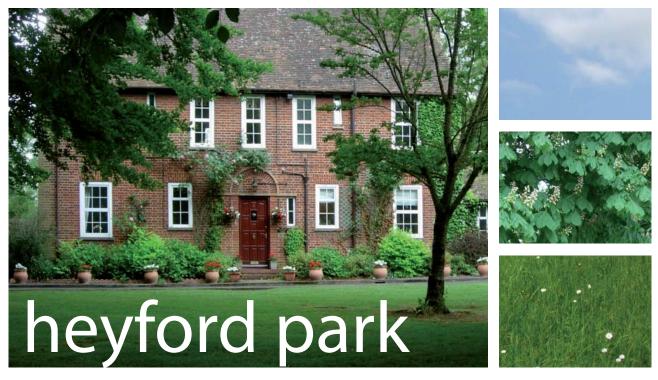


47MM


ORMATION TO L STATEMENT VOLUME 3a September 2008

FURTHER II A L A ΓO

NORTH OXFORDSHIRE CONSORTIUM LTD

FURTHER INFORMATION TO

ENVIRONMENTAL STATEMENT

VOLUME 3a September 2008

NORTH OXFORDSHIRE CONSORTIUM LTD

FURTHER INFORMATION TO

ENVIRONMENTAL STATEMENT

VOLUME 3a September 2008

NORTH OXFORDSHIRE CONSORTIUM LTD

PROJECT DIRECTORY

For Further Information to Environmental Statement prepared on behalf of:-

North Oxfordshire Consortium Heyford Park House Heyford Park Bicester Oxfordshire OX5 5HD North Oxfordshire Consortium Limited

Contact: Keith Watson (Tenant Relationship and PR Manager) Michael Loveland (Base Manager / Company Secretary)

The following consultants were involved in the preparation of this Further Information:-

Enviros Consulting Limited D5 Culham Science Centre Abingdon OXON OX14 3DB

Contribution: Geotechnical and Contamination Contact: Duncan Anderson

Pegasus Planning Group LLP Pegasus House Querns Business Centre Whitworth Road Cirencester Gloucestershire GL7 1RT

Contribution: Non Technical Summary Contact: Mervyn Dobson / Paul Burrell

CONTENTS

- A. Preamble
- B. Supplementary Information to Environmental Statement

A Preamble B Supplementary Information

A. PREAMBLE

A. Submission of Further Information

A.1 An Environmental Statement was originally submitted to Cherwell District Council in respect of the planning application (Application No: 08/00716/OUT) made on 03 March 2008. Addendum information was submitted to the Environmental Statement document on 26 June 2008. This application is now the subject of an appeal to Secretary of State (Appeal Reference: APP/C3105/A/08/2080594).

A.2 Correspondence was received from the Secretary of State dated 21st August 2008 (Appendix A.1) pursuant to Regulation 19 of the Town and Country Planning (Environmental Impact Assessment) (England and Wales) Regulations requesting the provision of Further Information specifically relating to matters of geotechnical, soils and contamination at the site.

A.3 In response to the issues raised by the Secretary of State, this document provides Further Information to the Environmental Statement, in the form of a Supplementary Report to address the geotechnical and contamination matters. This report provides a comprehensive and appropriate response to the various issues raised, together with appendices as necessary.

A.4 In addition to the requested information, a revised Non Technical Summary has also been produced and is included in the front of this folder. This has been updated to reflect minor amendments to development proposals from previous submissions and overall text as appropriate.

Appendix

Appendix A.1 Correspondence from Secretary of State 21st August 2008

The Planning Inspectorate

Room 4/02 Kite Wing Temple Quay House 2 The Square Temple Quay Bristol BS1 6PN

Direct Line0117-372 6254Switchboard0117-372 8000Fax No0117-372 6254

GTN 1371 6254

Mr Mervyn Dobson Pegasus Planning Group Pegasus House Querns Business Centre Whitworth Road Cirencester Gloucestershire GL7 1RT Your Ref: NG/MED/CIR.N.0111

Our Ref: APP/C3105/A/08/2080594

Date: 21 August 2008

Dear Mr Dobson

THE TOWN AND COUNTRY PLANNING (ENVIRONMENTAL IMPACT ASSESSMENT) (ENGLAND AND WALES) REGULATIONS 1999 APPEALS BY NORTH OXFORDSHIRE SITE AT HEYFORD PARK, CAMP ROAD, UPPER HEYFORD, BICESTER

- 1. I have considered the content of the Environmental Statement (ES) accompanying the planning application that is the subject of the above appeal, having regard to Regulation 2(1) and Schedule 4 of The Town and Country Planning (Environmental Impact Assessment)(England and Wales) Regulations 1999.
- 2. The development proposed is an outline application for a new settlement of 1075 dwellings, together with associated works and facilities including employment uses, community uses, a school, playing fields and other physical and social infrastructure.
- 3. By virtue of Regulation 4(2)(a) the development proposed is EIA development.
- 4. Following examination of the Statement, the Secretary of State hereby notifies you by this letter, pursuant to Regulation 19 of the 1999 Regulations, that, to comply with Schedule 4 of the Regulations (Information for Inclusion in Environmental Statements) she requires the appellant to supply the following 'further information' for the purposes of a public inquiry to be held in accordance with The Town and Country Planning Appeals (Inquiries Procedure) (England) Rules 2000:
- 5. The Geology Soils and Contamination section relies heavily on a ground investigation carried out 10 years ago. Although details of the locations of the boreholes, trial pits and soil vapour survey points have been given, together with a brief summary of the results, the actual logs and results obtained are not provided as part of the Environmental Statement. It is considered that contamination of soils and the water environment has the potential to be one of the most significant impacts on the environment at

this site. Although such contamination would have arisen as a result of previous use of the site, the method of dealing with any such contamination is critical to limiting any further impact on the soil and water environment. It is noted that part of the petrol, oil and lubrication (POL) system of the former RAF site passes through critical parts of the appeal site. Bearing in mind the high potential for contamination to travel along the route of buried services, the presence of a major aquifer, and the potential links between contaminated soil and the water regime this is a topic which needs to be more closely assessed than merely referring to the results of a 10 year old survey and stating that the risk can be reduced to a low potential if current best practice is adopted.

- 6. It is considered that the proposed development in itself would not cause contamination. But the actual construction of such development could aggravate contamination problems at this site and it has not been clearly shown that the implementation of the development could be undertaken without causing further harm to the environment. Therefore details of the original survey should be provided, and these details supplemented by an updated survey, at least in the vicinity of areas where high levels of contamination were noted previously, which may then allow the appellant to show that the development could be undertaken without causing unacceptable harm to the soil and water environment of the area.
- 7. May I draw your attention to court cases which have stressed the need for all the relevant environmental information in an ES to be comprehensive and easily accessible. I also refer to paragraph 82 of Circular 02/99 (Environmental Impact Assessment), which states that whilst every ES should provide a full factual description of the development, the emphasis of Schedule 4 is on the main or significant environmental effects.
- 8. The appellant is respectfully requested to publicise the availability of the further information in accordance with Regulations 19(3) to (9) inclusive of the Regulations.
- 9. I would be grateful if you could let me know, within 2 weeks of the date of this letter, how long you anticipate it will take to prepare this further information, so that we can identify an expected submission date.
- 10. A copy of this Direction has been sent to Cherwell District Council.

Yours sincerely

Wendy Burden Assistant Director Environment and Special Casework

(Signed with the authority of the Secretary of State)

A Preamble

B Supplementary Information

A REPORT BY ENVIROS CONSULTING LTD

NORTH OXFORDSHIRE CONSORTIUM

SUPPLEMENTARY INFORMATION TO ENVIRONMENTAL STATEMENT, HEYFORD PARK

Publication title	Supplementary Information to Environmental Statement, Heyford Park
CAN	NR0250003
Volume number	Volume 1 of 1
Version	Version 1
Date	September 2008
File Reference	180908–NR0250003 Heyford Park Supplementary Information–dja v1

Prepared and managed by:

Duna J Phidem

Dr Duncan Anderson – Project Manager

Directed, reviewed and approved by:

0 .

Dr Steve Hobbs – Project Director

Client Address:	North Oxfordshire Consortium Heyford Park Camp Road Bicester OX25 5HD	
Enviros Contact Details:	Enviros Consulting Ltd D5 Culham Science Centre Near Abingdon Oxfordshire OX14 3DB	
	Duncan Anderson, Senior Consultant	
	Tel 01235 468 808 Fax 01235 468 828 Email Duncan.anderson@enviros.com Web <u>www.enviros.com</u> A Carillion plc company	

CONTENTS PAGE

NON	I TEC	CHNICAL SUMMARY	1	
1.	ΙΝΤΙ	RODUCTION	3	
2.	-	RIFICATION OF RISKS POSED TO HUMAN HEALTH AND THE IRONMENT AND PROPOSED APPROACH TO MITIGATE RISKS	4	
	2.1	Introduction	4	
	2.2	Site Sensitivity and Use	4	
	2.3	Identified Contamination	5	
	2.4	Proposals to identify any further environmental risks	6	
	2.5	Potential Impact of Development	7	
	2.6	Remedial Design and Remediation of Soil and Groundwater	9	
	2.6	Remedial Design and Remediation of Soil and Groundwater	10	
3.		RIFICATION OF RISKS POSED BY THE POL SYSTEM AND POSED APPROACH TO MITIGATE RISKS	12	
	3.1	Introduction	12	
	3.2	Consultation with the Environment Agency	12	
	3.3	Assessment of the POL System	13	
	3.4	Potential risk posed by the POL System to Controlled Waters	13	
	3.5	Further Investigation and Remedial Design	13	
4.	CON	ICLUSIONS	18	
5.	REFERENCES			

APPENDICES

- 1 TRIAL PIT AND BOREHOLE LOGS (ASPINWALL 1997)
- 2 SOIL CHEMICAL ANALYTICAL RESULTS (ASPINWALL 1997)
- 3 MAY 2008 SURFACE WATER AND GROUNDWATER MONITORING RESULTS (ENVIROS)
- 4 CORRESPONDENCE WITH THE ENVIRONMENT AGENCY
- 5 ASSESSMENT OF THE POL SYSTEM

NON TECHNICAL SUMMARY

1. Introduction

The following Supplementary Information relates to the Environmental Statement prepared to accompany an outline planning application for the development of a new settlement at Heyford Park, Camp Road, Upper Heyford, Bicester. The report provides information on the risk of pollution at the site requested by both the Planning Inspectorate and the Environment Agency.

2. Soil and Groundwater Contamination

The report provides supplementary information to the Environmental Statement relating to soil and water contamination. The Planning Inspectorate requested factual data from a ground investigation completed in 1997 and this data is provided. The data includes trial pit and borehole logs and chemical data for soil and water samples collected. In addition, new chemical data for water samples collected from boreholes, springs, streams and outfalls in May 2008, is provided. The significance of this factual data in relation to the development is discussed and proposals for further investigation are presented. A minimum of 75 trial pits and 30 boreholes will be required to further investigate soil and water at the site as part of detailed design work. This work is to commence within one year of Planning Consent being approved.

Following the completion of the additional ground investigation, all data will be assessed in line with current UK guidance and proposals for remediation will be developed where assessment of the data indicates that remediation is necessary. The remediation proposals will take full account of the development and will ensure that construction activities do not spread contamination or cause pollution to the soil or water environments. Preliminary proposals for soil and water contamination include removal off site to licensed disposal or treatment facilities or treatment on site using specialist mobile plant. Testing will be carried out to confirm that the remediation has been carried out satisfactorily.

3. Petrol, Oil and Lubrication (POL) System

The report provides supplementary information to the Environmental Statement and the POL Statement relating to the POL System. The POL system, comprising a network of pipes and tanks, currently poses a potential risk to the environment as the system remains in place and is water filled with some residual fuel contamination. There is a concern that the system could have leaked resulting in pollution that has not been identified, or that the system could leak at some point in the future, thereby causing pollution. Proposals are presented to reduce and manage this risk in accordance with current UK guidance.

Following a recent assessment of the POL System, a detailed inventory of the system is provided. Using the information from this assessment, proposals to further investigate the POL system are presented. The first two stages, to be completed within one year of gaining Planning Consent, involve; the sampling and testing of water in all tanks and pipes, the location of underground pipes, the inspection of valves and the development of a preliminary decommissioning strategy. Based on the findings of this work, ground investigations are proposed around the POL where pollution may have occurred. Areas for investigation include identified spill or leak points. The POL ground

investigation will be carried out within 2 years of receipt of outline Planning Consent.

The results of these investigations will be used to develop a detailed remediation strategy for the decommissioning of the POL System. The Environment Agency will be consulted throughout this design process. Current proposals include draining down, cleaning and backfilling (where necessary) the system by various methods. Although it is not proposed to remove any of the POL infrastructure, if sections are identified that still pose an unacceptable risk of polluting the environment, these will be removed in consultation with English Heritage where it involves features of heritage conservation.

1. INTRODUCTION

The following Supplementary Information relates to the Environmental Statement prepared to accompany an outline planning application for the development of a new settlement at Heyford Park, Camp Road, Upper Heyford, Bicester. On the 21st August 2008 (in correspondence issued by the Planning Inspectorate), the Secretary of State requested 'further information' under Regulation 19 of the 1999 Environmental Impact Assessment Regulations. In correspondence dated 18th July, 12th August and 4th September 2008, the Environment Agency also requested further information relating to the potential risks to controlled waters. This report provides the information requested by both the Secretary of State and the Environment Agency.

Previous environmental information submitted in support of the outline planning application includes the 2007 Environmental Statement (Ref. 1) and the 2008 POL Statement (Ref. 2). The following Supplementary Information to the Environmental Statement will provide additional factual information and will clarify and expand on environmental issues outlined in the previous statements. The 'site' referred to in this report includes all areas with the 'red line boundary' as shown on Figure 1 of the Environmental Statement (Settlement Areas and the Flying Field).

The statement includes the following:

Clarification of risks and proposals to mitigate risks

- Clarification of risks posed to human health and the environment associated with soil and groundwater contamination and the proposed approach to mitigate these risks is detailed in Chapter 2;
- Clarification of risks posed by the POL System and proposals to mitigate these risks are detailed in Chapter 3; and
- Conclusions are included in Chapter 4.

Factual information

The further information requested by the Planning Inspectorate included the following factual information which is appended to this Supplementary Statement:

- Trial pit and borehole logs from Aspinwall 1997 investigation (Appendix 1);
- Soil chemical analytical results from Aspinwall 1997 investigation (Appendix 2);
- Recent groundwater and surface water monitoring results, Enviros (Appendix 3);
- Correspondence with the Environment Agency (Appendix 4); and
- Further assessment of the POL System (Appendix 5).

2. CLARIFICATION OF RISKS POSED TO HUMAN HEALTH AND THE ENVIRONMENT AND PROPOSED APPROACH TO MITIGATE RISKS

2.1 Introduction

Various potential contaminant sources were described in the 2007 Environmental Statement (ES) relating to both historical and current activities at the site. These included the Petrol, Oil and Lubrication (POL) System, a fuel filling station, a fire practise area, boilers, incinerators, airfield facilities, electrical substations, a laundrette, fireworks and weapon storage areas, car storage areas, workshops, sewerage works, waste disposal pits and a hospital. The ES also outlined the results of site investigation work carried out by Aspinwall in 1997, which targeted these potential contaminant sources.

This chapter expands on information previously presented in so far as soil and groundwater contamination are concerned (the POL system is discussed in Chapter 3). This chapter also considers; the sufficiency of existing site investigation data, further investigation and assessment required and proposals to mitigate risk. The work proposed will be compliant with the requirements of current UK guidance including Planning Policy Statement 23: Planning and Pollution Control (PPS 23) (Ref. 3) and Model Procedures for the Management of Land Contamination (CLR 11) (Ref. 4). The proposed further investigation, assessment and remediation will ensure that, following development, the site will not be capable of being determined as contaminated land under Part 2A of the Environmental Protection Act 1990 (i.e. no area of the site will pose an unacceptable risk to either human health or the environment).

2.2 Site Sensitivity and Use

Comprehensive information regarding the site location and setting are provided in the ES, with additional information of relevance provided here.

The site is directly underlain by a Major Aquifer (Great Oolite Group and Inferior Oolite Group) which provides baseflow to high quality surrounding streams and is also used locally for private water abstractions and riparian use. The site is therefore considered to be of high sensitivity with respect to controlled waters, and, as indicated in Paragraph 5 of the Planning Inspectorate letter of 21st August 2008, soil and water contamination has the potential to be one of the most significant impacts on the environment. The proposed development includes residential housing with gardens, the most sensitive land use with respect to risk to human health. A detailed assessment of potential contamination of soils and water at the site is therefore required to identify unacceptable risks to human health and the environment.

There have been very few substantive changes to site use since the investigation completed in 1997 by Aspinwall and Company, data from which formed the basis on which the 2007 Environmental Impact Assessment was carried out. The site remains undeveloped with all of the former MOD buildings in tact, albeit with many of them currently unused. The majority of the former MOD infrastructure remains in place and the most significant of the temporary site uses, such as car processing, are still in place.

No new potential contaminant sources have been identified that were not present in 1997 during the Aspinwall investigation. At that time a site

conceptual model was presented which concluded that the risk posed to human health and controlled waters would be low provided appropriate measures were taken in accordance with current best practice. There is no change to this assessment.

2.3 Identified Contamination

The Secretary of State has raised concerns (Paragraph 5 of the Planning Inspectorate letter of 21st August 2008) that, given the high sensitivity of the site, the current Planning Application should not rely on data from the 1997 investigation and that supplementary data should be collected in areas where high levels of contamination were previously noted. These issues have been reviewed and information is provided below to explain and justify the validity and appropriateness of the 1997 data at this stage in the assessment process.

The 1997 Aspinwall Investigation targeted potential sources of contamination identified from the history of the site. The investigation included a soil vapour survey (355 No. soil vapour survey holes), trial pitting (149 No. locations) and the installation of groundwater monitoring boreholes (9 No. at 7 locations). Trial pit and borehole logs not previously supplied to the Secretary of State are included in Appendix 1. Soil samples were collected from the trial pits and water samples were collected from boreholes and surface water springs for chemical analysis. The chemical analysis results were summarised in the ES, but the full soil results, not previously supplied, are included in Appendix 2. Groundwater and surface water monitoring has been completed on a twice annual basis since 1999, and data from the most recent monitoring (May 2008) is included in Appendix 3. The implications are summarised in Section 2.3.2 below. This data set provides a comprehensive statement on land and water quality at the site, as it was in 1997 and as recently as May 2008.

2.3.1 Soils

The investigation recorded elevated concentrations of arsenic in approximately one third of soil samples, while elevated concentrations of other inorganic substances (copper, lead, zinc) in soil were restricted to only a small number of locations, the only significant location being TP113 on the northern side of the site. In the majority of locations, the elevated arsenic concentrations were considered to reflect naturally high levels in the soils rather than a man made source. Localised hydrocarbon contamination was also recorded in soils (maximum concentration 8,482 mg/kg) with the following locations identified as being of concern:

- TP14 and 16 in POL 21;
- TP124 in the former weapons storage area where the highest total petroleum hydrocarbon concentrations were measured;
- TP93 in POL 20; and
- TP142 and TP149 in the fire practise area.

The presence of a hydrocarbon odour / elevated soil concentrations at these locations suggests a fuel source, related to storage or other uses such as on the fire practise area.

Based on knowledge of site use since 1997, discussions with NOC and site visits, it is clear that there are no new potentially contaminative site uses that

would result in substantive new contaminant sources. The soil contamination recorded in 1997 is therefore considered to be representative of the current concentrations on site, albeit that there may have been some degradation of organic contamination since 1997. It is therefore concluded that at this stage additional testing of soil quality would not significantly alter the conclusions made to date. Further investigation of previously identified areas of contamination will however be required at the detailed design stage to finalise appropriate strategies for mitigation and proposals for this work are outlined in Section 2.4 below.

2.3.2 Groundwater and surface water monitoring

Groundwater and surface water monitoring has been completed twice every year since 1999 at nine groundwater monitoring points and eleven springs, streams or outfalls. This data demonstrates that there have been no significant pollutant releases to the underlying aquifer which in turn indicates a lack of gross site wide contamination. In addition, the data has not demonstrated that there has been any substantive change in either the hydrogeological or hydrochemical regime at the site. This supports our assertion that the soil quality data collected as part of the 1997 site investigation is appropriate for the outline Planning Application. Since that Planning Application was made Enviros has completed another round of water monitoring, the findings of which are summarised below.

In the May 2008 monitoring, organic contaminants were not detected in the six boreholes located around the site boundary (BH1-6) nor was any contamination identified that could be attributed to the development site in the eleven springs, streams and outfalls present around the site.

Very slightly elevated concentrations of hydrocarbons were recorded in the groundwater in the centre of the site in May 2008 in boreholes 7, 8 and 10 where 120, 87 and 16µg/l (respectively) of petroleum hydrocarbons were present. Boreholes 8, 9, 10 and 11 were drilled and installed in the centre of the site in the early 2000s in response to the identification of slightly elevated concentrations of petroleum hydrocarbons in BH7. Initially it was assumed that the contamination arose from car processing along the runway as there were no records of an aircraft crash in this area, no nearby POL facilities and the borehole is up hydraulic gradient of the main site. However, no source of contamination could be identified and no consistent occurrence of the pollution has been recorded. On some occasions it is present, on others it is not. It is however only ever present in one or more of the boreholes immediately adjacent to BH7 and only ever at low concentrations.

2.4 **Proposals to identify any further environmental risks**

This section outlines the mitigation proposals which would further investigate and assess previously identified contamination and to undertake more detailed investigation in areas of the site at risk such that the risk posed to human health and controlled waters post development would be acceptably low.

2.4.1 Further Investigation

As part of the detailed design stage, a review will be undertaken of all potential contamination sources and previously identified areas of soil and groundwater contamination. In accordance with current guidance (CLR 11 – Ref. 4, BS 10175:2001 – Ref. 5 and R & D Publication 66: 2008 – Ref. 6), further specific targeted investigation, comprising trial pits and boreholes, will be carried out

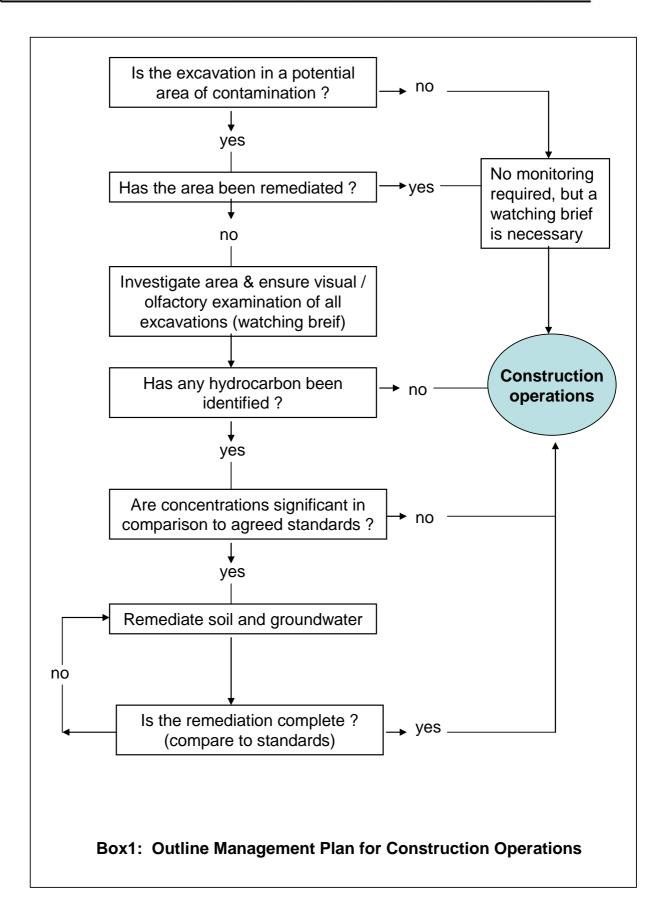
as part of the mitigation proposals. The purpose of the investigation will be to supplement existing data to enable a detailed assessment of risk to human health and the environment from specific parts of the site. In addition to soil and groundwater testing, ground gas monitoring will be carried out in accordance with current guidance (Ref. 7).

This investigation will fully delineate the extent of previously identified contamination, provide data for areas requiring further detailed investigation and provide data suitable for generic and detailed quantitative risk assessment. The investigation will be designed on the basis of the proposed site layout (site specific use). The investigation will include a minimum of 75 No. trial pits and 30 No. boreholes located to target potential contamination sources (particularly the POL System, discussed in more detailed in the following chapter). The boreholes will all be completed to provide groundwater monitoring points.

2.4.2 Further Assessment

In accordance with current guidance (Refs. 4, 5 and 6), generic and detailed quantitative risk assessments will be completed using site specific data collected from all phases of investigation (chemical analytical, physical and hydrogeological). Assessments will be conducted to assess the risk posed to human health and the environment, based on the site specific site layout. Site Specific Assessment Criteria (SSAC), comprising acceptable concentrations of contaminants, will be derived for soil, surface water and groundwater. Soil and groundwater with contaminant concentrations at or below the SSAC will not therefore pose an unacceptable risk to human health or controlled waters. The SSAC may vary across the site depending on site use, water sensitivity and distance from key receptors.

Initial discussions with the Environment Agency indicate that 500 μ g/l is an acceptable compliance point target concentration for hydrocarbons (Total Petroleum Hydrocarbons – TPH) in groundwater. The Environment Agency has indicated that they consider the site boundary a suitable compliance point. It is considered that 500 μ g/l TPH is an acceptable target concentration at the site boundary where water is discharged to surface water but a more stringent target may be appropriate where groundwater is flowing towards a local potable water abstraction. The target concentration in such an instance would be risk assessment derived and would largely depend on the distance from the abstraction. Justification for these proposed target concentrations will be provided in the assessment report.

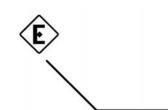

2.5 **Potential Impact of Development**

The Secretary of State has raised a concern (Paragraph 6 of the letter of 21st August 2008) that although the proposed development would not cause contamination, the construction process could aggravate any existing contamination problems. The potential impact of development on mobilisation and migration of contamination will be considered further at the detailed design stage as part of the mitigation proposals and an in depth methodology will be presented to ensure that the development does not cause pollution. This methodology will be varied according to the area being developed and in particular its history of land use. An outline management strategy is provided in Box 1; this will ensure that previously identified and unforeseen contamination is addressed in accordance with the remediation strategy. The watching brief will normally be a member of the construction team who will notify the environmental consultants in the event that unforeseen visual / odorous contamination is encountered.

An outline management strategy is provided in Box 1 and the following aspects will be considered and carefully assessed at the detailed design stage in order to minimise the environmental risks from the construction process:

- Exposure of site workers and neighbouring residents to contamination. Detailed method statements and risk assessments will be developed and controls will be put in place such as the wearing of appropriate personal protective equipment by workers and preventing mobilisation of dust by covering and / or damping down of contaminated soil;
- The spreading of contamination via machinery. Adherence to method statements will ensure that all plant and machinery is cleaned regularly to prevent the spread of contaminated soil and water from one area of the site to another;
- The spread of contamination from earthworks. Excavated material will be managed such that the spread of contamination is minimised. Excavated material will be stockpiled on impermeable surfaces and excavations will be dewatered where necessary and any water will be treated to appropriate standards;
- The release of contaminated water to the underlying aquifer. The site directly overlies a Major Aquifer and therefore method statements will include methods of working to prevent this occurring. This will be divided into two components, the first associated with managing the risks from the remaining POL system (these are detailed in Chapter 3 of this report) and the second associated with any residual ground contamination. All necessary soil and / or groundwater remediation in development areas will be carried out prior to construction. The Environment Agency will be consulted with regards to proposed foundation types for the site and any piling designs will consider the potential release of contamination to the aquifer (designs will consider Environment Agency guidance, Ref. 8); and
- Waste management. A site waste management plan will be developed as required for a development of this size. This plan will include method statements for the management of all wastes including contaminated soil and water at the site which will ensure that waste and other relevant legislation is complied with.

SUPPLEMENTARY INFORMATION TO ENVIRONMENTAL STATEMENT, HEYFORD PARK



2.6 Remedial Design and Remediation of Soil and Groundwater

Following the completion of further investigation and risk assessment as part of the mitigation proposals, the preliminary remedial strategy (outlined below) will be developed into a detailed remedial strategy (in accordance with current guidance including CLR 11). The detailed remedial strategy will consider all pollutant linkages present during and after the development and will cover all areas of the site. Remediation Criteria (RC) will be defined and these will comprise the SSAC and engineering based criteria such as appropriate clean up standards and cover thickness to be protective of human health.

The preliminary remedial strategy is as follows (the remedial strategy for the POL System is discussed in detail in the following chapter):

- Define Remediation Criteria acceptable soil and groundwater concentrations (SSAC) and engineering based criteria (e.g. cover systems). The RC will vary across the site depending on the specific layout of the site, local receptors and nature and extent of any contamination. The location of buried services and their potential to act as contamination pathways will also be considered when deriving the RC;
- Identify areas of the site requiring remediation (based on site specific layout plan):
 - Soils with contaminant concentrations >SSAC (and where the critical pathway is not broken by the development e.g. hardstanding). Soils containing 'free phase' will also be identified for remediation;
 - 2. TPH concentrations in groundwater will be compared to a preliminary remedial target (500 μ g/I TPH for surface water) at the site boundary, i.e. groundwater targets will be derived across the site through QRA such that the target concentration of 500 μ g/I TPH is achieved at the compliance points;
- Remediation of soils by; on site treatment methodologies, excavation, haulage and disposal to licensed treatment / disposal facilities and / or the use of clean soil cover systems. Treatment methods to be considered include bioremediation and stabilisation. The thickness of clean cover will be defined using current guidance (BRE / AGS guidance, Ref. 9);
- Remediation of groundwater by; direct disposal to foul sewer if contaminant concentrations are within the limits set by the local water company, via an on site treatment system (comprising oil water interceptor, air stripping tower and activated carbon filtration unit), and / or by tanker to an off site licensed treatment facility;
- Passive ground gas protection measures may be required in residential houses subject to the results of ground gas monitoring and assessment;
- The remedial strategy will consider fully the potential impacts of the development on contamination and appropriate methodologies will be employed to mitigate the spread or release of contamination;
- Verification testing and reporting will be carried out to confirm that the remedial objectives have been met; and

• Long term monitoring of groundwater will be discussed with the Environment Agency and depending on the remediation required at the site, may be required for a period post development.

3. CLARIFICATION OF RISKS POSED BY THE POL SYSTEM AND PROPOSED APPROACH TO MITIGATE RISKS

3.1 Introduction

The purpose of this chapter is to expand on information presented in the ES (Ref. 1) and the POL Statement submitted to Cherwell District Council on 3^{rd} March 2008 (Ref. 2) relating to the investigation, assessment and remediation of the POL System. The chapter will also provide an update on recent consultation with the Environment Agency.

The POL System currently poses a potential risk to the environment as the system remains in place and is water filled with some residual hydrocarbon contamination. There is a concern that the system could have leaked resulting in pollution that has not been identified, or that the system could leak at some point in the future, thereby causing pollution. This chapter presents proposals to reduce and manage that risk in accordance with the requirements of current guidance (Refs. 3 & 4).

It should be noted that although the POL system is to remain in place at Heyford Park, it is to be drained in its entirety of all water and details of the programme of work proposed prior to this are presented below. In addition, although it is not proposed to remove any of the POL system, if elements are identified that represent an unacceptable risk to the environment, these will be removed in consultation with English Heritage where it involves features of heritage conservation.

3.2 Consultation with the Environment Agency

The following consultation has recently taken place with the EA:

- 18th July 2008 Environment Agency letter to Cherwell District Council stated that the EA 'object to the application as submitted because the applicant has not supplied adequate information to demonstrate that the risks posed to groundwater can be safely managed';
- 12th August 2008 EA letter to Pegasus Planning Group requesting further information, particularly in relation to POL 19;
- 28th August 2008 Enviros Consulting (Enviros) letter to the EA providing the requested information;
- 4th September 2008 EA letter to Enviros with additional queries;
- 12th September 2008 Enviros letter to EA with answers to queries;
- 15th September 2008 meeting between Enviros and the EA to further discuss EA queries and to agree a method of resolving these queries. The latter included provision of the information that is included in this Supplementary Statement.

The correspondence detailed above is included in Appendix 4. The EA will continue to be consulted throughout the design stage. English Heritage will also be consulted with respect to the POL System and remedial proposals, in particular to resolve conflicts between the two sets of legislation.

3.3 Assessment of the POL System

An inventory of the POL System was provided in the POL Statement (Ref. 2. Following a recent desk based review (including extensive walkover survey) and limited additional tank sampling, a more detailed assessment has been completed and the inventory presented in the POL Statement has been developed (included in Appendix 5). The inventory will be further revised and updated as investigations and assessments proceed.

The recent assessment included a review of plans and drawings of the POL system, additional inspection with limited sampling and completing a visit to an operational POL system. The latter allowed us to gain a better understanding of how the POL system would have been operated, and critically what parts of the system would have been isolated, during is operation.

3.4 Potential risk posed by the POL System to Controlled Waters

Records indicate that the POL System (tanks and associated pipework) was cleaned and water filled in the early 1990s. The method of cleaning is unknown and it is clear from recent analysis of some of the tanks that the water is impacted with hydrocarbon contamination to varying degrees. The contents of the POL System therefore pose a potential risk to the underlying aquifer, particularly as the system ages and the risk of a leak increases.

The recent review of the POL System confirmed that the system is no longer connected to an external supply pipe (from Islip) and individual POLs appear to have been disconnected from the POL rings and other tanks. Subject to confirmation that individual POLs are disconnected from the wider system, it will be possible to consider each POL separately with regards to remediation.

3.5 Further Investigation and Remedial Design

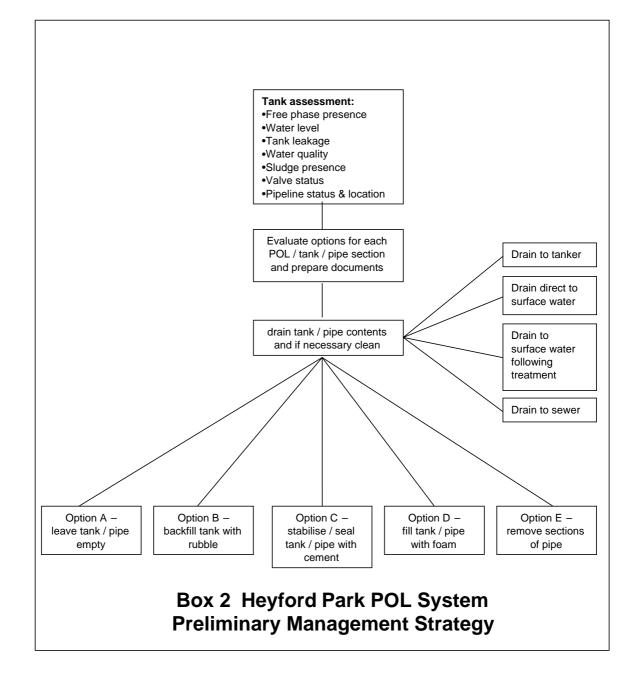
The following further investigation and remedial design work will be carried out in relation to the POL System as part of the mitigation measures. The proposed work has been divided into four stages as follows:

Stage 1 – Detailed Assessment

- 1. Measurement of water levels and presence of any free phase in tanks via dip hatches at three monthly intervals to establish whether the tanks are leaking, and to assess if leaks have already occurred (i.e. if any tanks have low water levels);
- 2. Collection of water samples from all tanks via dip hatches for chemical analysis;
- 3. Gain access to valve pits and confirm our assertion that individual POLs are isolated from the main ring (i.e. valves closed are closed or cut off). Where not isolated, investigate to establish whether valves can still be closed;
- 4. Gain access to above ground and below ground pipework and collect water samples for chemical analysis (a specialist contractor will be used to safely break into pipework to obtain samples). Where above ground pipe junctions are empty, the use of CCTV will be assessed to determine if some below ground sections of pipe contains liquid; and

5. The location of complete runs of underground pipes will be mapped, including branch pipes (unless it is demonstrated that pipework is free of contamination). The location of underground pipework will be completed by specialist contractor using electromagnetic and / or ground radar methods.

All information will be assessed and detailed in a standalone report that will also include recommendations for further work. Some of these are already anticipated (outlined below), but cannot be designed until Stage 1 is complete.


Stage 2 – Additional Assessment and Remediation Strategy

Stage 2 will include further investigation work to gain data not collected during Stage 1 or to address queries / concerns raised by Stage 1. The scope of works is likely to include:

- Prepare comprehensive health and safety plans to allow access to be gained to manholes (which are classified as confined space) where access for sampling and dipping via the tank dip hatch is not possible. Water samples will then be collected for chemical analysis;
- Complete asbestos survey at each POL (particularly within pump control points and manhole access points) prior to further inspection work and / or remediation;
- 3. If Stage 1 demonstrates significant variability in the nature of the pipeline and its contents across the site then further assessment and water sampling of the pipework will be undertaken;
- 4. Pressure testing of tanks that are not water filled, or where dipping indicates a reducing water level to determine if these tanks have / are leaking;
- 5. Installation of groundwater monitoring boreholes at locations where leaks are identified and initiate groundwater monitoring; and
- 6. Develop the preliminary POL system remedial strategy (shown in Box 2) based on investigation results and considering the following:
- Method of draining down;
- Water quantity and quality in tanks and pipework;
- The presence of any sludge, its quality and possible quantity;
- The water discharge location and any necessary treatment prior to discharge;
- Whether tanks and pipework are to be cleaned, left empty or filled with grout, foam or demolition rubble;
- Access points to the tanks and pipework; and
- Health and safety aspects.

The findings of Stage 2 will be detailed in a comprehensive report.

SUPPLEMENTARY INFORMATION TO ENVIRONMENTAL STATEMENT, HEYFORD PARK

Stage 3 – Ground Investigations

Based on the findings of Stage 1 and 2, a comprehensive ground investigation will be completed to target identified areas of concern. A preliminary ground investigation design has been prepared and includes:

- 1. Investigation of ground and groundwater in vicinity of POL System and in particular previously or recently identified spill or leak points;
- 2. Excavation of minimum of 75 No. trial pits (for the whole site) and the collection of soil samples for chemical analysis to supplement the 1997 Aspinwall investigation;
- 3. Installation of a minimum of 30 No. groundwater monitoring boreholes (for the whole site), the majority of which will target the POL System. Completion of three groundwater monitoring rounds at monthly intervals; and
- 4. Data assessment and reporting.

This outline site investigation design will be reviewed following completion of Stages 1 and 2 and a detailed design will be prepared, including the location of all monitoring points, the depth of these and the completion and monitoring details.

Stage 4 – Remediation Strategy

This stage will involve the development of a detailed remedial strategy for the POL System. The Environment Agency and English Heritage will be consulted for final approval of the detailed remedial strategy. On the basis of available information, the strategy currently envisaged is summarised as follows:

- Methodologies for the drain down of the entire POL System. Each POL (tanks and associated pipework) will be considered individually, and the most appropriate methodology for each will be identified based on water quality and various physical / engineering considerations;
- 2. Different discharge solutions may be applied to individual POLs dependent on water quality and quantity. Where the currently preferred option of discharge to streams is appropriate, consents will be applied for to allow discharge of POL water to surface watercourses, after passing through on site treatment systems if necessary;
- 3. Cleaning, leaving empty or filling (grout, foam or rubble) of tanks and pipework in accordance with current guidance (Ref. 10) in order to stabilise the features. As outlined in the POL Statement (Ref. 2), it is currently envisaged that the POL system, in particular the major tanks, will be filled with appropriately graded demolition material. It may be appropriate to fill remaining small voids and some of the smaller POL structures with foam, grout or similar. It is also currently envisaged that the POL infrastructure will remain in place, but this will be subject to detailed risk assessment to determine if an unacceptable risk to controlled waters remains. It is anticipated that each POL is, or can be isolated and therefore different remedial solutions may be applied across the site. It is possible that some sections of the POL pipework may require removal, either because they are considered to pose an unacceptable risk to controlled waters or due to construction;

- 4. Soil and groundwater remediation will be carried out in the vicinity of the POL System where SSAC are exceeded (see previous chapter);
- 5. Verification testing and reporting will be carried out to confirm that the remedial objectives have been met and specifically that the remaining POL infrastructure does not and will not in the future pose an unacceptable risk to controlled waters; and
- 6. Long term monitoring of surface water and groundwater will be discussed with the Environment Agency and depending on the remediation required at the site, may be required for a period post development.

The detailed remediation strategy will also consider the impact of the development (as discussed in previous chapter) and the potential for remaining POL pipework to provide a pathway for contamination.

Timescales

Further investigation and assessment of the POL system and the development of the preliminary POL system remedial strategy (Stages 1 and 2) will be completed within 1 year of receipt of outline Planning Consent. The ground investigation work (Stage 3) will be completed within 2 years of receipt of outline Planning Consent after which the detailed remediation strategy will be finalised and agreed with regulators (Stage 4) All necessary remediation (site wide including flying field) will be carried out prior to the completion of the development.

4. CONCLUSIONS

This report demonstrates that, as part of the overall mitigation proposals and detailed design of the scheme, the site will be further investigated, assessed and remediated in accordance with current guidance – this will all be completed as part of detailed design work. Contamination posing an unacceptable risk to either human health or the environment will be remediated. The following commitments are made:

- All potential contaminant sources and previously identified contamination will be further assessed and investigated where appropriate (including all of the POL System);
- Further investigation will comprise a minimum of 75 No. trial pits and 30 No. groundwater monitoring boreholes;
- A detailed investigation will be conducted on the POL System including the sampling and analysis of water in all tanks and pipework. This work will be completed within 1 year of receipt of outline Planning Consent;
- Generic and detailed quantitative risk assessment will be completed on soil and groundwater data and SSAC will be developed;
- The POL system will be fully drained and the drained water treated appropriately prior to disposal. Whilst it is not proposed to remove any of the POL system, if elements are identified that represent an unacceptable risk to the environment and removal of this risk via remediation is not technically or otherwise feasible, these will be removed in consultation with the Environment Agency and English Heritage;
- A detailed remedial strategy will be developed for the site (including the POL System) and all necessary remediation (site wide including flying field) will be carried out prior to the completion of the development; and
- The Environment Agency will be consulted throughout the detailed design process and English Heritage will be consulted with respect to remediation of the POL System.

5. **REFERENCES**

- 1. Heyford Park Environmental Statement, 2007.
- 2. Heyford Park: POL Statement, Arup, 2008.
- 3. Planning Policy Statement 23: Planning and Pollution Control, Office of the Deputy Prime Minister, 2004.
- 4. Department for Environment, Food & Rural Affairs / Environment Agency Model Procedures for the Management of Land Contamination (CLR11), 2003.
- 5. Investigation of Potentially Contaminated Sites Code of Practice, BS 10175:2001, BSi.
- 6. Guidance for the Safe Development of Housing on Land Affected by Contamination, R & D Publication 66:2008, Environment Agency, NHBC, Chartered Institute Environmental Health.
- 7. Assessing Risks Posed by Hazardous Ground Gases to Buildings, CIRIA, 2007.
- 8. Piling and Penetrative Ground Improvement Methods on Land Affected by Contamination: Guidance on Pollution Prevention, National Groundwater and Contaminated Land Centre report NC/99/73, Environment Agency, 2001.
- 9. Cover Systems for Land Regeneration, Thickness Design of Cover Systems for Contaminated Land, BRE, AGS, 2004.
- 10. Groundwater Protection Code Petrol Stations and Other Fuel Dispensing Facilities Involving Underground Storage Tanks, Defra, 2002.

APPENDICES

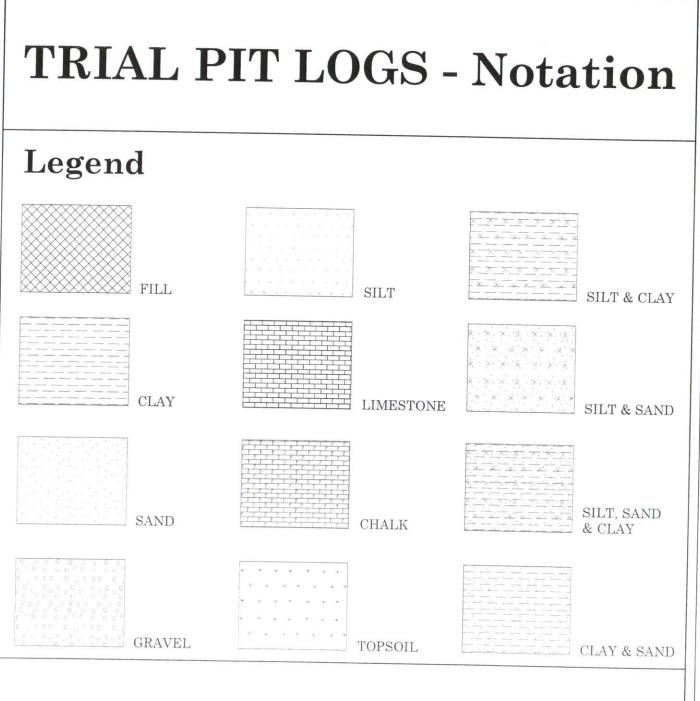
NORTH OXFORDSHIRE CONSORTIUM

1 TRIAL PIT AND BOREHOLE LOGS (ASPINWALL 1997)

Appendix

3

Trial Pit Logs

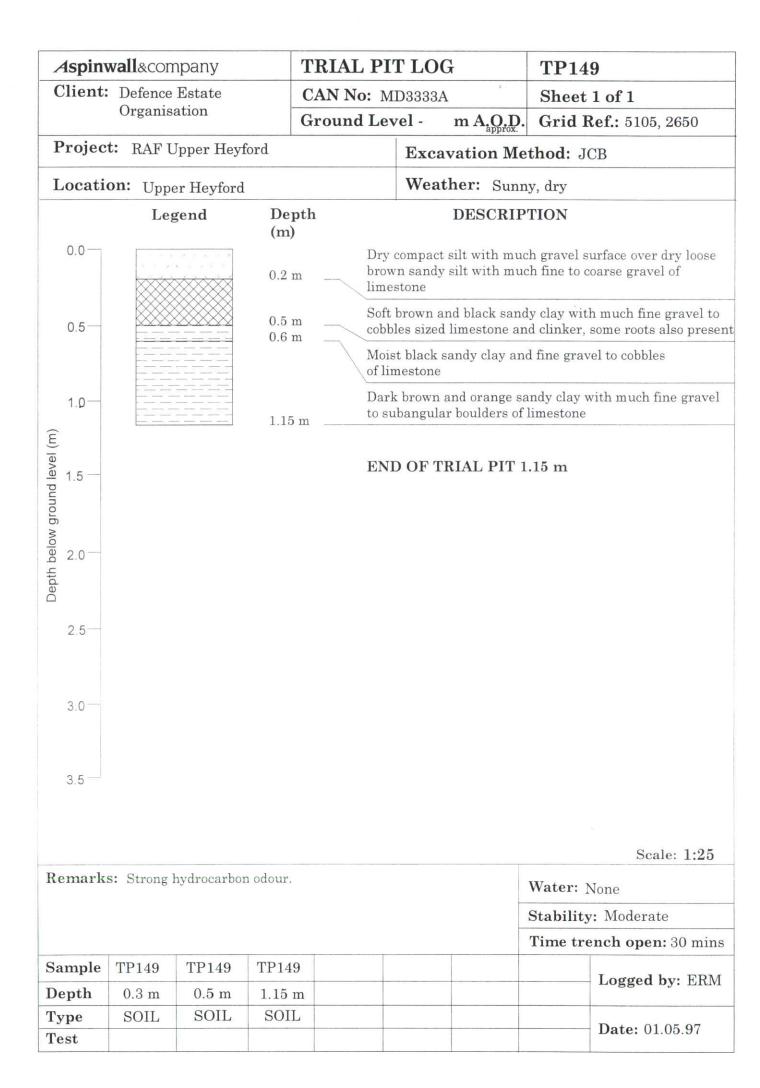

Aspinwall&company June 1997

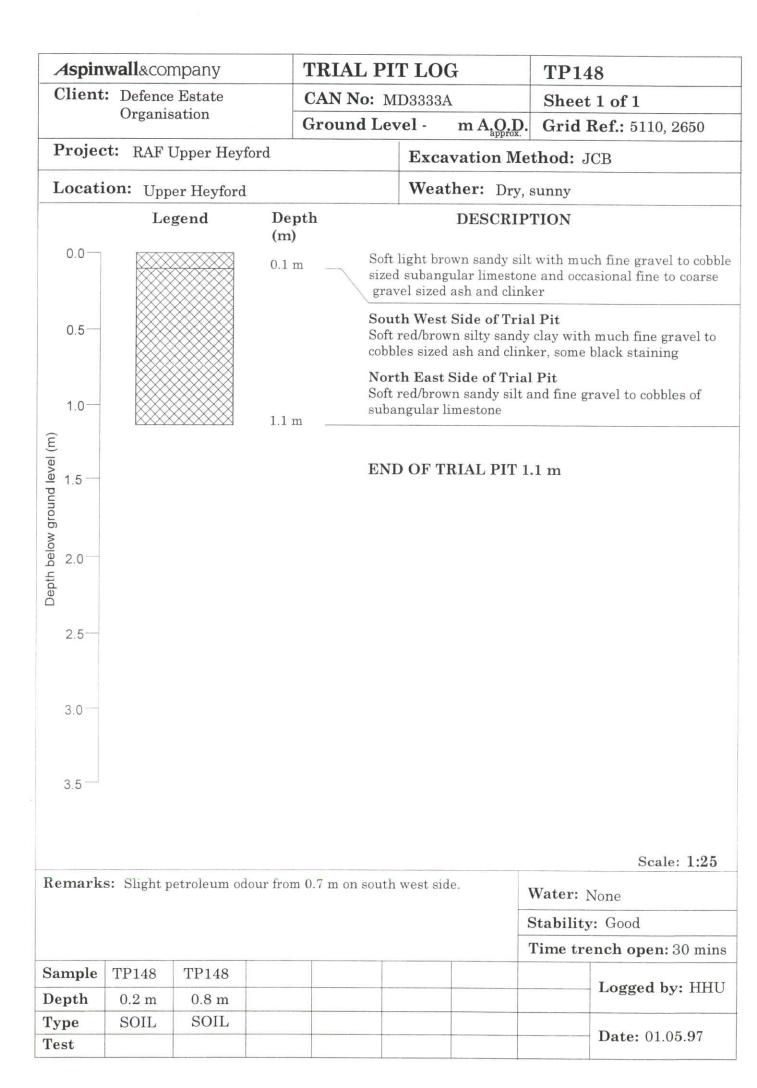
SVS Point Number	Depth (m)	Gas Concentration (ppm)	Area		
Building 32	20 AST's	2 - 1 de la companya			
114	0.3	<1.0	А		
115	1	<1.0	A		
116	0.9	<1.0	A		
117	1	<1.0	A		
118	0.7	<1.0	A		
119	0.6	<1.0	A		
Building 34	5 AST		<i>/</i> ·		
120	0.8	<1.0	А		
De-Icing Flu	De-Icing Fluid Storage Tanks				
127	0.4	<1.0	А		
128	0.6	<1.0	A		
Trial Pit Rep	Trial Pit Replacements				
121	0.8	<1.0	A, replaces TP37		
122	1	<1.0	A, replaces TP115		
123	1	<1.0	A, replaces TP48		
124	1	<1.0	A, replaces TP33		
125	0.5	<1.0	A, replaces TP114		
126	1.1	1	A, replaces TP30		
Building 221	Building 221/255				
110	0.8	<1.0	С		
111	1	<1.0	C		

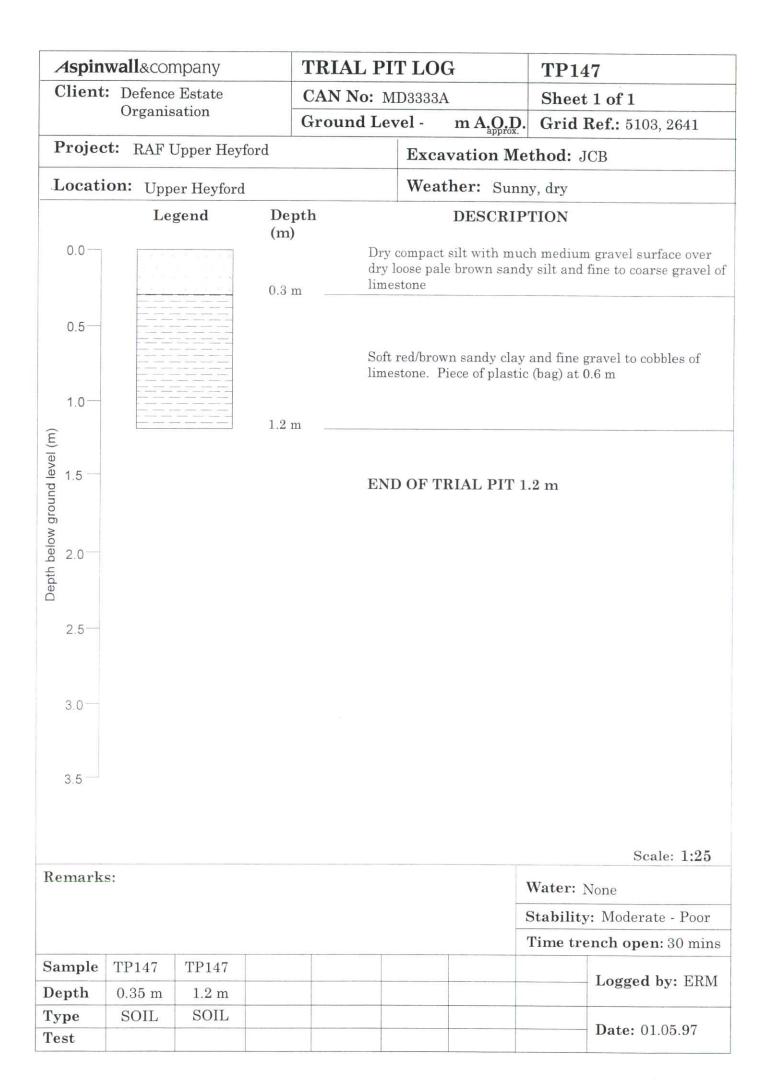
Soil Vapour Survey -Miscellaneous Locations

