟK
480	min	Winter	99.500	0.000	0.2	0.0	ΟK
600	min	Winter	99.500	0.000	0.1	0.0	ОК
720	min	Winter	99.500	0.000	0.1	0.0	ΟK
960	min	Winter	99.500	0.000	0.1	0.0	ΟK
1440	min	Winter	99.500	0.000	0.1	0.0	ΟK
2160	min	Winter	99.500	0.000	0.1	0.0	ΟK
2880	min	Winter	99.500	0.000	0.0	0.0	ΟK
4320	min	Winter	99.500	0.000	0.0	0.0	ΟK
5760	min	Winter	99.500	0.000	0.0	0.0	ОК
7200	min	Winter	99.500	0.000	0.0	0.0	ΟK
8640	min	Winter	99.500	0.000	0.0	0.0	O K
10080	min	Winter	99.500	0.000	0.0	0.0	O K

	Storm Event			Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
60	min	Winter	12.728	0.0	1.0	0
120	min	Winter	7.850	0.0	1.2	0
180	min	Winter	5.888	0.0	1.3	0
240	min	Winter	4.795	0.0	1.5	0
360	min	Winter	3.573	0.0	1.6	0
480	min	Winter	2.889	0.0	1.7	0
600	min	Winter	2.450	0.0	1.9	0
720	min	Winter	2.141	0.0	1.9	0
960	min	Winter	1.731	0.0	2.1	0
1440	min	Winter	1.283	0.0	2.3	0
2160	min	Winter	0.952	0.0	2.6	0
2880	min	Winter	0.770	0.0	2.8	0
4320	min	Winter	0.570	0.0	3.1	0
5760	min	Winter	0.461	0.0	3.3	0
7200	min	Winter	0.391	0.0	3.6	0
8640	min	Winter	0.342	0.0	3.7	0
10080	min	Winter	0.306	0.0	3.9	0

AEA - Ambiental	Page 3	
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Brownfield Rates	Mirrn
Date 28/08/2019	Designed by SD	Drainage
File Existing.SRCX	Checked by MN	Diamage
XP Solutions	Source Control 2018.1	

Rainfall Details

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	1	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	19.900	Shortest Storm (mins)	15
Ratio R	0.412	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+0

Time Area Diagram

Total Area (ha) 0.009

Time	(mins)	Area
From:	To:	(ha)

0 4 0.009

AEA - Ambiental	Page 4	
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Brownfield Rates	Micro
Date 28/08/2019	Designed by SD	Drainage
File Existing.SRCX	Checked by MN	Diamage
XP Solutions	Source Control 2018.1	

Model Details

Storage is Online Cover Level (m) 99.900

Pipe Structure

Diameter (m) 0.150 Length (m) 5.000 Slope (1:X) 80.000 Invert Level (m) 99.500

Pipe Outflow Control

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 80.0 Coefficient of Contraction 0.600 Length (m) 5.000 Upstream Invert Level (m) 99.370 Roughness k (mm) 0.600

AEA - Ambiental							
Science Park Square			474	9_Catl	ling_Bar	nbury	
Brighton			Mr '	Tim Ca	atling		
East Sussex			Bro	wnfiel	ld Rates	3	
Date 28/08/2019			Des	ianed	by SD		
				-	-		
File Existing.SRCX				cked k			
XP Solutions			Sou	rce Co	ontrol 2	2018.1	
Sum	mary of	Resul	ts f	or 30	year Re	eturn	Period
	Storm		Max	Max	Max	Max	Status
	Event	I	evel	Depth	Control	Volume	
			(m)	(m)	(l/s)	(m³)	
	15 min Su	ummer 9	9.500	0.000	3.3	0.0	ОК
	30 min Su						
	60 min Su	ummer 9	9.500	0.000	2.0	0.0	ОК
1	20 min Su	ummer 9	9.500	0.000	1.3	0.0	ОК
1	30 min Su	ummer 9	9.500	0.000	1.0	0.0	ОК
2	40 min Su	ummer 9	9.500	0.000	0.8	0.0	ОК
3	60 min Su	ummer 9	9.500	0.000	0.6	0.0	ОК
4	80 min Su	ummer 9	9.500	0.000	0.5	0.0	ΟK
6	00 min Su	ummer 9	9.500	0.000	0.4	0.0	ОК
7	20 min Su	ummer 9	9.500	0.000	0.3	0.0	ΟK
9	60 min Su	ummer 9	9.500	0.000	0.3	0.0	ΟK
14	40 min Su	ummer 9	9.500	0.000	0.2	0.0	ΟK
21	60 min Su	ummer 9	9.500	0.000	0.1	0.0	ΟK
28	30 min Su	ummer 9	9.500	0.000	0.1	0.0	ОК
43	20 min Su	ummer 9	9.500	0.000	0.1	0.0	ΟK
57	60 min Su	ummer 9	9.500	0.000	0.1	0.0	ΟK
72	00 min Su	ummer 9	9.500	0.000	0.1	0.0	ΟK
86	40 min Su	ummer 9	9.500	0.000	0.0	0.0	ОК
		mmor 9	9.500	0.000	0.0	0.0	ОК
100	30 min Su	uuuer J					
	80 min Su 15 min Wi		9.500	0.000	3.3	0.0	ОК

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	76.391	0.0	1.3	0	
30	min	Summer	49.493	0.0	1.7	0	
60	min	Summer	30.654	0.0	2.1	0	
120	min	Summer	18.432	0.0	2.5	0	
180	min	Summer	13.548	0.0	2.7	0	
240	min	Summer	10.844	0.0	2.9	0	
360	min	Summer	7.900	0.0	3.2	0	
480	min	Summer	6.308	0.0	3.4	0	
600	min	Summer	5.295	0.0	3.6	0	
720	min	Summer	4.588	0.0	3.7	0	
960	min	Summer	3.657	0.0	3.9	0	
1440	min	Summer	2.654	0.0	4.3	0	
2160	min	Summer	1.923	0.0	4.7	0	
2880	min	Summer	1.530	0.0	5.0	0	
4320	min	Summer	1.107	0.0	5.4	0	
			0.879	0.0	5.7	0	
		Summer	0.735	0.0	6.0	0	
			0.635	0.0	6.2	0	
			0.561	0.0	6.4	0	
		Winter		0.0	1.4	0	
30	min	Winter	49.493	0.0	1.9	0	
		©	L982-203	18 Inno	vyze		

AEA - Ambiental	Page 2						
Science Park Square	4749_Catling_Banbury						
Brighton	Mr Tim Catling						
East Sussex	Brownfield Rates	Mirro					
Date 28/08/2019	Designed by SD	Drainage					
File Existing.SRCX	Checked by MN	Diamage					
XP Solutions	Source Control 2018.1						
Summary of Results for 30 year Return Period							

