

FLOOD RISK ASSESSMENT & OUTLINE DRAINAGE STRATEGY

Gladman Developments Ltd Gladman House Alexandria Way Congleton CW12 1LB

Prepared for:

By:

LK Consult Ltd Unit 29 Eton Business Park Eton Hill Road Radcliffe Manchester M26 2ZS

Tel: 0161 763 7200 Email:cl@thelkgroup.com

> Date: March 2019 Ref: FRA 16 1075

PART OF THE LK GROUP -

LK Consult Ltd

Document Verification

Site Address	Land off South Newington Road, Bloxham, Oxfordshire, OX15 4JB.			
Report Title	Flood Risk Assessment & Outline Drainage Strategy			
Job Number	FRA 16 1075 Document Ref. FRA 16 1075- R1			
Date Issued	March 2019 Report Version		R1	
Prepared By	Matt Craig – Environmental Scientist Signature			
Reviewed By	Mark Jones - Associate Signature			
Authorised By	Colin Crompton - Director Signature			

DISCLAIMER

This report has been prepared by LK Consult Ltd. (LKC) who have exercised such professional skill, care and diligence as may reasonably be expected of a properly qualified and competent consultant experienced in preparing reports of a similar scope.

However, to the extent that the report is based on or relies upon information contained in records, reports or other materials provided to LKC which have not been independently produced or verified, LKC gives no warranty, representation or assurance as to the accuracy or completeness of such information.

This report is prepared solely for the benefit of Gladman Developments Ltd. It may not be relied upon by, or submitted to a third party for their reliance for the purposes of valuation, mortgage, insurance and regulatory approval, until all invoices have been settled in full.

THOSE USING THIS INFORMATION IN SUBSEQUENT ASSESSMENTS OR EVALUATIONS DO SO AT THEIR OWN RISK.

EXECUTIVE SUMMARY

Scope and Background

This Flood Risk Assessment (FRA) has been undertaken by LK Consult Ltd (LKC) to support a planning application for the development of land off South Newington Road, Bloxham. The development comprises of a residential development with provision for soft landscaping and car parking.

LKC has prepared this Flood Risk Assessment (FRA) in line with the NPPF and Technical Guidance where appropriate.

In considering the proposals the following key principles have therefore been applied:-

- Identification of flood risks.
- Protection of users of the new development.
- No increased flood risk to third parties.

Consultations

The Environment Agency (EA) has been consulted during the preparation of this report. They have provided a more detailed flood map, but no modelled data was available.

Oxfordshire County Council and Thames Water were also consulted concerning flood risk.

All relevant consultees have confirmed that there is a Negligible to Very Low Risk of flooding to this site from all sources except Fluvial, Pluvial and Surface Water which are recorded as Low.

Flood Risk

Environment Agency flood maps indicate that part of the site is potentially vulnerable to fluvial flooding from the nearest main watercourse, approximately 100m north of the site.

The site is mostly within Flood Zone 1 – Very Low Risk – low annual probability of flooding less than 0.1% (1 in 1000). Part of the north eastern corner site is within Flood Zone 2 and 3 – Low Risk – Medium annual probability of flooding between 1% and 0.1% (1 in 100 – 1 in 1000)

The majority of the site is in an area of Very Low surface water flood risk, with the exception of areas of higher risk near the northern and western boundaries. This may be due to the potential for surface water to be trapped by the railway embankment if the onward culverted route is blocked.

Mitigation

Design

Site falls will be arranged to allow reasonably level access for occupants and visitors and allowing the site to be free draining in case of local ponding at times of heavy rainfall. Floor levels of dwellings will be set as high as possible above the flood level giving regard to necessary access for the less able.

The development will not result in any reduction in flood plain storage compared to the existing situation.

In considering the potential drainage options for the site at present it is assumed that surface water runoff arising from the development will discharge into the existing culverted watercourse.

The proposed development will increase the proportion of the site covered by impermeable surfaces and will therefore generate more runoff. Attenuation will therefore be required.

The outline drainage strategy considers the use of attenuation based SuDS to be feasible with a discharge to the watercourse at the northern site boundary. Therefore, the most effective strategy, in line with the SuDS management train, would be to have a detention basin at the northern boundary. The required detention pond or similar has been estimated to be between **359.5m**³ and **375.0m**³ for the 1 in 30 year greenfield flow restriction.

Similarly, the estimated volume to be retained on site for the 1 in 100 year storm event including the allowance for climate change is between **612.7m**³ and **761.5m**³.

The residential development is considered to be at low risk of flooding. It is recommended that the minimum finished floor levels for the development should be set at 113.1m AOD for the lower areas of the site and a nominal height above the proposed ground levels elsewhere. This is to allow for overland flow during exceedance flows from an extreme event or a drainage failure.

Access

Access close to the site is elevated above potential flood levels and will always provide safe access to and from the site from South Newington Road.

CONTENTS

EXE	CUTIVE SUMMARY	v
1	INTRODUCTION	1
2	SITE SETTING	3
3	CONSULTATIONS	7
4	ASSESSMENT OF FLOOD RISK	9
5	SURFACE WATER MANAGEMENT	11
6	MITIGATION MEASURES	17
7	CONCLUSIONS	19

TABLES

Table 1-1:	Summary of Site Details
Table 2-1:	Summary of Environmental Setting
Table 3-1:	Summary of Consultee Information
Table 4-1:	Summary of Existing Risk Level
Table 5-1:	Geological and Hydrological Settings
Table 5-2:	Drainage Options
Table 5-3:	SuDS Options
Table 5-4:	Assumed Plot Areas

APPENDICES

- Appendix A: Figures, Plans and Drawings
- Appendix B: Site Information
- Appendix C: Environment Agency Data
- Appendix D: Consultee Correspondence
- Appendix E: Calculations
- Appendix F: Drainage Strategy Plan

1 INTRODUCTION

1.1 Background

LK Consult Ltd (LKC) were commissioned by Gladman Developments Ltd to carry out a Flood Risk Assessment (FRA) and Outline Drainage Strategy. The report was undertaken in support of a planning application to redevelop the site for residential use.

The report will address the vulnerability to flooding from all possible sources and will also consider the impact of the development on surface water runoff accounting for climate change and the potential to increase flood risk elsewhere. The Outline Drainage Strategy in Section 5 will provide an overview of the SuDS techniques which could be considered on the site. The issues of actual flood risk are discussed in Section 4.

Government policy with respect to development in flood risk areas is contained within the Department of Communities and Local Government National Planning Policy Framework¹ and accompanying Technical Guidance of March 2012 (revised to the Planning Practice Guidance (PPG)², which supersedes Planning Policy Statement 25 (PPS25) 'Development and Flood Risk'. The guidance on Climate Change allowance issued by the Environment Agency in February 2016 has also been considered.

LKC has prepared this Flood Risk Assessment (FRA) in line with the NPPF and the PPG where appropriate. The level of detail entered into in any FRA is dependent upon the scale and potential impact of the proposed development, and the vulnerability classification of the proposed land-use.

1.2 Site Details

A summary of general site settings is presented in Table 1-1. Plans, Drawings and Figures are provided in Appendix A. Figures 1 and 2 indicate the site location and boundary.

	Site Details		
Location	Land off South Newington Road, Bloxham, Banbury, OX15 4HZ.		
	Centred at approximate National Grid Reference 442380E 235310N.		
Area	Approximately 6.0ha.		
Topography	116 metres above ordnance datum (AOD) in the south of the site and 111.3m AOD in		
	the northeast.		
	The site slopes down gently to the northeast and northwest from a central ridge.		
Current Land	Site		
Use	Agricultural Land (Pasture)		
	Surrounding Area/ Boundary Treatment		
North: Residential Properties and former railway.			
East: South Newington Road; Agricultural Land and the recreation ground.			
	South: Agricultural Land.		
	West: Agricultural Land.		
Proposed	Residential properties including soft landscaping and car parking. Access will be from		
Development	South Newington Road.		

Table 1-1: Summary of site details

¹ DCL (2019). "National Planning Policy Framework." Department of Communities and Local Government. February 2019.

² DCL (2014). "Planning Practice Guidance" http://planningguidance.communities.gov.uk, April 2014.

2 SITE SETTING

2.1 Vulnerability

As an initial phase in identifying whether a site is potentially at risk of flooding, LKC has consulted the Environment Agency's (EA) website Flood Zone Mapping. This mapping is (often) based on coarse scale modelling and provides only an initial indication of the flood risk to a site. The Environment Agency Flood Zone maps were developed using a very coarse Digital Elevation Map (DEM) and are superseded by a more detailed analysis of modelled flood levels and topographic survey levels.

The Flood Zones divide the floodplain into three categories of flood risk, and do not take flood defences into account. The NPPF defines the Flood Zones as:-

- Flood Zone 1 little or no risk, with annual probability of flooding from rivers and the sea of less than 0.1% (1 in 1000).
- Flood Zone 2 low to medium risk, with annual probability of flooding of 0.1 to 1.0% from rivers and 0.1 to 0.5% from the sea.
- Flood Zone 3 medium to high risk of flooding with an annual probability of flooding of 1.0% or greater from rivers, and 0.5% or greater from the sea.

The Flood Zone Mapping indicates the site as being mostly within Flood Zone 1 with a small area within Flood Zones 2 & 3 (PPG paragraph 065, Table 1).

The development site is over 1 hectare in size, so under current regulations a Flood Risk Assessment will be necessary to accompany the Planning Application.

The proposed development is for residential end use and this is classified within the 'More Vulnerable' category in Table 2 of paragraph 066 of the PPG Technical Guidance.

2.2 The Sequential and Exception Tests

The NPPF requires that the Sequential Test be applied to development proposals in Flood Zones 2 or 3 to determine if there are any 'reasonably available' and suitable alternative sites at lower flood risk. In this case a limited area of the overall site area is within Flood Zones 2 & 3, but the development area is outside of these Flood Zones.

However, the principles should still be applied for developments within the site such that, for example, dwellings are situated on a high part of the site when there is a risk of local surface water flooding. The issues of actual flood risk are discussed below. The issues of safety and reduction in flood risk to others required by an Exception Test are also addressed in this document.

The Local Planning Authority (LPA) will make the final decision with regard to any planning application.

2.3 Environmental Setting

LKC have previously undertaken a Preliminary Risk Assessment for the site (LKC 16 1314, September 2016) and pertinent environmental information for the site is provided in Table 2-1 below.

Summary of Environmental Setting			
	Superficial	None recorded.	
Geology	Bedrock	Eastern area of site: Marlstone Rock Formation (Ferruginous Limestone and Ironstone Western area of site: Whitby Mudstone Formation (Mudstone), Toarcian.	
	BGS Boreholes	BH Ref: SP43NW54, 135m NE: Marlstone Rock Beds, loose brown rubbly sandstone to 5.75m, Middle Lias – Silts and clays, mudstone, Grey silty Clay to 9m. Water struck at 6.5m.	
Hydrogeology	Superficial	Not applicable.	
	Bedrock	Eastern area of site: Secondary A Western area of site: Unproductive	
All adjacent and internal surface water		A watercourse flows adjacent to the western boundary of the site towards the former railway line. Bloxham Brook flows in a westerly direction, approximately 40m to the north of the site boundary. There is a partially culverted watercourse that enters the site from the east and runs along the boundary between the recreation ground and the site before turning north to cross the railway line.	
Site History		Agricultural land, pre-dating 1881.	

Table 2-1: Environmental setting

2.4 Site Reconnaissance

A site visit was undertaken in September 2016 and photographs are provided in Appendix B.

The site generally slopes to the northeast and northwest either side of a ridge. It is bordered by a residential area, the recreation ground, the disused railway to the north; and agricultural fields to the south, west and east. South Newington Road runs alongside the eastern boundary.

There is a partially culverted watercourse at the north eastern boundary, which is partially within the boundary and partially within the recreation ground. This was diverted around the boundary of the recreation ground and along the former railway line boundary in the past. This is then culverted beneath the railway within a 300mm diameter pipe along Hyde Grove and discharges into – Bloxham Brook – to the north of the site.

There is a land drain entering the site from the south in a shallow 300mm diameter pipe which discharges into a shallow ditch that flows to the north before connecting to the watercourse that flows adjacent to the recreation ground.

There is a watercourse flowing along the western boundary that falls towards the former railway line embankment. It is culverted beneath the railway and flows north to Bloxham Brook.

The ground is comprised of slightly clayey, slightly silty sand. There are potential outfalls into the surrounding watercourses and sewers within the adjacent residential area.

2.5 Site and Access Levels

A topographic survey of the site has been undertaken to OS GPS datum, and information is included on the drawings in Appendix A. The highest point is approximately 116.3m AOD on a ridge towards the western half of the site. The site generally falls to the northern boundary, with a fall of approximately 5m to the northeast (111.3m AOD), and 3m to the northwest (113.3m AOD).

The final site levels and ground floor levels of dwellings have not yet been determined. The proposed access would join South Newington Road at around 114.2m AOD.

3 CONSULTATIONS

Information from consultees (Environment Agency (EA), Oxfordshire County Council, Thames Water) is summarised in Table 3-1 below.

Relevant correspondence / information is provided in Appendices C (EA) and D (others).

Source	Details			
	The majority of the site is in Flood Zone 1: Very Low risk, with annual probability of flooding from rivers and the sea of less than 0.1% for the majority of the site, with a small area at the northeast in Flood Zone 3: Medium risk of flooding with an annual probability of flooding of 1.0% or greater from rivers, and 0.5% or greater from the sea.			
	Modelled Levels for Bloxham Brook	No modelled information is available for Bloxham Brook.		
	Records of Flooding	No previous records of flooding in the area.		
	Records of Flood Warning Service	The northeast corner of the site is within a flood warning area.		
Environment Agency	Surface Water Flooding	Very low risk of surface water flooding across the majority of the site. There are two areas of higher risk, the first is adjacent to the western boundary where a high risk is associated with the watercourse that is to the west of the boundary. The other is associated with the culverted watercourse in the northeast corner where the land is lower and is partially dammed by the railway embankment.		
	Flooding from reservoirs	No risk from reservoirs.		
	Groundwater Source Protection Zone	Not within Source Protection Zone.		
Oxfordshire Council	Possible or known incidents of highway flooding	Unaware of any current flooding problems associated with South Newington Road.		
	Likely conditions for connecting into their sewerage system	They would request conditions for a separate system with only foul draining to foul / combined sewers and surface water draining to soakaway/SuDS, watercourse or surface water sewer.		
Thames Water	Sewer map	Combined sewer (300mm diameter) running parallel to the site's boundary along Colesbourne Road, Brookside Way and the adjacent disused railway. A surface water culvert runs along Hyde Grove and Colesbourne Road before discharging into the Water course north of the site, adjacent to Brookside Way.		
Strategic Flood Risk	Level 1 SFRA ³	The site has no history of flooding from any source.		
Assessment (SFRA)	Level 2 SFRA ⁴	The site has no history of flooding from any source.		
Preliminary Flood Risk Assessment (PFRA) ⁵	The Preliminary Flood Risk Assessment (PFRA) ³ for the area indicates that there is a history of flooding within Bloxham in July 2007, although there are no records within the immediate vicinity of the site. The risk of groundwater flooding is recorded at less than 25%. Bloxham is recorded as a surface water hotspot.			

Table 3-1: Summary of available information

³ Strategic Flood Risk Assessment Level 1: Cherwell District Council and West Oxfordshire District Council; 2009, Scott Wilson.

⁴ Strategic Flood Risk Assessment Level 2: Cherwell District Council; 2012, URS.

⁵ Preliminary Flood Risk Assessment: Oxfordshire County Council; 2011, JBA Consulting

4 ASSESSMENT OF FLOOD RISK

4.1 Flood Zones

The detailed flood map provided by the EA indicates that the site is in Flood Zones 1, 2 & 3 (see Appendix C).

A direct comparison was made between the provided EA flood level extents at this location and the topographical levels.

The EA did not provide any modelled levels for the stretch of the Bloxham Brook closest to the site. Therefore the level data was extracted by comparison with the flood map extents and the available topographical data provided for this site to provide the 100-year and 1000-year plus climate change levels.

Comparison of the flood map and the topographical survey indicates that the 1% (100-year) flood level would be coincident with the 112.0m AOD contour.

The extents of the 0.1% (1000-year) flood level on the map would be coincident with the 112.5m AOD contour.

4.2 Sources of flooding

The risk of flooding from the following flood sources has been considered:

Fluvial – The EA has confirmed that part of the study area is within Flood Zones 2 and 3 and has a Low to Medium risk in this area. However, the majority of the site is in Flood Zone 1 Very Low Risk. The EA has confirmed that there are no records of flooding in the vicinity. Therefore, the flood risk associated with this source is considered Low.

Tidal – The study area is remote from the sea and tidally influenced water bodies; therefore, the flood risk associated with this source is considered Negligible.

Pluvial (Rainfall) – The surface water flood risk maps show a significant area within the north of the site that has the potential to flood during prolonged heavy rainfall. This area is associated with the disused railway embankment at the northern boundary. This area needs consideration within the detailed design or there is the potential to have areas of standing water in gardens and landscaped areas not positively drained if overland flow routes are not considered. No areas of shallow standing water were observed during the site visit. The risk to property and life will be Low, but there is the potential to have areas of standing water in gardens and landscaped areas not positively drained if overland flow routes are not considered. Therefore, the risk of flooding from surface water flooding should be considered further during the detailed design.

Surface Water (Overland flow) – There is no impermeable area at a level above the site within the immediate vicinity. If there was a drainage failure causing overland flow it would flow towards the northern boundary. There have been anecdotal records of flooding adjacent to the railway embankment within the adjacent recreation ground There are two separate land drains flowing through the site that may overtop if their onwards route is blocked allowing water to collect in the northeast corner of the site. The flood risk from this source is considered Low.

Groundwater – The BGS has groundwater records for the study area in the form of borehole records. The records show the water table is recorded at 6.5m below the surface. There are no potential sources of Artesian Pressure to force the water to spring in the area. The risk is recorded at less than 25% on the flood susceptibility mapping. The clay based soils make it unlikely for groundwater flooding to occur. No evidence of shallow groundwater was observed during the walkover. Therefore, the flood risk associated with this source is considered Very Low.

Sewers – Thames Water sewer records show 300mm diameter combined sewers adjacent to the site, within Colesbourne Road, Brookside Way and within the adjacent disused railway bed. Surface water drains run along Hyde Grove, Colesbourne Road and Cherrys Close, and discharge into the watercourse adjacent to Brookside Way. The ground falls away to the north from the railway. The Drainage and Water Enquiry states that there are no records of sewer flooding at the site location. Therefore, the flood risk associated with this source is considered Very Low.

Artificial sources – According to the EA online maps, the study area is not at risk from reservoir flooding. The flood risk associated with artificial sources is therefore considered Very Low.

Source of Flooding	Risk assessment Level
Fluvial	Low
Tidal	Negligible
Pluvial (Rainfall)	Low
Surface Water	Low
Groundwater	Very Low
Sewers	Very Low
Artificial Sources	Very Low

4.3 Summary of Flood Risk

Table 4-1 Summary of Existing Risk Level

The site is located within Flood Zones 1, 2 and 3, and a low risk of flooding from all sources has been identified for the site. LKC consider that a strategy for surface water management will be required at the site to mitigate the risk. The assessments of a range of measures that are feasible for the site are outlined in Section 5.

5 SURFACE WATER MANAGEMENT

The NPPF recognises that flood risk and other environmental damage can be managed by minimising changes in the volume and rate of surface run-off from development sites through the use of Sustainable Drainage Systems (SuDS), this being complementary to the control of development within the floodplain.

SuDS will not alleviate flooding in an area prone to flooding; however, properly designed SuDS have the potential to prevent the surface water runoff from new development worsening the flood risk. The effective disposal of surface water from development is a material planning consideration in determining proposals for the development and use of land.

The accepted principles are that surface water arising from a developed area should, as far as practicable, be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development, while reducing the flood risk to the site itself and elsewhere, taking climate change into account.

The Building Regulations Requirement H3⁶ stipulates that rainwater from roofs and paved areas is carried away from the surface to discharge to one of the following, listed in order of priority:

- a) an adequate soakaway or other adequate infiltration system,
- b) a watercourse or, where that is not practicable,
- c) a sewer.

The concept of a sustainable drainage system has been incorporated into the outline drainage strategy for the study area in order to comply with the Flood and Water Management Act 2010⁷.

5.1 Infiltration

The Groundwater Source Protection Zone mapping from the EA website shows that the site is not within any identified protection zones.

A summary of British Geological Society superficial soils and bedrock aquifer classification supplemented by local records is summarised in Table 5-1 below:

Classification	Description	Aquifer Description	Recorded Water Table Depth	Soakaway Potential
None recorded	Brown clayey sand with weathered sand stone.	N/A	6.5m	Limited
Western site: Whitby Mudstone Formation	Mudstone	Secondary A	N/A	Poor
Eastern site: Marlstone Rock Formation	Limestone and Ironstone	Secondary A	N/A	Poor

Table 5-1 – Geological and Hydrogeological Setting

⁶ UK Government – Building Regulations (2010)

⁷ UK Government – Flood and Water Management Act (2010)

Infiltration methods such as soakaways are unlikely to be feasible, but this may be investigated further at the detailed design stage if required.

There is a slope over the site and surrounding area which indicates that groundwater in the vicinity of the site would drain towards the north.

There is a partially culverted watercourse running adjacent to the site that currently collects the surface water. This is culverted under the former railway embankment. The culvert then flows north from the site below Hyde Grove, before discharging into Bloxham Brook.

There are surface water pipes within the roads to the north of the former railway. These are not classified as adopted by Thames Water and are shown as gully connections to the 300mm diameter the culverted watercourse. There are also the 300mm diameter combined sewers within the adjacent disused railway and housing development.

5.2 Surface Water Drainage Strategy

The drainage options relating to the final discharge of surface water for this section of the site are listed in Table 5-2 in order of priority within the NPPF:

Option No:	Drainage Solution	Most feasible solution	Comments
а	Soakaway/Infiltration	3	Low permeability – due to the clays and weathered mudstones.
b	Connection to Watercourse.	1	There is a culverted watercourse that flows north from the site there are also open sections of the watercourse where it passes through the site.
С	Discharge into a sewer.	2	The depth of the sewers to the north of the former railway, indicate that a connection is possible – subject to approval from Thames Water.