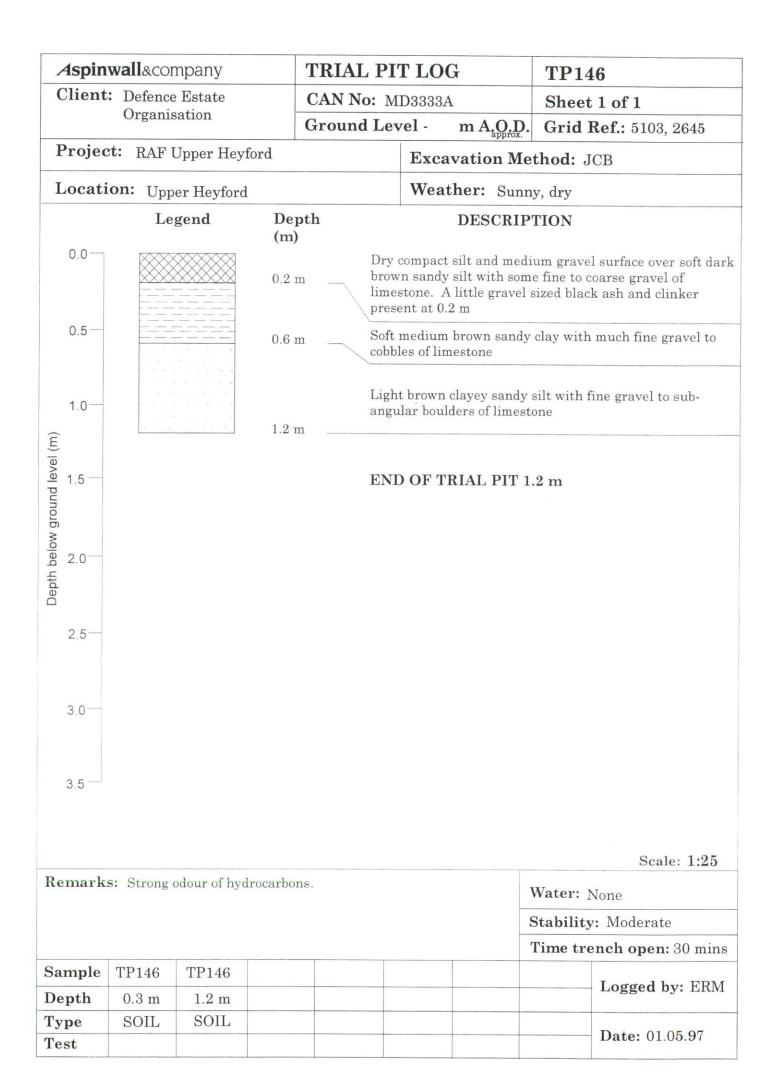
Soil Vapour Survey - Fire Practice Area

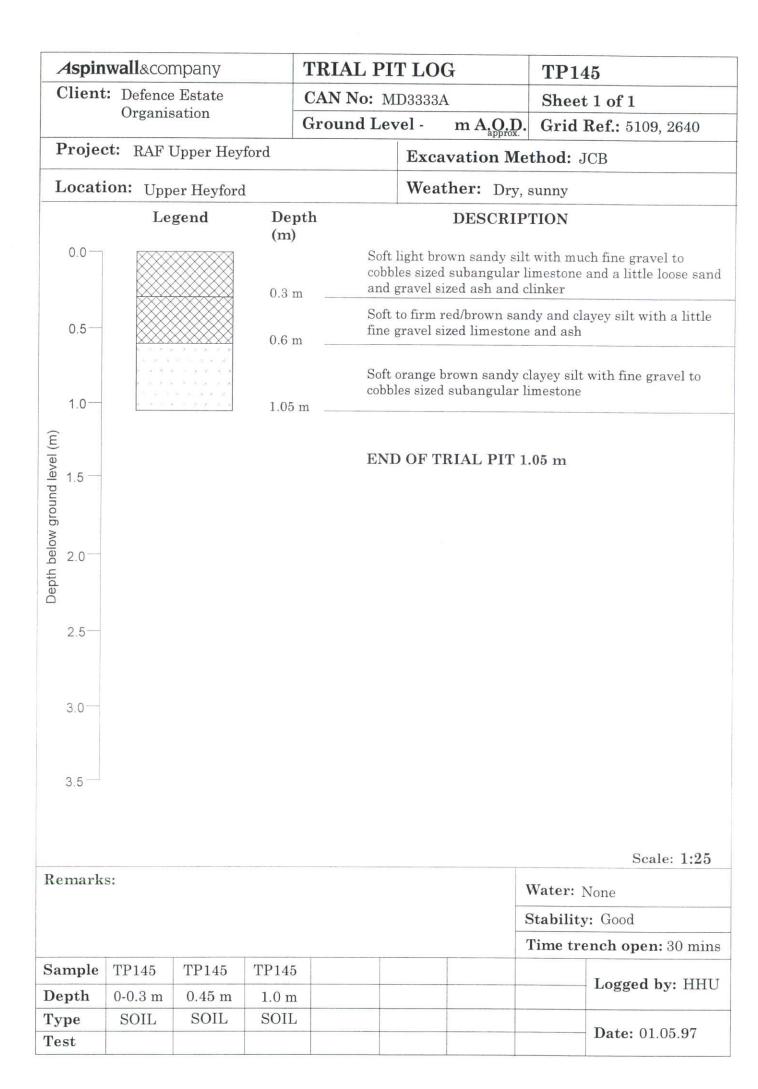
SVS Point Number	Depth (m)	Gas Concentration (ppm)	Area
1	0.4	< 1.0	FPA
2	0.5	< 1.0	FPA
3	0.4	< 1.0	FPA
4	0.4	< 1.0	FPA
5	0.3	< 1.0	FPA
6	0.4	>10,000	FPA
7	0.5	>10,000	FPA
8	0.4	>10,000	FPA

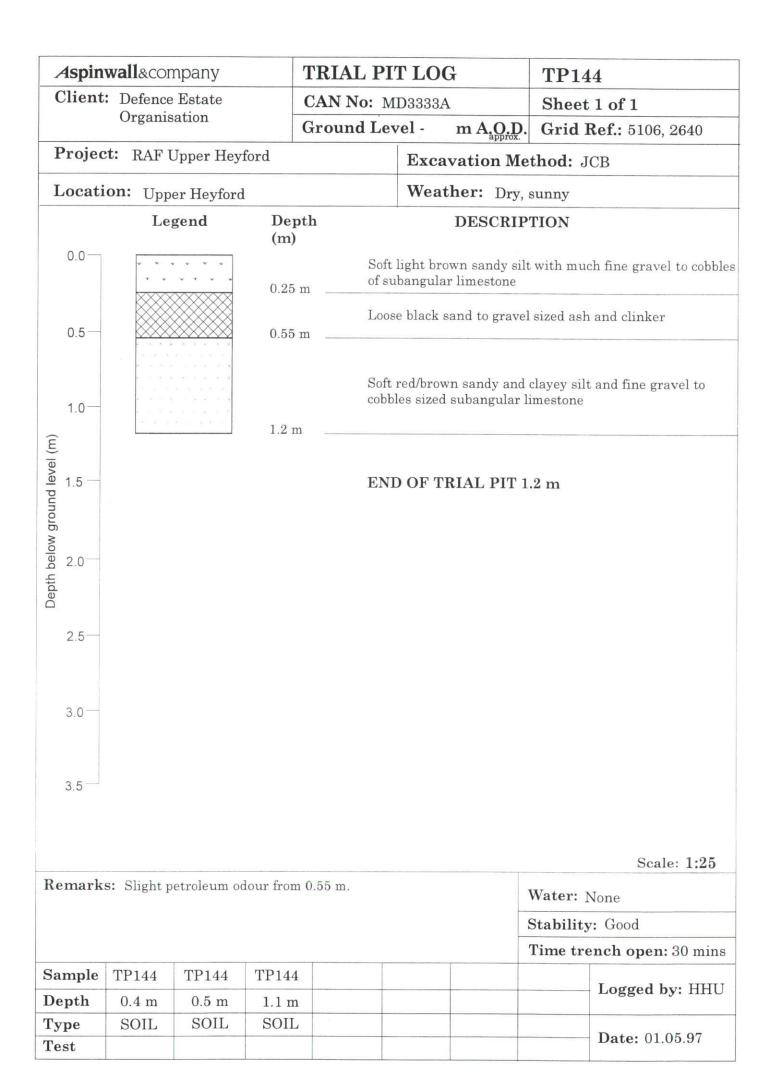


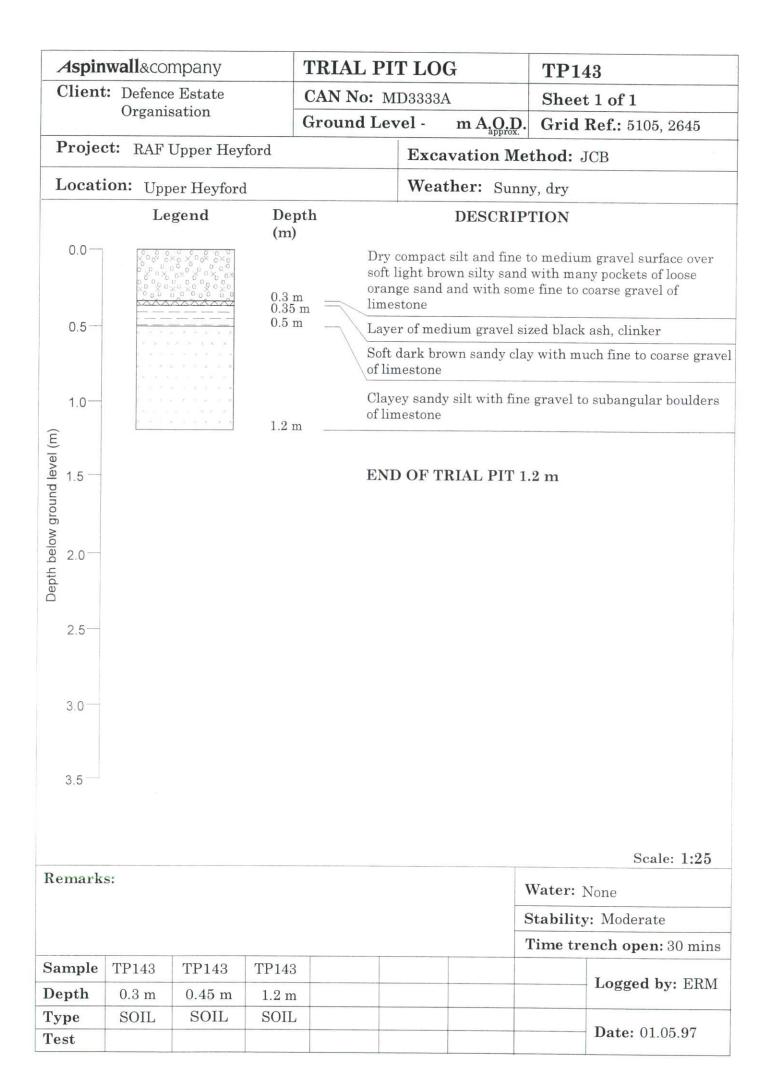

Notes:

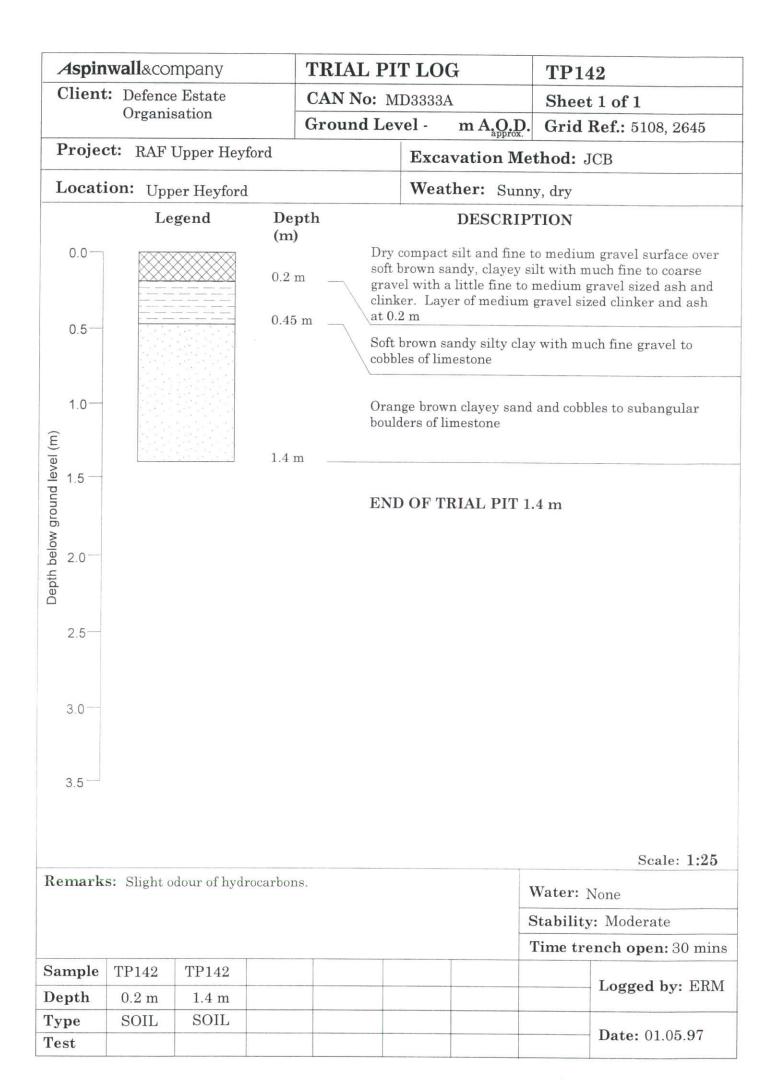

Where material encountered was obviously fill it has been labelled as such. In many areas the ground has been re-worked and it is not always possible to distinguish this from natural ground. In these instances the legend used represents the dominant soil material present.

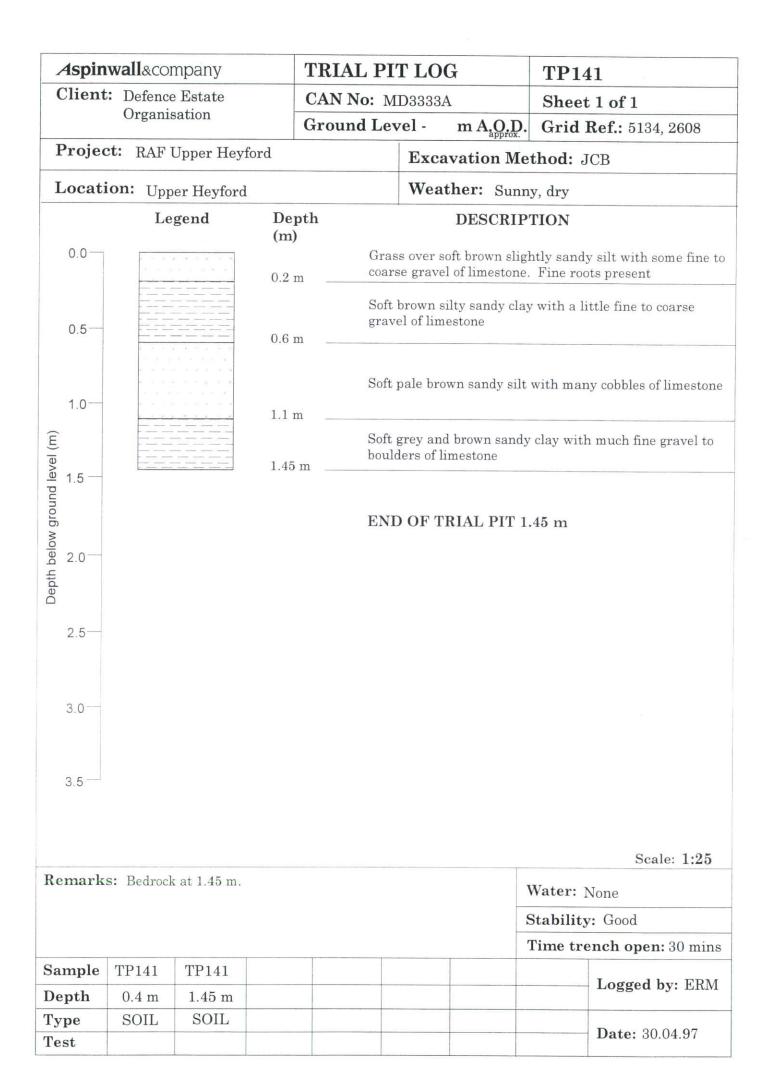

National grid references are quoted to 4 figures, taken from the OS 1:25,000 scale map of the area. Locations are shown on the site plans. All grid references are prefixed by SP.

