PROJECT: LAND AT NORTH WEST BICESTER TECHNICAL NOTE 007: RESPONSE TO OCC COMMENTS

1.1 INTRODUCTION

1.1.1 Velocity Transport Planning (VTP) has been appointed by Firethorn Trust (the Applicant) to provide highways and transport planning advice for an outline planning application relating to the development of up to 530 dwellings on land which forms part of the North West Bicester Eco Town development (Policy Bicester 1 of the adopted CDC Local Plan), located in Oxfordshire.
1.1.2 The Proposed Development description for the outline planning application, planning reference: 21/01630/OUT, is as follows:
"Outline planning application for up to 530 residential dwellings (within Use Class C3), open space provision, access, drainage and all associated works and operations including but not limited to demolition, earthworks, and engineering operations, with the details of appearance, landscaping, layout and scale reserved for later determination."
1.1.3 Further information was submitted to CDC in November 2021, which included updated ES Chapters, a Technical Note (TNOO3) responding to the respective consultation responses that related to highway matters, including an assessment of the Suitability of the Elmsbrook Spine Road (TNOO4), and an assessment of the Grampian Condition (TNOO5) relative to the delivery of the A4095 Strategic Link Road (SLR). OCC provided a further consultation response to the additional information dated the 05 th of January 2022.

OCC CONSULTATION RESPONSE

The four highway reasons for objection raised by OCC are as follows:

1. The assessment of the impact of the development in the absence of the A4095 diversion/Strategic Link Road is not sound and therefore it is not possible to predict the traffic impact of this proposal.
2. The development as proposed would have an unacceptable congestion impact on the junction of Charlotte Ave/B4100 in its current form.
3. The assessment of the traffic impact on Elmsbrook Spine Road does not take into account the suitability of narrow parts of the road for the volume of traffic.
4. There is insufficient commitment to provide pedestrian/cycle connections through to adjacent sites, in order to maximise opportunities for sustainable travel.
1.2.2 In addition to the four reasons for objection, a number of other highways matters were included within the OCC consultation response, which are summarised as follows:

- Updated drawings are required for Accesses A + C;
- The proposed construction access to the eastern parcel would require a temporary speed restriction to 30 mph to ensure adequate visibility splays can be achieved; and
- The proposed construction access to the western parcel would require traffic regulation orders to restrict parking provision within the existing layby.

TECHNICAL NOTE: RESPONSE TO OCC COMMENTS

2.1
 INTRODUCTION

2.1.1 The four reasons for objection raised by OCC are summarised within this Technical Note. The following paragraphs seek to address each of these reasons for objection to satisfy OCC that the appropriate measures can be taken or have been considered for these reasons for objection to be removed.

2.2 REASON 1 - ASSESSMENT OF IMPACT IN THE ABSENCE OF THE A4095 SLR

2.2.1 VTP has prepared a standalone Technical Note 006 - A4095 Interim Improvement, which addresses the concerns raised by OCC, and this Technical Note should be considered in association with this response. TN006 is included at ATTACHMENT A.

The summary and conclusions of TN006 are set out below for ease of reference:
"It is generally accepted that the committed A4095 Strategic Highway Improvements are required to alleviate pressure at the A4095 Howes Lane / Bucknell Road junction and across the local network.

However, the proposed mini-roundabout mitigation scheme seeks to provide an interim mitigation solution whilst the details of the delivery and funding for the A4095 Strategic Highway Improvements are agreed.

In conclusion, the proposed mitigation scheme and mini-roundabout arrangement provides a significant improvement from the existing arrangement, mitigating both the impact of the Proposed Development and improving the junction in a number of ways, including traffic capacity, road safety, access for HGVs and pedestrian and cyclist amenity."

REASON 2 - THE DEVELOPMENT WOULD HAVE AN UNACCEPTABLE IMPACT ON THE EXISTING JUNCTION OF CHARLOTTE AVENUE WITH THE B4100

2.3.1 The technical work provided within the supporting evidence which has been submitted to date acknowledges that traffic flows predicted to be generated by the Proposed Development and those associated with the adjacent Hallam Land Development, which is the subject of a current planning application (Planning Ref 21/04275/OUT), would have an adverse impact on the operation of the existing priority junction of Charlotte Avenue with the B4100.
2.3.2 OCC has requested that a financial contribution of $£ 47,289$ be included within a Section 106 Agreement, which would be associated with the signalisation of this junction. This is considered to be an appropriate means of mitigating the traffic impact at this junction as a result of the implementation of the Proposed Development and that associated with the Hallam Land proposals.
2.3.3 The Applicant has not disputed this contribution. As such, it is considered that the mitigation to address the impact of the proposed development at this junction has been identified and agreed upon.

REASON 3 - THE ASSESSMENT OF TRAFFIC IMPACTS ON ELMSBROOK SPINE ROAD
2.4.1 VTP prepared TNOO4 - Spine Road Assessment, which was included with the November 2021 submission of further information for consultation. This Technical Note considered the suitability of the Elmsbrook Spine

TECHNICAL NOTE: RESPONSE TO OCC COMMENTS

Road along Charlotte Avenue at the point where the existing bridge is provided between the Gagle Brook Primary School and the Eco Business Centre.
2.4.2 However, following further discussion with OCC, it is evident that there is still a concern regarding the suitability of the narrow section of the Elmsbrook Spine Road to the north of the Gagle Brook Primary School, where the existing width of the road is identified as being 4.1m in places.
2.4.3 VTP Drawing 4600-1100-T-070 Rev A - Elmsbrook Spine Road Assessment (a copy of which is included at ATTACHMENT B) has been prepared to identify the existing dimensions along this section of the Spine Road, and it is clear that there are a number of locations where the existing width is reduced to as little as 4.1 m . In addition, this plan shows that there are currently a total of 52 dwellings, 99 car parking spaces, and 14 garages associated with the existing Elmsbrook scheme currently accessed via this section of the Elmsbrook Spine Road. In addition to the residential dwellings, access is currently accommodated for refuse vehicles, buses using the Elmsbrook Spine Road, and any other heavy goods vehicle activity that has been permitted for the Elmsbrook development (i.e. emergency vehicles, removals vans, deliveries, etc).
2.4.4 It is acknowledged that the Elmsbrook Spine Road is not currently an adopted highway, but a signed S38 Agreement between A2Dominion (the developer of Elmsbrook) and OCC was entered into and signed on the $09^{\text {th }}$ of July 2014 as part of the discharge of Condition 60 of the Elmsbrook Planning Consent (Planning Ref $10 / 01780 /$ HYBRID). As such, it is considered that the provision of this road in its current form is acceptable to OCC to accommodate the level and mix of traffic expected along this route.
2.4.5 To identify what this level of traffic impact might be, a first principles approach has been adopted in line with the agreed methodology, including trip rates, a spilt of $70 / 30$ for private/affordable housing, and a 40% mode share associated with car trips, as was set out within the Transport Assessment that supports the Firethorn outline planning application. This methodology was set out again in TNOO4 - Spine Road Assessment, which was submitted in November 2021.
2.4.6 The total person trips for all modes (adjusted to reflect the CDC desire for 40% car use) are presented in Table 2-1 for the 52 existing Elmsbrook dwellings, the 69 proposed Firethorn dwellings on the western parcel, and the 138 proposed Firethorn dwellings on the eastern parcel that are all expected to utilise this part of the Spine Road. The busiest hour is identified as being the AM peak hour, but total daily flows have also been identified for the respective development parcels.

Table 2-1: Two-Way Total Person Trips Along the Elmsbrook Spine Road (North of Gagle Brook School)

Method of	Adjusted	52 Dwellings			69 Dwellings		138 Dwellings	259 Dwellings	
Travel	Split	AM	AADT	AM	AADT	AM	AADT	AM	AADT
Driver	40%	28	211	37	279	75	557	140	1,050
Passenger	13.1%	9	69	12	91	24	183	46	344
Rail (walk)	4.7%	3	25	4	33	9	66	17	123
Rail (other)	4.7%	3	25	4	33	9	66	17	123
Bus (walk)	9.1%	6	48	8	63	17	127	32	238
Cycle	7.2%	5	38	7	50	13	100	25	189
Walk	19.4%	14	102	18	135	36	271	68	510
Other	1.8%	1	9	2	13	3	25	6	47
Total	$\mathbf{1 0 0 . 0 \%}$	$\mathbf{7 0}$	$\mathbf{5 2 7}$	$\mathbf{9 3}$	$\mathbf{6 9 7}$	$\mathbf{1 8 6}$	$\mathbf{1 , 3 9 4}$	$\mathbf{3 5 1}$	$\mathbf{2 , 6 2 5}$

In order to establish if the carriageway width of 4.1 m is suitable to accommodate two-way traffic flows of as much as 140 cars and a maximum of say 4 HGV movements (2 one-way bus movements and 1 two-way refuse vehicle movement), consideration has been given to the information presented at Table 4-1 of TN004, which identified the capacity of carriageways of varying widths, as set out in DMRB TA 77/99. For

TECHNICAL NOTE: RESPONSE TO OCC COMMENTS

clarity, a 4.1 m carriageway was identified as being suitable to accommodate a maximum of 482 one-way flows (60\% of two-way flow) and 804 two-way flows over an hour.
2.5.1 The Illustrative Masterplan (Rev C) that was submitted with the planning application (copy enclosed at ATTACHMENT C) identified a number of pedestrian and cycle links from the application site to the adjacent sites and the public highway. Some of these links were referenced as being "potential pedestrian connections", and some were identified on the Illustrative Masterplan but not referenced as being a pedestrian or cycle connection at all.
2.5.2 Whilst the Illustrative Masterplan is only a representation of what might be delivered on the Application Site, it has informed the Access \& Movement Parameter Plan, which has been updated in order to reflect the pedestrian/cycle connections that are being committed to. The Access \& Movement Parameter Plan (Rev M) is included within ATTACHMENT C.
2.5.3 Item 11 of the "Detailed Comments" provided by OCC in the response dated the $05^{\text {th }}$ of January 2022 noted that a contribution towards the proposed ped/cycle connection to the nearby Hallam Land development via a footbridge over the watercourse to the south of the western parcel, is accepted. However, OCC has requested that further details be provided for this proposed footbridge, including the location and a cost associated with this footbridge in order that a financial contribution (25\%) can be identified within the associated Section 106 Agreement should the application be granted planning permission.
2.5.4

As the evidence presented in Table 2-1 identifies that a maximum of 140 two-way cars +4 two-way HGV movements (assumed) would be expected when the full Firethorn Development is occupied and shares the use of this stretch of the Elmsbrook Spine Road with the existing Elmsbrook development, it is clear that a narrow carriageway width of 4.1m for limited sections of the Elmsbrook Spine Road to the north of the Gagle Brook Primary School, would be suitable.

The above stands to reason as the layout of the existing Elmsbrook Spine Road will prevent any through traffic due to the bus gate to the north of the access junctions to the Firethorn development, meaning that all of the traffic that utilises this portion of the Spine Road will be local traffic only. In addition, there is not expected to be any additional HGV movements than those that are already utilising this section of the Spine Road as there are no commercial uses accessed, the same bus services will use the route as can currently be accommodated, and no additional refuse vehicles will be required as a single refuse vehicle is considered acceptable to service the existing and proposed dwellings along this route. As such, the only increase in traffic flows will be car drivers associated with the proposed Firethorn development.

With respect to cyclists using this stretch of the Elmsbrook Spine Road, assuming that 50% of rail users might walk and 50% might cycle or be a passenger in a car to the nearby railway station(s), a total two-way hourly cycle demand of 42 cyclists (17 rail +25 cycle) will use this stretch of the carriageway. This level of cycle use is considered to be acceptable as on-carriageway in accordance with LTN $1 / 20$. This leaves the footway provision available for use by pedestrians only, and it could accommodate vulnerable cyclists, such as primary school children cycling to the Gagle Brook Primary School.

REASON 4 - THERE IS INSUFFICIENT COMMITMENT TO PROVIDE SUITABLE PED/CYCLE LINKS TO THE ADJACENT SITES

Based on this request for further details of the footbridge, a topographical survey of the watercourse was commissioned and VTP Drawing 4600-1100-T-059 Rev A has been prepared to show the proposed layout, cross-section, and details of how this footbridge could be delivered.

TECHNICAL NOTE: RESPONSE TO OCC COMMENTS

2.5.5 The design of this footbridge is identified as being in the order of 8.0 m in length to cross the identified watercourse and 4.0 m in width, to accommodate both pedestrians and cyclists. Beaver Bridges has been contacted to provide details of a potential footbridge and have included a cost estimate by email dated the $22^{\text {nd }}$ of March 2022 for the installation of this footbridge. This cost estimate would be subject to further considerations as details of the ground conditions, the cost of materials, and labour would still need to be clarified at the detailed design stage. However, a review of the costs provided within the email quotation could be considered to be robust at a total cost of $£ 70,000$ + VAT. Based on a 25% contribution that would be considered reasonable to be committed to by the Applicant, a Section 106 Contribution of $£ 17,500$ would be required.
2.5.6 The full details of the VTP Drawing, the Beaver Bridge brochure for a polybridge, and the cost estimate dated the $22^{\text {nd }}$ of March 2022, are included at ATTACHMENT D.

TECHNICAL NOTE: RESPONSE TO OCC COMMENTS

3.1
 INTRODUCTION

3.1.1 Having addressed the four reasons for OCC's objections in the previous section of this TN, this section seeks to address the additional comments made by OCC within their consultation response dated the $05^{\text {th }}$ of January 2022.

3.2 UPDATED DRAWINGS FOR SITE ACCESSES A \& C

3.2.1 OCC requested that an updated Site Access Plan be presented for Site Access A to the eastern parcel, which would identify the required works to deliver this access arrangement if Site Access B - to the western parcel south of the bus gate were to be excluded.

VTP Drawing 4600-1100-T-040 Rev A presents this arrangement and identifies that there will be a need to realign the existing kerb on the western side of the Spine Road in order to facilitate the swept path of a large refuse vehicle as it turns right towards the access road to the eastern parcel. Suitable visibility splays and footway provisions are identified on the updated VTP Drawing, a copy of which is included at ATTACHMENT B.
3.2.3 For completeness, VTP Drawing 4600-1100-T-041 Rev A presents the combined site access arrangements for Site Access A \& B, which includes details of the swept path assessment for a large refuse vehicle accessing the western parcel, visibility splays, and footway provisions. A copy of this updated Site Access arrangement is included at ATTACHMENT B.
3.2.4 In addition to the details for Site Access A, OCC requested further details be provided at Site Access C to identify any land that might need to be identified for adoption to provide improved visibility for drivers utilising this access, as well as identifying an acceptable stopping sight distance (SSD) for drivers approaching the junction from the north via Braeburn Avenue.
3.2.5 VTP Drawing 4600-1100-T-042 Rev A presents the visibility splays for this site access junction, including details of the appropriate SSD for drivers approaching the junction from Braeburn Avenue. An area of grass verge is identified for adoption, which would ensure that adequate visibility can be provided at this junction. A copy of this updated Site Access arrangement is included at ATTACHMENT B.