Table 5-2: Drainage options for land

Table 5-3 provides a summary of the SuDS options appraisal with consideration of CIRIA C697 (The SUDS Manual)⁸ for the development:

	Appropriate		
SuDS Option	to	Comments	
	Development		
Soakaways	X	Due to the nature of the ground conditions, the use of infiltration systems is unlikely be feasible.	
Infiltration basin	X	Depressions that store and dispose of water via infiltration. May not be appropriate given the ground conditions.	
Sand filter	X	Treatment devices using sand beds as filter media.	
Filter strip	*	Engineered filters that use vegetation to remove and treat runoff. The filter strip is sloped to allow sheet flow across the vegetated strip. A filter strip offers no storage and is used solely to remove pollutants from surface water.	
Filter drains	*	Linear trenches filled with a permeable granular material, often with a perforated pipe in the base of the trench.	
Detention basin	✓	Dry depressions designed to hold water for a specific retention time.	
Swales	✓	Swales are shallow grass-lined channels that provide capacity for conveying flows at a controlled rate into ponds and watercourses.	
Rain water harvesting	*	Rainwater harvesting collects the rain which falls onto roofs, then stores it in a tank until required for a non-potable use. When required, the water is pumped to the point of use, thus displacing what would otherwise be a demand for mains-water. In the process, a volume of water is kept out of the storm-water management system, thereby helping to reduce flooding risks. Rainwater harvesting systems are currently not included in the development proposals.	
Green roofs	*	Green roof installations can help to reduce surface water runoff from roof areas depending on the system specified. Green roofs are not currently included in the development proposals.	
Geo-cellular storage systems	~	Modular block systems can be used to provide an underground storage facility. Any geo-cellular storage systems should be lined with a geo-membrane to provide attenuation storage.	
Permeable Pavements – with granular and geo-cellular storage systems	✓	Permeable pavements allow inflow of rainwater into underlying construction. Any geo-cellular storage systems would have to be lined with an impermeable membrane to provide storage rather than infiltration for runoff from highways.	
Ponds Attenuation ponds can be used to offset the increase in flows attributable to increased area of hard standing minimise the risk of flooding to and from the proposed Ponds will attenuate the surface water flow prior to disc public surface water sewers. The storage volume affor features should not include any permanent water in the		Attenuation ponds can be used to offset the increase in surface water flows attributable to increased area of hard standing, in order to minimise the risk of flooding to and from the proposed development. Ponds will attenuate the surface water flow prior to discharging to the public surface water sewers. The storage volume afforded by these features should not include any permanent water in the pond.	
Oversized Pipes	✓	Oversizing the pipes that make up the on-site drainage network is a cost effective method for providing attenuation storage within the network. Such systems could be considered on the parts of the development where gradients are relatively flat.	
Tanks	1	Pretabricated underground tanks could be considered at the detaile design stage in order to provide storage to attenuate surface wate runoff.	
Flow control devices	1	The peak flow rates will be controlled by flow control devices e.g. hydrobrake style flow control systems, and restricted orifices. Flow control devices enable the discharge to be restricted to a constant rate from the development.	

Table 5-3: Summary of the SuDS options appraisal.

<u>Notes</u>

✓ Suitable for use given the nature and scale of the development

* Possibly suitable for use – not included in the client and architect design proposal at present

X Not suitable

⁸ CIRIA C697 - The SUDS Manual. London 2015

5.3 Surface Water Attenuation Requirements

From correspondence with the EA that the flow should be limited to a 'greenfield scenario' for estimating the attenuation volumes required. It is estimated from the supplied plan (see Appendix A) that the site will have the following designated areas (Table 5-4).

Designated Areas	Plot Area
Total area (ha)	6.00
Catchment Area (ha)	3.96
Development Area (ha)	2.75
Impermeable Split (ha)	1.51
Permeable Split (ha)	1.24
Catchment Greenspace (ha)	1.21

Table 5-4: Assumed plot areas

Table 5-4 shows the assumed split in area included within the calculations.

5.3.1 Attenuation Estimate

Surface water storage and Greenfield Runoff estimations based on the HR Wallingford procedure (IH 124⁹) and the ADAS 345 method¹⁰ have been undertaken for the development and the output report is presented in Appendix 'E'.

The methods of calculation use different variables and parameters to estimate Q_{bar} . The IH124 method which is commonly used for these calculations does not take into account the slope of the site or vegetation coverage. It can often underestimate the value for Greenfield runoff, if these are particularly relevant to the plot. The ADAS method was used for many years as the basis for the Greenfield runoff calculations, and was tested mostly for calculating flows from sloping sites; but it had a lower database of test sites.

For the contributing catchment of 3.96ha an estimate has been produced assuming a developable area of 2.75ha. Assuming conservatively that 55% of the developed area comprises roofs and hard surfacing with an allowance for urban creep, the resulting impermeable area would be 1.51ha. This gives the following runoff rates and attenuation requirements for this section based on the Wallingford IH 124 method:

•	Q _{bar} :	13.70 l/s
•	1 in 1 year greenfield runoff rate:	11.64 l/s
•	1 in 30 year greenfield runoff rate:	30.55 l/s
•	1 in 100 year greenfield runoff rate:	43.15 l/s

Alternatively, the ADAS 345 Report provides increased estimations from the IH 124 method below:

•	Q _{bar} :	19.60 l/s
•	1 in 1 year greenfield runoff rate:	15.85 l/s
•	1 in 30 year greenfield runoff rate:	34.02 l/s
•	1 in 100 year greenfield runoff rate:	44.02 l/s

All Greenfield runoff estimates and subsequent storage estimates are included in Appendix E.

⁹ IH124 Flood Estimation of Small Catchments

¹⁰ The Agriculture and Development Advisory Service report 345

The following attenuation has been estimated for the development using greenfield runoff rates and utilises the FSR methodology¹¹ as:

- Attenuation storage volume: **375.0** m³ (1 in 30 year event)
- Retention on site volume: **617.2** m³ (1 in 100 year + 20% Climate Change)
- Retention on site volume: **761.5** m³ (1 in 100 year + 40% Climate Change)

The following attenuation has been estimated for the development using ADAS 345 Greenfield runoff rates and utilises the FSR methodology as:

- Attenuation storage volume: **359.5** m³ (1 in 30 year event)
- Retention on site volume: **612.7** m³ (1 in 100 year + 20% Climate Change)
- Retention on site volume: **756.1** m³ (1 in 100 year + 40% Climate Change)

Attenuation storage aims to limit the peak rate of runoff from the development to the corresponding greenfield runoff for a range of annual flow rate probabilities before discharge to watercourse. As the flow from the development would be restricted to the greenfield equivalent there should be little change in the flows that enter the unnamed watercourse and thus the risk of flooding and the level of erosion created as a result from the development should be negligible.

The attenuation required for a 1 in 30 year storm event, requires a storage volume of between **359.5** m^3 and **375.0** m^3 and for the 1 in 100 year event, a storage capacity of between **612.7** m^3 and **761.5** m^3 will be required from on-site storage as well as SuDS systems. All volumes can be stored within the site boundary and discharges will be limited by flow control devices to the on-site culverted watercourse.

The use of permeable paving may be viable dependant on the detailed design of the proposed development. If this drainage technique is considered to be feasible then it will reduce the requirement for attenuation as it will reduce the contributing area.

Assuming that the outline drainage strategy is acceptable to the Local Authority, a more detailed design can be presented and agreed with the appropriate regulatory bodies during the detailed design phase.

A preliminary drainage strategy (shown in Appendix F) has been developed based on an indicative development plan.

5.4 Foul Drainage

The potential foul drainage strategy is considered elsewhere.

¹¹ Flood Studies Report Wallingford NERC 1975

6 MITIGATION MEASURES

6.1 **Proposed Site levels and Development Level**

Current Environment Agency guidance recommends that the minimum ground floor levels of residential developments are set at a minimum of 600mm above the 1% annual probability (1 in 100 year) flood level including an additional fluvial allowance for climate change. It is generally accepted that vehicle parking can be accommodated within the flood zone with suitable safeguards. The 'design' flood level for the site should therefore be the 1% annual probability event with allowance for climate change plus an allowance for freeboard.

On the basis of the information provided, the 1 in 100 year flood level has been estimated as 112.0m AOD. Normal Environment Agency recommendation is to set ground floor level for the development at a minimum of 600mm above the 'design' level, or 112.0m AOD plus an allowance for climate change. As the modelling information is not available to predict the climate change increase the assessment utilised the estimated 1 in 1000 year flood level of 112.5m AOD as the design level. Thus, the recommended minimum finished floor level should be taken as the 1 in 1000 year flood level plus 600mm; this is 113.1m AOD. The lowest levels on site have an approximate level of 111.2m AOD which is below this level but the area to be utilised for housing is outside of the area designated as Flood Zones 2 & 3.

6.2 Safe Access

Safe and dry access is available via South Newington Road (114.2m AOD) to the southeast at 2.2m above the 1% annual probability event (112.0m AOD). Therefore no mitigation is proposed.

6.3 Flood Resistance and Resilience

The development proposed may be subject to flooding at more extreme events than those considered. Flood resilience measures should be included into ground floor construction to aid recovery after any event in the lower areas of the site. If utilised, typical measures would include solid floors, use of suitable materials and services fed from upper floors with outlets at high level. The need can be discussed and agreed with building control officers during detailed design.

6.4 Residual Risks

It is impossible to completely guard against flooding since extreme events greater than the design standard event are always possible. However, ground floor levels should be set above proposed levels across the site and provide a nominal freeboard to allow overland flow under exceptional conditions. Overland flow routes should be considered in case of drainage failure and the extreme events.

7 CONCLUSIONS

The site is shown on published mapping to be located within the Environment Agency's Flood Zones 1, 2 & 3. Comparison of topographical data with the estimated flood levels indicates that the majority of the site is in Flood Zone 1 - Very Low Risk of flooding. There is a small area at the northeast boundary is within Flood Zones 2 & 3 that will not be used for residential accommodation.

Low risks of flooding from all sources have been identified from information provided by Oxfordshire County Council and Thames Water.

An assessment of these risks in conjunction with the development proposals have resulted in the following recommendations for the safe development of the site:

- The recommended minimum finished floor level is 113.1m. This is 600mm above the 0.1% flood level.
- Above this topographical level, the finished floor level should be set at a nominal height above the finished ground levels to allow for overland flow routes in extreme events and drainage failures.
- Pedestrian and vehicular safe access to and from the site is achievable under all conditions via the access road off South Newington Road.
- Potential for soakaway use for rainwater disposal is low; however this could be investigated further at the detailed design phase if required.
- Surface water flow will probably need to be attenuated to the greenfield runoff rate or a rate agreed with the LLFA.
- Surface water arising from the site could potentially discharge into the culverted watercourse that discharges into Bloxham Brook, adjacent to the northern site boundary.
- A formal evacuation plan is not considered to be required.

Further details on the proposed mitigation measures are provided in Section 6. All proposed measures should be agreed with the Local Authority prior to commencement of the development.

APPENDIX A

FIGURES, PLANS, AND DRAWINGS

APPENDIX B

SITE INFORMATION

Geology 1:50,000 Maps Legends

Artificial Ground and Landslip

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	WGR	Worked Ground (Undivided)	Void	Holocene - Holocene

Superficial Geology

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age		
	ALV	Alluvium	Clay, Silt, Sand and Gravel	Flandrian - Flandrian		

Bedrock and Faults

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age	
	CNL	Chipping Norton Limestone Formation	Limestone, Ooidal	Bathonian - Bathonian	
	NS	Northampton Sand Formation	Sandstone, Limestone and Ironstone	Aalenian - Aalenian	
	WHM	Whitby Mudstone Formation	Mudstone	Toarcian - Toarcian	
	MRB	Marlstone Rock Formation	Ferruginous Limestone and Ironstone	Toarcian - Pliensbachian	
	DYS	Dyrham Formation	Siltstone and Mudstone, Interbedded	Pliensbachian - Pliensbachian	
	CHAM	Charmouth Mudstone Formation	Mudstone	Pliensbachian - Sinemurian	
/		Faults			

Geology 1:50,000 Maps

This report contains geological map extracts taken from the BGS Digital Geological map of Great Britain at 1:50,000 scale and is designed for users carrying out preliminary site assessments who require geological maps for the area around the site. This mapping may be more up to date than previously published paper maps. The various geological layers - artificial and landslip deposits, superficial

geology and solid (bedrock) geology are displayed in separate maps, but superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page. Not all layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below.

Geology 1:50,000 Maps Coverage

Map ID:	1
Map Sheet No:	218
Map Name:	Chipping Norton
Map Date:	1968
Bedrock Geology:	Available
Superficial Geology:	Available
Artificial Geology:	Available
Faults:	Not Supplied
Landslip:	Available
Rock Segments:	Not Supplied

INFORMATION v15.0 31-Jan-2017

Geology 1:50,000 Maps - Slice A

www.envirocheck.co.uk

Page 1 of 5

Superficial Geology

Superficial Deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 1.8 million years from the present.

They rest on older deposits or rocks referred to as Bedrock. This dataset contains Superficial deposits that are of natural origin and 'in place'. Other superficial strata may be held in the Mass Movement dataset where they have been moved, or in the Artificial Ground dataset where they are of man-made origin.

Most of these Superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay, and onshore they form relatively thin, often discontinuous patches or larger spreads.

Superficial Geology Map - Slice A

Order Details: Order Number: Customer Reference: National Grid Reference: Slice: Site Area (Ha): Search Buffer (m):	112367251_1_1 LKC 16 1314 442370, 235310 A 5.92 1000	
Site Details: Site at 442387,235301		
	Tel: Fax: Web:	0844 844 9952 0844 844 9951 www.envirocheck.co.uk
v15.0 31-Jan-2017		Page 3 of 5

Bedrock and Faults

Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Pliocene, 1.8 million years ago.

The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and sedimentary.

The BGS Faults and Rock Segments dataset includes geological faults (e.g. normal, thrust), and thin beds mapped as lines (e.g. coal seam, gypsum bed). Some of these are linked to other particular 1:50,000 Geology datasets, for example, coal seams are part of the bedrock sequence, most faults and mineral veins primarily affect the bedrock but cut across the strata and post date its deposition.

Bedrock and Faults Map - Slice A

Order Details: Order Number: Customer Reference: 112367251_1_1 LKC 16 1314 National Grid Reference: 442370, 235310 Slice: A 5.92 Site Area (Ha): Search Buffer (m): 1000 Site Details: Site at 442387,235301 Tel: Fax: 0844 844 9952 0844 844 9951 Landmark Web www.envirocheck.co.uk v15.0 31-Jan-2017 Page 4 of 5 This page has been left blank intentionally

Bitish Geological Survey Location Cherry's Close,Blox	BOREHOLE No. British Geological Survey kham,0xon.	Seven	British Geological Survey Date 30.05.1980				
	Strata C	:hange		Samples		nples Water	
British Geological Survey	Legend Dept British Geofo	h Reduced Level gical Survey ^m	No.	Deoth m	Туре	itish Geologi	al Surve
Marlstone Rock Beds							
loose brown rubbly sandston						1	
- very loose Bitish Geological Survey	British Geold			British Ge	blogical Surve		-
 brown clayey sand becoming moist 						iitish Geologia	al Sun
- loose rubbly		gical pulvey			,	ation Geologi	ai SUIV
- becoming medium hard							
British Geologicar Salvening hard	British Geologica Gundar	75		British Ge	, plogical Surve	r -	
MIDDLE LIAS - SILTS AND CL Mudstone	AYS 6.	50			-	•	
British Geological Survey Grey silty CLAY	Geolog	gical Survey			E	iitish Geologio	al Surv
- clayey SILT							
Eritish Geological Survey - grey silty CLAY	British Geological Survey	00		British Ge	plogical Surve		
Borehole Diameter : 75mm. Ground Level O.D. : 385.19			B D	- Bulk - Diste	Sampl urbed Sa	e ample	
Rotary Auge Scale of Legend : 2.0cm. to 1 British Geological Survey Weather : Warm Remarks : Borehole dr	er 1.Om. British Geolog rilled from existir	gical Survey	S W level.	- Undi - Stand - Wate	dard Per dard Samp	Sample netration aritish Geologic lle	Tes cal Surv
Report No. S.275	BOREHOLE I	_0G		Dat	e Jur	ne 1980	

<image/>	Photograph 3 (facing E): Bloxham Brook.
<image/>	Photograph 4 (facing S): Outfall from culverted watercourse to Bloxham Brook.

Photograph 5 (facing SW): Highway Drainage on South Newington Road.
Photograph 6 (facing W): Culverted watercourse entering Recreation Ground.

Photograph 7 (facing E): Culverted watercourse opening out on the boundary between the recreation ground and the site.
Photograph 8 (facing W): Watercourse entering culvert behind changing rooms.

Photograph 9 (facing NW): View towards western boundary from the northern boundary.
Photograph 10 (facing N): Culvert exiting recreation ground area.

Photograph 13 (facing E): Northern boundary adjacent to former railway line.
Photograph 14 (facing W): Northern boundary adjacent to former railway line.

Photograph 15 (facing S): Clay type soils encountered by hand augering.
Photograph 16 (facing N): Watercourse on the western boundary.

Photograph 21 (facing NE): View towards current access adjacent to the Recreation Ground.
Photograph 15 (facing E): View towards central field boundary.

APPENDIX C

ENVIRONMENT AGENCY DATA

This page has been left blank intentionally

Mark Jones

From: Sent:	WT Enquiries <wtenquiries@environment-agency.gov.uk> 10 October 2016 14:04</wtenquiries@environment-agency.gov.uk>
То:	Matthew Craig
Subject:	RE: Ref: THM25442 Flood Risk Assessment - South Newington Road, Bloxham
Attachments:	Flood Map.pdf; Surface Water Map.pdf

Dear Matthew

Thank you for your request for modelled flood levels.

The Bloxham Brook is classed as a main river but we have not carried out flood level modelling of this Brook. We have no plans to model the river in the near future. There are no Environment Agency flood defence schemes or structural defences on the river. We hold no records of previous flooding in the area. I have attached a flood zone map for your information.

I have also attached a surface water map although the Lead Local Flood Authority, Oxfordshire County Council, will hold more information on surface water, ground water flooding and drainage. You may be interested in the following guidance / information publically available:

- **'Planning Practice Guidance'** provides information about planning considerations in areas at risk of flooding. <u>http://planningguidance.planningportal.gov.uk/</u>
- **'Planning applications: assessing flood risk'** information about completing Flood Risk Assessments. <u>https://www.gov.uk/planning-applications-assessing-flood-risk</u>
- 'Site specific flood risk assessment: Checklist' a checklist to help ensure you have considered all the relevant factors in your flood risk assessment. <u>http://planningguidance.planningportal.gov.uk/blog/guidance/flood-risk-and-coastal-change/site-specific-flood-risk-assessment-checklist/</u>

We recommend that you discuss your proposals with the Local Planning Authority at the earliest opportunity. They will be able to advise you on a wide range of planning matters in addition to flood risk.

I hope that we have correctly interpreted your request. Please refer to our Open Government Licence to see how you may use the supplied data: <u>http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/</u>

Did you know that many of our datasets are available online? Simply visit environment.data.gov.uk

We respond to requests for recorded information that we hold under the Freedom of Information Act 2000 (FOIA) and the associated Environmental Information Regulations 2004 (EIR).

We are committed to providing a professional customer service. Please help us understand more about what is important to you by completing on line survey: <u>http://www.smartsurvey.co.uk/s/EnvironmentAgencyCustomerSurvey/?a=WT</u>

Please get in touch if you have any further queries or contact us within two months if you would like us to review the information we have sent.

Kind regards

Julia Hewitt Customers and Engagement Officer Customers and Engagement Environment Planning and Engagement Environment Agency Thames Area Red Kite House, Howbery Park, Wallingford, OX10 8BD

Telephone: 020302 59673

You can follow us on Twitter at @EnvAgencySE

From: Matthew Craig [mailto:m.craig@thelkgroup.com]
Sent: 29 September 2016 16:29
To: Enquiries, Unit <<u>enquiries@environment-agency.gov.uk</u>>
Subject: Ref 161006/JC06 Flood Risk Assessment - South Newington Road, Bloxham

Dear Sir/Madam

LK Consult Ltd. has been commissioned to undertake a Flood Risk Assessment (FRA), of a site located off South Newington Road, Bloxham, Oxfordshire. Nearest Postcode OX15 4HJ.

Centred at approximate National Grid Reference 442500E, 235240N. The area of interest appears to be within Flood Zone 1.

The site plans are attached to this email.

To complete the FRA we would be grateful if you could supply us with the following, if available, for the vicinity of the site:

- The modelled 1% and 0.1% annual probability fluvial flood level, the 1% annual probability plus climate change flood level and any lower order flood levels, in particular the modelled 5% fluvial flood level if relevant for functional floodplain, (with confirmation of the reference datum used for the levels i.e. Local OSBM or OSGPS) if available.
- Details of any flood defences in the immediate area, including their extent, crest levels (and datum), assumed level of standard, construction and maintenance regime, as well as any other structures which may influence the local hydraulics.
- Proposed defence levels and timescale for implementation.
- Results of any breach analyses for defences in the area which may be relevant.
- Records of any historic flood events and potential sources of flooding from rivers, land drainage, groundwater, foul and surface water sewers on site and in the area.
- Any restrictions to infiltration and discharge to the watercourse.
- A copy of your detailed flood zone map and the modelled flood extent plans for the area.

If you have any queries please get in touch with me.

We are, of course, happy to pay your reasonable charge for this service. Please let me know by return what information is available and what the charge will be and we will pay the relevant fees by debit card as soon as possible.

Any advice or recommendations you may have regarding the potential discharges from the development of this site?

With reference to the attached site plans, there appear to be extensive drainage ditches in the vicinity. Do you have any information that may be relevant to the FRA?

Regards

Matthew Craig

```
This message has been scanned and no issues discovered. Click \underline{here} to report this email as spam
```

Information in this message may be confidential and may be legally privileged. If you have received this message by mistake, please notify the sender immediately, delete it and do not copy it to anyone else.

We have checked this email and its attachments for viruses. But you should still check any attachment before opening it. We may have to make this message and any reply to it public if asked to under the Freedom of Information Act, Data Protection Act or for litigation. Email messages and attachments sent to or from any Environment Agency address may also be accessed by someone other than the sender or recipient, for business purposes. Click here to report this email as spam

Map centred on land south of Bloxham

Risk of flooding from Surface Water

© Environment Agency copyright and / or database rights 2014. All rights reserved. © Crown Copyright and database right 2014. Ordnance Survey licence number 100024198.