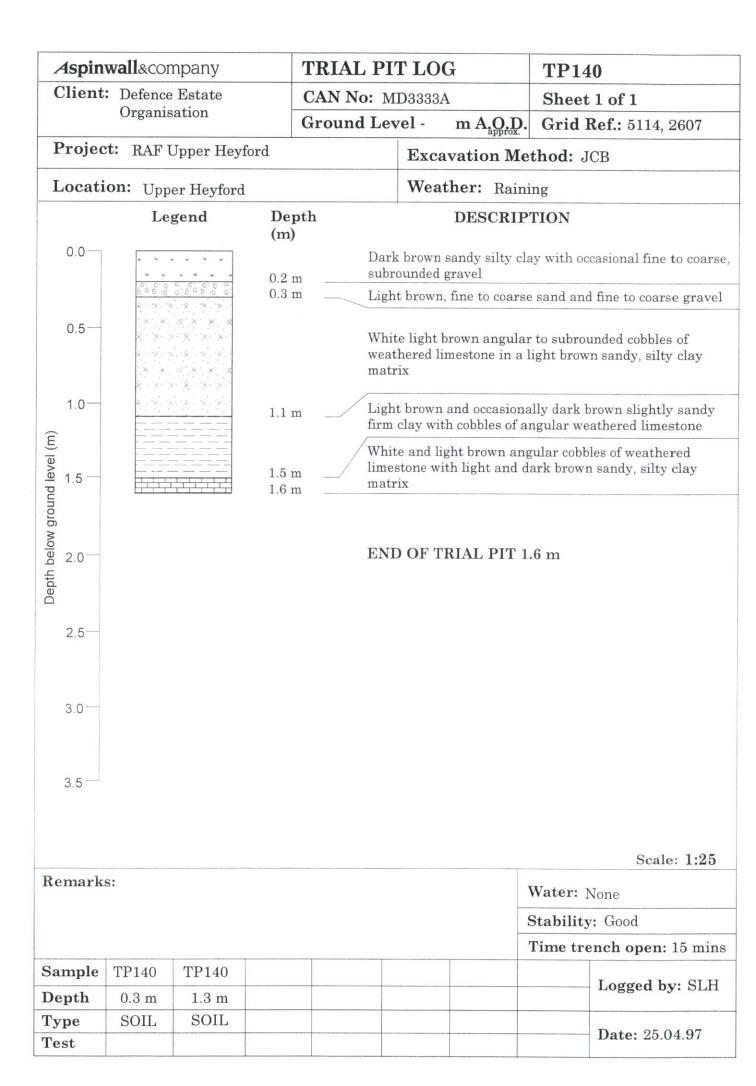

*

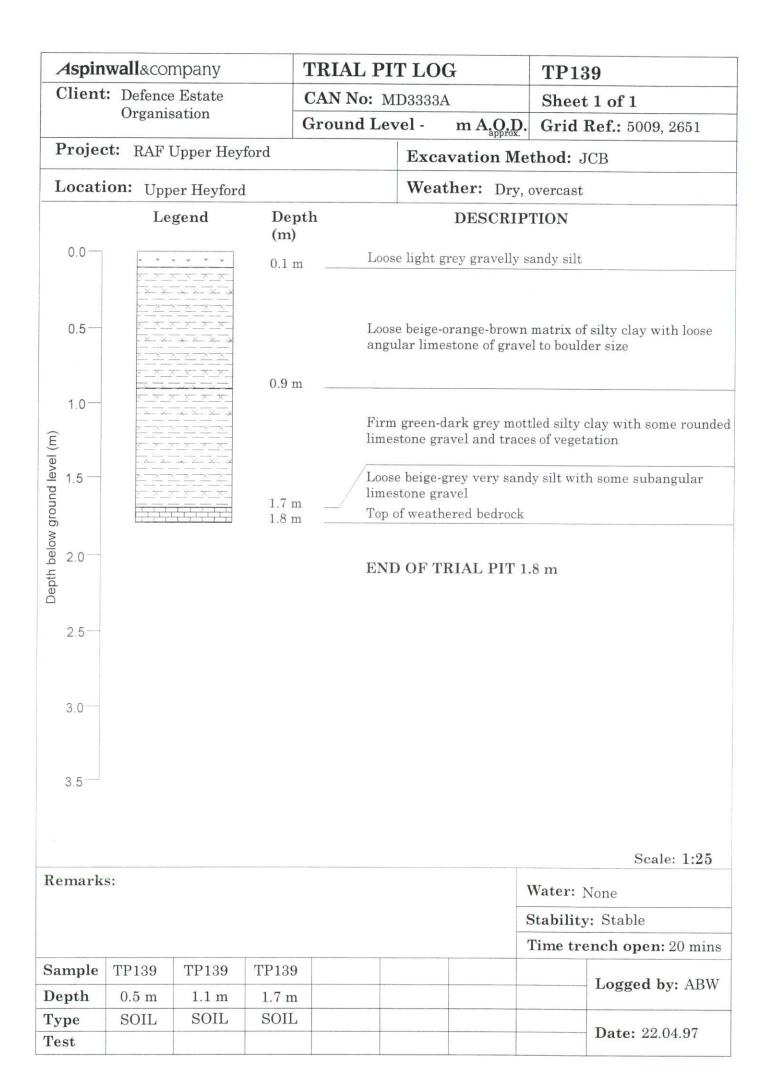


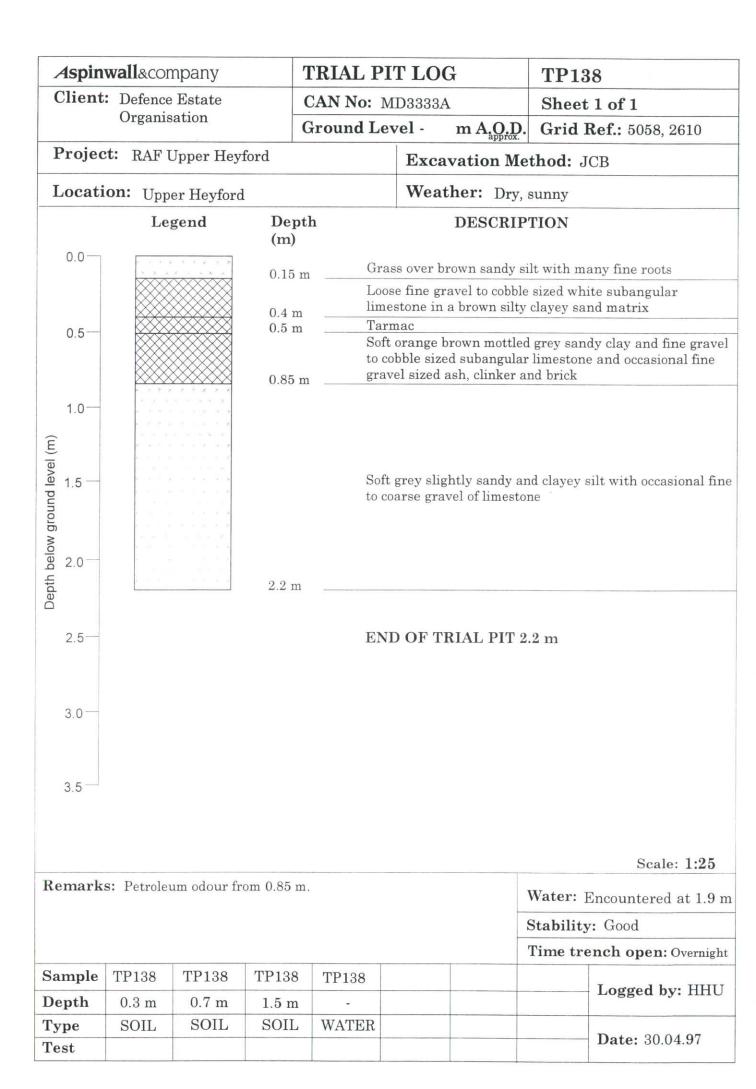


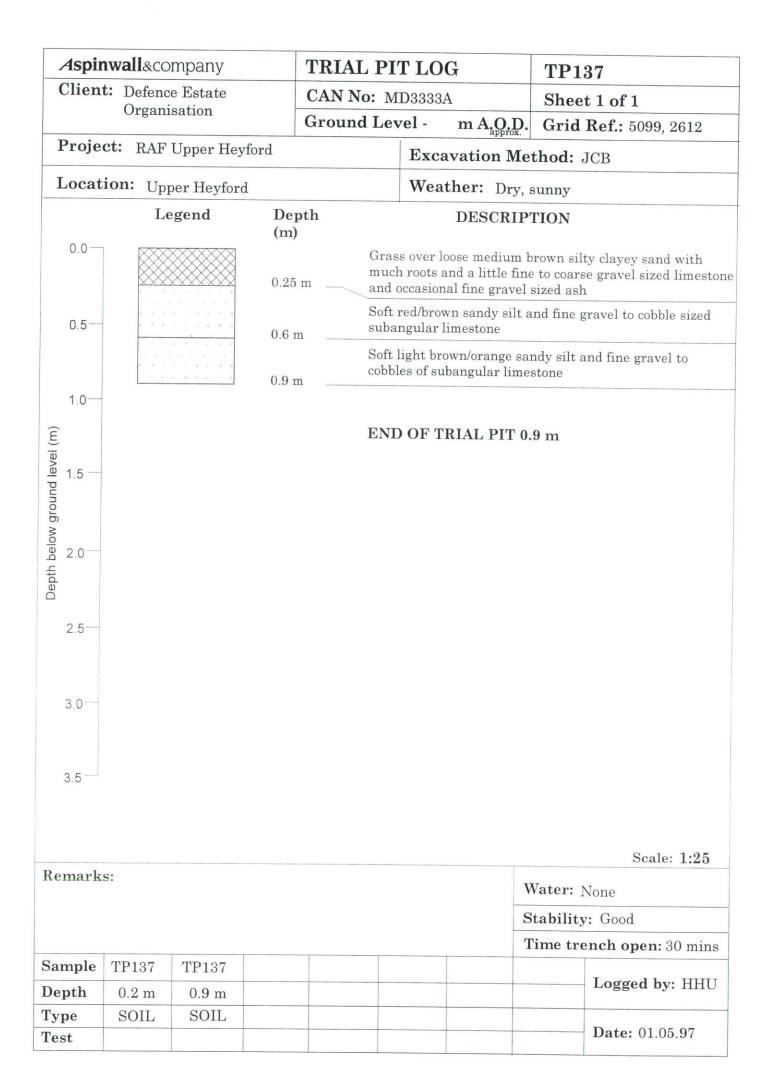


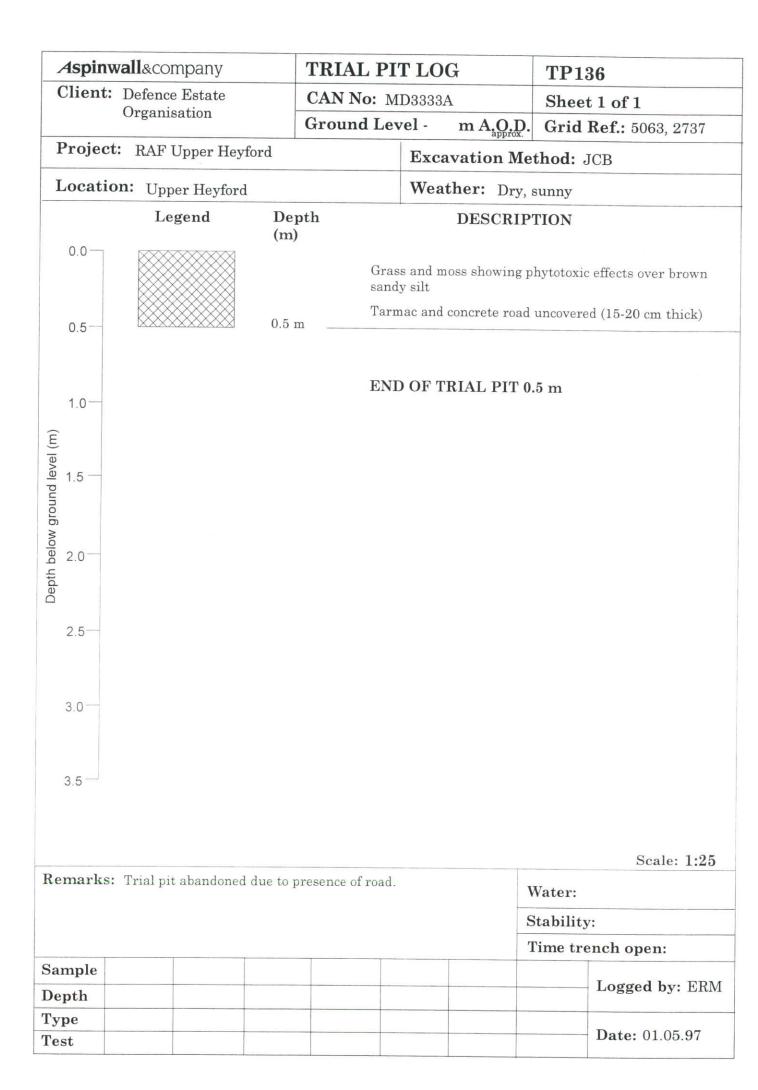


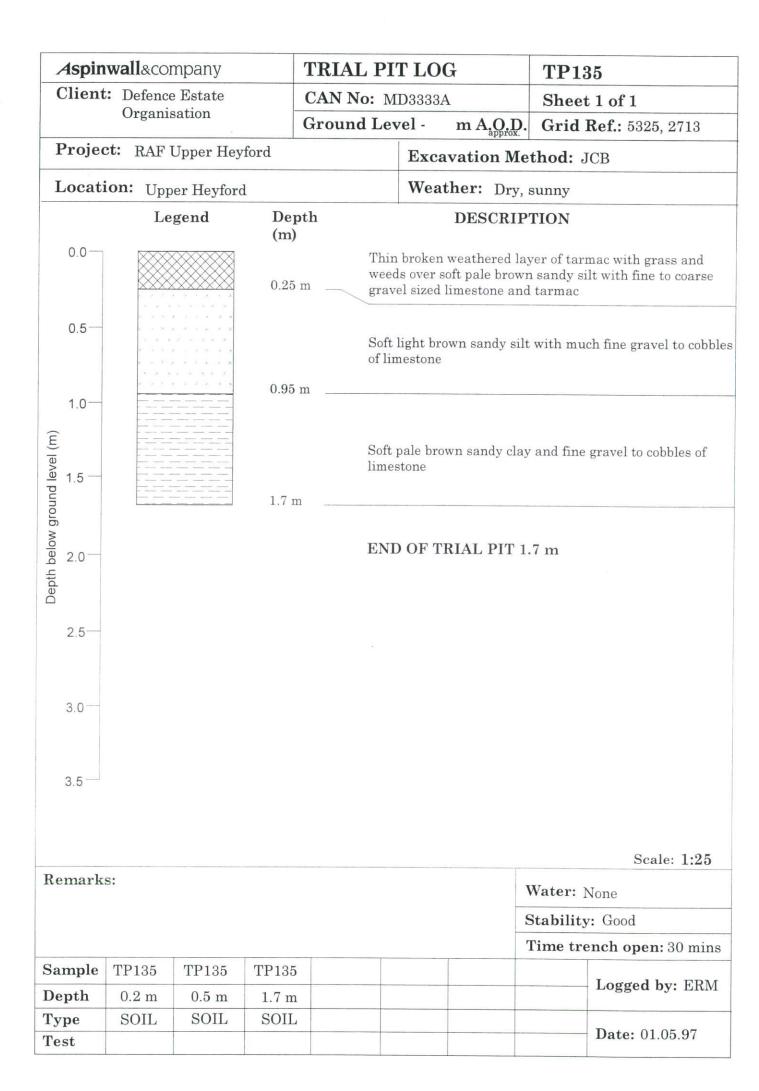


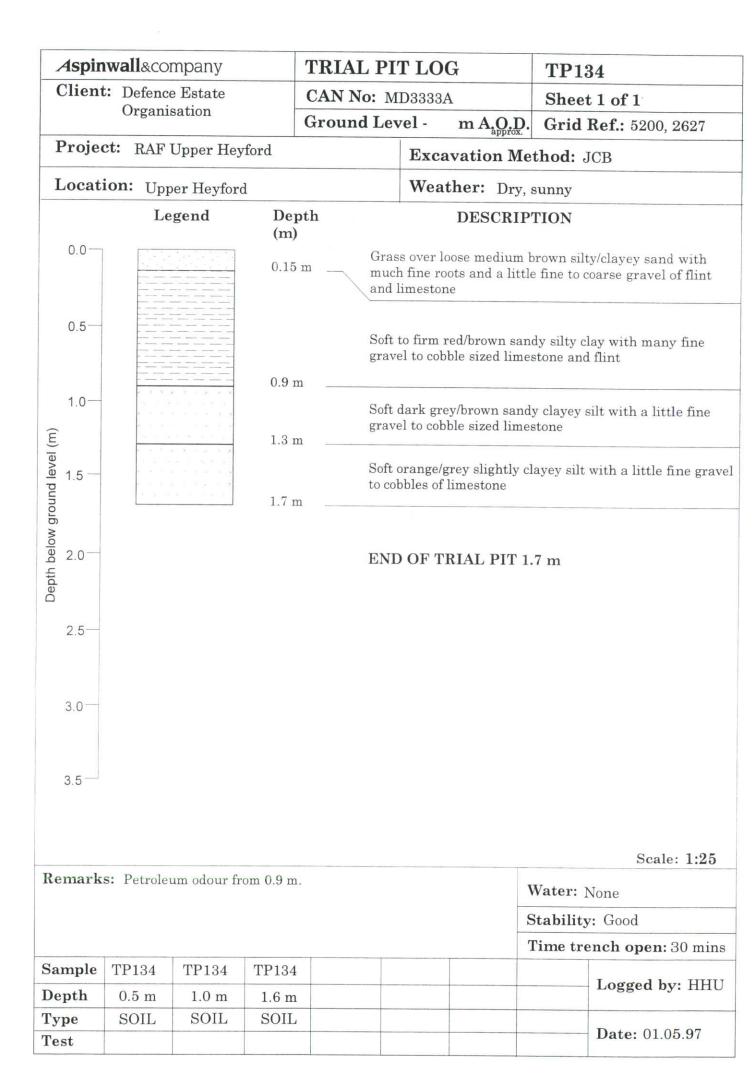


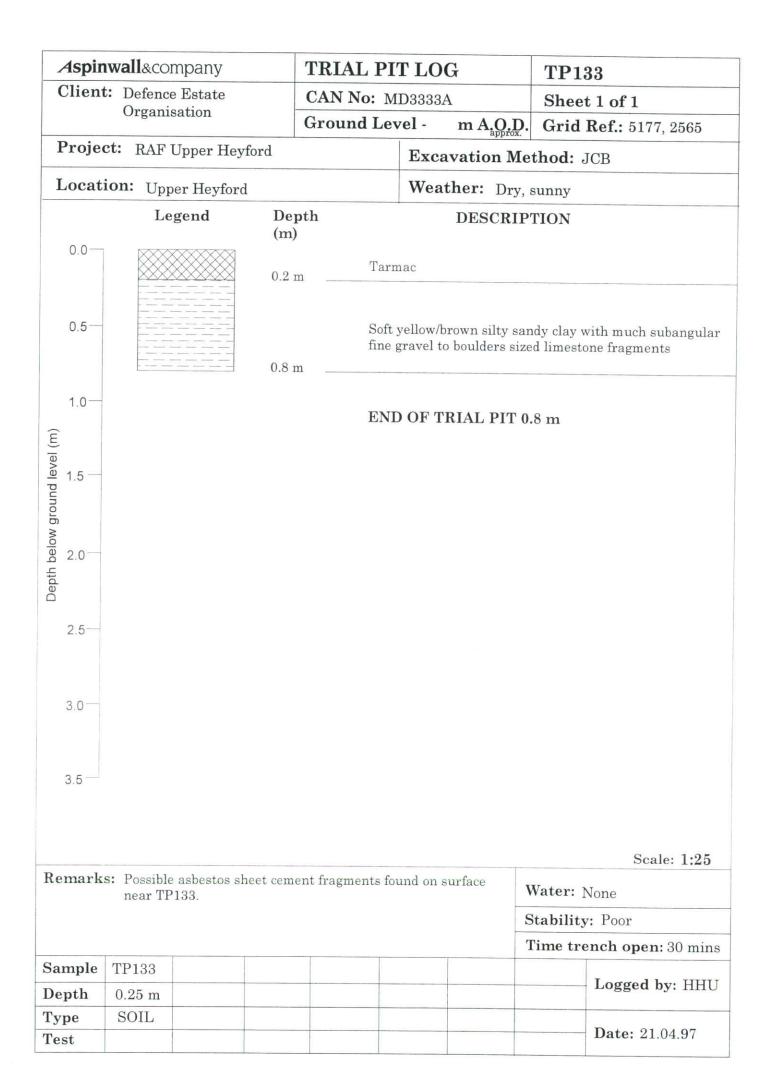


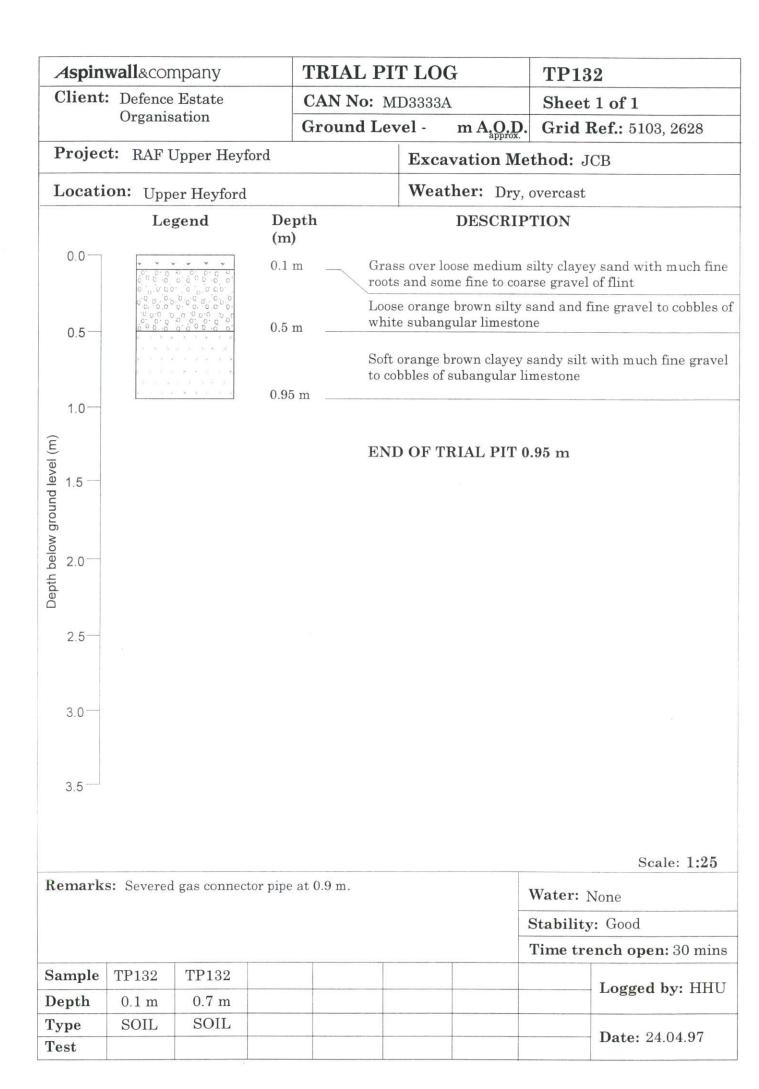


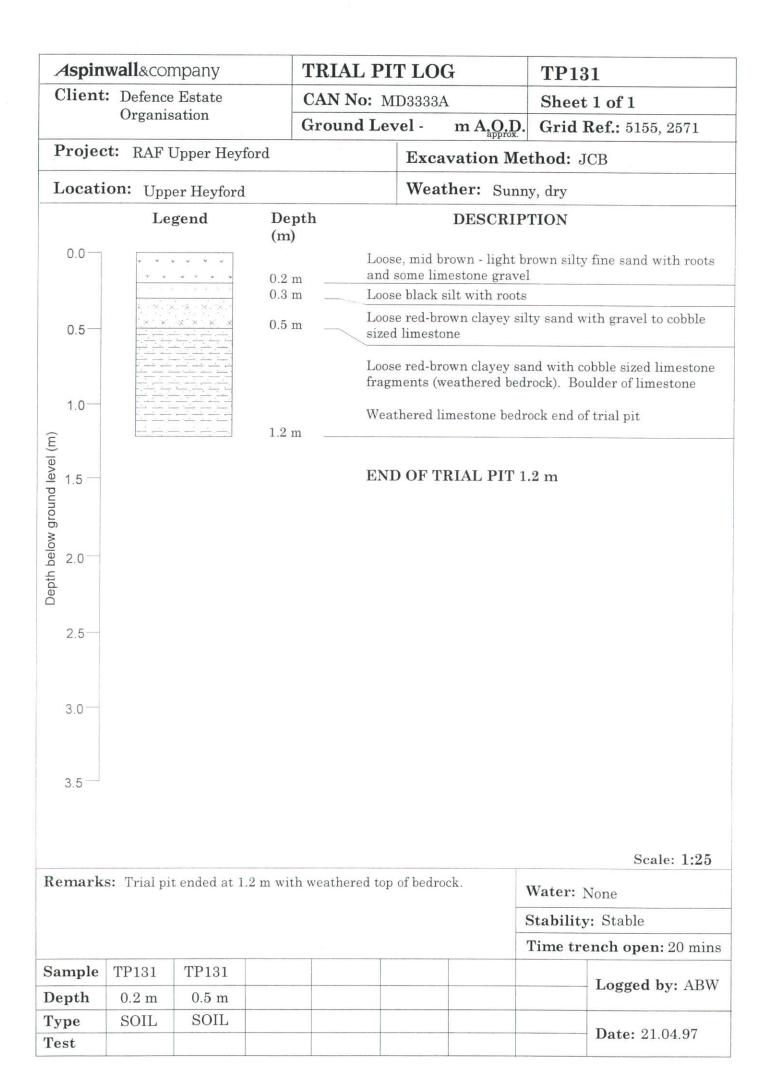


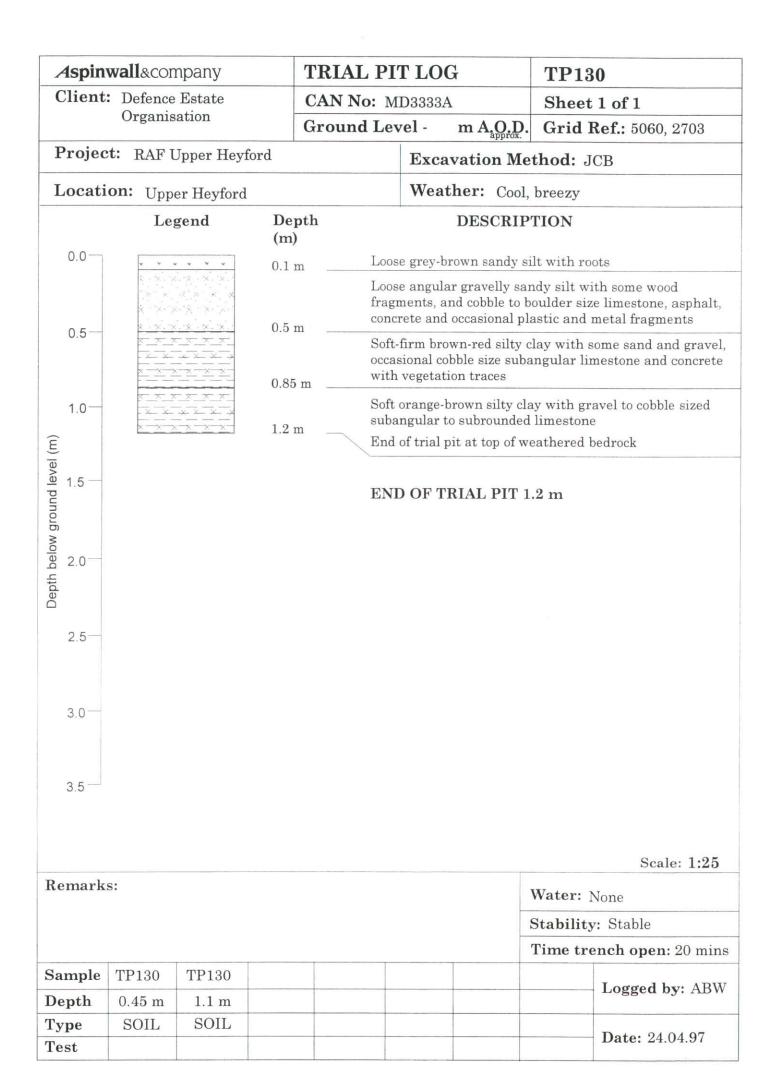


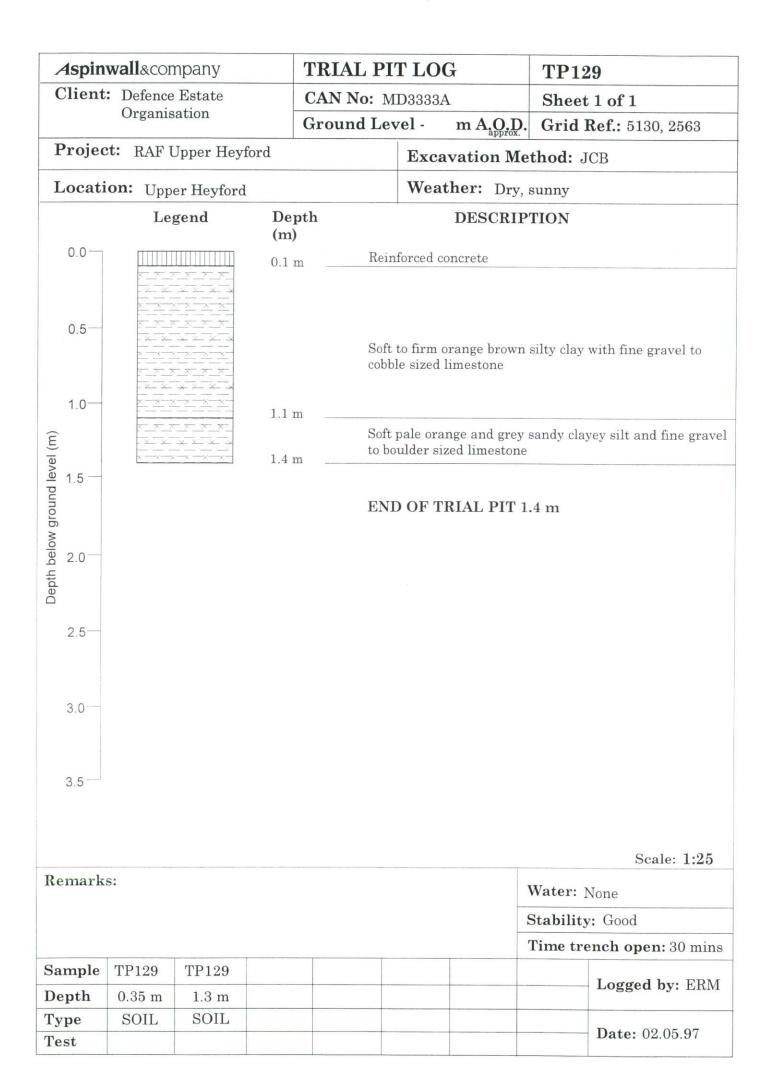


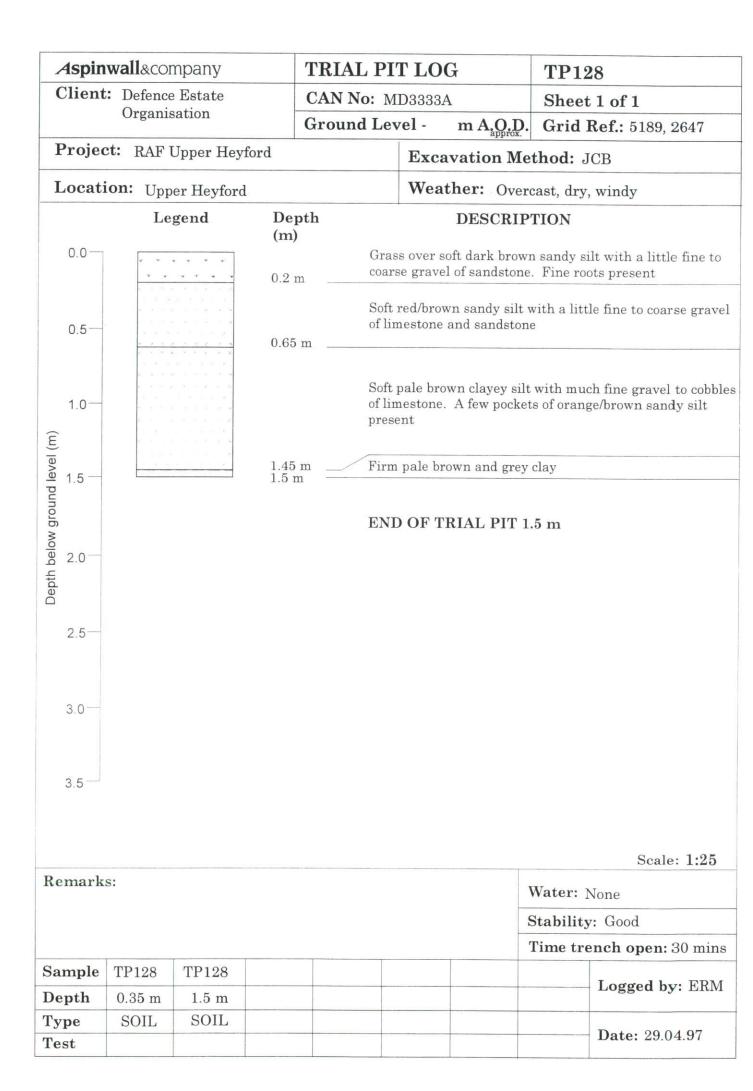


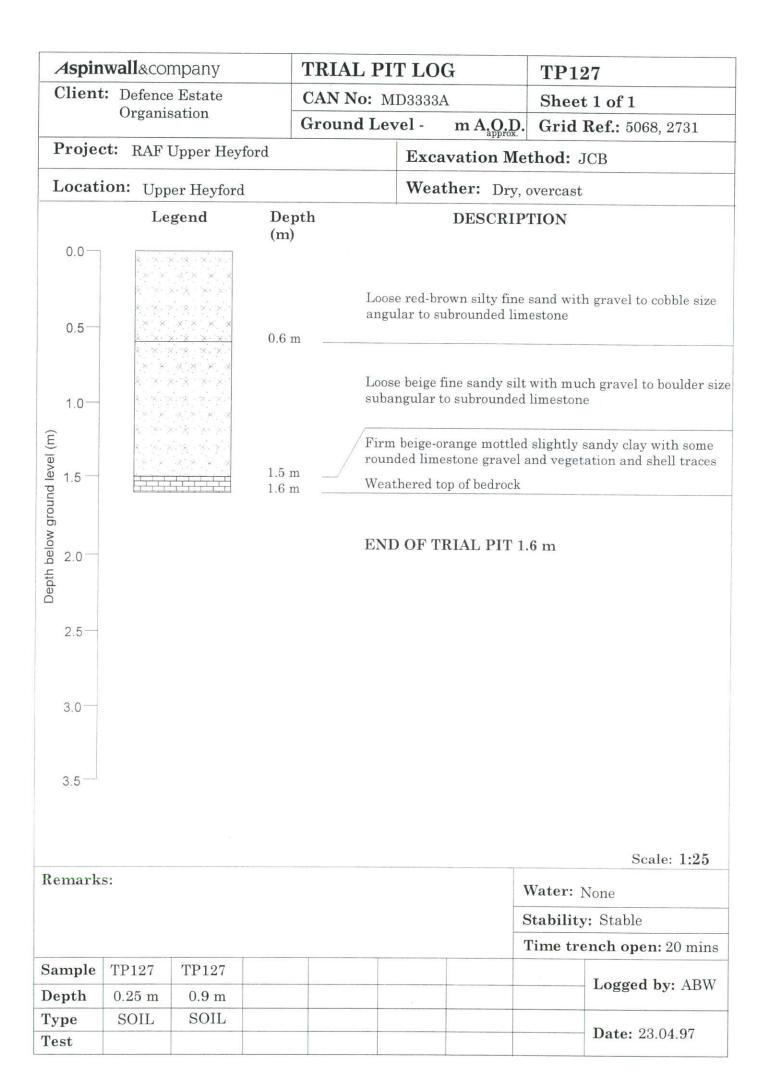


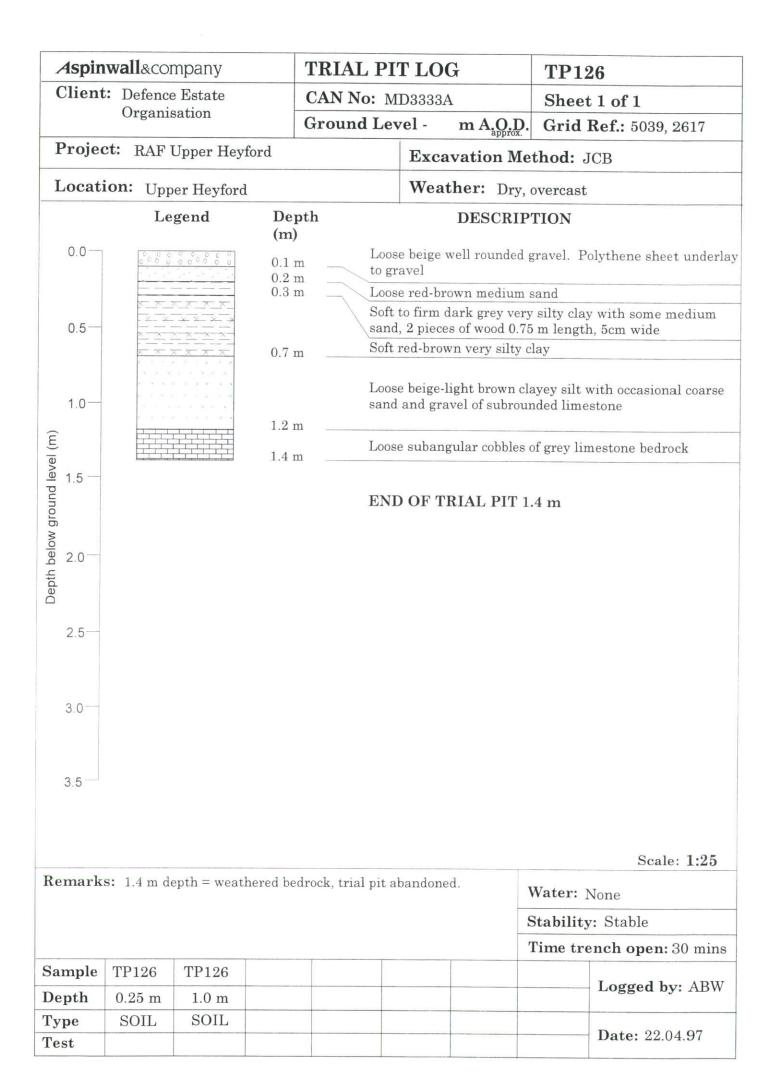


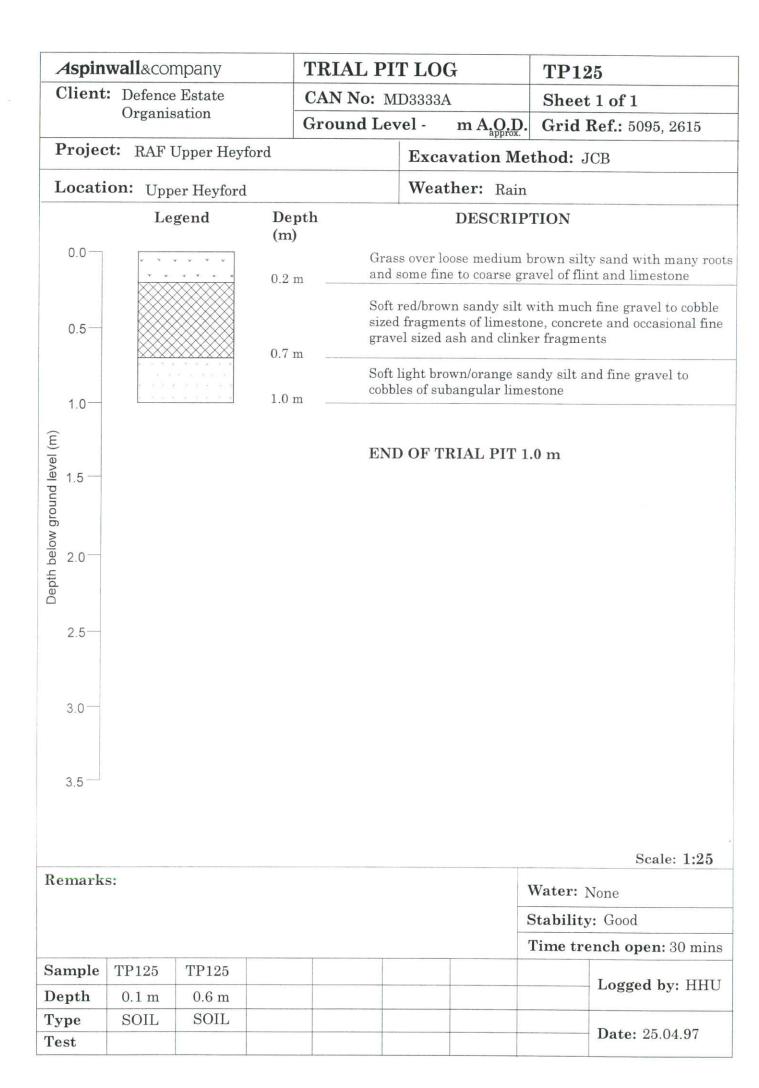


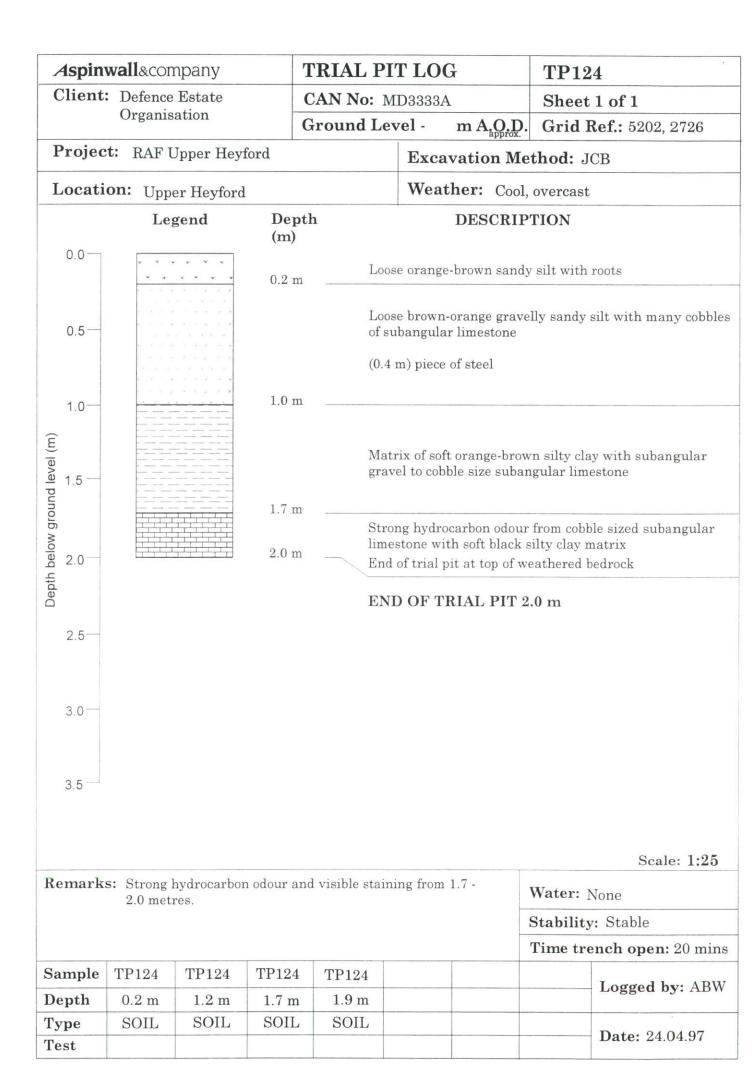


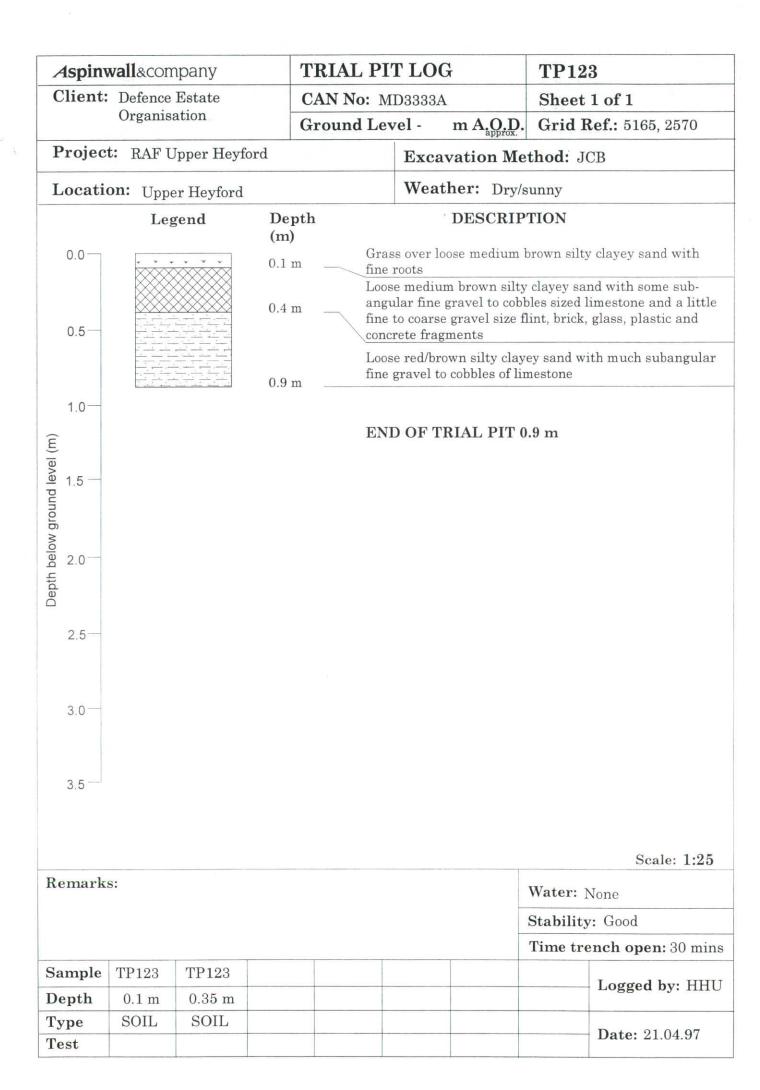


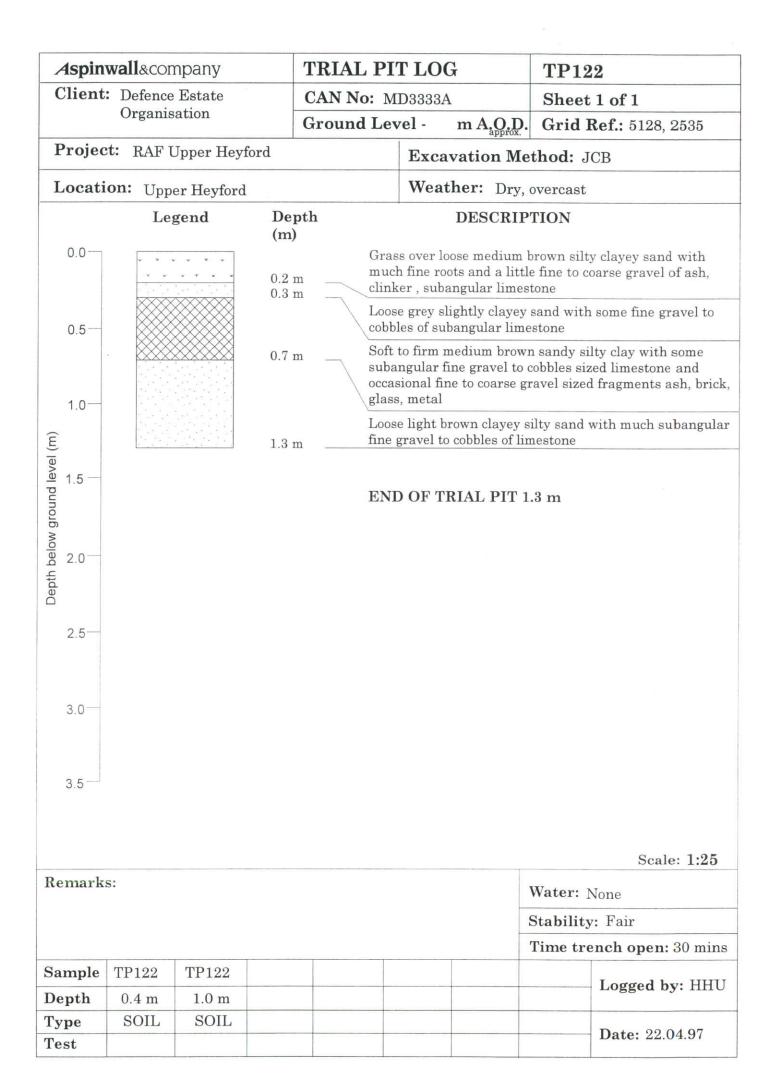


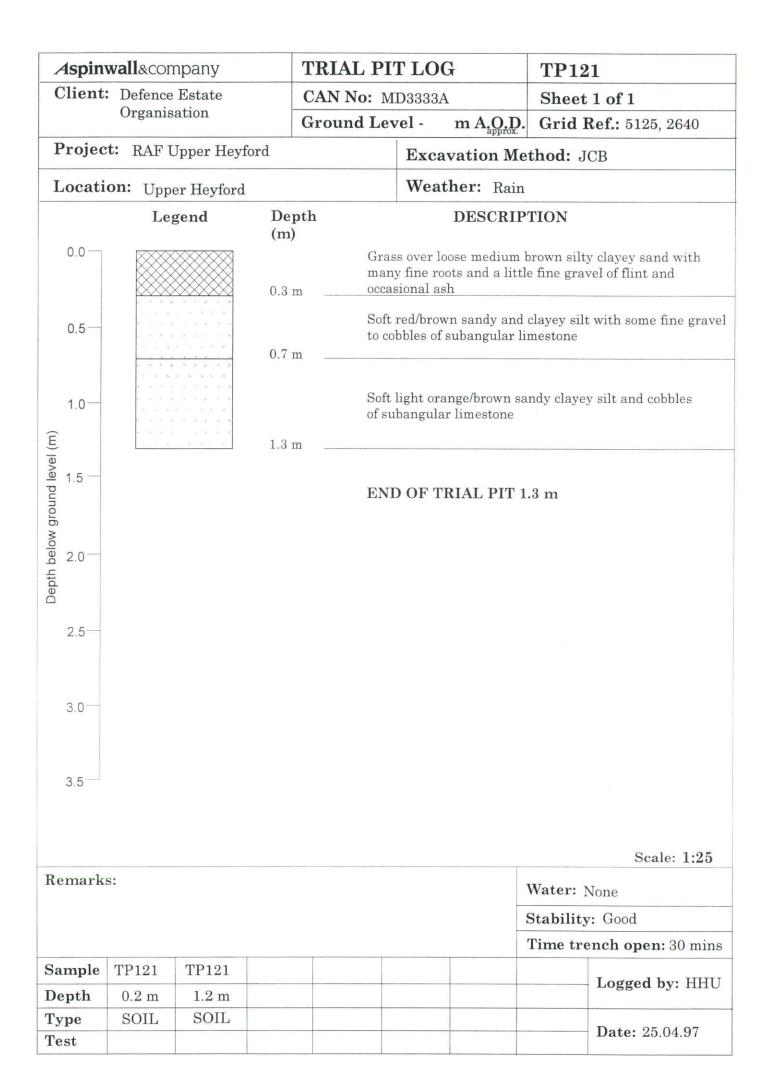


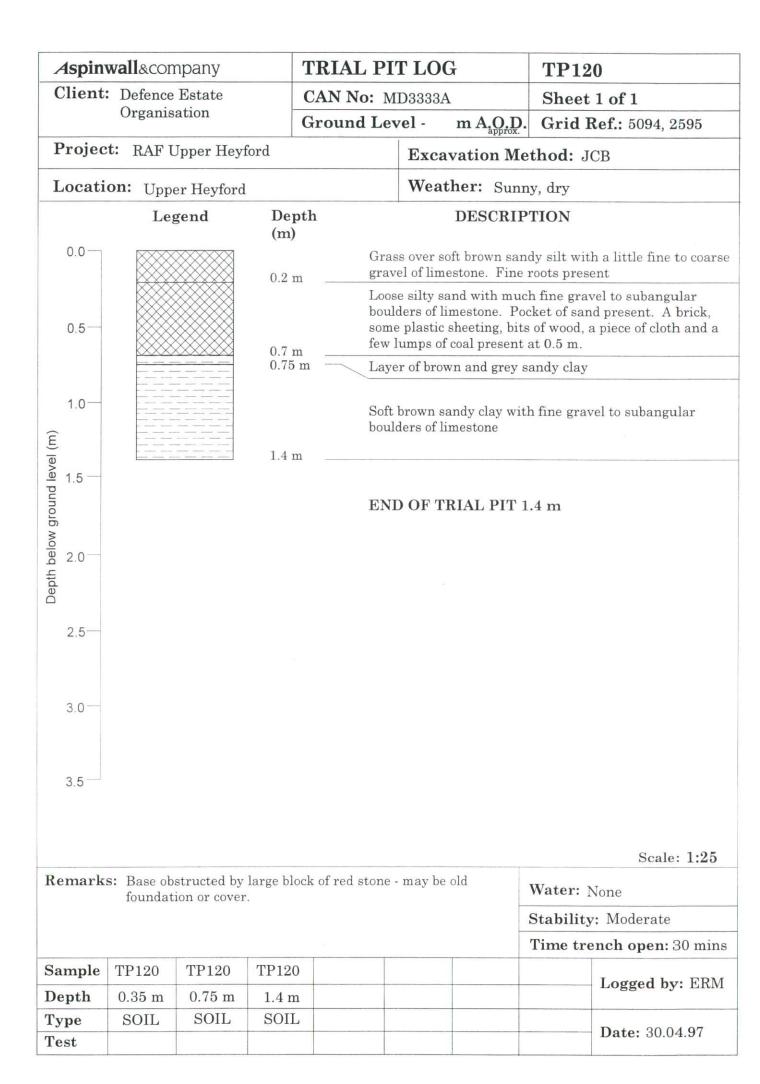


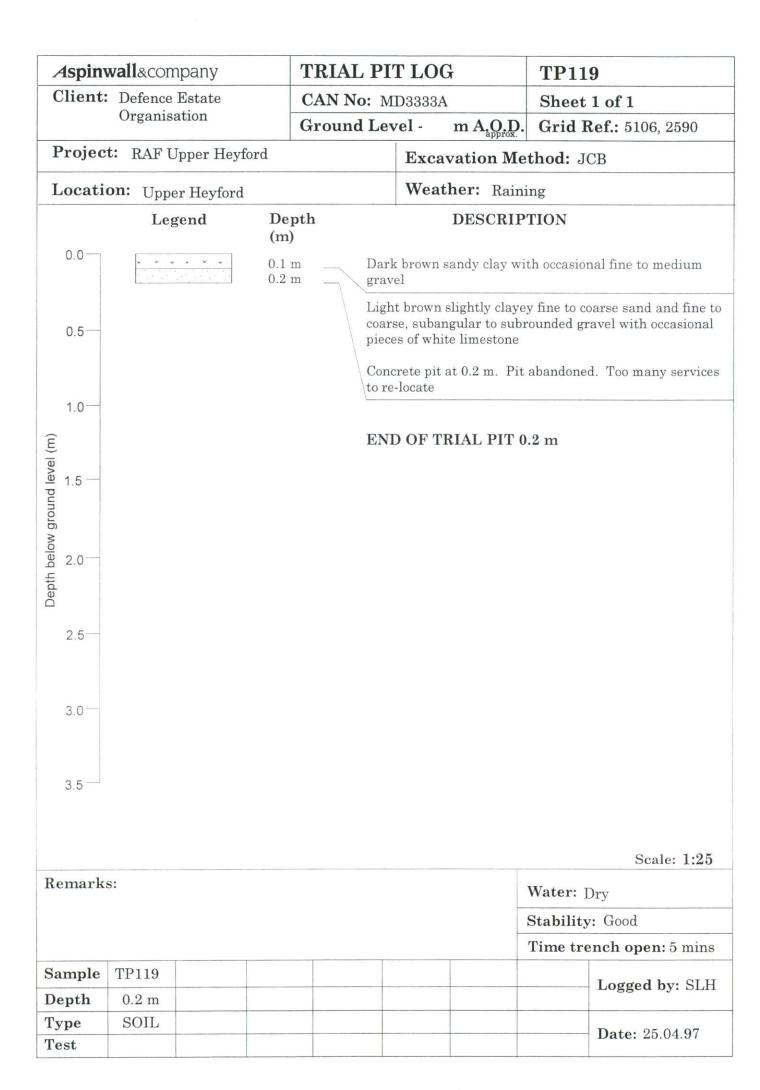


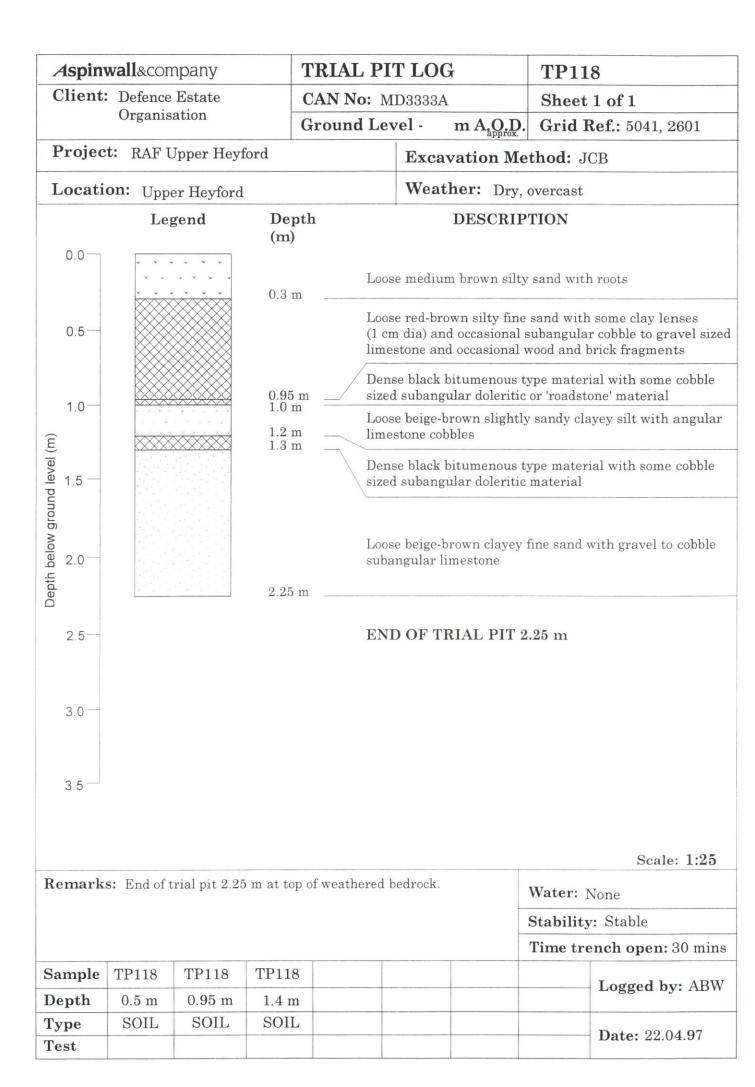


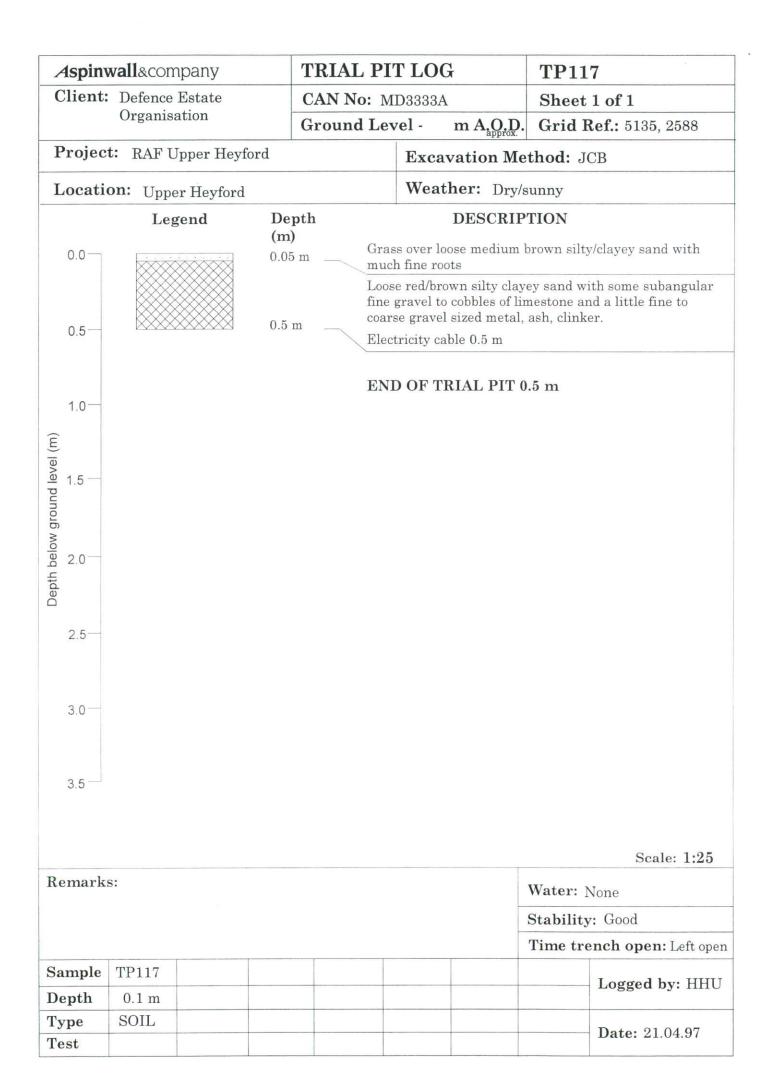


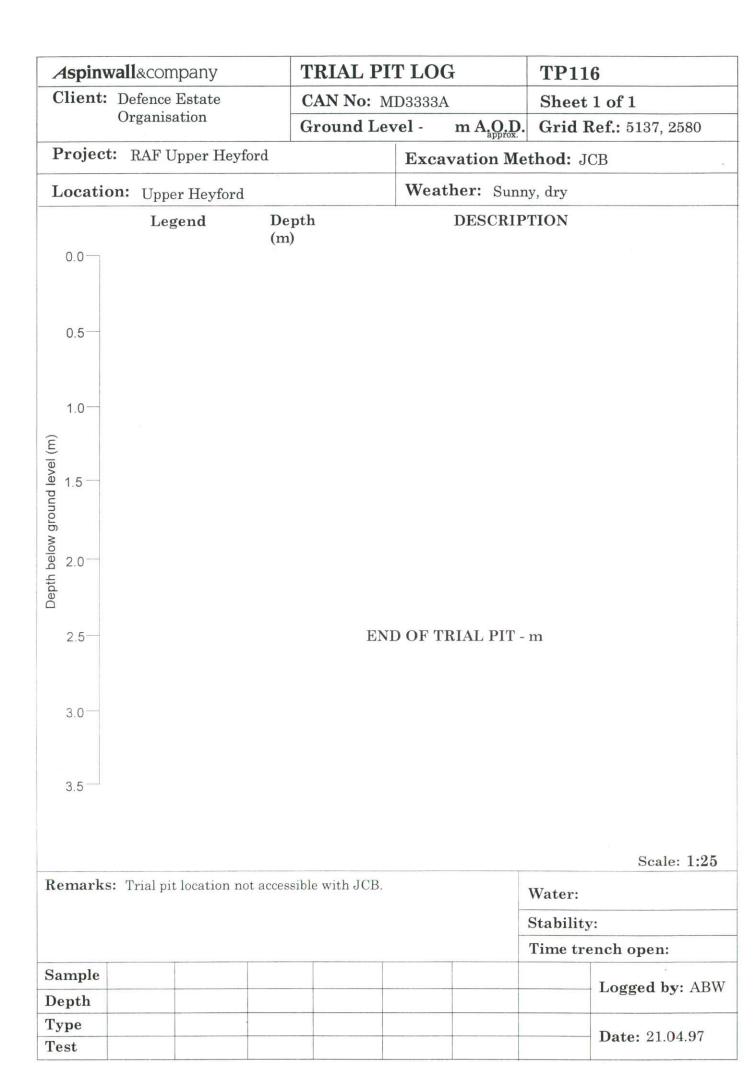


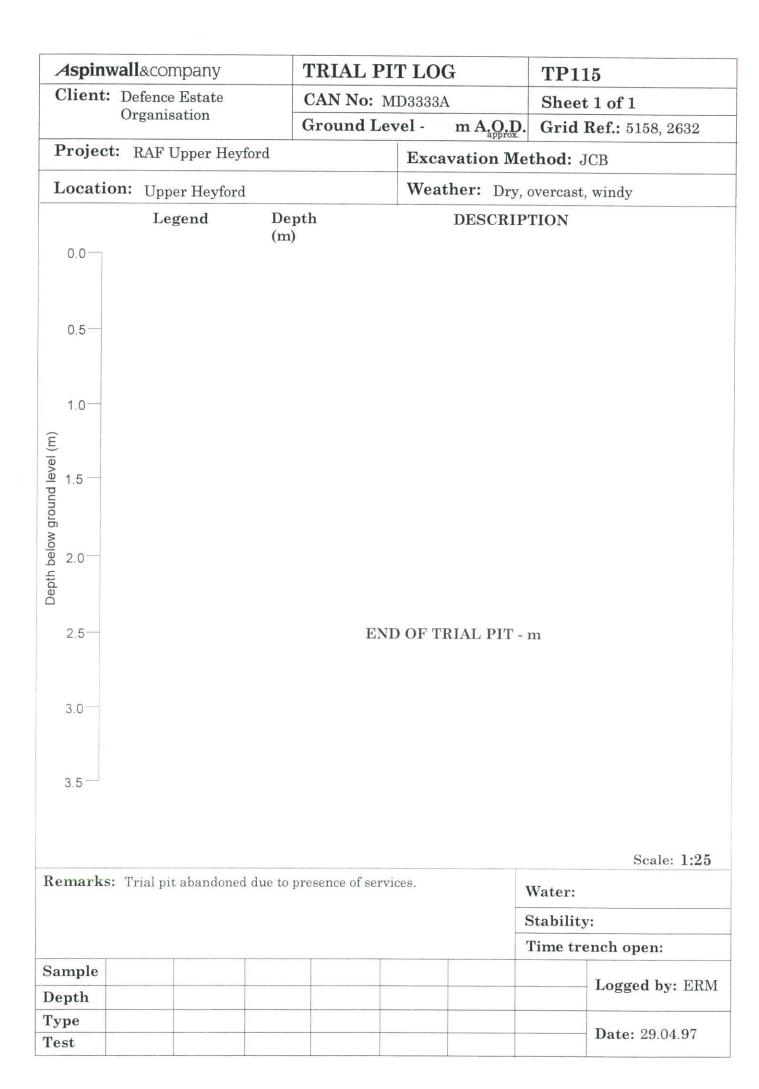


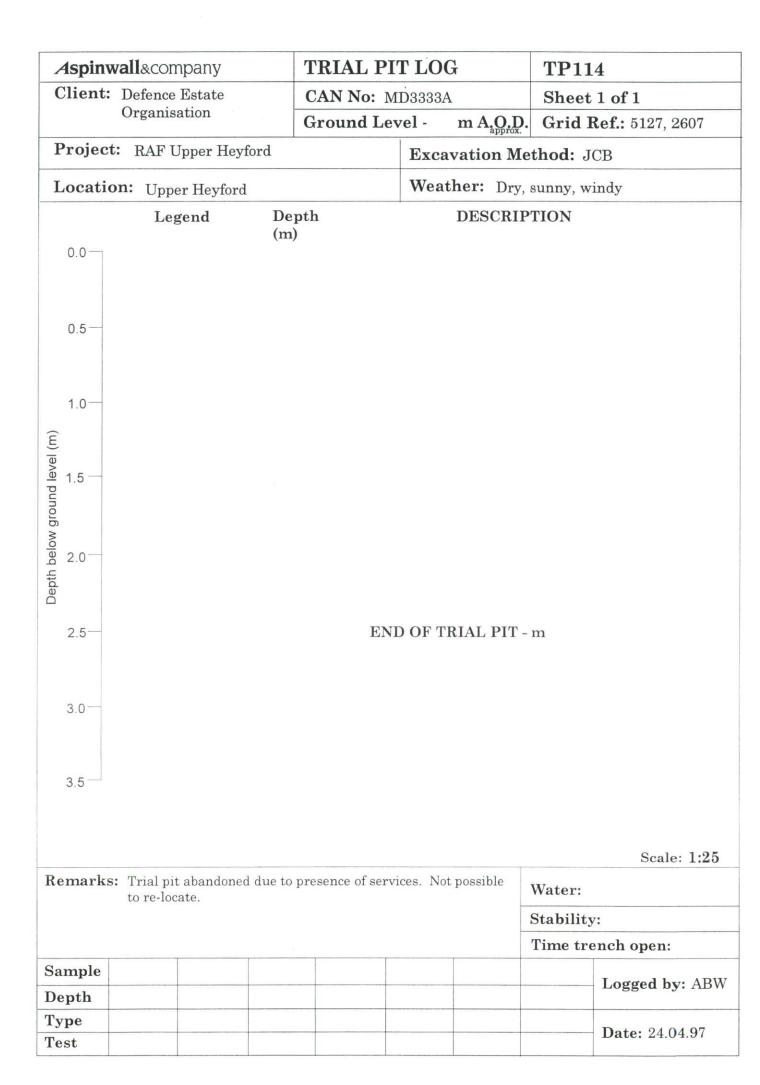


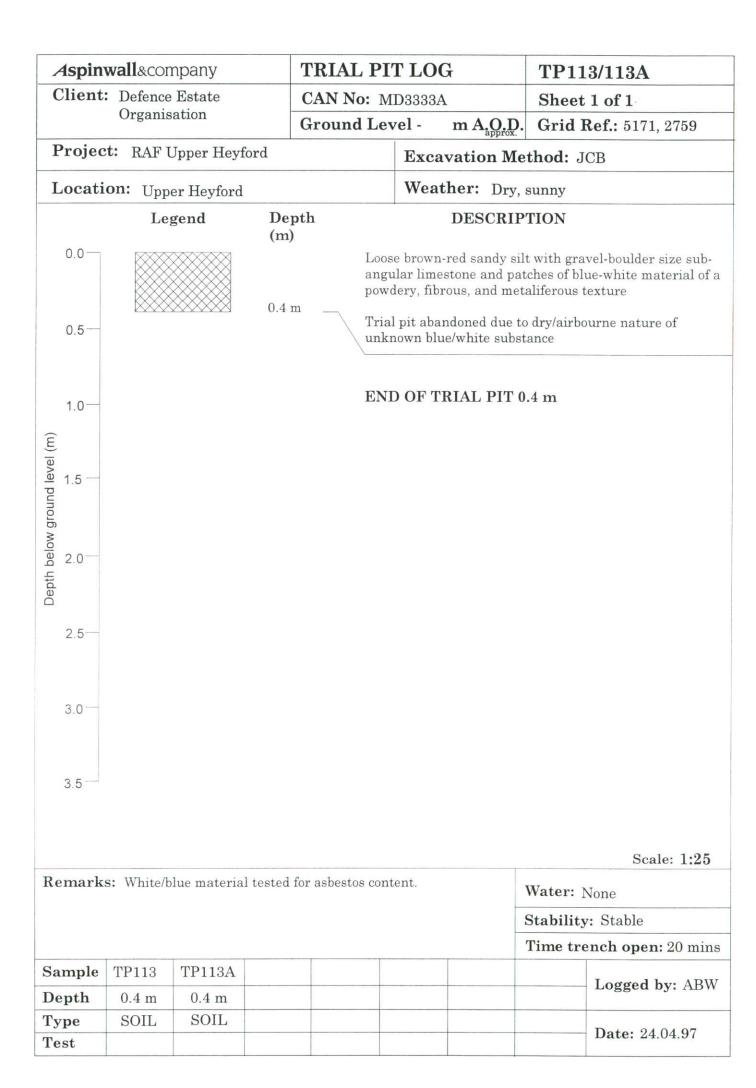


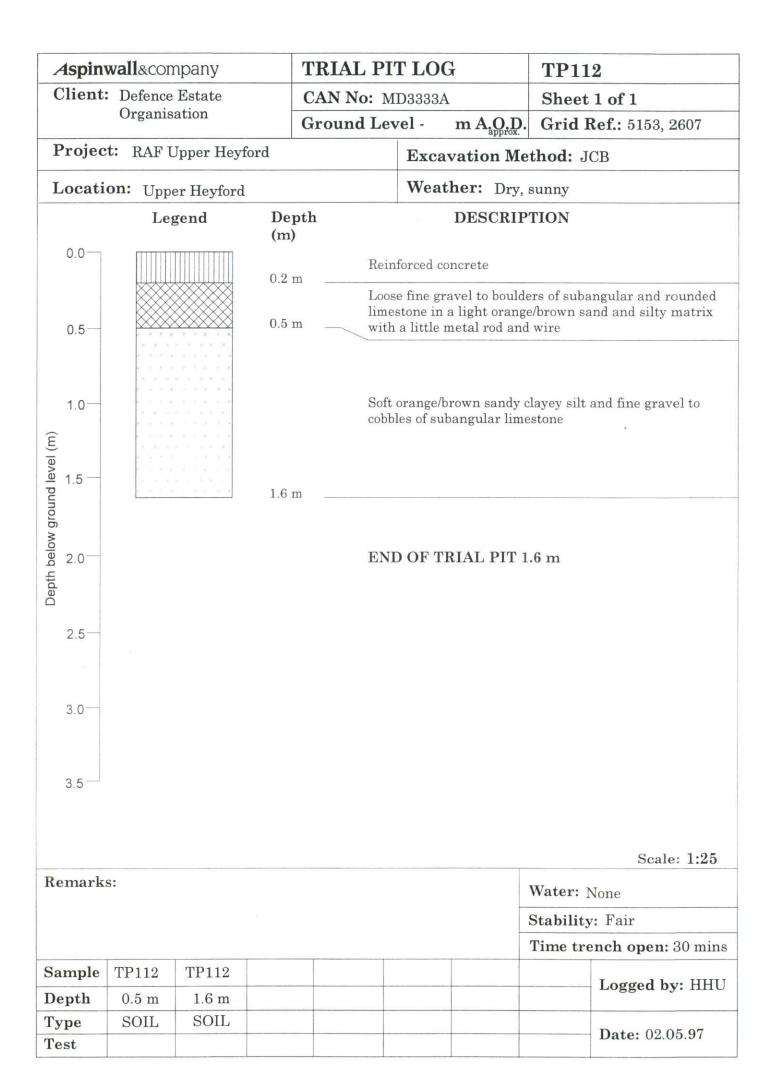


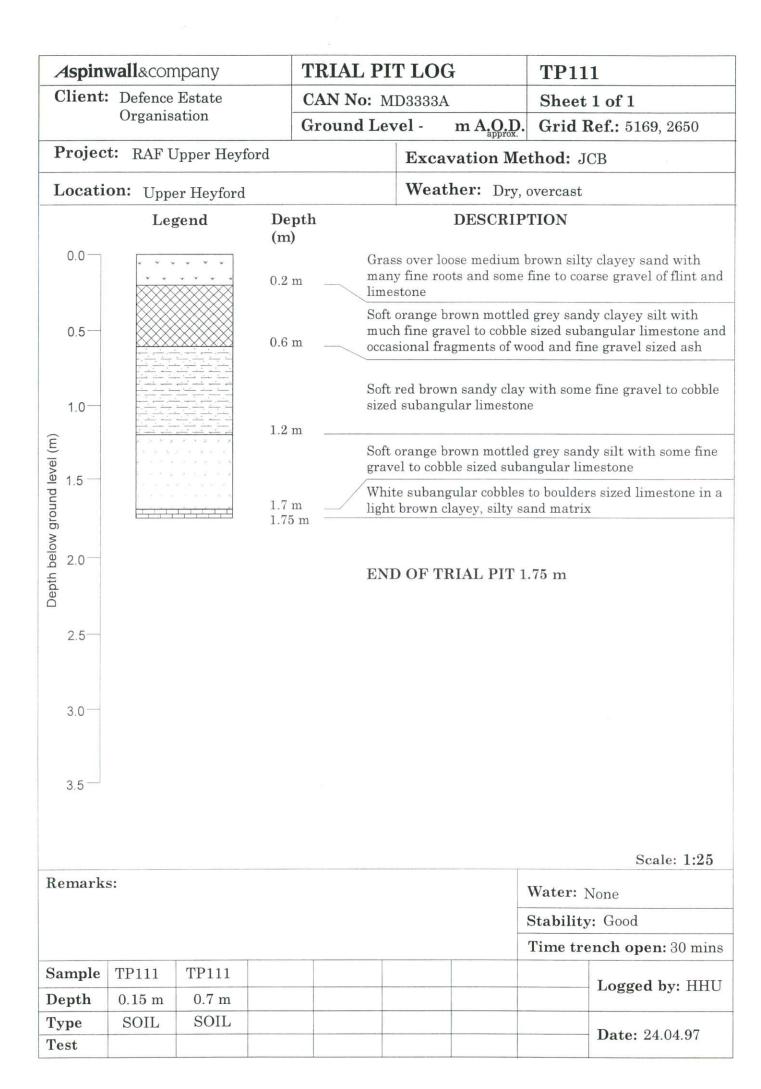


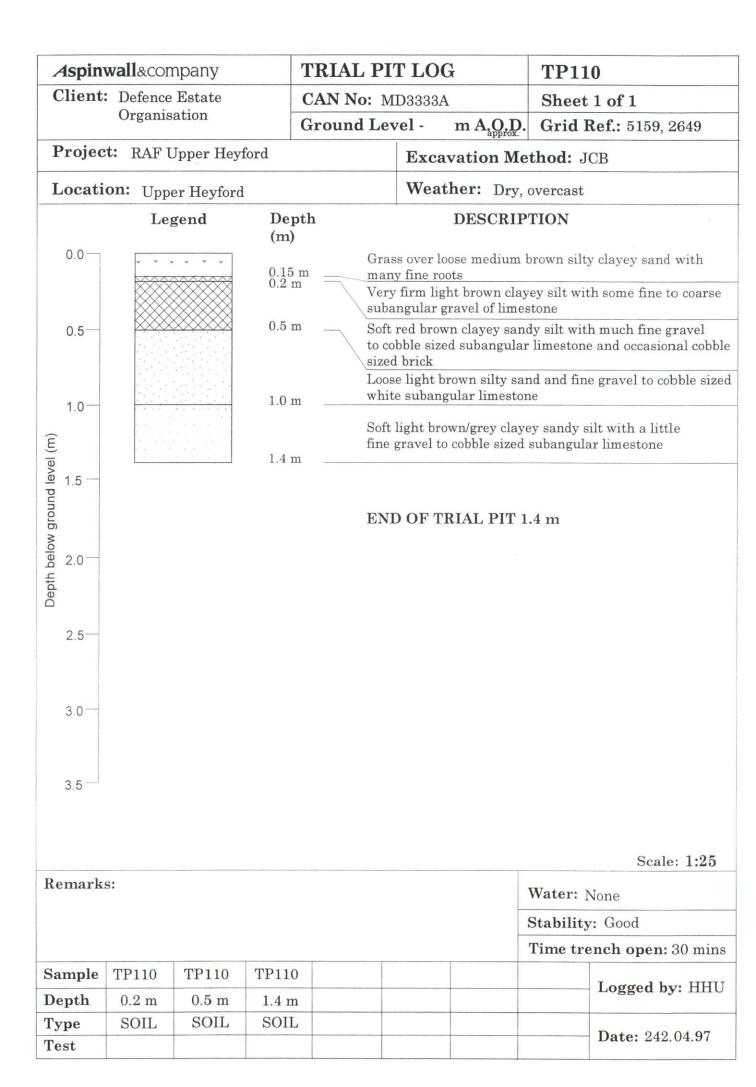


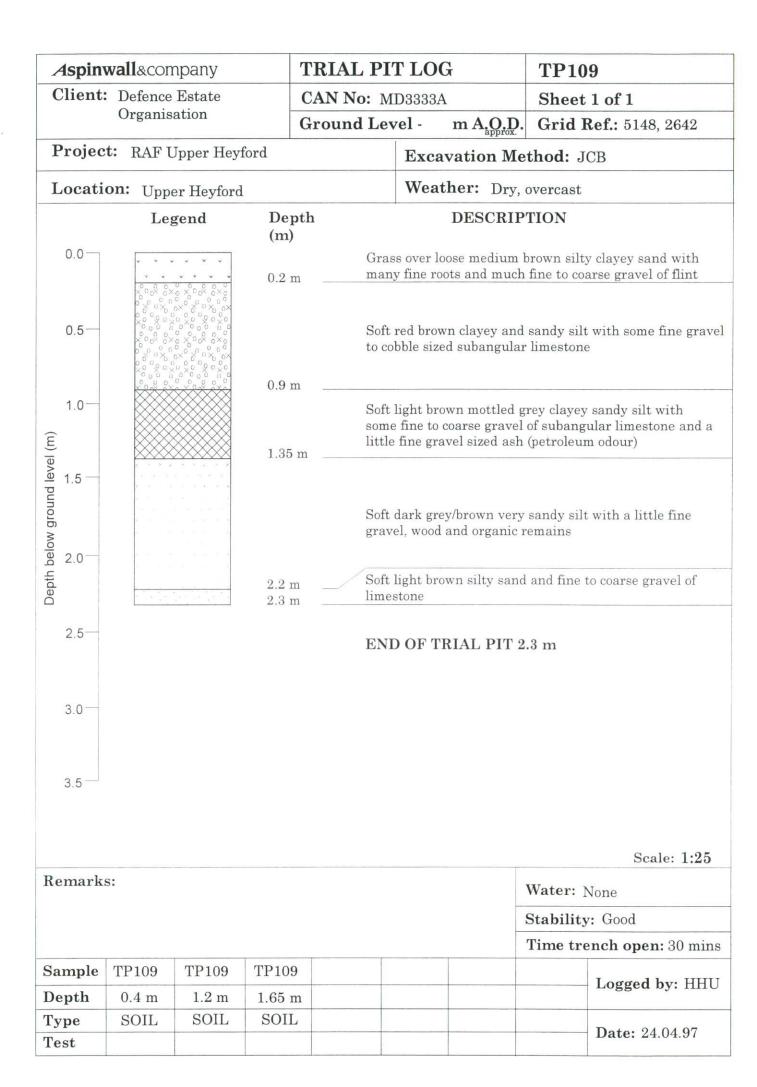


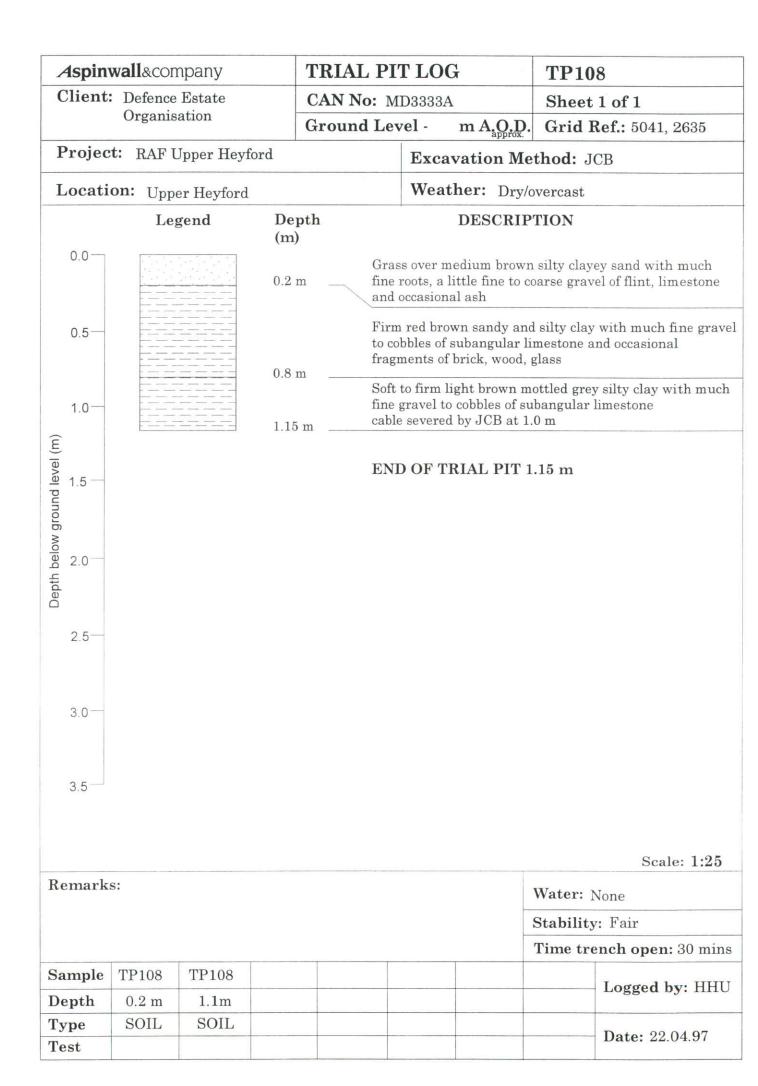


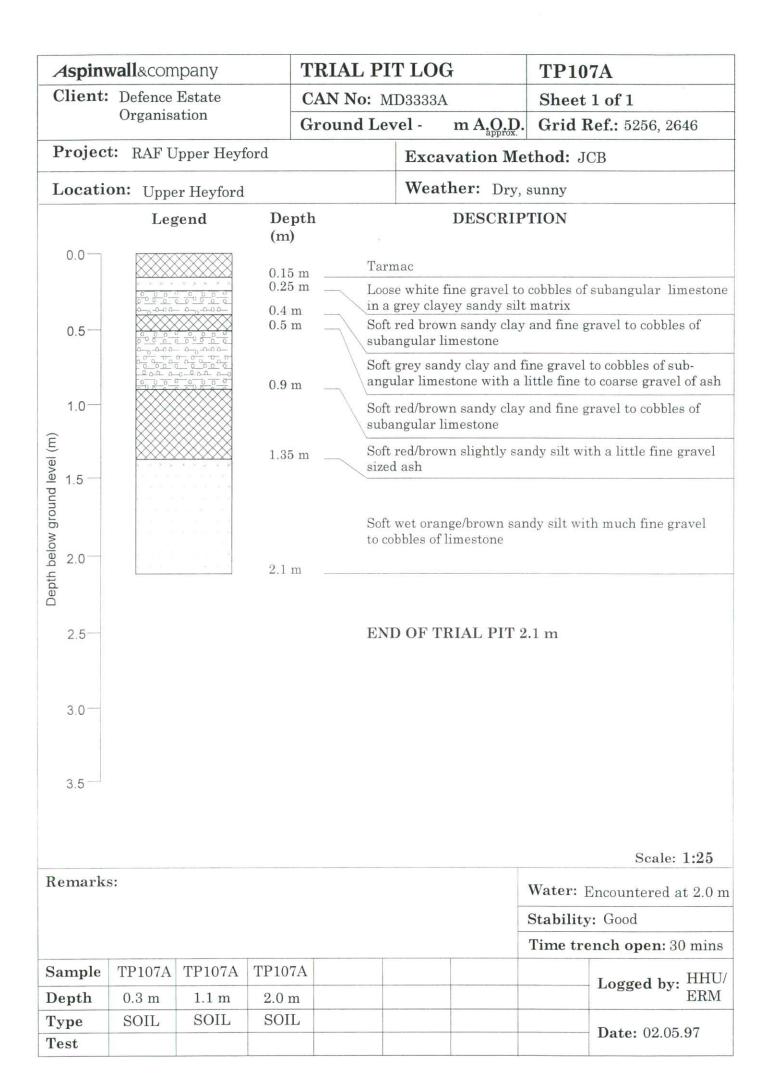


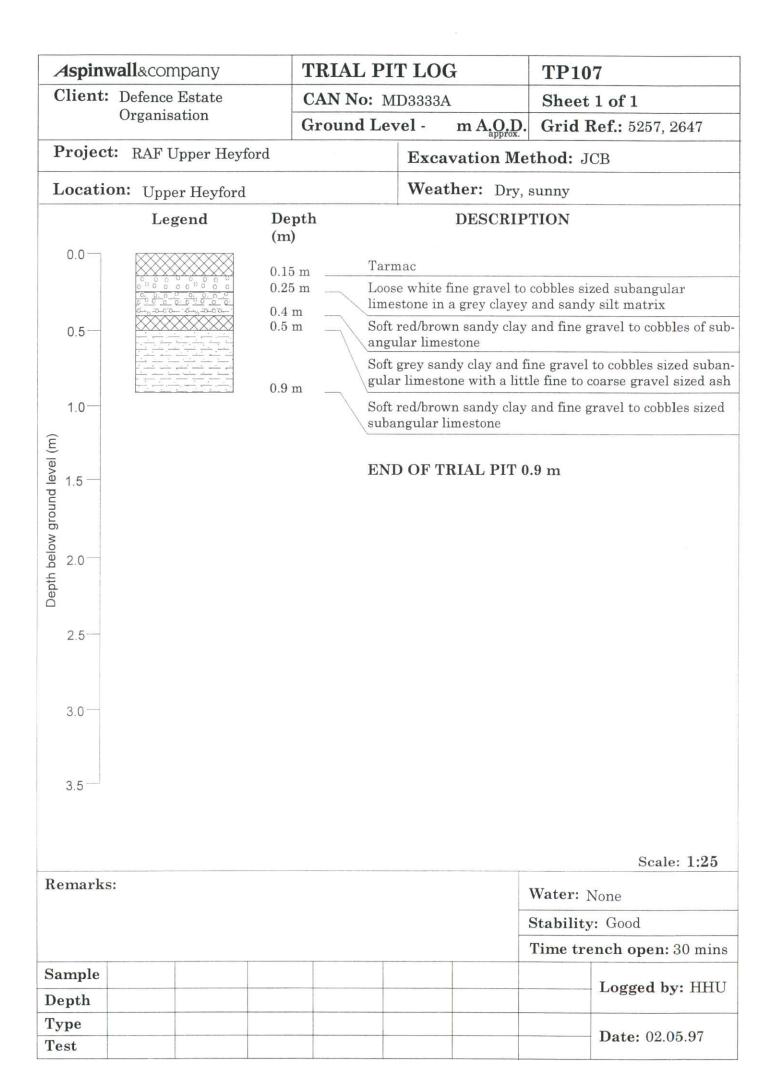


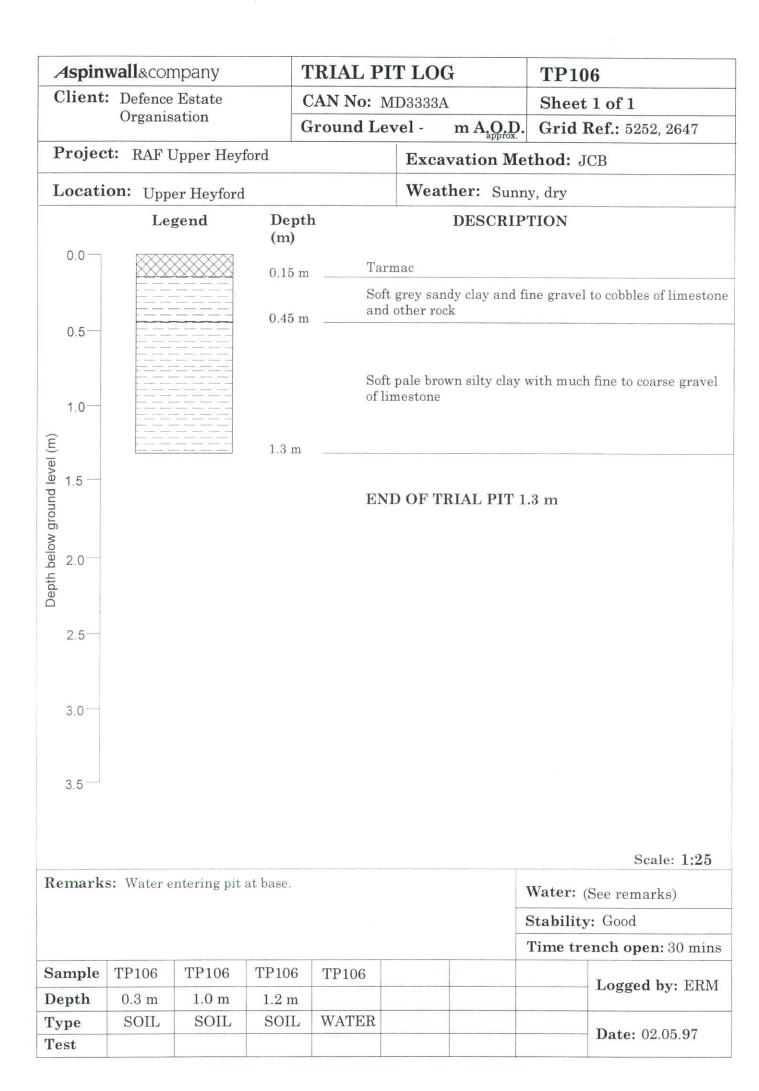


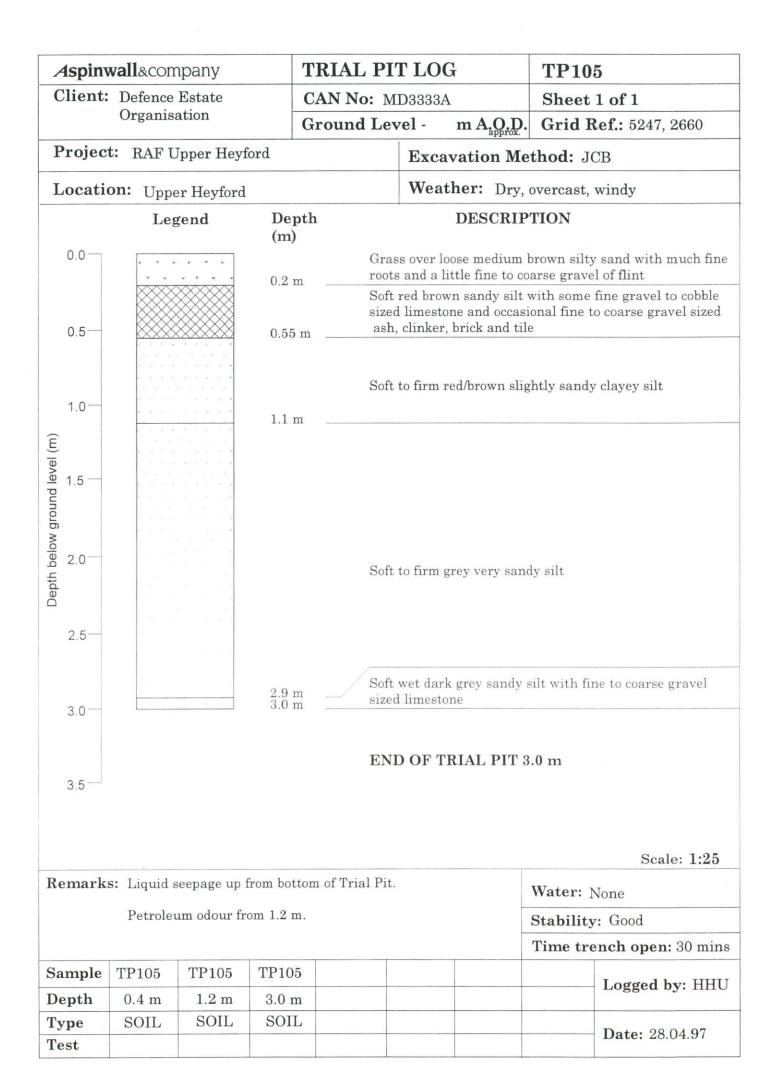