3.3 TEMPORARY SPEED RESTRICTION FOR THE EASTERN CONSTRUCTION ACCESS

3.3.1 It is acknowledged that the existing speed limit along the B4100 in the vicinity of the proposed temporary construction access to the eastern parcel is 40 mph . In accordance with DMRB, this would require a junction visibility splay of $2.4 \mathrm{~m} \times 90.0 \mathrm{~m}$. VTP Drawing 4600-1100-T-011 Rev F, a copy of which is included at ATTACHMENT B, identifies that this visibility can be achieved towards the east, but due to the existing drainage ditch located to the immediate west of the proposed temporary access, the visibility splay is compromised.
3.3.2 As set out in the response from OCC, should the speed limit along this stretch of the B4100 be reduced to 30 mph , this would require visibility splays of $2.4 \mathrm{~m} \times 70.0 \mathrm{~m}$, which are shown to be achievable on the updated Proposed Construction Access plan.
3.3.3 In order to change the speed limit from 40 mph to 30 mph , a change to the existing Traffic Regulation Order

TECHNICAL NOTE: RESPONSE TO OCC COMMENTS

(TRO) will need to be agreed with OCC. It is acknowledged that if this TRO were to be required for more than 18 months, then the TRO would need to be permanent in nature and subject to further consultation once planning consent is granted for the Firethorn scheme and following further detailed design. However, subject to confirmation from the developer that might build out the proposed eastern parcel of development, if the temporary construction access is only required for a period of up to 18 months, it is expected that a Temporary TRO could be implemented by OCC to accommodate the construction phase and the lifespan of this temporary junction.

TRAFFIC REGULATION ORDER(S) FOR THE WESTERN CONSTRUCTION ACCESS

3.4.1 The temporary construction access to the western parcel is presented on VTP Drawing 4600-1100-T-027 Rev B , a copy of which is included at ATTACHMENT B.
3.4.3 As this temporary access is proposed to be taken directly from the existing layby on the B4100, which currently has no parking constraints or restrictions and is acknowledged to be regularly used by large HGVs, there will be a need to ensure that the appropriate TROs are implemented to restrict vehicle parking within this layby.

It is considered that the full extent of the parking restrictions, and other aspects of detailed design, including the extent of impact on the existing vegetation, a crossing of the drainage ditch, and any further impact on the infrastructure within this layby, can be agreed upon and identified in full as part of the detailed design.

TECHNICAL NOTE: RESPONSE TO OCC COMMENTS

4

OVERVIEW
4.1.1 VTP has been appointed by the Firethorn Trust to provide highways and transport planning advice for an outline planning application relating to the development of up to 530 dwellings on land which forms part of the North West Bicester Eco Town development, located in Oxfordshire.
4.1.2 Following submission of the planning application in early 2021, consultation responses were received from OCC and CDC, which resulted in further information being submitted in November 2021. This Technical Note has been prepared to respond to the further consultation comments from OCC dated the $05^{\text {th }}$ of January 2022.
4.1.3 In summary, the OCC response identified four highways' reasons for objection to the proposals, as well as a request for further clarification on a number of other aspects.
4.2 RESPONSE TO OCC REASONS FOR OBJECTION
4.2.1 Objection Reason 1 states that "the assessment of the impact of the development in the absence of the A4095 diversion/Strategic Link Road is not sound and therefore it is not possible to predict the traffic impact of this proposal."
4.2.2 The A4095 Strategic Highway Improvement scheme is recognised as being the appropriate form of permanent mitigation to accommodate the predicted level of traffic impact associated with all of the allocated development set out within the adopted CDC Local Plan. The application site forms part of the allocated development within the CDC Local Plan, as referenced in Policy Bicester 1.
4.2.3 At the time that the original planning application was validated in May 2021, and at the later date of November 2021, when further information was submitted in response to the original comments from OCC and CDC, the funding of the permitted A4095 Strategic Link Road was agreed and in place. It is accepted that an appropriate level of financial contribution towards the permitted A4095 Strategic Link Road will be identified and set out within the Section 106 Agreement to be associated with the application, but these details have not yet been provided by OCC. This is acknowledged within the OCC consultation response.
4.2.4 Notwithstanding the above, OCC's Future Oxford Partnership (formerly the Oxfordshire Growth Board) decided to reallocate the agreed funds for the permitted A4095 Strategic Highway Improvement scheme, subsequent to the additional information being submitted in relation to the outline planning application.
4.2.5 In order to address the potential impact of the traffic associated with the application site for a limited period on a key part of the local highway network that will ultimately benefit from the implementation of the A4095 Strategic Highways Improvements once the funding for this has been agreed upon, a temporary Interim Improvement Scheme has been developed in the form of a mini-roundabout junction to replace the existing priority junction at the A4095 Howes Lane / Bucknell Road junction.
4.2.6 The details of the technical work to support this proposed Interim Improvement Scheme are set out within a standalone Technical Note that is included within this response to OCC. The conclusions are that even with the increased level of vehicular activity through the junction of the A4095 Howes Lane / Bucknell Road, the mini-roundabout option would result in improved performance of the junction, less delay to drivers using this junction and improved highway safety measures. As such, it is considered that Objection Reason 1 has been addressed.

TECHNICAL NOTE: RESPONSE TO OCC COMMENTS

4.2.7 Objection Reason 2 states that "the development as proposed would have an unacceptable congestion impact on the junction of Charlotte Ave/B4100 in its current form". This has been acknowledged in all of the supporting evidence submitted to date, and the original Transport Assessment identified a traffic signal scheme at this junction that would mitigate not only the impact of the traffic associated with the Proposed Development but also the considerable levels of traffic predicted to be generated by the adjacent Hallam Land development, which is now the subject of a live planning application (Planning Ref 21/04275/OUT).
4.2.13 In addition to the identified pedestrian/cycle connection points, a link is proposed to the adjacent Hallam Land development, which will need to include the provision of a new footbridge that will cross an existing watercourse. This Technical Note includes the details of this proposed footbridge, including drawings and a cost estimate for these proposed works. It is considered reasonable for a contribution of 25% of the cost of these works to be included within the Section 106 Agreement, which is identified as being in the order of $£ 17,500$. As such, it is considered that Objection Reason 4 has been addressed.

4.3 RESPONSE TO FURTHER OCC COMMENTS

4.3.1 In addition to the four reasons for objection, OCC requested further details be provided for Site Access A \& C, as well as commenting on the need for temporary changes to Traffic Regulation Orders to accommodate both the construction accesses to the eastern and western parcels.
4.3.2 This Technical Note provides the updated drawings and a commitment to progress the Traffic Regulation $\operatorname{Order}(\mathrm{s})$, subject to successful planning permission being granted and further detailed design work.

ATTACHMENT A

TN006 - A4095 INTERIM IMPROVEMENT MITIGATION

PROJECT: LAND AT NORTH WEST BICESTER TECHNICAL NOTE 06: A4095 INTERIM IMPROVEMENT

1.1 INTRODUCTION

1.1.1 Velocity Transport Planning (VTP) has been appointed by Firethorn Trust (the Applicant) to provide highways and transport planning advice for an outline planning application relating to the development of up to 530 dwellings on land which forms part of the North West Bicester Eco Town development (Policy Bicester 1 of the adopted CDC Local Plan), located in Oxfordshire.
1.1.2 The Application Site falls within the administrative area of Cherwell District Council (CDC) and within the authority of Oxfordshire County Council (OCC), which are the local highway authority.
1.1.3 The Proposed Development description for the outline planning application, planning reference: 21/01630/OUT, is as follows:
"Outline planning application for up to 530 residential dwellings (within Use Class C3), open space provision, access, drainage and all associated works and operations including but not limited to demolition, earthworks, and engineering operations, with the details of appearance, landscaping, layout and scale reserved for later determination."

1.2 PLANNING CONTEXT

1.2.4 Following the planning consultation on the additional documentation submitted in November 2021, further comments on the technical work were received within an OCC response dated the $05^{\text {th }}$ of January 2022.
1.2.5

The outline planning application was originally validated by CDC on the $06^{\text {th }}$ of May 2021. A response to the outline planning application was received from OCC on the $06^{\text {th }}$ of July 2021 and from CDC on the $21^{\text {st }}$ of September 2021, with the third page of the CDC letter covering matters related to transport. It is noted that paragraph four of the CDC transport comments referred to the potential need for a Grampian Condition to restrict the level of development prior to the implementation of the A4095 Strategic Highway Improvement scheme, which was consented by CDC on the $21^{\text {st }}$ of August 2021 (Planning Ref 14/01968/F).

In response to the comments from both OCC and CDC, a VTP produced a Technical Note (TN) in November 2021, titled 'Grampian Condition Review' TNO05, which was submitted as part of the wider response to the consultation comments received. The TN005 referred to previous consultant work at the A4095 Howes Lane / Bucknell Road junction, which determined the level of development that could come forward in the area prior to the implementation of the A4095 Strategic Highway Improvements, as permitted.
1.2.3 Further details on the historical and planning context of the A4095 Strategic Highway Improvements are detailed within the VTP ‘Grampian Condition Review' TN005. With respect to the A4095 and assessments within TNO05, the OCC response stated:
"OCC considers that the methodology is now too old to be reliable as it made use of out-dated scenarios of the Bicester Transport Model, which did not include local plan development at Heyford. A further assessment should be carried out using a revised reference case of the BTM which is currently being developed in relation to another project. The consideration of severity of impact should take into account the strategic function of the A4095 around Bicester."

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

1.2.6 In addition to the feedback received from OCC, it is also now understood that the previously agreed funding and timescales for the delivery of the A4095 Strategic Highway Improvements are uncertain. This information was only made public after the submission of further information to CDC for consideration in November 2021.
1.2.7 On that basis, the response from OCC in relation to the assessment of the A4095 Howes Lane / Bucknall Road junction is very relevant as the timescales for the implementation of the A4095 Strategic Highway Improvements has less certainty. This is primarily due to the fact that it is expected that the funds for the A4095 Strategic Highway Improvements, which has been agreed to be the appropriate mitigation for all of the allocated development identified within the CDC Local Plan, are to be provided through contributions from developers seeking to deliver schemes within the allocated North West Bicester Masterplan.

The withdrawal (or reallocation) of the funding for the A4095 Strategic Highway Improvements by OCC has created a scenario whereby development opportunities are considered to be restrained as the key strategic mitigation can no longer be provided to "unlock" development, which in turn would have provided an opportunity for the cost of the A4095 Strategic Highway Improvements to be "clawed back" by these developments through the respective Section 106 Obligations.
1.2.9 VTP and the Applicant have engaged in a series of discussions with CDC and OCC with a view to agreeing on how best to accommodate the 530 dwellings associated with the Firethorn Scheme prior to the implementation of the A4095 Strategic Highway Improvements on the surrounding local highway network.
1.2.10 To this extent, a temporary or interim mitigation scheme has been developed at the A4095 Howes Lane / Bucknell Road junction, which seeks to provide an interim improvement to a critical part of the local highway network that would be permanently alleviated by the implementation of the A4095 Strategic Highway Improvements, whilst the mechanisms for funding the A4095 Strategic Highway Improvements are ongoing and agreed with all relevant stakeholders.
1.2.11 The suitability of the interim mitigation scheme will be tested using the latest 2026 'Reference Case' traffic flow outputs from the Bicester Transport Model (BTM) that have been obtained from OCC and assume the A4095 Strategic Highway Improvements are not in place.
1.2.12 Within recent discussions with OCC, it was agreed that the latest BTM 2026 Reference Case flows are the most appropriate to assess the suitability of the proposed interim mitigation scheme.
1.2.13 In addition to the data received from the BTM, a series of traffic surveys were undertaken the week commencing the 31st of January 2022 to understand the existing operation of the junction and local area.
1.2.14 It is regarded that whilst the proposals are for an interim mitigation scheme, the scheme could potentially be permanently implemented by OCC once the A4095 Strategic Highway Improvements are delivered. The proposed mitigation scheme aims to implement a wider array of improvements rather than focusing solely on capacity, so provides residual benefits to the local transport network.
1.2.15 It is generally accepted that the permitted A4095 Strategic Highway Improvements are required to alleviate pressure at the A4095 Howes Lane / Bucknell Road junction and across the wider local highway network that is to be associated with the development traffic expected to be generated by the allocated sites included within the adopted CDC Local Plan. However, the proposed interim improvement scheme seeks to provide a mitigation solution that will accommodate the impact of all of the traffic associated with the 530 dwellings of the Proposed Development prior to the implementation of the A4095 Strategic Highway Improvements.

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

1.3
 REPORT PURPOSE AND STRUCTURE

1.3.1 This TN seeks to present the technical information for the proposed interim mitigation scheme to demonstrate that the proposals provide an improvement from the existing arrangement, i.e. a priority junction, using the latest traffic flows obtained from the BTM that have been provided by OCC.
1.3.2

Following this Introduction, this TN is structured as follows:

- Existing Junction Operation;
- Proposed Mitigation; and
- Summary and Conclusions.

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

2

EXISTING JUNCTION OPERATION

2.1 METHODOLOGY

2.1.1 The operation of the existing priority junction will be assessed using the interim BTM 2026 Reference Case traffic flows that have been provided by OCC.
2.1.2 Modelling will be undertaken using the industry standard software, Junctions 10. Modelling measurements will be obtained using AutoCAD measurements of a topographical survey of the junction.
2.1.3 Junctions 10 assesses the capacity of a junction through Ratio of Flow to Capacity (RFC), with a junction being deemed to reach practical capacity when it reaches 0.85 . However, in more congested scenarios, an RFC value of 1.0 is deemed to be the theoretical limit of acceptable operation. An RFC value below 0.85 generally means the junction will operate with additional capacity.
2.2.1 The results of the PICADY modelling for the existing junction arrangement using the BTM 2026 Reference Case flows are provided in Table 2-1.