Contact Us: National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 03708 506 (Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

General Specified Site Specified Buffer(s) X Bearing Reference Point

Agency and Hydrological (Flood)

Extreme Flooding from Rivers or Sea without Defences (Zone 2)
 Flooding from Rivers or Sea without Defences (Zone 3)
 Area Benefiting from Flood Defence
 Flood Water Storage Areas
--- Flood Defence

Flood Map - Slice A

Order Details

 Order Number:
 112367251_1_1

 Customer Ref:
 LKC 16 1314

 National Grid Reference:
 442370, 235310

 Slice:
 A

 Site Area (Ha):
 5.92

 Search Buffer (m):
 1000

 Site Details
 Site at 442387,235301

 Landmark
 Tel: Fax: Web:
 0844 844 9952 0844 844 9951 www.envirocheck.co.uk

 A Landmark Information Group Service
 v50.0
 31-Jan-2017
 Page 3 of 6

Order Details

112367251_1_1 LKC 16 1314 Order Number: Customer Ref: National Grid Reference: 442370, 235310 А Site Area (Ha): Search Buffer (m): 5.92 1000 Site Details Site at 442387,235301

Tel: Fax: Web: Landmark 0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Site at 442387,235301

Landmark HERDBNATION GROUP

A Landmark Information Group Service v50.0 31-Jan-2017 Page 6 of 6

APPENDIX D

CONSULTEE CORRESPONDENCE

This page has been left blank intentionally

Mark Jones

From:	Flood Management <floodmanagement@oxfordshire.gov.uk></floodmanagement@oxfordshire.gov.uk>
Sent:	20 October 2016 17:08
То:	Matthew Craig
Cc:	lewis.purbrick@environment-agency.gov.uk
Subject:	RE: Flood Risk Assessment - Newington Road, Bloxham
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hi Mathew Sorry for the delay in replying I have no information on flooding of this site, but as you intend to discharge to the Sorr Brook and the EA are at the present time in the process of designing a scheme to reduce the flooding of the Sorr brook through Bloxham it would be useful if you contacted Lewis Purbrick of the EA. Regards Gordon

Gordon Hunt County Drainage Engineer 07774 835434

From: Matthew Craig [mailto:m.craig@thelkgroup.com]
Sent: 07 October 2016 15:31
To: Drainage - E&E; Flood Management
Subject: Flood Risk Assessment - Newington Road, Bloxham

Dear Sir/Madam,

LK Consult Ltd. has been commissioned to undertake a Flood Risk Assessment (FRA), of a site located off South Newington Road, Bloxham, Oxfordshire. Nearest Postcode OX15 4HJ.

Centred at approximate National Grid Reference 442500E, 235240N. The area of interest appears to be within Flood Zone 1.

The site plan is attached to this email

To complete the FRA we would be grateful if you could supply us with the following, if available, for the vicinity of the site:

- Details of any flood defences in the immediate area, including their extent, crest levels (and datum), assumed level of standard, construction and maintenance regime, as well as any other structures which may influence the local hydraulics.
- Records of any historic flood events and potential sources of flooding from rivers, land drainage, groundwater, foul and surface water sewers on site and in the area.
- Any restrictions to infiltration and discharge to the watercourse.

If you have any queries please get in touch with me.

We are, of course, happy to pay your reasonable charge for this service. Please let me know by return what information is available and what the charge will be and we will pay the relevant fees by debit card as soon as possible.

We will also contact the EA and Thames Water as well for their information and requirements.

Any advice or recommendations you may have regarding the potential discharges from the development of this site?

With reference to the attached site plans, there appear to be a number of historical watercourses in the vicinity

We will be in contact with all other relevant authorities to get a more complete understanding of the issues in the area.

Regards

Matthew Craig

This email, including attachments, may contain confidential information. If you have received it in error, please notify the sender by reply and delete it immediately. Views expressed by the sender may not be those of Oxfordshire County Council. Council emails are subject to the Freedom of Information Act 2000. http://www.oxfordshire.gov.uk/emaildisclaimer.

Sewer Flooding History Enquiry

LK Group

Eton Hill Road Radcliffe

Search address supplied

South Newington Road Bloxham Oxfordshire OX15 4HJ

Your reference	N/A
Our reference	SFH/SFH Standard/2016_3422413
Received date	30 September 2016
Search date	30 September 2016

Thames Water Utilities Ltd

Property Searches PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

T 0118 925 1504

E searches@thameswater.co.uk I www.thameswaterpropertysearches.co.uk

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

Sewer Flooding History Enquiry

Search address supplied: South Newington Road, Bloxham, Oxfordshire, OX15 4HJ

This search is recommended to check for any sewer flooding in a specific address or area

- TWUL, trading as Property Searches, are responsible in respect of the following:-
- (i) any negligent or incorrect entry in the records searched;
- (ii) any negligent or incorrect interpretation of the records searched;
- (iii) and any negligent or incorrect recording of that interpretation in the search report
- (iv) compensation payments

Thames Water Utilities Ltd

Property Searches PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

T 0118 925 1504

E searches@thameswater.co.uk I www.thameswaterpropertysearches.co.uk

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

Sewer Flooding History Enquiry

History of Sewer Flooding

Is the requested address or area at risk of flooding due to overloaded public sewers?

The flooding records held by Thames Water indicate that there have been no incidents of flooding in the requested area as a result of surcharging public sewers.

For your guidance:

- A sewer is "overloaded" when the flow from a storm is unable to pass through it due to a permanent problem (e.g. flat gradient, small diameter). Flooding as a result of temporary problems such as blockages, siltation, collapses and equipment or operational failures are excluded.
- "Internal flooding" from public sewers is defined as flooding, which enters a building or passes below a suspended floor. For reporting purposes, buildings are restricted to those normally occupied and used for residential, public, commercial, business or industrial purposes.
- "At Risk" properties are those that the water company is required to include in the Regulatory Register that is presented annually to the Director General of Water Services. These are defined as properties that have suffered, or are likely to suffer, internal flooding from public foul, combined or surface water sewers due to overloading of the sewerage system more frequently than the relevant reference period (either once or twice in ten years) as determined by the Company's reporting procedure.
- Flooding as a result of storm events proven to be exceptional and beyond the reference period of one in ten years are not included on the At Risk Register.
- Properties may be at risk of flooding but not included on the Register where flooding incidents have not been reported to the Company.
- Public Sewers are defined as those for which the Company holds statutory responsibility under the Water Industry Act 1991.
- It should be noted that flooding can occur from private sewers and drains which are not the responsibility of the Company. This report excludes flooding from private sewers and drains and the Company makes no comment upon this matter.
- For further information please contact Thames Water on Tel: 0800 316 9800 or website www.thameswater.co.uk

Thames Water Utilities Ltd

Property Searches PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

T 0118 925 1504

E searches@thameswater.co.uk www.thameswaterpropertysearches.co.uk

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

Gladman Developments Limited Gladman House Alexandria Way Congleton CW12 1LB

Search address supplied	St Helen's Avenue, South Newington Road, Cumberford Hill and Barford Road, Bloxham, Banbury, Oxfordshire, OX15 4QH
Your reference	LKs/Bloxham 3 2016-104
Our reference	CDWS/CDWS Standard/2016_3416079
Received date	22 September 2016
Search date	26 September 2016

Notification of Price Changes...

From 1 September 2016 Thames Water Property Searches will be increasing the prices of its CON29DW, CommercialDW Drainage & Water Enquiries and Asset Location Searches.

This will be the first price rise in three years and is in line with the RPI at 1.84%. The increase follows significant capital investment in improving our systems and infrastructure, including the recent updates to the content of the Law Society's CON29DW and the CommercialDW Enquiries.

Enquiries received with a higher payment prior to 1 September 2016 will be non-refundable. For further details on the price increase please visit our website at www.thameswater-propertysearches.co.uk

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

CommercialDW

Drainage & Water Enquiry

Question

Summary Answer

Maps, Wayleaves, Easements, Manhole Cover and Invert levels

1.1	Where relevant, please include a copy of an extract from the public sewer map.	Map Provided
1.2	Where relevant, please include a copy of an extract from the map of waterworks.	Map Provided
1.3	Is there a wayleave/easement agreement giving Thames Water the right to lay or maintain assets or right of access to pass through private land in order to reach the Company's assets?	No
1.4	On the copy extract from the public sewer map, please show manhole cover, depth and invert levels where the information is available.	See Details

Drainage

2.1	Does foul water from the property drain to a public sewer?	See Details
2.2	Does surface water from the property drain to a public sewer?	See Details
2.3	Is a surface water drainage charge payable?	See Details
2.4	Does the public sewer map indicate any public sewer, disposal main or lateral drain within the boundaries of the property?	Yes
2.4.1	Does the public sewer map indicate any public pumping station or any other ancillary apparatus within the boundaries of the property?	No
2.5	Does the public sewer map indicate any public sewer within 30.48 metres (100 feet) of any buildings within the property?	See Details
2.5.1	Does the public sewer map indicate any public pumping station or any other ancillary apparatus within the 50metres of any buildings within the property?	No
2.6	Are any sewers or lateral drains serving, or which are proposed to serve the property, the subject of an existing adoption agreement or an application for such an agreement?	No
2.7	Has a sewerage undertaker approved or been consulted about any plans to erect a building or extension on the property over or in the vicinity of a public sewer, disposal main or drain?	No
2.8	Is the building which is or forms part of the property, at risk of internal flooding due to overloaded public sewers?	Not At Risk
2.9	Please state the distance from the property to the nearest boundary of the nearest sewage treatment works.	1.065 Kilometres

Water

3.1	Is the property connected to mains water supply?	See Details
3.2	Are there any water mains, resource mains or discharge pipes within the boundaries of the property?	Yes
3.3	Is any water main or service pipe serving or which is proposed to serve the property, the subject of an existing adoption agreement or an application for such an agreement?	No
3.4	Is the property at risk of receiving low water pressure or flow?	See Details
3.5	What is the classification of the water supply for the property?	See Details
3.6	Please include details of the location of any water meter serving the property.	See Details

<u>Thames Water Utilities Ltd.</u> Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

CommercialDW Drainage & Water Enquiry

Question

Summary Answer

Charging

4.1.1	Who are the sewerage undertakers for the area?	Thames Water
4.1.2	Who are the water undertakers for the area?	Thames Water
4.2	Who bills the property for sewerage services?	Not Billed
4.3	Who bills the property for water services?	Not Billed
4.4	What is the current basis for charging for sewerage and/or water services at the property?	No Charge
4.5	Are there any trade effluent consents relating to this site/property for disposal of chemically enhanced waste?	No

Search address supplied: St Helen's Avenue, South Newington Road, Cumberford Hill and Barford Road, Bloxham, Banbury, Oxfordshire, OX15 4QH

Any new owner or occupier will need to contact Thames Water on 0800 316 9800 or log onto our website www.thameswater.co.uk and complete our online form to change the water and drainage services bills to their name.

The following records were searched in compiling this report: - the map of public sewers, the map of waterworks, water and sewer billing records, adoption of public sewer records, building over public sewer records, the register of properties subject to internal foul flooding, the register of properties subject to poor water pressure and the drinking water register. Thames Water Utilities Ltd (TWUL) holds all of these.

TWUL, trading as Property Searches, are responsible in respect of the following:-

- (i) any negligent or incorrect entry in the records searched
- (ii) any negligent or incorrect interpretation of the records searched
- (iii) any negligent or incorrect recording of that interpretation in the search report
- (iv) and compensation payments

Please refer to the attached <u>Terms & Conditions</u>. Customers and clients are asked to note these terms, which govern the basis on which this Commercial Drainage and Water search is supplied.

Thames Water Property Searches is an Executive member of CoPSO (Council of Property Search Organisations).

CommercialDW Drainage & Water Enguiry

Maps, Wayleaves, Easements, Manhole Cover and Invert levels

1.1 Where relevant, please include a copy of an extract from the public sewer map.

A copy of an extract of the public sewer map is included, showing the public sewers, disposal mains and lateral drains in the vicinity of the property.

1.2 Where relevant, please include a copy of an extract from the map of waterworks.

A copy of an extract of the map of waterworks is included, showing water mains, resource mains or discharge pipes in the vicinity of the property.

1.3 Wayleaves & Easements

Is there a wayleave/easement agreement giving Thames Water the right to lay or maintain assets or right of access to pass through private land in order to reach the Company's assets?

No.

1.4 Manhole

On the copy extract from the public sewer map, please show manhole cover, depth and invert levels where the information is available.

Details of any manhole cover and invert levels applicable to this site are enclosed.

Drainage

2.1 Does foul water from the property drain to a public sewer?

The enquiry appears to relate to a plot of land or a recently built property. It is recommended that drainage proposals are checked with the developer.

2.2 Does surface water from the property drain to a public sewer?

Records indicate that this enquiry relates to a plot of land or a recently built property. It is recommended that the drainage proposals are checked with the developer. If the property was constructed after 6th April 2015 the Surface Water drainage may be served by a Sustainable Drainage System (SuDS). Further information may be available from the Developer.

2.3 Is a surface water drainage charge payable?

This enquiry appears to relate to a plot of land or a recently built property. It is recommended that charging proposals are checked with the developer. If the property was constructed after 6th April 2015 the Surface Water drainage may be served by a Sustainable Drainage System (SuDS). Further information may be available from the Developer.

CommercialDW

Drainage & Water Enquiry

2.4 Does the public sewer map indicate any public sewer, disposal main or lateral drain within the boundary of the property?

The public sewer map included indicates that there is a public sewer, disposal main or lateral drain within the boundaries of the property. However, from the 1st October 2011 there may be additional public sewers, disposal mains or lateral drains which are not recorded on the public sewer map but which may further prevent or restrict development of the property.

2.4.1 Does the public sewer map indicate any public pumping station or any other ancillary apparatus within the boundaries of the property?

The public sewer map included indicates that there is no public pumping station within the boundaries of the property.

2.5 Does the public sewer map indicate any public sewer within 30.48 metres (100 feet) of any buildings within the property?

The public sewer map indicates that there are no public sewers within 30.48 metres (100 feet) of any buildings within the property.

However, from the 1st October 2011 many private sewers were transferred into public ownership and may not be recorded on the public sewer map and it is our professional opinion that if the property is connected to a foul sewer it is likely that there will be a public sewer within 30.48 metres (100 feet) of any buildings within the property.

2.5.1 Does the public sewer map indicate any public pumping station or any other ancillary apparatus within 50 metres of any buildings within the property?

The public sewer map included indicates that there is no public pumping station within 50 metres of any buildings within the property.

2.6 Are any sewers or lateral drains serving, or which are proposed to serve, the property the subject of an existing adoption agreement or an application for such an agreement?

Records confirm that Foul sewers serving the development, of which the property forms part are not the subject of an existing adoption agreement or an application for such an agreement.

The Surface Water sewer(s) and/or Surface Water lateral drain(s) are not the subject of an adoption agreement.

2.7 Has a sewerage undertaker approved or been consulted about any plans to erect a building or extension on the property over or in the vicinity of a public sewer, disposal main or drain?

There are no records in relation to any approval or consultation about plans to erect a building or extension on the property over or in the vicinity of a public sewer, disposal main or drain. However, the sewerage undertaker might not be aware of a building or extension on the property over or in the vicinity of a public sewer, disposal main or drain.

2.8 Is the building which is or forms part of the property, at risk of internal flooding due to overloaded public sewers?

The property is not recorded as being at risk of internal flooding due to overloaded public sewers.

From the 1st October 2011 most private sewers, disposal mains and lateral drains were transferred into public ownership It is therefore possible that a property may be at risk of internal flooding due to an overloaded public sewer which the sewerage undertaker is not aware of. For further information it is recommended that enquiries are made of the vendor.

2.9 Please state the distance from the property to the nearest boundary of the nearest sewage treatment works.

The nearest sewage treatment works is Bloxham STW which is 1.065 kilometres to the east of the property.

Water

3.1 Is the property connected to mains water supply?

The enquiry appears to relate to a plot of land or a recently built property. It is recommended that the water proposals are checked with the developer.

3.2 Are there any water mains, resource mains or discharge pipes within the boundary of the property?

The map of waterworks indicates that there are water mains, resource mains or discharge pipes within the boundaries of the property.

3.3 Is any water main or service pipe serving, or which is proposed to serve, the property the subject of an existing adoption agreement or an application for such an agreement?

Records confirm that water mains or service pipes serving the property are not the subject of an existing adoption agreement or an application for such an agreement.

3.4 Is the property at risk of receiving low water pressure or flow?

Records confirm that the property is not recorded on a register kept by the water undertaker as being at risk of receiving low water pressure or flow.

3.5 What is the classification of the water supply for the property?

The water supplied to the property has an average water hardness of 100.6mg/l calcium which is defined as Hard by Thames Water.

3.6 Please include details of the location of any water meter serving the property.

This enquiry appears to relate to a plot of land or a recently built property. It is recommended that drainage proposals are checked with the developer.

Charging

4.1.1 – Who is responsible for providing the sewerage services for the property?

Thames Water Utilities Limited, Clearwater Court, Reading, RG1 8DB is the sewerage undertaker for the area.

4.1.2 – Who is responsible for providing the water services for the property?

Thames Water Utilities Limited, Clearwater Court, Reading, RG1 8DB is the water undertaker for the area.

4.2 Who bills the property for sewerage services?

The property is not billed for sewerage services.

4.3 Who bills the property for water services?

The property is not billed for water services.

4.4 What is the current basis for charging for sewerage and / or water services at the property?

This enquiry appears to relate to a plot of land or a recently built property.

4.5 Trade Effluent Consent

Are there any trade effluent consents relating to this site/property for disposal of chemically enhanced waste?

No.

Payment for this Search

A charge will be added to your suppliers account.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
6601	109.845	107.235
6604	109.87	108.95
6602	108.99	106.42
6605	109.97	108.63
6652	110.13	107.32
6607	109.46	100.30
6653	n/a	109.68
6608	109.19	107.59
6609	108.95	107.7
6696	n/a	n/a
5452	113.1	111.44
5452	113.14	111.18
5501	114.78	108 34
551B	n/a	n/a
5502	110.2	107.99
551A	n/a	n/a
5503	110.06	107.89
5602	109.99	107.44
5654	109.88	109.25
6301	115.05	113.71
6453	113.64	112.2
6401	113.73	112.02
6402	113.73	112.02
7492	115.83	113.78
6452	114.73	113.55
6451	114.21	113.27
8491	115.61	114.39
7491	n/a	n/a
7451	115.98	115
8401	116.36	114.88
8502	117.0	112.973
6502	116.77	112 44
8503	118.56	117.16
7591	n/a	n/a
6502	113.21	110.58
6501	110.83	108.89
8501	119.52	117.84
651A	n/a	n/a
7601	119.15	117.84
661A	n/a	n/a
6603	110.04	109.39
661B	n/a	n/a
6693 861 A	109.9	107.64 n/a
9492	117.15	n/a
9452	119.48	118.9
9451	120.11	119.67
9401	119.89	118.53
941G	n/a	n/a 110.66
9501	119 18	117.69
941F	n/a	n/a
951A	n/a	n/a
9302	122.67	121.46
941A	n/a	n/a
941B	n/a	n/a
9410	1/a 120 51	1/a 110 51
9651	120.16	119.38
9601	120.49	118.99
941C	n/a	n/a
941D	n/a	n/a
9201	n/a	n/a
8651	110 21	11/2 118 38
8601	119.67	118.39
8691	n/a	n/a
5601	112.02	110.36
5651	111.71	109.91
5652	111.58	109.6
20U3 5652	109.63	107.66
0000	103.00	103.27

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Sewer Key - Commercial Drainage and Water Enquiry

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve
- Dam Chase Fitting
- ≥ Meter
- Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

- Control Valve
- Drop Pipe
- Ancillary Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Undefined End

Inlet

Other Symbols

Symbols used on maps which do not fall under other general categories Public/Private Pumping Station * Change of characteristic indicator (C.O.C.I.) Ø Invert Level <1 Summit Areas Lines denoting areas of underground surveys, etc. Aareement **Operational Site** $\overline{77}$ Chamber ::::: Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Searches on 0118 925 1504.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

١

Waterworks Key - Commercial Drainage and Water Enquiry

Nater	Pipes (Operated & Maintained by Thames Water)	Valves				
4"	Distribution Main: The most common pipe shown on water maps.	General PurposeValve				
	With few exceptions, domestic connections are only made to distribution mains.	Air Valve				
	Taunh Malas A ancia com incursto farma a como of complete a	Pressure ControlValve				
16"	treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water	Customer Valve				
	mains used for supplying individual customers.	Hydrants				
3" SUPPLY	Supply Main: A supply main indicates that the water main is used as a supply for a single property or group of properties.	Single Hydrant				
		Meters				
3" FIRE	be displayed along the pipe.	Meter				
3" METERED	Metered Pipe: A metered main indicates that the pipe in question	End Items				
	supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.	Symbol indicating what happens at the end of ${}^{\rm L}$ a water main.				
		Blank Flange				
	Transmission Tunnel: A very large diameter water pipe. Most	Capped End				
	tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the	Emptying Pit				
	map provided.	Undefined End				
	Proposed Main: A main that is still in the planning stages or in the	[Manifold				
	process of being laid. More details of the proposed main and its reference number are generally included near the main.					
		———— Fire Supply				
		Other				

PIPE DIAMETER	DEPTH BELOW GROUND
Up to 300mm (12")	900mm (3')
300mm - 600mm (12" - 24")	1100mm (3' 8")
600mm and bigger (24" plus)	1200mm (4')

d Items

Other Symbols

Other Water Pipes (Not Operated or Maintained by Thames Water)

- Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.
- Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

For your guidance:

- Thames Water Property Searches Complaints Procedure:
 - Thames Water Property Searches offers a robust complaints procedure. Complaints can be made by telephone, in writing, by email (searches@thameswater.co.uk) or through our website (www.thameswater-propertysearches.co.uk)

As a minimum standard Thames Water Property Searches will:

- o endeavour to resolve any contact or complaint at the time of receipt. If this isn't possible, we will advise of timescales;
- o investigate and research the matter in detail to identify the issue raised (in some cases third party consultation will be required);
- o provide a response to the customer within 10 working days of receipt of the complaint;
- o provide compensation, if no response or acknowledgment that we are investigating the case is given within 10 working days of receipt of the complaint;
- o keep you informed of the progress and, depending on the scale of investigation required, update with new timescales as necessary;
- o provide an amended search, free of charge, if required;
- o provide a refund if we find your complaint to be justified; take the necessary action within our power to put things right.

If you want us to liaise with a third party on your behalf, just let us know.

If you are still not satisfied with the outcome provided, we will refer the matter to a Senior Manager, for resolution, who will respond again within 5 working days.

If you remain dissatisfied with our final response you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). Please refer to the final page of the search for further details.

Question 1.1

- The Water Industry Act 1991 defines Public Sewers as those which Thames Water have responsibility for. Other assets and rivers, watercourses, ponds, culverts or highway drains may be shown for information purposes only.
- The company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.
- Assets other than public sewers may be shown on the copy extract, for information.