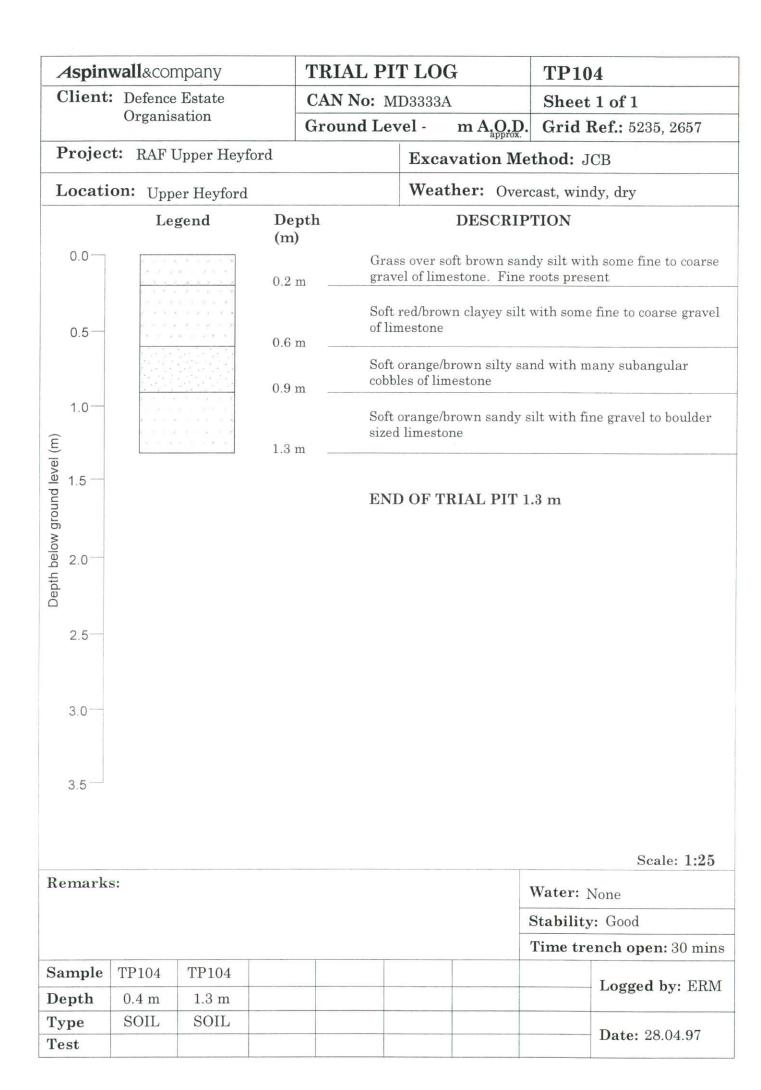


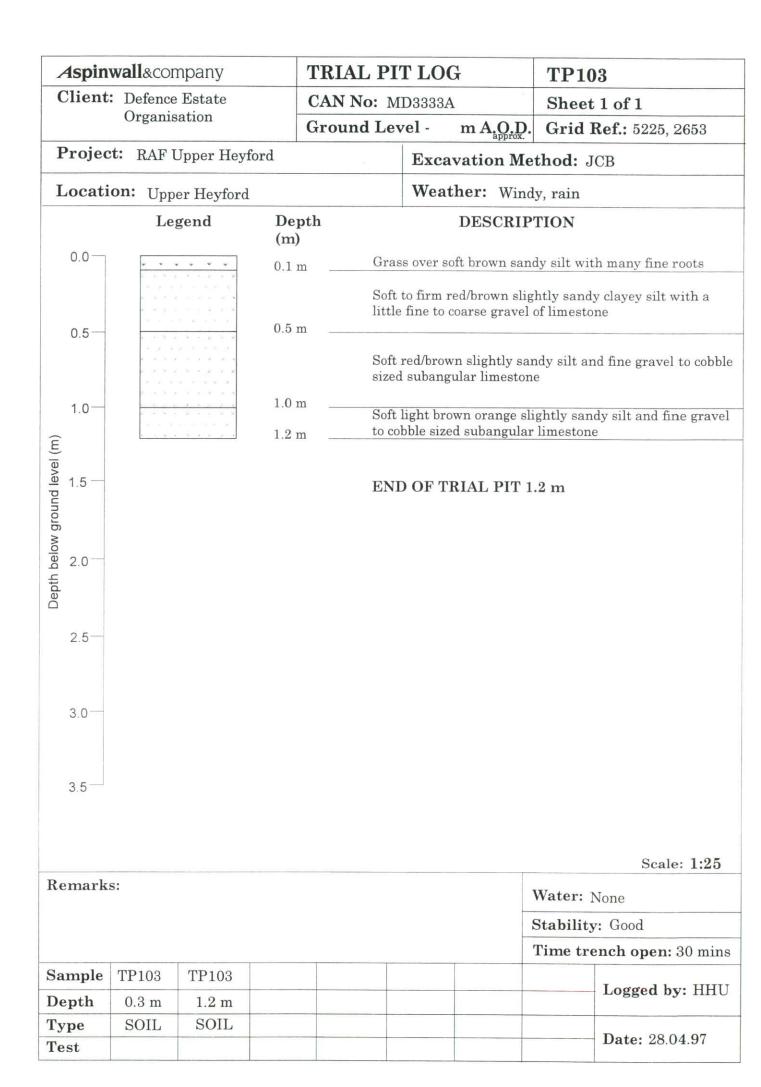


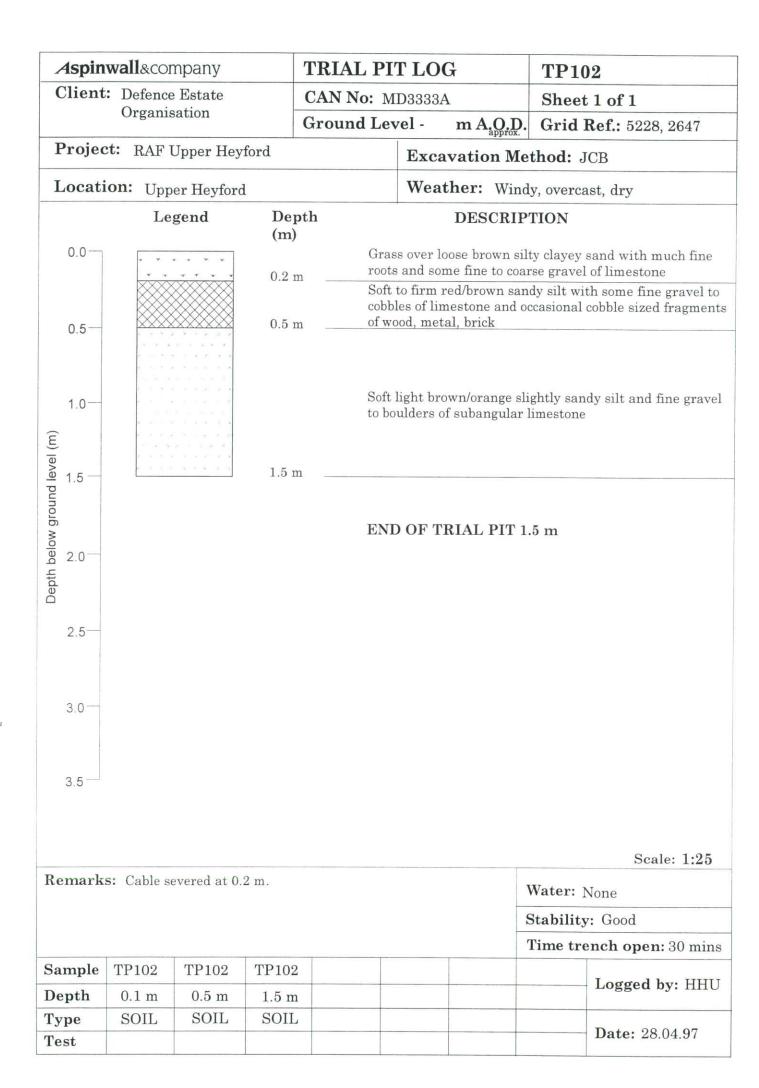


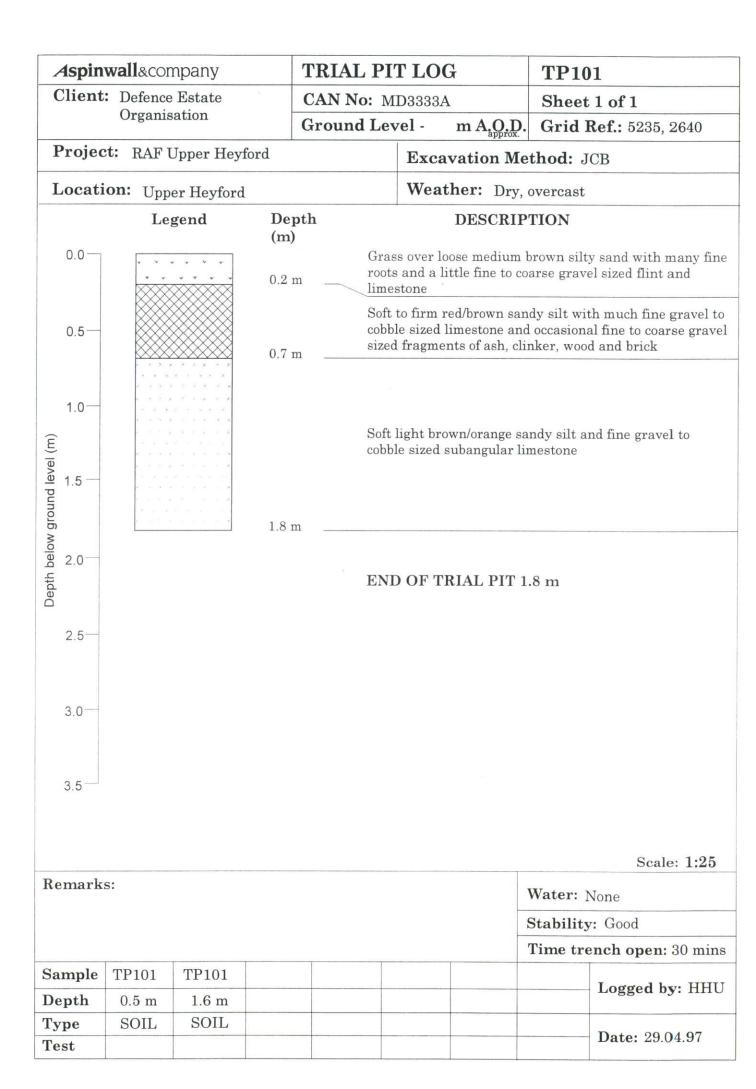


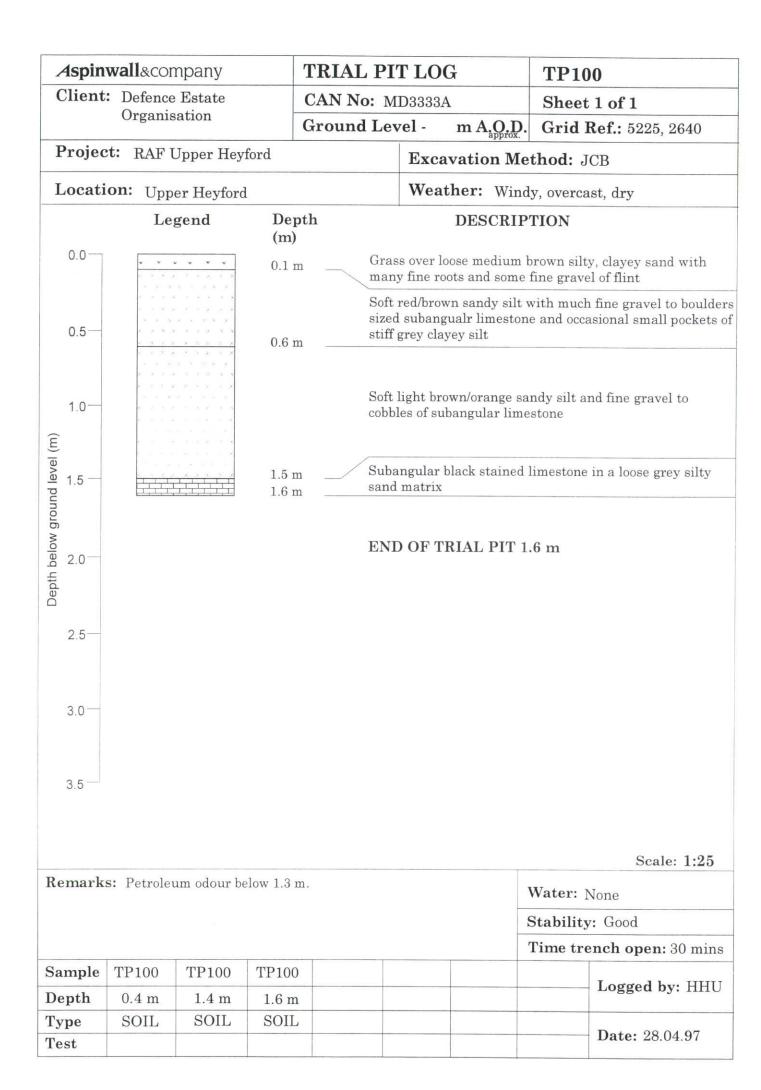


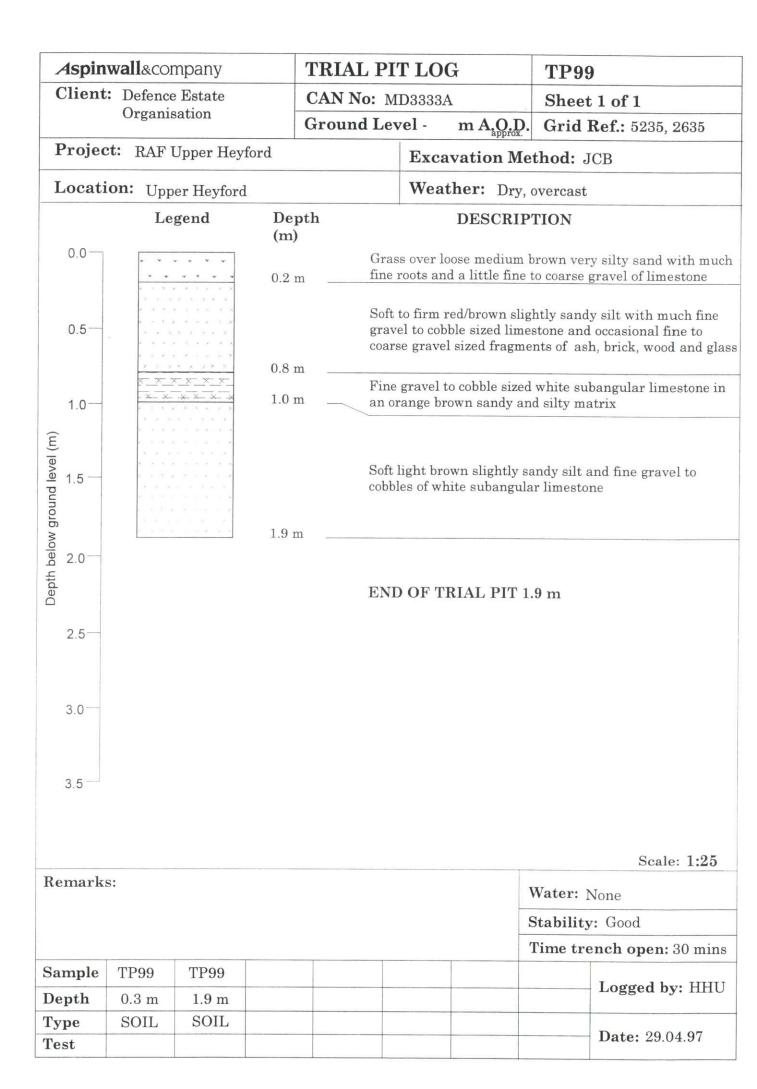


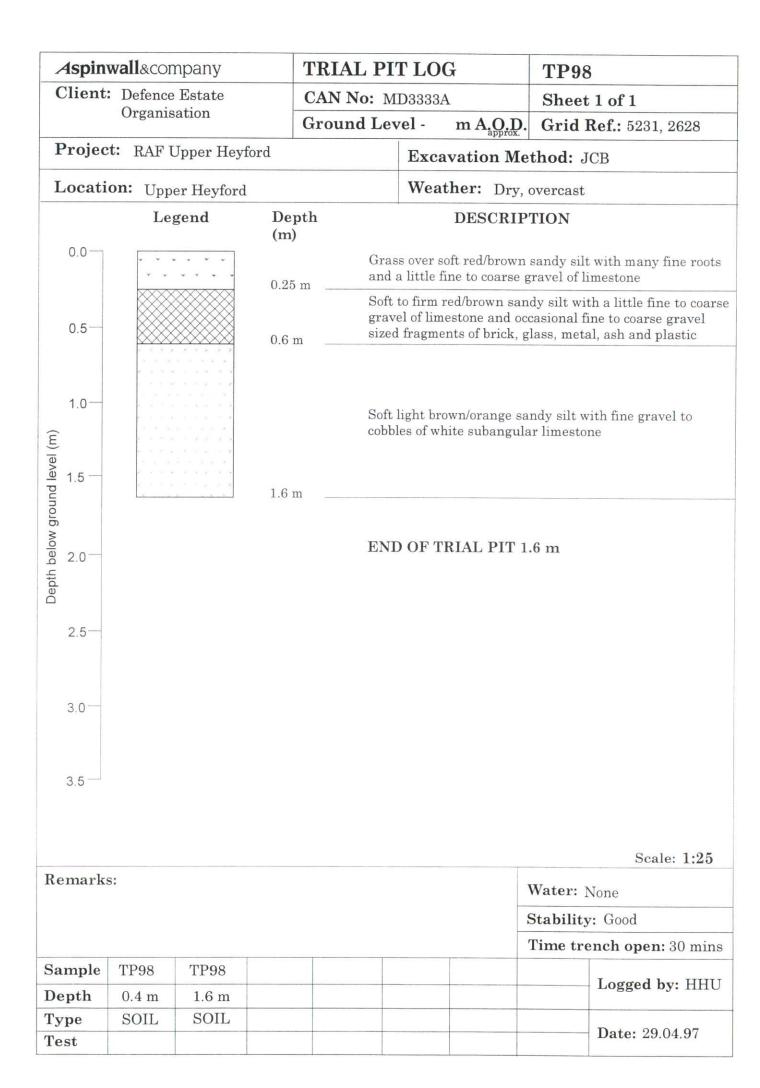


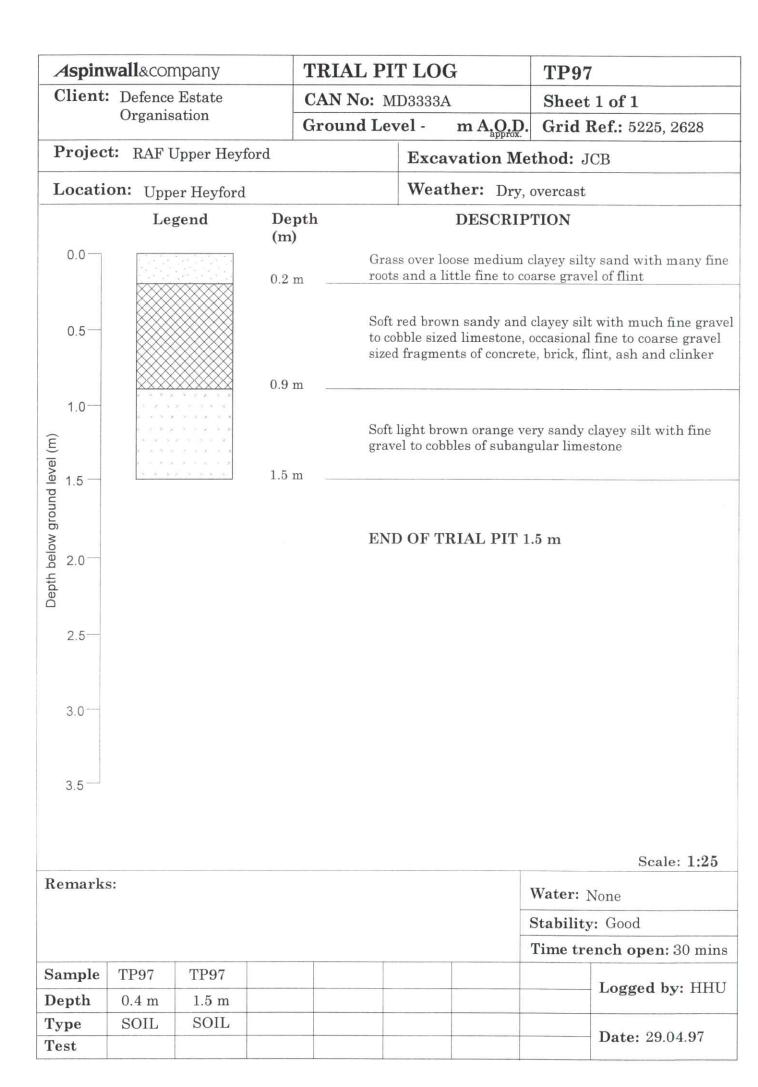


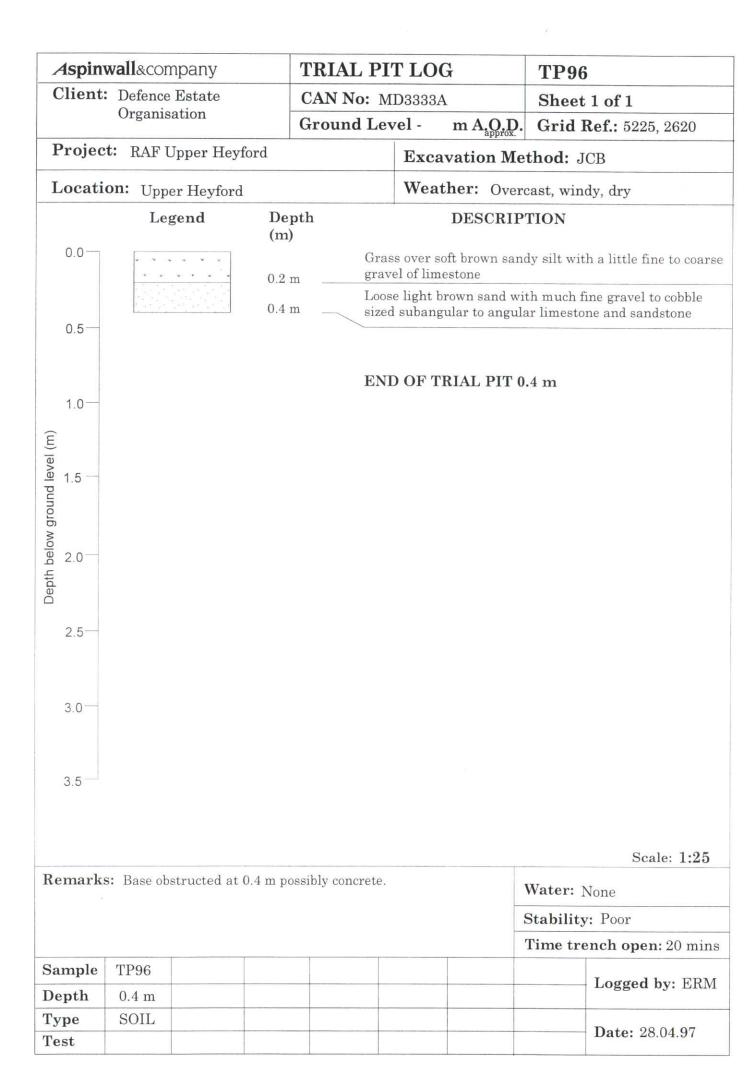


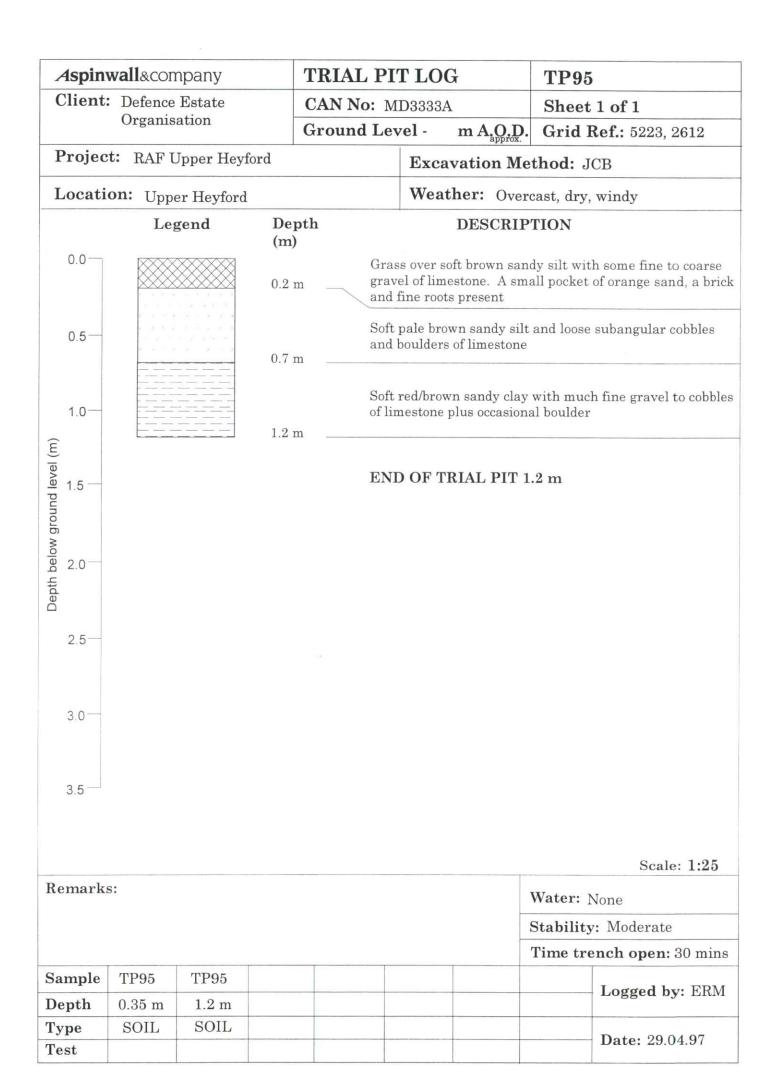


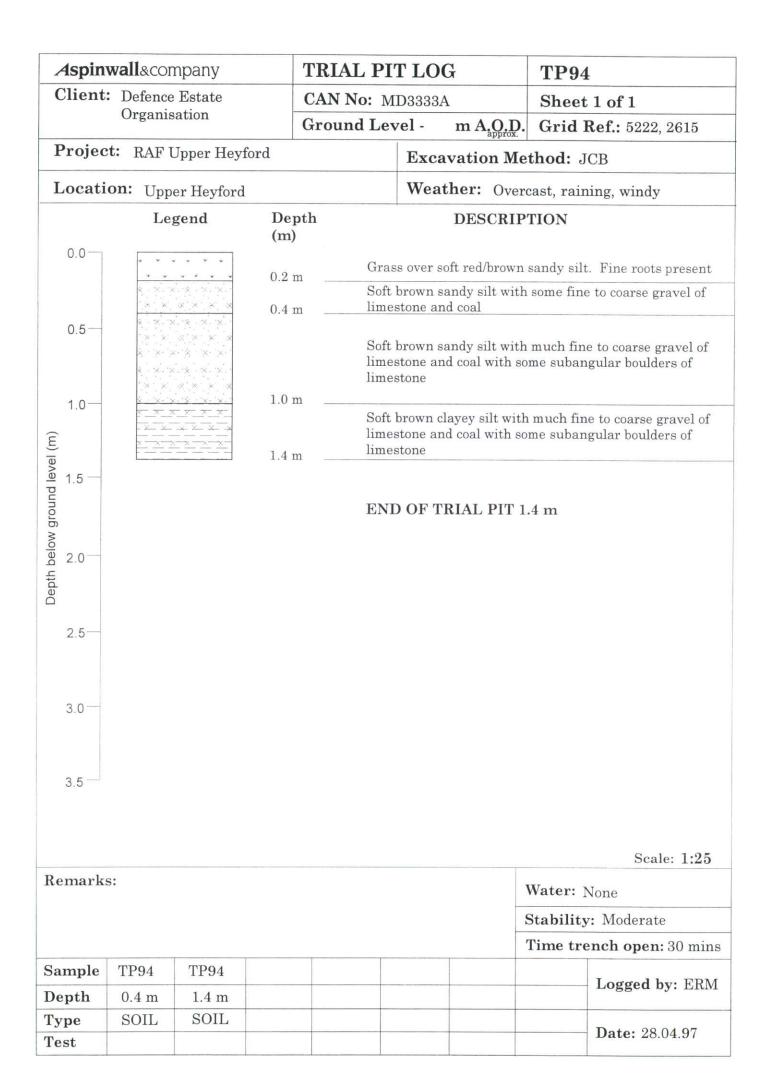


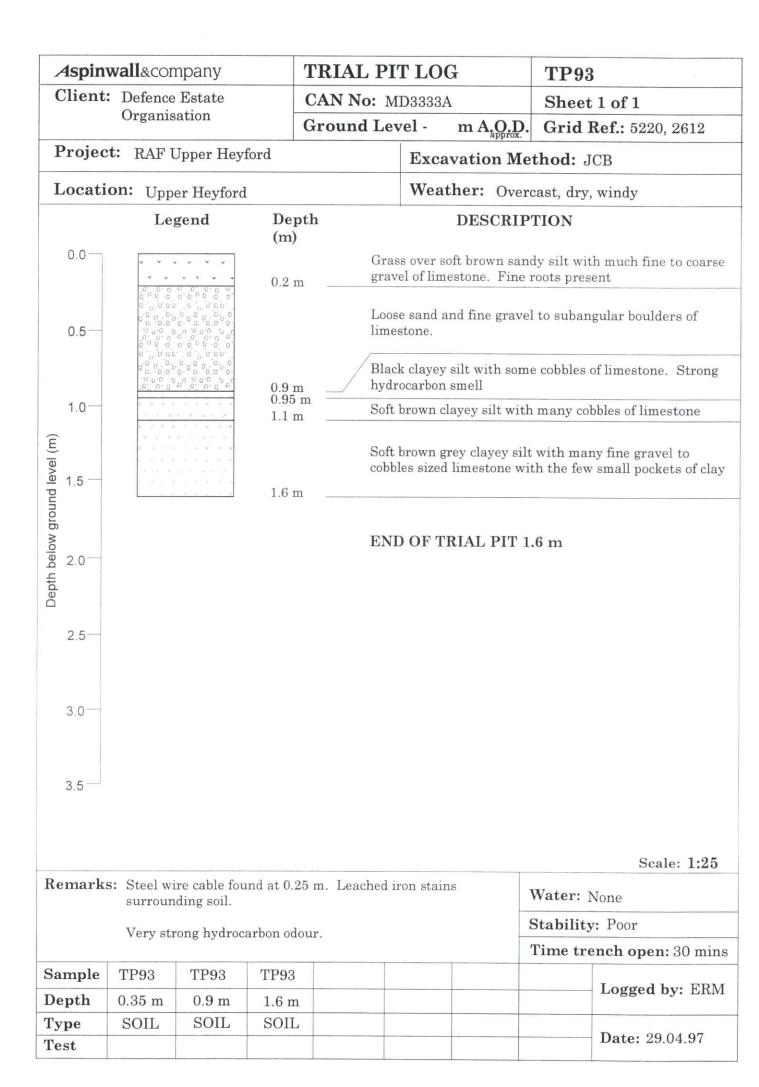


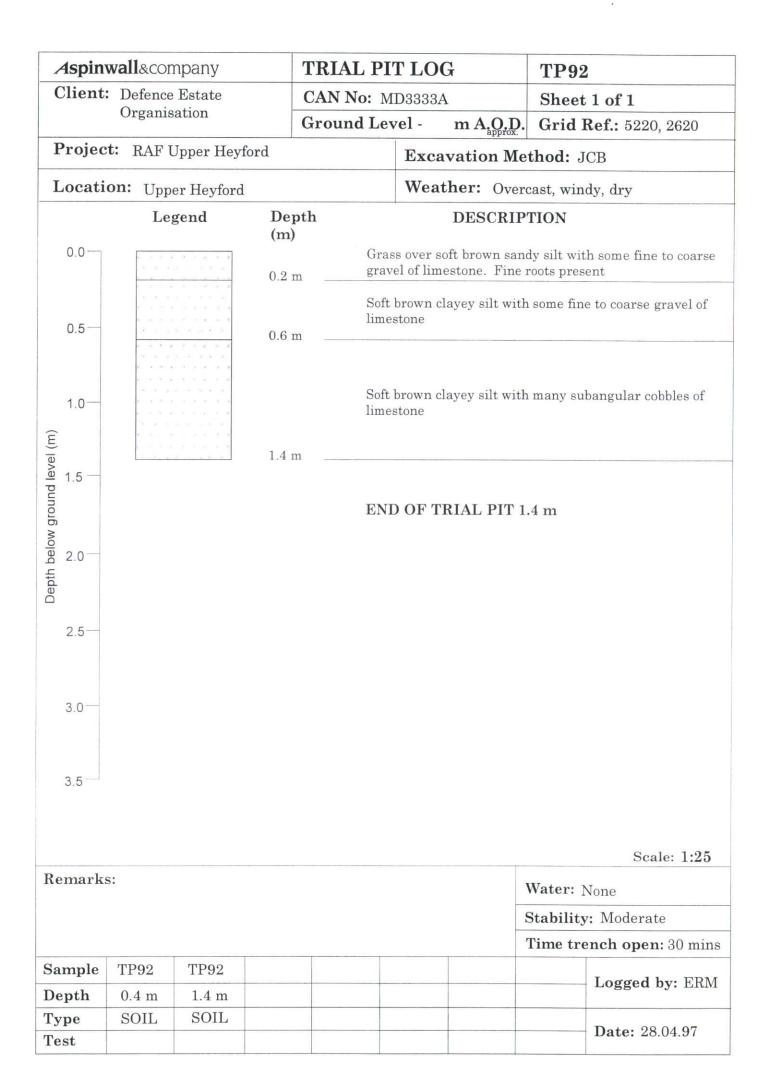


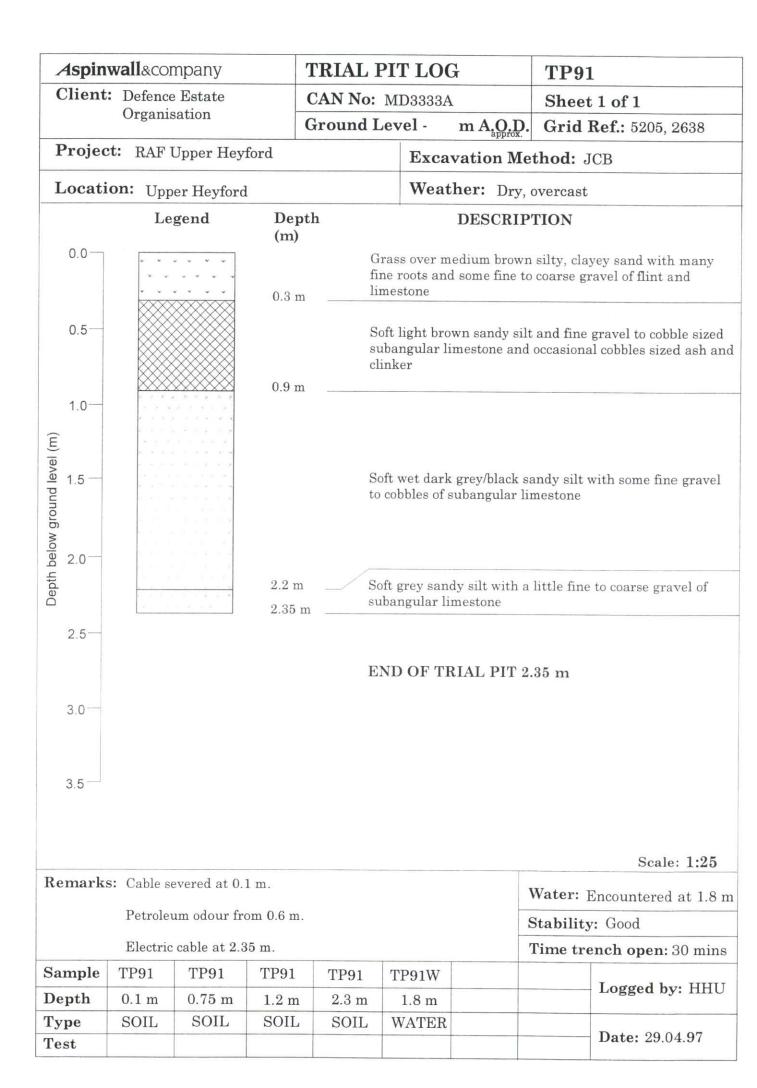


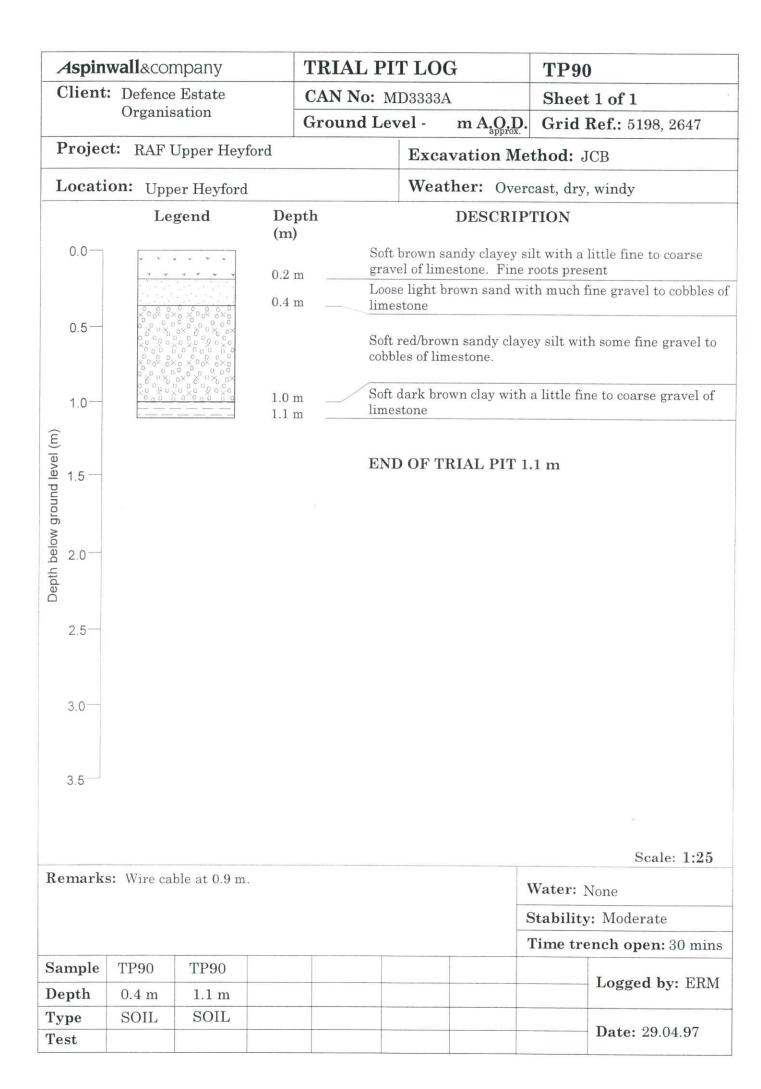


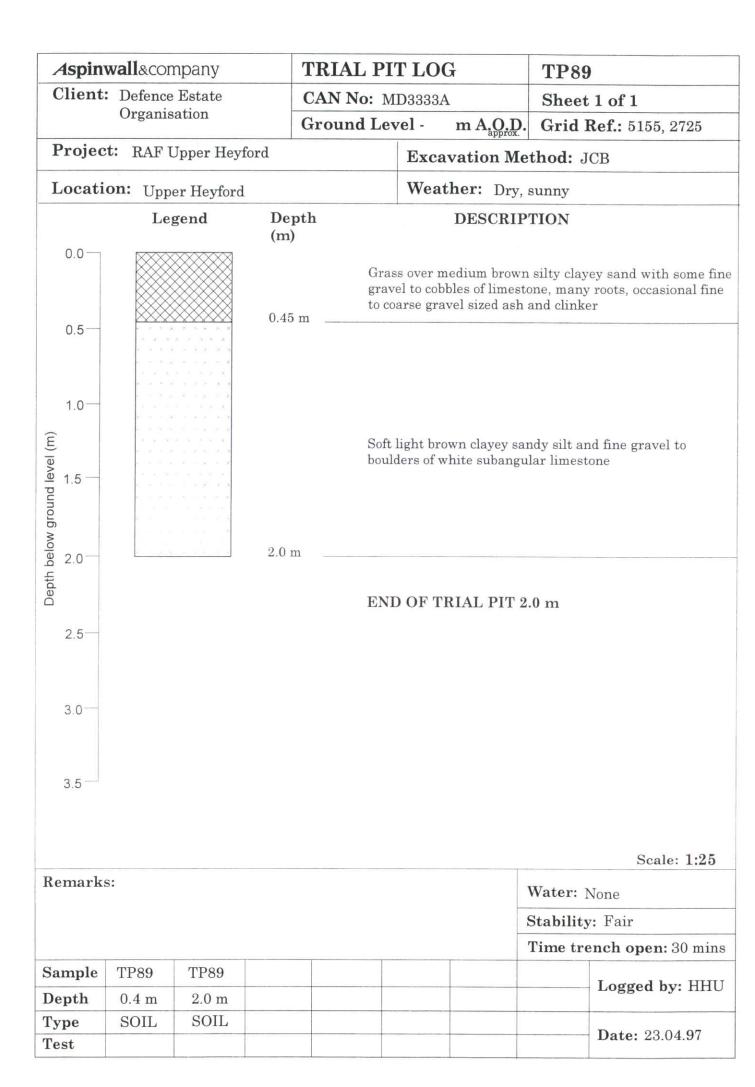


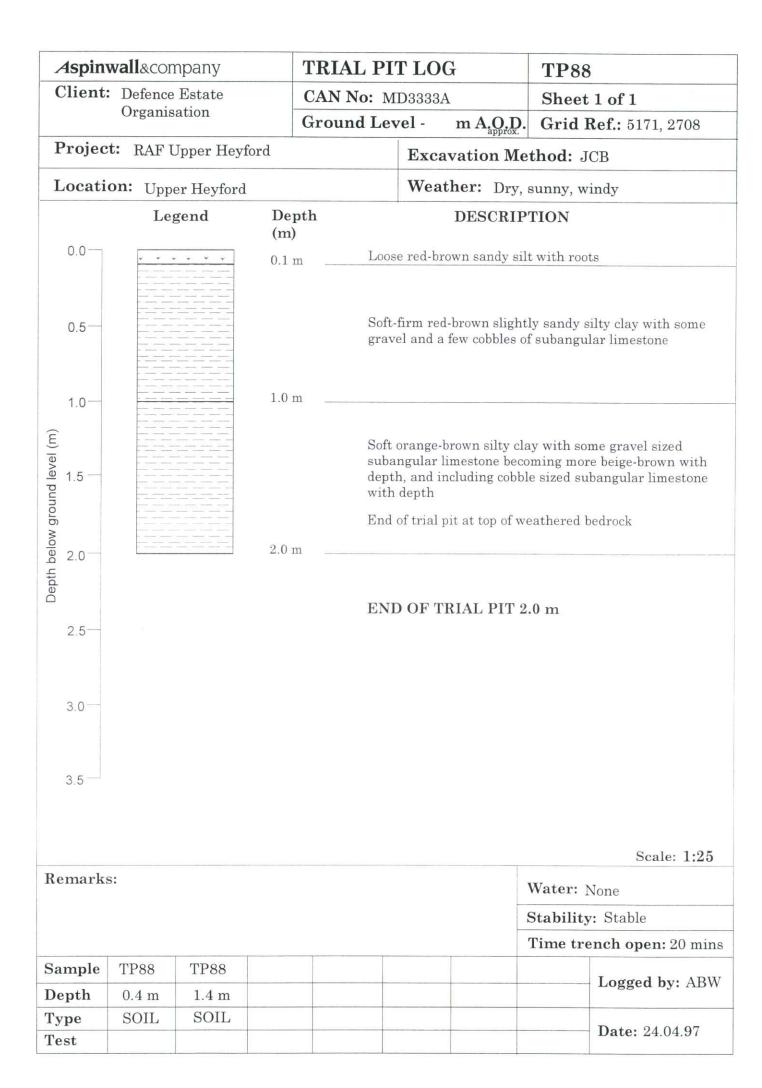


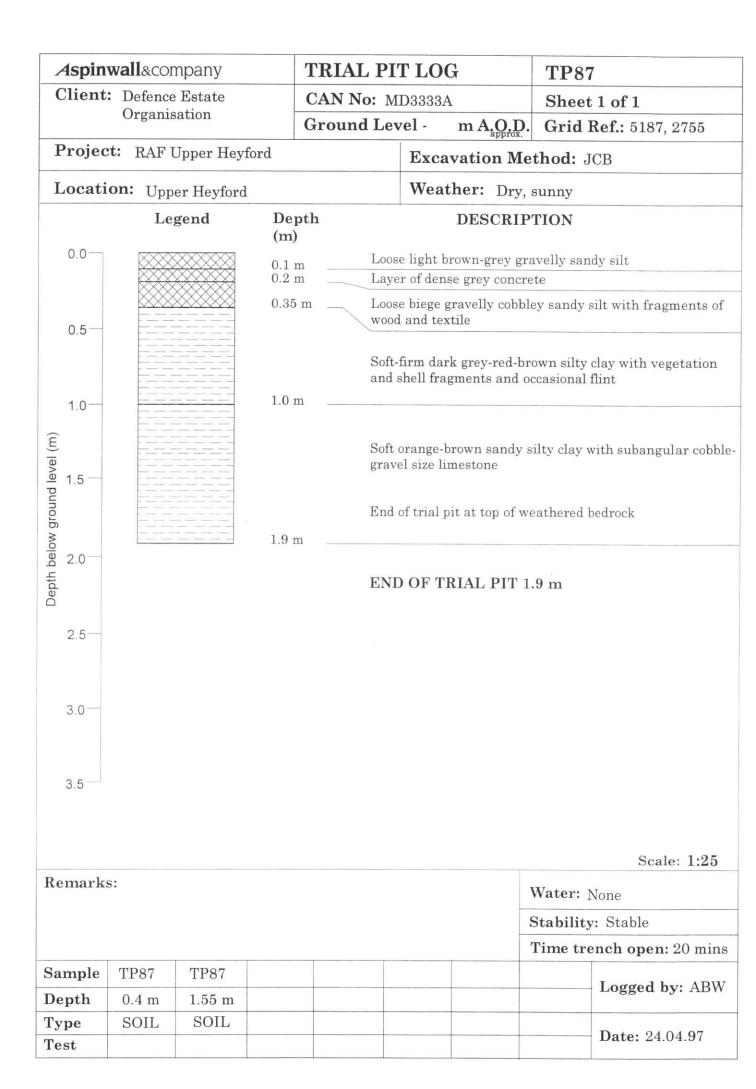


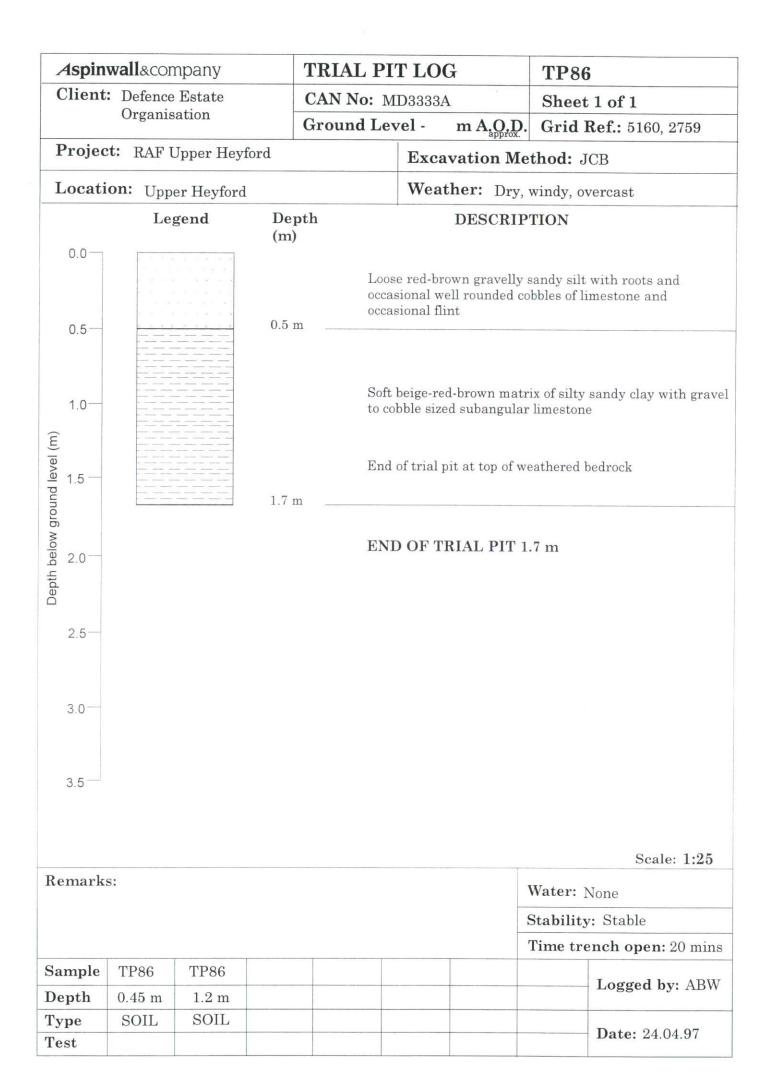


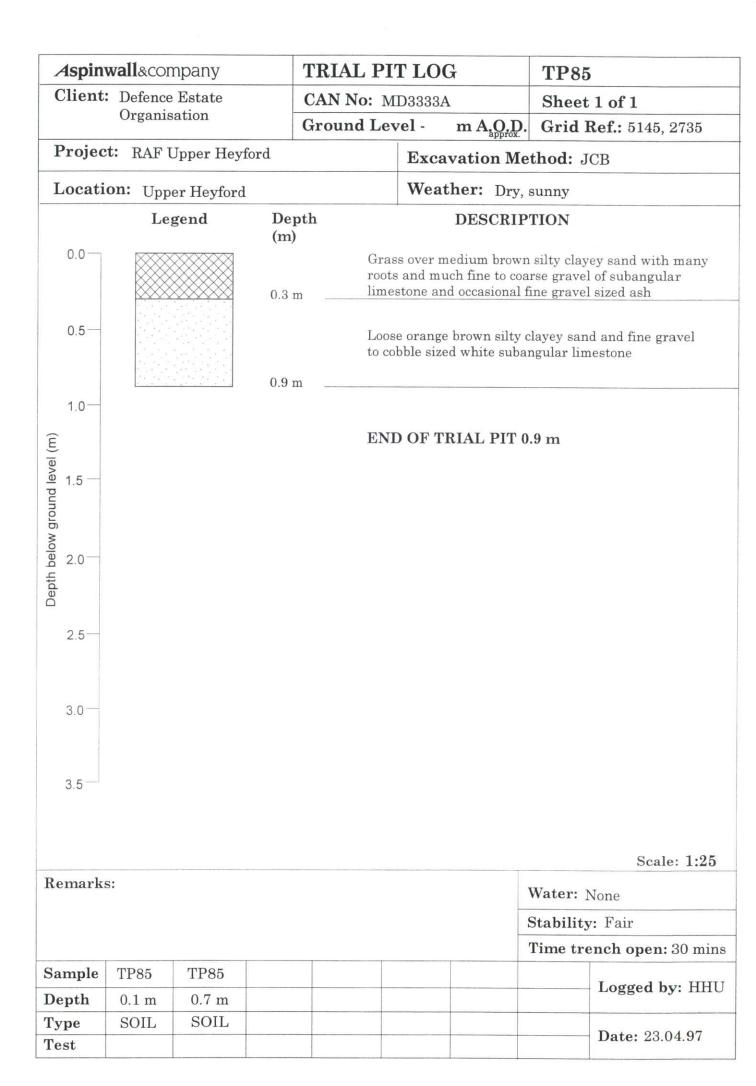


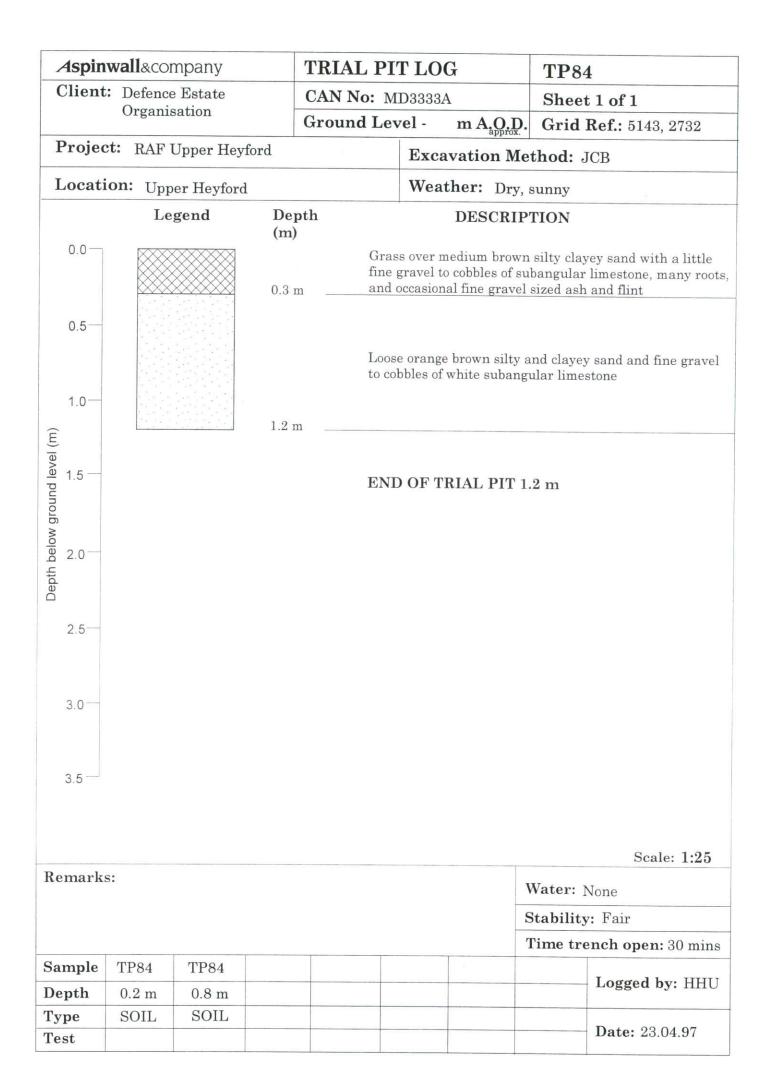


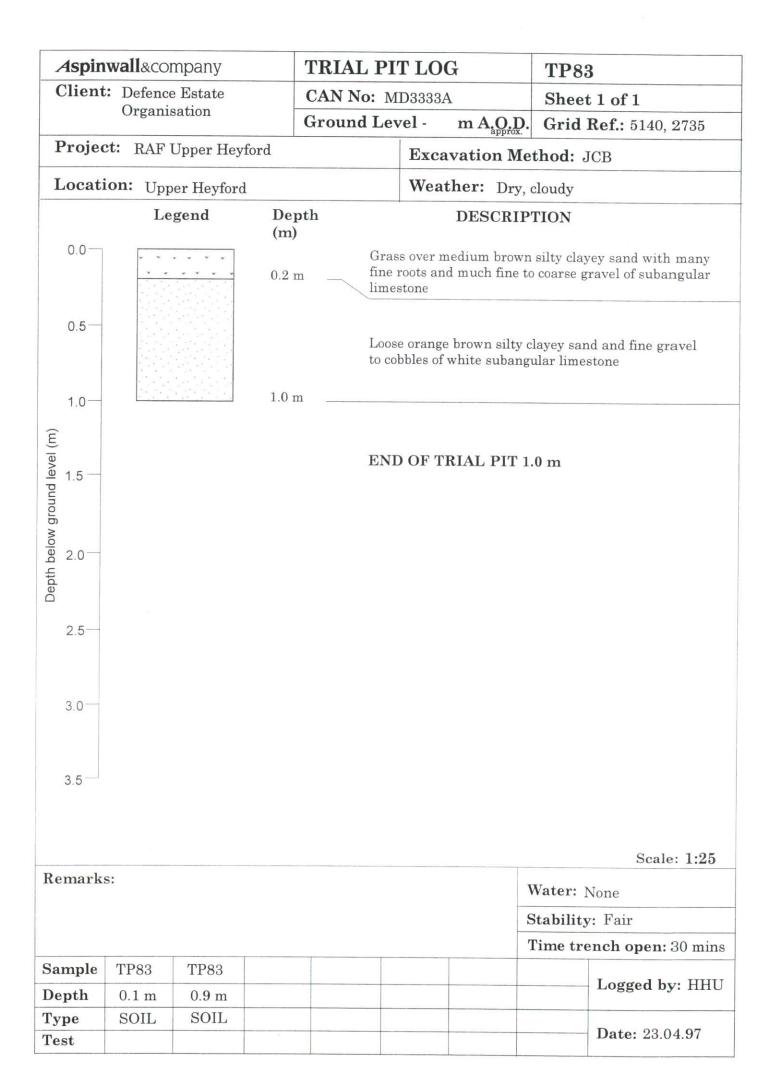


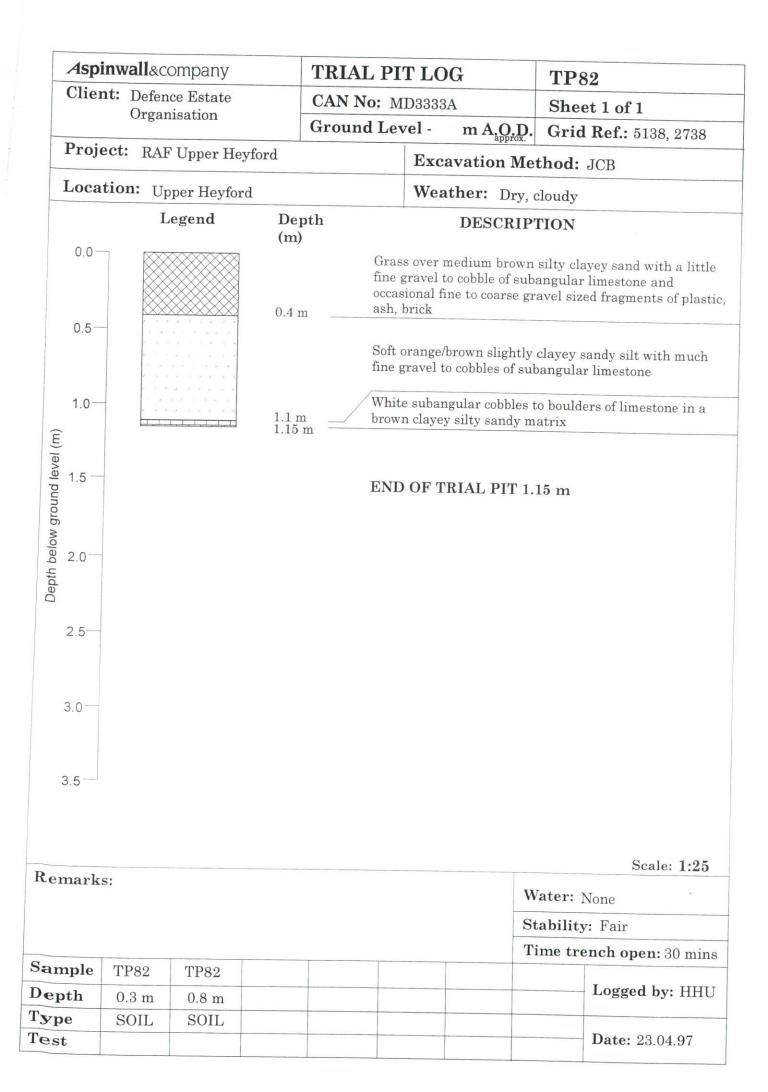


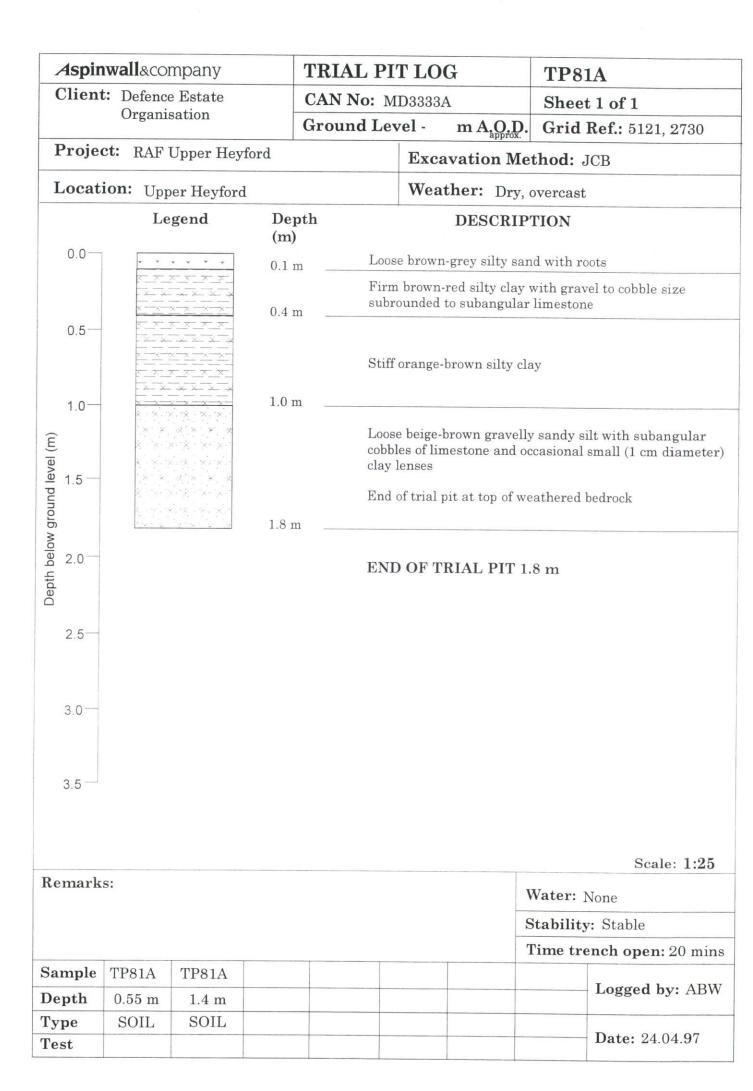


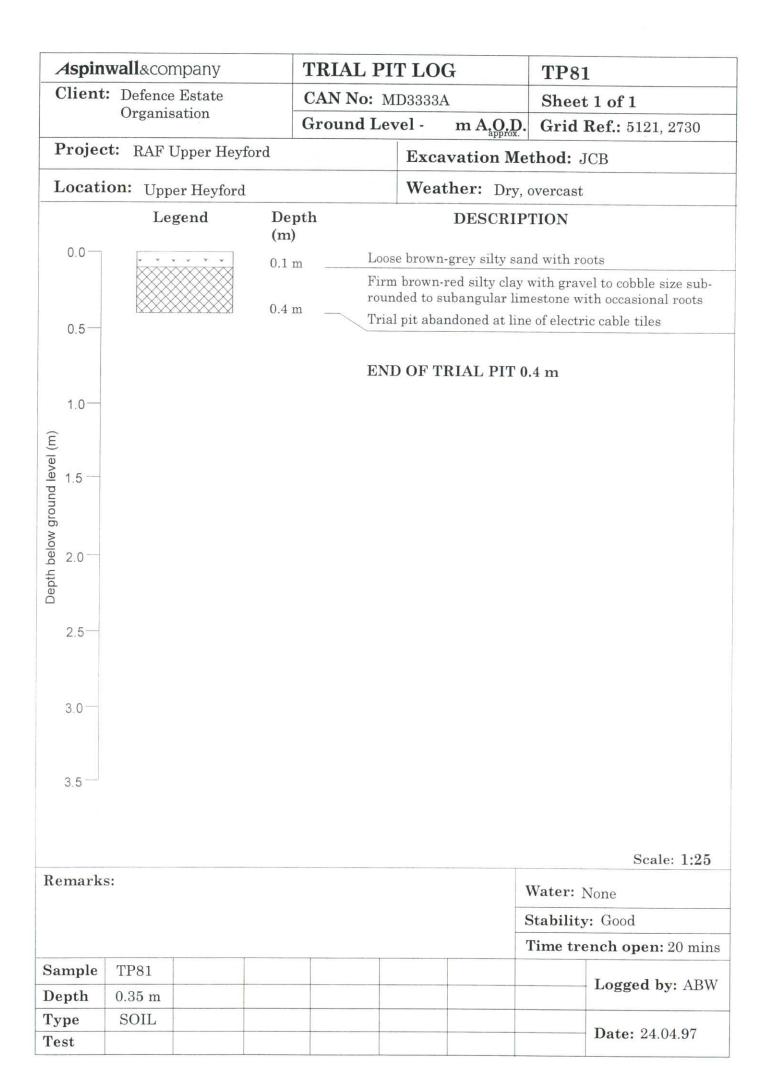


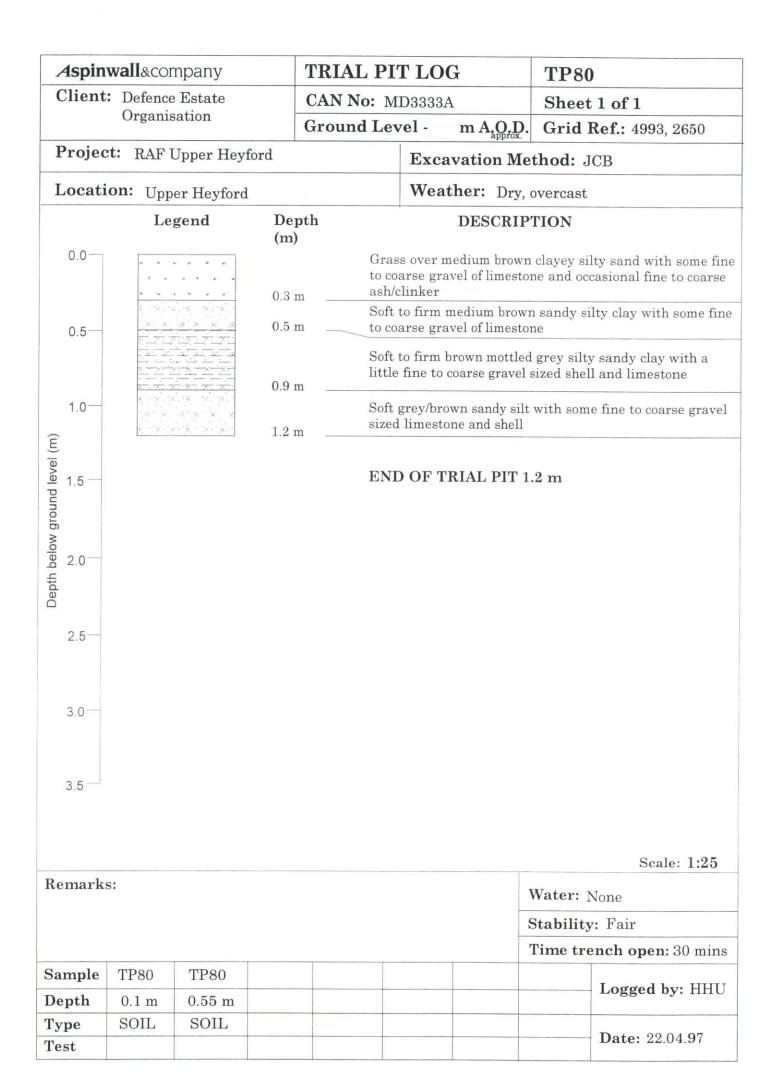


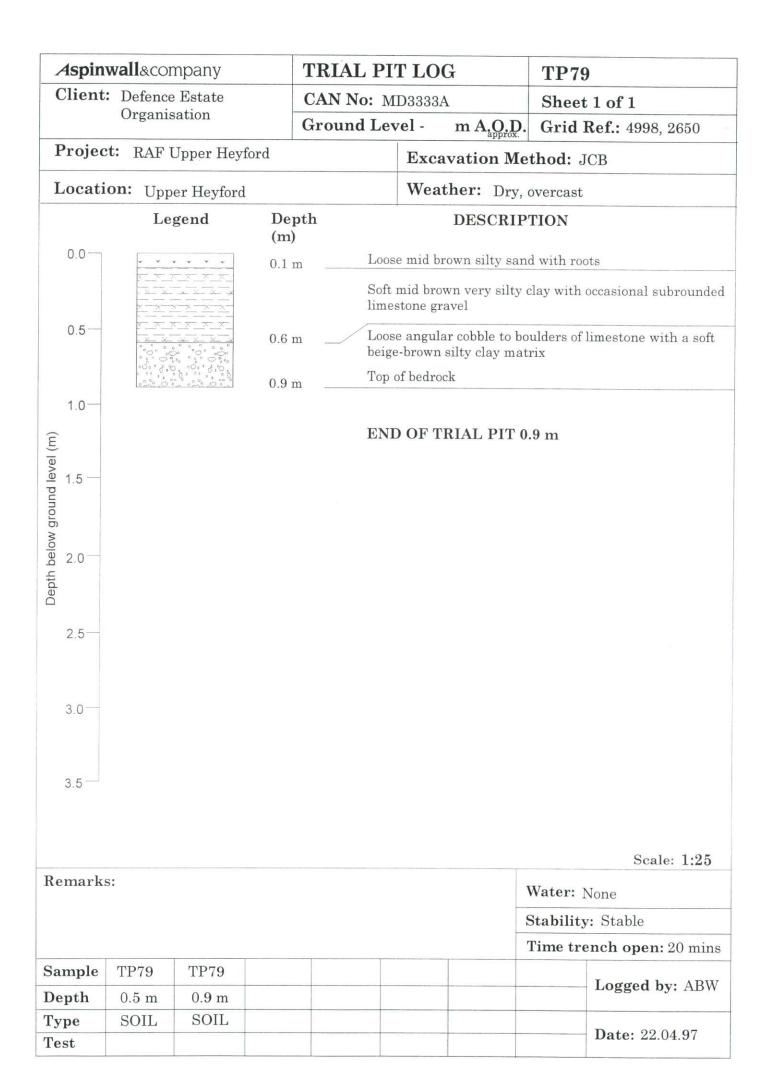


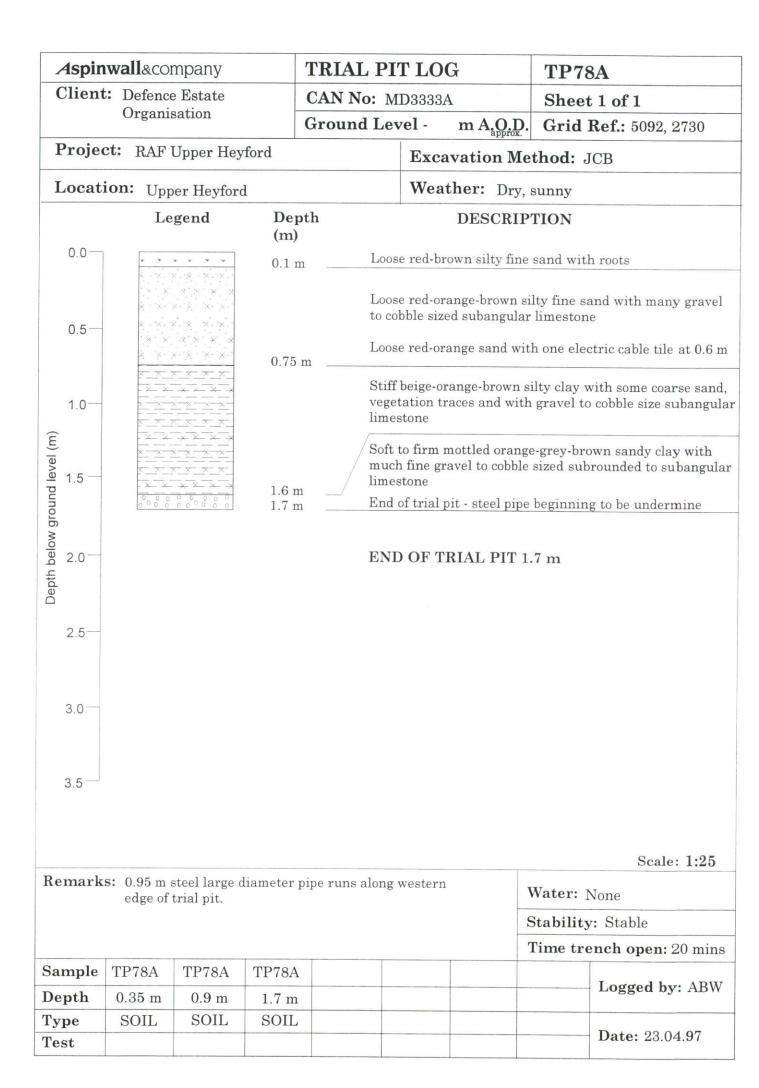


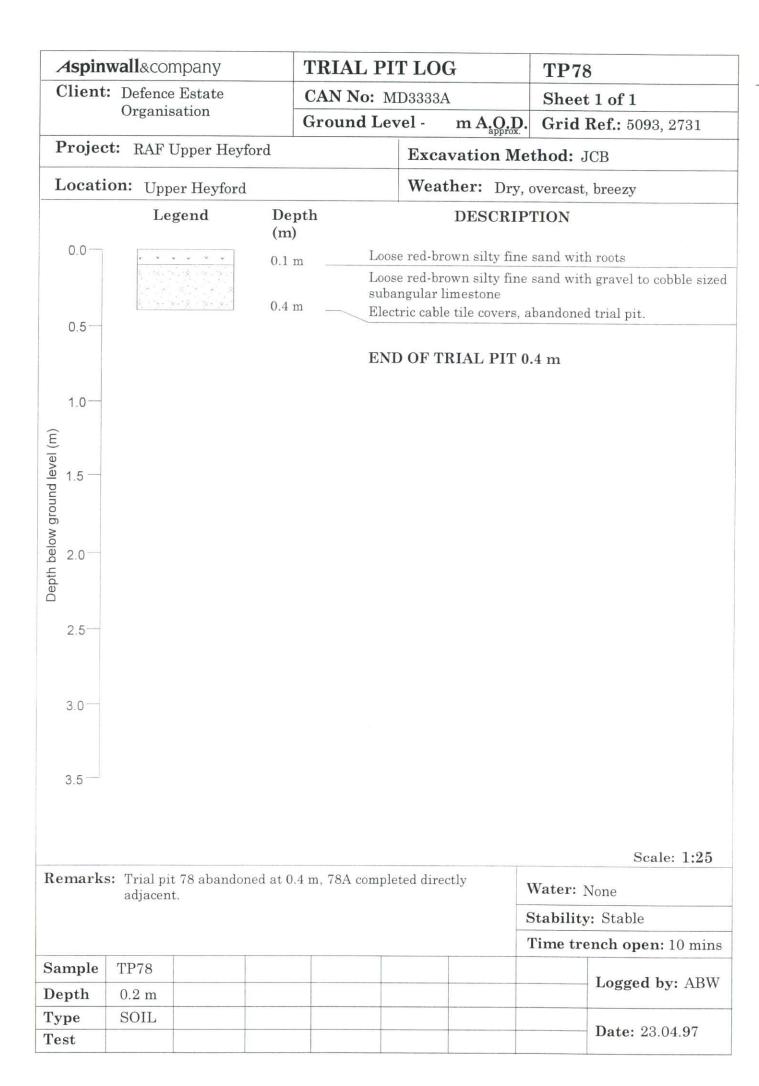


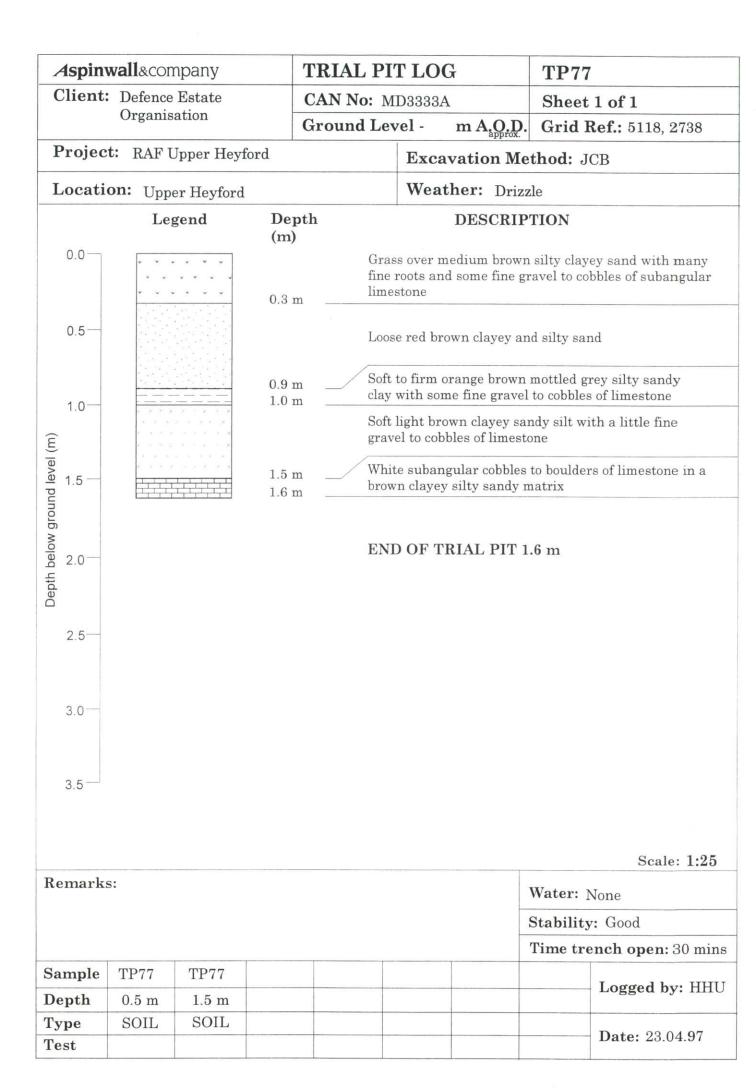


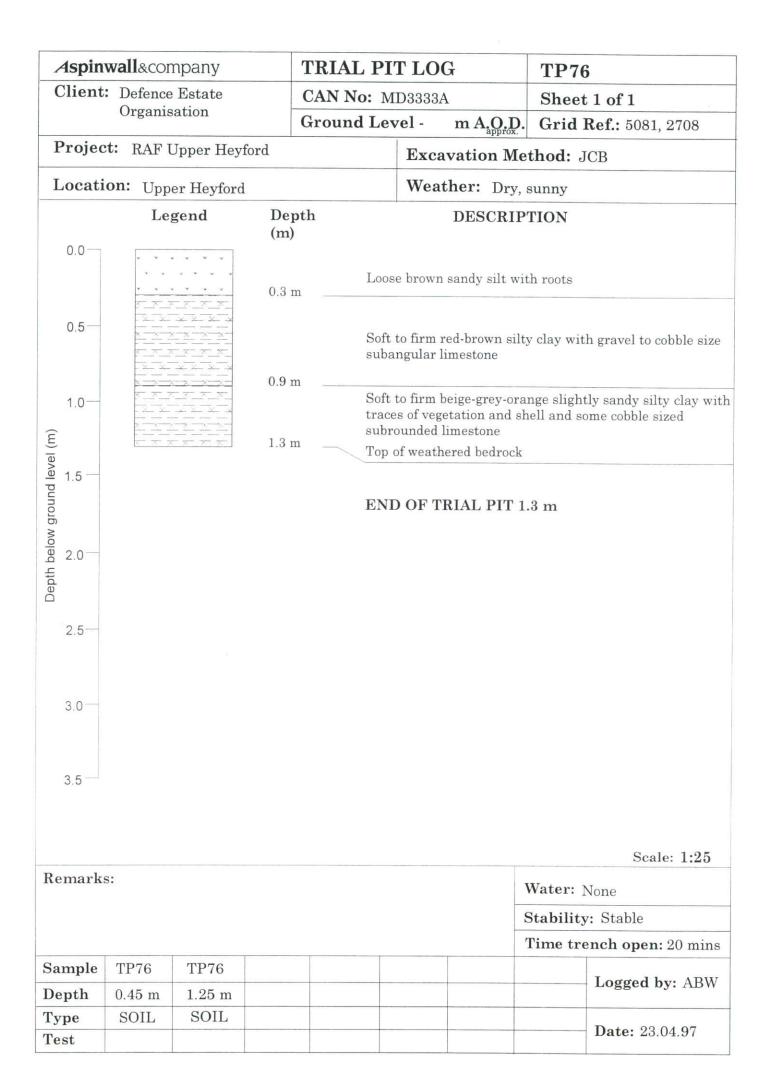


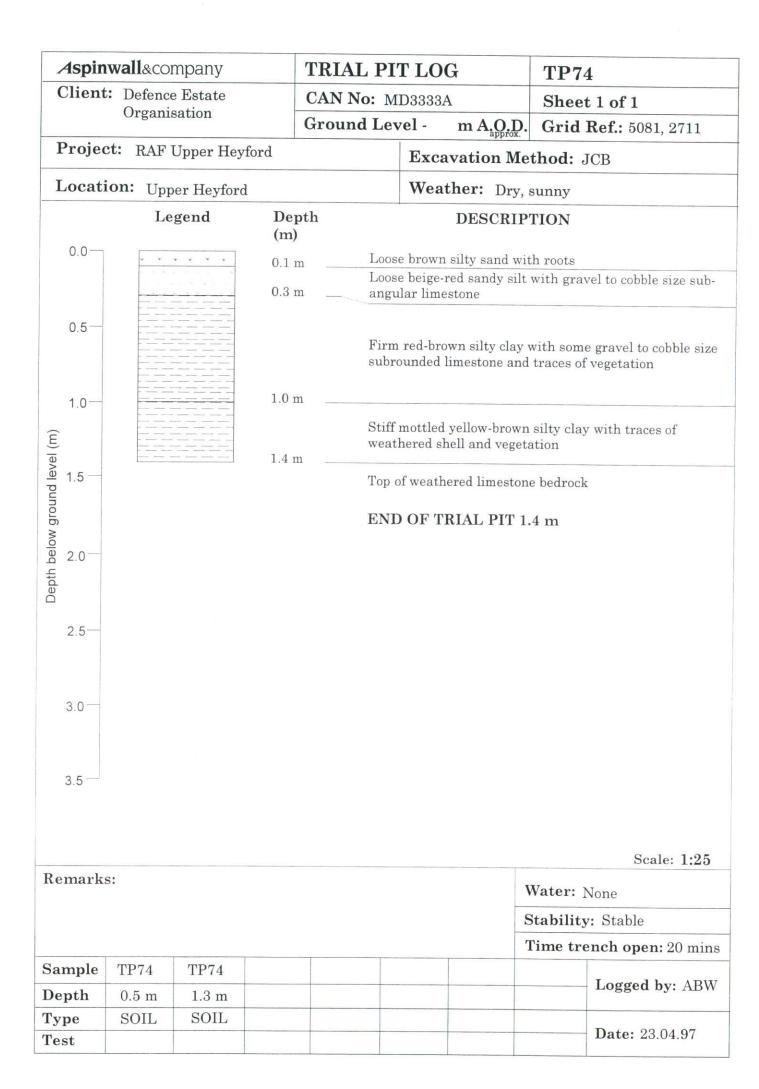


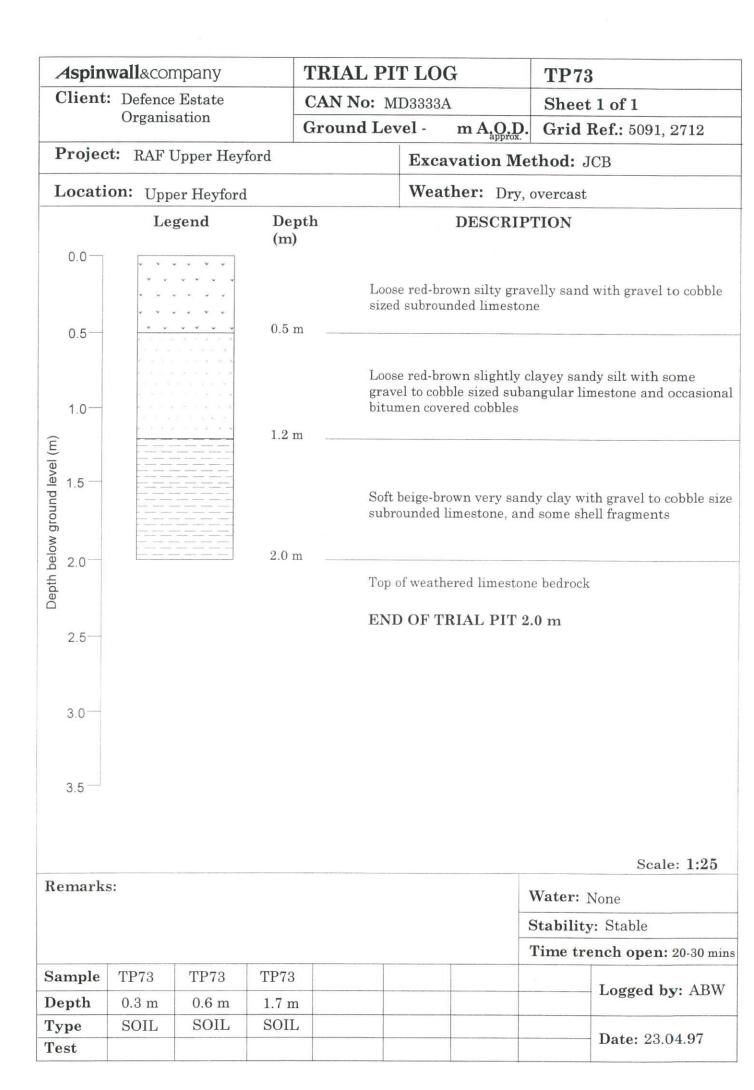


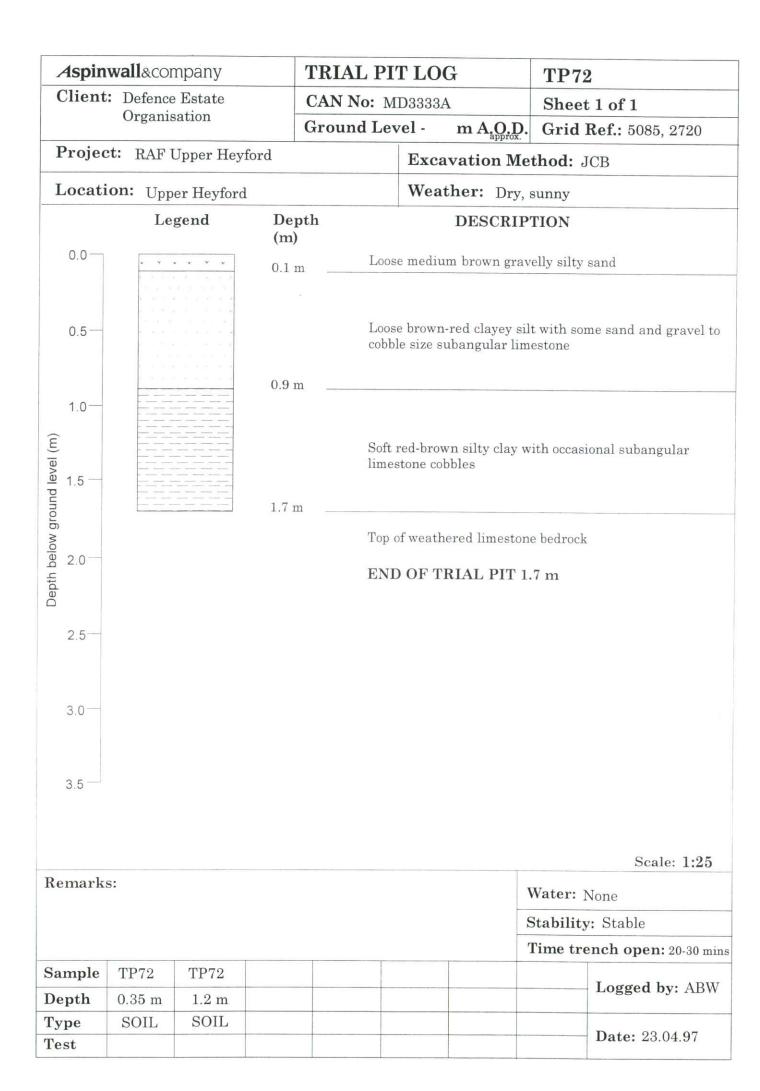


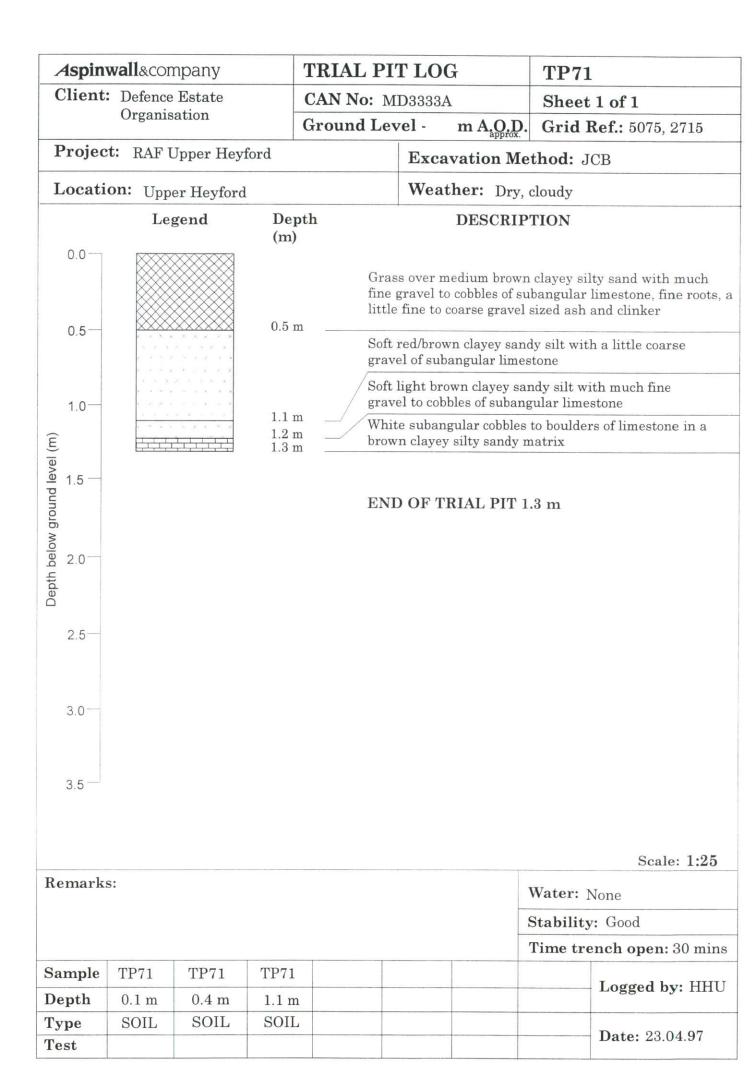


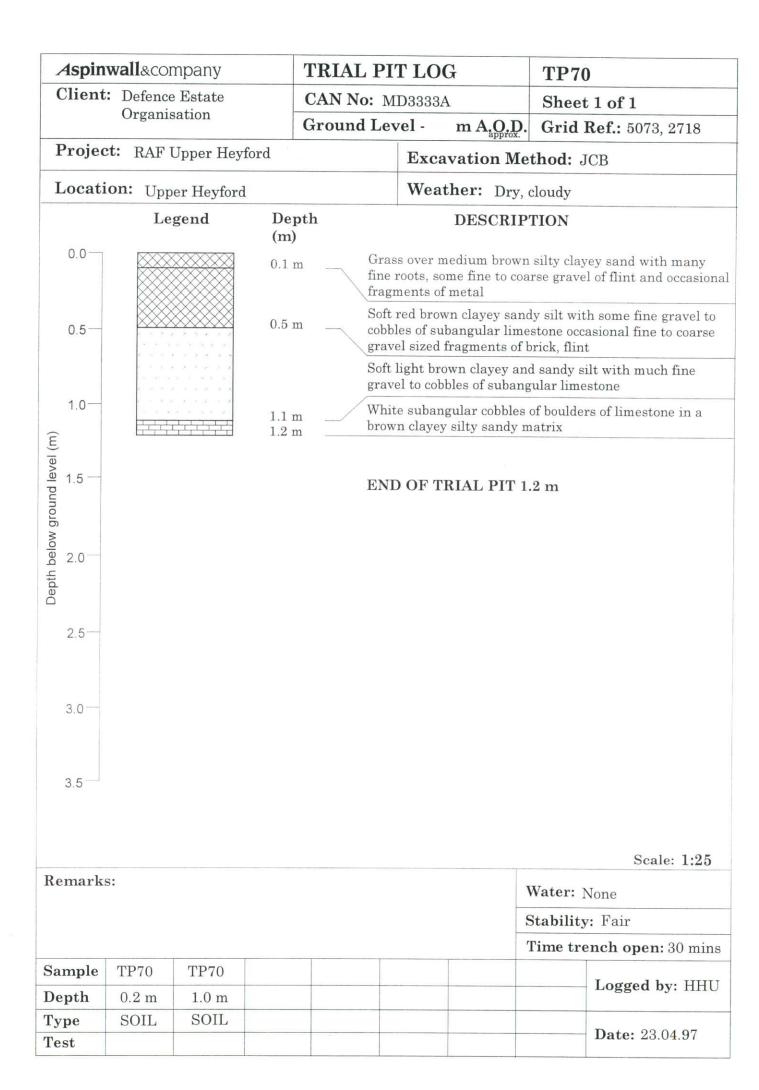


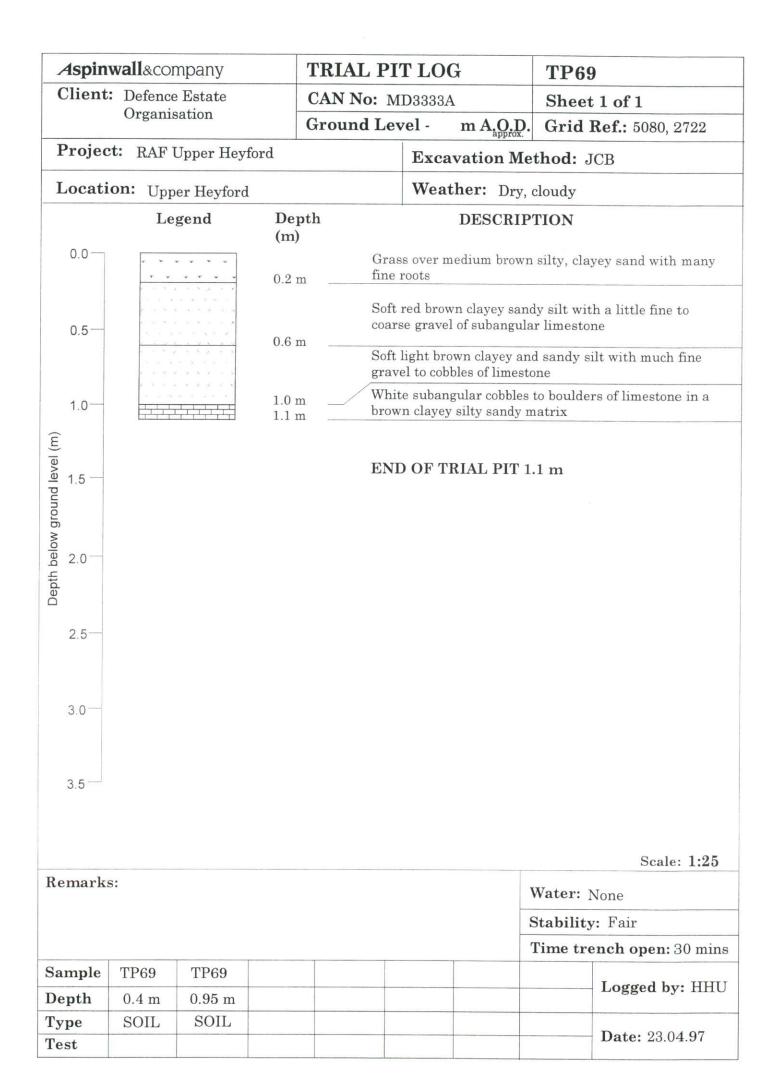


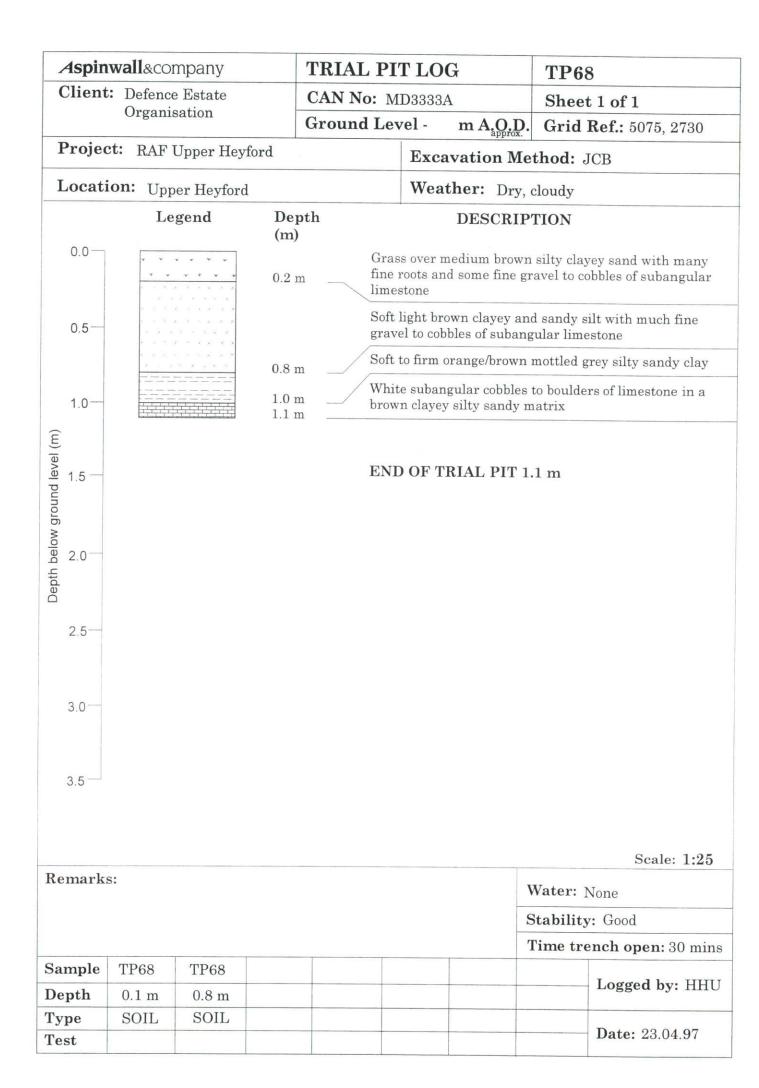