Storm			Max	Max	Max	Max	Status
Event			Level	Depth	Control	Volume	
			(m)	(m)	(l/s)	(m³)	
60	min	Winter	99.500	0.000	1.6	0.0	ОК
120		Winter		0.000	1.0	0.0	0 K
180		Winter		0.000	0.7	0.0	ΟK
240	min	Winter	99.500	0.000	0.6	0.0	ОК
360	min	Winter	99.500	0.000	0.4	0.0	ОК
480	min	Winter	99.500	0.000	0.3	0.0	ΟK
600	min	Winter	99.500	0.000	0.3	0.0	ΟK
720	min	Winter	99.500	0.000	0.2	0.0	ΟK
960	min	Winter	99.500	0.000	0.2	0.0	ΟK
1440	min	Winter	99.500	0.000	0.1	0.0	ΟK
2160	min	Winter	99.500	0.000	0.1	0.0	ΟK
2880	min	Winter	99.500	0.000	0.1	0.0	ΟK
4320	min	Winter	99.500	0.000	0.1	0.0	ΟK
5760	min	Winter	99.500	0.000	0.0	0.0	ΟK
7200	min	Winter	99.500	0.000	0.0	0.0	ΟK
8640	min	Winter	99.500	0.000	0.0	0.0	ΟK
10080	min	Winter	99.500	0.000	0.0	0.0	ΟK

Storm Event			Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
60	min	Winter	30.654	0.0	2.3	0
120	min	Winter	18.432	0.0	2.8	0
180	min	Winter	13.548	0.0	3.1	0
240	min	Winter	10.844	0.0	3.3	0
360	min	Winter	7.900	0.0	3.6	0
480	min	Winter	6.308	0.0	3.8	0
600	min	Winter	5.295	0.0	4.0	0
720	min	Winter	4.588	0.0	4.2	0
960	min	Winter	3.657	0.0	4.4	0
1440	min	Winter	2.654	0.0	4.8	0
2160	min	Winter	1.923	0.0	5.2	0
2880	min	Winter	1.530	0.0	5.6	0
4320	min	Winter	1.107	0.0	6.0	0
5760	min	Winter	0.879	0.0	6.4	0
7200	min	Winter	0.735	0.0	6.7	0
8640	min	Winter	0.635	0.0	6.9	0
10080	min	Winter	0.561	0.0	7.1	0

AEA - Ambiental		Page 3
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Brownfield Rates	Mirro
Date 28/08/2019	Designed by SD	Drainage
File Existing.SRCX	Checked by MN	Diamage
XP Solutions	Source Control 2018.1	•

Rainfall Details

FSR	Winter Storms	Yes
30	Cv (Summer)	0.750
England and Wales	Cv (Winter)	0.840
19.900	Shortest Storm (mins)	15
0.412	Longest Storm (mins)	10080
Yes	Climate Change %	+0
	30 England and Wales 19.900 0.412	30Cv (Summer)England and WalesCv (Winter)19.900Shortest Storm (mins)0.412Longest Storm (mins)

Time Area Diagram

Total Area (ha) 0.009

Time	(mins)	Area
From:	To:	(ha)

AEA - Ambiental		Page 4
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Brownfield Rates	Micro
Date 28/08/2019	Designed by SD	Drainage
File Existing.SRCX	Checked by MN	Diamage
XP Solutions	Source Control 2018.1	

Storage is Online Cover Level (m) 99.900

Pipe Structure

Diameter (m) 0.150 Length (m) 5.000 Slope (1:X) 80.000 Invert Level (m) 99.500

Pipe Outflow Control

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 80.0 Coefficient of Contraction 0.600 Length (m) 5.000 Upstream Invert Level (m) 99.370 Roughness k (mm) 0.600

