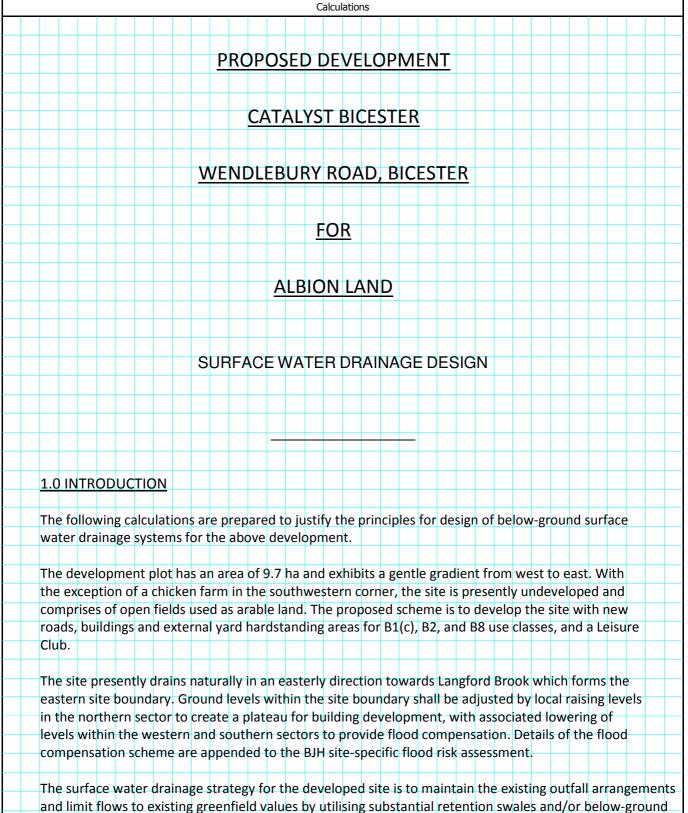


Expected Flood Level (m) 63.850 64.050 64.150 64.200
Rev Date Revision Description Revision Schedule
Promised Land Farm Bicester
Client:- Albion Land PLC
Flood Compensation - Slice 63.150m-63.350m
BAILEY JOHNSON HAYES Croubling Engineers MACHETER: Gergel Hous, John Pathy Mark 1997 777 Fe 181 281 282 STADIO: House Hous, Cl Carplet Hait, 1997 791 197 1991 291 292
Scale 1 : 1 @A1 Project Ref. Datafog No. Rev. Data 06/21/19 S13558 3D-010 Rev.

Fig	ood Level	Expected Flood Level (m)
	n 5 year (20% AEP) n 20 year (5% AEP)	63.650 63.940
10	n 100 year (1% AEP)	64.050
10	n 100 year + 35% CC (1% AEP + 35% CC	64.150
	n 1000 Year (0.1% AEP)	64.200
20 8.750m - 63.950m		
		Revision Schedule
	Prom	ised Land Farm
	Bices	ster
	Client	
	Albi	on Land PLC
	Flood 63.75	I Compensation - Slice 50m-63.950m
	BAIL	EY JOHNSON HAYES
		Consulting Engineers
	MANCHESTI ST ALBANS	 Grange House, John Dalton Street Tel 0161 279 7777 Fax 0161 226 2552 Phoenix House, 63 Camplield Road. Tel 01727 841172 Fax 01727 841085
	Scale 1:1	@A1 Project Ref. Drawing No. Rev. 19 S1358 3D-013 Rev.
	Scale 1 : 1 Date 06/21/ Dm BJH C	¹⁹ S1358 3D-013