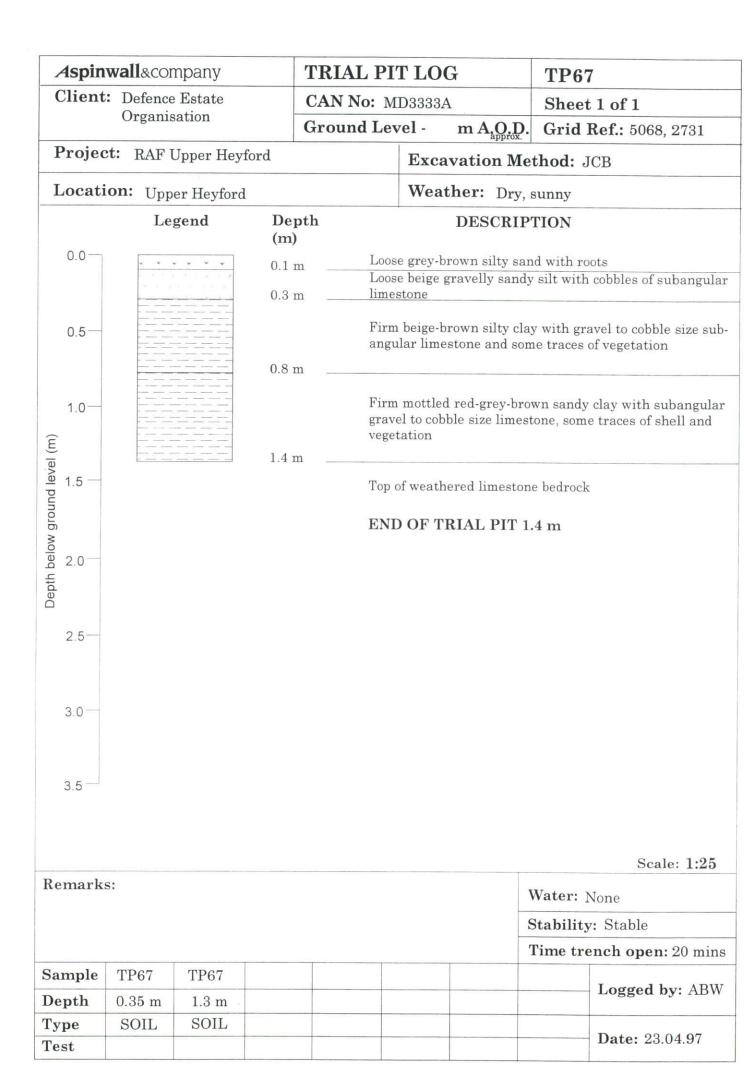


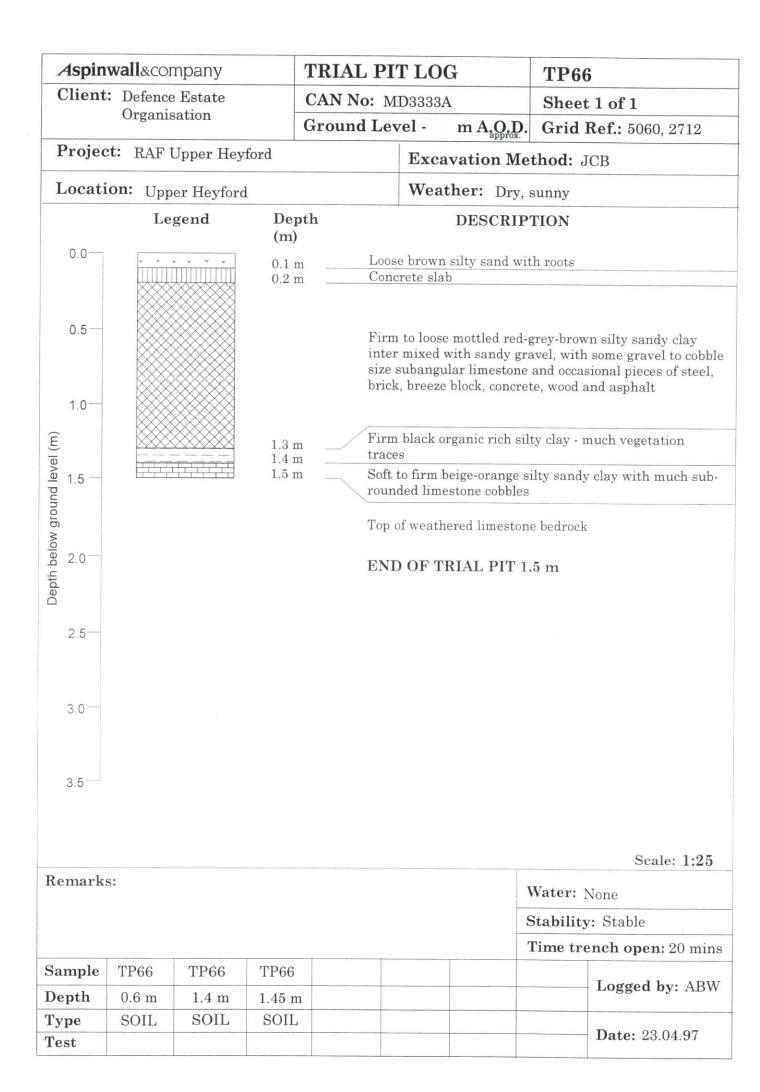


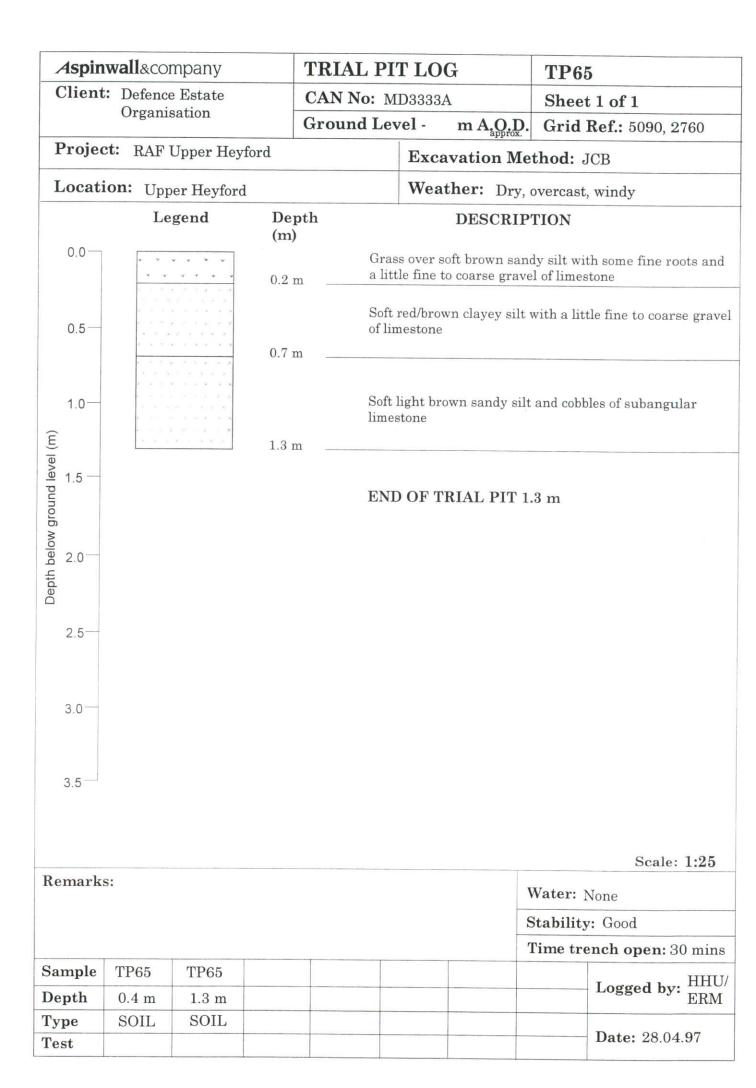

Aspinwall&company				TRIAL PIT LOG			TP75		
Client: Defence Estate Organisation Project: RAF Upper Heyford				CAN No: MD3333A Ground Level - m A.O.D.			Sheet 1 of 1		
							Ref.: 5084, 2710		
			ford		Excavation				
Location: Upper Heyford				Weather: Dry sunny					
	Le	gend	Dep (m)	th	DESCR	IPTION			
0.0	x	* * * *	0.1 m	Loc	ose brown silty sand	with roots			
			0.1 II						
0.5-									
1.0-				gra	Loose brown-orange sandy silt with some clay and some gravel to cobble size subangular limestone				
Lei (II			1.3 m		t orange-beige mott	led silty clay with some gravel to			
<u>1.5</u>				Soft orange-beige mottled silty clay with some gravel to cobble size subangular limestone. Some purple mottlin					
loun				clay	and hydrocarbon odour above layer of soft blue-black silty clay with limestone cobbles as above.				
b wo		1.9		Ver	ry strong hydroca	ocarbon odour to base			
Uepth below ground level (m)			2.0 m	gra	Soft beige/grey/blue mottled silty clay matrix suporting gravel to boulder size subangular limestone with black staining				
2.5-				We	athered top of limes	tone bedrocl	Σ.		
				EN	D OF TRIAL PI	Г 2.0 т			
3.0									
3.5									
							Scale: 1:25		
Remarks		hydrocarbor and end of		om 1.4 m to to	p of weathered	Water:	None		
						Stabilit	y: Stable		
			,			Time tr	ench open: 25 min		
Sample	TP75	TP75	TP75				Logged by: ABW		
Depth	0.5 m	1.4 m	1.9 m				Loggeu by: AD		
Гуре	SOIL	SOIL	SOIL				Dete: 02.04.07		
Fest							- Date: 23.04.97		