	AEA - Ambienta	1								Page 1
East Sussex Brownfield Rates Date 28/08/2019 Designed by SD File Existing.SRCX Checked by MN XP Solutions Source Control 2018.1 Summary of Results for 100 year Return Period Storm Max Max Max Status Event Level Depth Control Volume (m) (l/s) (m³) 15 min Summer 99.500 0.000 4.3 0.0 0 K 30 min Summer 99.500 0.000 2.7 0.0 0 K 120 min Summer 99.500 0.000 1.3 0.0 0 K 360 min Summer 99.500 0.000 1.3 0.0 0 K 360 min Summer 99.500 0.000 1.0 0.0 K 360 min Summer 99.500 0.000 0.6 0.0 K 360 min Summer 99.500 0.000 0.4 0.0 K 90 min Summer 99.500 0.000 0.3 0.0 K 360 min Summer 99.500 0.000 0.4 0.0 K 360 min Summer 99.500 0.0	Science Park Square			474	9_Catl	ing_Bar	nbury			
Date 28/08/2019 Designed by SD Checked by MN File Existing.SRCX Source Control 2018.1 Summary of Results for 100 year Return Period Storm Max Max Max Status Event Level Depth Control Volume (m) One of the status Status 15 min Summer 99.500 0.000 4.3 0.0 0 K 30 min Summer 99.500 0.000 2.7 0.0 0 K 120 min Summer 99.500 0.000 1.7 0.0 0 K 180 min Summer 99.500 0.000 1.3 0.0 0 K 360 min Summer 99.500 0.000 1.3 0.0 0 K 360 min Summer 99.500 0.000 0.6 0.0 K 400 min Summer 99.500 0.000 0.6 0.0 K 600 min Summer 99.500 0.000 0.4 0.0 K 600 min Summer 99.500 0.000 0.4 0.0 K 600 min Summer 99.500 0.000 0.4 0.0 K 600 min Summer 99.500 0.00	Brighton				Mr '	rim Ca	tling			
Date 28/08/2019 Designed by SD Checked by MN File Existing.SRCX Source Control 2018.1 Summary of Results for 100 year Return Period Storm Max Max Max Status Event Level Depth Control Volume (m) One of the status Status 15 min Summer 99.500 0.000 4.3 0.0 0 K 30 min Summer 99.500 0.000 2.7 0.0 0 K 120 min Summer 99.500 0.000 1.7 0.0 0 K 180 min Summer 99.500 0.000 1.3 0.0 0 K 360 min Summer 99.500 0.000 1.3 0.0 0 K 360 min Summer 99.500 0.000 0.6 0.0 K 400 min Summer 99.500 0.000 0.6 0.0 K 600 min Summer 99.500 0.000 0.4 0.0 K 600 min Summer 99.500 0.000 0.4 0.0 K 600 min Summer 99.500 0.000 0.4 0.0 K 600 min Summer 99.500 0.00	East Sussex				Broy	wnfiel	d Rates	3		Micco
File Existing.SRCX Checked by MN XP Solutions Source Control 2018.1 Summary of Results for 100 year Return Period Storm Max Max Max Max Status Event Max Max Max Status 15 min Summer 99.500 0.000 4.3 0.0 0 K 30 min Summer 99.500 0.000 3.7 0.0 0 K 10 min Summer 99.500 0.000 1.7 0.0 0 K 180 min Summer 99.500 0.000 1.3 0.0 0 K 360 min Summer 99.500 0.000 0.6 0.0 0 K 480 min Summer 99.500 0.000 0.6 0.0 0 K 200 min Summer 99.500 0.000 0.4 0.0 0 K 300 min Summer 99.500 0.000 0.4 0.0		9			-	-				
Source Control 2018.1 Summary of Results for 100 year Return Period Storm Max Max Max Max Status Event Level Depth Control Volume (m) Onlood 4.3 0.0 0 K 30 min Summer 99.500 0.000 4.3 0.0 0 K 30 min Summer 99.500 0.000 2.7 0.0 0 K 120 min Summer 99.500 0.000 1.7 0.0 0 K 180 min Summer 99.500 0.000 1.3 0.0 0 K 360 min Summer 99.500 0.000 1.3 0.0 0 K 360 min Summer 99.500 0.000 0.6 0.0 0 K 360 min Summer 99.500 0.000 0.6 0.0 0 K 480 min Summer 99.500 0.000 0.4 0.0 0 K 720 min Summer 99.500 0.000 0.4 0.0 0 K 960 min Summer 99.500 0.000 0.4 0.0 0 K 960 min Summer 99.500 0.000 0.4 0.0 K <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>Drair</td>						-	-			Drair
Summary of Results for 100 year Return Period Storm Max Max Max Max Status Event Level Depth Control Volume (m) (l/s) (m³) 15 15 min Summer 99.500 0.000 4.3 0.0 0 30 min Summer 99.500 0.000 3.7 0.0 0 K 60 min Summer 99.500 0.000 1.7 0.0 0 K 120 min Summer 99.500 0.000 1.3 0.0 0 K 240 min Summer 99.500 0.000 1.0 0.0 K 360 min Summer 99.500 0.000 0.8 0.0 K 480 min Summer 99.500 0.000 0.5 0.0 K 600 min Summer 99.500 0.000 0.4 0.0 K 90 min Summer 99.500 0.000	=	SRCX					-			
Storm Event Max Level (m) Max Depth (m) Max Control (1/s) Max Volume (m ³) Max Status 15 min Summer (m) 15 min Summer (m) 99.500 0.000 4.3 0.0 0 30 min Summer (m) 99.500 0.000 3.7 0.0 0 K 10 min Summer (m) 99.500 0.000 1.7 0.0 0 K 120 min Summer (m) 99.500 0.000 1.3 0.0 0 K 180 min Summer (m) 99.500 0.000 1.0 0.0 0 K 240 min Summer (m) 99.500 0.000 1.0 0.0 K 360 min Summer (m) 99.500 0.000 0.8 0.0 0 360 min Summer (m) 99.500 0.000 0.5 0.0 0 K 480 min Summer (m) 99.500 0.000 0.4 0.0 K 720 min Summer (m) 99.500 0.000 0.3 0.0 K 960 min Summer (m) 99.500 <t< td=""><td>XP Solutions</td><td></td><td></td><td></td><td>Sou</td><td>rce Co</td><td>ontrol 2</td><td>2018.1</td><td></td><td></td></t<>	XP Solutions				Sou	rce Co	ontrol 2	2018.1		
EventLevel (m)Depth (m)Control (l/s)Volume (m³)15minSummer99.5000.0004.30.00K30minSummer99.5000.0003.70.00K60minSummer99.5000.0002.70.00K120minSummer99.5000.0001.70.00K180minSummer99.5000.0001.30.00K240minSummer99.5000.0000.80.00K360minSummer99.5000.0000.60.0KK720minSummer99.5000.0000.40.00K960minSummer99.5000.0000.30.0KK960minSummer99.5000.0000.20.0KK1440minSummer99.5000.0000.20.0KK280minSummer99.5000.0000.10.0KK			_							
(m)(m) $(1/s)$ (m^3) 15minSummer99.5000.0004.30.00K30minSummer99.5000.0003.70.00K60minSummer99.5000.0002.70.00K120minSummer99.5000.0001.70.00K180minSummer99.5000.0001.30.00K240minSummer99.5000.0001.00.00K360minSummer99.5000.0000.80.00K360minSummer99.5000.0000.50.00K360minSummer99.5000.0000.50.00K90minSummer99.5000.0000.30.0K960minSummer99.5000.0000.20.0K1440minSummer99.5000.0000.20.0K280minSummer99.5000.0000.10.0K										
30 min Summer 99.500 0.000 3.7 0.0 0 K 60 min Summer 99.500 0.000 2.7 0.0 0 K 120 min Summer 99.500 0.000 1.7 0.0 0 K 180 min Summer 99.500 0.000 1.3 0.0 0 K 240 min Summer 99.500 0.000 1.0 0.0 0 K 360 min Summer 99.500 0.000 0.8 0.0 0 K 360 min Summer 99.500 0.000 0.6 0.0 0 K 480 min Summer 99.500 0.000 0.6 0.0 0 K 600 min Summer 99.500 0.000 0.5 0.0 0 K 720 min Summer 99.500 0.000 0.4 0.0 0 K 960 min Summer 99.500 0.000 0.3 0.0 0 K 1440 min Summer 99.500 0.000 0.2 0.0 0 K 2160 min Summer 99.500 0.000 0.2 0.0 0 K 2880 min Summer 99.500 0.000 0.1 0.0 0 K			-			-				
60 min Summer99.5000.0002.70.00 K120 min Summer99.5000.0001.70.00 K180 min Summer99.5000.0001.30.00 K240 min Summer99.5000.0001.00.00 K360 min Summer99.5000.0000.80.00 K480 min Summer99.5000.0000.60.00 K600 min Summer99.5000.0000.50.00 K720 min Summer99.5000.0000.30.00 K960 min Summer99.5000.0000.20.00 K1440 min Summer99.5000.0000.20.00 K2160 min Summer99.5000.0000.20.00 K2880 min Summer99.5000.0000.10.00 K		15	min	Summer	99.500	0.000	4.3	0.0	ΟK	
120 min Summer99.5000.0001.70.00 K180 min Summer99.5000.0001.30.00 K240 min Summer99.5000.0001.00.00 K360 min Summer99.5000.0000.80.00 K480 min Summer99.5000.0000.60.00 K600 min Summer99.5000.0000.50.00 K720 min Summer99.5000.0000.30.00 K960 min Summer99.5000.0000.30.00 K1440 min Summer99.5000.0000.20.00 K2160 min Summer99.5000.0000.20.00 K2880 min Summer99.5000.0000.10.00 K		30	min	Summer	99.500	0.000	3.7	0.0	ОК	
180 min Summer99.5000.0001.30.00 K240 min Summer99.5000.0001.00.00 K360 min Summer99.5000.0000.80.00 K480 min Summer99.5000.0000.60.00 K600 min Summer99.5000.0000.50.00 K720 min Summer99.5000.0000.40.00 K960 min Summer99.5000.0000.30.00 K1440 min Summer99.5000.0000.20.00 K2160 min Summer99.5000.0000.20.00 K2880 min Summer99.5000.0000.10.00 K		60	min	Summer	99.500	0.000	2.7	0.0	ΟK	
240 min Summer 99.500 0.0001.00.00 K360 min Summer 99.500 0.0000.80.00 K480 min Summer 99.500 0.0000.60.00 K600 min Summer 99.500 0.0000.50.00 K720 min Summer 99.500 0.0000.40.00 K960 min Summer 99.500 0.0000.30.00 K1440 min Summer 99.500 0.0000.20.00 K2160 min Summer 99.500 0.0000.20.00 K2880 min Summer 99.500 0.0000.10.00 K		120	min	Summer	99.500	0.000	1.7	0.0	ΟK	
360 min Summer99.5000.0000.80.00K480 min Summer99.5000.0000.60.00K600 min Summer99.5000.0000.50.00K720 min Summer99.5000.0000.40.00K960 min Summer99.5000.0000.30.00K1440 min Summer99.5000.0000.20.00K2160 min Summer99.5000.0000.20.00K2880 min Summer99.5000.0000.10.00K		180	min	Summer	99.500	0.000	1.3	0.0	O K	
480 min Summer99.5000.0000.60.00 K600 min Summer99.5000.0000.50.00 K720 min Summer99.5000.0000.40.00 K960 min Summer99.5000.0000.30.00 K1440 min Summer99.5000.0000.20.00 K2160 min Summer99.5000.0000.20.00 K2880 min Summer99.5000.0000.10.00 K		240	min	Summer	99.500	0.000	1.0	0.0	O K	
600 min Summer99.5000.0000.50.00 K720 min Summer99.5000.0000.40.00 K960 min Summer99.5000.0000.30.00 K1440 min Summer99.5000.0000.20.00 K2160 min Summer99.5000.0000.20.00 K2880 min Summer99.5000.0000.10.00 K		360	min	Summer	99.500	0.000	0.8	0.0	O K	
720 min Summer99.5000.0000.40.0OK960 min Summer99.5000.0000.30.0OK1440 min Summer99.5000.0000.20.0OK2160 min Summer99.5000.0000.20.0OK2880 min Summer99.5000.0000.10.0OK		480	min	Summer	99.500	0.000	0.6	0.0	O K	
960 min Summer99.5000.0000.30.00 K1440 min Summer99.5000.0000.20.00 K2160 min Summer99.5000.0000.20.00 K2880 min Summer99.5000.0000.10.00 K		600	min	Summer	99.500	0.000	0.5	0.0	O K	
1440 min Summer99.5000.0000.20.0OK2160 min Summer99.5000.0000.20.0OK2880 min Summer99.5000.0000.10.0OK		720	min	Summer	99.500	0.000	0.4	0.0	0 K	
2160 min Summer 99.500 0.000 0.2 0.0 O K 2880 min Summer 99.500 0.000 0.1 0.0 O K		960	min	Summer	99.500	0.000	0.3	0.0	0 K	
2880 min Summer 99.500 0.000 0.1 0.0 O K		1440	min	Summer	99.500	0.000	0.2	0.0	O K	
		2160	min	Summer	99.500	0.000	0.2	0.0	O K	
4320 min Summer 99.500 0.000 0.1 0.0 O K										
		4320	min	Summer	99.500	0.000	0.1	0.0	O K	