Question 1.2

For your guidance:

- The "water mains" in this context are those, which are vested in and maintainable by the water company under statute.
- Assets other than public water mains may be shown on the plan, for information only.
- Water companies are not responsible for private supply pipes connecting the property to the
 public water main and do not hold details of these. These may pass through land outside of
 the control of the seller, or may be shared with adjacent properties. The buyer may wish to
 investigate whether separate rights or easements are needed for their inspection, repair or
 renewal.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Question 2.1

- Water companies are not responsible for any private drains that connect the property to the public sewerage system and do not hold details of these. The property owner will normally have sole responsibility for private drains serving the property. These may pass through land outside the control of the seller and the buyer may wish to investigate whether separate rights or easements are needed for their inspection, repair or renewal.
- If foul water does not drain to the public sewerage system, the property may have private facilities in the form of a cesspit, septic tank or other type of treatment plant.
- An extract from the public sewer map is enclosed. This will show known public sewers in the vicinity of the property and it should be possible to estimate the likely length and route of any private drains and/or sewers connecting the property to the public sewerage system.

Question 2.2

For your guidance:

- Sewerage Undertakers are not responsible for any private drains that connect the property to the public sewerage system, and do not hold details of these.
- The property owner will normally have sole responsibility for private drains serving the property. These private drains may pass through land outside of the control of the seller and the buyer may wish to investigate whether separate rights or easements are needed for their inspection, repair or renewal.
- In some cases, 'Sewerage Undertakers' records do not distinguish between foul and surface water connections to the public sewerage system.
- At the time of privatisation in 1989, Sewerage Undertakers were sold with poorly-kept records of sewerage infrastructure. The records did not always show which properties were connected for surface water drainage purposes. Accordingly, billing records have been used to provide an answer for this element of the drainage and water search.
- Due to the potential inadequacy of 'Sewerage Undertakers' infrastructure records with respect to surface water drainage, it is the customer's responsibility to inform the Sewerage Undertaker that they do not receive the surface water drainage service. If on inspection, the buyer finds that surface water from the property does not drain to a public sewer, then the property may be eligible for a rebate of the surface water drainage charge. For further information, please contact Thames Water on Tel: 0800 316 9800, or refer to the website at <u>www.thameswater.co.uk</u>.
- If surface water from the property does not drain to the public sewerage system, the property may have private facilities in the form of a soakaway or private connection to a watercourse.
- An extract from the public sewer map is enclosed. This will show known public sewers in the vicinity of the property and it should be possible to estimate the likely length and route of any private drains and/or sewers connecting the property to the public sewerage system.

Question 2.3

- If surface water from the property drains to a public sewer, then a surface water drainage charge is payable.
- Where a surface water drainage charge is currently included in the property's water and sewerage bill but, on inspection, the buyer finds that surface water from the property does not drain to a public sewer, then the property may be eligible for a rebate of the surface water drainage charge. For further information, please contact Thames Water on Tel: 0800 316 9800 or refer to the website <u>www.thameswater.co.uk</u>.

Question 2.4

- Thames Water has a statutory right of access to carry out work on its assets. Employees of Thames Water or its contractors may, therefore, need to enter the property to carry out work.
- Please note if the property was constructed after 1st July 2011 any sewers and/or lateral drain within the boundary of the property are the responsibility of the householder.
- The approximate boundary of the property has been determined by reference to the Ordnance Survey Record or the map supplied.
- The presence of a public sewer running within the boundary of the property may restrict further development. The Company has a statutory right of access to carry out work on its assets, subject to notice. This may result in employees of the Company, or its contractors, needing to enter the property to carry out work.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Question 2.4.1

For your guidance:

- Private pumping stations installed before 1 July 2011 will be transferred into the ownership of the sewerage undertaker.
- The approximate boundary of the property has been determined by reference to the Ordnance Survey Record or the map supplied.
- The presence of a public Pumping station running within the boundary of the property may restrict further development. The company has a statutory right of access to carry out work on its assets, subject to notice. This may result in employees of the company, or its contractors, needing to enter the property to carry out work.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Question 2.5

For your guidance:

- This is because there are no buildings from which to measure the distance to any public sewers.
- The presence of a public sewer within 30.48 metres (100 feet) of the building(s) within the property can result in the local authority requiring a property to be connected to the public sewer.
- The measurement is estimated from the Ordnance Survey record, between the building(s) within the boundary of the property and the nearest public sewer.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Question 2.5.1

- Private pumping stations installed before 1 July 2011 will be transferred into the ownership of the sewerage undertaker.
- The presence of a public pumping station within 50 metres of the building(s) within the property can result in the local authority requiring a property to be connected to the public sewer.
- The measurement is estimated from the Ordnance Survey record, between the building(s) within the boundary of the property and the nearest public sewer.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Question 2.6

For your guidance:

- Any sewers and/or lateral drains within the boundary of the property are not the subject of an adoption agreement and remain the responsibility of the householder. Adoptable sewers are normally those situated in the public highway.
- This enquiry is of interest to purchasers who will want to know whether or not the property will be linked to a public sewer.
- Where the property is part of a very recent or ongoing development and the sewers are not the subject of an adoption application, buyers should consult with the developer to ascertain the extent of private drains and sewers for which they will hold maintenance and renewal liabilities.
- Final adoption is subject to the developer complying with the terms of the adoption agreement under Section 104 of the Water Industry Act 1991 and meeting the requirements of 'Sewers for Adoption' 6th Edition.

Question 2.7

- From the 1st October 2011 most private sewers, disposal mains and lateral drains were transferred into public ownership and the sewerage undertaker may not have been approved or consulted about any plans to erect a building or extension on the property over or in the vicinity of these.
- Buildings or extensions erected over a sewer in contravention of building controls may have to be removed or altered.

Question 2.8

For your guidance:

- For reporting purposes buildings are restricted to those normally occupied and used for residential, public, commercial, business or industrial purposes.
- A sewer is "overloaded" when the flow from a storm is unable to pass through it due to a permanent problem (e.g. flat gradient, small diameter). Flooding as a result of temporary problems such as blockages, siltation, collapses and equipment or operational failures are excluded.
- "Internal flooding" from public sewers is defined as flooding, which enters a building or passes below a suspended floor. For reporting purposes, buildings are restricted to those normally occupied and used for residential, public, commercial, business or industrial purposes.
- "At Risk" properties are those that the water company is required to include in the Regulatory Register that is presented annually to the Director General of Water Services. These are defined as properties that have suffered, or are likely to suffer, internal flooding from public foul, combined or surface water sewers due to overloading of the sewerage system more frequently than the relevant reference period (either once or twice in ten years) as determined by the Company's reporting procedure.
- Flooding as a result of storm events proven to be exceptional and beyond the reference period of one in ten years are not included on the At Risk Register.
- Properties may be at risk of flooding but not included on the Register where flooding incidents have not been reported to the Company.
- Public Sewers are defined as those for which the Company holds statutory responsibility under the Water Industry Act 1991.
- It should be noted that flooding can occur from private sewers and drains which are not the responsibility of the Company. This report excludes flooding from private sewers and drains and the Company makes no comment upon this matter.
- For further information please contact Thames Water on Tel: 0800 316 9800 or website www.thameswater.co.uk

Question 2.9

- The nearest sewage treatment works will not always be the sewage treatment works serving the catchment within which the property is situated.
- The sewerage undertaker's records were inspected to determine the nearest sewage treatment works.
- It should be noted that there may be a private sewage treatment works closer than the one detailed above that has not been identified.
- As a responsible utility operator, Thames Water Utilities seeks to manage the impact of odour from operational sewage works on the surrounding area. This is done in accordance with the Code of Practice on Odour Nuisance from Sewage Treatment Works issued via the Department of Environment, Food and Rural Affairs (DEFRA). This Code recognises that odour from sewage treatment works can have a detrimental impact on the quality of the local environment for those living close to works. However DEFRA also recognises that sewage treatment works provide important services to communities and are essential for maintaining standards in water quality and protecting aquatic based environments. For more information visit <u>www.thameswater.co.uk</u>

Question 3.2

For your guidance:

- The boundary of the property has been determined by reference to the plan supplied. Where a plan was not supplied, the Ordnance Survey Record was used.
- The presence of a public water main within the boundary of the property may restrict further development within it. Water companies have a statutory right of access to carry out work on their assets, subject to notice. This may result in employees of the Company, or its contractors, needing to enter the property to carry out work.

Question 3.3

For your guidance:

• This enquiry is of interest to purchasers who will want to know whether or not the property will be linked to the mains water supply.

Question 3.4

- The boundary of the property has been determined by reference to the plan supplied. Where a plan was not supplied the Ordnance Survey Record was used.
- "Low water pressure" means water pressure below the regulatory reference level, which is the minimum pressure when demand on the system is not abnormal.
- Water Companies are required to include in the Regulatory Register that is presented annually to the Director General of Water Services, properties receiving pressure below the reference level, provided that allowable exclusions do not apply (i.e. events which can cause pressure to temporarily fall below the reference level)
- The reference level of service is a flow of 9 litres/minute at a pressure of 10metres / head on the customer's side of the outside stop valve (osv). The reference level of service must be applied on the customer's side of a meter or any other company fittings that are on the customer's side of the main stop tap. The reference level applies to a single property. Where more than one property is served by a common service pipe, the flow assumed in the reference level must be appropriately increased to take account of the total number of properties served. For two properties, a flow of 18 litres/minute at a pressure of 10metres/head on the customers' side of the osv is appropriate. For three or more properties the appropriate flow should be calculated from the standard loadings provided in BS6700 or the Institute of Plumbing handbook.
- Allowable exclusions The Company is required to include in the Regulatory Register properties receiving pressure below the reference level, provided that allowable exclusions listed below do not apply.
- Abnormal demand: This exclusion is intended to cover abnormal peaks in demand and not the daily, weekly or monthly peaks in demand, which are normally expected. Companies should exclude from the reported figures properties which are affected by low pressure only on those days with the highest peak demands. During the report year companies may exclude, for each property, up to five days of low pressure caused by peak demand.
- Planned maintenance: Companies should not report low pressures caused by planned maintenance. It is not intended that companies identify the number of properties affected in each instance. However, companies must maintain sufficiently accurate records to verify that lowpressure incidents that are excluded because of planned maintenance are actually caused by maintenance.
- One-off incidents: This exclusion covers a number of causes of low pressure; mains bursts; failures of company equipment (such as pressure reducing valves or booster pumps); firefighting; and action by a third party. However, if problems of this type affect a property frequently, they cannot be classed as one-off events and further investigation will be required before they can be excluded
- Low-pressure incidents of short duration: Properties affected by low pressures, which only occur for a short period, and for which there is evidence that incidents of a longer duration would not occur during the course of the year, may be excluded from the reported figures.
- Please contact your water company mentioned in Question 4.1.2 if you require further information on water pressure.

Question 3.5

For your guidance:

- Water hardness can be expressed in various indices for example the hardness settings for dishwashers are commonly expressed in Clark's degrees, but check with the manufacturer as there are also other units. The following table shows the normal ranges of hardness.
- Sample table for information only:

Hardness category	Calcium (mg/l)	Calcium carbonate (mg/l)	English Clarke degrees	French degrees	General/ German degrees
Soft	0 to 20	0 to 50	0 to 3.5	0 to 5	0 to 2.8
Moderately soft	21 to 40	51 to 100	3.6 to 7	6 to 10	2.9 to 5.6
Slightly hard	41 to 60	101 to 150	8 to 10.5	11 to 15	5.7 to 8.4
Moderately hard	61 to 80	151 to 200	10.6 to 14	16 to 20	8.5 to 11.2
Hard	81 to 120	201 to 300	15 to 21	21 to 30	11.3 to 16.8
Very hard	Over 120	Over 300	Over 21	Over 30	Over 16.8

Question 3.6

For your guidance:

• Where a meter does not serve the property and the customer wishes to consider this method of charging, they should contact the water undertakers mentioned in Question 4.1.2.

Question 4.4

- •
- Records indicate that the Water Company does not levy charges to the property.Water and sewerage companies' full charges are set out in their charges schemes which are available from the company free of charge upon request.
- The Water Industry Act 1991 Section 150, The Water Resale Order 2001 provides protection for people who buy their water or sewerage services from a person or company instead of directly from a water or sewerage company. Details are available from the Office of Water Services (OFWAT) website is <u>www.ofwat.gov.uk</u>.
- Where charges are given, these are based on the data available at the time of the report.
- The Company may install a meter at the premises where a buyer makes a change of use of the property or where the buyer uses water for:
 - Watering the garden other than by hand (this includes the use of sprinklers).
 - Automatically replenishing a pond or swimming pool with a capacity greater than 10,000 litres.
 - o A bath with a capacity in excess of 230 litres.
 - o A reverse osmosis unit

Question 4.5

- If a Trade effluent consent applies to the premises which are the subject of this search, it is for the applicant to satisfy itself as to the suitability of the consent for its client's requirements. The occupier of any trade premises in the area of a sewerage undertaker may discharge any trade effluent proceeding from those premises into the undertaker's public sewers if he does so with the undertaker's consent. If, in the case of any trade premises, any trade effluent is discharged without such consent or other authorisation, the occupier of the premises shall be guilty of an offence.
- Please note any existing consent is dependent on the business being carried out at the property and will not transfer automatically upon change of ownership.
- For further information regarding Trade Effluent consents please contact: Trade Effluent Control, Crossness STW, Belvedere Road, Abbey Wood London SE2 9AQ.

Customer and Clients are asked to note these terms, which govern the basis on which this CommercialDW Drainage & Water Enquiry is supplied

Definitions

'Client' means the person, company or body who is the intended recipient of the Report with an actual or potential interest in the Property.

'Company' means a water service company or their data service provider producing the Report. 'Customer' means the person, company, firm or other legal body placing the Order, either on their own behalf as Client, or, as an agent for a Client.

'Order' means any request completed by the Customer requesting the Report.

'Property' means the address or location supplied by the Customer in the Order. 'Report' means the drainage and/or water report prepared by The Company in respect of the Property. 'Thames Water' means Thames Water Utilities Limited registered in England and

Wales under number 2366661 whose registered office is at Clearwater Court, Vastern Road, Reading, Berks, RG1 8DB;

Agreement

Thames Water agrees to supply the Report to the Customer and the Client subject to these terms. The scope and limitations of the Report are described in paragraph 2 of these terms. Where the Customer is acting as an agent for the Client then the Customer shall be responsible for bringing these terms to the attention of the Client. The Customer and Client agree that the placing of an Order for a Report indicates their acceptance of these terms.

- The Report 2. Whilst Thames Water will use reasonable care and skill in producing the Report, it is provided to the Customer and the Client on the basis that they
- acknowledge and agree to the following:-The information contained in the Report can change on a regular basis so Thames Water cannot be responsible to the Customer and the Client for any change in the information contained in the Report after the date on which the Report was produced and sent to the Client.
- The Report does not give details about the actual state or condition of the Property nor should it be used or taken to indicate or exclude actual suitability 22 or unsuitability of the Property for any particular purpose, or relied upon for determining saleability or value, or used as substitute for any physical investigation or inspection. Further advice and information from appropriate
- experts and professionals should always be obtained. The information contained in the Report is based upon the accuracy, 2.3 completeness and legibility of the address and other information supplied by the Customer or Client
- The Report provides information as to the location and connection of existing services and should not be relied on for any other purpose. The Report may contain opinions or general advice to the Customer and the Client and Thames Water cannot ensure that any such opinion or general advice is accurate, complete or valid and accepts no liability therefore. The position and depth of apparatus shown on any maps attached to the
- 25 Report are approximate, and are furnished as a general guide only, and no warranty as to its correctness is given or implied. The exact positions and depths should be obtained by excavation trial holes and the maps must not be relied on in the event of excavation or other works made in the vicinity of apparatus shown on any maps.

Liability

- Thames Water shall not be liable to the Client for any failure, defect or non-performance of its obligations arising from any failure of, or defect in any machine, processing system or transmission link or anything beyond Thames Water's reasonable control or the acts or omissions of any party for whom Thames Water are not responsible.
- 3.1 Where the Customer sells this report to a Client (other than in the case of a bona fide legal adviser recharging the cost of the Report as a disbursement) Thames Water shall not in any circumstances (whether for breach of contract, negligence or any other tort, under statute or statutory duty or otherwise at all) be liable for any loss or damage whatsoever and the Customer shall ndemnify Thames Water in respect of any claim by the Client.
- 3.2 Where a report is requested for an address falling within a geographical area where Thames Water and another Company separately provide Water and Sewerage Services, then it shall be deemed that liability for the information given by Thames Water or the Company as the case may be will remain with Thames Water or the Company as the case may be in respect of the accuracy of the information supplied. Where Thames Water is supplying information which has been provided to it by another Company for the purposes outlined in this agreement Thames Water will therefore not be liable in any way for the accuracy of that information and will supply that information as agent for the Company from which the information was obtained.
- 3.3 Except in respect of death or personal injury caused by negligence, or as expressly provided in these Terms:
- 3.3.1 The entire liability of Thames Water or the Company as the case may be in respect of all causes of action arising under or in connection with the Report (whether for breach of contract, negligence or any other tort, under statute or statutory duty or otherwise at all) shall not exceed £2,000,000 (two million pounds); and
- 3.3.2 Thames Water shall not in any circumstances (whether for breach of contract, negligence or any other tort, under statute or statutory duty or otherwise at all) be liable for any loss of profit, loss of goodwill, loss of

reputation, loss of business or any indirect, special or consequential loss, damage or other claims, costs or expenses;

Copyright and Confidentiality

- The Customer and the Client acknowledge that the Report is confidential and is intended for the personal use of the Client. The copyright and any other intellectual property rights in the Report shall remain the property of Thames Water or the Company as the case may be. No intellectual or other property rights are transferred or licensed to the Customer or the Client except to the extent expressly provided
- 41 The Customer or Client is entitled to make copies of the Report but is not permitted to copy any maps contained in, or attached to the Report
- 4.2 The maps contained in the Report are protected by Crown Copyright and must not be used for any purpose outside the context of the Report. The Customer and Client agree (in respect of both the original and any copies 4.3
- made) to respect and not to alter any trademark, copyright notice or other property marking which appears on the Report.

Payment

- Unless otherwise stated all prices are inclusive of VAT. The Customer shall pay for the price of the Report specified by Thames Water, without any set off, deduction or counterclaim.
- Unless payment has been received in advance. Customers shall be invoiced for the agreed fee once their request has been processed. Any such invoice must be paid within 14 days. Where the Customer has an account with Thames Water, payment terms will be as agreed with Thames Water.
- No payment shall be deemed to have been received until Thames Water has received cleared funds
- If the Customer fails to pay Thames Water any sum due Thames Water shall be entitled but not obliged to charge the Customer interest on the sum from the due date for payment at the annual rate of 2% above the base lending rate from time to time of Natwest Bank, accruing on a daily basis until payment is made. Thames Water reserves the right to claim interest under the Late Payment of Commercial Debts (Interest) Act 1998.
- 5.4 Thames Water reserves the right to increase fees on reasonable prior written notice at any time.

Cancellations or Alterations

Once an Order is placed, Thames Water shall not be under any obligation to accept any request to cancel that Order and payment for the Order shall still be due upon completion of the Report. In cases where an error has been made in the original Order (e.g. the Customer has supplied an incorrect address), the Customer will need to place a second Order, detailing the correct information, and shall be liable to pay a second charge in accordance with clause 5 above.

Delivery

- On receiving your order the reports will be posted to you within 10 working days from receipt.
- 7.1 Delivery is subject to local post conditions and regulations. All items should arrive within 12 working days, but Thames Water cannot be held responsible should delays be caused by local post conditions, postal strikes or other causes beyond the control of Thames Water.

General

- If any provision of these terms is or becomes invalid or unenforceable, it will be taken to be removed from the rest of these terms to the extent that it is invalid or unenforceable. No other provision of these terms shall be affected. These terms shall be governed by English law and all parties submit to the
- exclusive jurisdiction of the English courts.8.2 Nothing in this notice shall in any way restrict the Customer or Clients statutory or any other rights of access to the information contained in the Report.

These Terms & Conditions are available in larger print for those with impaired vision.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

APPENDIX E

CALCULATIONS

This page has been left blank intentionally

MasterDrain HY 9.36	The LK Group www.thelkgroup.com Project IH greenfield Title IoH 124 Runoff calcs for BLOXHAM	Eton Business Park, Eton Hill Road, Radcliff M26 2ZS Tel: 0161 763 7200 email: m.jones@thelkgroup.com	Job No. Sheet no. Date By	1 03/02/17 Checked	Reviewed
Hydrological FSR Hydrol Location M5-60 (mm) Soil runof WRAP Hydrologic	Data:- $= BLOXHAM$ $= 19.7$ $= 3$ $eal area = 6$	Grid reference = SP4235 r = 0.40 SAAR (mm/yr) = 710 Area = England & Wales Hydrological zone = 8	1		
Soil class i) Relat especially ii) Perme iii) Mixed proportion	sification for WRAP type 3 rively impermeable soils in bo in eastern England; eable soils with shallow groun areas of permeable and impens.	oulder and sedimentary clays, and ad water in low-lying areas; ermeable soils, in approximately	nd in a 7 equal	lluvium	.,
Design data:	-				

Area = 0.0396 Km² - 3.96 Ha - 39600 m²

Calculation method:-

Runoff is calculated from:-

 $Q_{\text{BAR}(\text{rural})}$ = 0.00108 $\text{AREA}^{0.89}$. $\text{SAAR}^{1.17}$. $\text{SOIL}^{2.17}$

where

AREA = Site area in Km²
SAAR = Standard Average Annual Rainfall (mm/yr)
SOIL = Soil value derived from Winter Rainfall Acceptance Potential
Q_{BAR(rural)} = Runoff (cumecs)

 $\rm Q_{BAR(rural)}$ is then multiplied by a growth factor - GC(T) - for different storm return periods derived from EA publication W5-074/A.

Calculated data:-

For areas less than 50Ha, a modified calculation which multiplies the 50Ha runoff value by the ratio of the site area to 50Ha is used Reducing factor used for these calculations is 0.079

Mean Annual Peak Flow Q_{BAR(rural)} = 13.70 l/s

	The LK G	roup	Eton Business F Eton Hill Road,	Park,					Job No.		
			Radcliff M26 2Z	S					Sheet no.	2	
	www.thelkgroup	.com	email: m.jones@	thelkgroup.com					Date	03/02/17	
MasterDrain	Project IH greenfield								Ву	Checked	Reviewed
	Title IoH 124 Runoff calcs f	or BLOXHAM									
Values for											
values 101	BAR(rural)										
	Ret. per.	m³/hr	l/s	l/s/ha		Ret. per.	m³/hr	l/s	1/s/1	na	
	lyr	41.918	11.644	2.940		100yr	155.342	43.150	10.897		
	2yr	43.397	12.055	3.044		100yr+20%	186.410	51.781	13.076		
	5yr	63.123	17.534	4.428		100yr+30%	201.944	56.096	14.166		
	10yr	79.890	22.192	5.604		200yr	182.465	50.685	12.799		
	30yr	109.972	30.548	7.714		200yr + 30%	237.204	65.890	16.639		
	50yr	129.205	35.890	9.063		500yr	221.423	61.506	15.532		
						1000yr	254.464	70.685	17.850		
Growth facto	ors -										
	lyr	2yr	5yr	10yr	30yr	50yr	100yr	200yr	500yr	1000yr	
	0.85	0.88	1.28	1.62	2.23	2.62	3.15	3.70	4.49	5.16	

The above is based on the Institute of Hydrology Report 124 to which you are referred for further details (see Sect 7).