Slice	Existing Slice Capacity M ³	New Site Slice Capacity M ³	Difference (Gain) M ³	
63.150-63.350	322	760	438	
63.350-63.550	1205	1831	626	
63.550-63.750	6475	7023	548	
63.750-63.950	13779	14099	320	
63.950-64.150	21151	21470	319	
Option 8				
Level	Existing Capcity		New Level Capacity	Difference
63.150	514.000		776.000	-262.000
63.350	836.000		1536.000	-700.000
63.550	2041.000		4367.000	-2326.000
63.750	8516.000		11390.000	-2874.000
63.950	22295.000		25489.000	-3194.000
64.150	43446.000		46959.000	-3513.000

APPENDIX H

BAILEY JOHNSON HAYES SURFACE WATER DRAINAGE SCHEME & CALCULATIONS

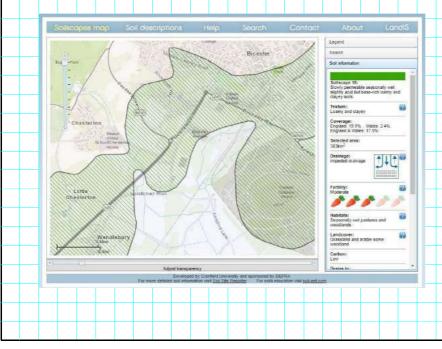
BAILEY JOHNSON	Project Catalyst Bicester, Wendlebury Rd, Bicester.	Project No. S1358	Sheet No. D1
HAYES	for Albion Land.	Drawing No.	Rev. 2
Bailey Johnson Hayes	Section Surface Water Drainage Design	^{ву} Р.А.В.	Date Jul 2019
Grange House, John Dalton Street Manchester, M2 6FW	Surface Water Drainage Design		
Tel: 0161 279 7777 Fax: 0161 236 3552 Web: www.bjh.co.uk		Checked	Date

BAILEY JOHNSON HAYES	Project Catalyst Bicester, Wendlebury Rd, Bicester. for Albion Land.	Project No. S1358 Drawing No.	Sheet No. D2 Rev. 2
CONSULTING ENGINEERS Bailey Johnson Hayes Grange House, John Dalton Street	Section Surface Water Drainage Design	^{By} P.A.B.	Date Jul 2019
Manchester. M2 6FW Tel: 0161 279 7777 Fax: 0161 236 3552 Web: www.bjh.co.uk		Checked	Date

Calculations

attenuation storage, and incorporating flow control devices to the drainage network. The design for the site drainage shall include an allowance for climate change.

2.0 GROUND CONDITIONS


The published BGS geology map indicates Alluvium across the majority of the site. The Alluvium is absent in the northwest and the southwest of the site, where River Terrace deposits are shown. Solid geology of the Kellaways Formation is anticipated below, comprising interbedded sandstone and siltstone of the Kellaways Sand Member, underlain by mudstone interbedded with siltstone and sandstone of the Kellaways Clay Member. Kellaways Sand is shown to be absent in the north of the site. The Kellaways Formation is anticipated to be underlain by limestone of the Cornbrash Formation.

A series of 18 trial pits have been excavated by Applied Geology on behalf of Albion Land Ltd. Topsoil and subsoil was encountered at surface across the site and was underlain by Superficial Deposits comprising Alluvium and River Terrace Deposits, which in turn was underlain by the Kellaways Formation, predominantly comprising clay, with initial horizons of sand in the southeast of the site. This is broadly consistent with the published geological records. Groundwater was recorded as seepages in all trial pits, with the exception of TP12 (no River Terrace Deposits present) within the River Terrace Deposits at depths of between 0.5m and 1.3m bgl.