5760 min Summer 99.500 0.000

7200 min Summer 99.500 0.000

8640 min Summer 99.500 0.000

15 min Winter 99.500 0.000

30 min Winter 99.500 0.000

10080 min Summer 99.500 0.000

	Stor Even		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	99.159	0.0	1.7	0
30	min	Summer	64.782	0.0	2.2	0
60	min	Summer	40.301	0.0	2.7	0
120	min	Summer	24.226	0.0	3.3	0
180	min	Summer	17.754	0.0	3.6	0
240	min	Summer	14.159	0.0	3.8	0
360	min	Summer	10.253	0.0	4.2	0
480	min	Summer	8.157	0.0	4.4	0
600	min	Summer	6.825	0.0	4.6	0
720	min	Summer	5.898	0.0	4.8	0
960	min	Summer	4.681	0.0	5.1	0
1440	min	Summer	3.375	0.0	5.5	0
2160	min	Summer	2.429	0.0	5.9	0
2880	min	Summer	1.922	0.0	6.2	0
4320	min	Summer	1.380	0.0	6.7	0
5760	min	Summer	1.090	0.0	7.1	0
7200	min	Summer	0.907	0.0	7.3	0
8640	min	Summer	0.780	0.0	7.6	0
10080	min	Summer	0.687	0.0	7.8	0
15	min	Winter	99.159	0.0	1.9	0
30	min	Winter	64.782	0.0	2.4	0
		©	1982-20	18 Inno	vyze	

0.0

0.0

0.0

0.0

0.0

0.0

ΟK

ΟK

0 K 0 K

ΟΚ

ΟK

0.1

0.1

0.1

0.1

4.3

3.2

AEA - Ambiental		Page 2
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Brownfield Rates	Mirro
Date 28/08/2019	Designed by SD	Drainage
File Existing.SRCX	Checked by MN	Diamage
XP Solutions	Source Control 2018.1	
Summary of Result	s for 100 year Return Period	