Note that the 200 and above year growth curves were taken from W5-074.

	The LK G	roup	Eton Business Park, Eton Hill Boad	Job No.				
		- up	Radcliff M26 2ZS	Sheet no.	1			
	www.thelkgroup	.com	email: m.jones@thelkgroup.com	Date	03/02/17			
MasterDrain	ADAS greenfield 1 in	1yr		Ву	Checked	Reviewed		
HT 9.30	Title ADAS runoff calculation	ons for BLOXHA	AM					
Data:-								
Hydrology:	_							
Location	= BLOXHAM		Grid reference = SP4235					
M5-60 (mm)	= 19.7		SAAR $(mm/yr) = 710$					
r	= 0.40		Soil = 0.40					
Return per	iod = 1		Area = England and Wales					
Soil class i) Relat especially ii) Perme iii) Mixed proportion	ification for WRAP ively impermeable s in eastern England able soils with sha areas of permeabl s.	type 3 oils in bou ; llow ground e and imper	lder and sedimentary clays, a water in low-lying areas; meable soils, in approximate	and in a ly equal	ulluvium	n ,		
Catchment Catchment Catchment	area = 3.96 Ha height = 2.55 m		Catchment length = 205 m					
Formula	used: Q= 2.78 x S	m² x Fa x A	x Rainfall rate x Mf l/s					
where								
Ti	me of Concentration	for rainfa	ll is ToC=6.09 x Lc^0.39					
Lc	= 0.0001 x (Catchm	ent length ²	/Height over outfall)					
Mf Fa A=	= 4.938 x Sm ² (Soil = dimensionless ann = Catchment Area (Ha	modificati ual rainfal)	on value(Sm) =fractional val l factor (Fa={0.00127 * SAAR	ue of th }-0.321)	NE WRAP))		
Results :-								
Characteri	stic length Lc =	1.648						
Catchment	ToC =	7.40 hrs						
Soil modif	ication factor =	0.790						
Catchment	Intensity at ToC =	3.14 mm/hr						
Flow off s	ite =	15.85 l/s						
Catchment	flow =	4.00 l/s/Ha	L Contraction of the second					
Galani		6	- NDIG Lond Duciness downing		- (1000	`		

Calculations derived from formulae in ADAS Land Drainage Service report 5 (1980) For further information, you are directed to the above document.

N.B. The rainfall rates are calculated using the location specific values above in accordance with the Wallingford procedure.

	Tholk(Proup	Eton Business Park,	Job No.	Job No.				
		Joup	Eton Hill Road,	Sheet no.					
			Radcliff M26 225	oneet no.	1				
	www.thelkgro	up.com	email: m.jones@thelkgroup.com	Date	03/02/17				
MasterDrain	ADAS greenfield 1 i	n 30yr		Ву	Checked	Reviewed			
HY 9.36	Title ADAS runoff calcula	tions for BLOXH							
Data	<u></u>					1			
Jala:-									
Hydrology:			Crid reference - CD422E						
			Grid reference = SP4235						
M5-60 (mm)	= 19.7		SAAR $(mm/yr) = /10$						
r	= 0.40		Soll = 0.40						
Return per	iod = 30		Area = England and Wales						
Soil class i) Relat especially ii) Perme iii) Mixed proportion	sification for WRAN rively impermeable of in eastern Englan eable soils with sh areas of permean as.	P type 3 soils in bound; mallow ground ple and imper	ulder and sedimentary clay I water in low-lying areas rmeable soils, in approxim	s, and in a ; ately equal	lluvium	ι,			
Catchment Catchment Catchment	area = 3.96 Ha height = 2.55 m	2	Catchment length = 205	5 m					
Formula	used: Q= 2.78 x	Sm² x Fa x A	A x Rainfall rate x Mf l/s						
whore									
Ti Lc	me of Concentrations = 0.0001 x (Catch	on for rainfa nment length ²	all is ToC=6.09 x Lc^0.39 /Height over outfall)						
Mf Fa A=	= 4.938 x Sm² (So: = dimensionless an = Catchment Area (1	il modificati nnual rainfal Ha)	on value(Sm) =fractional l factor (Fa={0.00127 * S	value of th AAR}-0.321)	NE WRAP)				
Results :-									
Characteri	stic length Lc :	= 1.648							
Catchment	ToC	= 7.40 hrs							
Soil modif	ication factor :	= 0.790							
Catchment	Intensity at ToC :	= 6.74 mm/hr							
Flow off s	site :	= 34.02 1/s							
Catchment	flow	= 8.59 l/s/Ha	L						
Gale]	ationa denimad for		- ADAG Iand Duciness Gaussi		- /1000	`			

Calculations derived from formulae in ADAS Land Drainage Service report 5 (1980) For further information, you are directed to the above document.

N.B. The rainfall rates are calculated using the location specific values above in accordance with the Wallingford procedure.

		Eton Business Park,	Job No.	Job No.				
		Radcliff M26 2ZS	Sheet no.	1				
	www.thelkgroup.com	email: m.jones@thelkgroup.com	Date	03/02/17	,			
MasterDrain	Project ADAS greenfield 1 in 100	yr	Ву	Checked	Reviewed			
HT 9.30	Title ADAS runoff calculations							
Data:-								
Hydrology:	-							
Location	= BLOXHAM	Grid reference = SP4	235					
M5-60 (mm)	= 19.7	SAAR $(mm/yr) = 710$						
r	= 0.40	Soil = 0.4	0					
Return per	riod = 100	Area = England and W	ales					
Soil class i) Relat especially ii) Perme iii) Mixed proportion	sification for WRAP type ively impermeable soin in eastern England; eable soils with shall areas of permeable ans.	pe 3 ls in boulder and sedimentary ow ground water in low-lying a and impermeable soils, in appr	clays, and in a areas; coximately equal	alluviur	n,			
Catchment Catchment Catchment	area = 3.96 Ha height = 2.55 m	Catchment length	= 205 m					
Formula	used: $Q = 2.78 \times Sm^2$	x Fa x A x Rainfall rate x Mf	ī 1/s					
wnere Ti Lo Mf Fa A=	me of Concentration for = 0.0001 x (Catchmennet = 4.938 x Sm ² (Soil mo = dimensionless annuat = Catchment Area (Ha)	or rainfall is ToC=6.09 x Lc ⁴ t length ² /Height over outfall) odification value(Sm) =fraction l rainfall factor (Fa={0.00127	0.39) onal value of th 7 * SAAR}-0.321)	ne WRAP))			
Results :- Characteri Catchment Soil modif Catchment Flow off s Catchment	stic length Lc = 1. ToC = 7. Fication factor = 0. Intensity at ToC = 8. Site = 44 flow = 11	648 40 hrs 790 72 mm/hr .02 l/s .12 l/s/Ha						
	ations dominad from fo	would in ADAG Land Drainage	Corrigo roport	E (1000	`			

Calculations derived from formulae in ADAS Land Drainage Service report 5 (1980) For further information, you are directed to the above document.

N.B. The rainfall rates are calculated using the location specific values above in accordance with the Wallingford procedure.

			K Group	Eton Business	Park,	Job No.		
			it Group	Radcliff M26 2	ZS	Sheet no.	1	
		www.the	elkgroup.com	Tel: 0161 763 email: m.jones	7200 @thelkgroup.com	Date	06/02/17	
MasterDrain	Project IH 30	yr event				Ву	Checked	Reviewed
31	Title Peak	low storag	ge calcs for BLO	ХНАМ				
Data:-								
FSR Hydrol	.ogy:-							
Location	= BI	LOXHAM		Grid refe	rence = $SP423$	5		
M5-60 (mm) Soil inder	· _ 0	40		I SAAR (mm/	= 0.40			
Return per	-0	• • • 30		WRAP	= 3			
UCWI	= '	75.7		Climate c	hange = 0			
i) Relat especially ii) Perme iii) Mixed proportion	ively in in east able so: areas o s.	npermeak tern Eng ils with of perm	ole soils in gland; h shallow gro meable and in	boulder and s ound water in mpermeable soi	edimentary cl low-lying are ls, in approx	lays, and in a seas; cimately equa	alluvium l	L,
Runoff fac	tor (RF) = 27.	0, calculat	ed from:-				
Run	off fact	tor = (0	.829*PIMP)+	(25*SOIL)+(0.()78*UCWI)-20.7	7		
whe	re T		3					
PIM	IP = Impo	ervious	Area*100/(1)	mpervious Area	+Pervious Are	ea)		
000	11 - Car	Juraceu	varue for m	echebb index				
Design data:	-							
Imperv. ar	ea	= 151	.00 m ²	Pervious	area	= 24500 m ²		
Total area	(TA)	= 396	500 m ²	Equiv are	a	= 10692 m ² (1	'A x RF)	•
Allowed di	scharge	rate =	30.550 l/s	Areal red	uction factor	= 1.000		
Additional	flow	=	0.00 l/s	Climate c	hange factor	= 0		
Calculated d	lata:-							
Time to ma	x	= 79.0	mins	Calculate	d storage vol	ume = 375.0 n	1 ³	
Rainfall a	t max	= 24.92	2 mm/hr	Allowed d	ischarge rate	= 30.550]	/s	
Pipeline s	torage	= 0.0 m	1 ³	Available	MH storage	$= 0.0 m^{3}$		
Offline st	orage	= 0.0 m	1 ³					
Fixed 6 hour	data							
Rainfall e	vent.	= 6 hor	irs	Calculate	d storage vol	$ume = 79.6 m^3$	i	
Rainfall r	ate	= 8.00	mm/hr	Allowed d	ischarge rate	= 30.550	l/s	
Rainfall i	ntensit	ies calc	ulated using	g the Wallingf	ord Procedure	9		
Storage leng	ths for	initial	. calculation	n (x 1.1, 1.2,	1.3 or 1.5 a	as above if r	equired)	:-
Diam	T.on	Diam	Len	Ovoid	Len	Box culver	t Len	
100 4	7749.2	1125	377.3	400 x 600	2083.1	500 x 50	0 1499.8	3
150 2	1221.9	1200	331.6	600 x 900	907.0	500 x 75	0 999.9)
225	9431.9	1275	293.7	800 x 1200	510.1	500 x 100	0 749.9	9
300	5305.5	1350	262.0			750 x 100 750 v 120	0 499.9 0 416 4	5
<i>315</i> 450	2358.0	1500	∠35.⊥ 212.2			750 x 120	0 333.3	3
525	1732.4	1575	192.5			1000 x 100	0 375.0)
600	1326.4	1650	175.4			1000×120	0 312.9	5
675	1048.0	1725	160.5			1000 x 150	0 250.0)
750	848.9	1800	147.4			1000×180	U 208.3	5
8∠5 9∩∩	701.5 589.5	10/5 1950	125.8			1500×200	0 166 6	5
975	502.3	2025	116.4			1500×180	0 138.9)
1050	433.1	2100	108.3			1500 x 200	0 125.0)

	The LK Group		Eton Business Park,		Job No.		
		up	Radcliff M26 2ZS	Sheet no. 2			
	www.thelkgroup.com	n	Tel: 0161 763 7200 email: m.jones@thelkgroup.com		Date	06/02/17	
MasterDrain	Project IH 30yr event				Ву	Checked	Reviewed
SW	Title Peak flow storage calcs	for BLOXHAM			-		
Data:-				_			<u> </u>
Time	Rain	Inflow	Outflow	Balance	9		
(mins)	mm/hr	(m3)	(m3)	(m3)			
10	93.0	246.631	18.330	228.30			
20	63.0	332.863	36.660	296.20	3		
30	49.0	385.880	54.990	330.890	-		
40	40.0	424.535	73.320	351.21			
50	34.0	455.146	91.650	363.490	5		
60 70	30.0	480.590	109.980	370.610	5		
70	27.0	502.420	128.310	374.110	5		
80	25.0	521.571	146.640	374.93			
90	23.0	538.653	164.970	3/3.68.	3		
100	21.0	554.083		370.78	5 7		
110	20.0	508.103	201.630	300.33	-		
120	18.0	581.115	219.960	361.15			
130	17.0	593.112	238.290	354.84	2		
140	16.0	604.287	256.620	347.66	/		
150	16.0	614./4/	274.950	339.79	/ 2		
100	15.0	624.5/9	293.280	331.29	9 -		
170	14.0	633.855	311.610	322.24	⊃ 4		
180	14.0	642.634	329.940	312.694	± -		
190	13.0	650.965	348.270	302.69	⊃ 4		
200	12.0	658.894	366.600	292.294	± -		
210	12.0	666.455	384.930	281.52			
220	12.0	6/3.681	403.260	270.42			
230	11.0	680.599	421.590	259.00	9 -		
240	11.0	687.235	439.920	24/.31	5 1		
250	11.0	693.609	458.250	233.35	9		
260	10.0	699.740	476.580	223.100			
270	10.0	705.040	494.910	210./30	ס ר		
280	10.0	711.342	513.240	198.10	2		
290	9.0	/16.842	531.570	185.2/2	2		
300	9.0	727.016	549.900	150 69			
320	9.0	727.910	508.230	146 65	5 N		
320	9.0	739.210	586.560	122 470	J 0		
330	0.0	730.370	604.090	100 10	9		
340	0.0	743.401	641 550	106 76	1		
360	8.0	753 107	659 880	100.70	7		
370	8.0	757 793	678 210	70 50	2		
380	8.0	762 277	696 540	65 83	5		
390	7 0	766 861	714 870	51 99	, 1		
400	7.0	771 252	733,200	38.05	2		
410	7.0	775 553	751 530	24 02	-		
420	7.0	770 769	769 860	2 UZ. Q QAQ	-		
430	7.0	783 902	788 190	0.00	5 1		
440	7.0	787 957	806.520	0.000	5		
450	7.0	791 937	824 850	0.000	5		
460	7.0	795.844	843.180	0.000	5		
470	5.0	799.683	861 510	0.000	5 1		
480	6.0	803.454	879 840	0.000	5		
490	6.0	807 162	898,170	0.000	5		
500	6.0	810 808	916.500	0.000	5		
510	6.0	814 394	934_830	0.000	-		
520	6 O	817 922	953 160	0.000	-		
520	6.0	821 307	971 490	0.000	- 1		
530	6.0	824 817	989 820	0.000	- 1		
550	6.0	828 185	1008 150	0.000	- 1		
550	6.0	831 504	1026 480	0.000	- 1		
500	6.0	824 774	1044 810	0.000	- 1		
570	5 0	877 998	1063 140	0.000	- 1		
590	5.0	841.176	1081 470	0.000	-		
600	5.0	844.310	1099.800	0.000	- 0		
	5.0			0.000	-		

		Thelk	(Group	Eton Business	Eton Business Park, Eton Hill Bood			Job No.			
			· · · · · · · ·	Radcliff M26 22	ZS		Sheet no.	1			
		www.the	kgroup.com	Tel: 0161 763 7 email: m.jones	7200 @thelkgroup.com		Date	06/02/17			
MasterDrain SW	ADAS	6 30 yr ever	nt				Ву	Checked	Reviewed		
	Title Peak	flow storag	e calcs for BLO	ХНАМ							
Data:-	L								<u>. </u>		
FSR Hydrol	ogy:-			C		о г					
Location	= BI	LOXHAM		Grid refe r	rence = SP42 = $0 40$	55					
Soil inder	= . = 0	19./ .40		SAAR (mm/	(vr) = 710						
Return per	iod = 2	• • •		WRAP	= 3						
UCWI	=	75.7		Climate c	hange = 0						
i) Relat especially ii) Perme iii) Mixed proportion	 Relatively impermeable soils in boulder and sedimentary clays, and in alluvium, especially in eastern England; ii) Permeable soils with shallow ground water in low-lying areas; iii) Mixed areas of permeable and impermeable soils, in approximately equal proportions. 										
Runoff fac	tor (RF) = 27.	0, calculat	ed from:-							
Run	off fact	tor = (0	.829*PIMP)+	(25*SOIL)+(0.0	78*UCWI)-20.	7					
whe	re D - T	arui au a	7202*100//-	moorations are-	+Porrious P-	· • • • •					
PIM TICW	$\mathbf{I} = \mathbf{I} = \mathbf{I} \mathbf{I} \mathbf{I}$	culated	area*100/(I value for W	mpervious Area etness Index	+Pervious Ar	ea)					
Design data:	-										
Imperv. ar	ea	= 151	00 m ²	Pervious	area	= 24500	m²				
Total area	(TA)	= 396	$00 m^2$	Equiv area		= 10692	m² (TA	x RF).	•		
Allowed di	scharge	rate =	34.020 l/s	Areal red	uction facto	r = 1.000)				
Additional	TTOM	=	0.00 I/S	CIIMALE C	hange ractor	- 0					
Calculated d	ata:-										
Time to ma	x	= 70.0 :	mins	Calculate	d storage vo	lume = 35	59.5 m ³				
Rainfall a	t max	= 27.19	mm/hr	Allowed d	ischarge rat	e = 34.	.020 1/	s			
Pipeline s	torage	= 0.0 m	3	Available	MH storage	= 0.	.0 m ³				
Offline st	orage	= 0.0 m	3								
Fixed 6 hour	data:-										
Rainfall e	vent	= 6 hou	rs	Calculate	d storage vo	lume = 2.	.5 m ³				
Rainfall r	ate	= 8.00 :	mm/hr	Allowed d	ischarge rat	e = 34	1.020 1	/s			
Rainfall i	ntensit	ies calc	ulated usin	g the Wallingf	ord Procedur	e					
Storage leng	ths for	initial	calculatio	n (x 1.1, 1.2,	1.3 or 1.5	as above	if req	uired)	:-		
Diam	Len	Diam	Len	Ovoid	Len	Box (culvert	Len			
100 4	5786.1	1125	361.8	400 x 600	1997.4	50	0 x 500	1438.1	-		
150 2	0349.4	1200	318.0	600 x 900 800 v 1200	869.7 489 1	500	v x 750	958.8 710 1	5		
∠∠⊃ 300	5044.2	1350	201./ 251.2	000 X 1200	70 7 .1	750	x 1000	479.4	-		
375	3255.9	1425	225.5			750	x 1200	399.5	5		
450	2261.0	1500	203.5			750	x 1500	319.6	5		
525	1661.2	1575	184.6			1000	x 1000	359.5	5		
600 675	1271.8	1650 1725	168.2			1000	x 1200	299.6			
0/5 750	814.0	1800	141.3			1000	x 1800	199.7	,		
825	672.7	1875	130.2			1000	x 2000	179.8	3		
900	565.3	1950	120.4			1500	x 1500	159.8	3		
975	481.6	2025	111.7			1500	x 1800	133.2	2		
1050	415.3	2100	103.8			1500	x 2000	119.8	5		

			Eton Business Park,	Job No.			
			Eton Hill Road, Radcliff M26 27S	Sheet no.			
	www.thelkgroup.com		Tel: 0161 763 7200		2		
			email: m.jones@thelkgroup.com	Date	06/02/17		
MasterDrain	ADAS 30 yr event				Ву	Checked	Reviewed
SW	Title Peak flow storage calcs						
Data:-	reak now storage cales	IOI BEOXITAIN					
Time	Rain	Inflow	Outflow	Balance	9		
(mins)	mm/hr	(m3)	(m3)	(m3)			
10	93.0	246.631	20.412	226.219	Ð		
20	63.0	332.863	40.824	292.039)		
30	49.0	385.880	61.236	324.644	1		
40	40.0	424.030	81.048 102.060	342.00	/ 5		
50 60	30.0	480.590	122.000	358.118	3		
70	27.0	502.420	142.884	359.536	5		
80	25.0	521.571	163.296	358.27	5		
90	23.0	538.653	183.708	354.945	5		
100	21.0	554.083	204.120	349.963	3		
110	20.0	568.163	224.532	343.631	L		
120	18.0	581.115	244.944	336.171	L		
130	17.0	593.112	265.356	327.756	5		
140	16.0	604.287	285.768	318.519) 7		
150	15.0	614./4/ 624 579	306.180	208.20	7		
170	14.0	633.855	347 004	286.851	, I		
180	14.0	642.634	367.416	275.218	3		
190	13.0	650.965	387.828	263.13	7		
200	12.0	658.894	408.240	250.654	1		
210	12.0	666.455	428.652	237.803	3		
220	12.0	673.681	449.064	224.61	7		
230	11.0	680.599	469.476	211.123	3		
240	11.0	687.235	489.888	197.34	7		
250	10 0	693.009	510.300	169 029	9 2		
200	10.0	705.646	551,124	154.522	2		
280	10.0	711.342	571.536	139.800	5		
290	9.0	716.842	591.948	124.894	1		
300	9.0	722.478	612.360	110.118	3		
310	9.0	727.916	632.772	95.144	1		
320	9.0	733.210	653.184	80.020	5		
330	8.0	738.370	673.596	64.773	5		
340	8.0	743.401	714 420	49.39.	5 I		
360	8.0	753.107	734.832	18.27	5		
370	8.0	757.793	755.244	2.549	-)		
380	8.0	762.377	775.656	0.000)		
390	7.0	766.861	796.068	0.000)		
400	7.0	771.252	816.480	0.000)		
410	7.0	775.553	836.892	0.000)		
420	7.0	779.768	857.304	0.000) 		
430	7.0	787 957	898 128	0.000	י ר		
450	7.0	791.937	918.540	0.000)		
460	7.0	795.844	938.952	0.000)		
470	6.0	799.683	959.364	0.000)		
480	6.0	803.454	979.776	0.000)		
490	6.0	807.162	1000.188	0.000	כ		
500	6.0	810.808	1020.600	0.000)		
510	6.0	814.394		0.000	, ,		
520	6.U 6 0	01/0923 801 207	1021.424 1021 836	0.000	י ר		
540	6.0	824.817	1102.248	0.000	-)		
550	6.0	828.185	1122.660	0.000)		
560	6.0	831.504	1143.072	0.000)		
570	6.0	834.774	1163.484	0.000)		
580	5.0	837.998	1183.896	0.000)		
590	5.0	841.176	1204.308	0.000)		
600	5.0	844.310	1224.720	0.000	J		