3.0 DESIGN

3.1 Greenfield Runoff Estimate

Greenfield runoff estimation is undertaken using the UK SuDS Tools Website using the Institute of Hydrology Report 124 methodology. Based upon soils information for the development site obtained from the Cranfield Soil and AgriFood Institute Soilscapes Viewer

BAILEY JOHNSON	Project Catalyst Bicester, Wendlebury Rd, Bicester.	Project No. S1358	Sheet No. D3
HAYES	for Albion Land.	Drawing No.	Rev. 2
Bailey Johnson Hayes	Section	Ву	Date
Grange House, John Dalton Street	Surface Water Drainage Design	P.A.B.	Jul 2019
Manchester. M2 6FW		Checked	Date
Tel: 0161 279 7777 Fax: 0161 236 3552			
Web: www.bjh.co.uk			

Calculations

and the ground conditions established during the trial pitting exercise undertaken by Applied Geology, the SOIL is conservatively considered to be type 3 for the purpose of greenfield runoff estimation. The default value of SOIL type 1 (sandy highly permeable material), allocated by the UK SuDS Tools Website for the subject site, is considered inappropriate and is therefore edited within the input data.

Greenfield runoff is calculated using the Institute of Hydrology Report 124 methodology; the appended calculation sheet confirms the 1:1 greenfield runoff rate = **20.43 litres/sec**

3.2 Quick Storage Estimate

For the purpose of initial sizing of flood storage requirements it shall be assumed that the outflow from the whole site shall be restricted to 20.4 l/sec for all rainfall events up to and including the 1 in 100 year event inclusive of an allowance of 40% for climate change in accordance with government guidance.

Drainage design is undertaken using the Source Control module of Microdrainage Windes software. The surface water drainage shall be split into two systems; Units 10-13 shall drain into Swale 1, and Units 1-9 shall drain into Swale 2. Both swales shall discharge to existing field ditches which in turn outfall to Langford Brook to the east. The total permissible outflow rates are apportioned at 8 l/sec from Swale 1, and 12 l/sec from Swale 2. Input data and results of Quick Storage Estimates are presented on the following sheets nos 1 and 39. For 1 in 100 year +40% storm events (using FEH design rainfall) the software predicts storage volumes between 1869 m³ and 2553 m³ will be required for Swale 1, and between 5179 m³ and 6702 m³ will be required for Swale 1.

3.3 Drainage Layouts

The attached BJH drawings M1358-DD01, DD02 & DD03 illustrate the hard surfaced drained site areas, pipe design references and lengths, and the layout of principal below-ground drainage runs respectively. The Leisure Centre plot has dedicated surface water attenuation provisions by virtue of private below-ground storage and an hydrobrake flow control to restrict flows to 60 l/sec at the outfall manhole connecting to the shared system constructed through the industrial plot. This information is input to the Windes software and modelled in the Simulation module.

3.4 Units 10-13 – Swale 1

In order to establish the critical storm event a simple model is created within the Source Control module of Windes using a Swale fitted with an Hydrobrake flow control device to restrict outflows to 8 l/sec. Microdrainage pages 2-4 indicate that the critical storm is a 1440 minute winter event. Swale 1 dimensions are shown on the attached BJH drawing M1358-DD04.

3.4.1 Simulation 100yr+40%CC Winter Storms

Design storms from 2160minute duration to 15min duration are modelled in Simulation, to include the critical 1440 minute design storm.