	Storm		Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
60	min	Winter	99.500	0.000	2.1	0.0	ОК
120	min	Winter	99.500	0.000	1.3	0.0	ОК
180	min	Winter	99.500	0.000	0.9	0.0	ΟK
240	min	Winter	99.500	0.000	0.8	0.0	ΟK
360	min	Winter	99.500	0.000	0.5	0.0	ΟK
480	min	Winter	99.500	0.000	0.4	0.0	ΟK
600	min	Winter	99.500	0.000	0.4	0.0	ΟK
720	min	Winter	99.500	0.000	0.3	0.0	ΟK
960	min	Winter	99.500	0.000	0.2	0.0	ΟK
1440	min	Winter	99.500	0.000	0.2	0.0	ΟK
2160	min	Winter	99.500	0.000	0.1	0.0	ΟK
2880	min	Winter	99.500	0.000	0.1	0.0	ΟK
4320	min	Winter	99.500	0.000	0.1	0.0	ΟK
5760	min	Winter	99.500	0.000	0.1	0.0	ΟK
7200	min	Winter	99.500	0.000	0.0	0.0	ΟK
8640	min	Winter	99.500	0.000	0.0	0.0	ΟK
10080	min	Winter	99.500	0.000	0.0	0.0	ΟK

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
60	min	Winter	40.301	0.0	3.0	0
120	min	Winter	24.226	0.0	3.7	0
180	min	Winter	17.754	0.0	4.0	0
240	min	Winter	14.159	0.0	4.3	0
360	min	Winter	10.253	0.0	4.7	0
480	min	Winter	8.157	0.0	4.9	0
600	min	Winter	6.825	0.0	5.2	0
720	min	Winter	5.898	0.0	5.4	0
960	min	Winter	4.681	0.0	5.7	0
1440	min	Winter	3.375	0.0	6.1	0
2160	min	Winter	2.429	0.0	6.6	0
2880	min	Winter	1.922	0.0	7.0	0
4320	min	Winter	1.380	0.0	7.5	0
5760	min	Winter	1.090	0.0	7.9	0
7200	min	Winter	0.907	0.0	8.2	0
8640	min	Winter	0.780	0.0	8.5	0
10080	min	Winter	0.687	0.0	8.7	0

©1982-2018 Innovyze

AEA - Ambiental		Page 3
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Brownfield Rates	Mirro
Date 28/08/2019	Designed by SD	Drainage
File Existing.SRCX	Checked by MN	Diamage
XP Solutions	Source Control 2018.1	•

Rainfall Details

FSR	Winter Storms	Yes
100	Cv (Summer)	0.750
England and Wales	Cv (Winter)	0.840
19.900	Shortest Storm (mins)	15
0.412	Longest Storm (mins)	10080
Yes	Climate Change %	+0
	100 England and Wales 19.900 0.412	100Cv (Summer)England and WalesCv (Winter)19.900Shortest Storm (mins)0.412Longest Storm (mins)

Time Area Diagram

Total Area (ha) 0.009

Time	(mins)	Area
From:	To:	(ha)

AEA - Ambiental		Page 4
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Brownfield Rates	Micro
Date 28/08/2019	Designed by SD	Drainage
File Existing.SRCX	Checked by MN	Diamage
XP Solutions	Source Control 2018.1	

Storage is Online Cover Level (m) 99.900

Pipe Structure

Diameter (m) 0.150 Length (m) 5.000 Slope (1:X) 80.000 Invert Level (m) 99.500

Pipe Outflow Control

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 80.0 Coefficient of Contraction 0.600 Length (m) 5.000 Upstream Invert Level (m) 99.370 Roughness k (mm) 0.600

AEA - Ambiental							Page 1
Science Park Square			4749_Catli	ng_Banb	ury		
Brighton			Mr Tim Cat	ling			
East Sussex			Proposed C	alculat	ions		Micco
Date 28/08/2019			Designed b				- Micro
File Proposed MC.SRC	v		Checked by	-			Drainac
—	Δ		-		10.1		-
Innovyze			Source Con	trol 20	18.1		
_							
Summary	of Rea	sults	<u>for 1 year</u>	Return	Period (+40%)	
	Н	ali Dra	ain Time : 119) minutes	•		
Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15 min Summer	99.406	0.036	0.0	0.1	0.1	1.1	ОК
30 min Summer	99.419	0.049	0.0	0.2		1.5	ОК
60 min Summer	99.431	0.061	0.0	0.2	0.2	1.8	ОК
120 min Summer	99.439	0.069	0.0	0.2			ОК
180 min Summer	99.443	0.073	0.0	0.2	0.2	2.2	ОК
240 min Summer	99.445	0.075	0.0	0.2	0.2	2.3	0 K
360 min Summer	99.446	0.076	0.0	0.2	0.2	2.3	0 K
480 min Summer	99.445	0.075	0.0	0.2	0.2	2.2	0 K
600 min Summer	99.443	0.073	0.0	0.2	0.2	2.2	0 K
720 min Summer	99.440	0.070	0.0	0.2	0.2	2.1	O K
960 min Summer	99.435	0.065	0.0	0.2	0.2	1.9	O K
1440 min Summer	99.425	0.055	0.0	0.2	0.2	1.7	O K
2160 min Summer	99.415	0.045	0.0	0.2	0.2	1.3	ОК
2880 min Summer	99.408	0.038	0.0	0.1	0.1	1.1	O K
4320 min Summer	99.399	0.029	0.0	0.1	0.1	0.9	ΟK
5760 min Summer	99.395	0.025	0.0	0.1	0.1	0.8	O K
7200 min Summer	99.393	0.023	0.0	0.1	0.1	0.7	O K
8640 min Summer	99 391	0 021	0 0	0 1	0 1	06	ΟK

8640 min Summer 99.391 0.021

15 min Winter 99.412 0.042

10080 min Summer 99.390 0.020

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	43.587	0.0	1.1	18
30	min	Summer	28.297	0.0	1.6	32
60	min	Summer	17.819	0.0	2.1	60
120	min	Summer	10.990	0.0	2.7	98
180	min	Summer	8.243	0.0	3.1	130
240	min	Summer	6.713	0.0	3.5	164
360	min	Summer	5.002	0.0	3.9	232
480	min	Summer	4.045	0.0	4.2	300
600	min	Summer	3.430	0.0	4.5	366
720	min	Summer	2.998	0.0	4.7	432
960	min	Summer	2.424	0.0	5.1	560
1440	min	Summer	1.797	0.0	5.6	808
2160	min	Summer	1.333	0.0	6.2	1168
2880	min	Summer	1.078	0.0	6.6	1528
4320	min	Summer	0.799	0.0	7.2	2208
5760	min	Summer	0.646	0.0	7.6	2944
7200	min	Summer	0.548	0.0	7.8	3680
8640	min	Summer	0.479	0.0	8.0	4408
10080	min	Summer	0.428	0.0	8.2	5136
15	min	Winter	43.587	0.0	1.3	18
		©	L982-20	18 Inno	vyze	