	The LK Group			Eton Business	Job No.	Job No.					
111.4711 ^{- 1} 1				Eton Hill Road Radcliff M26 2	Eton Hill Road, Radcliff M26 2ZS Tel: 0161 763 7200 email: m.jones@thelkgroup.com			Sheet no. 1			
	www.thelkgroup.com		Tel: 0161 763 email: m.jones								
MasterDrain	Project IH 10	0yr +20% e	event			Ву	Checked	Reviewed			
SW	Title Peak	flow storad	e calcs for BLC	XHAM	М						
Data:-		•	·								
FSR Hydrol	logy:-										
Location	= B1	LOXHAM		Grid refe	rence = SP423	5					
M5-60 (mm) = 19.7			r	r = 0.40							
Soil index = 0.40			SAAR $(mm/yr) = /10$								
Return period = 100		Climate change = 20									
0011		, 5.,									
i) Relat	ively in	mpermeak	ole soils in	n boulder and s	sedimentary c	lays, and in	alluvium	n,			
especially	y in east	tern Eng	<pre>pland;</pre>								
ii) Perme	eable so:	ils with	shallow gr	cound water in	low-lying are	eas;	a 1				
nroportion	areas (or perm	leadle and 1	mpermeable so	lis, in approx	ximately equ	a⊥				
proporcioi	10 •										
Runoff fac	tor (RF) = 27.	0, calculat	ed from:-							
Rur	off fact	tor = (0	.829*PIMP)+	-(25*SOIL)+(0.()78*UCWI)-20.'	7					
whe	ere										
PIN	IP = Impe	ervious	Area*100/(]	Impervious Area	a+Pervious Are	ea)					
UCV	VI = Calo	culated	value for W	letness Index							
Design data:											
Imperv. ar	rea	= 151	00 m ²	Pervious	area	$= 24500 \text{ m}^2$					
Total area	a (TA)	= 396	00 m ²	Equiv are	a	$= 10692 \text{ m}^2$ (TA x RF)	•			
Allowed discharge rate = 43.150 l/s				Areal red	Areal reduction factor = 1.000						
Additional	flow	=	0.00 l/s	Climate c	hange factor	= 20					
Calculated d	lata:-										
Time to ma	ax	= 89.0	mins	Calculate	d storage vol	ume = 617.2	m ³				
Rainfall at max = 36.08 mm/hr			Allowed d	Allowed discharge rate = 43.150 l/s							
Pipeline storage = 0.0 m^3		Available	Available MH storage = 0.0 m ³								
Offline st	orage	= 0.0 m	13								
Fixed 6 hour	data:-										
Rainfall event = 6 hours Calculated st						ume = 221.7	m ³				
Rainfall r	ate	= 12.00	mm/hr	Allowed d	ischarge rate	= 43.150) 1/s				
Rainfall i	ntensit	ies calc	ulated usir	og the Walling	Ford Procedure	2					
				- 5 6 5 -		-					
Storage leng	ths for	initial	. calculatio	on (x 1.1, 1.2)	, 1.3 or 1.5 a	as above if	required)	:-			
Diam	Len	Diam	Len	Ovoid	Len	Box culve	rt Len				
100 7	8605.0	1125	621.1	400 x 600	3429.1	500 x 5	00 2469.	0			
150 3	84935.6	1200	545.9	600×900	1493.1	500 x 7	50 1646. 00 1234	0 5			
225 I 300	.3520.9 8733.9	1350	431.3	000 A 1200	053.1	750×10	00 823-	0			
375	5589.7	1425	387.1			750 x 12	00 685.	8			
450	3881.7	1500	349.4			750 x 15	00 548.	7			
525	2851.9	1575	316.9			1000 x 10	00 617.	2			
600	2183.5	1650	288.7			1000×12		4 5			
675	1397 A	1800	204.2			1000×15	00 342	9			
825	1154.9	1875	223.6			1000 x 20	00 308.	6			
900	970.4	1950	206.7			1500 x 15	00 274.	3			
975	826.9	2025	191.7			1500 x 18	00 228.	б			
1050	713.0	2100	178.2			1500 x 20	00 205.	7			
			Eton Business Park,	Job No.							
-------------	--------------------------------	---	-------------------------------------	-----------	---------------	----------	----------				
		Jup	Eton Hill Road, Radcliff M26 2ZS	Sheet no.							
	www.thelkgroup.c	Tel: 0161 763 7200 m email: m iones@thelkgroup.com			Date	06/02/17					
MasterDrain	Project IH 100yr +20% event				Ву	Checked	Reviewed				
SW	Title Peak flow storage calcs	for BLOXHAM									
Data:-											
Time	Rain	Inflow	Outflow	Balance	9						
(mins)	mm/hr	(m3)	(m3)	(m3)							
10	144.0	381.378	25.890	355.488	3						
20	99.0	520.190	51.780	468.410)						
30	76.0	605.827	77.670	528.15	/ >						
40	54 0	008.108 717 371	129 450	587 921	5						
50 60	48.0	758.103	155.340	602.763	-						
70	43.0	792.892	181,230	611.662	2						
80	39.0	823.269	207.120	616.149	<u>-</u>)						
90	36.0	850.231	233.010	617.221	Ĺ						
100	33.0	874.467	258.900	615.567	7						
110	31.0	896.470	284.790	611.680)						
120	29.0	916.611	310.680	605.931	L						
130	27.0	935.171	336.570	598.601	L						
140	26.0	952.372	362.460	589.912	2						
150	24.0	968.391	388.350	580.041	L						
160	23.0	983.371	414.240	569.131	L						
170	22.0	997.431	440.130	557.301	<u>_</u>						
180	21.0	1010.670	466.020	544.650)						
190	20.0	1023.172	491.910	531.262	2						
200	20.0	1035.007	517.800	517.207	-						
210	19.0	1046.236	543.690	502.540))						
220	18.0	1050.913	569.580	40/.333	5						
230	17.0	1076 787	621 360	455 425	7						
250	16.0	1086.060	647.250	438.810	,)						
260	16.0	1094.935	673.140	421.795	5						
270	15.0	1103.439	699.030	404.409)						
280	15.0	1111.599	724.920	386.679)						
290	15.0	1119.436	750.810	368.626	5						
300	14.0	1127.789	776.700	351.089)						
310	14.0	1135.794	802.590	333.204	Ł						
320	14.0	1143.582	828.480	315.102	2						
330	13.0	1151.164	854.370	296.794	Ł						
340	13.0	1158.551	880.260	278.291	_						
350	13.0	1165.755	906.150	259.605	-						
360	12.0	1170 CE1	932.040	240.746)						
370	12.0	119.051	957.930	221./23	L 3						
390	12.0	1192,919	1009 710	183.209	,)						
400	11.0	1199.336	1035.600	163.736	5						
410	11.0	1205.618	1061.490	144.128	3						
420	11.0	1211.771	1087.380	124.391	L						
430	11.0	1217.800	1113.270	104.530)						
440	11.0	1223.710	1139.160	84.550)						
450	10.0	1229.507	1165.050	64.457	7						
460	10.0	1235.195	1190.940	44.255	5						
470	10.0	1240.778	1216.830	23.948	3						
480	10.0	1246.262	1242.720	3.542	2						
490	10.0	1251.648	1268.610	0.000)						
500	10.0	1256.942	1294.500	0.000)						
510	9.0	1262.147	1320.390	0.000) \						
520	9.0	1207.205	1346.280	0.000) \						
530	9.0	1277 255	1308 060	0.000	,)						
540	9.0	1282 132	1423 950	0.000	,)						
560	9.0	1286.934	1449-840	0.000	,)						
570	9.0	1291.664	1475.730	0.000)						
580	8.0	1296.323	1501.620	0.000)						
590	8.0	1300.915	1527.510	0.000)						
600	8.0	1305.441	1553.400	0.000)						

		The LK Group			Eton Business Park,			Job No.			
			Cicap	Radcliff M26 2Z	S	5	Sheet no.	1			
		www.the	lkgroup.com	Tel: 0161 763 7 email: m.jones@	200 ⊉thelkgroup.com	C	Date	06/02/17			
MasterDrain	Project IH 10	0yr +40% e	vent			E	3y	Checked	Reviewed		
SW	Title Peak	low storag	e calcs for BLO	ХНАМ							
Data:-											
FSR Hydrol	.ogy:-										
Location	= BI	LOXHAM		Grid refe	rence = SP423	5					
M5-60 (mm)	=	19.7		r SAAD (mm/s	= 0.40						
Peturn per	c = 0	•40 100		WRAP	= 3						
UCWI	= '	75.7		Climate ch	nange = 40						
i) Relat especially ii) Perme iii) Mixed proportion	ively in in east able so: l areas o ns.	npermeab tern Eng ils with of perm	le soils in land; shallow gro eable and in	boulder and s ound water in mpermeable soi	edimentary cl low-lying are ls, in approx	ays, and eas; cimately	l in al equal	luvium	,		
Runoff fac	tor (RF) = 27.	0, calculat	ed from:-							
Run	off fact	tor = (0	.829*PIMP)+	(25*SOIL)+(0.0	78*UCWI)-20.7	,					
whe	ere			·							
PIM	IP = Impe	ervious	Area*100/(I waluo for W	mpervious Area	+Pervious Are	ea)					
UCh	11 - Call	Julaceu	Value IOI W	ethess maex							
Design data:	-										
Imperv. ar	rea	= 151	00 m²	Pervious a	area	= 24500	m²				
Total area	(TA)	= 396	00 m²	Equiv area	a :	= 10692	m² (TA	x RF).			
Allowed di	.scharge	rate =	43.150 l/s	Areal redu	iction factor	= 1.000					
Additional	. flow	=	0.00 l/s	Climate cr	lange factor	= 40					
Calculated d	lata:-										
Time to ma	x	= 104.0	mins	Calculated	d storage vol	ume = 76	1.5 m³				
Rainfall a	t max	= 37.54	mm/hr	Allowed di	ischarge rate	= 43.	150 1/:	5			
Pipeline s	storage	= 0.0 m	3	Available	MH storage	= 0.	0 m ³				
Offline st	orage	= 0.0 m	3								
Fixed 6 hour	data:-										
Rainfall e	event	= 6 hou	rs	Calculated	d storage vol	ume = 41	8.3 m ³				
Rainfall r	ate	= 14.00	mm/hr	Allowed di	ischarge rate	= 43	.150 1,	/s			
Rainfall i	.ntensit:	ies calc	ulated using	g the Wallingf	ord Procedure	9					
Storage leng	ths for	initial	calculation	n (x 1.1, 1.2,	1.3 or 1.5 a	as above	if req	uired)	:-		
Diam	T on	Diam	Ion	Ovoid	I.en	Boy a	ulvert	T.en			
100 9	6976.6	1125	766.2	400 x 600	4230.6	500	x 500	3046.0			
150 4	3100.7	1200	673.4	600 x 900	1842.1	500	x 750	2030.7			
225 1	9155.9	1275	596.5	800 x 1200	1036.0	500	x 1000	1523.0			
300 1	.0775.2	1350	532.1			750	x 1000	1015.3 846 1			
3/5 450	0090.⊥ 4789 ∩	1425 1500	431.0			750	x 1500	676.9			
525	3518.4	1575	390.9			1000	x 1000	761.5			
600	2693.8	1650	356.2			1000	x 1200	634.6			
675	2128.4	1725	325.9			1000	x 1500	507.7			
750	1724.0	1800	299.3			1000	x 1800	423.1			
825	1107 C	1875	275.8			1500	x 2000	380.8			
900	1020.1	2025	235.0 236.5			1500	x = 1800	282.0			
1050	879.6	2100	219.9			1500	x 2000	253.8			

		000	Eton Business Park,	Job No.				
	THE LK OF	oup	Eton Hill Road, Radcliff M26 27S	Sheet no.				
			Tel: 0161 763 7200	Data	2			
	www.trieikgroup.c	:011	email: m.jones@thelkgroup.com	Date	06/02/17			
MasterDrain SW	^{Project} IH 100yr +40% event				Ву	Checked	Reviewed	
	Title Peak flow storage calcs	s for BLOXHAM						
Data:-								
Time	Rain	Inflow	Outflow	Balance	9			
(mins)	mm/hr	(m3)	(m3)	(m3)				
10	115 0	444.941	25.890	419.051	-			
20	89.0	706 798	77 670	629 128	2			
40	74.0	779.529	103-560	675.969)			
50	63.0	836.933	129.450	707.483	3			
60	56.0	884.453	155.340	729.113	3			
70	50.0	925.040	181.230	743.810)			
80	45.0	960.480	207.120	753.360)			
90	42.0	991.936	233.010	758.926	5			
100	39.0	1020.211	258.900	761.311	-			
110	36.0	1045.882	284.790	761.092	2			
120	34.0	1069.380	310.680	758.699				
130	32.0	1091.033	336.570	754.463	3			
140	30.0	1111.101	362.460	748.641	-			
150	29.0	1129.789	388.350	741.439	-			
100	27.0	1162 670	414.240	733.020)			
170	20.0	1179 116	440.130	713 094	5			
190	23.0	1193 701	491,910	701 791	,			
200	23.0	1207.508	517.800	689.708	- }			
210	22.0	1220.609	543.690	676.919				
220	21.0	1233.065	569.580	663.485	5			
230	21.0	1244.930	595.470	649.460)			
240	20.0	1256.251	621.360	634.891	-			
250	19.0	1267.070	647.250	619.820)			
260	19.0	1277.424	673.140	604.284	L			
270	18.0	1287.346	699.030	588.316	5			
280	18.0	1296.865	724.920	571.945	5			
290	17.0	1306.008	750.810	555.198	5			
300	17.0	1315./53	776.700 802 E90	539.053))			
320	16.0	1334 179	828 480	505 699)			
330	15.0	1343 024	854 370	488.654	L			
340	15.0	1351.643	880.260	471.383	-			
350	15.0	1360.048	906.150	453.898	}			
360	14.0	1368.250	932.040	436.210)			
370	14.0	1376.260	957.930	418.329)			
380	14.0	1384.086	983.820	400.266	5			
390	14.0	1391.739	1009.710	382.029)			
400	13.0	1399.226	1035.600	363.626	5			
410	13.0	1406.555	1061.490	345.065)			
420	13.0	1413.733	1087.380	326.353	-			
430	13.0	1420./00	1129 160	307.490)			
450	12.0	1434 424	1165.050	269.374	L			
460	12.0	1441.061	1190.940	250.120)			
470	12.0	1447.575	1216.830	230.745	5			
480	11.0	1453.972	1242.720	211.252	2			
490	11.0	1460.256	1268.610	191.646	5			
500	11.0	1466.433	1294.500	171.933	3			
510	11.0	1472.505	1320.390	152.115	5			
520	11.0	1478.476	1346.280	132.196	5			
530	11.0	1484.350	1372.170	112.180)			
540	10.0	1490.130	1398.060	92.070)			
550	10.0	1495.820	1423.950	71.870)			
560		1501.423	1449.84U	5L.583)			
570		1510.941	14/3./3U	31.211 10 755	-			
500	10.0	1517 724	1527.510	0 000 10./5/)			
600	10.0	1523.014	1553.400	0.000)			

		The L	Group	Eton Business	Eton Business Park,			Job No.			
			Coroup	Radcliff M26 22	zs	:	Sheet no.	1			
		www.thel	kgroup.com	Tel: 0161 763 7 email: m.jones@	7200 @thelkgroup.com	_	Date	06/02/17			
MasterDrain	Project ADAS	6 100 yr +20	1%				Ву	Checked	Reviewed		
500	Title Peak f	low storage	e calcs for BLO)	(НАМ							
Data:-						I	I				
FSR Hydrol	.ogy:-										
Location	= BI	LOXHAM		Grid refe	rence = $SP423$	35					
M5-60 (mm)	0	40		I SAAR (mm/m	= 0.40						
Return per	-0.	100		WRAP	= 3						
UCWI	= 7	75.7		Climate cl	hange = 20						
i) Relat especially ii) Perme iii) Mixed proportion	ively in in east able soi areas c s.	npermeab cern Engi ils with of perme	le soils in land; shallow gro eable and im	boulder and s ound water in mpermeable soi	edimentary c low-lying ar ls, in appro	lays, and eas; ximately	i in al equal	luvium.	,		
Runoff fac	tor (RF)) = 27.0	0, calculate	ed from:-							
Run	off fact	cor = (0)	.829*PIMP)+(25*SOIL)+(0.0	78*UCWI)-20.	7					
whe	ere										
PIM	IP = Impe	ervious A	Area*100/(In	pervious Area	+Pervious Ar	ea)					
UCW	I = Calc	culated v	value for We	tness Index							
Design data:	-										
Imperv. ar	ea	= 151	00 m ²	Pervious a	area	= 24500	m²				
Total area	(TA)	= 396	00 m ²	Equiv area		= 10692	m² (TA	x RF).			
Allowed di	.scharge	rate = 4	44.020 1/s	Areal redu	uction factor	r = 1.000					
Additional	. ITOM	= (0.00 I/S	CIIMALE CI	lange lactor	= 20					
Calculated d	lata:-										
Time to ma	x	= 87.0 1	mins	Calculated	d storage vol	Lume = 61	2.7 m ³				
Rainfall a	t max	= 36.68	mm/hr	Allowed d:	ischarge rate	e = 44.	020 1/	s			
Pipeline s	torage	$= 0.0 m^{2}$	3	Available	MH storage	= 0.	0 m ³				
Offline st	orage	= 0.0 m	3								
Fixed 6 hour	data:-										
Rainfall e	vent	= 6 hour	rs	Calculated	d storage vol	Lume = 20	2.4 m^3	1-			
Rainfall r	ate	= 12.00	mm/hr	Allowed d	ischarge rate	9 = 44	.020 I	/ S			
Rainfall i	ntensiti	ies calc	ulated using	g the Wallingf	ord Procedur	e					
Storage leng	ths for	initial	calculatior	n (x 1.1, 1.2,	1.3 or 1.5	as above	if req	[uired)	:-		
Diam	Len	Diam	Len	Ovoid	Len 3403 7	Box c	ulvert	Len 2450 7			
150 7	4676.6	1200	0⊥0.5 541.8	400 x 900	1482.0	500	x 750	1633.8			
225 1	5411.8	1275	480.0	800 x 1200	833.5	500	x 1000	1225.3			
300	8669.2	1350	428.1			750	x 1000	816.9			
375	5548.3	1425	384.2			750	x 1200	680.7			
450	3853.0	1500 1575	346.8 314 5			750	x 1000	544.6 612 7			
525 600	2030.7 2167 २	1650	314.5 286 6			1000	x 1200	510.6			
675	1712.4	1725	262.2			1000	x 1500	408.4			
750	1387.1	1800	240.8			1000	x 1800	340.4			
825	1146.3	1875	221.9			1000	x 2000	306.3			
900	963.2	1950	205.2			1500	x 1500	272.3			
975	820.7 707 7	2025	190.3			1500 1500	x 1800	226.9			
1030	101.1	2100	±/0.2			1000	2000	201.2			