Table 2-1: A4095 Howes Lane / Bucknell Road - Existing Junction Operation (BTM Flows)

SCENARIO	ARM	AM PEAK (08:00-09:00)			PM PEAK (17:00-18:00)		
		QUEUE	RFC	JUNCTION DELAY (s)	QUEUE	RFC	JUNCTION DELAY (s)
$\begin{gathered} \text { BTM Base } \\ 2026 \end{gathered}$	Howes Lane (Left Turn)	29.9	1.17	490.10	112.1	1.29	200.45
	Howes Lane (Right Turn)	6.3	999,999		0.1	0.08	
	Bucknell Road N (Right Turn)	193.0	1.40		6.3	0.76	

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

SCENARIO	ARM	AM PEAK (08:00-09:00)			PM PEAK (17:00-18:00)		
		QUEUE	RFC	JUNCTION DELAY (s)	QUEUE	RFC	JUNCTION DELAY (s)
$\begin{gathered} \text { BTM Base } \\ 2026+ \\ \text { Proposed } \\ \text { Development } \end{gathered}$	Howes Lane (Left Turn)	70.6	1.26	375,579	194.8	1.44	346.12
	Howes Lane (Right Turn)	12.6	999,999		0.1	0.08	
	Bucknell Road N (Right Turn)	340.9	1.62		6.6	0.76	

2.2.2 It is noted that the junction modelling suggests that the junction will operate significantly over capacity in the BTM Base 2026 future scenario, even without any traffic associated with the Proposed Development. The results show significant levels of junction delay and an RFC well above the theoretical maximum capacity of 1.0 in the AM peak. In the PM peak, the left turn from Howes Lane experiences a queue of 112 PCUs and an RFC of 1.29. It must be acknowledged that based on the results presented in Table 2-1, the existing priority junction arrangement will fail in the near future (certainly earlier than 2026) if no mitigation is proposed to alleviate the level of traffic growth that is expected on the local highway network, even without any further development.
2.2.3 The junction performance deteriorates further with the addition of traffic flows associated with the Proposed Development, although it is noted that the junction is already well over capacity in the BTM Base 2026 scenario.

In order to provide a comparison to the BTM data and modelling above, the observed traffic flows obtained by VTP for the period during the week commencing the $31^{\text {st }}$ of January 2022 will be used as a benchmark to present and compare against the current conditions at the junction.

2.3 OBSERVED TRAFFIC DATA

2.3.1 A series of traffic surveys were undertaken during the week commencing the $31^{\text {st }}$ of January 2022. The timings for the surveys were agreed as acceptable with OCC prior to the surveys being undertaken.
2.3.4 Further video cameras were placed around the existing junction to capture the length of any existing vehicle queues along the A4095 both to the east and west of the A4095 Howes Lane / Bucknell Road junction, capturing the potential for any queues that may be blocking the A4095 Howes Lane / Shakespeare Drive

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

signal junction and the A4095 Lords Lane / Trefoil Drive priority junction.
2.3.5 For completeness, traffic flow diagrams for the Observed 2022 data are included at ATTACHMENT C.

.4.7

A copy of the full traffic survey data is included at ATTACHMENT D, with the video evidence available upon request.

TRAFFIC SURVEY OBSERVATIONS

The following key observations were made through reviewing the observed traffic survey data and the videos.

DOMINANT FLOWS

The dominant flow at the junction was observed to be vehicles turning right from Bucknell Road (north) into the A4095 Howes Lane in the AM peak hour and vehicles turning left from the A4095 Howes Lane into Bucknell Road (north) in the PM peak hour, with these movements equating to 75% of the total flow at this junction.

The overall junction peak was identified as being 08:00-09:00 for the AM peak and 17:00-18:00 for the PM peak.

BUCKNELL ROAD

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

shows a large HGV turning left onto Bucknell Road (north) from the A4095 Howes Lane, which swings over the opposing side of the carriageway and causes the oncoming vehicle travelling southbound on Bucknell Road to give way.

When two HGVs attempt to pass, this is only possible where a vehicle is not waiting in the right turn lane on the A4095 Howes Lane. This movement also requires the two HGVs to give way to each other. The HGV turning left from the A4095 Howes Lane again swings over into the southbound lane of Bucknell Road, causing the vehicles to give way, as shown on the extract from the morning peak hour in Figure 2-2.

Figure 2-1: HGV turning left from A4095 Howes Lane

Figure 2-2: HGVs attempting to pass simultaneously at junction

PEDESTRIANS AND CYCLISTS

2.4.11 Very few pedestrians were observed using the junction, with less than 10 pedestrians observed across each peak hour. It is noted that no pedestrians were observed crossing the junction from the east of Bucknell

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

2.5.5

Road to the west, with all of the demand identified along Bucknell Road in a north-south direction. It was observed that the majority of pedestrians travel southbound in the AM peak and northbound in the PM peak. It is acknowledged that a Bridleway (129/9/10) is provided to the north of the A4095 Howes Lane

With respect to cyclists, there were few very observed using the junction. A total of 3 cyclists were recorded using the junction across both the AM and PM peak hours. Across the duration of the survey, a total of 35 two-way cyclist trips were recorded.

JUNCTION MODELLING

Whilst it is acknowledged that OCC specifically requested an assessment of the BTM 2026 Reference Case scenario, a capacity assessment of the observed 2022 flows using Junctions 10 is provided within Table 2-2. Aside from the use of the observed 2022 traffic flows, the methodology is otherwise as presented within Section 2.1 of this TN.

Table 2-2: A4095 Howes Lane / Bucknell Road - Existing Junction Operation (Observed 2022 Flows)

SCENARIO	ARM	AM PEAK (08:00-09:00)			PM PEAK (17:00-18:00)		
		QUEUE	RFC	JUNCTION DELAY (s)	QUEUE	RFC	JUNCTION DELAY (s)
$\begin{aligned} & \text { Observed } \\ & 2022 \end{aligned}$	Howes Lane (Left Turn)	8.5	0.93	412.85	4.1	0.80	11.02
	Howes Lane (Right Turn)	1.4	0.62		0.1	0.08	
	Bucknell Road N (Right Turn)	165.0	1.33		0.6	0.29	

The modelling assessment of the observed flows suggests the junction operates above capacity in the AM peak, with the RFC on Bucknell Road (north) exceeding 1.0 and the A4095 Howes Lane approach nearing full capacity. In the PM, the junction operates with some spare capacity, with only the A4095 Howes Lane (Left Turn) movement close to capacity with an RFC of 0.80 .

CALIBRATION AND COMPARISON

It is noted that due to the limitations within the PICADY module of Junctions 10, it is not possible to calibrate the model precisely using queues or adjustments. However, it is acknowledged that the Observed 2022 model in the AM peak does capture significant queuing on Bucknell Road (north) with vehicles waiting to turn right, which was observed within the video data. However, the queue as modelled (165 PCUs) significantly exceeds the queue that was observed (53 PCUs) in the surveys.
2.5.4 In comparison to the BTM Base 2026 assessment presented within Table 2-1, the results of the observed modelling generally align and are consistent with what the BTM data would suggest. Across each of the arms and both peak hours, the RFCs and queues increase proportionally in the BTM Base 2026 scenario as would be expected to reflect the increase in traffic flows associated with additional development and background strategic growth.

On that basis, it is considered that the junction models are appropriately representing the current observed conditions at the junction (as far as is practicably possible within limitations of the software) and that the results of the BTM 2026 Reference Case scenarios are appropriate to compare to any proposed mitigation scheme.

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

3

3.1

3.1.1 To mitigate the impact of the traffic associated with heh 530 dwellings of the Proposed Development at the junction and improve the operation of the existing A4095 Howes Lane / Bucknell Road priority junction, a mitigation scheme in the form of a proposed mini-roundabout arrangement has been developed.
3.1.4 The proposed plans at ATTACHMENT E also include a design review of the proposed mini-roundabout arrangement with respect to the Stopping Sight Distance (SSD) and Visibility parameters as set out within DMRB, as well as swept path analysis.

3.2 DEPARTURES FROM STANDARDS

3.2.1 The desirable minimum SSD for roads with a design speed of 50 kph (30 mph), which both the A4095 Howes Lane and Bucknell Road are identified as, should be 70 m (Table 2.10 of CD 109). Whilst the SSD for both the A4095 Howes Lane and the Bucknell Road northbound approaches can be achieved, the SSD for the southbound approach is identified as being in the order of 37 m . This is less than "one step below desirable minimum" for a 30 mph road, but it must be acknowledged that with the introduction of the give way line for the proposed mini-roundabout, vehicle speeds approaching from the north will be considerably lower than the design speed of 30 mph .

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

3.2.2	It is also noted that due to the dominance of flows for vehicles turning right from Bucknell Road (north) onto the A4095 Howes Lane, this movement was observed to be queueing during the video surveys, again strengthening the case that vehicles are not approaching speeds of 30 mph at present.
3.2.3	The visibility splay from the southbound Bucknell Road give way line at the proposed mini-roundabout junction identifies an ' F ' distance of less than the recommended 9.0 m (paragraph 5.24 of CD 116). Whilst an ' F ' distance of 4.5 m is achievable in accordance with CD 116, the projected flows on the southbound arm of Bucknell Road (north) exceed the suggested threshold of 300 vehicles per hour.
3.2 .4	To compensate for the shortfall in the ' F ' distance, appropriate signage will be implemented in accordance with the Traffic Signs Regulations and General Directions (TSRGD) to ensure drivers can see approaching vehicles without encroaching past the give way line.
3.3	ROAD SAFETY
3.3.1	In terms of road safety, it is noted that the collision data purchased from OCC for the latest five-year period (01/01/2016 - 31/12/2021) suggests that there were no recorded collisions at the junction with the existing layout. For completeness, a copy of the collision data is included at ATTACHMENT F.
3.3.2	With respect to the road safety implications of the proposed mini-roundabout scheme, it is acknowledged that the Department for Transport (DfT) 'Mini-roundabouts: Good Practice Guidance’ (2011) document states within paragraph 2.5:
	"Mini-roundabouts are most commonly introduced as an accident remedial measure: - to reduce the number of accidents at a junction. For 3-arm sites, the mean accident rate for mini-roundabouts is similar to that of priority T-junctions and about 30% less than for signalled junctions.
	- to reduce the severity of accidents at a junction. The severity of accidents (percentage of fatal and serious accidents to all injury accidents) at 3-arm mini-roundabout sites is lower than at 3arm signalled junctions and considerably lower than at $30 \mathrm{mph} T$-junctions."

3.3.3 The DfT extract suggests that in road safety and collision terms, the proposed mini-roundabout arrangement would be comparable in terms of the number of accidents to the existing priority junction arrangement and would result in fewer accidents than a traffic signal arrangement.
3.3.4 In addition, the DfT extract suggests that the proposed mini-roundabout arrangement would reduce the severity of any accidents that do occur from both the existing priority arrangement and any potential traffic signal junction scheme.
3.3.5 It can therefore be regarded that the proposed mitigation scheme in the form of a mini-roundabout junction provides a road safety improvement from the existing priority junction arrangement.

ROAD SAFETY AUDIT

3.3.6 In order to ensure that the proposed mini-roundabout scheme is appropriate in terms of road safety, a Stage 1 Road Safety Audit (RSA) has been undertaken by an independent auditor and in accordance with GG119 requirements.
3.3.7 An associated Designer's Response has been prepared, which responds to the comments raised within the Stage 1 RSA. For completeness, a copy of the Stage 1 RSA and accompanying Designer's Response is included

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

at ATTACHMENT G.

In conclusion, the auditor stated the following within paragraphs 4.2.4 to 4.2.5:
"With the absence of strong evidence to rule out the conversion of the junction to a miniroundabout, there are some benefits in such a conversion, and these are associated with traffic capacity improvements and introducing priority for right turning movements from Bucknell Road, which would assist in capacity improvement and play a part in reducing potential junction blocking at the Lords Lane roundabout, which would in turn reduce the likelihood of collisions associated with such junction blocking.

Overall, the conversion of the existing T-junction would provide positive impacts in terms of traffic capacity, to enable a level of residential development to be implemented. Any adverse effects that may be associated with such a conversion are questionable and appear to be able to be mitigated by a 'best practice' design of the three armed mini-roundabout."

3.4 VULNERABLE ROAD USERS

3.4.1 With respect to pedestrians, it is acknowledged that there is little existing demand, with less than 10 pedestrians observed across each peak hour. The vast majority of the pedestrian demand was along the eastern footway of Bucknell Road. No pedestrians were observed crossing Bucknell Road (under the railway bridge) or at any of the arms at the junction.
3.4.2 Nevertheless, the proposals seek to improve pedestrian provision at the junction by increasing the width of the footway along the eastern side of Bucknell Road. This provides an improvement along the link with the greatest level of pedestrian demand.
3.4.3 In addition, for any pedestrians that may wish to cross the A4095 Howes Lane at the existing uncontrolled crossing, which is located approximately 15 m to the west of the existing give way line, the proposals reduce the number of lanes that pedestrians would need to cross from three to two, meaning pedestrians have more opportunities to cross the road and less lanes of traffic to negotiate. This is arguably an improvement in safety terms for pedestrians.
3.4.4 In relation to cyclists and mini-roundabouts, paragraphs 10.7.33 to 10.7.35 of Local Transport Note (LTN) $1 / 20$ states:

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

"Mini-roundabouts can work well for cycling in a mixed traffic environment (see Section 4.2) when traffic speeds and volumes are low and can provide an alternative to priority junctions since traffic on all arms is required to give way
...They should be designed to reduce speeds at the junction using tight geometry, with single lane approaches and exits so that cyclists and motor vehicles pass through the roundabout in a single stream (see Figure 10.46). To be comfortable for cycling, the inscribed circle diameter should not be greater than $15.0 m^{\prime \prime}$
3.5.1 It is noted that at present, two HGVs cannot pass simultaneously and any HGV turning left from the A4095
Howes Lane onto Bucknell Road (north) swings over the centreline into the opposing southbound lane of
$\begin{aligned} & \text { 3.5.1 It is noted that at present, two HGVs cannot pass simultaneously and any HGV turning left from the A4095 } \\ & \text { Howes Lane onto Bucknell Road (north) swings over the centreline into the opposing southbound lane of }\end{aligned}$ Bucknell Road (north), causing the southbound vehicle to give way to the HGV.
3.5.2 The proposed mitigation scheme seeks to revise the north western kerb line of the junction and provide an increased entry radius for vehicles turning left from the A4095 Howes Lane onto Bucknell Road (north). It is anticipated that this area will be hatched and identified as a vehicle overrun area to reduce maintenance.
3.5.3 With respect to HGVs, swept path analysis has been undertaken of the proposed mitigation scheme showing that vehicles up to a 16.5 m max articulated vehicle can now pass through the junction without the need to cross over the reconfigured central hatched area of Bucknell Road (north) and into the lane of oncoming traffic. It is noted that this is not possible at present without significant incursion into the opposing lane.
3.5.5

Whilst it is acknowledged that the traffic volumes through the junction are considered to be high, in response to the suggestion of LTN $1 / 20$, the proposed mini-roundabout arrangement has single lane approaches on all arms, and the ICD is less than 15 m .

3.5 OPERATIONAL FLOWS

In addition, two 12 m rigid vehicles can now pass simultaneously through the junction, as well as other HGVs and a car. An extract of this movement is included in Figure 3-2, and a full copy is provided at ATTACHMENT E.
.
The proposed mitigation scheme, therefore, provides operational improvements from the existing arrangement by allowing easier movement of vehicles, particularly HGVs, through the junction without incursion into the opposing lanes.