0.0 0.1 0.0 0.1

0.1

0.0

0.1 0.6 ОК

0.1

0.1 0.6 ОК

1.3 ОК

AEA - Ambiental		Page 2
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Proposed Calculations	Micro
Date 28/08/2019	Designed by MC	Drainage
File Proposed_MC.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	

Summary of Results for 1 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
30	min N	Winter	99.427	0.057	0.0	0.2	0.2	1.7	ΟK
60	min N	Winter	99.441	0.071	0.0	0.2	0.2	2.1	ОК
120	min N	Winter	99.449	0.079	0.0	0.2	0.2	2.4	ОК
180	min N	Winter	99.453	0.083	0.0	0.2	0.2	2.5	ОК
240	min N	Winter	99.454	0.084	0.0	0.2	0.2	2.5	ОК
360	min N	Winter	99.453	0.083	0.0	0.2	0.2	2.5	ОК
480	min N	Winter	99.449	0.079	0.0	0.2	0.2	2.4	ОК
600	min N	Winter	99.445	0.075	0.0	0.2	0.2	2.2	ОК
720	min N	Winter	99.441	0.071	0.0	0.2	0.2	2.1	ОК
960	min N	Winter	99.432	0.062	0.0	0.2	0.2	1.9	ОК
1440	min N	Winter	99.420	0.050	0.0	0.2	0.2	1.5	ОК
2160	min N	Winter	99.407	0.037	0.0	0.1	0.1	1.1	ОК
2880	min N	Winter	99.400	0.030	0.0	0.1	0.1	0.9	ОК
4320	min N	Winter	99.394	0.024	0.0	0.1	0.1	0.7	ОК
5760	min N	Winter	99.391	0.021	0.0	0.1	0.1	0.6	ОК
7200	min N	Winter	99.389	0.019	0.0	0.1	0.1	0.6	ОК
8640	min N	Winter	99.387	0.017	0.0	0.1	0.1	0.5	ΟK
10080	min N	Winter	99.386	0.016	0.0	0.0	0.0	0.5	ΟK

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m ³)	Time-Peak (mins)
30	min	Winter	28.297	0.0	1.8	32
60	min	Winter	17.819	0.0	2.5	60
120	min	Winter	10.990	0.0	3.1	110
180	min	Winter	8.243	0.0	3.6	138
240	min	Winter	6.713	0.0	3.9	176
360	min	Winter	5.002	0.0	4.4	252
480	min	Winter	4.045	0.0	4.8	322
600	min	Winter	3.430	0.0	5.1	392
720	min	Winter	2.998	0.0	5.4	458
960	min	Winter	2.424	0.0	5.8	588
1440	min	Winter	1.797	0.0	6.4	836
2160	min	Winter	1.333	0.0	7.1	1192
2880	min	Winter	1.078	0.0	7.6	1532
4320	min	Winter	0.799	0.0	8.2	2220
5760	min	Winter	0.646	0.0	8.7	3000
7200	min	Winter	0.548	0.0	9.1	3680
8640	min	Winter	0.479	0.0	9.3	4416
10080	min	Winter	0.428	0.0	9.5	5096

AEA - Ambiental		Page 3
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Proposed Calculations	Micro
Date 28/08/2019	Designed by MC	Drainage
File Proposed_MC.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	L

<u>Rainfall Details</u>

FSR	Winter Storms Yes
1	Cv (Summer) 0.750
England and Wales	Cv (Winter) 0.840
19.900	Shortest Storm (mins) 15
0.412	Longest Storm (mins) 10080
Yes	Climate Change % +40
	1 England and Wales 19.900 0.412

<u>Time Area Diagram</u>

Total Area (ha) 0.020

Time	(mins)	Area
From:	To:	(ha)

AEA - Ambiental		Page 4
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Proposed Calculations	Mirro
Date 28/08/2019	Designed by MC	Drainage
File Proposed_MC.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	1

Storage is Online Cover Level (m) 99.900

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	10.0
Membrane Percolation (mm/hr)	1000	Length (m)	10.0
Max Percolation (l/s)	27.8	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.370	Membrane Depth (m)	130

Orifice Outflow Control

Diameter (m) 0.020 Discharge Coefficient 0.600 Invert Level (m) 99.370

LA - Ambie										Page
ience Par	ck Sq	luare			4749	_Catli	ng_Banbu	iry		
ighton					Mr T	im Cat	ling			
st Sussez	ζ				Prop	osed C	alculati	ons		Mico
te 28/08/		4				gned b				– Micr
			v			-	-			Draii
le Propos	seu_M		Δ			ked by		0 1		
novyze					Sour	<u>ce con</u>	trol 201	.8.1		
	C		- -		£	0	Datore	Devial	(100)	
	<u>Sun</u>	<u>mmary</u>	<u>oi kes</u>	JULTS	<u> 101 3</u>	<u>u year</u>	Return	<u>Period (</u>	<u>+408)</u>	
			H	alf Dr	cain Tir	ne : 173	minutes.			
	Storm	n	Max	Max	м	lax	Max	Max	Max	Status
	Event	£	Level	Depth	1 Infilt	tration	Control D	Coutflow	Volume	
			(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	99.482	0.112	>	0.0	0.3	0.3	3.4	ОК
			99.516			0.0	0.3	0.3	4.4	
			99.545			0.0	0.3	0.3	5.2	
			99.562			0.0	0.4	0.4	5.8	ОК
			99.566			0.0	0.4	0.4	5.9	
			99.567			0.0	0.4	0.4	5.9	
			99.565			0.0	0.4	0.4	5.8	
			99.560			0.0	0.4	0.4	5.7	
			99.553			0.0	0.3	0.3	5.5	
			99.547			0.0	0.3	0.3	5.3	
			99.533			0.0	0.3	0.3	4.9	
			99.509			0.0	0.3	0.3	4.2	
			99.481			0.0	0.3	0.3	3.3	
			99.461			0.0	0.3	0.3	2.8	
			99.437			0.0	0.2	0.2	2.0	
			99.437			0.0	0.2	0.2	1.5	
			99.422 99.412			0.0	0.2	0.2	1.3	
			99.412 99.405			0.0	0.1	0.1		
			99.403 99.401							
			99.401 99.498			0.0	0.1 0.3	0.1 0.3	0.9 3.8	
15		WINCEL	99.490	0.120	}	0.0	0.5	0.5	5.0	0 K
			Storm		Rain	Flooded	l Discharo	ge Time-Pe	ak	
			Event	1	(mm/hr)		Volume			
						(m ³)	(m ³)	(,	
						/	, <i>'</i>			
			min Su		.06.947	0.0	3.	5	18	
		30	min Su	mmer	69.291	0.0	4.	6	33	
		60	min Su	mmer	42.916	0.0	5.	9	62	
		120	min Su	mmer	25.805	0.0	7.	2 1	18	
		180	min Su	mmer	18.967	0.0	8.	0 1	46	
		240	min Su	mmer	15.181	0.0	8.	5 1	76	
		360	min Su	mmer	11.059	0.0	9.	3 2	44	
			min Su		8.831	0.0			12	
			min Su		7.413	0.0			80	
			min Su		6.423	0.0			48	
			min Su		5.119	0.0			80	
									38	
		1440	min Su	mmer	3./10	0.0	12.	J 0		
			min Su min Su		3.715 2.693	0.0				
		2160	min Su	mmer	2.693	0.0	13.	6 12	12	
		2160 2880		mmer mmer			13. 14.	6 12 3 15		