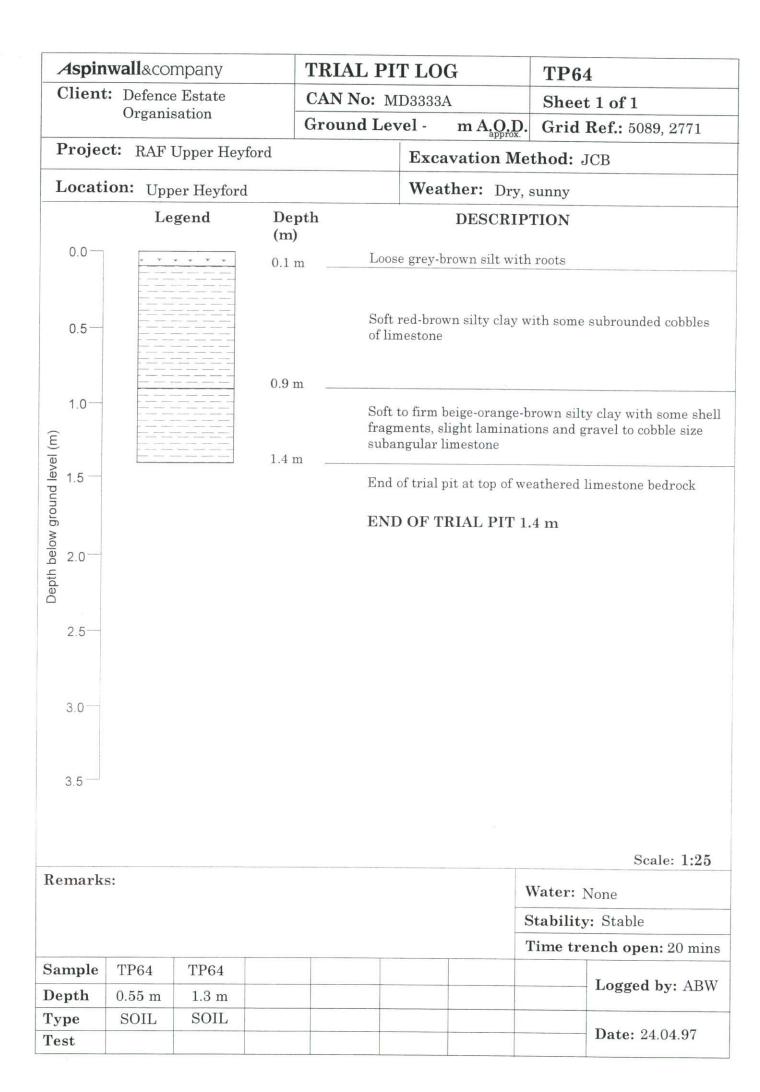


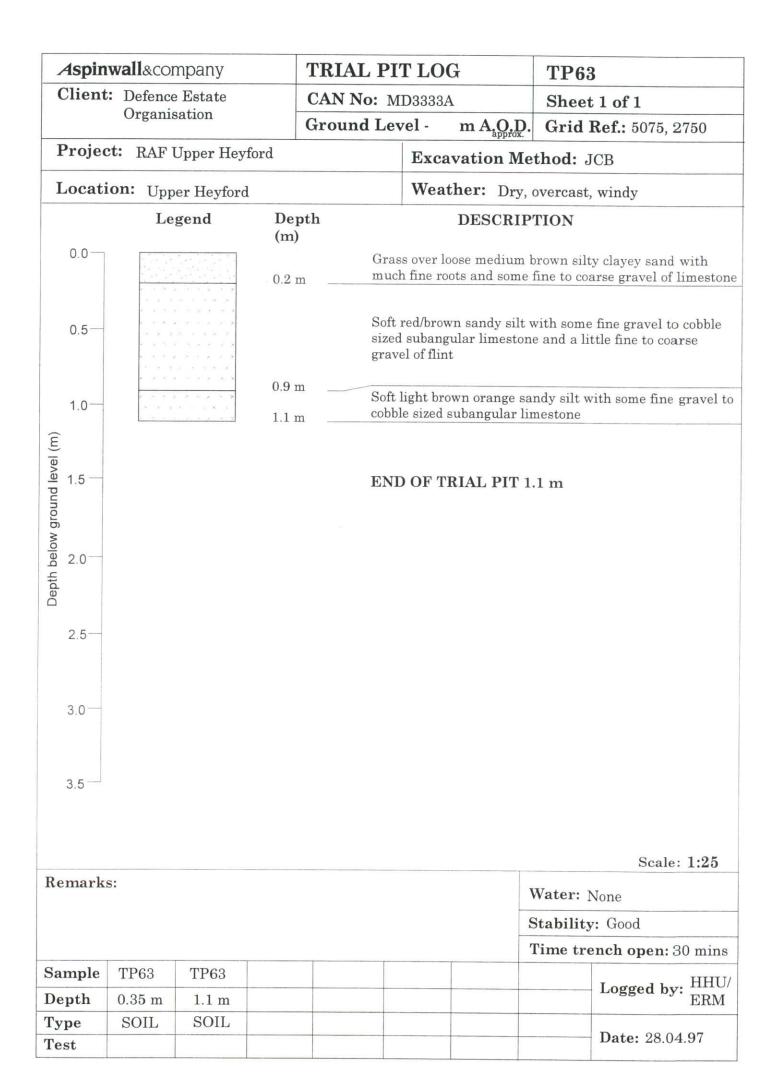


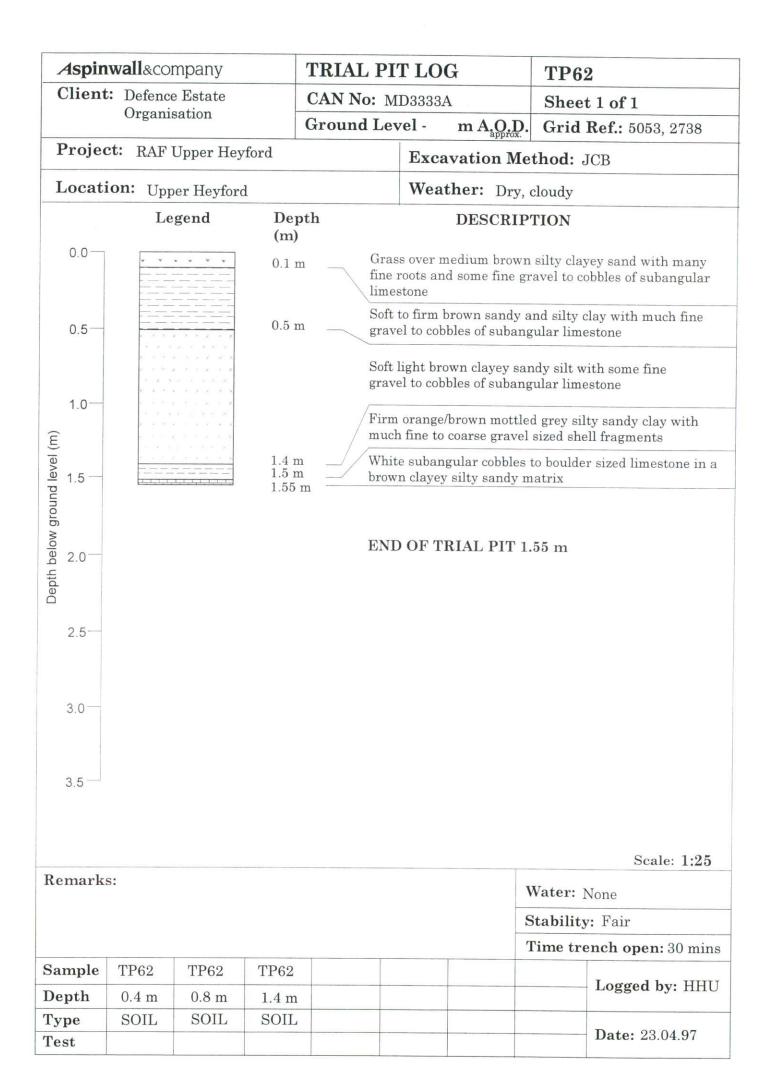


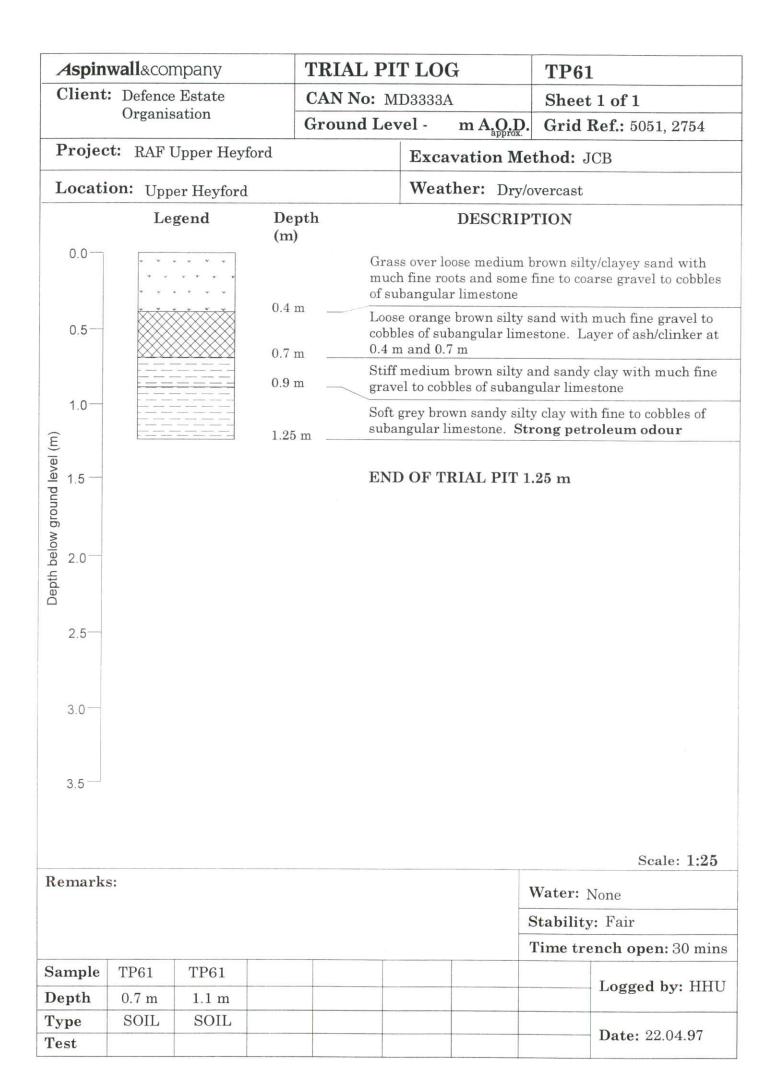


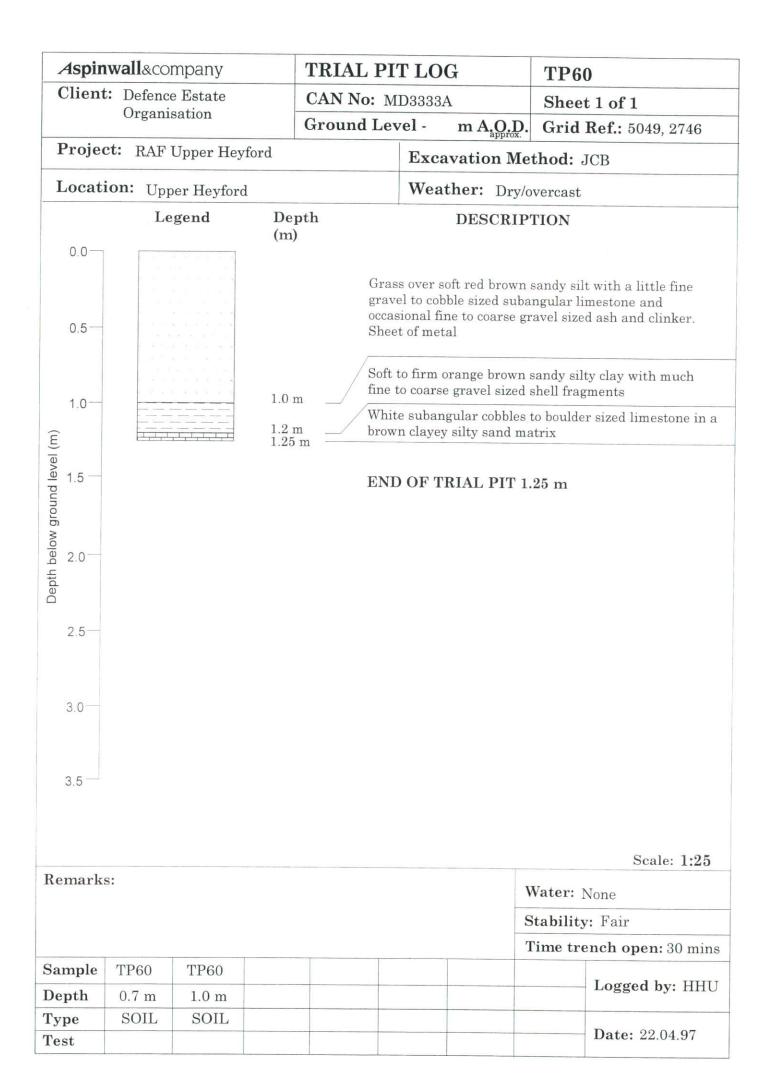


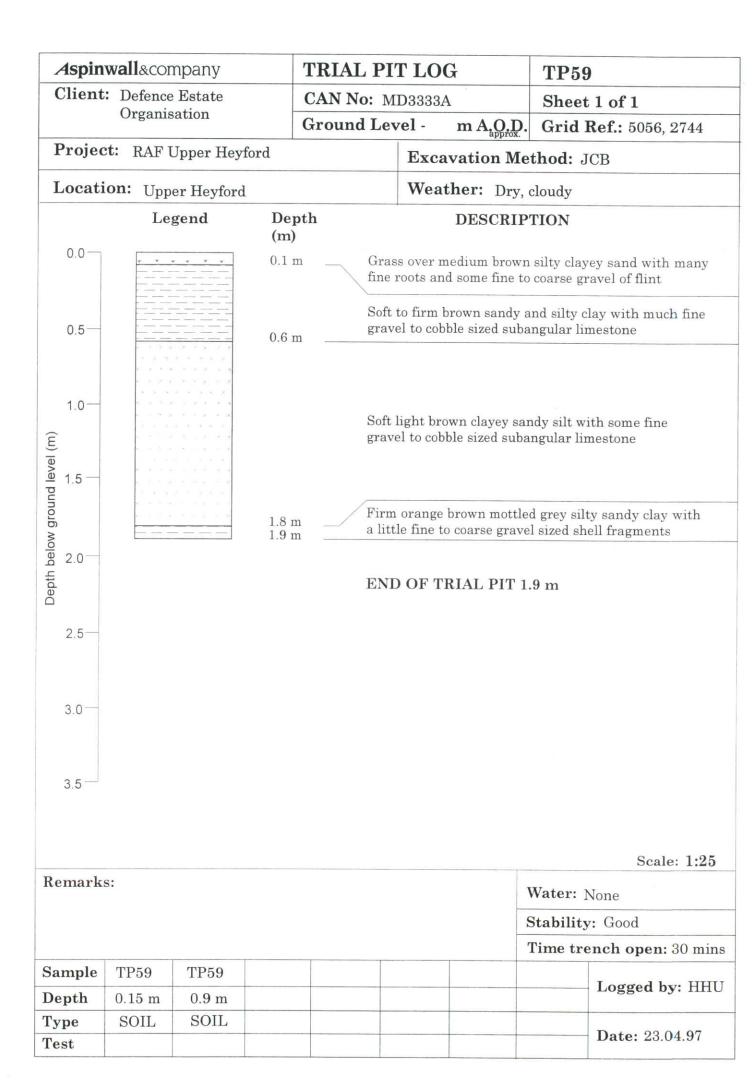


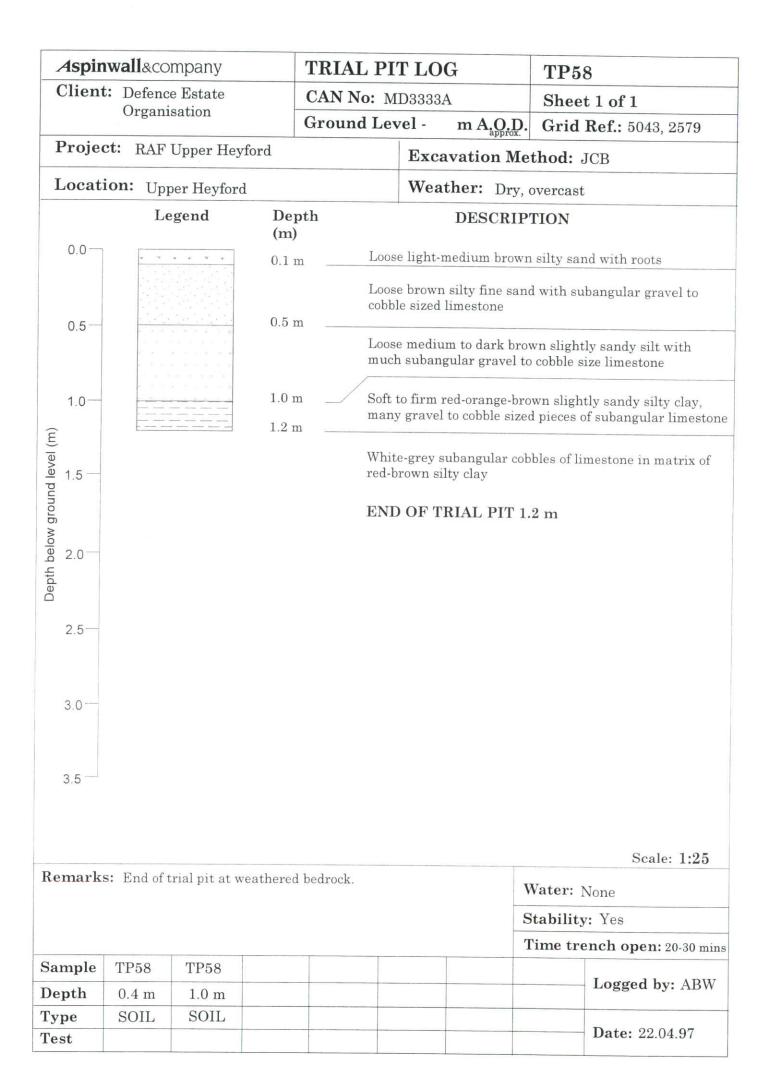


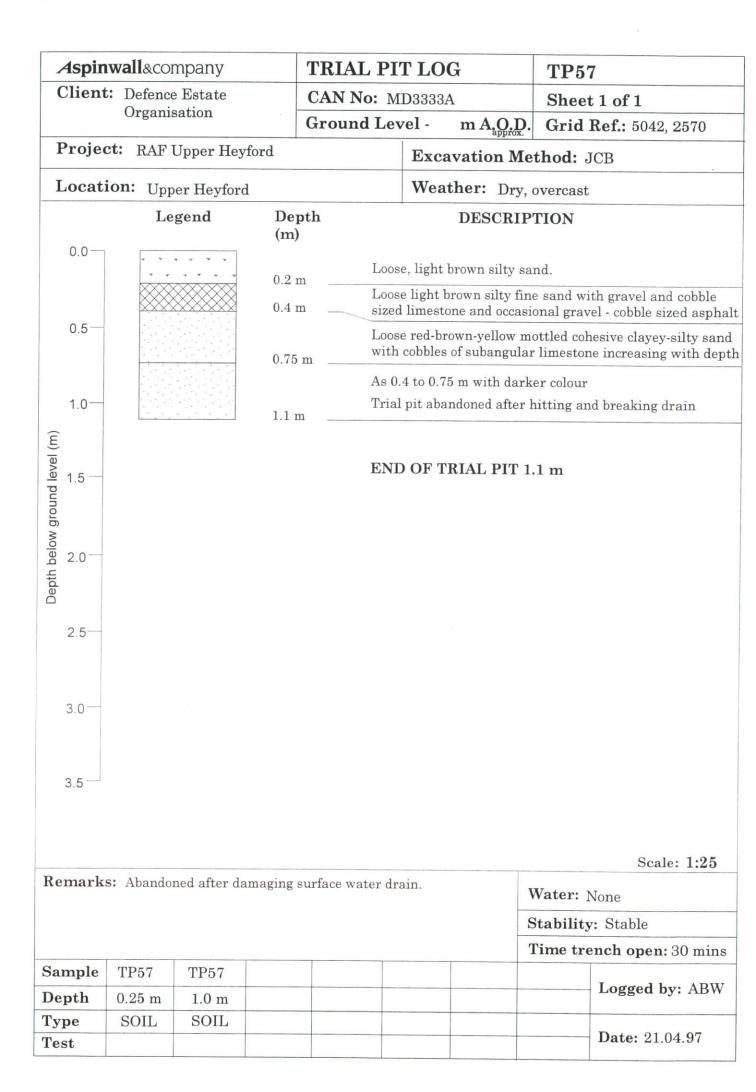


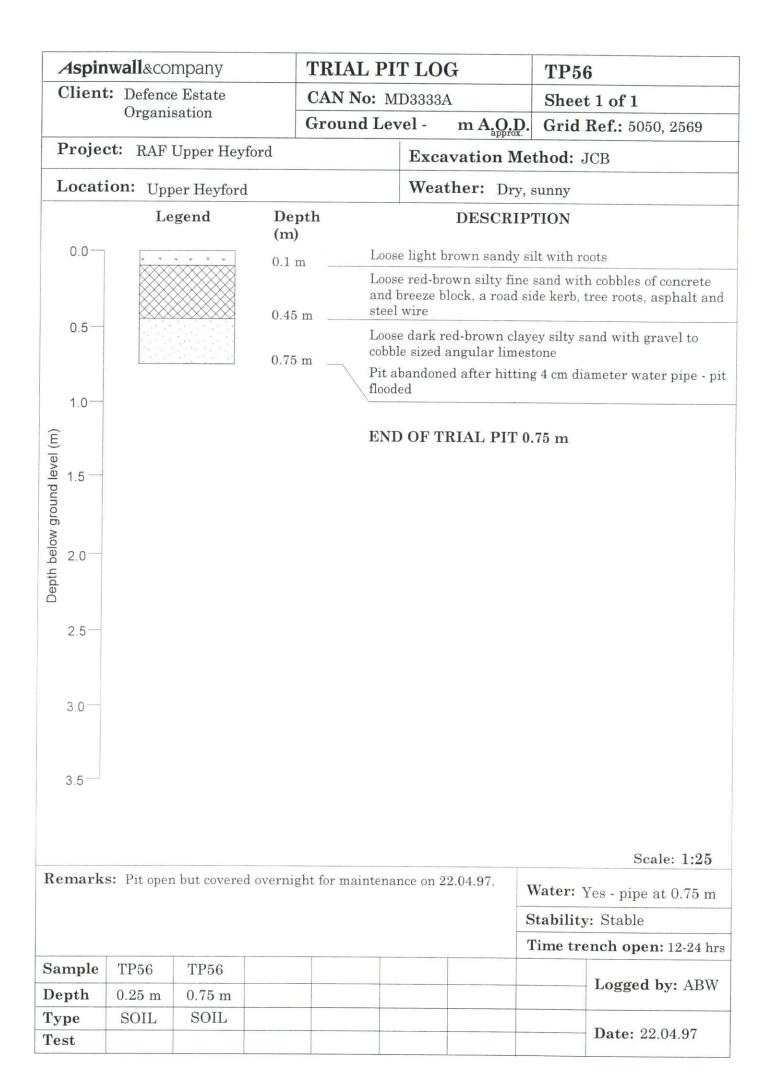


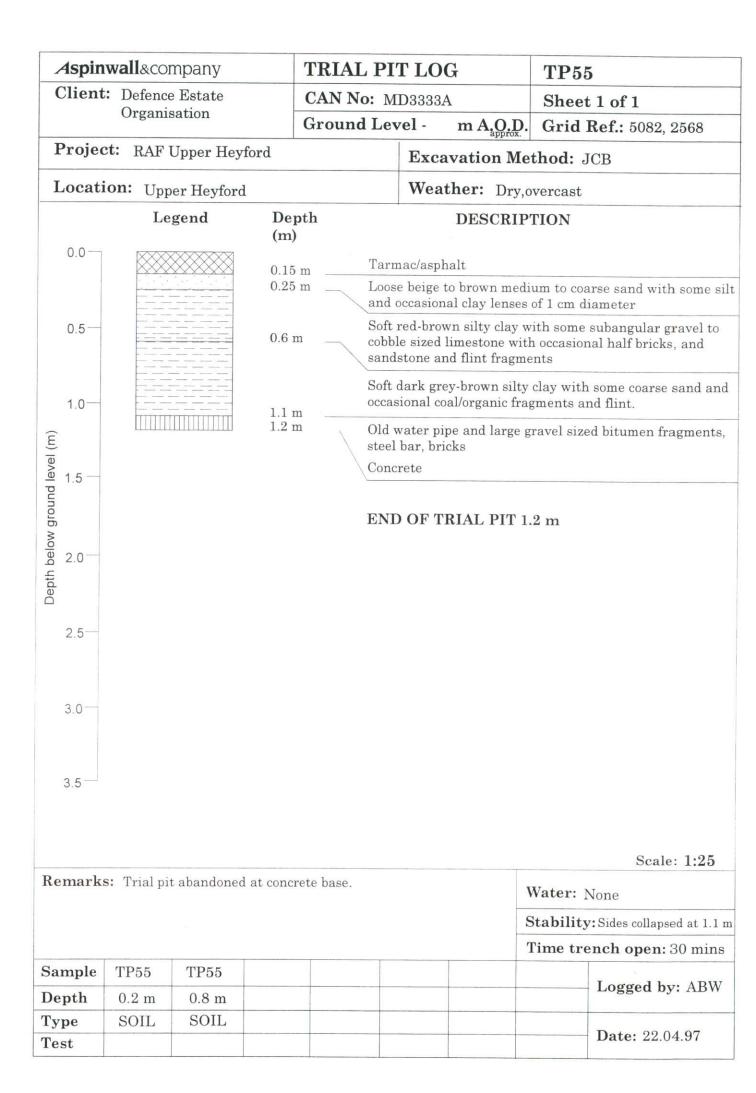


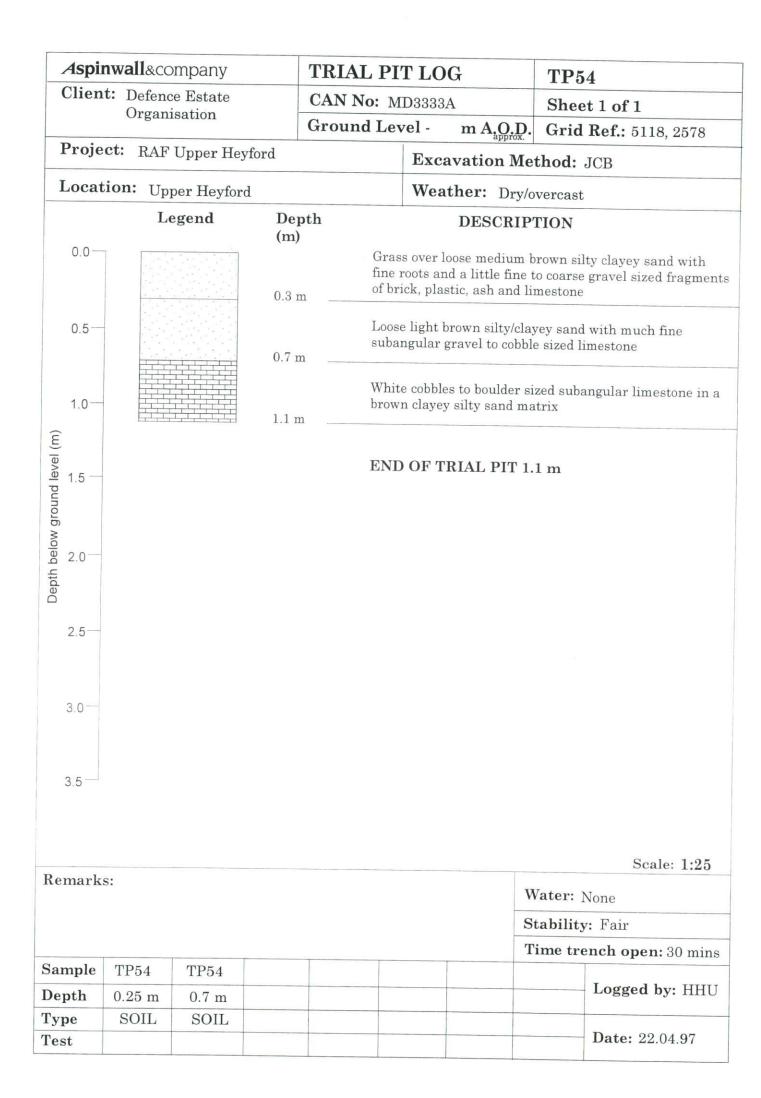


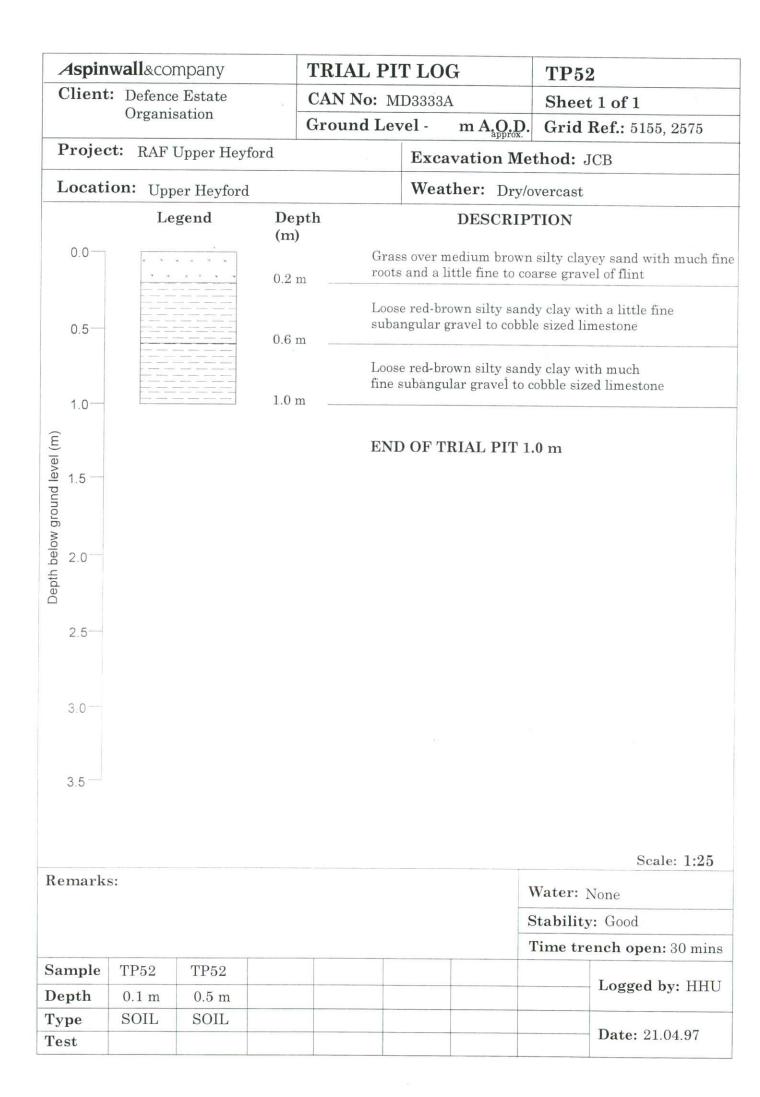


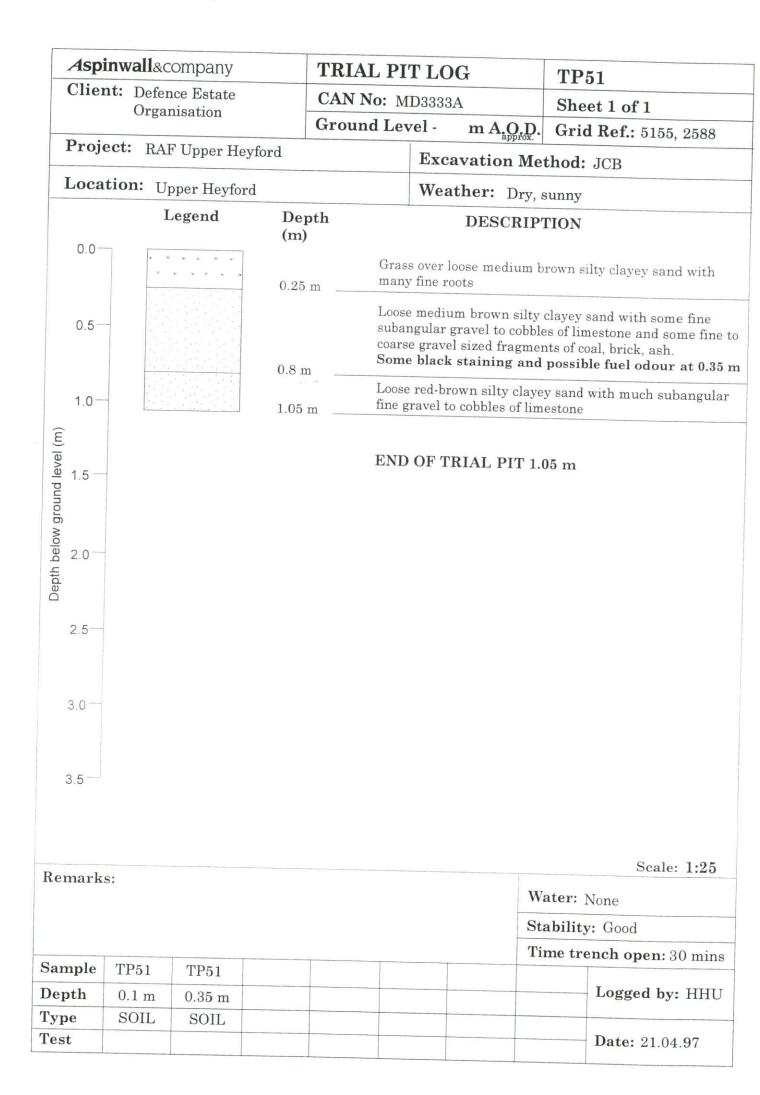


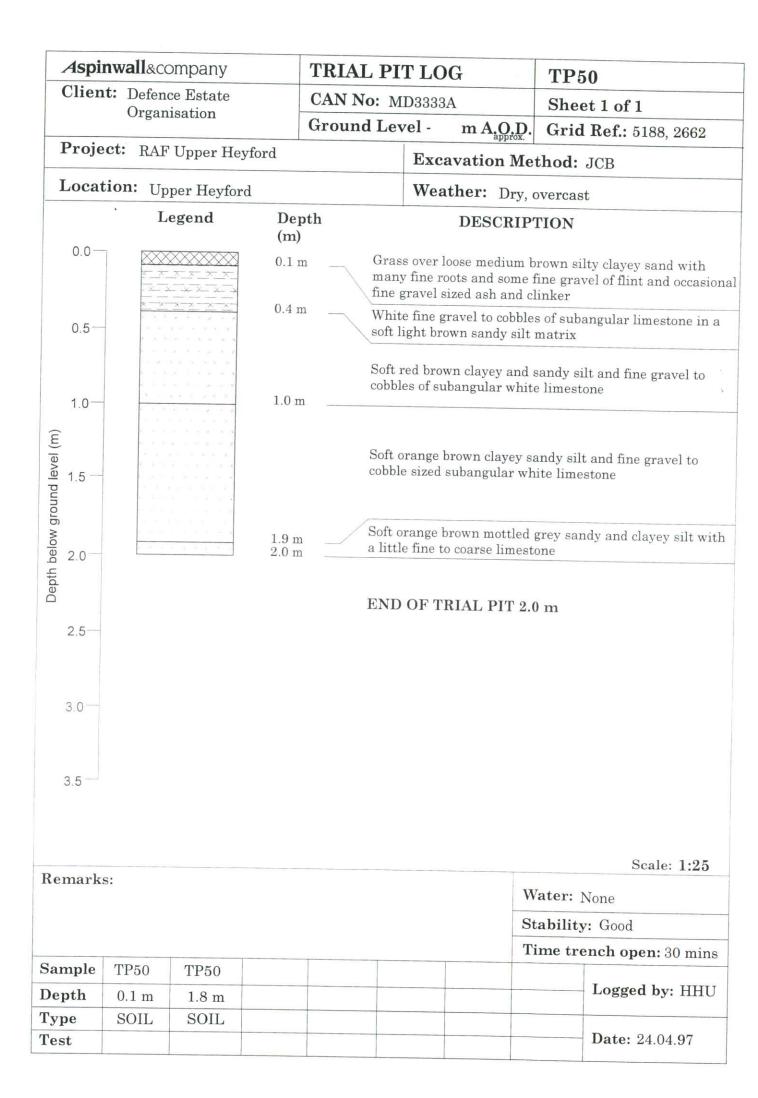


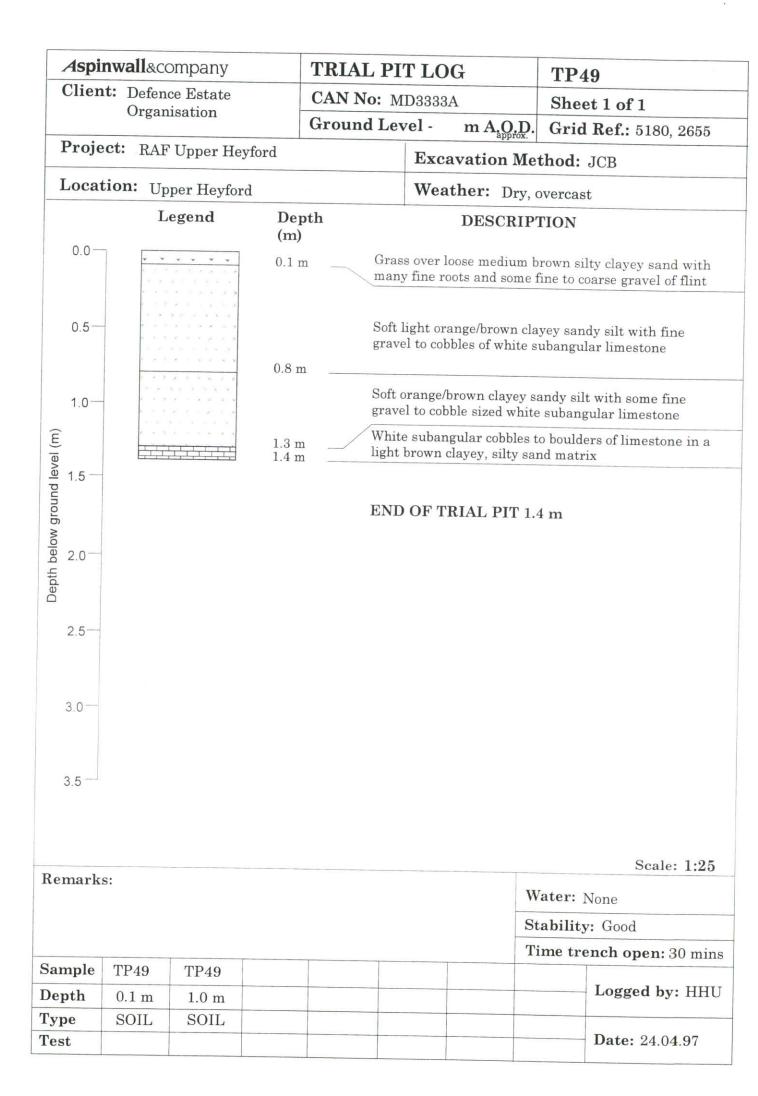


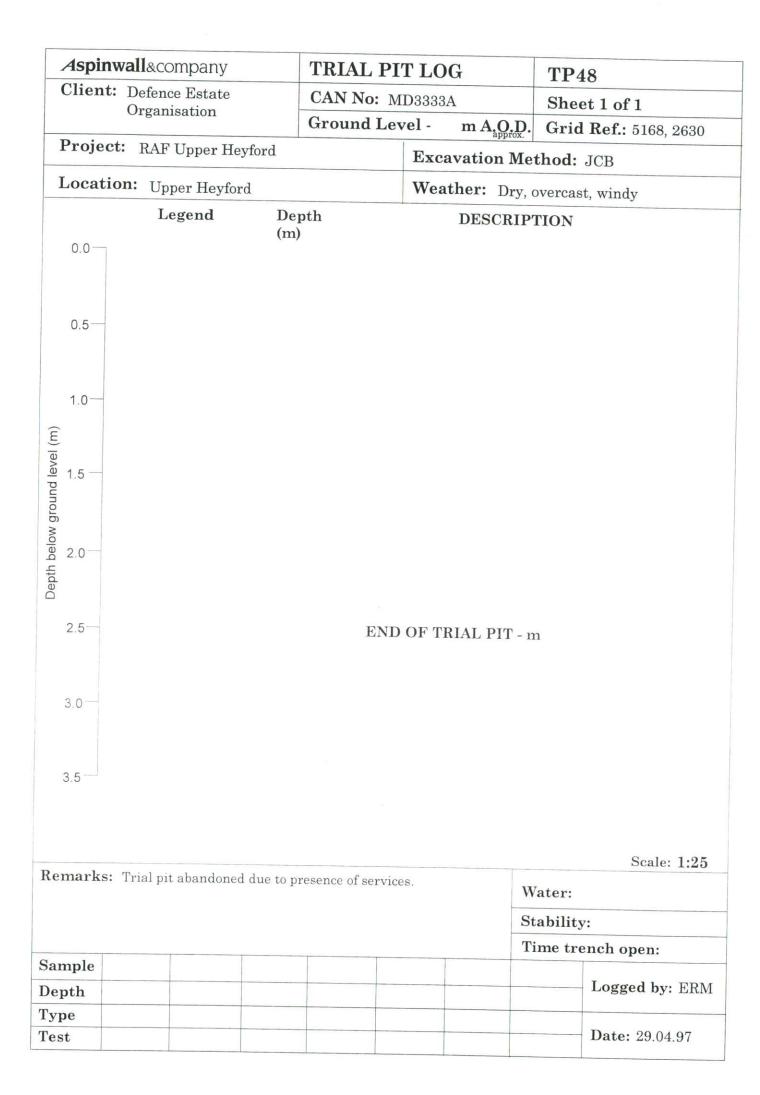


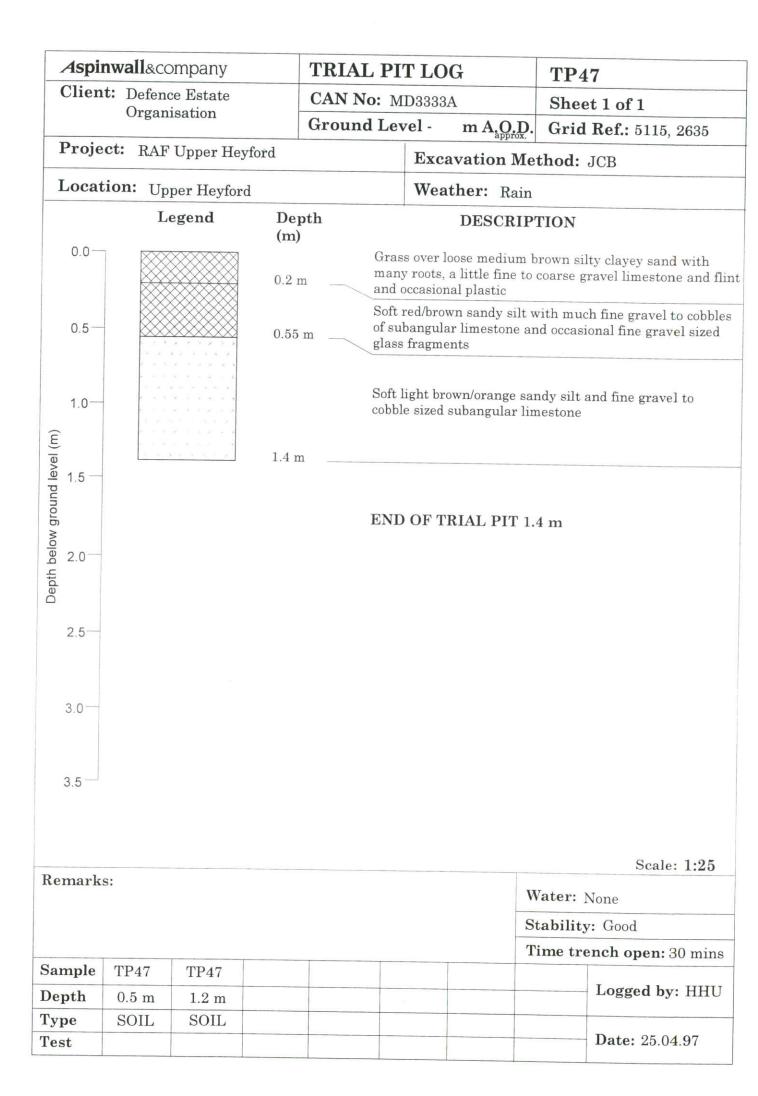


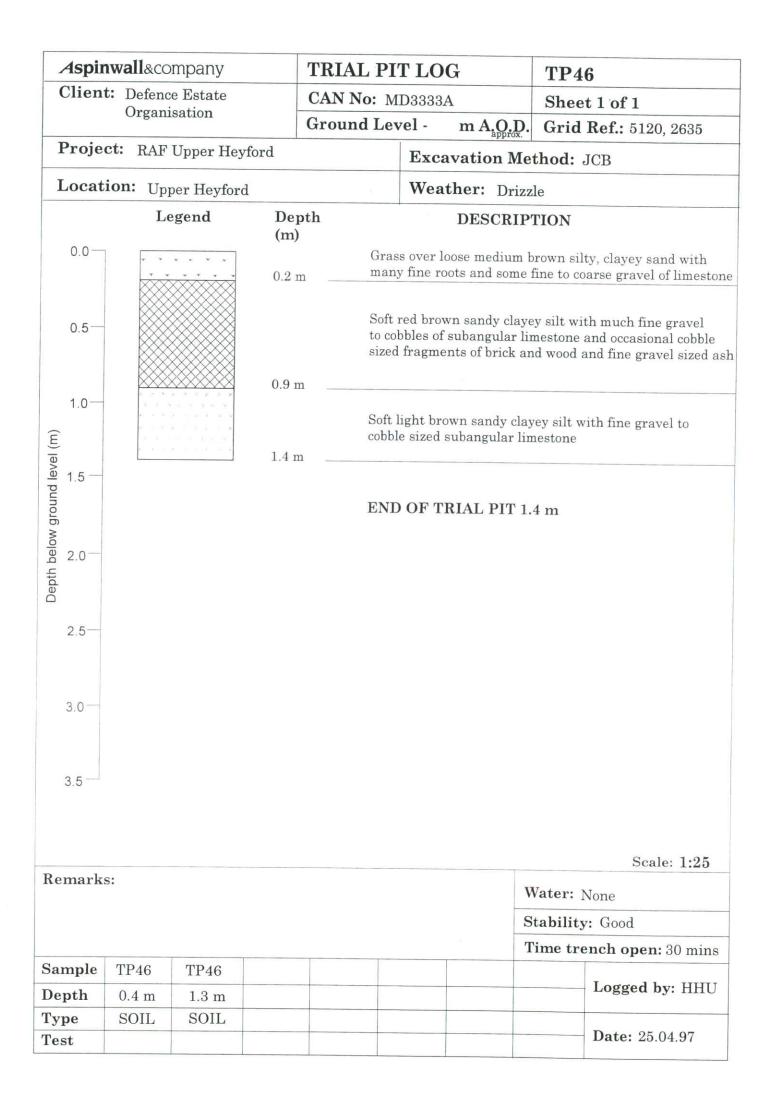


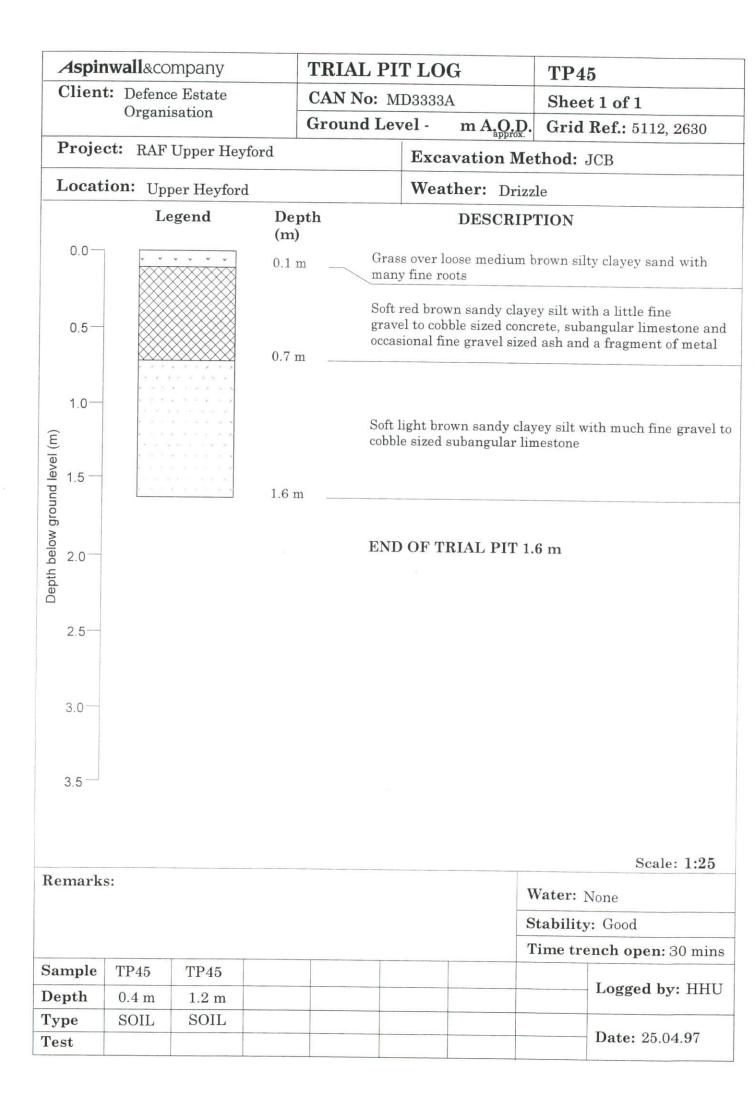


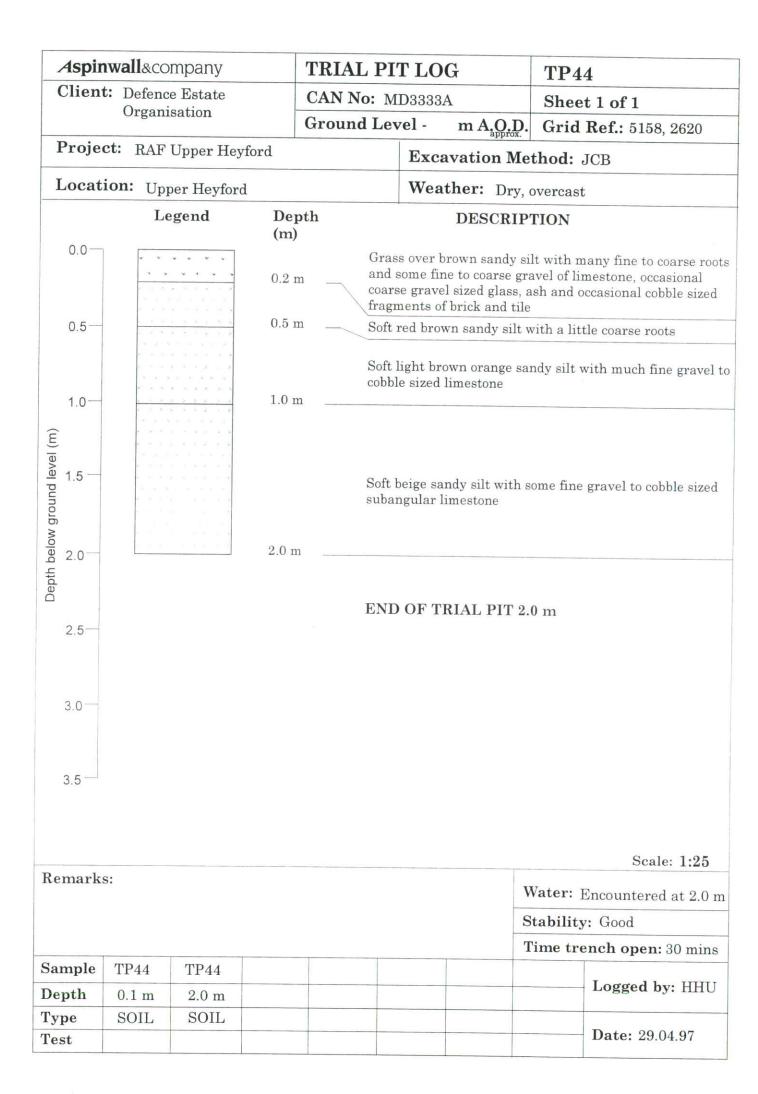


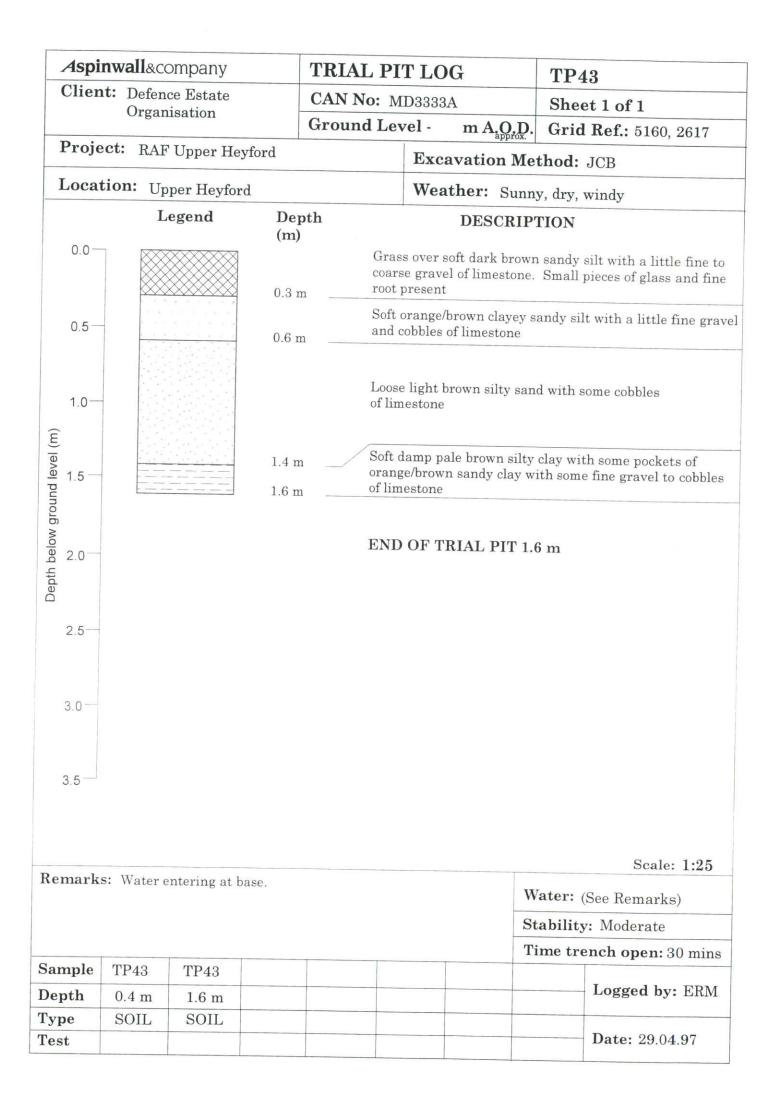

Aspinwall&company				TRIAL PI	Г LOG	TP53	TP53	
Client: Defence Estate Organisation				CAN No: M	D3333A	Sheet	Sheet 1 of 1	
				Ground Level - m A.O.D.			Grid Ref.: 5130, 2545	
Project: RAF Upper Heyford				Excavation Method: JCB				
Location: Upper Heyford				Weather: Sunny, dry				
	Ι	Legend	Dep (m)	th	DESCRI	PTION		
0.0-		******	0.1 m	Tarm	ac			
			0.1 m		e orange sand and g	ravel with	some fine gravel to	
			0.5 m	cobbl	es of limestone		Some fine graver to	
0.5-	0.0		0.0 ш	Soft t	o firm dark brown s	brown sandy silty clay with a little fine t		
			0.8 m		e gravel of limeston lents of ash and brid	e and occas k	sional fine gravel sized	
1.0								
				Soft t	o firm orange browr	ı subangula	ar silty clay with a	
m) le				little	Soft to firm orange brown subangular silty clay with a little fine to coarse gravel of limestone and occasional fine gravel sized ash			
n 1.5 -				gravel sized ash				
ouno			1.7 m					
aw gr								
Depth below ground level (m)				Soft t	o firm dark brown w	rith black r	atches sandy silty clay	
epth)				with f	ine to coarse gravel	of limestor	ne. Patches of oily	
				at 2.7	m	ontainer a	t 2.4 m, piece of wood	
2.5-			2.7 m					
		~~~~~~	2.1 m					
3.0-				END	OF TRIAL PIT 2	7 m		
0.0								
3.5								
							Scale: 1:25	
Remark	s: Hydro	carbon odour a	at 1.7 m.			Water: N	Jone	
						Stability	: Good	
						Time tre	nch open: 30 mins	
Sample	TP53	TP53					Logged by: ERM	
Depth	0.3 m	1.9 m					Loggeu by: ERM	
Гуре Гest	SOIL	SOIL					Date: 01.05.97	
rest								

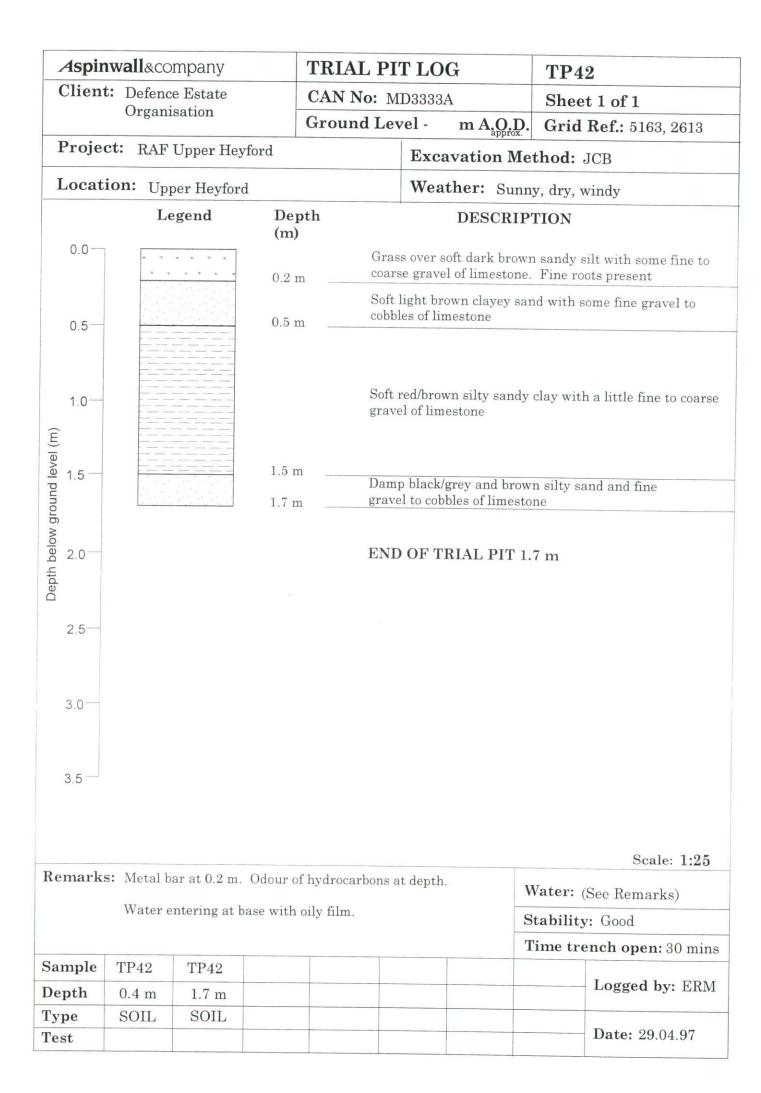


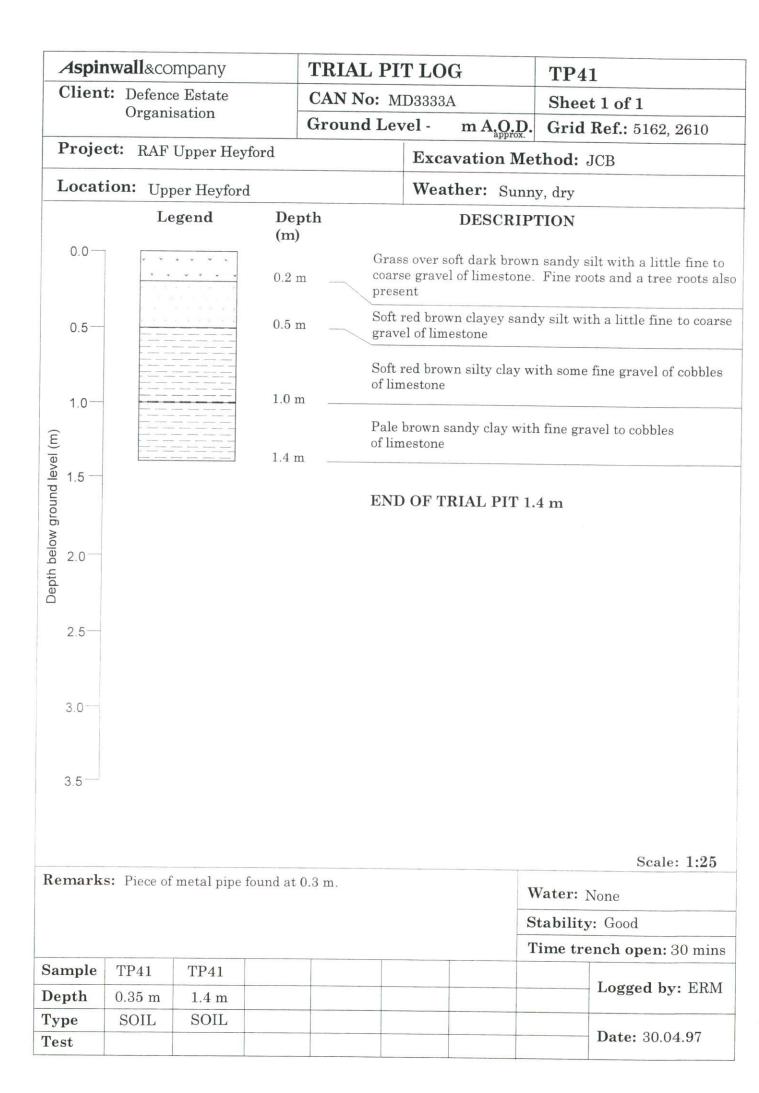



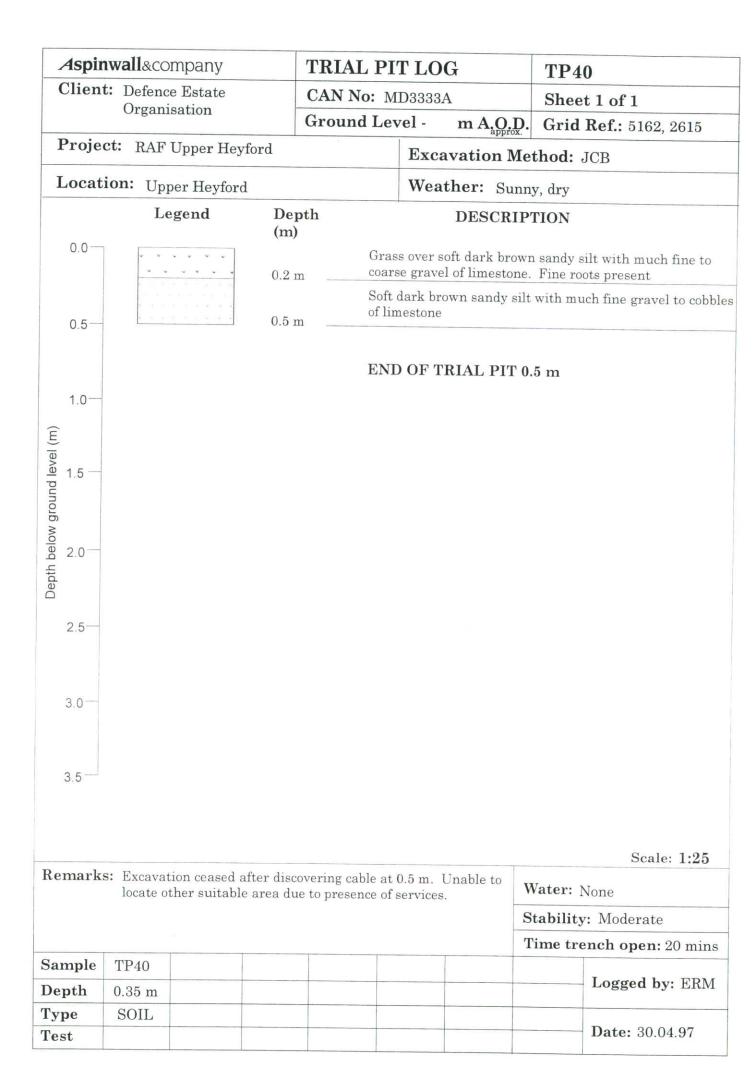



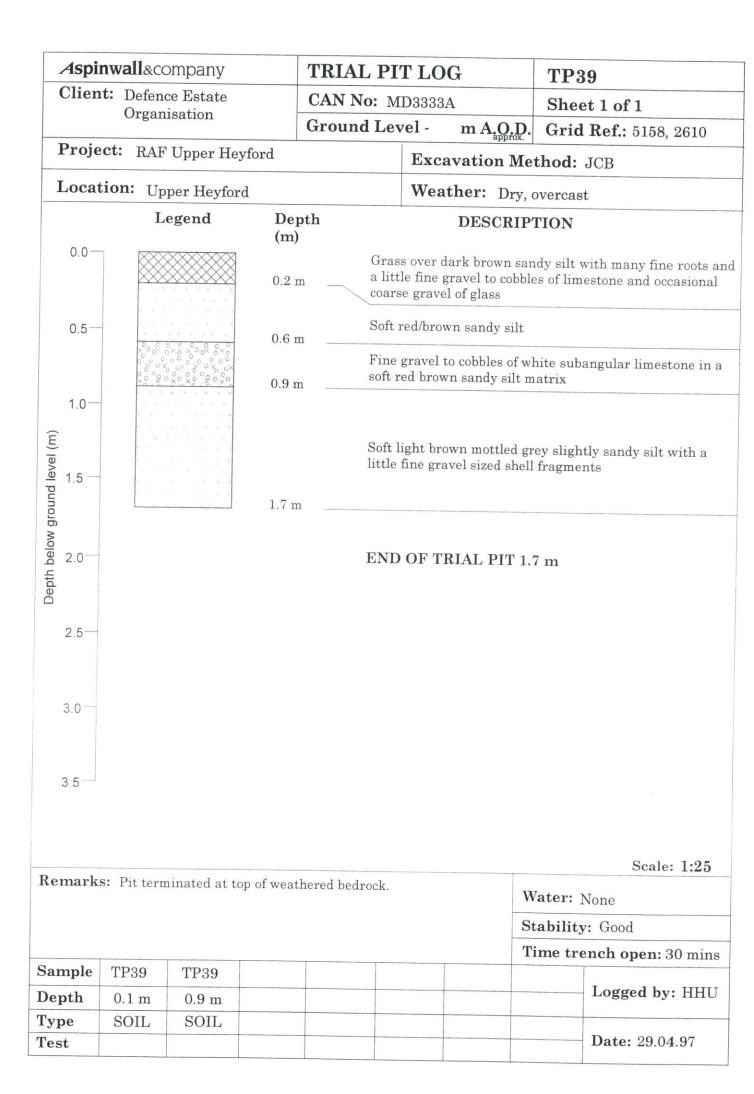



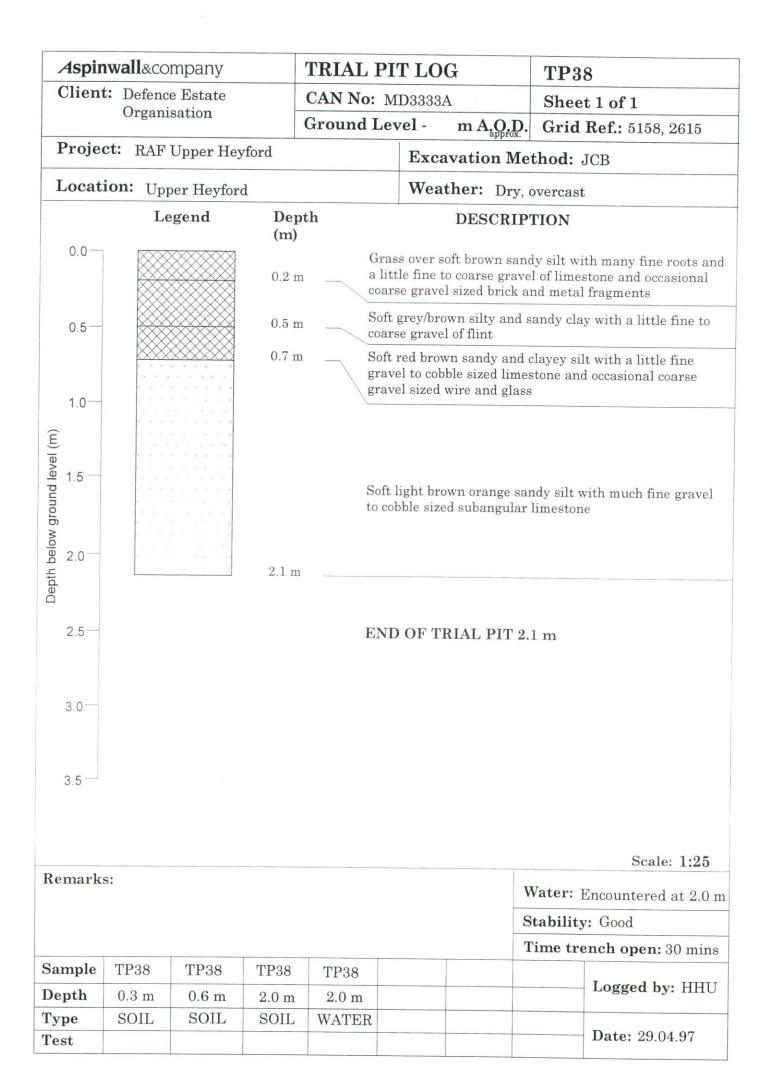



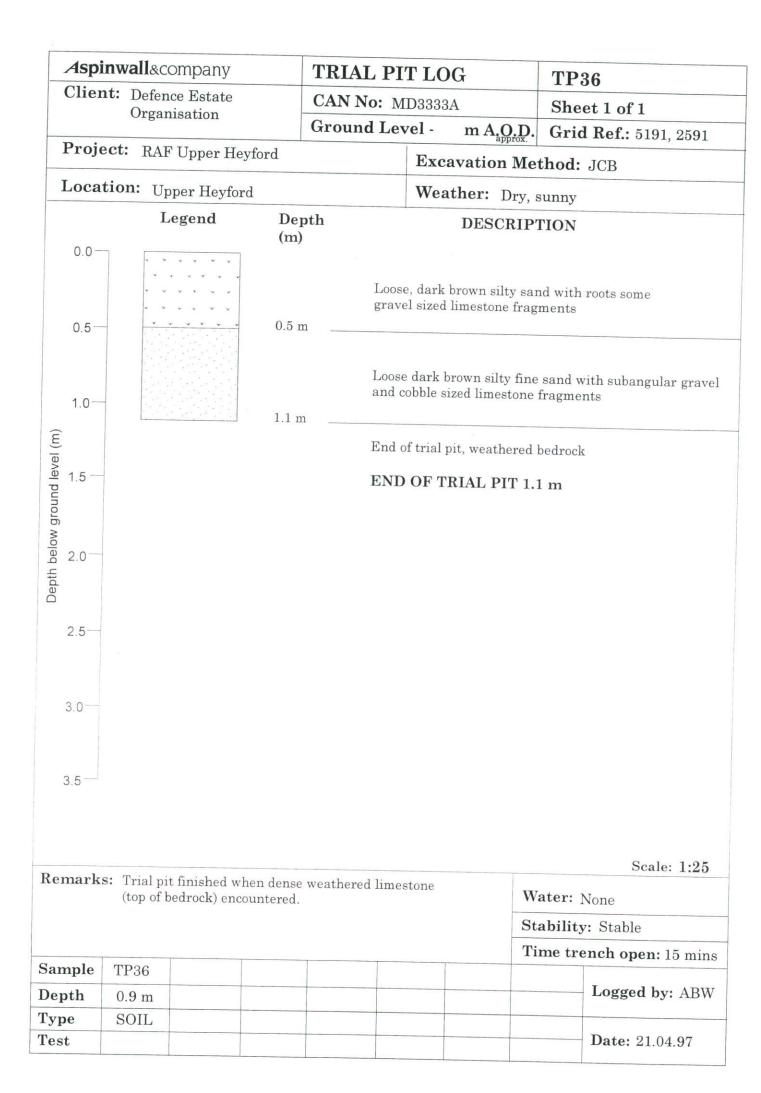



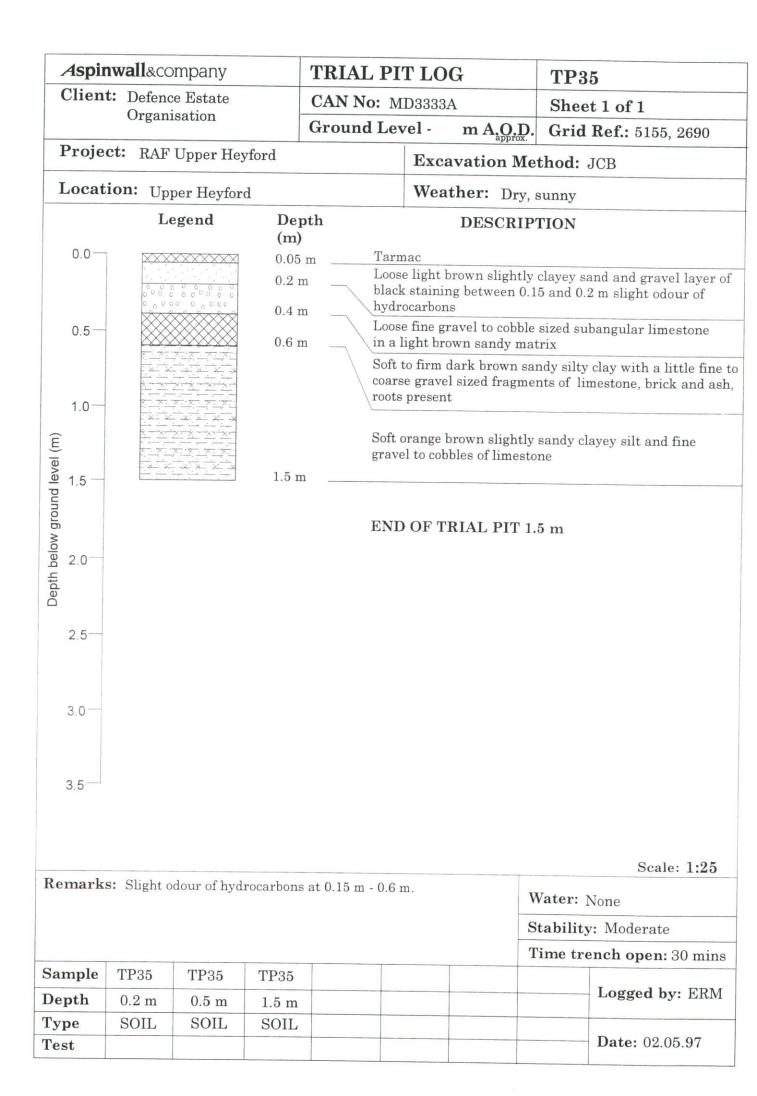



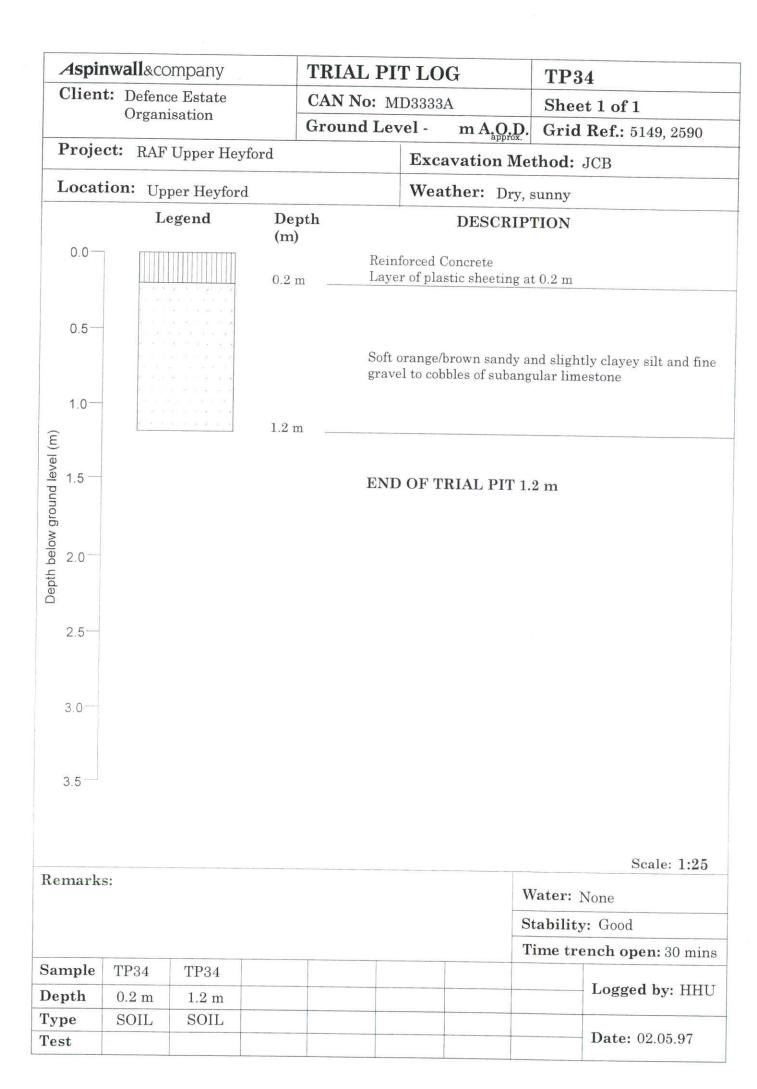



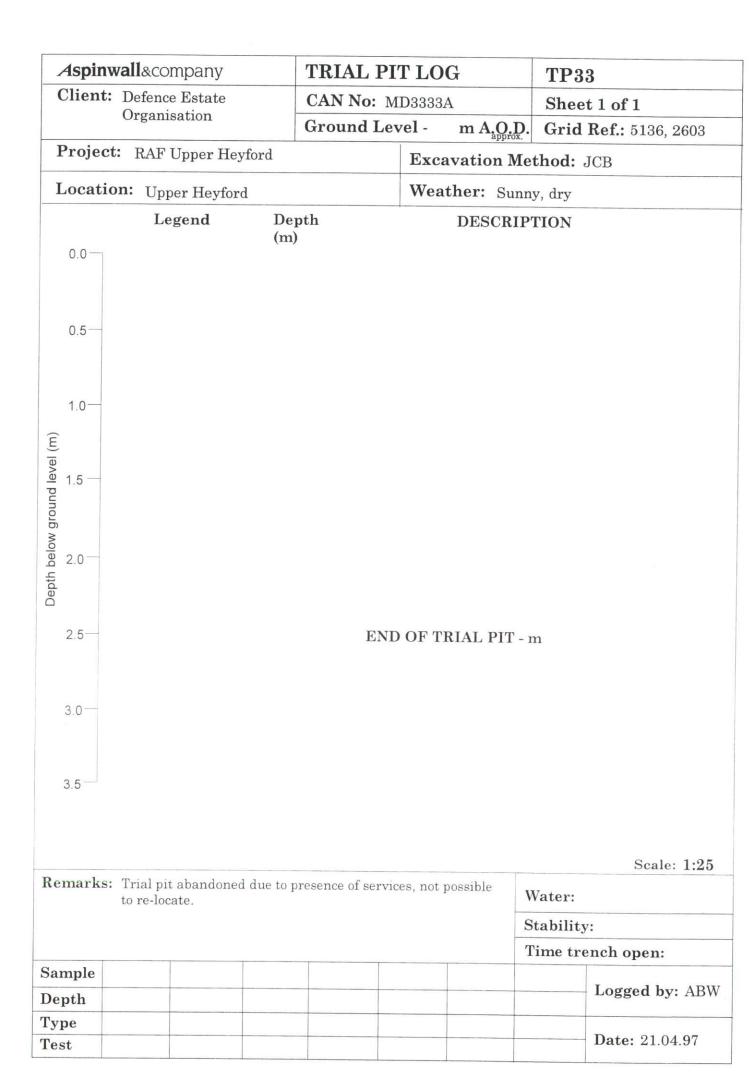



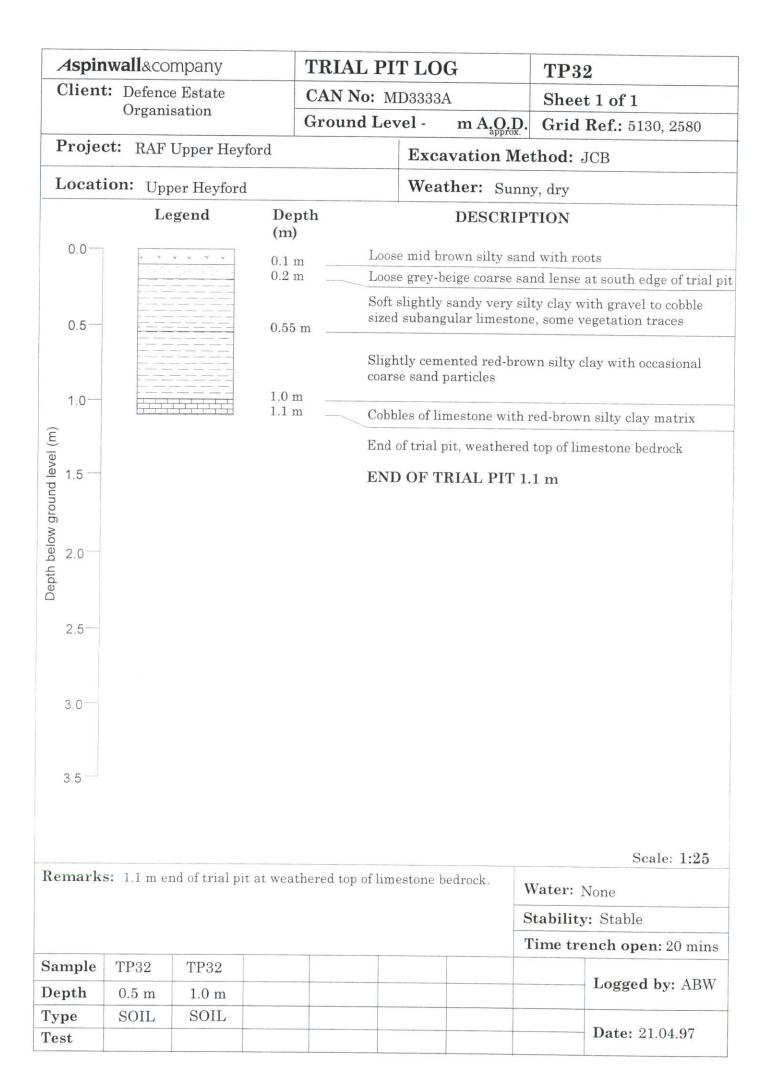


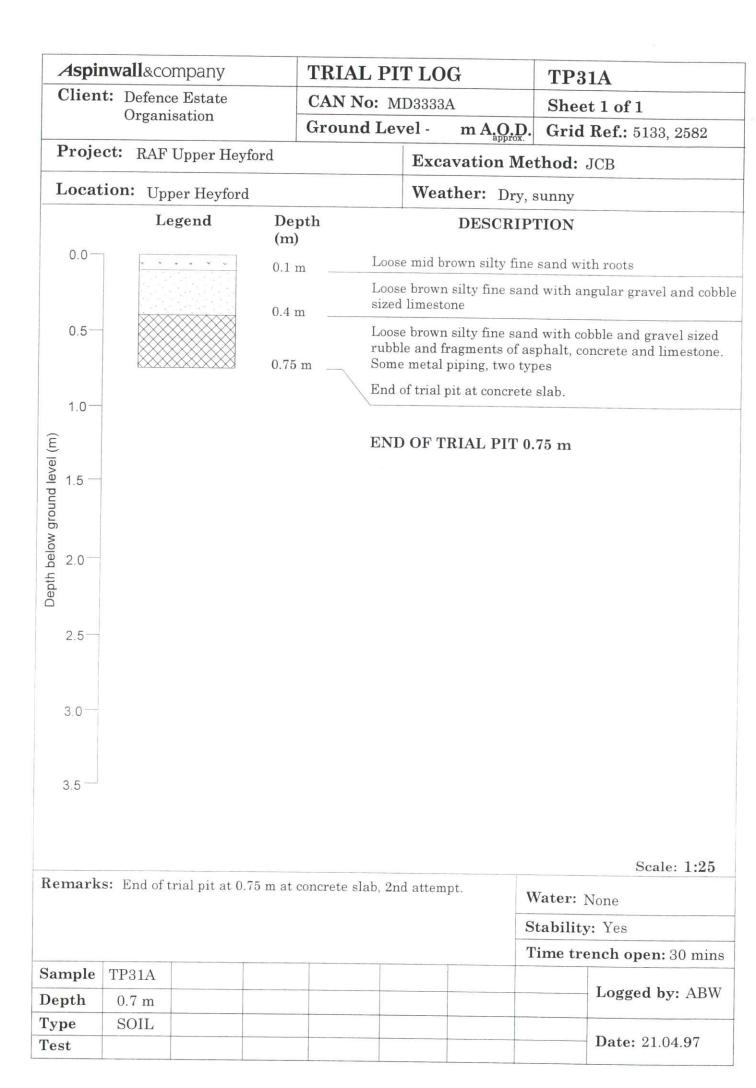



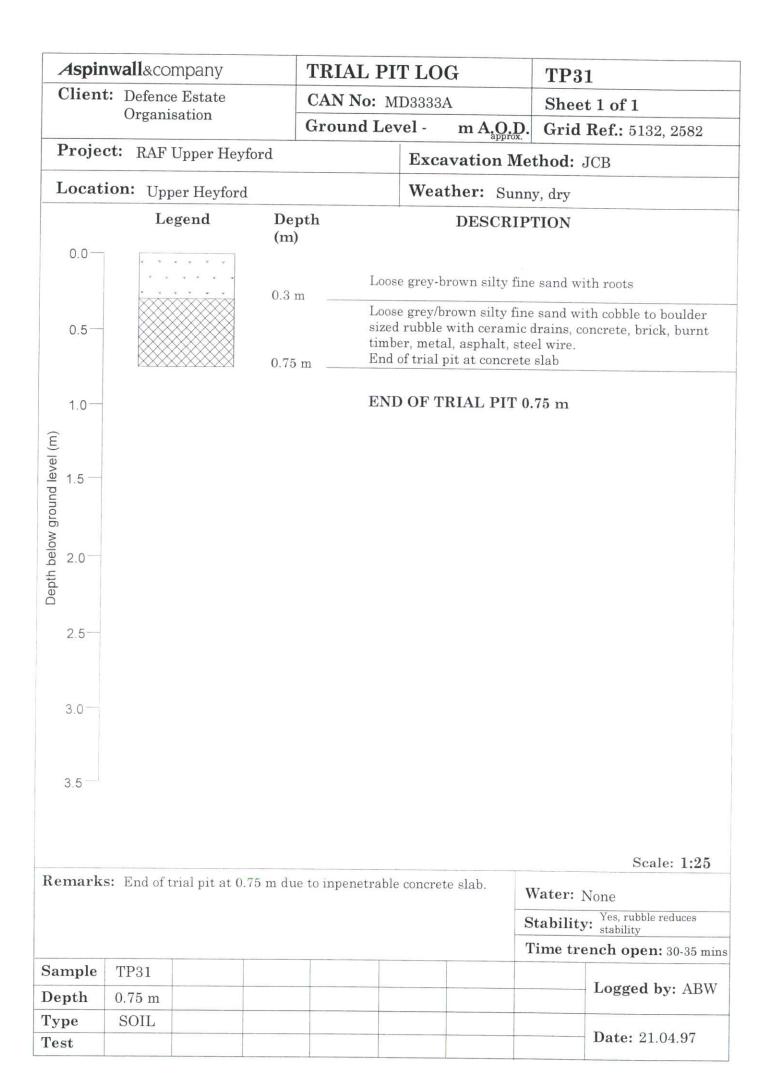



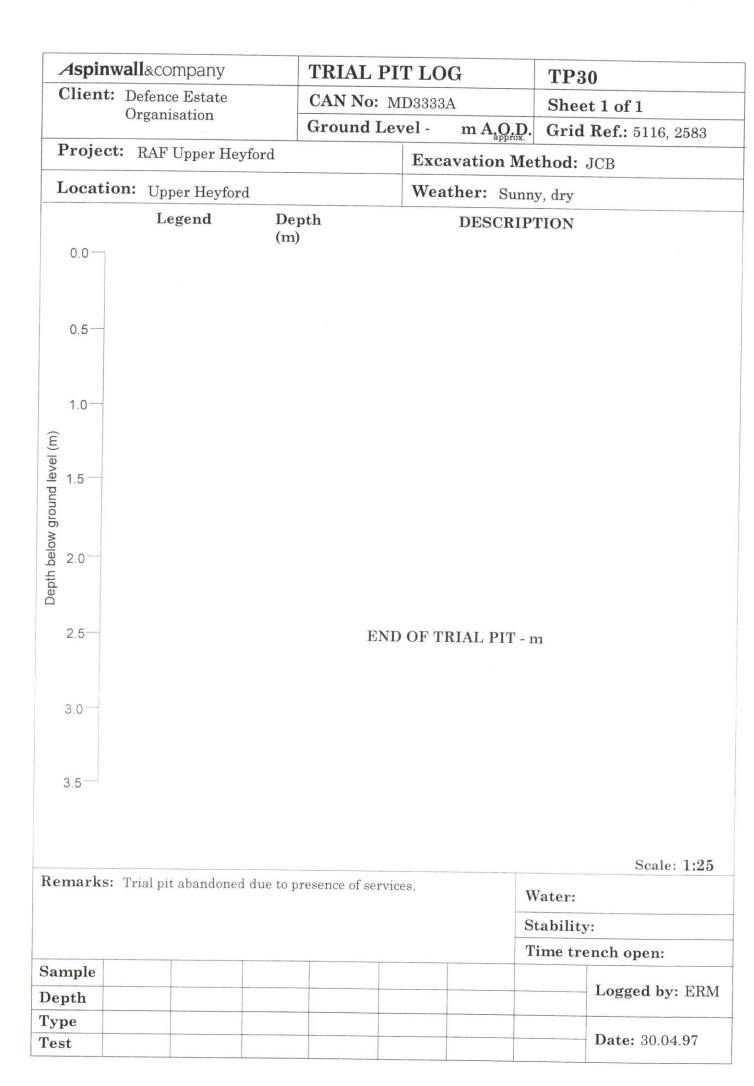



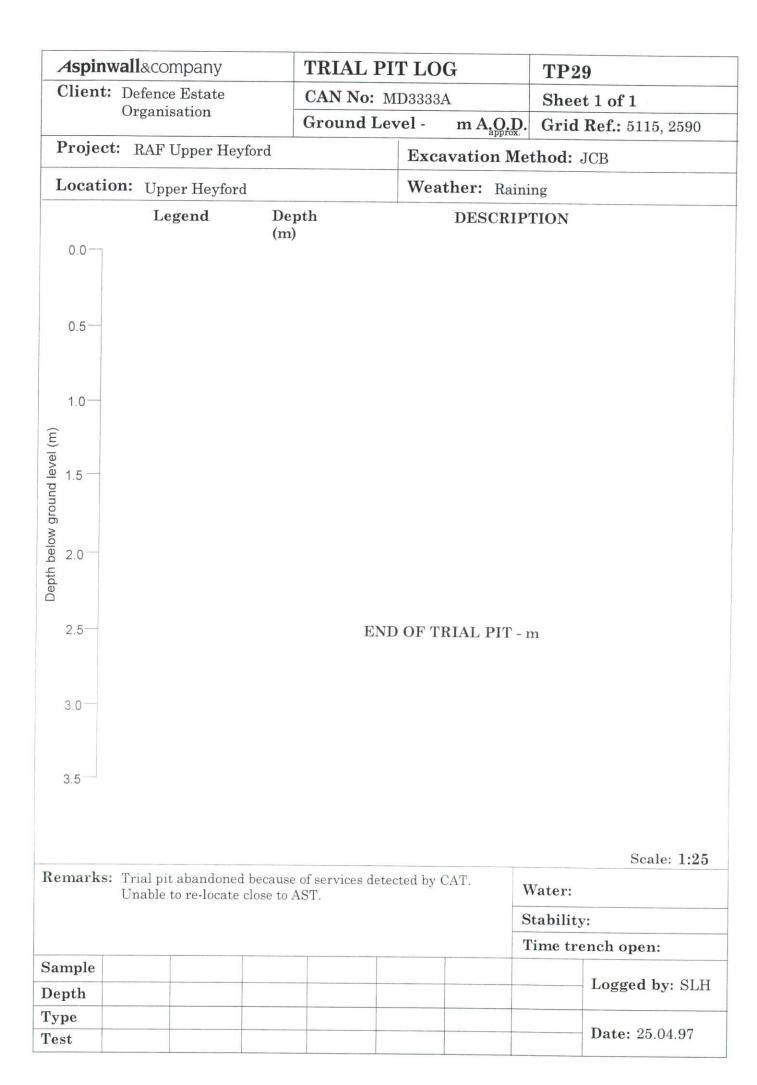



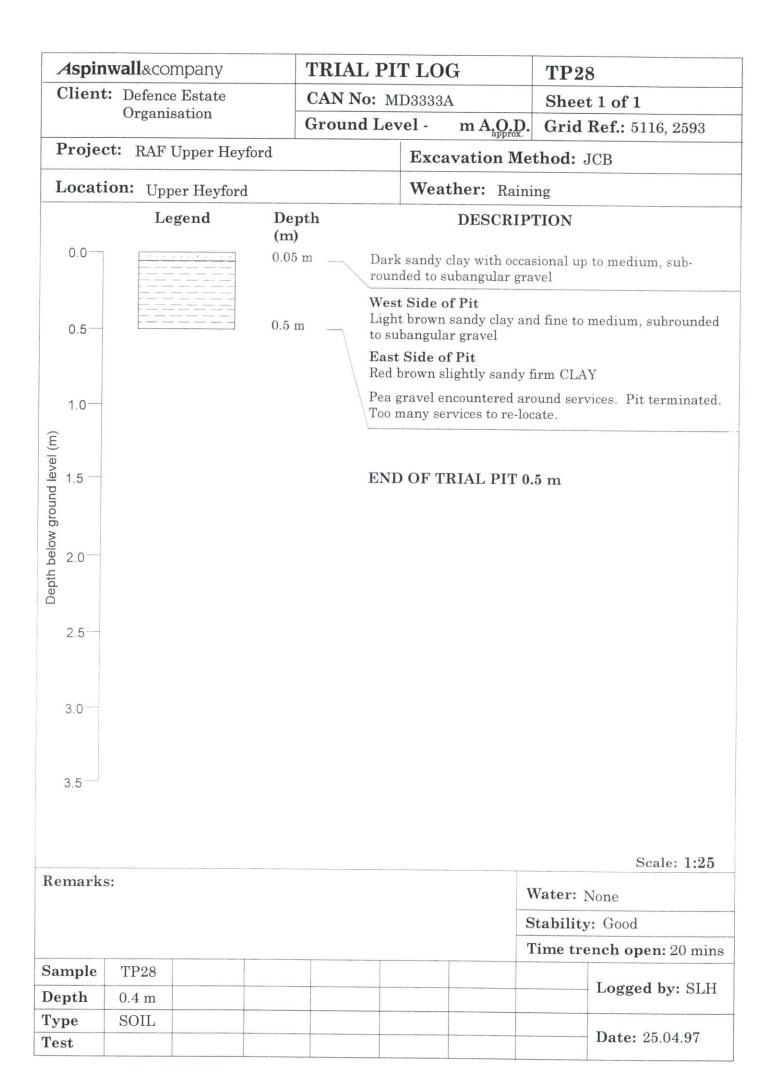



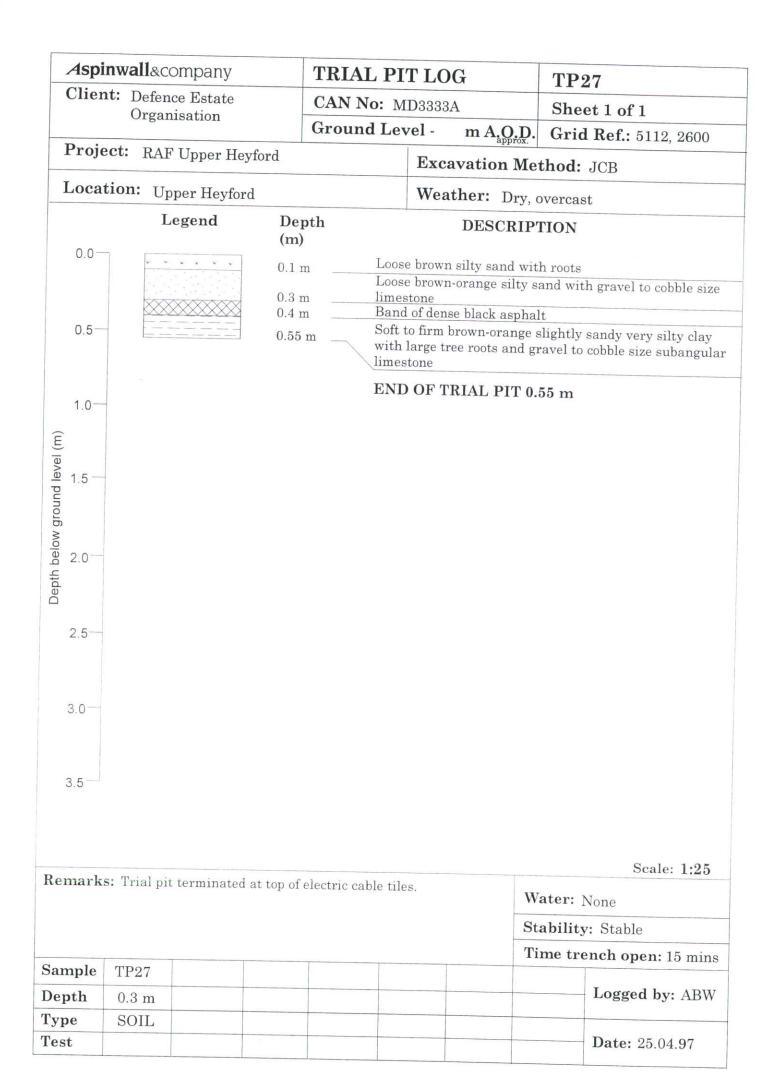



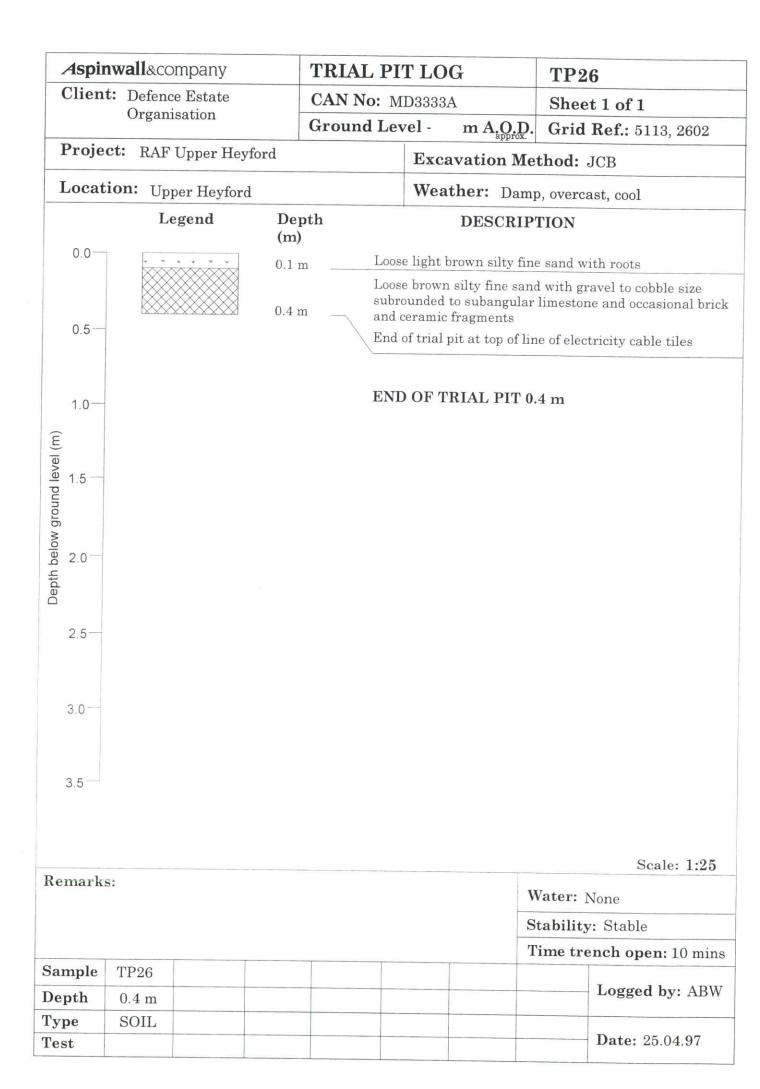



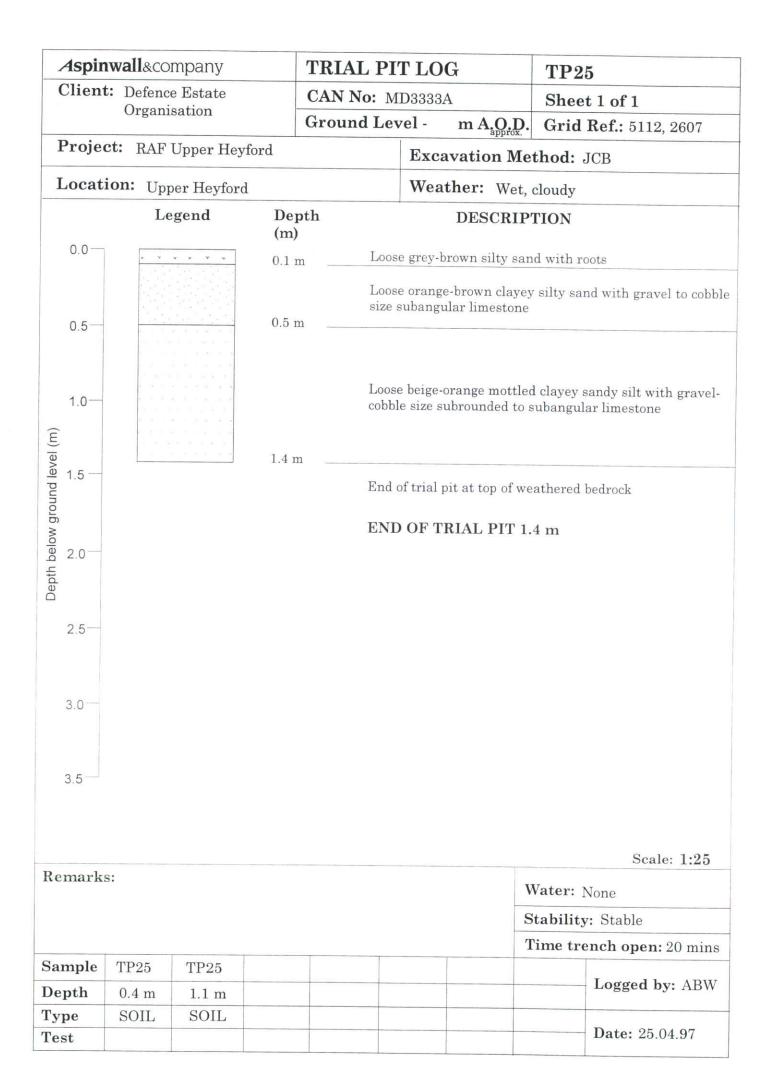



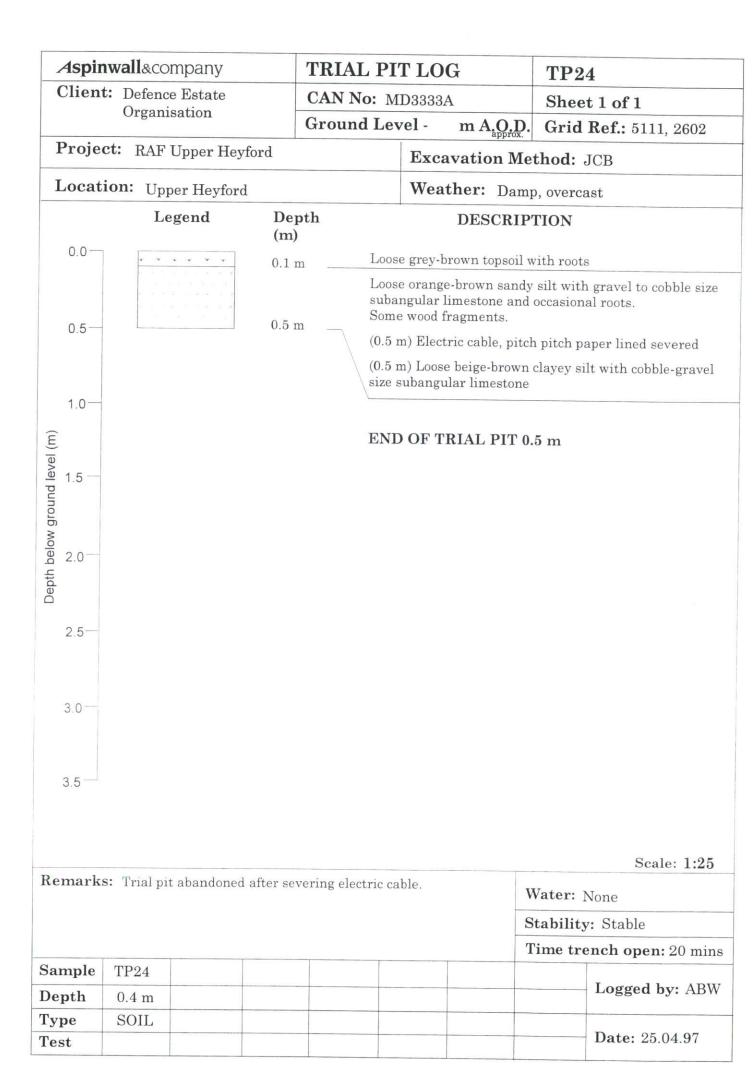



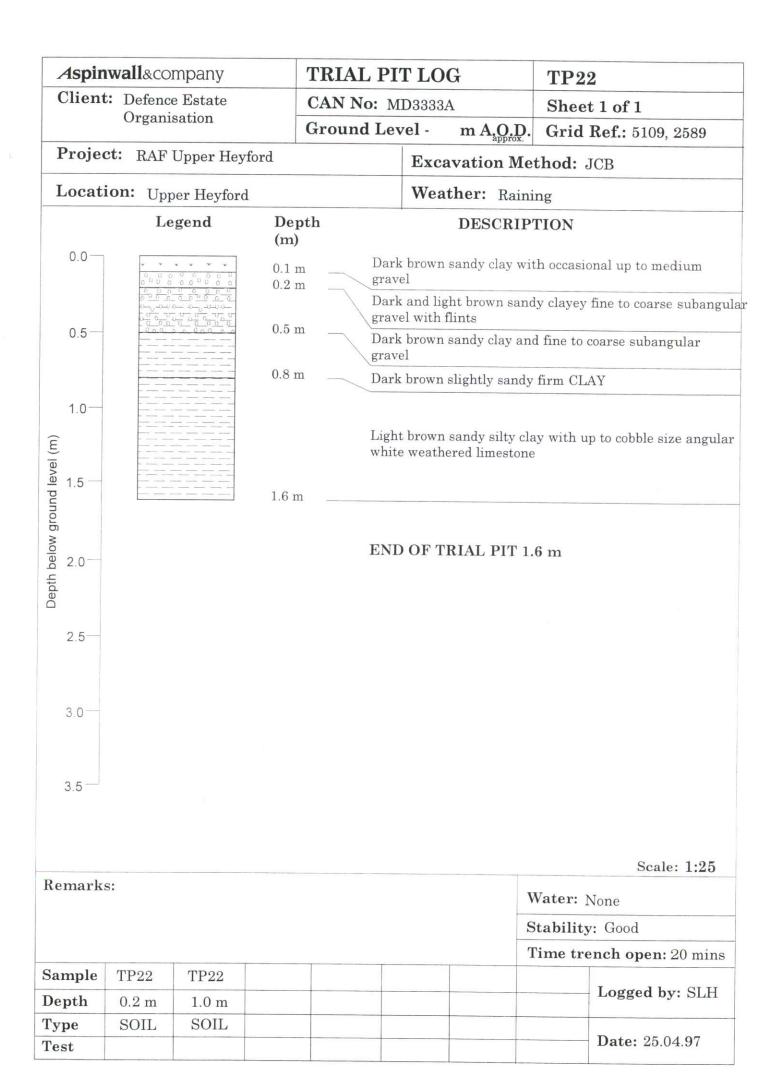



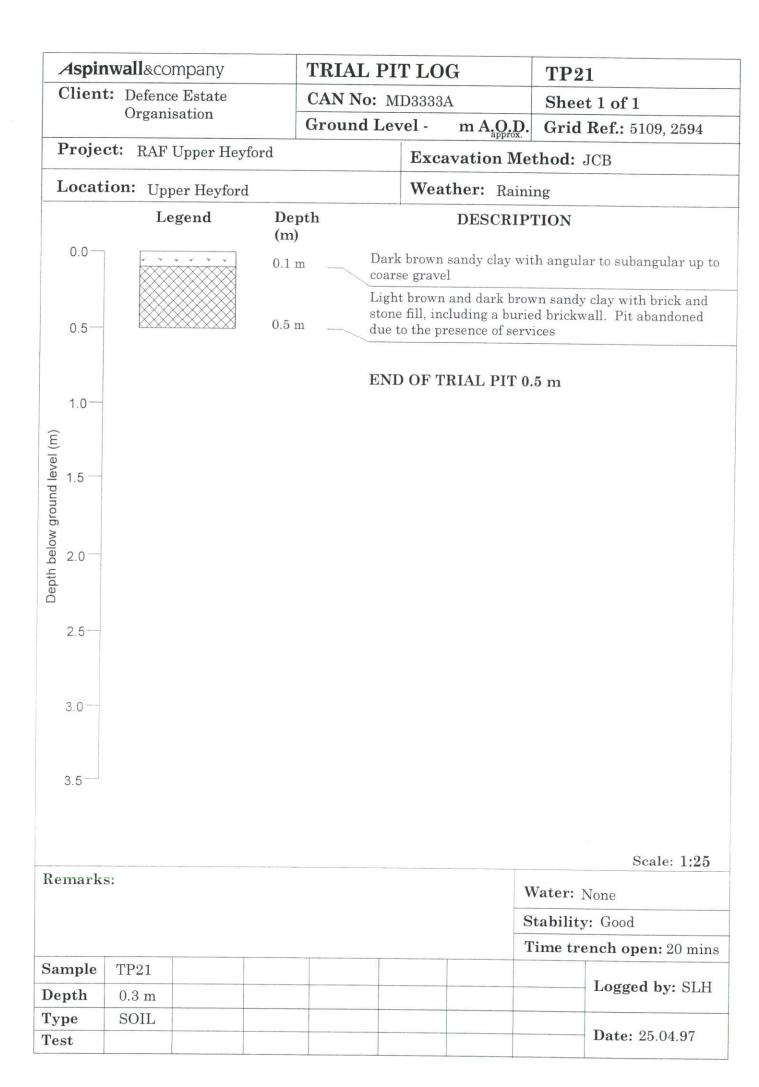



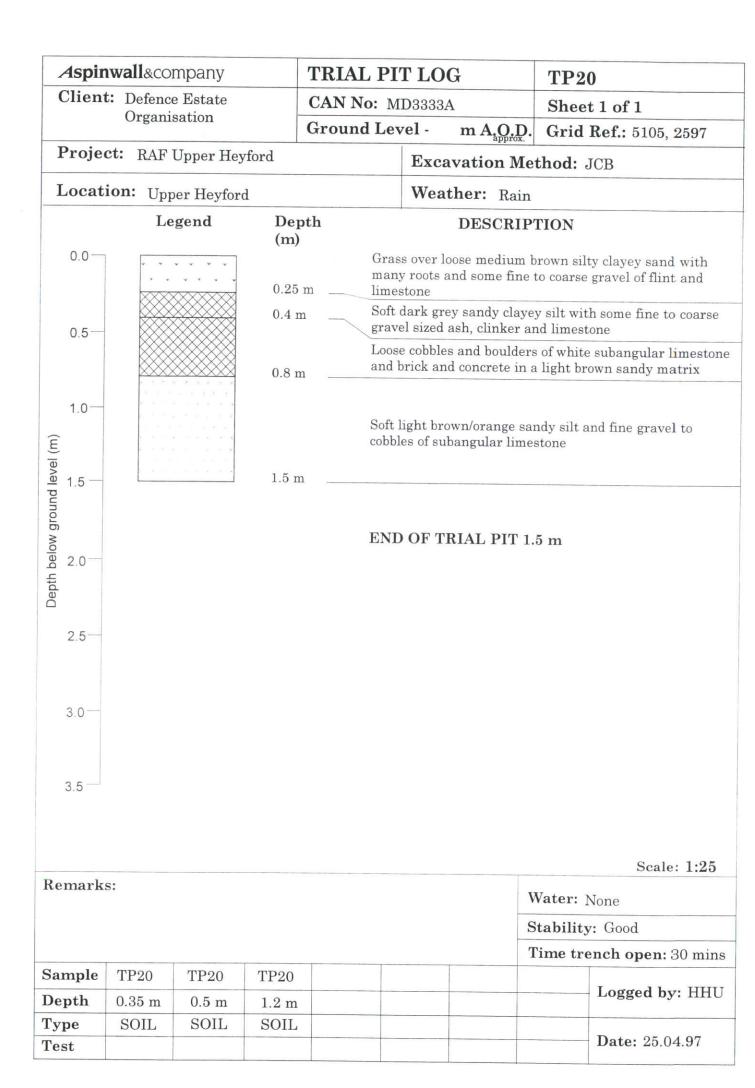



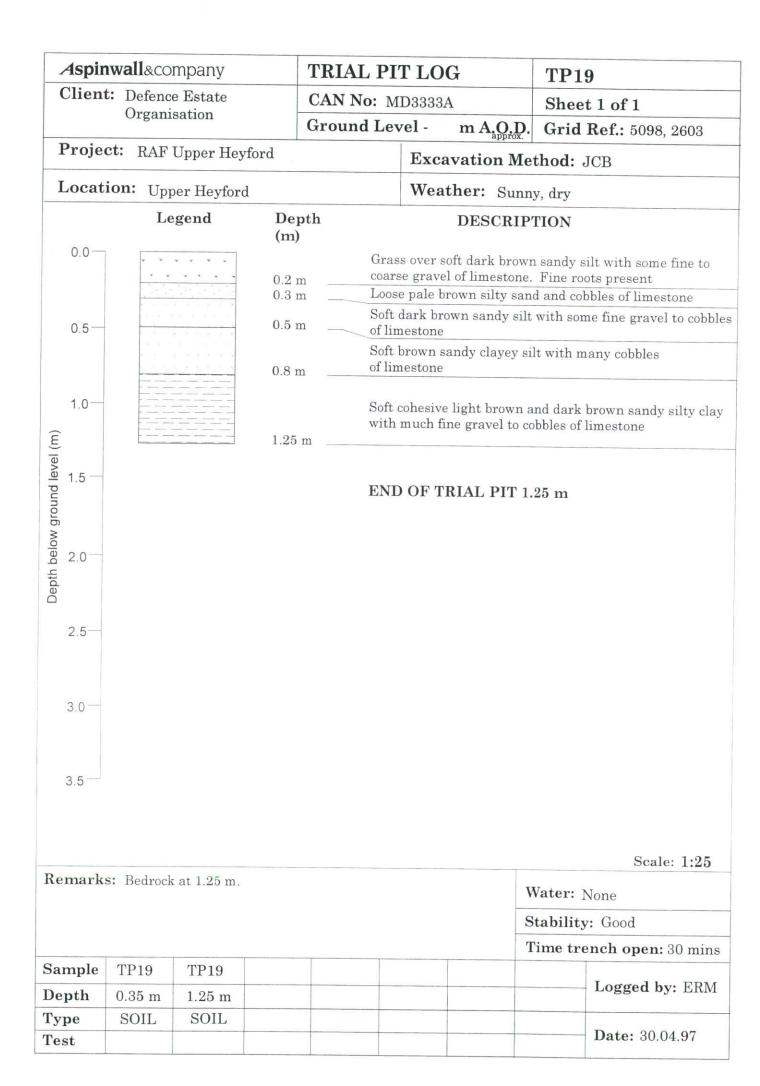



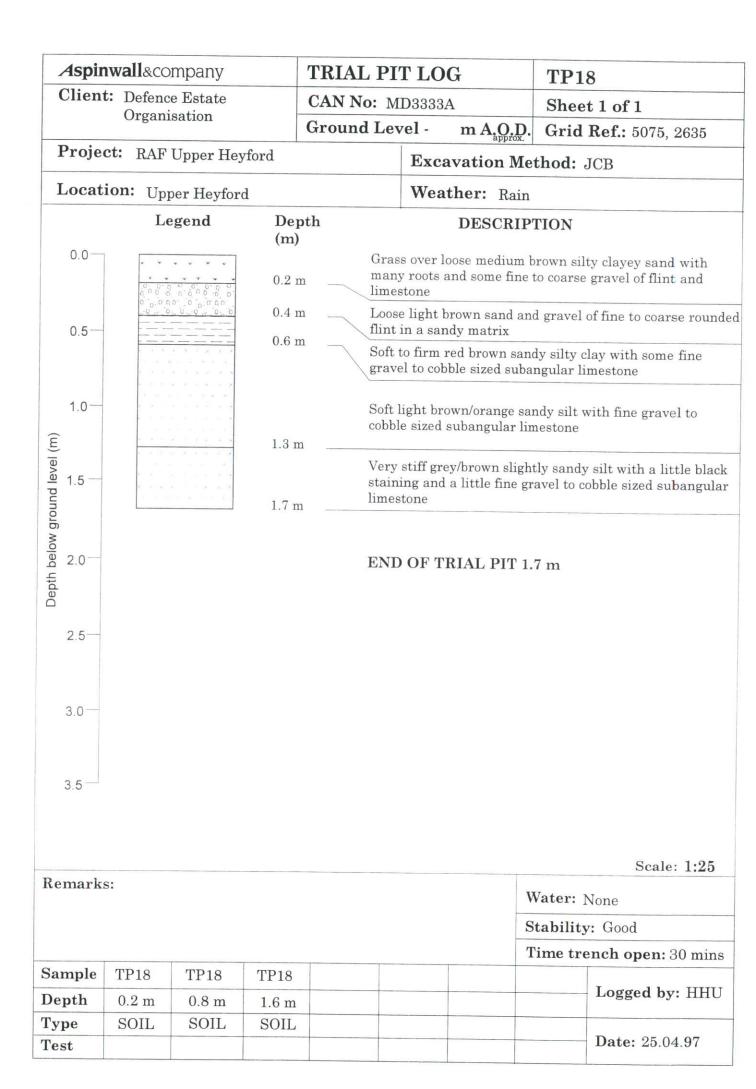


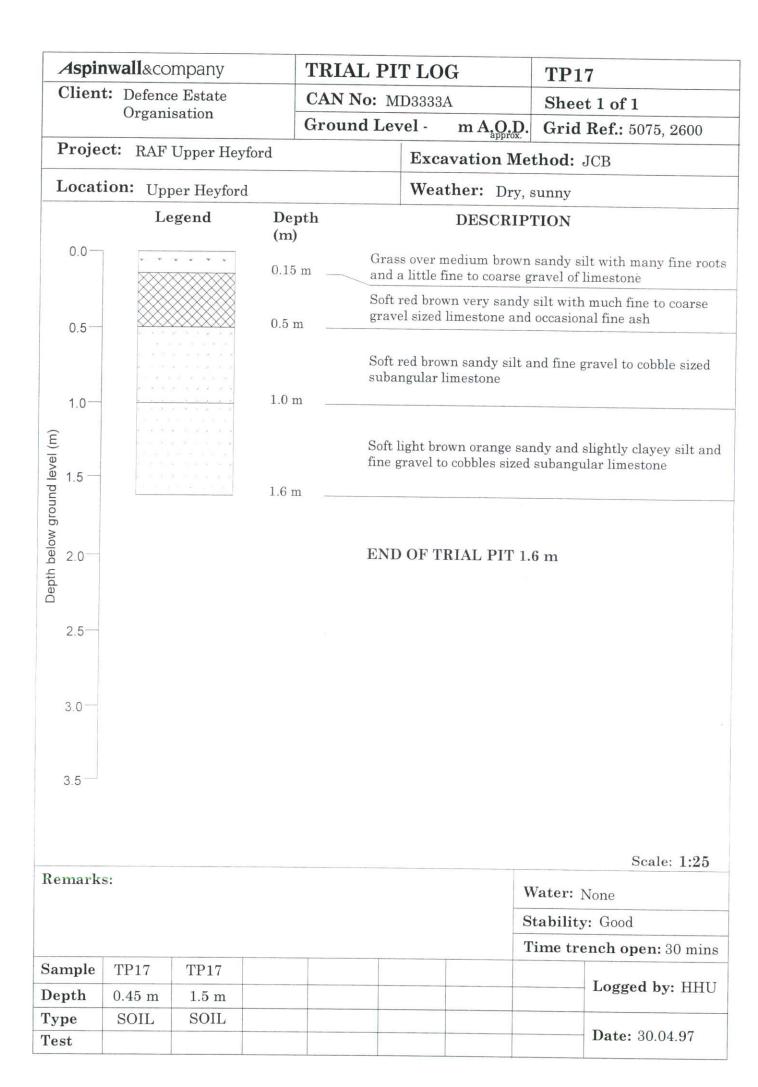



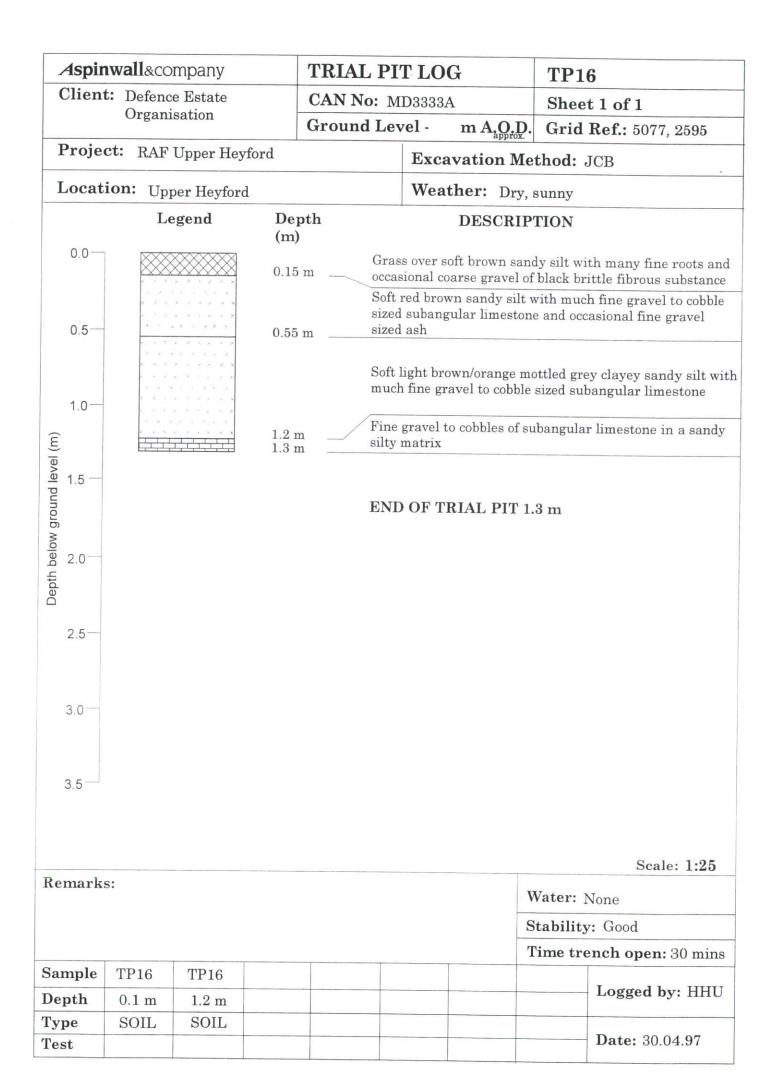



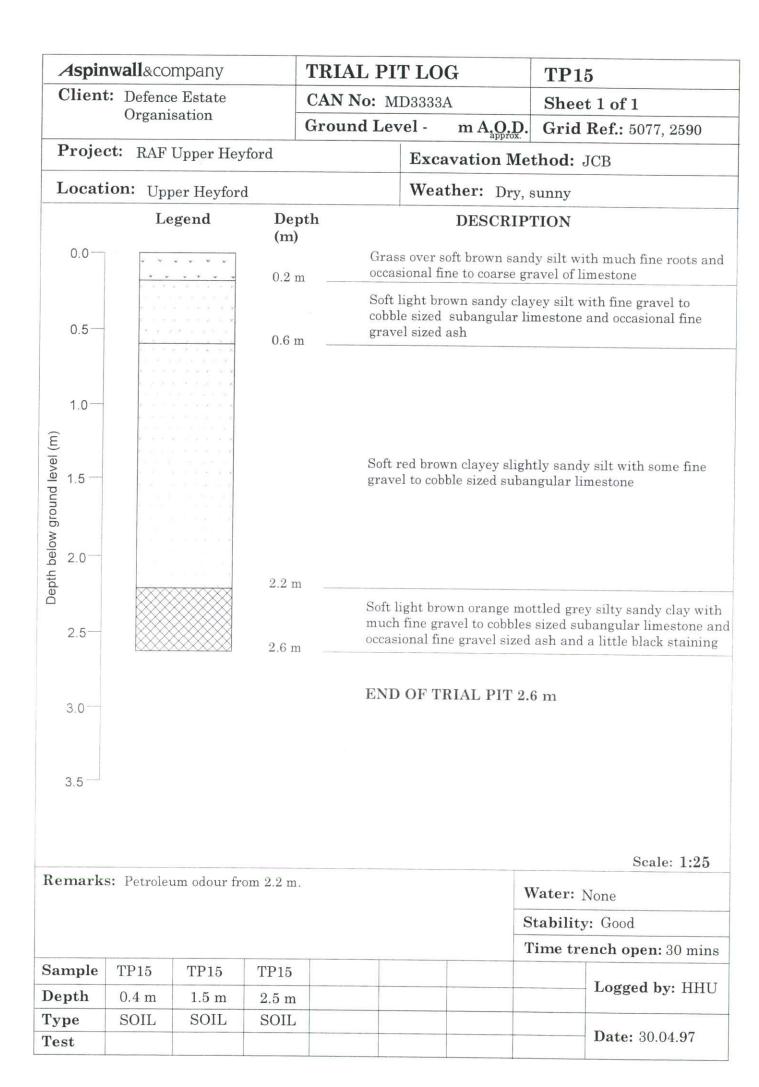



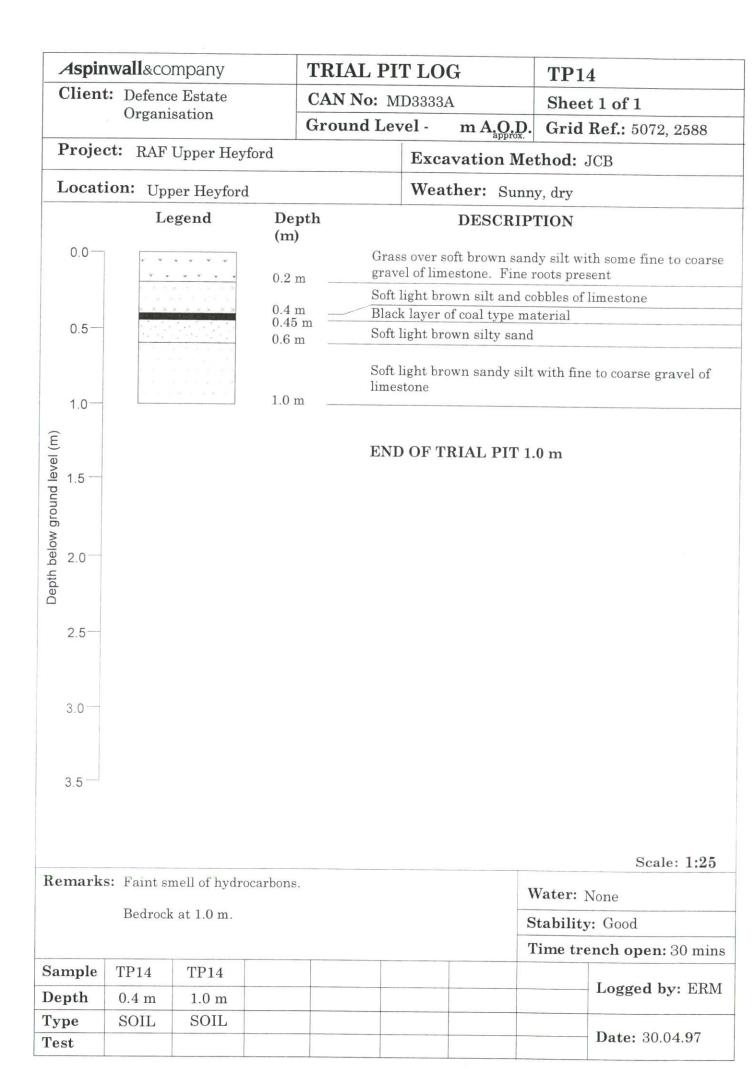



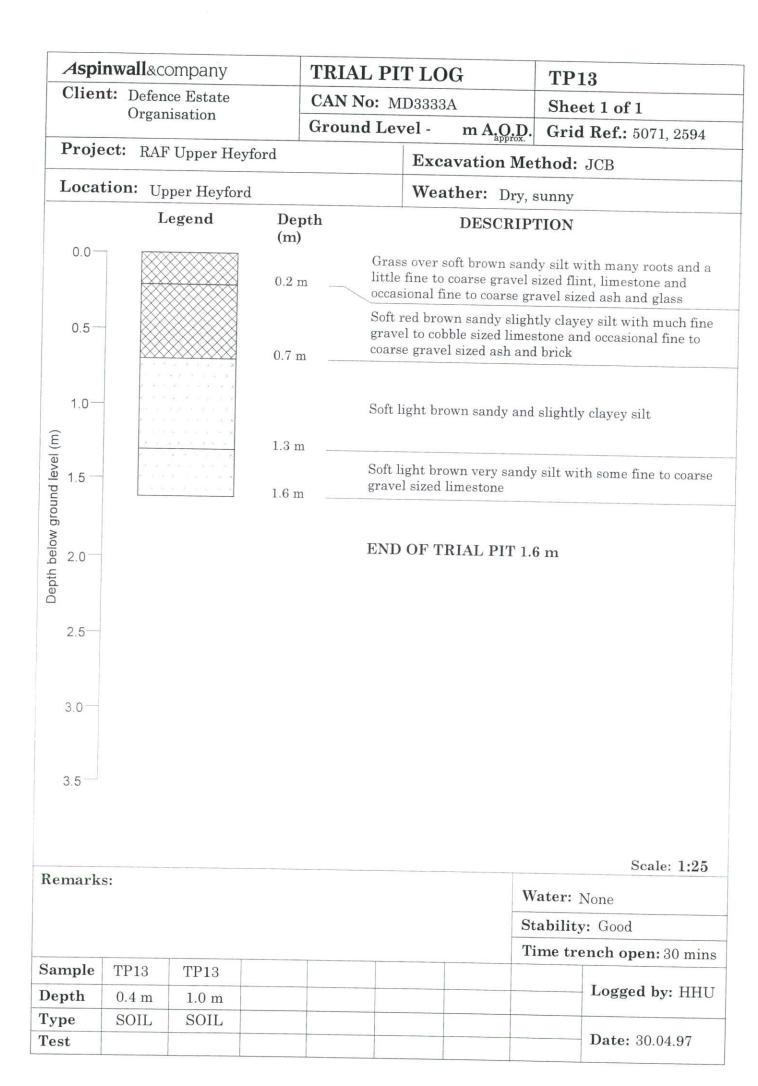



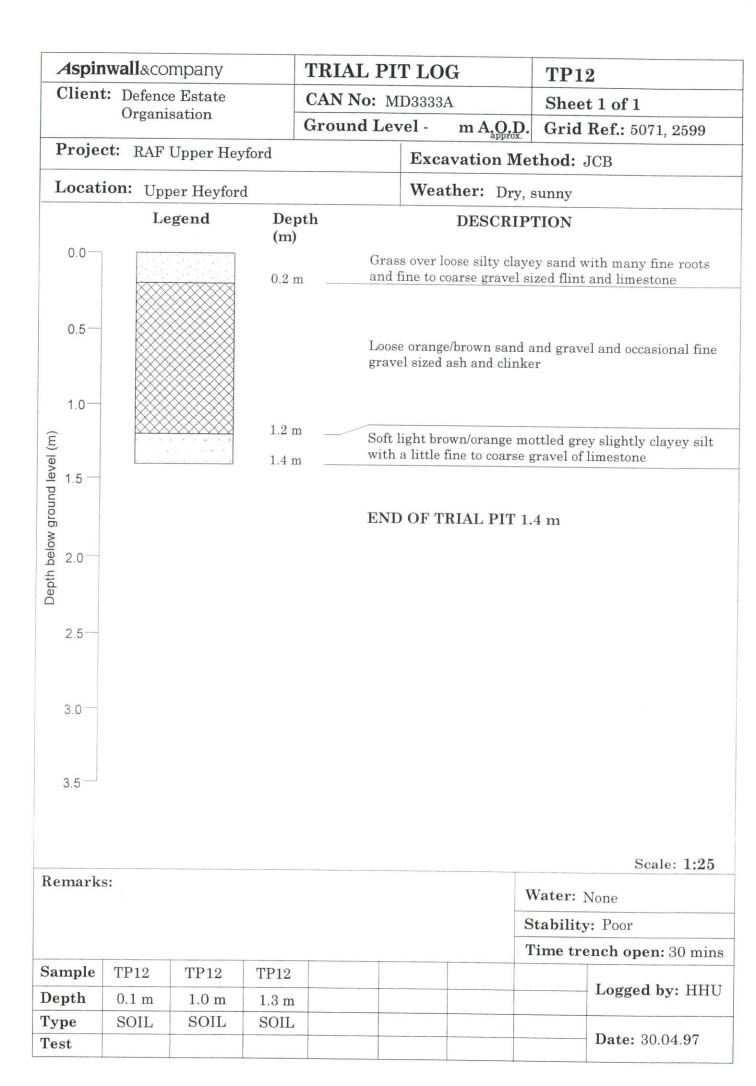



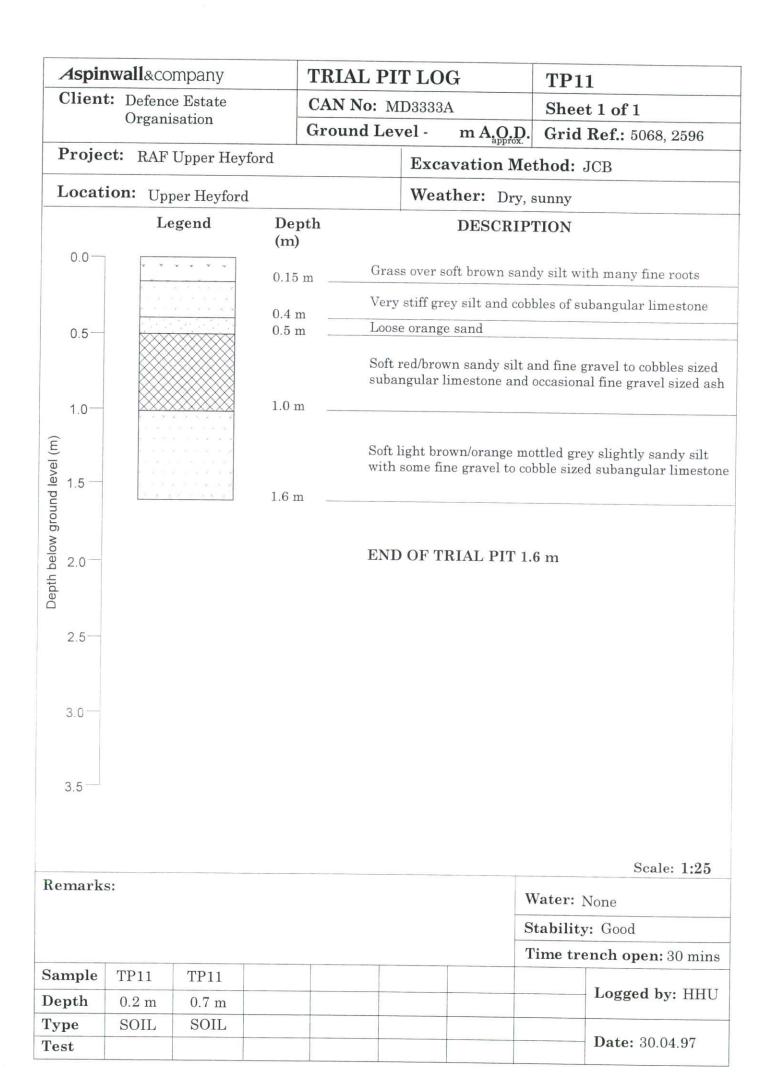



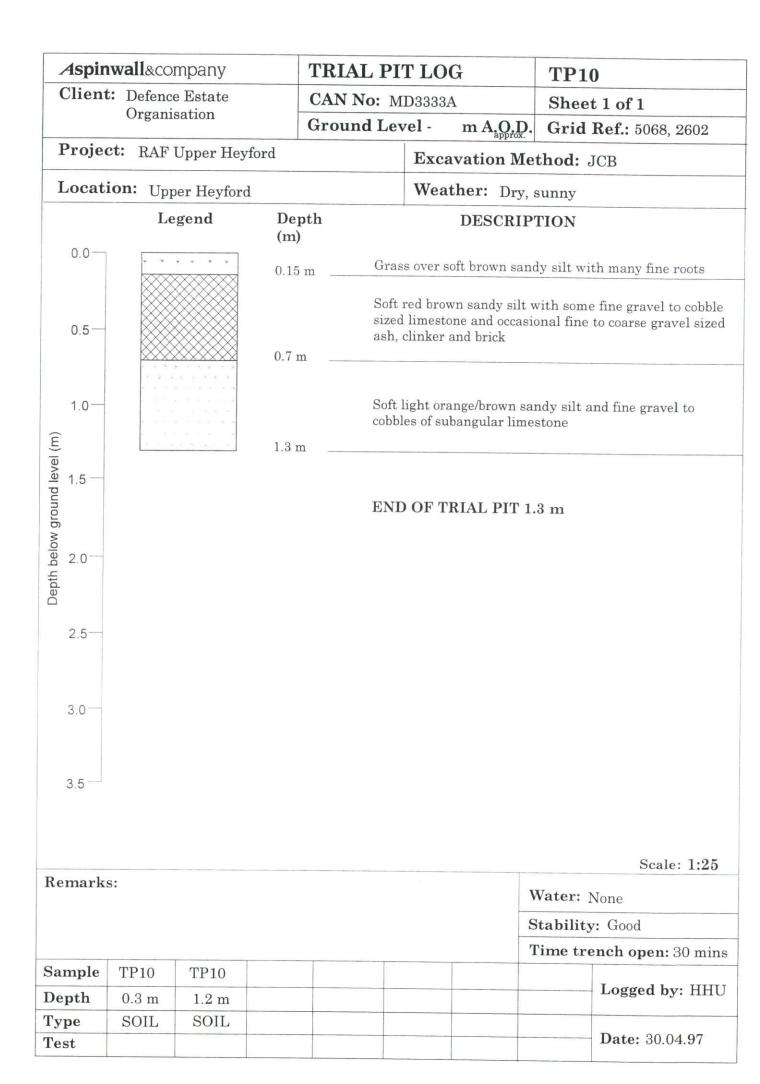



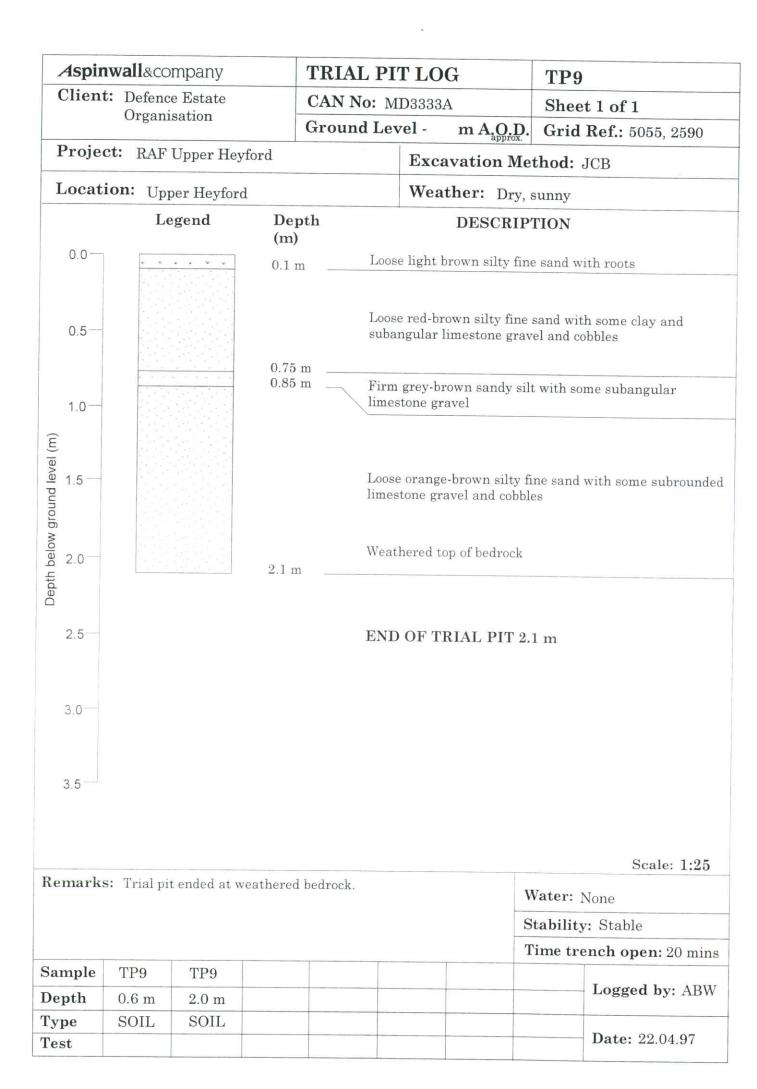



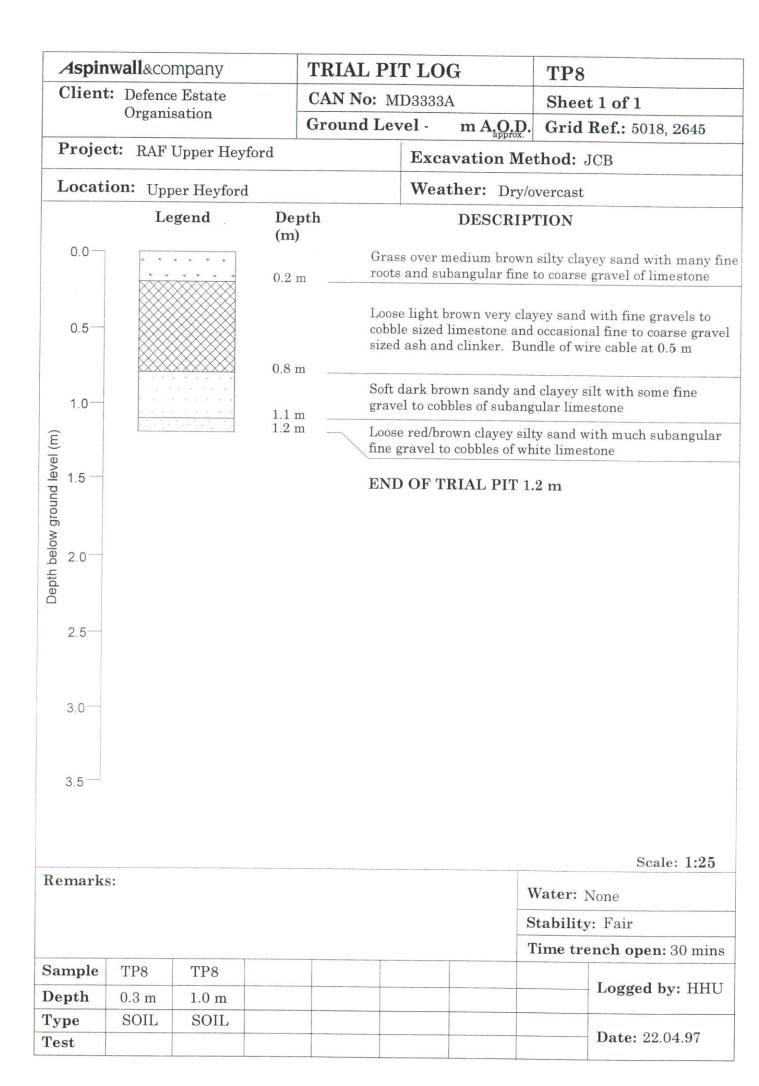



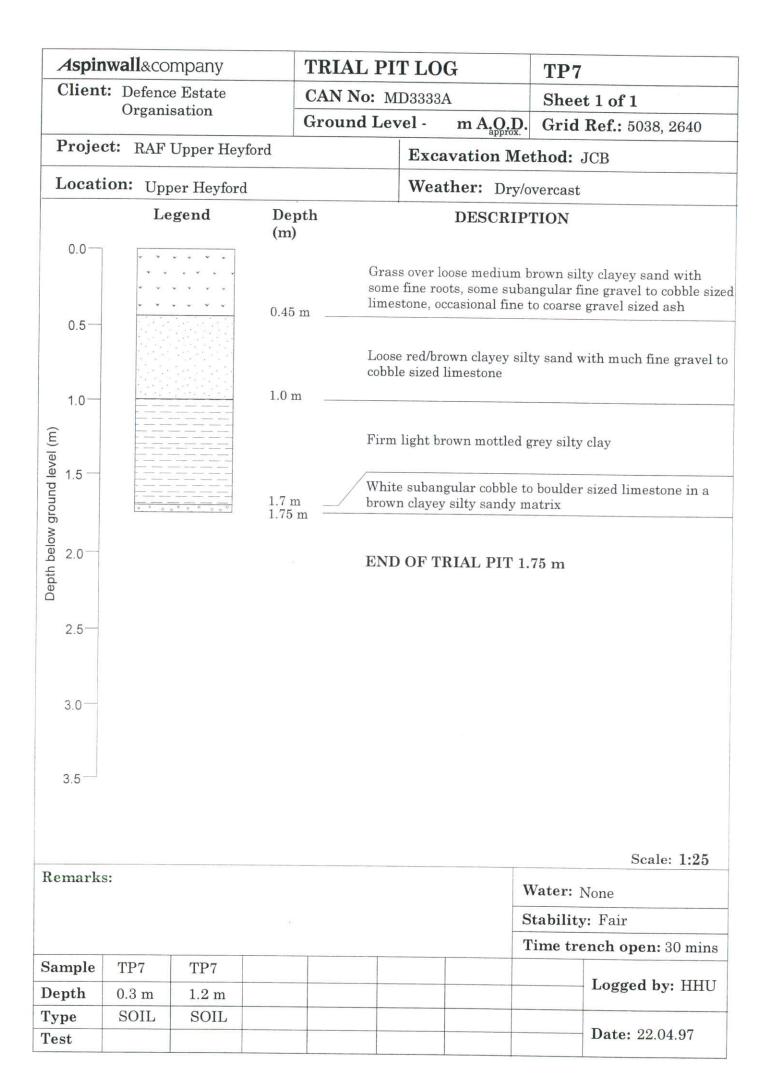



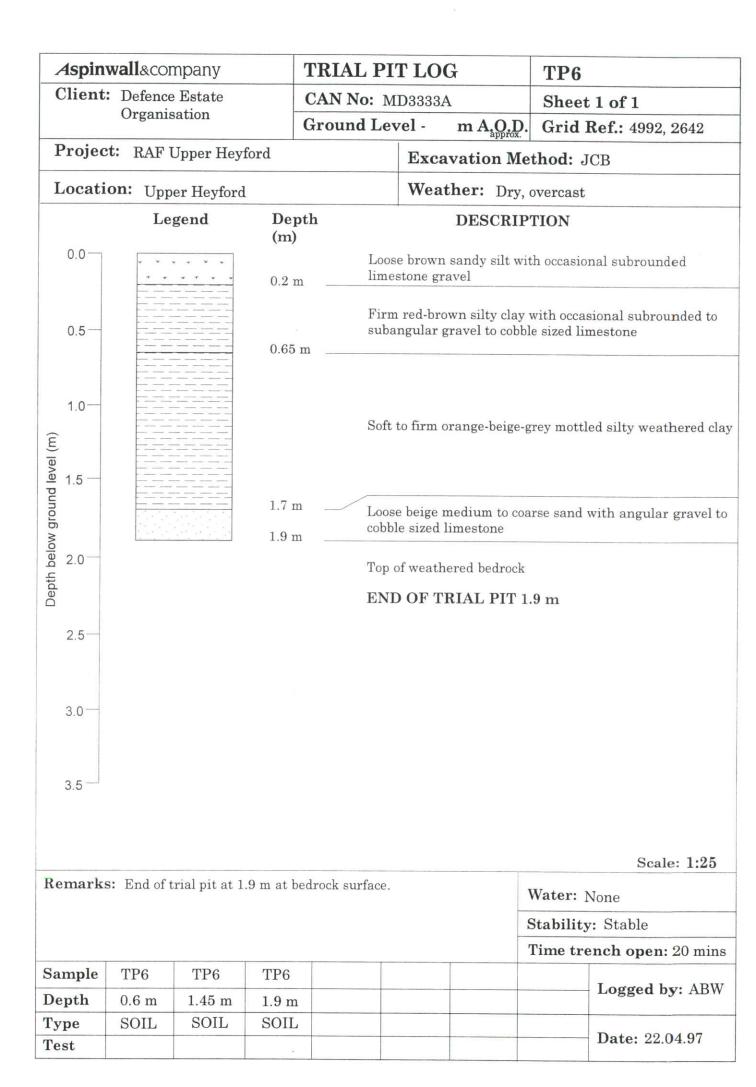



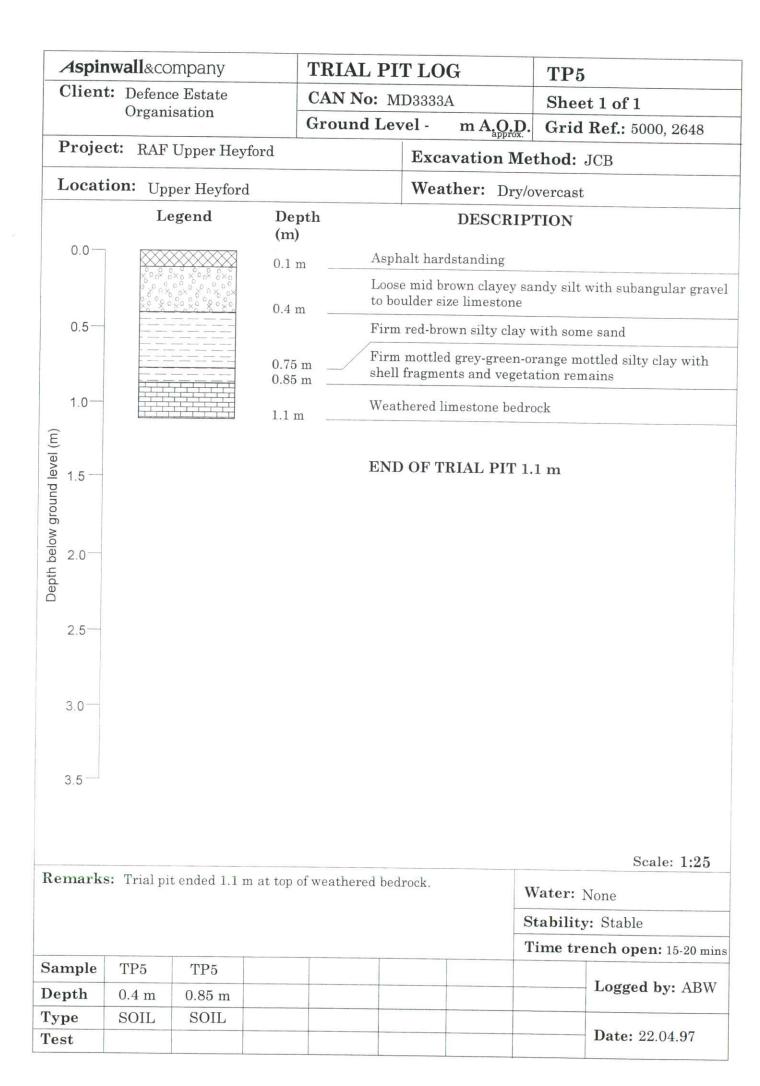



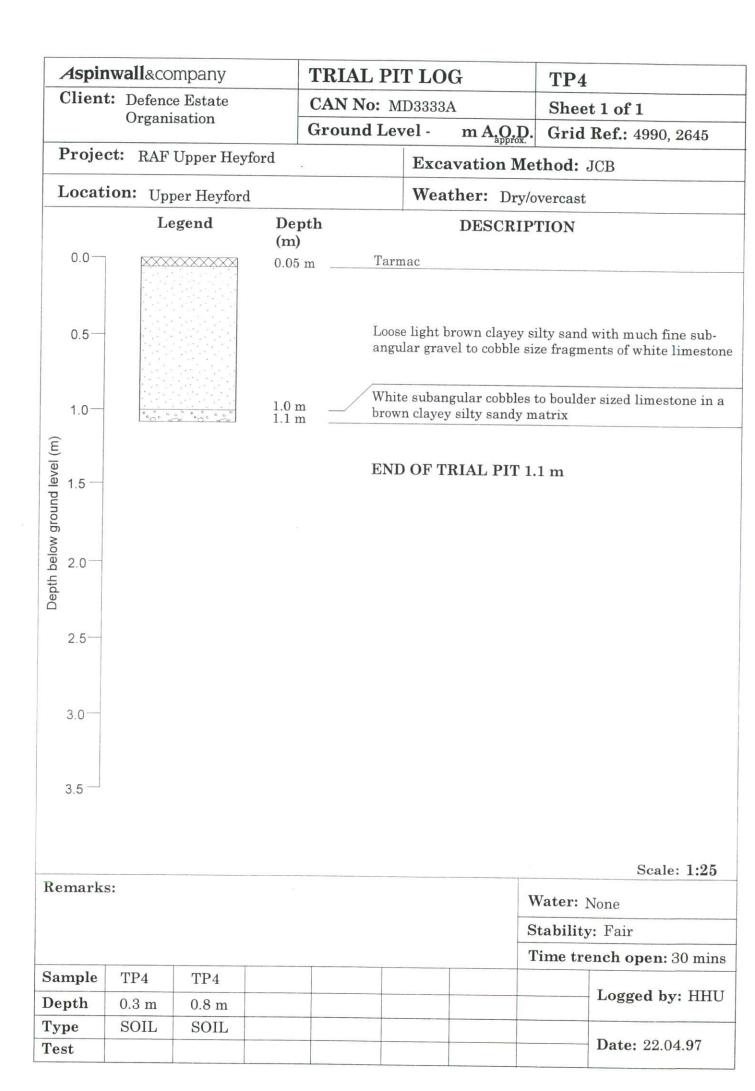



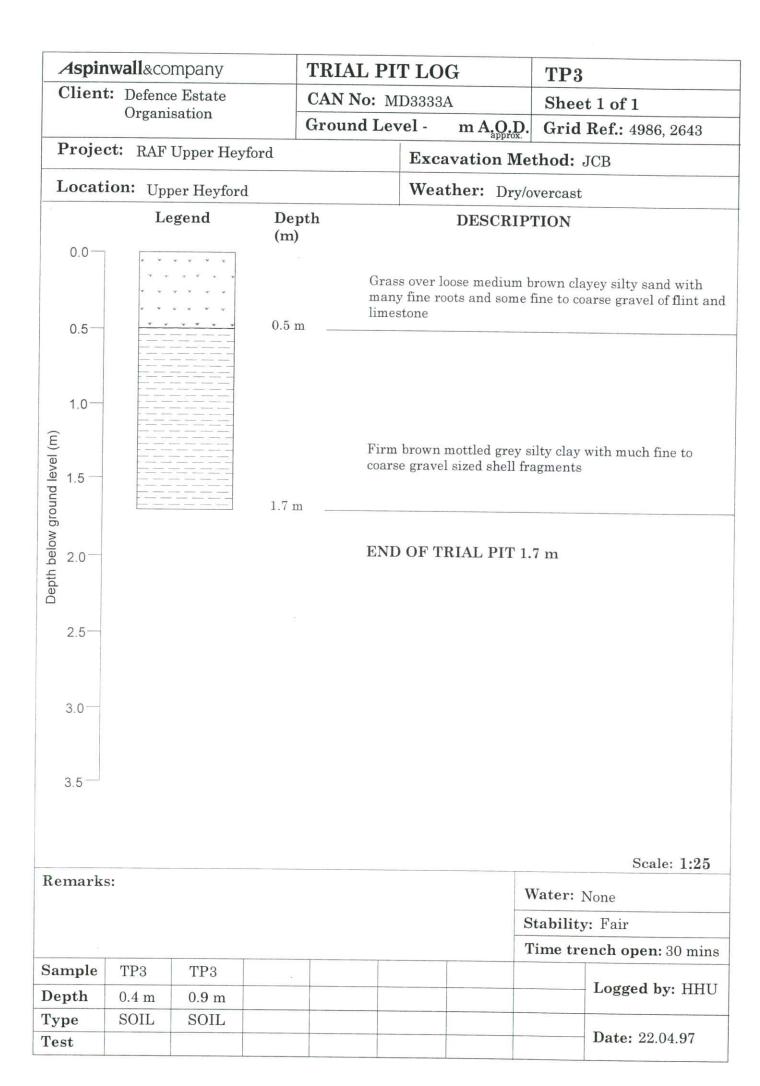



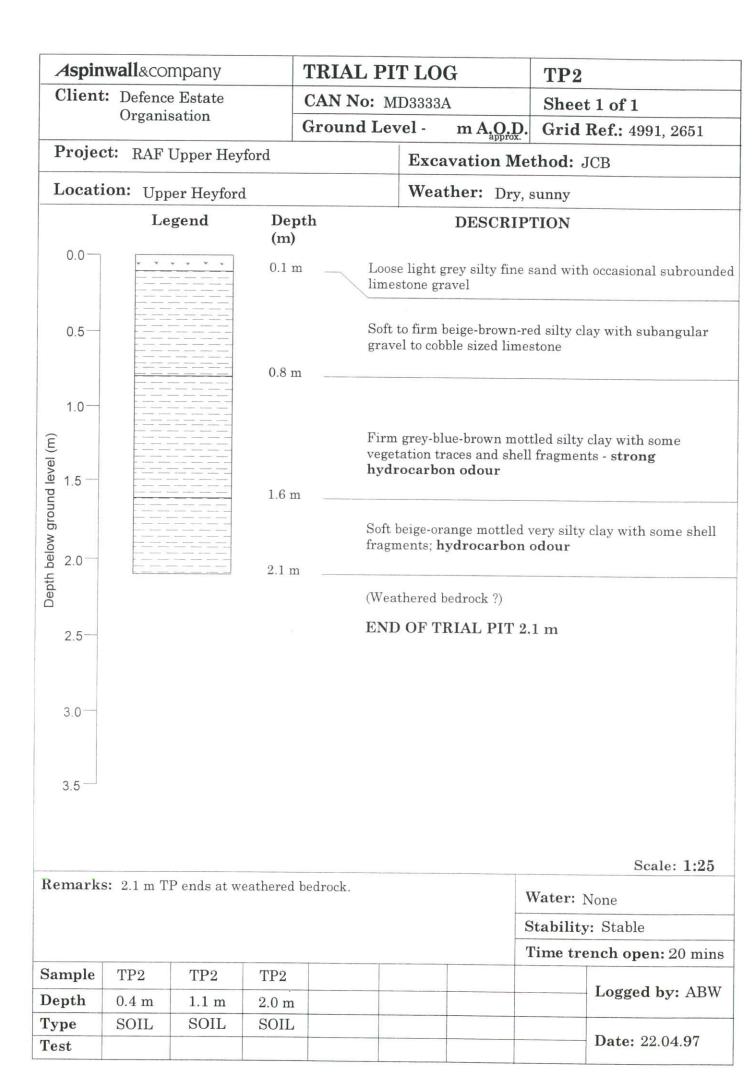



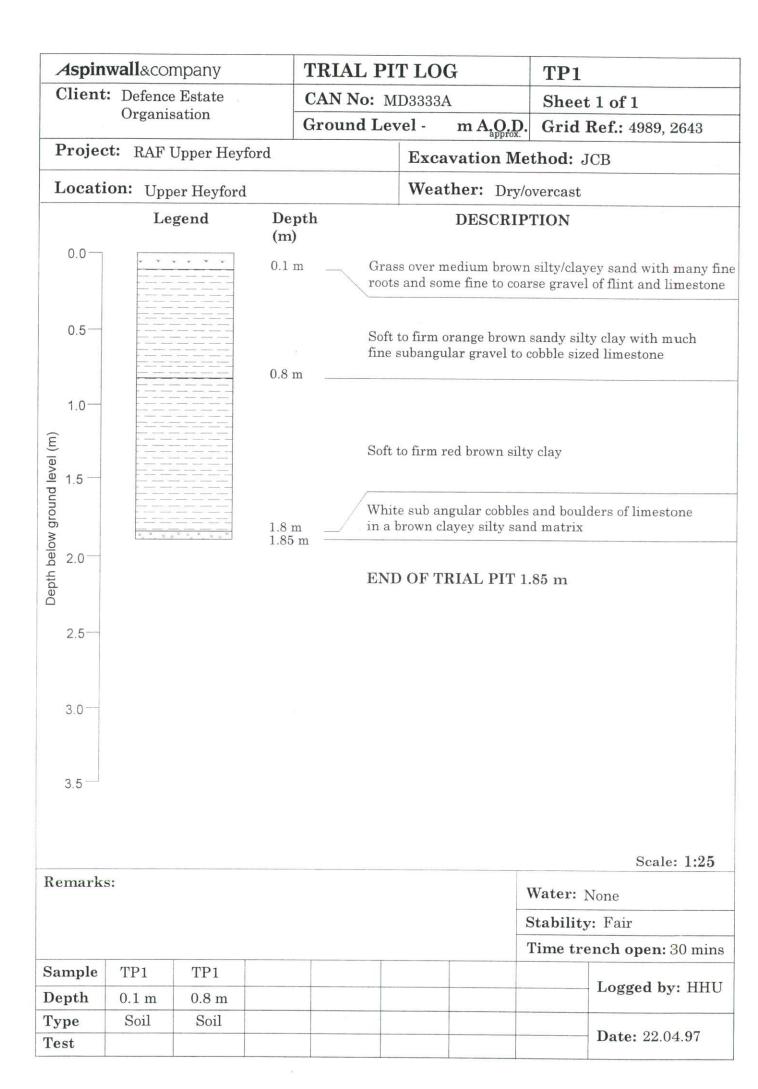














## Appendix

**Borehole Logs** 

5

Aspinwall&company June 1997



#### DRILLHOLE LOG

Status:-FINAL

Date:- 04/06/97

Project:				Cito Im	ention	tion at D		nn ar Ll	auford			DRILLH	OLE	No
Client:				Site Inv	/estigat	tion at R	AF U	1	eytord			BH	-01	
Olent.	De	fence Es	tate Or	ganisa	tion				e E449936.	30 N226551.	.90		01	
Method	& Equi									vel(m(AOD)):	Date:	Sheet:		
		Openh	ole usi	ng a U	MM C1	01W			1	16.42	22-04-97	10	of 6	
RUI	V DET								STRATA				Geo l ogy	5
Depth	TCR (SCR)	(SPT) Fracture	Red'cd Level	Legend	Depth Thick-			5		RIPTION			0	Instru- ment Backfil
Deptin	RQD	Index	Level		ness)	Disconti			Detai		Main			HEC
			115.04		(0.48)	drilling.		3GL Of	bennole		friable sand many rootlet			0
			115.94		0.48						own complet			