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

Figure 3-2: Proposed Mini-roundabout Arrangement Swept Path Analysis

3.6.3

JUNCTION CAPACITY
3.6.1 An assessment of the proposed mitigation scheme using the BTM 2026 Reference Case flows is provided in Table 3-1.
3.6.2 The junction modelling parameters for the proposed mini-roundabout arrangement are provided within ATTACHMENT I, with a copy of the Junctions 10 output files included at ATTACHMENT J.

Aside from the junction geometry, the methodology is otherwise as per the methodology discussed within Section 2.1 of this TN.

Table 3-1: A4095 Howes Lane / Bucknell Road - Proposed Mitigation Scheme (BTM Flows)

		AM PEAK (08:00-09:00)			PM PEAK (17:00-18:00)		
		QUEUE	RFC	JUNCTION DELAY (s)	QUEUE	RFC	JUNCTION DELAY (s)
$\begin{gathered} \text { BTM Base } \\ 2026 \end{gathered}$	Bucknell Road (south)	4.5	0.82	132	1.9	0.64	350
	A4095 Howes Lane	3.5	0.77		55.8	1.12	
	Bucknell Road (North)	68.1	1.13		153.8	1.27	
BTM Base 2026 + Proposed Development	Bucknell Road (south)	5	0.84	309	1.9	0.63	527
	A4095 Howes Lane	4.9	0.83		105.7	1.25	

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

SCENARIO	ARM	AM PEAK (08:00-09:00)			PM PEAK (17:00-18:00)		
		QUEUE	RFC	JUNCTION DELAY (s)	QUEUE	RFC	JUNCTION DELAY (s)
	Bucknell Road (North)	149.5	1.27		208.4	1.34	

3.6.4 The results of the junction modelling for the proposed mitigation scheme suggests that in the AM peak, the Bucknell Road (north) approach will have an RFC of 1.13, which rises to an RFC of 1.27 with the addition of the traffic associated with the Proposed Development. The total delay at the junction increases from 132 seconds in the BTM Base 2026 scenario to 309 seconds with the addition of the traffic associated with the Proposed Development.
3.6.5 In the PM peak, the RFC on both the A4095 Howes Lane and Bucknell Road (north) approaches both exceed an RFC of 1.0, with a respective RFC of 1.12 and 1.27 in the BTM Base 2026 scenario. With the addition of the traffic associated with the Proposed Development, this increases to an RFC of 1.25 and 1.34, respectively. The total delay at the junction increases from 350 seconds to 527 seconds with the addition of the traffic associated with the Proposed Development.

3.7 MODELLING INTERPRETATION

3.7.1 A comparison of the junction modelling undertaken using the BTM 2026 Reference Case flows with both the existing priority junction arrangement and the proposed mitigation scheme in the form of a miniroundabout, is discussed below.

AM PEAK HOUR

3.7.2 In the BTM Base 2026 scenario for the existing priority junction arrangement, a queue on the A4095 Howes Lane reaches a maximum of 30 PCUs (approximately 172.5 m) and an RFC of 1.32 (excluding Howes Lane right turn). The queue on Bucknell Road is estimated to reach 193 PCUs (approximately $1,109.75 \mathrm{~m}$) with an RFC of 1.40. In terms of total delay, the modelling suggests a delay of 490 seconds across the junction, suggesting drivers would experience significant levels of delay.
3.7.3 With the proposed mini-roundabout mitigation scheme in the BTM Base 2026 + Proposed Development scenario, the queue on the A4095 Howes Lane reduces to approximately 5 PCUs (approximately 28.75 m) with an RFC of 0.83 . On Bucknell Road, the queue reduces to 150 PCUs (approximately 862.5 m) with an RFC of 1.27. In terms of total delay, this would reduce to 309 seconds.
3.7.4 In summary, across the AM peak hour, the results of the junction modelling suggest that the proposed mitigation scheme achieves a nil detriment position, mitigating both the impact of the Proposed Development and providing a significant improvement from the BTM Base 2026 Scenario when considered in the context of the existing priority junction.

PM PEAK HOUR

3.7.5 In the BTM Base 2026 scenario for the existing priority junction arrangement, a queue on the A4095 Howes Lane reaches a maximum of 112 PCUs (approximately 644 m) an RFC of 1.29 . There is estimated to be a queue of 6 PCUs (approximately 34.5 m) on Bucknell Road, with an RFC of 0.83 . Across the junction, there will be a total delay of 200 seconds.

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

3.7.6 | In the BTM Base 2026 + Proposed Development scenario for the existing junction arrangement, there is a |
| :--- |
| queue of 195 vehicles (approximately $1,121.25 \mathrm{~m}$) on the A4095 Howes Lane, with an RFC of 1.44. The total |
| junction delay reaches 346 seconds. |

3.7.7 \quad| With the proposed mini-roundabout mitigation scheme in the BTM Base 2026 + Proposed Development |
| :--- |
| scenario, the queues on the A4095 Howes Lane reduce to 105 PCUs (approximately 603.75 m), with an RFC |
| of 1.25. It is noted that the mitigation scheme results in an increase on Bucknell Road, with a queue of 208 |
| PCUs (approximately $1,196.0 \mathrm{~m}$) and an RFC of 1.34 . |

3.7.8 Whilst the proposed mitigation scheme does not deliver a true nil detriment position in the PM peak, it does
provide a significant improvement in the queueing along the A4095 Howes Lane, reducing the queue by
approximately 90 PCUs (approximately 517.5 m).

SEVERITY THRESHOLDS

3.7.10 Specific reference is made to the severity thresholds referred to in the 2014 memorandum produced by Hyder Consulting in relation to the planning application for 'Application 1' (Planning Ref 14/01384/OUT). Within the memorandum, OCC identified the "severe" trigger point as the point where vehicles would queue back and block the A4095 / Shakespeare Drive Signal junction.
3.7.11 It is acknowledged that queues could impact the A4095 / Bucknell Road roundabout, with the historic assessments undertaken regarding a 10-vehicle queue on Bucknell Road as the maximum acceptable queue, which may partially queue into and through the existing roundabout junction of the A4095 Lords Lane / Bucknell Road.
3.7.12 It is also noted that across the modelling undertaken for both the existing arrangement and the proposed mitigation scheme, the queues on Bucknell Road typically exceed 10-vehicles in most scenarios assessed. In addition, this is occurring at present and was observed within the traffic surveys, with queues observed past the junction of the A4095 Lords Lane / Trefoil Drive in the AM peak, which is identified as being approximately 145 m from the junction with the A4095 Howes Lane, or approximately 25 -vehicles.
3.7.13 However, given the nature of roundabouts and the observed existing junction operation, it is considered that these queues form 'sliver queues' and still allow traffic to move slowly through the junction. It is regarded that queues at this junction would therefore not present as much of a safety concern as any queues at the A4095 / Shakespeare Drive signal junction, as drivers would just wait to give way.
3.7.14 From a review of the geometry along the A4095 Howes Lane, it is considered that the key tipping point is reached when the queue exceeds 390 m or is the equivalent to a queue of 65 PCUs , which would cause vehicles to block back and queue through the A4095 / Shakespeare Drive signal junction.
3.7.15 In relation to the existing arrangement, the queues on the A4095 Howes Lane exceed 65 PCUs in the BTM Base 2026 PM peak. Whilst this was not observed to be taking place at present, it is likely this could occur with the predicted additional traffic growth.
3.7.16 However, with the implementation of the proposed mitigation scheme, the queueing on the A4095 Howes Lane only exceeds 65 PCUs in the PM peak of the BTM Base 2026 + Proposed Development scenario. Nonetheless, this still presents a reduction of 90 PCUs from the BTM Base 2026 Scenario with the existing

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

arrangement in the PM peak, which would take place regardless of the Proposed Development coming forward or any mitigation being delivered.

3.8

3.8.1

On that basis, it is considered that the proposed interim improvement scheme in the form of a miniroundabout associated with the Proposed Development provides a material improvement on the A4095 Howes Lane using the severity thresholds previously identified by OCC.

DELIVERY

Subject to a successful planning consent being granted, the Applicant would commit to funding the delivery of the proposed interim improvement mitigation scheme by way of a Section 278 agreement, which would enable the Proposed Development to come forward with no restrictions on the number of units that could be delivered prior to the A4095 Strategic Highway Improvements being implemented.

Cosers)

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

4.1.1 Velocity Transport Planning (VTP) has been appointed by Firethorn Trust (The Applicant) to provide highways and transport planning advice for an outline planning application relating to the development of up to 530 dwellings on land which forms part of the North West Bicester Eco Town development, located in Oxfordshire.
4.1.2 Following submission of the planning application, consultation responses were received from OCC and CDC, which resulted in further assessment of the A4095 Howes Lane / Bucknell Road junction.
4.1.3 In addition to the feedback received from OCC, it is also now understood that the funding and timescales for the delivery of the permitted A4095 Strategic Highway Improvements (Planning Ref 14/01968/F) are uncertain.
4.1.4 The purpose of this Technical Note is to identify the current and predicted operation of the existing priority junction arrangement of the A4095 Howes Lane / Bucknell Road junction, compared with the predicted operation of a proposed interim improvement to this junction in the form of a mini-roundabout that could be delivered by The Applicant prior to the implementation of the A4095 Strategic Highway Improvement.
4.1.5 The junction modelling was undertaken using the latest version of the BTM 2026 Reference Case traffic flows that were provided by OCC.

4.2 EXISTING JUNCTION

4.2.1 The modelling for the existing priority junction arrangement suggests that the junction will operate significantly over capacity in the BTM Base 2026 future scenario, with significant levels of junction delay and an RFC well above the theoretical maximum capacity of 1.0 in the AM peak. In the PM peak, the left turn from Howes Lane experiences a queue of 112 PCUs and an RFC of 1.29.
4.2.2 The junction performance deteriorates further with the addition of the traffic associated with the Proposed Development, although it is noted that the junction is already well over capacity in the BTM Base 2026 scenario.
4.2.3 As an exercise to determine whether the BTM 2026 Reference Case flows were reasonable, traffic surveys were undertaken during the week commencing the $31^{\text {st }}$ of January 2022.
4.2.4 A series of key observations from the surveys were made at the existing junction, including:

- The dominant flows at the junction are vehicles turning right from Bucknell Road (north) into the A4095 Howes Lane and vehicles turning left onto Bucknell Road (north) from the A4095 Howes Lane, with these movements equating to 75% of the total flow at this junction;
- Most vehicles turning right from Bucknell Road (north) into the A4095 Howes Lane significantly overrun the centre line of the right turn lane on the A4095 Howes Lane. This causes conflict for any large vehicles turning right from Bucknell Road (north) if a vehicle is waiting to turn right from the A4095 Howes Lane to travel south along Bucknell Road (south);
© HGVs turning left from the A4095 Howes Lane swing over the central hatching of Bucknell Road (north) into the opposing side of the carriageway and require southbound vehicles to give way;

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

- Vehicles turning right from Bucknell Road (north) onto the A4095 Howes Lane were observed to queue through the A4095 Lords Lane / Bucknell Road roundabout and queue back past the junction of the A4095 Lords Lane / Trefoil Drive in some instances;
© Queues were observed on the A4095 Howes Lane approach throughout the survey, with the vast majority of vehicles waiting to turn left onto Bucknell Road (north). However, the observed queues did not extend back as far as the junction of the A4095 Howes Lane / Shakespeare Drive signal junction; and

○ Pedestrian and cyclist demand through the junction was very low, with no pedestrians observed crossing the junction at all over the survey period.
4.2.5 Using the observed flows from 2022, the existing junction arrangement was again modelled to ensure that the future BTM Base 2026 future scenario flows were reasonable in relation to what is taking place at present.
4.2.6 In summary, it is considered that the junction models are appropriately representing the current observed conditions at the junction (as far as is practicably possible within the limitations of the software) and that the results of the BTM 2026 Reference Case scenarios are appropriate to compare to any proposed mitigation scheme.

4.3 PROPOSED MITIGATION SCHEME

4.3.1 To mitigate the impact of the traffic associated with the Proposed Development at the junction and improve the operation of the existing A4095 Howes Lane / Bucknell Road priority junction, an interim mitigation scheme in the form of a proposed mini-roundabout arrangement has been developed.

The proposed mini-roundabout scheme has been designed in accordance with the requirements of the Design Manual for Roads and Bridges (DMRB) CD 116 Revision 2 'Geometric Design of Roundabouts'
4.3.3 The general arrangement of the proposed mini-roundabout is presented on the VTP drawing included at ATTACHMENT E and offers the following improvements from the existing priority junction arrangement:

- Improved provision for pedestrians, cyclists and other road users by reducing speeds and the number of lanes of traffic that need to be crossed;
- Improvements of the operational flows of HGVs, with two HGVs now able to pass simultaneously, as well as the reinforcement of appropriate driver position;
© Improvements in road safety, with research suggesting mini-roundabouts reduce the severity of collisions when compared to priority junctions; and
- Improvements in junction capacity, with the proposed mitigation scheme providing a nil detriment position in the AM peak and improving overall junction performance, whilst significantly reducing the queues on the A4095 Howes Lane in the PM peak.
4.3.4 Crucially, the proposed mitigation scheme reduces queueing back on the A4095 Howes Lane back through the A4095 Howes Lane / Shakespeare Drive signal junction, which is predicted to happen in the BTM Base 2026 year PM peak irrespective of whether the Proposed Development comes forward or not.
4.3.5

A Stage 1 Road Safety Audit and accompanying Designer's Response is included at ATTACHMENT G. In addition, the independent auditor has provided a Road Safety Assessment that compares the existing priority junction arrangement with the proposed mini-roundabout junction arrangement, which concludes

TECHNICAL NOTE: A4095 INTERIM IMPROVEMENT

that the conversion of the existing priority junction to the proposed mini-roundabout junction would be positive.

4.4

4.4.1 It is generally accepted that the committed A4095 Strategic Highway Improvements are required to alleviate pressure at the A4095 Howes Lane / Bucknell Road junction and across the local highway network to address the cumulative impact of the traffic associated with the allocated sites included within the adopted CDC Local Plan.
4.4.2 However, the proposed mini-roundabout mitigation scheme seeks to provide an interim mitigation solution that will accommodate the full level of development associated with the 530 dwellings prior to the implementation of the A4095 Strategic Highway Improvements.
4.4.3 In conclusion, the proposed mitigation scheme and mini-roundabout arrangement provide a significant improvement from the existing arrangement, mitigating both the impact of the Proposed Development and improving the junction in a number of ways, including traffic capacity, road safety, access for HGVs and pedestrian and cyclist amenity.