BAILEY	Project Catalyst Bicester,	Project No. Sheet No. Sheet No. D4
JOHNSON	Wendlebury Rd, Bicester.	Drawing No. Rev.
HAYES	for Albion Land.	2
CONSULTING ENGINEERS Bailey Johnson Hayes	Section	By Date
Grange House, John Dalton Street	Surface Water Drainage Design	P.A.B. Jul 2019
Manchester. M2 6FW Tel: 0161 279 7777 Fax: 0161 236 3552	-	Checked Date
Web: www.bjh.co.uk		
	Calculations	
Microdrainage pages 5-14 include of	complete details of the network i.e. online	controls and storage
provisions for a 2160 minute winte	r design storm. The water level in Swale 1	is 63.995; discharge to outfall
is 8 l/sec.		
Microdrainago pagas 15 16 include	simulation criteria and results for a 1440	minute winter decign storm
The water level in Swale 1 is 64.004		innute winter design storm.
Microdrainage pages 17-18 include	simulation criteria and results for a 960 m	ninute winter design storm.
The water level in Swale 1 is 63.995		
	simulation criteria and results for a 720 m	inute winter design storm.
The water level in Swale 1 is 63.980); discharge to outfall is 8 l/sec.	
Microdrainage pages 21-22 include	simulation criteria and results for a 600 m	ainute winter design storm
The water level in Swale 1 is 63.967		
Microdrainage pages 23-24 include	simulation criteria and results for a 480 m	inute winter design storm.
The water level in Swale 1 is 63.947	7; discharge to outfall is 8 I/sec.	
The water level in Swale 1 is 63.918	simulation criteria and results for a 360 m	indle winter design storm.
Microdrainage pages 27-28 include	simulation criteria and results for a 240 m	ninute winter design storm.
The water level in Swale 1 is 63.87	L; discharge to outfall is 8 l/sec.	
	simulation criteria and results for a 180 m	inute winter design storm.
The water level in Swale 1 is 63.839	9; discharge to outfall is 8 l/sec.	
Microdrainage nages 31-32 include	simulation criteria and results for a 120 m	ninute winter design storm
The water level in Swale 1 is 63.795		indice winter design storm.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Microdrainage pages 33-34 include	simulation criteria and results for a 60 mi	nute winter design storm. The
water level in Swale 1 is 63.722; dis	charge to outfall is 8 l/sec.	
	simulation criteria and results for a 30 mi	nute winter design storm. The
water level in Swale 1 is 63.657; dis	scharge to outfall is 8 lysec.	
Microdrainage pages 37-38 include	simulation criteria and results for a 15 mi	nute winter design storm. The
	scharge to outfall is 8 l/sec. In this extreme	
	occur within the service yard between Uni	
road between Units 10 and 11; the	water not threaten the buildings and will	
ponding on the pavement surface u	until the storm abates.	

BAILEY JOHNSON	Project Catalyst Bicester, Wendlebury Rd, Bicester.	Project No. S1358	Sheet No. D5
HAYES	for Albion Land.	Drawing No.	Rev. 2
Bailey Johnson Hayes	Section	Ву	Date
Grange House, John Dalton Street	Surface Water Drainage Design	P.A.B.	Jul 2019
Manchester. M2 6FW		Checked	Date
Tel: 0161 279 7777 Fax: 0161 236 3552		onookou	5410
Web: www.bjh.co.uk			
	Calculations		