Image: Description of the second se				Eton Business Park,	Job No.			
Ten of 11 783 200 (main injuries Biolegopacian) Total 11 783 200 (main injuries Biolegopacian) Total 11 783 200 (main injuries Biolegopacian) Tailor Same (main injuries and the storage calcs for BLOXHAM The lance (main injuries and the storage calcs for BLOXHAM The lance (main injuries and the storage calcs for BLOXHAM Tailor Same (main injuries and the storage calcs for BLOXHAM The lance (main injuries and the storage calcs for BLOXHAM The lance (main injuries and the storage calcs for BLOXHAM Tailor Same (main injuries and the storage calcs for BLOXHAM Outflow (main injuries and the storage calcs for BLOXHAM The lance (main injuries and the storage calcs for BLOXHAM 3 144.0 381.377 24.6.12 334.966 551.51 3 66 68.0 792.892 103.648 552.521 40 63.0 792.892 11.32.660 553.531 30 33.0 896.470 290.532 660.538 30 32.0 931.371 343.356 591.815 30 22.0 916.611 316.944 599.631 30 22.0 916.611 316.944 599.72 30 22.0 916.611 316		The LK Gr	Jup	Eton Hill Road, Radcliff M26 27S	Sheet no.			
The Decision of the second s		www.thelkaroup.com		Tel: 0161 763 7200		Date	2	
Materian SV Part How Storage calcs for BLOXHAM Part How Storage calcs for BLOXHAM Part How Storage calcs for BLOXHAM Data :- (mine) mm/hr (n.3) (m.3) (m.3) (m.3) 1 144.0 381.378 26.412 354.966 20 99.0 520.190 52.824 467.366 40 63.0 668.161 105.648 562.530 41 63.0 778.133 138.472 598.431 70 43.0 792.932 184.884 600.000 80 39.0 852.326 221.296 611.973 100 33.0 874.467 296.532 603.947 110 26.0 996.531 232.126 633.463 120 22.0 997.437 396.765 533.667 130 31.0 874.467 296.532 607.797 140 26.0 997.431 396.106 533.667 150 24.0 996.8371 326.50 777.211 160		Project		email: m.jones@thelkgroup.com		Bu	06/02/17	Deviewed
Parta Time Rain Inflow Outflow Balance 10 144.0 381.378 26.412 354.966 10 144.0 381.378 26.412 354.966 10 144.0 381.378 26.412 354.966 10 60 668.168 105.448 662.520 10 43.0 792.392 184.884 600.008 80 35.0 823.269 211.396 611.973 100 33.0 874.467 264.120 610.347 110 33.0 874.467 264.120 610.347 120 23.0 983.371 336.183 593.667 121 23.0 983.371 326.785 584.644 150 24.0 983.371 326.183 593.667 160 23.0 983.371 326.183 564.423 160 24.0 983.371 426.523 564.779 170 22.0 1023.172 501.828	MasterDrain SW	ADAS 100 yr +20%				ву	Спескеа	Reviewed
InterNameNumCut: LowBalance10144.0381.37826.412354.96610144.0381.37826.412354.9661063.0668.168105.448526.5911063.0668.168105.448526.5911053.054.0773.71132.060585.3111133.0776.0605.82779.23659.631127743.0722.823184.98608.0071033.0874.467264.120610.45.931033.0874.467260.532605.93811033.0874.467260.532605.93812022.0935.17143.356591.61513027.0935.17143.356592.60415024.0968.931386.180572.21116022.090.0103.172501.828521.34410020.01033.172501.828521.34410020.01035.077528.240566.76721019.01046.236554.652451.54922018.01067.083607.476459.60722018.01067.623607.476459.63122018.01067.623607.476459.63122018.01067.623607.476459.63122018.01066.551930.335150.34823015.0111.939739.536737.02224015.0	Data	Peak flow storage calcs	for BLOXHAM					
	Dala:- Time	Rain	Inflow	Outflow	Balance	2		
	(mins)	mm/hr	(m3)	(m3)	(m3)			
20 99.0 520.190 52.824 467.366 30 75.0 605.827 79.236 526.591 40 63.0 668.166 105.648 562.520 50 54.0 717.371 132.060 563.311 60 48.0 738.103 158.472 59.631 60 35.0 863.647 247.708 611.973 100 33.0 864.670 240.122 605.331 110 31.0 864.670 290.532 605.938 120 29.0 935.171 343.356 591.637 130 27.0 935.171 343.356 591.637 140 26.0 963.371 422.592 606.779 130 27.0 937.431 449.004 544.497 160 21.0 1010.670 471.416 535.254 150 22.0 97.431 449.044 544.497 160 21.0 1010.67.03 531.486 442.899 <	10	144.0	381.378	26.412	354.966	5		
30 76.0 663.827 79.236 526.531 40 63.0 668.168 105.648 526.521 50 54.0 717.371 132.060 865.311 60 48.0 738.103 158.472 599.631 70 43.0 732.892 114.884 606.008 80 39.0 86.21.237 237.708 611.973 10 31.0 96.617 230.532 653.388 120 32.0 916.611 316.944 659.667 130 27.0 935.171 433.356 531.815 140 26.0 923.372 369.768 582.607 150 24.0 966.331 366.180 572.211 160 23.0 937.431 422.592 560.779 170 22.0 937.431 423.004 544.427 180 21.0 100.670 475.416 535.231 200 20.0 1023.172 501.828 521.344 <	20	99.0	520.190	52.824	467.366	5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	76.0	605.827	79.236	526.591	L		
5054.0717.371132.060585.3116048.0755.103156.472599.6317043.0722.892184.884608.0088039.0823.269211.296611.9739036.0857.467244.120610.34711031.0874.467244.120610.34712029.0916.611116.944599.66713027.0953.171343.356591.81516024.0980.371367.760522.60416024.0981.871342.192560.77917022.0997.431440.004484.42718021.01101.670475.416533.52419020.01033.107528.240560.77921019.01066.03667.476230.18422018.01056.913581.064475.49423018.01056.913581.064475.49925016.01094.935666.712400.2327015.0111.599739.536372.06328015.0111.59739.536372.06329015.0111.59739.536372.06329015.0111.543759.63834430014.0127.789792.36033.42931014.01135.794816.772406.23330014.01135.794816.772406.24030014.01135.714979.366126.703 </td <td>40</td> <td>63.0</td> <td>668.168</td> <td>105.648</td> <td>562.520</td> <td>)</td> <td></td> <td></td>	40	63.0	668.168	105.648	562.520)		
6048.0782.892184.894600.0068039.0823.269211.296611.9739036.0850.231277.708612.52310031.0874.467264.120610.34711031.0874.467264.120610.34711031.0874.467264.120610.34711021.0915.611316.946593.66514026.0953.771326.766882.60415024.0966.931396.180572.21116023.0983.371422.952560.77917022.0974.31449.004544.42718021.01010.670475.416535.25419020.01023.172501.828521.34420020.01035.007528.240506.76721019.01046.236554.652491.58422018.01067.083607.476459.60724017.01064.93566.712408.23325016.01084.050660.300422.76026016.01094.93566.712408.23327015.01111.59753.548324.9926016.01094.935666.172408.23327015.01114.59875.948334.49930014.01143.574898.008260.54330114.01143.575924.420334.49330313.01158.551958.082 <td< td=""><td>50</td><td>54.0</td><td>717.371</td><td>132.060</td><td>585.311</td><td>L</td><td></td><td></td></td<>	50	54.0	717.371	132.060	585.311	L		
7043.0792.892184.884608.0088036.083.203237.708611.9739036.0874.467244.120610.34711031.0896.470290.532605.38812029.0916.611316.944599.66713027.0935.171343.356591.41514024.0923.372367.760582.60416024.0981.871421.592560.77917022.0997.431449.004448.42718021.01101.670475.416535.25419020.01035.077538.240560.77921019.01046.236554.652491.58422018.01056.913551.064475.45923018.01056.913551.064475.45924017.01076.787633.888442.89925016.01094.935666.712400.23326015.01115.439731.124390.31528015.01115.437731.124390.31528015.01115.43675.948353.48830014.01127.789792.360335.42931014.01135.794816.772400.23330014.01135.794816.772400.240730113.01165.55594.420241.33530214.01145.156182.401100.46744011.0120.717106.324 <td>60</td> <td>48.0</td> <td>758.103</td> <td>158.472</td> <td>599.631</td> <td>L</td> <td></td> <td></td>	60	48.0	758.103	158.472	599.631	L		
80 33.0 823.269 211.296 611.973 90 36.0 850.231 237.708 612.533 100 33.0 874.467 264.120 610.347 110 31.0 856.470 290.532 605.938 120 29.0 916.611 316.944 599.667 130 27.0 935.171 343.356 591.815 140 26.0 952.372 369.768 552.604 150 24.0 966.391 366.180 572.211 160 23.0 937.31 422.592 567.779 170 22.0 97.431 449.004 586.427 190 20.0 1035.012 561.262 567.794 200 20.0 1035.013 561.064 495.80 210 190 1067.683 607.476 492.809 210 190 1067.683 607.476 493.233 210 140 1194.353 765.948 333.488	70	43.0	792.892	184.884	608.008	3		
90 36.0 830.231 237.708 612.523 110 31.0 896.470 290.532 605.938 120 29.0 916.611 316.944 599.667 130 27.0 935.171 343.356 591.815 140 26.0 968.391 396.180 572.211 160 23.0 937.431 449.004 584.427 180 21.0 1001.670 475.416 535.254 190 20.0 1023.172 501.828 521.344 200 20.0 1023.172 501.828 422.899 210 19.0 1046.236 554.652 491.584 220 18.0 1067.083 607.476 432.899 230 18.0 1067.083 666.712 466.223 240 17.0 1076.787 633.888 442.899 250 15.0 1103.439 713.124 390.315 260 15.0 1119.436 765.948 335.	80	39.0	823.269	211.296	611.973	3		
10033.0 374.467 294.120 110 131.0 374.467 294.522 605.938 12029.0916.611 316.944 599.66713027.0935.171 343.366 591.81514026.0952.372 369.768 582.60415024.0966.331 356.180 572.21116023.0997.431 442.592 56717022.0977.431 492.044 566.42718021.01005.670403.846561.74720020.01035.107538.640561.74720120.01056.131551.652491.58420218.01066.235657.767633.88820318.01067.083607.476495.84920417.01076.767633.888442.89925016.01094.935666.712408.22326015.01119.436765.948353.48829015.01135.794818.772372.06329015.01135.164871.596297.56630014.01137.796972.360355.42931014.01135.794818.77237.02231014.01135.716822.46735013.01156.755924.420413.35536012.01172.766950.832221.95437012.01177.71103.656162.70339012.01135.71682.0440.000 <td>90</td> <td>36.0</td> <td>850.231</td> <td>237.708</td> <td>612.523</td> <td>3</td> <td></td> <td></td>	90	36.0	850.231	237.708	612.523	3		
11031.0396.4.0200.332607.33312022.0315.171343.356591.61514026.092.372369.768582.60415024.0968.391366.160572.21116023.093.371422.592560.77917022.0997.431449.004533.25418021.0100.670475.416533.25419020.01023.172501.628506.76721019.01046.236554.652491.58422016.01066.913581.064475.84923016.01066.060660.300425.76024017.01076.787633.688442.89925016.01044.935666.712408.22327015.01113.439713.124390.31528015.01119.436765.948335.42931014.01135.724818.772313.62933013.01156.151974.240241.33534013.01156.755924.420241.33535013.01165.755924.420241.33536012.01172.786950.832221.95437012.01179.651977.244292.40738012.01185.755924.420241.33536012.01172.786950.832221.95437012.01139.251103.668162.65140011.0122.619124.9	100	33.0	874.467	264.120	610.347	/		
12027.0910.01130.944992.08713027.0952.171343.355591.01514026.0952.372397.769582.60415024.0968.391396.180572.21116023.0993.371422.592560.77917022.097.431449.004544.42718021.01010.670475.416533.25419020.01023.172501.828521.34420020.01035.007582.240506.76721019.01046.236554.652491.58422018.01056.913581.064475.64923016.01096.606660.300422.76024017.01076.787633.888442.69925016.01094.935666.712408.22327015.0111.599739.536372.06328015.0111.599739.536372.06329015.0111.436765.948353.48830014.01135.794818.772317.02232014.01143.522845.184298.39833013.01154.551896.008260.54335013.01157.755924.420241.33536012.01172.766950.832221.95631014.0123.7101162.12861.58235013.0126.511030.656182.70336012.01199.3361056.480	110	31.0	896.470	290.532	605.938	5		
13021.0333.121333.330391.61314026.0952.372359.768582.60415024.0968.391366.180572.21116023.093.371422.592560.77917022.0997.431449.004548.42718021.0100.670475.416533.25419020.01023.172501.828521.34420020.01035.007528.240506.76721019.01046.236554.652491.58422018.01067.083607.476475.41623018.01067.083607.476425.76026016.01094.935666.712408.22327015.01113.599739.536372.06328015.01115.99739.536372.06328015.01115.9794818.772317.02230014.01127.789792.360335.42931014.01135.754896.008260.54335013.01165.755924.420241.33536012.01172.786950.832221.95437012.0119.3361005.6480142.85636012.01172.786910.30.656182.70339012.01185.251896.008260.54335013.01165.755924.420241.33536012.01172.786910.30.656182.70339012.01185.154 <td>120</td> <td>29.0</td> <td>916.611 025 171</td> <td>310.944</td> <td>599.66</td> <td>-</td> <td></td> <td></td>	120	29.0	916.611 025 171	310.944	599.66	-		
15024.0968.091366.100572.21116023.0993.371426.592577.21117022.0997.431449.004544.62718021.01010.670475.416532.5419020.01023.172501.828521.34420020.01035.007528.240506.76721019.01046.256554.652491.58422018.01056.913581.064475.84923018.01076.787633.888442.89925016.01086.060660.300425.76026016.01094.935666.712408.22327015.01111.599739.536373.48830014.01127.789732.360335.42931014.01135.794818.772317.02232014.01135.794818.772317.02232014.01135.515898.008260.54333013.01156.155924.420241.33536012.01172.786950.832221.95634013.0158.551898.008260.54335013.01156.355103.656182.70339012.01172.786950.832221.95640011.0129.3361056.480142.85640011.0129.3361056.480142.85641011.0129.356103.066162.85142011.0122.77613	140	27.0	952 372	369 768	582 604	1		
1601210983.371422.552560.77917022.0997.431449.004548.42718021.0101.670475.416535.25419020.01023.172501.828521.34420020.01023.007528.240506.76721019.01046.236554.652491.58422018.01067.083607.476459.60724017.01076.787633.688442.89925016.01086.060660.300425.76026015.01111.599739.536772.06327015.01111.493735.36772.06328015.01119.436765.948353.48830014.01127.789792.306354.42931014.01135.794818.772317.02232016.01165.755924.420241.33536012.01179.651977.244202.40738012.01186.359103.656162.70339012.01186.359103.656162.70339012.01189.515924.420241.35546010.0122.7766950.832221.95447010.01240.7781103.656162.70339012.01179.651977.244202.40736012.01179.651977.244202.40739012.01199.336100.068162.85140011.01205.618 <t< td=""><td>150</td><td>20.0</td><td>968.391</td><td>396,180</td><td>572.211</td><td>± I</td><td></td><td></td></t<>	150	20.0	968.391	396,180	572.211	± I		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160	23.0	983.371	422,592	560.779	•		
10021.0101.0 670 $475.41c$ 535.254 19020.01033.172501.828521.34420020.01035.007528.240506.76721019.01046.236554.652491.58422018.01067.083607.476459.60724017.01076.787633.688442.89925016.01086.060660.300425.76026015.01103.439713.124390.31528015.01119.436765.948353.48830014.01127.789792.360335.42931014.01127.789792.360335.42931014.01135.751898.008260.54335013.01156.755924.420241.33536012.01172.766950.832221.95437012.01179.651977.242224.07738012.01186.3591003.656182.70339012.01192.3661055.480142.85641011.01205.6181082.892222.72642011.01217.7801135.71682.08444011.0122.7760.00045010.0122.7760.00045010.0122.7760.00045010.0122.7760.00045010.0122.7760.00045010.0125.16481294.1880.00050010.0125.164	170	22.0	997.431	449.004	548.427	7		
190 20.0 1023.172 501.628 521.344 200 20.0 1035.007 528.240 560.767 210 19.0 1046.236 554.652 491.584 220 18.0 1056.913 581.064 475.849 230 18.0 1067.083 607.476 459.607 240 17.0 1076.787 633.888 442.899 250 16.0 1094.935 686.712 408.223 270 15.0 1111.599 735.536 372.063 280 15.0 1111.599 735.536 372.063 300 14.0 1127.789 792.360 353.429 310 14.0 1135.794 818.772 317.022 320 14.0 1143.582 845.184 296.386 330 13.0 1158.551 898.008 260.543 360 12.0 1172.786 979.566 120.91 370 12.0 1172.786 106.656 <t< td=""><td>180</td><td>21.0</td><td>1010.670</td><td>475.416</td><td>535.254</td><td><u>1</u></td><td></td><td></td></t<>	180	21.0	1010.670	475.416	535.254	<u>1</u>		
200 20.0 1035.077 528.240 506.767 210 19.0 1046.236 554.652 491.584 220 18.0 1056.913 581.064 475.849 230 18.0 1067.083 607.476 455.607 240 17.0 1076.787 633.888 442.899 250 16.0 1086.060 660.300 425.760 260 15.0 1111.599 739.536 372.063 290 15.0 1112.7799 792.360 335.429 310 14.0 1135.794 818.772 317.022 320 14.0 1135.164 871.596 279.568 340 13.0 1156.755 924.420 241.335 350 13.0 1156.755 924.420 241.335 360 12.0 1172.786 950.832 221.954 370 12.0 1172.781 1003.668 162.851 380 12.0 1186.359 1003.656	190	20.0	1023.172	501.828	521.344	ł		
210 19.0 1046.236 554.652 491.884 220 18.0 1067.083 607.476 459.607 240 17.0 1076.787 633.888 442.899 250 16.0 1086.060 660.300 425.760 260 16.0 1094.9355 686.712 408.223 270 15.0 1111.9399 713.124 390.315 280 15.0 1111.9436 765.948 353.488 300 14.0 1127.789 792.360 355.429 310 14.0 1125.794 818.772 317.022 320 14.0 1143.572 844.184 298.398 330 13.0 1151.164 871.596 279.568 340 13.0 1155.755 924.420 241.335 360 12.0 1172.786 950.832 221.954 370 12.0 1172.786 977.244 202.407 380 12.0 1172.786 977.244 202.407 380 12.0 1172.786 950.832 221.954 410 11.0 1205.618 1082.892 122.726 410 11.0 1292.919 103.068 162.851 400 11.0 1223.710 1165.176 82.084 400 11.0 1223.710 1162.128 61.582 450 10.0 1223.195 1214.952 20.243 460 10.0 1223.195 1373.424 0.00	200	20.0	1035.007	528.240	506.767	7		
22018.01056.913581.064475.84923018.01067.083607.476459.60724017.01076.787633.888442.89925016.01086.060660.300425.76026015.01103.439713.124390.31527015.01113.599735.6372.06328015.01113.789792.360335.42930014.01127.789792.360335.42931014.01135.794818.772317.02232014.01155.55924.420241.33536013.01158.551898.098260.54335013.01165.755924.420241.33536012.01172.786950.832221.95437012.01178.651977.244202.40738012.01182.519103.068162.85140011.01205.6181082.892122.72641011.01217.780113.71682.08444011.01223.7101163.12861.58245010.01223.5071188.54040.96746010.01235.142126.0600.00050010.01240.7781241.3640.00050010.01265.6421267.7760.00050010.01265.642137.4440.00050010.01265.6421267.7760.00050010.01265.642137.4	210	19.0	1046.236	554.652	491.584	ł		
23018.0 1067.083 607.476 459.607 24017.0 1076.787 633.888 442.899 25016.0 1094.935 686.712 408.223 27015.0 1103.439 713.124 390.315 28015.0 1111.599 739.536 372.063 29015.0 1127.789 792.360 335.488 30014.0 1127.789 792.360 335.429 31014.0 1135.794 818.772 317.022 32014.0 1143.582 845.184 298.398 33013.0 1151.164 871.596 279.568 34013.0 1158.551 890.008 260.543 35013.0 1165.755 924.420 241.335 36012.0 1172.786 950.832 221.954 37012.0 1172.786 950.832 221.954 37012.0 1172.786 950.832 221.954 40011.0 1192.919 1030.068 162.851 41011.0 1192.919 1030.068 162.851 41011.0 1223.710 1162.128 61.582 450 10.0 1225.757 1186.540 40.967 46010.0 1223.5195 1214.952 20.243 470 10.0 1240.778 124.1344 0.000 500 10.0 1256.481 1294.188 0.000 500 10.0 1256.942 1320.600 <td< td=""><td>220</td><td>18.0</td><td>1056.913</td><td>581.064</td><td>475.849</td><td>)</td><td></td><td></td></td<>	220	18.0	1056.913	581.064	475.849)		
240 17.0 1076.787 633.88 442.899 250 16.0 1086.060 660.300 425.760 260 16.0 1094.935 666.712 408.233 270 15.0 1103.439 713.124 390.315 280 15.0 1111.599 739.536 372.063 290 15.0 1113.799 792.360 335.429 310 14.0 1135.794 818.772 317.022 320 14.0 1143.582 845.184 298.398 330 13.0 1151.164 871.596 279.568 340 13.0 1155.75 924.420 241.335 360 12.0 1172.786 950.832 221.954 370 12.0 1172.61 977.244 202.407 380 12.0 1186.359 1003.656 182.703 390 12.0 1182.919 1030.068 162.851 410 11.0 1211.771 1109.304 102.467 420 11.0 1221.771 1109.304 40.957 </td <td>230</td> <td>18.0</td> <td>1067.083</td> <td>607.476</td> <td>459.607</td> <td>7</td> <td></td> <td></td>	230	18.0	1067.083	607.476	459.607	7		
250 16.0 1086.060 660.300 425.760 260 15.0 1103.439 713.124 390.315 280 15.0 1111.599 739.536 372.063 290 15.0 1113.436 765.948 353.448 300 14.0 1127.789 792.360 335.429 310 14.0 1135.794 818.772 317.022 320 14.0 1143.582 845.184 298.398 330 13.0 1151.515 898.008 260.543 350 13.0 1172.786 950.832 221.954 360 12.0 1172.786 950.832 221.954 370 12.0 1172.786 950.832 122.726 410 11.0 1192.919 103.0565 182.703 390 12.0 1192.919 103.0565 182.703 400 11.0 1219.771 1109.304 102.467 410 11.0 1223.710 1162.128 61.582 450 10.0 1223.717 1162.128 61.58	240	17.0	1076.787	633.888	442.899	9		
26016.0 1094.935 686.712 408.223 270 15.0 1103.439 713.124 390.315 280 15.0 1119.436 765.948 353.488 300 14.0 1127.789 792.360 335.429 310 14.0 1135.794 818.772 317.022 320 14.0 1135.794 818.772 317.022 320 14.0 1145.551 898.008 260.543 330 13.0 1158.551 898.008 260.543 350 13.0 1157.55 924.420 241.335 360 12.0 1179.651 977.244 202.407 380 12.0 1192.919 1030.656 182.703 390 12.0 1199.919 1030.656 182.703 410 11.0 1205.618 1082.892 122.726 420 11.0 1211.771 109.304 102.467 430 11.0 1223.710 1162.128 61.82 440 11.0 1223.710 1162.128 61.82 450 10.0 1240.778 1241.952 20.243 470 10.0 1246.262 1267.776 0.000 500 9.0 1267.2455 1373.424 0.000 500 9.0 1267.2455 1373.424 0.000 500 9.0 1267.2455 1373.424 0.000 500 9.0 1267.2455 1373.424 0.000 500 9.0	250	16.0	1086.060	660.300	425.760)		
27015.01103.439713.124390.31528015.01111.599739.536372.06329015.01112.7789792.360335.42930014.01135.794818.772317.02232014.01143.582845.184298.39833013.0115.164871.596279.56834013.01158.551898.008260.54335013.01165.755924.420241.33536012.01172.786950.832221.95437012.01179.651977.244202.40738012.01199.6351003.656182.70339012.01199.3361056.480142.85641011.01205.6181082.892122.72642011.0121.7711109.304102.46743011.01223.5071188.54040.96746010.01235.1951214.95220.24347010.01240.7781241.3640.00050010.01256.9421320.6000.00050010.01265.1471347.0120.0005009.01262.1471347.0120.0005009.01262.1471347.0120.0005009.01262.1471347.0120.0005009.01262.1471347.0120.0005009.01262.1471347.0120.0005009.01266.9341479.0	260	16.0	1094.935	686.712	408.223	3		
280 15.0 1111.599 733.36 372.063 290 15.0 1119.36 765.948 335.488 300 14.0 1127.789 792.360 335.429 310 14.0 1135.794 818.772 317.022 320 14.0 1143.582 845.184 298.398 330 13.0 1151.164 871.596 279.568 340 13.0 1158.551 890.008 260.543 350 12.0 1172.786 950.832 221.954 370 12.0 1179.651 977.244 202.407 380 12.0 1192.919 1030.068 162.851 400 11.0 1192.919 1030.068 162.851 410 11.0 1205.618 1082.892 122.726 420 11.0 1217.710 1193.044 102.467 430 11.0 1223.710 1162.128 61.582 450 10.0 1223.5195 1214.952 20.243 470 10.0 1224.778 124.364 0.000 480 10.0 1223.710 1162.128 61.582 470 10.0 1224.778 124.952 20.243 470 10.0 1224.778 124.952 20.243 470 10.0 1223.710 1162.128 61.582 450 10.0 1225.195 1214.952 20.243 470 10.0 1240.778 124.952 20.243 <td>270</td> <td>15.0</td> <td>1103.439</td> <td>713.124</td> <td>390.315</td> <td>5</td> <td></td> <td></td>	270	15.0	1103.439	713.124	390.315	5		
29015.01119.436765.948353.48830014.01127.789792.360335.42931014.01135.794818.772317.02232014.01143.582845.184298.39833013.01151.164871.596279.56834013.01155.55898.008260.54335013.01155.755924.420241.33536012.01179.651977.244202.40738012.01192.9191030.068162.85140011.01199.3361056.480142.85641011.01205.6181082.892122.72642011.01217.7001135.71682.08444011.01223.7101162.12861.58245010.01229.5071188.4040.96746010.01225.195124.95220.24347010.01240.7781241.3640.00048010.01256.9421320.6000.0005109.01267.2651373.4240.0005209.01267.2651373.4240.0005309.01277.2551426.2480.0005409.01277.2551426.2480.0005509.01281.321452.6600.0005509.01281.321452.6600.0005509.01286.9341479.0720.0005509.01281.321452.660 <t< td=""><td>280</td><td>15.0</td><td>1111.599</td><td>739.536</td><td>372.063</td><td>3</td><td></td><td></td></t<>	280	15.0	1111.599	739.536	372.063	3		
300 14.0 1127.769 732.360 333.429 310 14.0 1133.794 818.772 317.022 320 14.0 1143.582 845.184 298.398 330 13.0 1151.164 871.596 279.568 340 13.0 1155.551 898.008 260.543 350 13.0 1165.755 924.420 241.335 360 12.0 1172.786 950.832 221.954 370 12.0 1179.651 977.244 202.407 380 12.0 1199.336 1056.480 142.856 400 11.0 1199.336 1056.480 142.856 410 11.0 1205.618 1082.892 122.726 420 11.0 1217.800 1135.716 82.084 440 11.0 1223.710 1162.128 61.582 450 10.0 1225.195 1214.952 20.243 470 10.0 1240.778 124.952 20.243 470 10.0 1246.778 124.952 20.243 470 10.0 1225.195 1214.952 20.243 470 10.0 1267.265 137.424 0.000 500 10.0 1267.265 137.424 0.000 510 9.0 1267.265 137.424 0.000 520 9.0 127.255 1426.248 0.000 530 9.0 127.255 1426.248 0.000 <tr< td=""><td>290</td><td>15.0</td><td>1107 700</td><td>765.948</td><td>353.488</td><td>5</td><td></td><td></td></tr<>	290	15.0	1107 700	765.948	353.488	5		
310 141.0 1133.794 316.772 317.792 320 14.0 1143.582 845.184 298.398 330 13.0 1151.164 871.596 279.568 340 13.0 1158.551 898.008 260.543 350 13.0 1165.755 924.420 241.335 360 12.0 1172.786 950.832 221.954 370 12.0 1179.651 977.244 202.407 380 12.0 1192.919 1030.656 162.851 400 11.0 1199.336 1056.480 142.856 410 11.0 1217.711 1109.304 102.467 430 11.0 1227.710 1162.128 61.582 440 11.0 1229.507 1188.540 40.967 460 10.0 1224.776 0.000 480 10.0 1226.147 1327.76 490 10.0 1256.942 1267.776 0.000 500 9.0 1262.147 1347.012 0.000 510 9.0 1262.147 1347.012 0.000 520 9.0 1277.255 1426.248 0.000 540 9.0 1277.255 1426.248 0.000 550 9.0 1282.132 1479.072 0.000 560 9.0 1291.664 1505.484 0.000 560 8.0 1296.323 1531.896 0.000 560 8.0 129	300	14.0	1125 704	792.300	335.44	,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	320	14.0	1143 582	845 184	208 308	2		
340 13.0 1158.551 898.008 260.543 350 13.0 1165.755 924.420 241.335 360 12.0 1172.786 950.832 221.954 370 12.0 1179.651 977.244 202.407 380 12.0 1192.919 1003.656 182.703 390 12.0 1192.919 1030.068 162.851 410 11.0 1295.618 1082.892 122.726 420 11.0 1211.771 1109.304 102.467 430 11.0 1223.710 1162.128 61.582 440 11.0 1229.507 1188.540 40.967 460 10.0 1240.778 1241.364 0.000 480 10.0 1251.648 1294.188 0.000 500 10.0 1255.942 1320.600 0.000 500 10.0 1277.255 1426.248 0.000 510 9.0 1267.265 1373.424 0.000 520 9.0 1277.255 1426.248 0.000 540 9.0 1277.255 1426.248 0.000 550 9.0 128.132 1452.660 0.000 550 9.0 1291.664 1505.484 0.000 550 8.0 1296.323 1531.896 0.000 590 8.0 1305.441 1584.720 0.000	330	13.0	1151.164	871.596	279.568	3		
35013.01165.755924.420241.33536012.01172.786950.832221.95437012.01179.651977.244202.40738012.01186.3591003.656182.70339012.01192.9191030.068162.85140011.01199.3361056.480142.85641011.01205.6181082.892122.72642011.01217.7011109.304102.46743011.01227.001135.71682.08444010.01229.5071188.54040.96745010.01229.5071188.54040.96746010.01240.7781241.3640.00048010.01246.2621267.7760.00049010.01251.6481294.1880.00050010.01262.1471320.6000.0005109.01267.2651373.4240.0005209.01267.2551373.4240.0005309.01272.3001399.8360.0005409.01277.2551426.2480.0005509.01286.9341479.0720.0005609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01305.9151558.3080.0005908.01305.9151558.3080.0005908.01305.4411584.720<	340	13.0	1158.551	898.008	260.543	3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350	13.0	1165.755	924.420	241.335	5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	360	12.0	1172.786	950.832	221.954	ł		
38012.01186.3591003.656182.70339012.01192.9191030.068162.85140011.01199.3361056.480142.85641011.01205.6181082.892122.72642011.01211.7711109.304102.46743011.01223.7101162.12861.58245010.01229.5071188.54040.96746010.01235.1951214.95220.24347010.01246.2621267.7760.00048010.01251.6481294.1880.00050010.01262.1471347.0120.0005109.01267.2651373.4240.0005309.01272.3001399.8360.0005409.01282.1321452.6600.0005509.01286.9341479.0720.0005509.01286.9341479.0720.0005609.01291.6641505.4840.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01305.4411584.7200.000	370	12.0	1179.651	977.244	202.407	7		
39012.01192.9191030.068162.85140011.01199.3361056.480142.85641011.01205.6181082.892122.72642011.01211.7711109.304102.46743011.01223.7101162.12861.58245010.01229.5071188.54040.96746010.01229.5071188.5400.00048010.01240.7781241.3640.00048010.01251.6481294.1880.00050010.01262.1471347.0120.0005109.01267.265137.4240.0005209.01267.2551426.2480.0005309.01277.3551426.2480.0005509.01286.9341479.0720.0005609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01305.4411584.7200.000	380	12.0	1186.359	1003.656	182.703	3		
40011.01199.3361056.480142.85641011.01205.6181082.892122.72642011.01211.7711109.304102.46743011.01217.8001135.71682.08444011.01223.7101162.12861.58245010.01229.5071188.54040.96746010.01240.7781241.3640.00048010.01251.6481294.1880.00050010.01256.9421320.6000.00050010.01262.1471373.4240.0005109.01267.2651373.4240.0005209.01272.3001399.8360.0005509.01277.2551426.2480.0005509.01282.1321452.6600.0005609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01300.9151558.3080.0005908.01305.4411584.7200.000	390	12.0	1192.919	1030.068	162.851	L		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	400	11.0	1199.336	1056.480	142.856	5		
420 11.0 1211.771 1109.304 102.467 430 11.0 1217.800 1135.716 82.084 440 11.0 1223.710 1162.128 611.582 450 10.0 1229.507 1188.540 40.967 460 10.0 1235.195 1214.952 20.243 470 10.0 1240.778 1241.364 0.000 480 10.0 1246.262 1267.776 0.000 490 10.0 1251.648 1294.188 0.000 500 10.0 1256.942 1320.600 0.000 510 9.0 1262.147 1347.012 0.000 520 9.0 1272.300 1399.836 0.000 530 9.0 1277.255 1426.248 0.000 550 9.0 1282.132 1452.660 0.000 560 9.0 1282.132 1452.660 0.000 570 9.0 1291.664 1505.484 0.000 580 8.0 1296.323 1531.896 0.000 590 8.0 1300.915 1558.308 0.000	410	11.0	1205.618	1082.892	122.726	5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	420	11.0	1211.771	1109.304	102.467	7		
440 11.0 1223.710 1162.128 61.582 450 10.0 1229.507 1188.540 40.967 460 10.0 1235.195 1214.952 20.243 470 10.0 1240.778 1241.364 0.000 480 10.0 1246.262 1267.776 0.000 490 10.0 1251.648 1294.188 0.000 500 10.0 1256.942 1320.600 0.000 510 9.0 1262.147 1347.012 0.000 520 9.0 1267.265 1373.424 0.000 530 9.0 1272.300 1399.836 0.000 540 9.0 1277.255 1426.248 0.000 550 9.0 1286.934 1479.072 0.000 560 9.0 1291.664 1505.484 0.000 570 9.0 1291.664 1505.484 0.000 590 8.0 1300.915 1558.308 0.000 590 8.0 1305.441 1584.720 0.000	430	11.0	1217.800	1135.716	82.084	1		
450 10.0 1229.507 1188.540 40.967 460 10.0 1235.195 1214.952 20.243 470 10.0 1240.778 1241.364 0.000 480 10.0 1246.262 1267.776 0.000 490 10.0 1251.648 1294.188 0.000 500 10.0 1256.942 1320.600 0.000 510 9.0 1262.147 1347.012 0.000 520 9.0 1267.265 1373.424 0.000 530 9.0 1272.300 1399.836 0.000 540 9.0 1277.255 1426.248 0.000 550 9.0 1282.132 1452.660 0.000 560 9.0 1291.664 1505.484 0.000 570 9.0 1296.323 1531.896 0.000 590 8.0 1300.915 1558.308 0.000 600 8.0 1305.441 1584.720 0.000	440	11.0	1223.710	1162.128	61.582	2		
480 10.0 1235.195 1214.952 20.243 470 10.0 1240.778 1241.364 0.000 480 10.0 1246.262 1267.776 0.000 490 10.0 1251.648 1294.188 0.000 500 10.0 1256.942 1320.600 0.000 510 9.0 1262.147 1347.012 0.000 520 9.0 1267.265 1373.424 0.000 530 9.0 1272.300 1399.836 0.000 540 9.0 1277.255 1426.248 0.000 550 9.0 1282.132 1452.660 0.000 560 9.0 1286.934 1479.072 0.000 570 9.0 1291.664 1505.484 0.000 580 8.0 1296.323 1531.896 0.000 590 8.0 1300.915 1558.308 0.000 600 8.0 1305.441 1584.720 0.000	450	10.0	1229.507	1188.540	40.967	/		
47010.01240.7781241.3840.00048010.01246.2621267.7760.00049010.01251.6481294.1880.00050010.01256.9421320.6000.0005109.01262.1471347.0120.0005209.01267.2651373.4240.0005309.01272.3001399.8360.0005409.01277.2551426.2480.0005509.01282.1321452.6600.0005609.01291.6641505.4840.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	400	10.0	1235.195	1214.952	20.243	5		
43010.01240.2621267.7760.00049010.01251.6481294.1880.00050010.01256.9421320.6000.0005109.01262.1471347.0120.0005209.01267.2651373.4240.0005309.01272.3001399.8360.0005409.01277.2551426.2480.0005509.01282.1321452.6600.0005609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	470	10.0	1240.778	1241.304	0.000)		
1301201.0101201.0101201.0100.00050010.01256.9421320.6000.0005109.01262.1471347.0120.0005209.01267.2651373.4240.0005309.01272.3001399.8360.0005409.01277.2551426.2480.0005509.01282.1321452.6600.0005609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	480	10.0	1251 648	1207.770	0.000	, ו		
50010001262.1471347.0120.0005109.01267.2651373.4240.0005209.01267.2651373.4240.0005309.01272.3001399.8360.0005409.01277.2551426.2480.0005509.01282.1321452.6600.0005609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	500	10.0	1256.942	1320 600	0.000	,)		
5209.01267.2651373.4240.0005309.01272.3001399.8360.0005409.01277.2551426.2480.0005509.01282.1321452.6600.0005609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	510	9_0	1262.147	1347.012	0.000)		
5309.01272.3001399.8360.0005409.01277.2551426.2480.0005509.01282.1321452.6600.0005609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	520	9.0	1267.265	1373.424	0.000)		
5409.01277.2551426.2480.0005509.01282.1321452.6600.0005609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	530	9.0	1272.300	1399.836	0.000)		
5509.01282.1321452.6600.0005609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	540	9.0	1277.255	1426.248	0.000)		
5609.01286.9341479.0720.0005709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	550	9.0	1282.132	1452.660	0.000)		
5709.01291.6641505.4840.0005808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	560	9.0	1286.934	1479.072	0.000)		
5808.01296.3231531.8960.0005908.01300.9151558.3080.0006008.01305.4411584.7200.000	570	9.0	1291.664	1505.484	0.000)		
5908.01300.9151558.3080.0006008.01305.4411584.7200.000	580	8.0	1296.323	1531.896	0.000)		
600 8.0 1305.441 1584.720 0.000	590	8.0	1300.915	1558.308	0.000)		
	600	8.0	1305.441	1584.720	0.000)		