ATTACHMENT A

EXISTING PRIORITY JUNCTION PARAMETERS

ATTACHMENT B

EXISTING PRIORITY JUNCTION - JUNCTIONS 10 OUTPUT FILES

Generated on 23/03/2022 16:10:53 using Junctions 10 (10.0.3.1598)

Filename: 2022.03.14-NW BICESTER - HOWES LANE (Existing).j10
Path: P:|Firethorn Trust_460011100 - NW Bicester|Analysis\ModellingIPicady\BTM 2026 FLOWS Report generation date: 23/03/2022 16:09:06
„BTM Base 2026, AM
„BTM Base 2026, PM
"BTM 2026 + Proposed Dev, AM
„BTM 2026 + Proposed Dev, PM
"OBS 2022, AM
„OBS 2022, PM

Summary of junction performance

	AM					Junction Delay (s)	PM					
	Set ID	Queue (PCU)	Delay (s)	RFC	Los		Set ID	Queue (PCU)	Delay (s)	RFC	Los	Junction Delay (s)
	BTM Base 2026											
Stream B-C	D1	29.9	199.32	1.17	F	490.10	D2	112.1	600.80	1.29	F	200.45
Stream B-A		6.3	2239.45	9999999999.00	F			0.1	22.86	0.08	c	
Stream C-AB		193.0	${ }^{893.76}$	1.40	F			6.3	15.61	0.76	c	
	BTM 2026 + Proposed Dev											
Stream B-C	D3	70.6	501.13	1.26	F	375579.06	D4	194.8	999.20	1.44	F	346.12
Stream B-A		12.6	59999940.00	999999999900	F			0.1	24.40	0.08	c	
Stream C-AB		340.9	1621.48	1.62	F			6.6	15.02	0.76	c	
	OBS 2022											
Stream B-C	D5	8.5	55.41	0.93	F	412.85	D6	4.1	27.03	0.80	D	11.02
Stream B-A		1.4	217.34	0.62	F			0.1	11.28	0.08	B	
Stream C-AB		165.0	730.60	1.33	F			0.6	6.49	0.29	A	

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average deay per arriving vehicle Junction LOS and Junction Delar are demand-weighted averages.

File summary
File Description

Title	(untitled)
Location	
Site number	
Date	$02 / 11 / 2021$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	VTPICRicci
Description	

Units

Analysis Options

Demand Set Summary

ID	Scenario name	Time Period name	Traftic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	BTM Base 2026	AM	ONE HOUR	07:45	09:15	15
D2	BTM Base 2026	PM	ONE HOUR	16:45	18:15	15
D3	BTM $2026+$ Proposed Dev	AM	ONE HOUR	07:45	09:15	15
D4	BTM $2026+$ Proposed Dev	PM	ONE HOUR	16:45	18:15	15
D 5	OBS 2022	AM	ONE HOUR	07:45	09:15	15
	OBS 2022		ONE HOUR			

Analysis Set Details

ID	Network flow scaling factor (\%)

A1 100.000

BTM Base 2026, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

\section*{Junction Network
 | Driving side | Lighting | Network delay (s) | Network Los |
| :--- | :--- | :--- | :--- |}

Arms

Arms

Major Arm Geometry

A $\mathbf{A m}$	Width of carriageway (\mathbf{m})	Has kerbed central reserve	Has rightturn storage	Visibility for right turn (\mathbf{m})	Blocks?	Blocking queue (PCU)
C	6.40			250.0	\checkmark	1.00

Ceotries for Arm C are measured opposite Arm B. Geometries for Arm A lif relevant) are measured opposite Am D.

Minor Arm Geometry

B	Two lanes	3.00	2.80	41

Slope / Intercept / Capacity
Priority Intersection Slopes and Intercepts

Stream	$\left\|\begin{array}{l} \text { Intercept } \\ \text { (PCU/hr) } \end{array}\right\|$	$\begin{array}{\|c\|c\|} \hline \text { Slope } \\ \text { for } \\ A B \end{array}$	$\left.\begin{array}{\|c\|c\|} \hline \text { slope } \\ \text { for } \\ A C \end{array} \right\rvert\,$	$\left\|\begin{array}{c} \substack{\text { slope } \\ \text { for } \\ C-A} \end{array}\right\|$	$\begin{gathered} \hline \text { Sope } \\ \text { for } \\ \text { C-B } \end{gathered}$
B-A	602	0.108	0.272	0.171	0.389
B-C	781	0.118	0.297		
C-B	719	0.274	0.274		

The slopes and intercepts shown above include custom intercept adiustments only.
Streams may be combined, in which case capacity will be ajuisted
Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

Tl|

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A		\checkmark	470	100.000
B	\checkmark	539	100.000	
C	\checkmark	\checkmark	915	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
		A	A	C
	A	0	174	296
	B	13	0	526
	C	180	735	0

Vehicle Mix

Results

Main Results for each time segment
07:45-08:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughnut (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	396	694	0.571	390	1.4	12.828	B
B-A	10	289	0.034	10	0.0	14.180	B
C-AB	662	744	0.890	632	7.4	31.579	D
C-A	27			27			
AB	131			131			
AC	223			223			

08:00-08:15

Stream	Total Demand $($ PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $($ PCU $/$ hr)	End queue (PCU)	Delay (s)	Unsignalised (evel of service
B-C	473	674	0.701	469	2.4	18.879	C
B-A	12	218	0.054	12	0.1	19.222	C
C-AB	823	751	1.096	732	30.0	106.545	F
C-A	0			0			
AB	156			156			
AC	266			266			

Stream	Total Demand (PCU/hr)	Capacity (PCU/tr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	579	638	0.907	560	7.1	43.036	E
B-A	14	102	0.140	14	0.2	44.610	E
C-AB	1007	718	1.402	717	102.6	344.260	F
C-A	0			0			
AB	192			192			
Ac	326			326			

08:30-08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
в-c	579	496	1.167	488	29.9	156.451	F
B-A	14	2	8.227	1	3.4	2239.448	F
C-AB	1007	718	1.402	718	174.9	690.814	F
C-A	0			0			
AB	192			192			
AC	326			326			

Stream	Total Demand (PCU/hr)	Capacity (PCU/tr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	473	513	0.922	506	21.5	199.317	F
B-A	12	0	9999999999.000	0	6.3	1448.059	F
C-AB	823	751	1.096	750	193.0	893.761	F
C-A	0			0			
AB	156			156			
AC	266			266			

09:00-09:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFc	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised Level of service
B-C	396	525	0.755	466	4.1	84.937	F
B-A	10	22	0.455	18	4.2	1074.123	F
C-AB	662	744	0.890	747	171.6	892.302	F
C-A	27			27			
AB	131			131			
AC	223			223			

BTM Base 2026, PM

Data Errors and Warnings
No errors or warnings

Junction Network

Junctions

Junction Network

Driving side	Lighting	Network delay (s)	Network Los

Traffic Demand

Demand Set Details

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Origin-Destination Data

Vehicle Mix
Heavy Vehicle Percentages

Results

Main Results for each time segment

Stream	Total Demand (PCC/r)	Capacity (PCU/hr)	RFC	Throughput (PCU/ hr$)$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	675	668	1.011	63	14.9	71.691	F
B-A	12	267	0.044	12	0.0	15.483	C
C-AB	562	954	0.589	558	2.4	10.070	B
C-A	369			369			
AB	160			160			
AC	293			293			

Stream	Total Demand (PCU/hr)	Capacity (PCU/r)	RFC	Throughput (PCUUhr)	End queue (PCU)	Delay (s)	Unsignalised (evel of sesvice
B-C	827	639	1.294	637	62.5	234.281	F
B-A	14	191	0.075	14	0.1	22.336	C
C-AB	848	1119	0.757	834	6.0	14.205	B
C-A	293			293			
AB	196			196			
AC	359			359			

17:30-17:45

Stream	Total Demand (PCU/hr)	Capacity (PCC/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised (evel of sesvice
B-C	827	639	1.294	638	109.6	489.225	F
B-A	14	188	0.076	14	0.1	22.81	C
C-AB	848	1119	0.757	846	6.3	15.611	C
C-A	293			293			
AB	196			196			
AC	359			359			

17:00-17:15
17.30-17:45

Tl|l
17:45-18:00
17:45-18:00

Stream	Total Demand (PCUU $\mathbf{h r})$	Capacity (PCC/r)	RFC	Throughput (PCUV/hr)	End queue (PCU)	Delay (s)	Unsignalised (evel of service
B-C	675	668	1.011	665	112.1	600.801	F
B-A	12	262	0.045	12	0.1	15.841	C
C-AB	562	954	0.589	577	2.7	11.133	B
C-A	369			369			
AB	160			160			
AC	293			293			

Stream	Total Demand (PCU/hr)	$\underset{\substack{\text { Capacity } \\ \text { (PCU(hr) }}}{ }$	RFc	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	565	687	0.823	680	83.3	518.085	F
B-A	10	320	0.031	10	0.0	12.772	B
C-AB	412	863	0.477	417	1.5	9.037	A
C-A	368			368			
AB	134			134			
AC	245			245			

BTM 2026 + Proposed Dev, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction Network

Driving side	Lighting	Network delay (s)	Network Los
Left	Normal/unknown	37579.06	F

Traffic Demand

Demand Set Details

Vehicle mix source	PCU Factor for a HV (PCU)
He	

Demand overview (Traffic)

Origin-Destination Data

Demand (PCU/hr)

Vehicle Mix

Heavy Vehicle Percentages

	To			
		A	B	C
	From	0	10	10
	B	10	0	10
	C	10	10	0

Results

Main Results for each time segment
07:45-08:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughnut (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	428	693	0.617	421	1.7	14.226	F
B-A	10	255	0.038	10	0	0.0	5999940.000
C-AB	776	753	1.030	704	18.1	59	F
C-A	0			0			
AB	131			131			
AC	223			223			

Stream	Total Demand $(\mathrm{PCU} / \mathrm{hr})$	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
в-c	511	671	0.761	505	3.2	22.961	c
B-A	12	162	0.072	12	0.1	59999940.000	F
C-AB	927	731	1.268	727	68.0	228.615	F
C-A	0			0			
AB	156			156			
AC	266			266			

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	625	496	1.260	488	37.6	169.202	F
B-A	14	0	9999999999.000	0	3.7	59999940.000	F
C-AB	1135	699	1.623	699	177.1	640.395	F
C-A	0			0			
AB	192			192			
Ac	326			326			

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	$\begin{aligned} & \text { Unsignalised } \\ & \text { level of service } \end{aligned}$
B-c	625	496	1.260	495	70.0	402.286	F
B-A	14	0	9999999999.000	0	7.2	59999940.000	F
C-AB	1135	699	1.623	699	286.1	1200.002	F
C-A	0			0			
AB	192			192			
AC	326			326			

Stream	Total Demand $(\mathrm{PCU} / \mathrm{hr})$	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	511	513	0.996	508	70.6	501.128	F
B-A	12	0	9999999999.000	0	10.2	59999940.000	F
C-AB	927	${ }^{731}$	1.268	${ }^{731}$	335.1	1517.975	F
C-A	0			0			
AB	156			156			
AC	266			266			

09:00-09:15

Stream	Total Demand (PCU/hr)	Capatity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	428	525	0.815	517	48.4	47.042	F
B-A	10	0	999999999.000	0	12.6	5999940.000	F
C-AB	776	753	1.030	753	340.9	1621.479	F
C-A	0			0			
AB	131			131			
AC	223			223			

BTM 2026 + Proposed Dev, PM

Data Errors and Warnings
No errors or warnings

Junction Network

Junctions

| Junction | Name | Junction type | Arm A Direction | Arm B Direction | Arm C Direction | Use circulating lanes | Junction Delay (s) | Junction Los |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | untitled | T-Junction | Two-way | Two-way | Two-way | | | |

Junction Network

Driving side	Lighting	Network delay (s)	Network Los

Traffic Demand

Demand Set Details

D4 ${ }^{-1}$ BTM $2026+$ Proposed Dev

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Origin-Destination Data

Demand (PCU/hr)

Vehicle Mix
Heavy Vehicle Percentages

	To			
		A	B	C
From	A	0	10	10
	B	10	0	10
	C	10	10	0

Results

Main Results for each time segment

16:45-17:0

17:15-17:30

Stream	Total Demand (PCU/hr)	Capacity (PCUITr)	RFC	Throughnut (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised (evel of service
B-C	922	638	1.444	638	102.6	391.276	F
B-A	14	180	0.079	14	0.1	23.781	C
C-AB	885	1168	0.757	870	6.2	13.650	B
C-A	319			319			
AB	196			196			
AC	359			359			

17:30-17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $($ (PCUl/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	922	638	1.445	638	173.5	772.101	F
B-A	14	177	0.081	14	0.1	24.396	C
C-AB	885	1168	0.757	883	6.6	15.021	C
C-A	319			319			
AB	196			196			
AC	359			359			

|RI

17:45-18:00

Stream	Total (PCUM/r)	Capacity (PCU/hr)	RFC	Throughput (PCU/r)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	752	667	1.128	667	194.8	999.195	F
B-A	12	253	0.046	12	0.1	16.434	C
C-AB	581	986	0.589	596	2.8	10.801	B
C-A	402			402			
AB	160			160			
AC	293			293			

$18: 00-18: 15$

Stream	Total Demand (PCU/r)	Capacity (PCC/hr)	RFC	Throughput (PCUU hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	630	687	0.917	683	181.6	992.150	F
B-A	10	313	0.031	10	0.0	13.086	B
C-AB	423	885	0.477	428	1.5	8.821	A
C-A	400			400			
AB	134			134			
AC	245			245			

OBS 2022, AM

Data Errors and Warnings

No errors or warnings

Junction Network

unctions

Junction Network

Driving side	Lighting	Network delay (s)	Network Los

Traffic Demand

Demand Set Details

D5	Scenario name	Time Perio
D5	OBS 2022	

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Origin-Destination Data

Demand (PCU/hr)

Vehicle Mix

[^0]Tl|

Results

Main Results for each time segment
07:45-08:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughnut (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	385	724	0.532	380	1.2	11.366	B
B-A	22	312	0.070	22	0.1	13.593	B
C-AB	681	780	0.874	654	6.7	28.474	D
C-A	29			29			
AB	63			63			
AC	126			126			

08:00-08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/r)	RFC	Throughnut (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised (evel of service
B-C	459	708	0.649	456	1.9	15.537	C
B-A	26	247	0.106	26	0.1	1.913	C
C-AB	848	800	1.059	774	25.0	87.230	F
C-A	0			0			
AB	76			76			
AC	150			150			

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised (evel of service
B-C	563	675	0.833	552	4.6	29.768	D
B-A	32	144	0.222	31	0.3	35.055	E
C-AB	1038	784	1.325	782	89	89	274.638
C-A	0			0			F
AB	92			92			
AC	184			184			

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised evel of service
B-c	563	605	0.930	547	8.5	55.406	F
B-A	32	54	0.595	28	1.2	143.388	F
C-AB	1038	784	1.325	783	153.0	560.822	F
C-A	0			0			
AB	92			92			
AC	184			184			