		-	r +4					ъ.															_												Ι
res	trio	tio	n c	of 8	81/	se	c.																												
3.5	5 U	nits	5 1·	9.	- 9	Sw	al	e 2	2																										
3.5	.1 !	Sim	ula	ati	on	1	00	yr	+4	0%	6C	c v	Vir	nte	r S	to	rn	าร																	-
Th	h e	ətai	lec		alc	uta	atio	h	s fo	or t	he	. dr	air	าลด	e r	net	w	ork	Sei	vir	σl	Init	s 1-	9_9	Swa	le	2 со	nfi	rm	tha	at t	he	288	20 n	ni
														_							_												atio		
											<u>۲</u>					<u>۲</u>						lesi								-	-			+	-
N 4:		4~~	ina					10	F /	in	مار	بطم			مام	+-	مام	to		£ +1	h	- c +				تامد			+ = 0		nd	c+c			+
				T		-									-																		orag ge		,
	2 I,				J -1	52	.0		nu		~~	HLC			B	-31			1110		ate		ver) vva		- 13	05.	00.	-, u	ise		ge		-
Mi	cro	dra	ina	ge	pa	age	es	55	-57	' in	clı	ıde	si	mι	ılat	ioi	n c	rite	eria	an	d r	esu	lts	for	a 2	880) m	inu	te ۱	win ¹	ter	de	sigr	۱ str	וכ
																						2 I/													1
																														<u> </u>	L			<u> </u>	
				-	-	_			_	_				_	_										a 2	160) m	inu	te ۱	vint	ter	de	sigr	ı sto	וכ
Th	e w	ate	r le	eve	l ir	ו S	Wa	ale	2	s e	53.	896	5; (disc	cha	irg	e t	0 0	outf	all	is 1	2 /	sec	•						<u> </u>	-		+	<u> </u>	_
Mi	cro	dra	ina	ge	na	age	25	61	-67	in :	clı	ıde	o si	mı	ılat	ioi	n c	rite	eria	an	d r	e su	lts	for	a 1.	440) m	inu	te v	win ⁴	ter	de	sigr) sta	2
				T	-	_																2 I/											5.8.		-
Mi	cro	dra	ina	σο	na	oσ	20	64	-66	in	cli	ıde	. ci	mı	ılət	io	n c	rita	oria	20	d r	9611	ltc i	for	- Q	60	mir		3 14/	inte	ar d	امدن	gn :	cto	rr
				T	-	_																2 I/			a J	00		iute	- vv		i u	.531	811	stor	_
									Ŧ	-			, ,									- ''								+			+	+	+
Mi	cro	dra	ina	ge	pa	age	es	67	-69) in	clu	Jde	si	mι	ılat	ioi	n c	rite	eria	an	d r	esu	lts	for	a 7	20	mir	ute	w	inte	er d	lesi	gn	stoi	rr
Th	e w	ate	r le	eve	l ir	۱S	Wa	ale	2	s e	53.	783	3; (disc	cha	irg	e t	0 C	utf	all	is 1	2 I/	sec	•						-	-			+	+
					_																											-		-	+
				Y	•	-																			a 6	00	mir	ute	e w	inte	er d	esi	gn	stoi	r
-10	e w	ate	rie	eve	1 11	13	We	ne	2	st	5.	/50	o; (JISC	.ne	irg	eι	.0-0	outi	all	IS I	2 I/	sec	•								+		+	T
Mi	cro	dra	ina	ge	pa	age	es	73	-75	i in	clı	ıde	si	mι	ılat	ioi	n c	rite	eria	an	d r	esu	lts	for	a 4	80	mir	ute	e w	inte	er d	lesi	gn	sto	rr
																						2 I/								<u> </u>			<u> </u>		-
Mi	cro	dra	ina	ge	pa	age	es	76	-78	s in	clu	ıde	si	mι	ılat	ioi	n c	rite	eria	an	d r	esu	lts	for	a 3	60	mir	nute	e w	inte	er d	lesi	gn	stor	rr
				T		_																2 I/												\square	ļ
Mi	cro	dra	ina	ge	pa	age	25	79	-81	. in	clı	ıde	si	mı	ılat	ioi	n c	rite	eria	an	d r	esu	lts	for	a 24	40	mir	ute	w	inte	er d	lesi	gn :	stor	r
				T	-	_																2 I/													Í
	cro															Τ																			

BAILEY JOHNSON	Project Catalyst Bicester, Wendlebury Rd, Bicester.	Project No. S1358	Sheet No. D6
HAYES	for Albion Land.	Drawing No.	Rev. 2
Bailey Johnson Hayes	Section Surface Water Drainage Design	By P.A.B.	Date Jul 2019
Grange House, John Dalton Street	Suitace water Drainage Design	F.A.D.	Jui 2019
Manchester. M2 6FW		Checked	Date
Tel: 0161 279 7777 Fax: 0161 236 3552			
Web: www.bjh.co.uk			
		-	

Calculations

Microdrainage pages 85-87 include simulation criteria and results for a 120 minute winter design storm. The water level in Swale 2 is 63.502; discharge to outfall is 12 l/sec. Microdrainage pages 88-90 include simulation criteria and results for a 60 minute winter design storm. The water level in Swale 2 is 63.380; discharge to outfall is 12 l/sec.