			115.59 115.47		(0. 0.83 0.95						own modera			
			115.08		(0.39) 1.34					weathered weak.	LIMESTONE	moderately		
					-					(1) Yellow I	brown comp	etely		
					(1.30)						LIMESTONE wn moderate			
					1(1.30)						LIMESTONE			
			113.78		2.64 (0.47)						wn complete			л т Кар
			113.31		3.11						n moderately			
										LIMESTON	E moderatel			
					+					occasional	ly weak.			
					-									
					-(3.35) -									
					ŧ									
					{									
					]									
					-									
			109.96		6.46					Orange bro	own complet	elv		
					-						LIMESTONE			
					Ļ									
					(1.79)									
					-									
					}									11111111111111111111111111111111111111
Drillin	g Prog	gress and	d Water	Obse	rvation							GENE	RAL	1 100 10
Date			Depth		asing	Core Di	a	Water Strike	(mBGL) I RWL	Flus Type 1	h Returns	REMA	RKS	
22/04 22/04			0.0 17.0		0.00					air	100%	1) Description from drillers		
01/05	/97		17.0 46.5	0	1.45					air	100%	2) Inspection excavated pri	pit	
01/03/	51		40.0							all	100%	(1.0x1.0x0.45	m). 3)	Jar
						- 14 - 14						sample taken 4) Falling hea	ud	
												permeability out at 17.00m		rried
All d		ions in m	netres	F	or Exp	lanation	of S	ymbols	and	Checked By			ntract	t No.
Date P		le 1:50	/97		Abbrev	viations	see K	key She	ets	- AR		rnley	174	
Dater	inneu	- 04/00	, .,									- FC	A min	EG22



### DRILLHOLE LOG

FINAL Date:- 04/06/97

Status:-

Project:				Site Investi	nation at B	AF Upper H	levford			DRIL	LHOLE	No
Client:	Def	ence Es		ganisation	Janon at 1	Location:	e E449936.	30 N22655	1 00	E	3H-01	
Method 8		ment:				Oxfordshill		vel(m(AOD)):		Sheet:		
		Openh	nole usi	ng a UMM	C10TW			16.42	22-04-9		2 of 6	
	DET	AILS					STRATA				БВ	1 =
1	TCR (SCR)	(SPT) Fracture	Red'cd	Dep Legend(Thick			DESC	RIPTION			Geo l ogy	Instru ment Backfi
	RQD	Index	Level	ness		nuities	Detai		Main		Ge	L D D D
			108.17	8.	25			(As sheet				
			107.00	(0.95				Grey thin weathere weak.	ly laminated s d MUDSTONE	lightly moderatel	У	
			107.22	× × · · · · · · · · · · · · · · · · · ·					rown silty fine th occasional p n clay.			
			105.20		)				rown highly w NE weak.	eathered		
			100.87					Yellow br	own slightly w NE moderatel	eathered y strong.		
								Dark grey	highly weathe	ered		
								MUDŠTÓ	NE weak.			
Drilling	Prog	ress and	d Water	Observatio			/ 50/			GEI	NERAL	
Date	7		Depth	Casing	Core Dia mm	a Water Strike	(mBGL)   RWL	Flu Type	sh Returns	REM	MARKS	
22/04/9 22/04/9 01/05/9 01/05/9	)7 )7		0.00 17.00 17.00 46.50	0 1.45 0 1.45			-	air air	100% 100%	1) Descript from driller 2) Inspectie excavated (1.0x1.0x0. sample tak 4) Falling h permeabilio out at 17.0	rs daily rep on pit prior to dr .45m). 3) c ken every head ty test car	port. rilling Jar 1m.
All dim		ons in m e 1:50	etres	For Ex	planation	of Symbols	and	Checked B			Contract	
Date Pri			/97		eviations	see Key She	els	1 KS	J. Fe		1742 Form Al	



-

## DRILLHOLE LOG

FINAL Date:- 04/06/97

Status:-

Project:				Site Inv	estica	tion at B	AF Upper H	levford		-	DRILL	HOLE	No
Client:	De	(					Location:				в	H-01	
Method		fence Es	state Or	ganisa	tion		Oxfordshi		6.30 N2265 evel(m(AOD))				
		Openh	nole usi	ng a Ul	MM C	10TW			116.42	): Date: 22-04-9	97 Sheet:	of 6	
RUN	V DET							STRATA					5/=
Depth	TCR (SCR)	(SPT) Fracture	Red'cd Level	Legend					CRIPTION			Geo l ogy	t t y
	RQD	Index			ness)	Disconti	nuities	Deta		Main et 2 of 6)		Ge	Turent Back
Drilling	Progr	ress and	98.34 Water		(2.53) - 18.08				Dark gre MUDST Dark gre MUDST	ay slightly weat ONE weak.	thered bly weak to	ERAL	
Date	7		Depth	Cas		Core Dia mm	Water Strike	(mBGL) RWL	Fli Type	ush   Returns		ARKS	
22/04/9 22/04/9 01/05/9 01/05/9	97 97 97		0.00 17.00 17.00 46.50	16	0.00 1.45 1.45 5.85				air air	100% 100%	1) Descriptio from drillers 2) Inspectior excavated pi (1.0x1.0x0.43 sample taker 4) Falling he permeability out at 17.00r	n derive daily rep pit for to dr 5m). 3) . n every ad test car	port. rilling Jar 1m.
All dim	nensio Scale	ns in me 1:50	etres	Fo	r Expla bbrevi	anation of ations se	of Symbols ee Key Shee	and	Checked B		ed By: Co	ntract	
Date Pri			97				stroy oned		111	- J. Fe		1742 orm AE	



۰.

#### DRILLHOLE LOG

Project:				Site Investio	ation at F	RAF Upper H	levford			DR	ILLHO	LE No
Client:	Dei	ionoo Eo				Location:				-	BH-(	01
Method			state Or	ganisation		Oxfordshir	Ground Le	.30 N22655		Sheet:		
			nole usir	ng a UMM (	C10TW			16.42	22-04-9		4 of	6
RUN	V DET			1.0			STRATA					-11-1
Depth	TCR (SCR)	(SPT) Fracture	Red'cd Level	Legend Thick				RIPTION				Geology Instru- mentill Backfill
	RQD	Index		ness)	Disconti	nuities	Detai	(As shee	Main t 3 of 6)			
Drilling	Progr	ress and	Water	0bservation				MUDSTO	y slightly weat DNE moderate ely strong.	ly weak to		
Date			Depth	Casing	Core Dia	a Water Strike	(mBGL)   RWL	Flu Type	ush Returns			
22/04/9 22/04/9 01/05/9 01/05/9	97		0.00 17.00 17.00 46.50	1.45 1.45				air	100%	1) Descrip from drille 2) Inspect	otion de ers daily tion pit	rived y report.
								air		excavated (1.0x1.0x) sample ta 4) Falling permeabi out at 17.	d prior t 0.45m). Iken eve head lity test	3) Jar ery 1m.