08:45-09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised (evel of service
B-C	459	595	0.772	476	4.2	36.763	E
B-A	26	42	0.620	25	1.4	27.341	F
C-AB	848	800	1.059	800	165.0	730.598	F
C-A	0			0			
AB	76			76			
AC	150			150			

09:00-09:15

Stream	Total Demand (PCU/hr)	Capatity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	385	675	0.570	395	1.5	14.679	B
B-A	22	81	0.268	26	0.4	74.37	F
C-AB	681	780	0.874	784	139.3	713.452	F
C-A	29			29			
AB	63			63			
AC	126			126			

OBS 2022, PM

Data Errors and Warnings
No errors or warnings

Junction Network

Junctions

Junction Network

Driving side	Lighting	Network delay (s)	Network Los

Traffic Demand

Demand Set Details

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Origin-Destination Data

Demand (PCU/hr)

Vehicle Mix
Heavy Vehicle Percentages

To				
		A	B	C
	From	0	10	10
	B	10	0	10
	C	10	10	0

Results

Main Results for each time segment

16:45-17:00

17:15-17:30

Stream	Total Demand (PCU/hr)	Capacity (PCUIhr)	RFC	Throughnut (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised (evel of service
B-C	575	718	0.800	567	3.9	24.881	C
B-A	31	382	0.081	31	0.1	11.266	B
C-AB	245	855	0.286	244	0.6	6.479	A
C-A	536			536			
AB	48			48			
AC	143			143			

17:30-17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/r)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised (evel of service
B-C	575	718	0.800	574	4.1	27.033	D
B-A	31	382	0.081	31	011	1.279	B
C-AB	245	855	0.286	244	0.6	6.494	A
C-A	536			536			
AB	48			48			
AC	143			143			

|RI
17:45-18:00
17:45-18:00

Stream	Total Demand $($ PCU/hr)	Capacity (PCU/r)	RFC	Throughput $($ PCU $/$ hr)	End queue (PCU)	Delay (s)	Unsignalised (evel of service
B-C	469	731	0.642	477	2.1	16.109	C
B-A	25	422	0.060	25	0.1	9.982	A
C-AB	185	803	0.230	185	0.4	6.428	A
C-A	453			453			
AB	40			40			
AC	117			117			

18:00-18:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughnut (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-C	393	739	0.531	396	1.3	11.636	B
B-A	21	451	0.047	21	0.1	9.203	A
C-AB	147	772	0.191	148	0.3	6.345	A
C-A	386			386			
AB	33			33			
AC	98			98			

ATTACHMENT C

TRAFFIC FLOW DIAGRAMS

ATTACHMENT D

TRAFFIC SURVEY DATA
SMART

CLASSIFIED TURNING COUNTS

STUDY NAME	Job 567 Howes Lane
SITE LOCATION	Site 2 - Howes Lane / Bucknell Road
DATE	Wednesday 02nd February 2022
TIME PERIOD	12 hours (07:00-19:00)
WEATHER	
COMM ENTS	
DETAILS OF ARMS	
	ARM A: Bucknell Road (North)
	ARM B: Bucknell Road (South)
	ARM C: Howes Lane
	ARM D: Unnamed Road

CLASSIFIED TURNING COUNTS
Site 2 - Howes Lane / Bucknell Road

CLASSIFIED COUNTS
Site 2 - Howes Lane / Bucknell Roa

070.088	26	${ }^{44}$	${ }^{6}$	$4^{4} 3$	${ }^{3} 1$	314	${ }^{325}$				7			${ }^{843}$	86										
O800.0900	${ }_{2054}^{424}$	${ }_{4}^{49}$	${ }_{10}^{10}$	${ }^{11}{ }^{11}{ }^{5}$	5	${ }_{515}$	${ }_{\text {cis }}^{\text {539 }}$	${ }_{401}^{680}$	${ }_{79}^{112}$	${ }_{14}^{13}$	16				${ }^{858}$										
$1000 \cdot 1100$	214	${ }^{35}$	8	12		270		341	70	13	11			${ }^{436}$	${ }^{456}$		${ }^{555} 105$		${ }^{23}$						
${ }^{1100 \cdot 1200}$	${ }^{245}$	26	10	${ }^{12}$	0.	${ }^{294}$	${ }_{3} 34$	${ }^{281}$	${ }^{80}$	${ }^{15}$	${ }^{13}$	0		${ }^{339}$	${ }^{414}$		${ }^{26}$		25						
$1200 \cdot 1300$	${ }_{288}^{278}$	${ }_{38}^{48}$	${ }_{7}^{18}$	10	${ }^{\circ} \mathrm{O}$			${ }^{303}$			${ }_{22}^{13}$						${ }_{\text {ci }}^{59}$								
${ }^{130301400}$	${ }_{293}^{288}$	${ }^{39}$	${ }_{14}^{7}$	${ }_{14}^{13}$	0	${ }^{349}$ 376	${ }^{368}$	${ }_{307}^{307}$	${ }_{47}^{48}$	${ }^{15}$	${ }^{22}$			${ }^{386}$	${ }_{44}^{433}$			${ }_{24}^{22}$	${ }^{35}$						
1.150 .1600	${ }_{38}$	74		10.4	${ }_{4}{ }^{2}$	${ }_{4} 45$		397	${ }_{5} 5$		8			${ }_{487}$			${ }^{335}$								
1860.1700	44	101	10	${ }_{5}$	${ }^{2} 5$	572	583	378	${ }^{73}$		3			${ }_{463}$	4		${ }^{27} 1174$	${ }^{15}$	${ }^{8}$						
		${ }^{55}$							41					${ }^{576}$			12								

	ARMD: Unnamead Road																								
${ }^{\text {TMME }}$																									
0700080																									
O800.090																									
			,			-			,	,		0	0												
\%00.100		,	,	-	\bigcirc				,	,	-	-						-	${ }^{2}$,				
${ }^{1200-130}$			2						2	0							3	。							
1300.400			.		0				1	-			$\%$	0											
${ }^{1400 \cdot 1500}$			。							-															
			.						${ }^{3}$	-															
, $17000 \cdot 100$.						0	,	.						2								

Junction: A - Bucknell Road (North) / B - Bucknell Road (South) / C - Howes Lane / D - Unnamed Road

Vehicle Class:	All classes	
	No	
	07:00 to 19:00	
Custom Start / End:	07:00	19:00
Show Peak Times:	No	

为								
				-				
		\because		:			!	
				-				
		!		!				
	!	:	$\stackrel{\text { a }}{ }$!				
	:	\because	:	!		:		
	!	:	!	!		$\stackrel{1}{\square}$		
		\because	!	!				
						-		
	!	:	'	!				
	!	:	!	!		:	$\stackrel{\square}{\text { \% }}$	
	!	:	-	-				
		:	!	,				
		:		!				
	!	\%	!	!		,	:	
		:	:	,				
				,				
-	:	:	!	\div		:	\because	
			$!$!				
	!	:	!	!		\div		
	!		-	-				
		-		!				
	;	:	:	:		:	-	
	!	\because	\square	\because				
	-	:	!	!		:	!	
	!	:	.	-				
	:	-	:	!		:		
	:	:	:	!		:		
	:	:	;	!			:	
			;					
	\because	:	:	!		:	-	
	\vdots	\because	!	!		!	\because	
	:		!	!		:		
	!		!	!				
	!	-	:	!				
	:	:	:	:		.	\cdots	
	!	\div	!	-		:	+	
	!	\because	\because	\div			-	
	:		!	!				
				!				
	!	\because		!				
	!	!	!	!				
	!		!	!				
	:	:	:	!		:	:	
	:		:	!		:		
	-	-	-	,				
			-	!				
				!				

ATTACHMENT E

PROPOSED MINI-ROUNDABOUT DRAWINGS

ATTACHMENT F

ACCIDENT DATA

Selected using Manual Selection

Wednesday	y 23/12/2020	Time	0729	- Serio		A4095 LORDS LANE J/W PURSLANE DRIVE BICESTER						
E: 457531	N: 224133 Junc	Detail:	3	Control	4							
Raining with	thout high winds			Road surface	Wet	mp		Darkness: street lights present and lit				
	Vehicle Reference 1	Car						Moving from	S to	E	Turning right	
	Vehicle Reference 2	Pedal Cycle						Moving from	NE to	S	Going ahead other	
	Casual	Referenc		1	Age:	43	Male	Driver/rider			Severity: Serious	njured by vehicle:

Accidents between dates

Selection:

 01/01/2016 and 31/12/2021Selected using Manual Selection

Accidents involving:

	Fatal	Serious	Slight	Total
Motor vehicles only (excluding 2-wheels)	0	3	1	4
2-wheeled motor vehicles	0	1	0	1
Pedal cycles	0	1	1	2
Horses \& other	0	0	0	0
Total	0	5	2	7

Number of casualties meeting the criteria:

Casualties:

	Fatal	Serious	Slight	Total
Vehicle driver	0	3	3	6
Passenger	0	0	1	1
Motorcycle rider	0	1	0	1
Cyclist	0	1	1	2
Pedestrian	0	0	0	0
Other	0	0	0	0
Total	0	5	5	10

ATTACHMENT G
 STAGE 1 RSA DESIGNER'S RESPONSE

LAND AT NORTH WEST

BICESTER

STAGE 1 RSA DESIGNER'S RESPONSE (A4095)

Firefhorntrust ${ }^{\text {Th }}$

Velocity Transport Planning Ltd
www.velocitv-tp.com

TABLE OF CONTENTS

1 DESIGNER'S STATEMENT 1
2 INTRODUCTION 2
3 DESIGNER'S RESPONSE TABLES 4

APPENDICES

APPENDIXA	STAGE 1 RSA BRIEF
APPENDIX B	STAGE 1 RSA

1.1.1 Velocity Transport Planning (VTP) has been appointed by Firethorn Trust (The Applicant) to provide highways and transportation support for the current planning application at the scheme referred to as Land to the North West of Bicester. The Application Site forms part of the wider allocated site identified at Policy Bicester 1: North West Bicester Eco-Town in the adopted Cherwell District Council (CDC) Local Plan 20112031 (Adopted 20 July 2015).
1.1.2 The Proposed Development description for the outline planning application (Planning Ref 21/01630/OUT), is as follows:
"Outline planning application for residential development (within Use Class C3), open space provision, access, drainage and all associated works and operations including but not limited to demolition, earthworks, and engineering operations, with the details of appearance, landscaping, layout and scale reserved for later determination."
1.1.3 The Firethorn Trust application was validated by CDC on the $06^{\text {th }}$ of May 2021. During the consultation process, the Local Highway Authority, Oxfordshire County Council (OCC) withdrew the agreed funding for the permitted A4095 Strategic Link Road (SLR), which was consented by CDC on the $21^{\text {st }}$ of August 2014 (Planning Ref 14/01968/F). The A4095 SLR was identified as being a suitable means of permanent mitigation to accommodate the predicted traffic and highways impacts associated with the allocated development identified within the adopted Local Plan on this part of the local highway network.
1.1.4 With the withdrawal of the agreed funding for the A4095 SLR, the impacts on the local highway network will be considerably pronounced and it has been identified through discussions with OCC that the existing priority junction arrangement of the A4095 Howes Lane with Bucknell Road will not be suitable to accommodate further traffic impacts associated with the allocated sites identified in the adopted Local Plan.
1.1.5 With the above in mind, VTP has prepared an Interim Improvement Scheme at the existing priority junction of the A4095 Howes Lane with Bucknell Road to convert the existing priority junction to a mini-roundabout junction as part of the proposals associated with the Proposed Development. This Interim Improvement Scheme has been designed to mitigate the traffic impact associated with the Proposed Development for a temporary period until the agreed A4095 SLR can be implemented, or an alternative permanent mitigation strategy is agreed between CDC and OCC.
1.1.6 The Stage 1 Road Safety Audit (RSA) was carried out be an independent audit company, Road Safety Consulting Ltd, and a number of comments were raised which this Designer's Response seeks to address.
1.1.7 I have considered the issues and problems raised in the Stage 1 RSA and my comments are set out within this Designer's Response.

Signed

Date: $\quad 24^{\text {th }}$ March 2022

2

2.1
 INTRODUCTION

2.1.1

INTRODUCTION

 junction arrangement. Splays Splays AM and PM Peak Hours:Road Safety Consultants Ltd (RSC) were commissioned by VTP to carry out a Stage 1 RSA of the proposals to convert the existing priority junction of the A4095 Howes Lane with Bucknell Road into a mini-roundabout

The Stage 1 RSA considered the following drawings:
© 4600-1100-T-050 Rev A - A4095 Howes Lane/Bucknell Road - Existing Junction - General Arrangement
© 4600-1100-T-51 Rev A - A4095 Howes Lane/Bucknell Road - Existing Junction - Swept Path Analysis (16.5 m Articulated Vehicle)
© 4600-1100-T-52 Rev A - A4095 Howes Lane/Bucknell Road - Existing Junction - Swept Path Analysis (12.0m Rigid Vehicle)
© 4600-1100-T-53 Rev A - A4095 Howes Lane/Bucknell Road - Existing Junction - Visibility
© 4600-1100-T-054 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction - General Arrangement
© 4600-1100-T-55 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction - Swept Path Analysis (16.5 m \& 12.0 m Vehicle)
© 4600-1100-T-56 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction - Swept Path Analysis (Large Car)
© 4600-1100-T-057 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction - Visibility

- 4600-1100-T-058 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction - Stopping Sight Distance

In addition to the above-mentioned drawings, the Stage 1 RSA Brief also included details of Road Traffic Collision Data from 01/01/2016 to 31/12/2021 and Traffic Flow Diagrams for the following scenarios in the

- Diagram A - 2022 Observed Base Traffic Flows (Wednesday 02/02/2022)
- Diagram B - 2028 Growthed Base Traffic Flows (TEMPRO Growth Factors)
- Diagram C - Proposed Development Traffic Flows (as agreed with OCC)
© Diagram D - 2028 Base + Proposed Development Traffic Flows
The Stage 1 RSA Brief is included at Appendix A.
The signed Stage 1 RSA prepared by RSC is included at Appendix B.
This Designer's Response addresses the problems raised in the Stage 1 RSA and draws together the following documents and information:
- Column 1 - identifies the item number in the Stage 1 RSA;
© Column 2 - summarises the problem identified within the Stage 1 RSA;
© Column 3 - sets out the Auditor's recommendation;
- Column 4 - sets out the Designer's Response; and
© Column 5 - allows for comments from the Local Highway Authority.