Microdrainage pages 91-93 include simulation criteria and results for a 30 minute winter design storm. The water level in Swale 2 is 63.286; discharge to outfall is 12 l/sec.

Microdrainage pages 94-96 include simulation criteria and results for a 15 minute winter design storm. The water level in Swale 2 is 63.238; discharge to outfall is 8 l/sec. In this extreme design case isolated surface flooding up to 7.5m3 is predicted to occur within the service yard between Units 6 and 8; the water not threaten the buildings and will be temporarily held as ponding on the pavement surface until the storm abates.

For 100yr+40%CC design storms the peak water level in Swale 2 is 63.904 (depth 1.004m) for an outflow restriction of 12 l/sec.

4.0 EXCEEDANCE EVENTS

Site levels will arranged to ensure that overland flow routes are created to encourage any build-up of surface water to flow in an easterly direction towards Langford Brook. Similarly the bunding to the Swale will be constructed to ensure that there is facility for overspill to occur in an easterly direction away from the development land.

APPENDIX A

GREENFIELD RUNOFF ESTIMATE

Calculated by:	peter brooks
Site name:	Promised Land Farm
Site location:	Bicester

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Greenfield runoff estimation for sites

www.uksuds.com | Greenfield runoff tool

Site coordinates

Latitude:	51.88559° N
Longitude:	1.16552° W
Reference:	6484523
Date:	2018-10-25T08:25:55

Methodology	IH124							
Site characteristics								
Total site area (ha)	9.7							
Methodology								
Qbar estimation method Calculate fro			om SPR and SAAR					
SPR estimation method Calculate from			om SOIL type					
			Default	Edited				
SOIL type	1	3						
HOST class								
SPR/SPRHOST	0.1	0.37						
Hydrological characteristics Default Edited								
SAAR (mm)	617	617						
Hydrological region	6	6						
Growth curve factor: 1	0.85	0.85						
Growth curve factor: 3	2.3	2.3						
Growth curve factor: 100 year			3.19	3.19				

Notes:

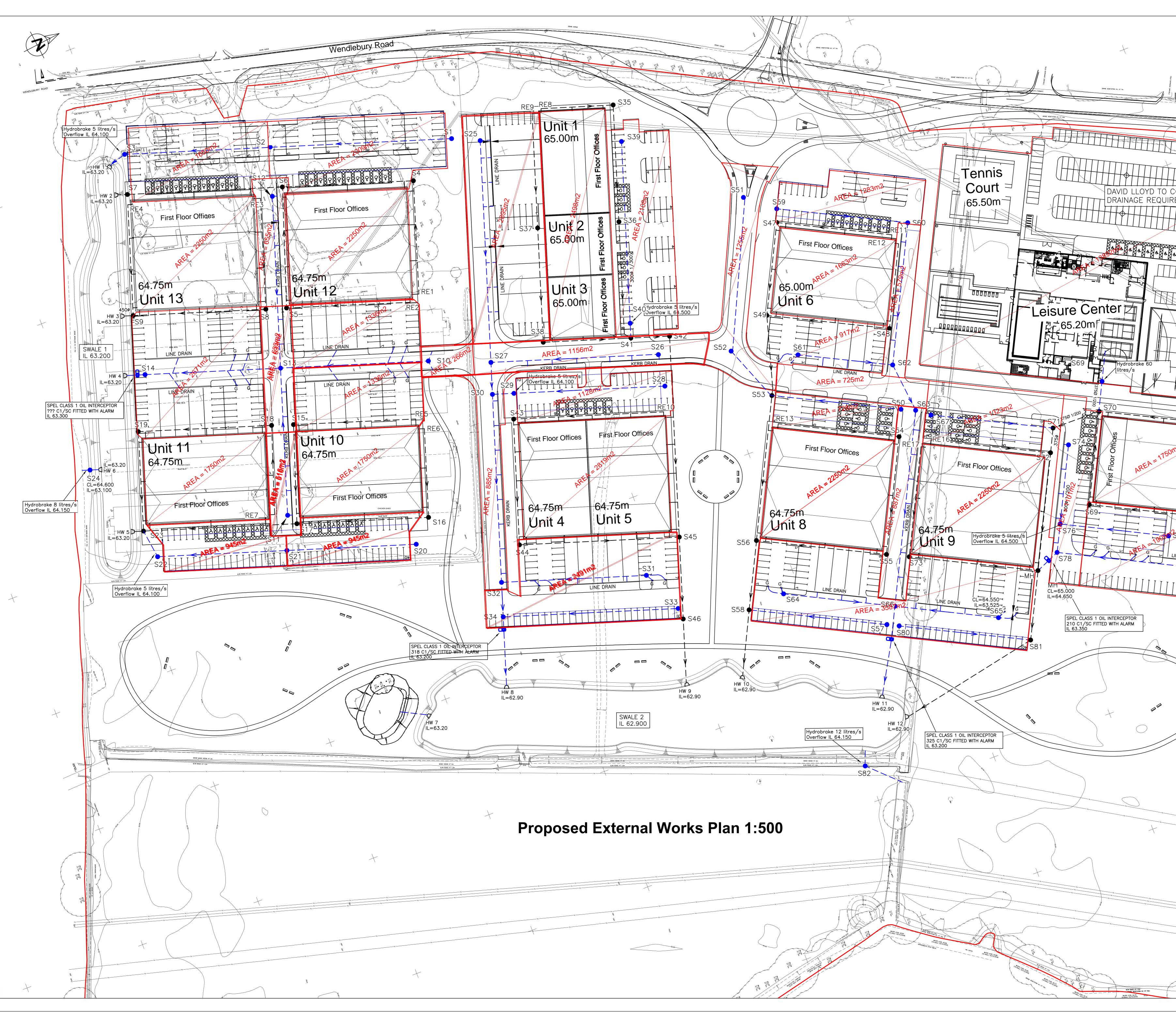
(1)	ls	Q	<	2.0) l/s/ha?
(' /	10	× D A D		2.0	1/0/1101

Normally limiting discharge rates which are less than 2.0 l/s/ha are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consents are usually set at 5.0l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set in which case blockage work must be addressed by using appropriate drainage elements

(3) Is SPR/SPRHOST ≤ 0.3 ?


Where groundwater levels are low enough the use of soakaways to avoid discharge offsite may be a requirement for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Qbar (l/s)	1.41	24.04
1 in 1 year (l/s)	1.19	20.43
1 in 30 years (l/s)	3.23	55.29
1 in 100 years (l/s)	4.48	76.69

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

BAILEY JOHNSON HAYES DRAWINGS

S1358-DD01A – Drained Areas S1358-DD02A – SW drainage design refs S1358-DD03A – Proposed SW Drainage S1358-DD04A – Proposed Swales

1:500 @ A0 DENSE VEGETATION AV 1 75 <u>______</u>______ 1 a a a a a a a a a a a man man Dome 65.20m - I - I S_{1} 65.00m Unit 7 S77 Key: GRAVEL SUB-GRADE O Petrol Interceptor SW MANHOLE SW PIPES (SIZE VARIES) FW MANHOLE LINEAR DRAINAGE • NEW SW GULLY RWP[°] RAIN WATER PIPE PRELIMINARY A 07.2019 Redrawn Rev Date Revision Schedule Catalyst Bicester Wendlebury Road, Bicester Client: Albion Land Plc. TECH SCHEME OPTION 8 DRAINED AREAS BAILEY JOHNSON HAYES Consulting Engineers ST.ALBANS: Suite 4, Phoenix House, 63 Campfield Rd, ST.ALBANS, Herts AL1 5FL MANCHESTER: Grange House, John Dalton Street, MANCHESTER, M2 6FW Scale 1:500 @A0 S1358-DD01 Date 07.19 Drawn PAB