4320 min Summer

5760 min Summer

7200 min Summer

10080 min Summer

8640 min Summer 0.889

15 min Winter 106.947

1.550

1.231

1.029

0.786

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2018 Innovyze

15.3

16.0

16.5

16.9

17.2

3.9

2292

3000

3744

4416

5144

18

AEA - Ambiental		Page 2
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Proposed Calculations	Micro
Date 28/08/2019	Designed by MC	Drainage
File Proposed_MC.SRCX	Checked by	Diamada
Innovyze	Source Control 2018.1	

Summary of Results for 30 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min V	Winter	99.536	0.166	0.0	0.3	0.3	5.0	ОК
60	min V	Winter	99.569	0.199	0.0	0.4	0.4	6.0	ОК
120	min V	Winter	99.590	0.220	0.0	0.4	0.4	6.6	ОК
180	min V	Winter	99.593	0.223	0.0	0.4	0.4	6.7	ОК
240	min V	Winter	99.593	0.223	0.0	0.4	0.4	6.7	ОК
360	min V	Winter	99.587	0.217	0.0	0.4	0.4	6.5	ОК
480	min V	Winter	99.578	0.208	0.0	0.4	0.4	6.2	ОК
600	min V	Winter	99.568	0.198	0.0	0.4	0.4	5.9	ОК
720	min V	Winter	99.557	0.187	0.0	0.4	0.4	5.6	ОК
960	min V	Winter	99.537	0.167	0.0	0.3	0.3	5.0	ОК
1440	min V	Winter	99.504	0.134	0.0	0.3	0.3	4.0	ОК
2160	min V	Winter	99.469	0.099	0.0	0.2	0.2	3.0	ОК
2880	min V	Winter	99.446	0.076	0.0	0.2	0.2	2.3	ОК
4320	min V	Winter	99.420	0.050	0.0	0.2	0.2	1.5	ОК
5760	min V	Winter	99.407	0.037	0.0	0.1	0.1	1.1	ОК
7200	min V	Winter	99.399	0.029	0.0	0.1	0.1	0.9	ОК
8640	min V	Winter	99.396	0.026	0.0	0.1	0.1	0.8	ОК
10080	min V	Winter	99.394	0.024	0.0	0.1	0.1	0.7	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			CO 001		5 0	2.2
		Winter		0.0	5.3	32
60	min	Winter	42.916	0.0	6.7	60
120	min	Winter	25.805	0.0	8.1	116
180	min	Winter	18.967	0.0	9.0	164
240	min	Winter	15.181	0.0	9.6	186
360	min	Winter	11.059	0.0	10.5	264
480	min	Winter	8.831	0.0	11.2	338
600	min	Winter	7.413	0.0	11.8	410
720	min	Winter	6.423	0.0	12.3	482
960	min	Winter	5.119	0.0	13.0	618
1440	min	Winter	3.715	0.0	14.1	882
2160	min	Winter	2.693	0.0	15.3	1256
2880	min	Winter	2.142	0.0	16.2	1616
4320	min	Winter	1.550	0.0	17.3	2332
5760	min	Winter	1.231	0.0	18.2	3048
7200	min	Winter	1.029	0.0	18.8	3744
8640	min	Winter	0.889	0.0	19.2	4408
10080	min	Winter	0.786	0.0	19.6	5080

AEA - Ambiental				
Science Park Square	4749_Catling_Banbury			
Brighton	Mr Tim Catling			
East Sussex	Proposed Calculations	Micro		
Date 28/08/2019	Designed by MC	Drainage		
File Proposed_MC.SRCX	Checked by	Diamada		
Innovyze	Source Control 2018.1	L		

<u>Rainfall Details</u>

FSR	Winter Storms Yes	
30	Cv (Summer) 0.750	
England and Wales	Cv (Winter) 0.840	
19.900	Shortest Storm (mins) 15	
0.412	Longest Storm (mins) 10080	
Yes	Climate Change % +40	
	30 England and Wales 19.900 0.412	30 Cv (Summer) 0.750 England and Wales Cv (Winter) 0.840 19.900 Shortest Storm (mins) 15 0.412 Longest Storm (mins) 10080

<u>Time Area Diagram</u>

Total Area (ha) 0.020

Time	(mins)	Area
From:	To:	(ha)

0 4 0.020

©1982-2018 Innovyze

AEA - Ambiental					
Science Park Square	4749_Catling_Banbury				
Brighton	Mr Tim Catling				
East Sussex	Proposed Calculations	Mirro			
Date 28/08/2019	Designed by MC	Drainage			
File Proposed_MC.SRCX	Checked by	Diamage			
Innovyze	Source Control 2018.1	1			

Storage is Online Cover Level (m) 99.900

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	10.0
Membrane Percolation (mm/hr)	1000	Length (m)	10.0
Max Percolation (l/s)	27.8	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.370	Membrane Depth (m)	130