Item	Problem	Auditor's Recommendation	Designer's Response	OCC Response
4.1	Location: On Bucknell Road - northern arm of the junction Summary: Reduced footway width may lead to pedestrian to vehicle collisions The realigned kerb of the northern exit arm of Bucknell Road, produces a reduced footway width on the western side of the road. The design sketch appears to show a footway width of approximately 1 m . The reduced footway width may lead to pedestrians walking in the carriageway to pass others on the footway. This may lead to pedestrian to vehicle collisions. This may be exacerbated by the restricted inter-visibility between opposing pedestrians at this location, due to the railway bridge wing wall. The reduced footway width may bring pedestrians closer to the carriageway edge, and the wing mirrors of large vehicles may overhang the footway resulting in wing mirror strikes to pedestrians.	It is recommended that measures are introduced to provide a footway width that enables opposing users to pass without entering carriageway areas; measures may include the realignment of kerb lines.	The RSA comment on the footway amendment is noted but not accepted. The proposed kerbs have been aligned in order to allow for heavy goods vehicles (HGVs) and other vehicles to turn left from the A4095 Howes Lane onto Bucknell Road without incursion into the southbound lane of Bucknell Road. Whilst this change has reduced the effective footway width, it is noted that there is very little (if any) pedestrian demand in this location, with no pedestrians observed using this route within the traffic surveys undertaken 02/02/2022. On that basis, the likelihood of any conflict between pedestrians is minimal. It is also noted that the footway is reduced to a minimum of 1 m for a very limited stretch, which still accords with the minimum requirements set out within Department for Transport (DfT) Inclusive Mobility Guidance (2002). In addition, the proposals improve the pedestrian footway provision along the eastern kerb of Bucknell	

			Road, where the greatest pedestrian demand was observed. On that basis, no changes are proposed to the design and if any were, it might be to remove the provision of the pedestrian footway on the western side of the Bucknell Road and the northern side of Howes Lane completely, thus preventing the opportunity for any pedestrians to utilise the crossing or the existing footway provision when there is considered to be no demand for this.	
4.2	Location: At the mini roundabout, northbound travel through the junction Summary: Excessive entry path through the junction may lead to vehicle to vehicle collisions The offset central island location produces an excessive vehicle path through the junction for northbound users. This may lead to drivers failing to appropriately 'negotiate' the central island. Poor compliance with the circulatory requirements of the junction may lead to vehicle to vehicle collisions.	It is recommended that the size and location of the central island is amended to encourage appropriate circulatory movements for all turning manoeuvres. Measures may include a reduction in central island diameter, realignment of the eastern kerb realignment and a reduction of the circulatory carriageway width	The RSA comment on the alignment of the mini roundabout is noted but not accepted. The current location and arrangement of the central island is to allow for access through the mini roundabout for southbound HGVs turning right onto the A4095 Howes Lane. In addition, it is considered that with appropriate signage (details confirmed at the Detailed Design stage), drivers will be notified of the new junction layout.	
4.3	Location: At the mini roundabout Summary: Construction joint issues may lead to loss of control type collisions The construction joint of the existing junction will fall within the circulatory carriageway area of the junction.	It is recommended that measures are introduced to ensure the integrity of the existing construction joint. Measures may include the resurfacing of the junction area to remove the construction joint	The RSA comment on the construction joint is noted and accepted. The details to ensure the integrity of the existing construction joint will be addressed at the Detailed Design	

	Large turning vehicles will increase stresses on the construction joint, which may lead to deterioration of the joint and pot holes within turning areas for vehicles. Poor carriageway surfaces within turning areas will increase the likelihood of loss of control type collisions, particularly for two-wheeled users.	within likely stress areas	stage. If it is considered necessary to resurface the junction area, this will be identified.	
4.4	Location: At the mini roundabout - Bucknell Road Northern entry Summary: Late braking or failure to give way type collisions On the northern, Bucknell Road entry, drivers may fail to appreciate the presence of the mini roundabout, as siting of the diag 611.1 sign may be problematic and there may be reduced forward visibility to the sign. Poor perception of the change junction arrangements may lead to failure to give way or late braking shunt type collisions	It is recommended that forward visibility to the diag 611.1 sign is maximised to provide adequate warning of the junction type. Existing map type direction signs for the conventional roundabout on the A4095 (E) and Bucknell Road (N) approaches should be amended to clearly identify the new roundabout junction at Howes Lane	The RSA comment on signage is noted and accepted. The details of the signage strategy will be agreed at the Detailed Design stage.	
4.5	Location: At the mini roundabout Summary: Swept path of large vehicles may lead to vehicle to vehicle collisions Whilst on site, the audit team noted that the drivers of large vehicles over-ran the central hatched area and opposing traffic lane when making a left turn manoeuvre from Howes Lane on to Bucknell Road. The swept path drawings provided indicate that drivers of large vehicles may have to carry out a precise left turn manoeuvre to avoid over-running the opposing traffic lane or striking nearside kerbs. This manoeuvre may lead to vehicle to vehicle collisions with the introduction of the mini roundabout and revised kerb line of the eastern side of Bucknell Road.	It is recommended that measures should be introduced to minimise the likelihood of large vehicle swept paths crossing the hatched areas and entering the opposing traffic lane; measures may include widening the hatched markings separating the two traffic streams, reducing the southbound traffic lane width, and amending the eastern kerb line	The RSA comment is noted but not accepted. The width of the existing southbound lane on Bucknell Road has been widened, with additional kerb alignment changes to the northbound lane in order to maximise the carriageway space available and prevent vehicles and HGVs travelling over the centreline. The proposals are considered to be the most appropriate within the constraints of the railway bridge to reduce conflict between vehicles The 'AutoTrack' vehicle tracking	

			software used contains safety allowances within the software, meaning in 'real life' situations a vehicle will be able to turn with greater ease and would be less onerous. No changes are therefore proposed to the current arrangement.	
4.6	Location: On Bucknell Road - northern arm of the junction western crossing point Summary: Restricted inter-visibility may lead to pedestrian to vehicle collisions The relocation of the give way line back into Howes Lane means that inter-visibility between a pedestrian waiting at the existing crossing point on the western side and a driver turning left from Howes Lane will be further restricted (existing inter-visibility between users is poor). This may lead to an increased likelihood of pedestrian to vehicle collisions.	It is recommended that the existing crossing point is relocated to a point where appropriate adequate intervisibility can be achieved. It may be appropriate to extend the footway on the western side of Bucknell Road and provide a dropped kerb crossing point at the splitter island of the Lords Lane roundabout.	The RSA comment is acknowledged but not accepted. It is noted that the intervisibility for pedestrians is an existing constraint, with the collision data suggesting this has not led to any accidents occurring in the latest 5year period. In addition, it is noted that no pedestrians were observed using this crossing in the observed traffic surveys undertaken, meaning the likelihood of any conflict is low given there is currently little (if any) demand. If required by OCC, the feasibility of a relocated crossing could be determined at the Detailed Design stage. Alternatively, the pedestrian facilities on the western side of Bucknell Road and the northern side of Howes Lane, could be removed completely.	

APPENDIX A STAGE 1 RSA BRIEF

LAND AT NORTH WEST BICESTER, OXFORDSHIRE

TECHNICAL NOTE: STAGE 1 RSA BRIEF

CLIENT: FIRETHORN TRUST

Table 1: Project Summary

Date:	01 March 2022
Document Reference:	$4600-1100$ Doc: 008 V0.1
Prepared by:	Velocity Transport Planning
On behalf of:	Firethorn Trust
AUTHORISATION SHEET	Land at North West Bicester
Project:	Stage 1 RSA Brief
Report title:	
PREPARED BY	
Name:	
Signed:	

Table 2: General Details

Highway scheme name and road number:			A4095 Howes Lane / Bucknell Road Junction		
Type of scheme:	Proposed introduction of a mini-roundabout junction to replace the existing priority junction at the A4095 Howes Lane / Bucknell Road				
RSA Stage (tick as appropriate)		$1 \checkmark$	2	3	4
			Interim		
Overseeing Organisation Details			Design Organisation Details		
Oxfordshire County Council, County Hall, New Road, Oxford. OX1 1ND			Velocity Transport Planning. Unit A, Taper Studios, The Leather Market, 120 Weston Street, London, SE1 4GS		
Police Contact Details:			Maintaining Agent Contact Details:		
(Required for Stage 3 RSAs)			Oxfordshire County Council		
RSA Team Membership					
Road Safety Consulting Ltd					
Terms of Reference					

TECHNICAL NOTE: STAGE 1 RSA BRIEF

CLIENT: FIRETHORN TRUST

Table 3: Scheme Details

General
Replace the existing priority junction of the A4095 Howes Lane / Bucknell Road with a proposed mini-roundabout junction of 14m ICD.
Design Standards Applied to the Scheme
MfS/MfS2, the OCC Residential Design Guide (2 ${ }^{\text {nd }}$ Edition - 2015), and DMRB CD116 \& CD109
Design Speed
30mph
Speed Limits
30mph
Existing Traffic Flows/Queues
A Traffic Survey was undertaken on Wednesday the 02
• Diagram A - 2022 Observed Traffic Flows - AM \& PM Peak Hours
Forecast Traffic Flows
Whilst Traffic Data from the Bicester Transport Model (BTM) for a Future Year is awaited, as this information has not been forthcoming, TEMPRO Growth Factors have been used to growth the 2022 Observed Traffic flows to a Future Year of 2028 (Diagram B). This assumes that a Planning Consent is granted in 2022, construction starts in 2023, and the 530 dwellings could be completed by 2028. • Diagram B - 2028 Growthed Base Traffic Flows - AM \& PM Peak Hours\quadDiagram C - Proposed Development Traffic Flows - AM \& PM Peak Hours
Diagram D - 2028 Base + Proposed Development Traffic Flows - AM \& PM Peak Hours
Pedestrian, Cyclist and Equestrian Desire Lines
The proposed junction improvement does not prejudice the existing desire lines for pedestrians, cyclists and equestrians
Environmental Constraints
N/A

Table 4: Locality

Description of Locality

The junction of the A4095 Howes Lane/Bucknell Road is located on the western side of Bicester. An existing railway bridge spans the northern part of the junction.

General Description:

LAND AT NORTH WEST BICESTER, OXFORDSHIRE
 TECHNICAL NOTE: STAGE 1 RSA BRIEF

CLIENT: FIRETHORN TRUST

Abstract

The proposed development is for up to 530 residential units, the access to the development is to be taken from the as-built estate road that runs from a priority junction with the B4100 to the south-east of the proposed development with Charlotte Avenue to a priority junction to the north-east of the proposed development with Braeburn Avenue. A Bus Only link is located between the Eastern and Western Parcels of the proposed development. Two site access junctions will be formed to the south of the bus gate and one new site access junction to be formed to the north of the bus gate. A new extended access road is to be provided on the northern boundary of the western parcel of the proposed development. A temporary access is proposed to access the Eastern Parcel of land from the B4100 during construction only and a temporary access is proposed to the Western Parcel from the existing layby on the B4100 Banbury Road during construction only.

\section*{Relevant Factors which may Affect Road Safety}

The Existing Priority Junction is considered to be somewhat constrained, and it is therefore requested that a Safety audit is undertaken of this arrangement to be compared to the Proposed Mini-Roundabout Junction. General Arrangement Drawings have been provided for both the Existing Junction and the Proposed Junction.

Table 5: Analysis

Abstract

Collision Data Analysis Latest three-year PIA data is included. A Plan showing the locations and severity of the accidents is included, as well as a review of these accidents. It should be noted that we have been provided with PUBLIC and PRIVATE data and notified to ensure that only the PUBLIC data is presented within a report that will be available to the public. However, the details of the accidents are only presented on the PRIVATE data. As such, both sets of data are provided. A single accident was recorded on the A4095 Lords Lane approx 50 m from the junction with Bucknell Road on 18/05/2016 (Ref P1790516). The cause of this accident was due to "illness or disability, mental or physical" and is not attributed to the geometry of the existing junction.

Departures from Standards:

The following Departures from Standards are identified:

- The visibility splay from the southbound Bucknell Road give way line at the proposed miniroundabout junction identifies an " F " distance of less than the recommended 9.0 m (paragraph 5.24 of CD 116).
- The desirable minimum stopping sight distance (SSD) for roads with a design speed of 50 kph (30 mph), which both the A4095 Howes Lane and Bucknell Road are identified as, should be 70.m (Table 2.10 of CD 109). Whilst the SSD for both he A4095 Howes Lane and the Bucknell Road northbound approaches can be achieved, the SSD for the southbound approach is identified as being in the order of 37 m . This is less than "one step below desirable minimum" for a 30 mph road, but it must be acknowledged that with the introduction of the give way line for the miniroundabout, vehicle speeds approaching from the north, will be considerably lower than the design speed of 30 mph .

[^1]
LAND AT NORTH WEST BICESTER, OXFORDSHIRE
 TECHNICAL NOTE: STAGE 1 RSA BRIEF

CLIENT: FIRETHORN TRUST

Strategic Decisions:

OCC have taken the decision to redirect the previously agreed funding for the Approved A4095 Strategic Link Road (14/01968/F). As such, the proposed Interim Improvement at the A4095 Howes Lane/Bucknell Road junction is proposed to accommodate all of the development traffic associated with the full Firethorn Development prior to the implementation of the A4095 Strategic Link Road.

List of Included Documents \& Drawings:

Documents:

- Summary of Accident Data - PRIVATE \& PUBLIC (including Accident Location Plan)
- Traffic Flow Diagrams A-D

Drawings:

- 4600-1100-T-050 Rev A - A4095 Howes Lane/Bucknell Road - Existing Junction - General Arrangement
- 4600-1100-T-054 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction General Arrangement
- 4600-1100-T-057 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction Visibility Splays
- 4600-1100-T-058 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction Stopping Sight Distance

APPENDIX B STAGE 1 RSA

Stage 1 Road Safety Audit

Howes Lane junction with Bucknell Road, Bicester

Proposed Mini Roundabout

Date: 18/03/2022
Report produced for: Firethorn Trust
Report requested by: Velocity Transport Planning
On behalf of: Oxfordshire County Council
Report prepared by: Kevin Seymour, Road Safety Consulting Ltd

Document Control Sheet

Project Title Howes Lane junction with Bucknell Road, Bicester
Proposed Mini Roundabout

Report Title	Stage 1 Road Safety Audit
	Reference: $R S C / K S / E B / 21093$

Revision
Status Final
Control Date 18/03/2022

Record of Issue

Issue	Author	Date	Check	Date	Authorised	Date
Final	KS	$16 / 03 / 22$	EB	$17 / 03 / 22$	KS	17/03/22

Distribution

Organisation	Contact	Copies
Velocity Transport Planning	Mark Kirby	ecopy

1. Introduction

1.1. This report results from a Stage 1 Road Safety Audit carried out on the proposed miniroundabout at the Howes Lane junction with Bucknell Road, Bicester, associated with the development of land off NW Bicester. The Audit was carried out during March 2022.
1.2. This Road Safety Audit was produced for (client): Firethorn Trust, requested by (design organisation): Velocity Transport Planning, on behalf of (overseeing organisation): Oxfordshire County Council.
1.3. The Audit Team membership was as follows:

Audit Team Leader
Kevin Seymour
B Sc, PG Dip TS, MCIHT, MSoRSA
Highways England Certificate of Competence (Road Safety Audit)
Road Safety Consulting Ltd

Audit Team Member
Elaine Bingham
B Eng (Hons), MCIHT, MSoRSA
Highways England Certificate of Competence (Road Safety Audit)
Road Safety Consulting Ltd
1.4. The audit took place at the offices of Road Safety Consulting Ltd between $14^{\text {th }}$ and $17^{\text {th }}$ March 2022. The audit was undertaken in accordance with the Road Safety Audit brief provided and with reference to the Design Manual for Roads and Bridges (DMRB) GG 119.
1.5. The Audit Team visited the site together on the $14^{\text {th }}$ March 2022, between 11:30am and $12: 30 \mathrm{pm}$. The weather at the time of the audit was sunny and dry. The road surface was dry. Traffic flows were moderate at the junction. Low pedestrian and cycle volumes were observed; two equestrian users were observed using the junction during the site visit. At the junction, the predominant traffic flow movements were observed to be the left turn manoeuvre from Howes Lane to Bucknell Road, and the reverse right turn manoeuvre from Bucknell Road to Howes Lane.
1.6. The audit comprised an examination of the information provided by the Design Organisation and listed in Appendix 1.
1.7. The team has examined and reported only on the road safety implications of the scheme as presented and has not examined or verified the compliance of the designs to any other criteria.
1.8. All comments and recommendations are referenced to the design drawing and the locations have been indicated on plans in Appendix 2.