		The L	K Group	Eton Business	Park,	Job No).	
			Coroup	Radcliff M26 22	zs	Sheet	^{no.} 1	
		www.the	lkgroup.com	Tel: 0161 763 7 email: m.jones	200 @thelkgroup.com	Date	06/02/17	
MasterDrain	Project ADAS	6 100 yr +4	0%			Ву	Checked	Reviewed
5₩	Title Peak f	flow storag	e calcs for BLO	XHAM				
Data:-								
FSR Hydrol	ogy:-							
Location	= BI	LOXHAM		Grid refe	rence = $SP423$	35		
M5-60 (mm)	= _	19.7		r Saad (mm/)	= 0.40			
Beturn per	i = 0	•40 100		WRAP	= 3			
UCWI	= 2	75.7		Climate cl	nange = 40			
i) Relat especially ii) Perme iii) Mixed proportion	ively in in east able so: areas o s.	npermeab tern Eng ils with of perm	le soils in land; shallow gr eable and i	boulder and s ound water in mpermeable soi	edimentary c low-lying ar ls, in appro	lays, and in eas; ximately equ	n alluvium ual	.,
Runoff fac	tor (RF)) = 27.	0, calculat	ed from:-				
Run	off fact	tor = (0	.829*PIMP)+	(25*SOIL)+(0.0	78*UCWI)-20.	7		
whe	re							
PIM	IP = Impe	ervious	Area*100/(I	mpervious Area	+Pervious Ar	ea)		
UCW	I = Calc	uraced	value for w	ethess index				
Design data:	-							
Imperv. ar	ea	= 151	00 m ²	Pervious a	area	$= 24500 \text{ m}^2$		
Total area	(TA)	= 396	00 m²	Equiv area	a	$= 10692 m^2$	(TA x RF)	•
Allowed di	scharge	rate =	44.020 l/s	Areal red	uction factor	r = 1.000		
Additional	flow	=	0.00 l/s	Climate cl	nange factor	= 40		
Calculated d	ata:-							
Time to ma	x	= 102.0	mins	Calculated	d storage vol	lume = 756.1	m ³	
Rainfall a	t max	= 38.08	mm/hr	Allowed d	ischarge rate	e = 44.020	l/s	
Pipeline s	torage	= 0.0 m	3	Available	MH storage	= 0.0 m	13	
Offline st	orage	= 0.0 m	3					
Fixed 6 hour	data:-							
Rainfall e	vent	= 6 hou	rs	Calculated	d storage vol	lume = 399.0	m ³	
Rainfall r	ate	= 14.00	mm/hr	Allowed d	ischarge rate	= 44.02	0 l/s	
Rainfall i	ntensit	ies calc	ulated usin	g the Wallingf	ord Procedur	e		
Storage leng	ths for	initial	calculatio	n (x 1.1, 1.2,	1.3 or 1.5	as above if	required)	:-
Diam	Len	Diam	Len	Ovoid	Len	Box culv	ert Len	
100 9	6292.4	1125	760.8	400 x 600	4200.8	500 x	500 3024.5	5
150 4	2796.6	1200	668.7 502 2	600×900 800 v 1200	1829.1	500 x 500 v 1	750 2016.4	Ł
225 I 300 1	0699.2	1350	528.4	000 A 1200	1020.7	750 x 1	000 1008.2	2
375	6847.5	1425	474.2			750 x 1	200 840.2	2
450	4755.2	1500	428.0			750 x 1	500 672.1	L
525	3493.6	1575	388.2			1000 x 1	000 756.1	L
600	2674.8	1650	353.7			1000 x 1	∠00 630.] 500 504 1	<u>L</u>
0/5 750	∠⊥⊥3.4 1711 0	1800	323.0 297 2			1000×1	800 420 1	• L
825	1414.8	1875	273.9			1000 x 2	000 378.1	- L
900	1188.8	1950	253.2			1500 x 1	500 336.1	L
975	1012.9	2025	234.8			1500 x 1	800 280.1	L
1050	873.4	2100	218.4			1500 x 2	000 252.0)

		0110	Eton Business Park,	Job No.			
	THE LK OF	oup	Eton Hill Road, Radcliff M26 27S	Sheet no.			
	www.thelkaroup.c	om	Tel: 0161 763 7200	Date	2		
nan anna, manananana.	Project		email: m.jones@thelkgroup.com			06/02/17	
MasterDrain SW	ADAS 100 yr +40%				Ву	Checked	Reviewed
Data	Title Peak flow storage calcs	s for BLOXHAM					
Data:- Time	Rain	Inflow	Outflow	Balance	<u> </u>		
(mins)	mm/hr	(m3)	(m3)	(m3)	-		
10	169.0	444.941	26.412	418.529	Ð		
20	115.0	606.889	52.824	554.065	5		
30	89.0	706.798	79.236	627.562	2		
40	74.0	779.529	105.648	673.881	L		
50	63.0	836.933	132.060	704.873	3		
60	56.0	884.453	158.472	725.981	L		
70	50.0	925.040	184.884	740.156	5		
80	45.0	960.480	211.296	749.184	± >		
100	39 0	1020 211	257.708	756 091	5 I		
110	36.0	1045.882	290.532	755.350	L)		
120	34.0	1069.380	316,944	752.436	5		
130	32.0	1091.033	343.356	747.677	7		
140	30.0	1111.101	369.768	741.333	3		
150	29.0	1129.789	396.180	733.609	Ð		
160	27.0	1147.266	422.592	724.674	1		
170	26.0	1163.670	449.004	714.666	5		
180	25.0	1179.116	475.416	703.700)		
190	24.0	1193.701	501.828	691.873	3		
200	23.0	1207.508	528.240	679.268	5		
210	22.0	1220.009	554.652	652 001	/		
220	21.0	1233.005	507 476	637 454	1		
230	20.0	1256.251	633-888	622.363	3		
250	19.0	1267.070	660.300	606.770	5		
260	19.0	1277.424	686.712	590.712	2		
270	18.0	1287.346	713.124	574.222	2		
280	18.0	1296.865	739.536	557.329	Ð		
290	17.0	1306.008	765.948	540.060)		
300	17.0	1315.753	792.360	523.393	3		
310	16.0	1325.094	818.772	506.321	L		
320	16.0	1334.179	845.184	488.995			
340	15.0	1343.024	808 008	4/1.420	5		
350	15.0	1360.048	924 420	435.628	3		
360	14.0	1368.250	950.832	417.418	3		
370	14.0	1376.260	977.244	399.016	5		
380	14.0	1384.086	1003.656	380.430)		
390	14.0	1391.739	1030.068	361.671	L		
400	13.0	1399.226	1056.480	342.746	5		
410	13.0	1406.555	1082.892	323.663	3		
420	13.0	1413.733	1109.304	304.429	.		
430	13.0	1420.700	1162 128	265.050	1		
450	12.0	1434 424	1188 540	245 884	± 1		
460	12.0	1441.061	1214.952	226.109	- 9		
470	12.0	1447.575	1241.364	206.211	L		
480	11.0	1453.972	1267.776	186.196	5		
490	11.0	1460.256	1294.188	166.068	3		
500	11.0	1466.433	1320.600	145.833	3		
510	11.0	1472.505	1347.012	125.493	3		
520	11.0	1478.476	1373.424	105.052	2		
530	11.0	1484.350	1399.836	84.514	£		
540		1490.130 1/05 000	1450.248	03.882	2)		
550	10.0	1501 493	1479 N72	43.10U	, I		
570	10.0	1506.941	1505-484	1.455	-		
580	10.0	1512.377	1531.896	0.000)		
590	10.0	1517.734	1558.308	0.000)		
600	10.0	1523.014	1584.720	0.000)		

www.thelkgroup.com

4

MasterDrain SW

ADAS 100 yr +40%

Title Peak flow storage calcs for BLOXHAM

Explanatory notes for Peak Flow Storage

- 1) This system uses the rainfall intensity/ duration curve calculated using either the Wallingford or FEH method as selected.
- 2) The balance is calculated from the inflow minus the outflow.
- 3) The storage volume is the maximum value of the balance curve.
- 4) This method was described by Davis (1963) see Butler & Davies, 2nd edition, p294
- 5) References to 'storm duration' relate only to the hydrograph method (qv).
- 6) There are always 600 steps in the calculation process, thus a 'run' time of 10 hours will be sampled every minute,

Explanatory notes for Hydrograph Storage

- 1) The user has the choice of Summer or Winter curves
- 2) The mean intensity varies with the duration of the storm curve
- 3) There are always 120 steps in the calculation process, irrespective of storm duration.
- 4) The balance is calculated from the inflow minus the outflow.
- 5) The storage volume is the sum of the balance values for each step.

6) Varying durations should be tried to find the maximum storage value - this can be narrowed down very closely.

*Modelling using the flow characteristics of the restrictor is available using Vortex Control modelling function. Please be aware that this function needs the full design data file to function.

Why do the two methods give different results?

The rainfall characteristics for each method are very different.

The Peak flow (using the Intensity/Duration/Frequency curve) does not model the actual rainfall. This curve is joined points which represent the mean intensity of a storm at a given duration i.e. a value of 19.5 mm/hr for a 60 minute storm indicates that over the sixty minute period, the mean intensity was 19.5 mm/hr. The calculation method samples the IDF curve for a given location and frequency (Return Period) and calculates the storage for that rate and duration less the outflow volume. The maximum value is displayed as the 'worst case' storage.

The hydrograph method uses a standard curve for either Winter or Summer storms. Traditionally these are symmetrical about the central peak. UK rainfall does not fit into this convenient curve, so the calculations are dealing with a stylised set of data. The mean intensity for the storm is calculated from the IDF curve and applied to the curve data, calculating the storage for that step less the outflow volume. The final storage volume is the sum of the storage for all the steps.

It can be seen that these two methods are very different, and the user may have the choice of which result to use. This is not an exact science, though is often treated as such by those that do not understand the principles of the calculations.

APPENDIX F

DRAINAGE STRATEGY PLAN

This page has been left blank intentionally