Orifice Outflow Control

Diameter (m) 0.020 Discharge Coefficient 0.600 Invert Level (m) 99.370

EA - Ambie										Page 1
ience Par	rk Square			4749	_Catli	ng_Banb	ury			
ighton		Mr T	'im Cat	ling						
st Sussex	Σ		Prop	osed C	alculat	ion	5		Micro	
ate 28/08/	2019				gned b					
	sed MC.SRC	Х			ked by	-				Drair
novyze						trol 20	18.	1		
						0101 10				
	Summary	of Resi	<u>ilts f</u>	for 10	<u>)0 year</u>	Return	n Pe	riod	(+40%)	_
		Н	alf Dr	ain Ti	me : 202	2 minutes				
	Storm	Max	Max	м	ax	Max	M	lax	Max	Status
	Event	Level	Depth	Infil	tration	Control	Σ Ου	tflow	Volume	
		(m)	(m)	(1	/s)	(1/s)	(1	/s)	(m³)	
15	min Summer	99 521	0 151		0.0	0.3		0.3	4.5	ОК
	min Summer				0.0	0.3		0.3	4.J 5.9	
	min Summer				0.0	0.4		0.4	7.1	
120	min Summer	99.633	0.263		0.0	0.4		0.4	7.9	
180	min Summer	99.637	0.267		0.0	0.4		0.4	8.0	ОК
240	min Summer	99.638	0.268		0.0	0.4		0.4	8.0	ΟK
360	min Summer	99.633	0.263		0.0	0.4		0.4	7.9	O K
	min Summer				0.0	0.4		0.4	7.7	
600	min Summer	99.618	0.248		0.0	0.4		0.4	7.4	ΟK
	min Summer				0.0	0.4		0.4	7.2	
	min Summer				0.0	0.4		0.4	6.6	
	min Summer				0.0	0.4		0.4	5.7	
	min Summer				0.0	0.3		0.3	4.6	
	min Summer				0.0	0.3		0.3	3.8	
	min Summer min Summer				0.0	0.2		0.2	2.7 2.1	
	min Summer				0.0	0.2		0.2	1.7	
	min Summer				0.0	0.2		0.2		
	min Summer				0.0	0.1		0.1		
15	min Winter	99.541	0.171		0.0	0.3		0.3	5.1	0 K
		Storm		Rain	Flooded	l Dischar	ge 1	'ime-Pe	ak	
		Event	(1	mm/hr)	Volume		e	(mins)	
					(m³)	(m³)				
	15	min Sur	nmer 13	38.823	0.0) 4	.6		18	
		min Sur		90.695	0.0	6	.2		33	
		min Sur		56.422	0.0) 7	.9		62	
		min Sur		33.916	0.0		.6		.20	
		min Sur		24.855	0.0		.6		.54	
		min Sur		19.822	0.0		.3		.84	
		min Sur		14.355	0.0		.3		250	
		min Sur		11.419	0.0		.1		818	
		min Sur		9.556	0.0		.7		886	
		min Sur		8.258	0.0		.2		56	
		min Sur min Sur		6.554	0.0		.0 .2		588 52	
		min Sur min Sur		4.725 3.401	0.0		.2 .4		352 232	
		min Sur		2.691	0.0		.4		52	
		min Sur		1.932	0.0		·.5		296	
		min Sur		1.526	0.0		.3)48	
		min Sur		1 270	0.0		8		144	

20.8

21.3

21.6

5.3

0.0

0.0

0.0

0.0

©1982-2018 Innovyze

3744

4416

5152

18

7200 min Summer 1.270

8640 min Summer 1.093

15 min Winter 138.823

10080 min Summer 0.962

AEA - Ambiental		Page 2
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Proposed Calculations	Micro
Date 28/08/2019	Designed by MC	Drainage
File Proposed_MC.SRCX	Checked by	Diamada
Innovyze	Source Control 2018.1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max E Outflow (l/s)	Max Volume (m³)	Status
30	min W	inter	99.593	0.223	0.0	0.4	0.4	6.7	ОК
60	min W	inter	99.639	0.269	0.0	0.4	0.4	8.1	ОК
120	min W	inter	99.671	0.301	0.0	0.5	0.5	9.0	ОК
180	min W	inter	99.676	0.306	0.0	0.5	0.5	9.2	ОК
240	min W	inter	99.674	0.304	0.0	0.5	0.5	9.1	ОК
360	min W	inter	99.666	0.296	0.0	0.4	0.4	8.9	ОК
480	min W	inter	99.654	0.284	0.0	0.4	0.4	8.5	ОК
600	min W	inter	99.641	0.271	0.0	0.4	0.4	8.1	ОК
720	min W	inter	99.628	0.258	0.0	0.4	0.4	7.7	ОК
960	min W	inter	99.602	0.232	0.0	0.4	0.4	6.9	ОК
1440	min W	inter	99.557	0.187	0.0	0.4	0.4	5.6	ОК
2160	min W	inter	99.510	0.140	0.0	0.3	0.3	4.2	ОК
2880	min W	inter	99.478	0.108	0.0	0.3	0.3	3.2	ОК
4320	min W	inter	99.441	0.071	0.0	0.2	0.2	2.1	ОК
5760	min W	inter	99.421	0.051	0.0	0.2	0.2	1.5	ОК
7200	min W	inter	99.409	0.039	0.0	0.1	0.1	1.2	ОК
8640	min W	inter	99.402	0.032	0.0	0.1	0.1	1.0	ОК
10080	min W	inter	99.398	0.028	0.0	0.1	0.1	0.8	0 K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
30	min	Winter	90.695	0.0	7.0	32
60	min	Winter	56.422	0.0	8.9	60
120	min	Winter	33.916	0.0	10.8	118
180	min	Winter	24.855	0.0	12.0	170
240	min	Winter	19.822	0.0	12.7	192
360	min	Winter	14.355	0.0	13.9	268
480	min	Winter	11.419	0.0	14.7	344
600	min	Winter	9.556	0.0	15.4	418
720	min	Winter	8.258	0.0	16.0	490
960	min	Winter	6.554	0.0	16.9	628
1440	min	Winter	4.725	0.0	18.2	896
2160	min	Winter	3.401	0.0	19.6	1276
2880	min	Winter	2.691	0.0	20.6	1644
4320	min	Winter	1.932	0.0	21.9	2340
5760	min	Winter	1.526	0.0	22.9	3056
7200	min	Winter	1.270	0.0	23.6	3752
8640	min	Winter	1.093	0.0	24.1	4496
10080	min	Winter	0.962	0.0	24.5	5144

AEA - Ambiental		Page 3
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Proposed Calculations	Micro
Date 28/08/2019	Designed by MC	Drainage
File Proposed_MC.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	L

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.900	Shortest Storm (mins) 15
Ratio R	0.412	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.020

Time	(mins)	Area
From:	To:	(ha)

AEA - Ambiental		Page 4
Science Park Square	4749_Catling_Banbury	
Brighton	Mr Tim Catling	
East Sussex	Proposed Calculations	Mirro
Date 28/08/2019	Designed by MC	Drainage
File Proposed_MC.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	

Storage is Online Cover Level (m) 99.900

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	10.0
Membrane Percolation (mm/hr)	1000	Length (m)	10.0
Max Percolation (l/s)	27.8	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.370	Membrane Depth (m)	130

Orifice Outflow Control

Diameter (m) 0.020 Discharge Coefficient 0.600 Invert Level (m) 99.370