2. Items Considered

2.1. Scheme Proposals

2.1.1. The overall development is for up to 530 residential units, the access to the development is to be taken from the as-built estate road that runs from a priority junction with the B4100 to the south-east of the proposed development with Charlotte Avenue to a priority junction to the north-east of the proposed development with Braeburn Avenue.
2.1.2. A Bus Only link is located between the Eastern and Western Parcels of the proposed development. Two site access junctions will be formed to the south of the bus gate and one new site access junction to be formed to the north of the bus gate. A new extended access road is to be provided on the northern boundary of the western parcel of the proposed development. A temporary access is proposed to access the Eastern Parcel of land from the B4100 during construction only and a temporary access is proposed to the Western Parcel from the existing layby on the B4100 Banbury Road during construction only.
2.1.3. The highways element of this scheme consists of the replacement of the existing priority junction of the A4095 Howes Lane / Bucknell Road with a proposed mini-roundabout junction of 14 m ICD.

2.2. Information Provided to the Audit Team

2.2.1. Information that has been provided to the Audit Team, for the purpose of this audit, is as outlined within Appendix 1 of this report.
2.2.2. The Audit Team has also received the latest three-year PIA data:
2.2.3. A plan showing the locations and severity of the accidents, as well as a review of these accidents. It should be noted that we have been provided with PUBLIC and PRIVATE data and notified to ensure that only the PUBLIC data is presented within a report that will be available to the public. However, the details of the accidents are only presented on the PRIVATE data. As such, both sets of data are provided.
2.2.4. A single accident was recorded on the A4095 Lords Lane approx. 50 m from the junction with Bucknell Road on 18/05/2016 (Ref P1790516). The cause of this accident was due to "illness or disability, mental or physical" and is not attributed to the geometry of the existing junction.

2.3. Departures from Standards (Design)

2.3.1. The Audit Team notes the following Departures from Standards are identified:
2.3.2. The visibility splay from the southbound Bucknell Road give way line at the proposed miniroundabout junction identifies an "F" distance of less than the recommended 9.0 m (paragraph 5.24 of CD 116).
2.3.3. The desirable minimum stopping sight distance (SSD) for roads with a design speed of 50 kph (30 mph), which both the A4095 Howes Lane and Bucknell Road are identified as, should be 70.m (Table 2.10 of CD 109). Whilst the SSD for both the A4095 Howes Lane and the Bucknell Road northbound approaches can be achieved, the SSD for the southbound approach is identified as being in the order of 37 m . This is less than "one step below desirable minimum" for a 30 mph road, but it must be acknowledged that with the introduction of the give way line for the mini- roundabout, vehicle speeds approaching from the north, will be considerably lower than the design speed of 30 mph .

3. Items Raised at Previous Road Safety Audits

3.1. The Audit Team is unaware of any previous Road Safety Audits on this proposal.

4. Items Raised by this Stage 1 Road Safety Audit

4.1. Problem

Location: On Bucknell Road - northern arm of the junction

Summary: Reduced footway width may lead to pedestrian to vehicle collisions

The realigned kerb of the northern exit arm of Bucknell Road, produces a reduced footway width on the western side of the road. The design sketch appears to show a footway width of approximately 1 m . The reduced footway width may lead to pedestrians walking in the carriageway to pass others on the footway. This may lead to pedestrian to vehicle collisions. This may be exacerbated by the restricted inter-visibility between opposing pedestrians at this location, due to the railway bridge wing wall.

The reduced footway width may bring pedestrians closer to the carriageway edge, and the wing mirrors of large vehicles may overhang the footway resulting in wing mirror strikes to pedestrians.

Recommendation:

It is recommended that measures are introduced to provide a footway width that enables opposing users to pass without entering carriageway areas; measures may include the realignment of kerb lines.

4.2. Problem

Location: At the mini roundabout, northbound travel through the junction

Summary: Excessive entry path through the junction may lead to vehicle to vehicle collisions

The offset central island location produces an excessive vehicle path through the junction for northbound users. This may lead to drivers failing to appropriately 'negotiate' the central island. Poor compliance with the circulatory requirements of the junction may lead to vehicle to vehicle collisions.

Recommendation:

It is recommended that the size and location of the central island is amended to encourage appropriate circulatory movements for all turning manoeuvres. Measures may include a reduction in central island diameter, realignment of the eastern kerb realignment and a reduction of the circulatory carriageway width.

4.3. Problem

Location: At the mini roundabout
Summary: Construction joint issues may lead to loss of control type collisions

The construction joint of the existing junction will fall within the circulatory carriageway area of the junction. Large turning vehicles will increase stresses on the construction joint, which may lead to deterioration of the joint and pot holes within turning areas for vehicles. Poor carriageway surfaces within turning areas will increase the likelihood of loss of control type collisions, particularly for two-wheeled users.

Recommendation:

It is recommended that measures are introduced to ensure the integrity of the existing construction joint. Measures may include the resurfacing of the junction area to remove the construction joint within likely stress areas.

4.4. Problem

Location: At the mini roundabout Bucknell Road Northern entry

Summary: Late braking or failure to give way type collisions

On the northern, Bucknell Road entry, drivers may fail to appreciate the presence of the mini roundabout, as siting of the diag 611.1 sign may be problematic and there may be reduced forward visibility to the sign. Poor perception of the change junction arrangements may lead to failure to give way or late braking shunt type collisions.

Recommendation:

It is recommended that forward visibility to the diag 611.1 sign is maximised to provide adequate warning of the junction type. Existing map type direction signs for the conventional roundabout on the A4095 (E) and Bucknell Road (N) approaches should be amended to clearly identify the new roundabout junction at Howes Lane.

4.5. Problem

Location: At the mini roundabout
Summary: Swept path of large vehicles may lead to vehicle to vehicle collisions

Whilst on site, the audit team noted that the drivers of large vehicles over-ran the central hatched area and opposing traffic lane when making a left turn manoeuvre from Howes Lane on to Bucknell Road. The swept path drawings provided indicate that drivers of large vehicles may have to carry out a precise left turn manoeuvre to avoid over-running the opposing traffic lane or striking nearside kerbs. This manoeuvre may lead to vehicle to vehicle collisions with the introduction of the mini roundabout and revised kerb line of the eastern side of Bucknell Road.

Recommendation:

It is recommended that measures should be introduced to minimise the likelihood of large vehicle swept paths crossing the hatched areas and entering the opposing traffic lane; measures may include widening the hatched markings separating the two traffic streams, reducing the southbound traffic lane width, and amending the eastern kerb line.

4.6. Problem

Location: On Bucknell Road - northern arm of the junction western crossing point

Summary: Restricted inter-visibility may lead to pedestrian to vehicle collisions

The relocation of the give way line back into Howes Lane means that inter-visibility between a pedestrian waiting at the existing crossing point on the western side and a driver turning left from Howes Lane will be further restricted (existing inter-visibility between users is poor). This may lead to an increased likelihood of pedestrian to vehicle collisions.

Recommendation:

It is recommended that the existing crossing point is relocated to a point where appropriate adequate inter-visibility can be achieved. It may be appropriate to extend the footway on the western side of Bucknell Road and provide a dropped kerb crossing point at the splitter island of the Lords Lane roundabout.

5. Audit Team Statement

We certify that this Stage 1 Road Safety Audit has been carried with reference to GG 119.

Audit Team Leader

Kevin Seymour

B Sc, PG Dip TS, MCIHT, MSoRSA
Highways England Certificate of Competence (Road Safety Audit)
signed:fegme............................ Dated 16 ${ }^{\text {th }}$ March 2022
Director of Road Sefety Consulting Ltd

Audit Team Member

Elaine Bingham,
B Eng (Hons), MCIHT, MSoRSA
Highways England Certificate of Competence (Road Safety Audit)
Director of Road Safety Consulting Ltd

Signed:Bingham.......................... Dated 17. ${ }^{\text {th }}$ March 2022
Director of Road Safety Consulting Ltd

Road Safety Consulting Ltd
4 Paramore Close
Whetstone
Leicestershire
LE8 6EY

APPENDIX 1: Information Provided

List of Information Provided

> Drawing 4600-1100-T-050 Rev A - A4095 Howes Lane/Bucknell Road - Existing Junction - General Arrangement
> Drawing 4600-1100-T-051 Rev A - A4095 Howes Lane/Bucknell Road - Existing Junction - Swept Path Analysis (1)
> Drawing 4600-1100-T-052 Rev A - A4095 Howes Lane/Bucknell Road - Existing Junction - Swept Path Analysis (2)
> Drawing 4600-1100-T-053 Rev A - A4095 Howes Lane/Bucknell Road - Existing Junction - Visibility Splays
> Drawing 4600-1100-T-054 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction - General Arrangements
> Drawing 4600-1100-T-055 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction - Swept Path Analysis (1)
> Drawing 4600-1100-T-056 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction - Swept Path Analysis (2)
> Drawing 4600-1100-T-057 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction - Visibility Splays
> Drawing 4600-1100-T-058 Rev A - A4095 Howes Lane/Bucknell Road - Proposed Junction - Stopping Sight Distance

Stage 1 Road Safety Audit Brief

Road traffic collision data
Traffic flow data

APPENDIX 2: Drawing Showing Problem Locations
Problem numbers shown on the attached drawing refer to Problem numbers within the report.

ATTACHMENT H

Road Safety Assessment

A4095 Howes Lane, junction with Bucknell Road, Bicester

Conversion of Junction to a Mini Roundabout

Document Control Sheet

Project Title	A4095 Howes Lane, junction with Bucknell Road, Bicester
Conversion of Junction to a Mini Roundabout	

Report Title	Road Safety Assessment
	Reference: $R S C / K S / E B / 21095$

Revision

Status Draft
Control Date 17/03/2022

Record of Issue

Issue	Author	Date	Check	Date	Authorised	Date
Draft	KS	$16 / 03 / 22$	EB	$17 / 03 / 22$	KS	$17 / 03 / 22$

Distribution

Organisation	Contact	Copies
Velocity Transport Planning	Mark Kirby	ecopy

1. Introduction

1.1. Project Brief \& Background

1.1.1. As part of the proposed development for up to 530 residential units on land on the north-west side of Bicester, there is a proposal to convert the existing give way controlled tee junction at the A4095 Howes Lane junction with Bucknell Road, Bicester, to a three armed mini roundabout. Road Safety Consulting Ltd has been commissioned to assess the road safety implications associated with the existing layout and proposed conversion of the junction, to inform the designer and client on the relative merits and risks of the proposed conversion.
1.1.2. The conversion of this junction is being proposed as a result of Oxfordshire County Council's decision to redirect the previously agreed funding for the Approved A4095 Strategic Link Road (14/01968/F). As such, the proposed Interim Improvement (i.e., the conversion of the A4095 Howes Lane/Bucknell Road junction to a mini roundabout) is proposed to accommodate all of the development traffic associated with the full Firethorn Development prior to the implementation of the A4095 Strategic Link Road.
1.1.3. \quad The access to the proposed residential development is to be taken from the as-built estate road that runs from a priority junction with the B4100 to the south-east of the proposed development with Charlotte Avenue to a priority junction to the north-east of the proposed development with Braeburn Avenue.
1.1.4. A Bus Only link is located between the Eastern and Western Parcels of the proposed development. Two site access junctions will be formed to the south of the bus gate and one new site access junction to be formed to the north of the bus gate. A new extended access road is to be provided on the northern boundary of the western parcel of the proposed development. A temporary access is proposed to access the Eastern Parcel of land from the B4100 during construction only and a temporary access is proposed to the Western Parcel from the existing layby on the B4100 Banbury Road during construction only.

1.2. Outline of Methodology

1.2.1. This safety assessment has been carried out by comparing road safety issues associated with the layout of the existing junction form with the aid of the reported road traffic collision record for the junction, with the possible road safety related issues associated with the proposed conversion of the junction to a mini roundabout. This comparative assessment is qualitative in nature and specific to this particular change in junction form.
1.2.2. The road safety issues have been identified with both layouts and a discussion on the benefits / disbenefits of the proposed conversion of junction form carried, with final concluding remarks.

2. The Existing Junction

2.1. Junction Layout

2.1.1. Currently, the junction of the A4095 Howes Lane with Bucknell Road is a three-armed give way controlled tee junction. This section of the highway network is subject to a posted speed limit of 30 mph and street lighting is present.
2.1.2. Howes Lane has a two lane give way line and the approach has a series of horizontal curves on the eastbound approach to the junction; this reduces forward visibility to the junction area, but there appears to be adequate stopping sight distance along Howes Lane, towards the junction, consistent with the posted speed limit. This approach is on a slight downhill gradient towards the junction. There is an existing map type direction sign on the immediate approach to the junction.
2.1.3. On Howes Lane, approximately 40 m west of the junction with Bucknell Road, there is a bridleway, to the north of the road and equestrians were observed to be using Howes Lane and Bucknell Road during the site visit.

[^0]: Heavy Vehicle Percentages

 | | To | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | From | | A | B | C |
 | | A | 0 | 10 | 10 |
 | | B | 10 | 0 | 10 |
 | | | | | |

[^1]: Previous Road Safety Audit Stage Reports, Road Safety Audit Responses and Evidence of Agreed Actions N/A