All din	nensio Scale	ns in me 1:50	etres	For Ex Abbre	viations s	of Symbols ee Key Shee	and (	Checked B		d By:		act No.
Date Pri		04/06/	97			So ney oner		102	J. Fei	niey		742 AEG22



•

### DRILLHOLE LOG

Project:				Site Investio	ation at F	RAF Upper H	levford	.1		DRILLF	IOLE	No
Client:					adon at i	Location:				BH	I-01	
Method			state Or	ganisation		Oxfordshir		.30 N22655				
Method	& Equi		nole usi	ng a UMM C	10TW			vel(m(AOD)): 16.42	Date: 22-04-9	Sheet: 5 0	of 6	
RUI	N DET						STRATA					1
Depth	TCR (SCR)	(SPT) Fracture	Red'cd Level	Depti Legend(Thick-			DESC	CRIPTION			Geology	
Deput	RQD	Index	Level	ness)	Discont	inuities	Detai		Main		Ge	Tus
								MUDSTC	4 of 6) y slightly wea NE moderate ely strong.	thered Iy weak to		
			83.17	(0.76)				MUDSTC	y slightly weat NE moderate aly strong.	thered sandy ly weak to		
			82.11	(0.30)				Brown sli	ghtly weather	ed		
			81.57	(0.54)	5			Dark grey	v slightly weat NE moderate	hered sandy		
			01.00	(0.49)		5.51m No ret	urns.	(1) Mode	rately weathe ONE weak.	red		
			80.91	1035.5	1 35.31-3	7.70m Poor r	eturns.	(1) VOID.				
	81.08 80.91 (0.49) 80.91 (0.35.34 (0.35.51) (2.19)					6.50m No ret	urns	MUDSTO moderate	r slightly weat NE moderate ly strong. rey slightly w NE moderate	ly weak to		
	Progr	ess and		Observatior						GENE	RAL	
Date 22/04/9	97		Depth 0.00	Casing 0.00	Core Dia mm	a Water Strike	(mBGL)   RWL	Flu Type	sh Returns	REMA	RKS	
22/04/9 01/05/9 01/05/9	97 97 97		17.00 17.00 46.50	1.45 1.45 16.85				air air	100% 100%	<ol> <li>Description from drillers d</li> <li>Inspection p excavated priot (1.0x1.0x0.45rr sample taken</li> <li>Falling head permeability to out at 17.00m.</li> </ol>	aily re bit or to d n). 3) . every d est car	port. rilling Jar 1m.
All din		ns in me 1:50	etres	For Exp	lanation	of Symbols see Key Shee	and (	Checked B		ed By: Con	tract	
Date Pri		04/06/	97	70010	10113 3	See ney Shee	515	1-12	J. Fe	rnley For	1742 m Al	EG22



____

# ALLIED EXPLORATION & GEOTECHNICS LTD

### DRILLHOLE LOG

Status:- FINAL
Date:- 04/06/97
DRILLHOLE No

Project:			5	Site Inv	/estica	tion at F	RAF I	Joper H	evford				DR	ILLH	OLE	No
Client:	Do	fence Es					Loca	ation:	e E449936	6 20	NOOCEE	1.00	-	BH	-01	
Method		oment:					0.	lolusiii			(m(AOD)):	Date:	Sheet	:		
		Openh	ole usir	ng a U	MM C1	0TW				116.		22-04-9		60	f 6	
RUI	N DET	-							STRATA						БВс	-1-1
Depth	TCR (SCR)	(SPT) Fracture	Red'cd Level	Legend							PTION				Geo l ogy	ent ack
	RQD	Index	Lever		ness) -	Disconti	inuitie	s	Deta	ail	(As sheet	Main			ő	HEO
			69.92		(8.80)						(1) Dark g MUDSTO	orey slightly v INE moderate	ily strong.			
	g Prog	ress and						Mata						ENE		
Date 22/04/	97		Depth 0.00		asing 0.00	Core Di mm	d	Strike	(mBGL) RWL		Туре	ush Returns		EMA		
22/04/ 01/05/ 01/05/	/97 /97 /97		17.00 17.00 46.50		1.45 1.45 16.85						air air	100% 100%	1) Descr from dri 2) Inspe excavate (1.0x1.0: sample 4) Fallin permeal out at 17	llers d ction p ed pric x0.45r taken g head pility to 7.00m.	aily re bit or to d n). 3) every d est ca	eport. Irilling Jar 1m. rried
All di		ons in m le 1:50	etres	F	or Exp	lanation lations	of S	Symbols	and	Ch	recked E		ed By: ernley	Cor	tract	t No.
Date P		- 04/06	/97								(1987)	J. F	siney	For		EG22



#### DRILLHOLE LOG

Status:-FINAL Date:- 04/06/97

Project:				Sito Im	voction	tion at DA	F Upper H	aufand			DRILL	IOLE	No
Client:				Sile III	resuga		ocation:	eytora			- BH	1-02	
			state Or	ganisa	tion			10.000	.90 N22767			. 02	
Method	& Equi	pment: penhole	/Rotary	usina	aLIMM	A C10TW			vel(m(AOD)): 37.98	Date: 23-04-9	Sheet:		
BUI	N DET			uonig				STRATA	57.90	23-04-9	1 10	of 5	1. =
	TCR	(SPT)	Red'cd		Depth				CRIPTION			libo	L'i
Depth	(SCR) RQD	Fracture Index	Level	Legend	Thick- ness)	Discontinu	lities	Detai		Main		Geo l ogy	ack
			137.58		(0.40)		m Openh	ole drilling.	Stiff brov CLAY.	vn friable sand	y gravelly	0	ACCENTING INSTRUCTION
			137.56	TT	0.40					rown highly w	athered		0
			100.00		(0.60)					ONE very weak			
			136.98		<u>1.00</u> (0.35)				Yellow b	rown moderat	ely to slightly		80
			136.63	ŦŦ	1.35				weathere	d LIMESTONE ately weak.	Every weak		80
					-				Yellow bi	rown moderate	ely to slightly		
					-				to moder	d LIMESTONE ately weak.	: very weak		88
					(2.00)								88
													88
													88
													88
			134.63		3.35				Light gre	y moderately	veathered		80
					(0.71)				LIMESTO	NE moderate	y weak.		88
			133.92		- 4.06							-	88
									LIMESTO	y slightly weat	hered y weak to		22
					(1.19)				moderate	ely strong.			88
				1	_								88
			132.73		5.25								90
			-	++++						own moderate d LIMESTONE			20
									moderate	ly weak.	wear to		28
					-								38
			-		(2.19)								20
			-	다다									20
			E										28
													38
			130.54		7.44				Yellow br	own slightly w	athored		20
			F	T						NE moderately			10
D. 111			<u> </u>		<u> </u>							t	10
Drilling	Prog	ress and	Water	1	I	Core Dia	Water	mBGL	Flu	sh	GENE		
23/04/	97		Depth 0.00		sing 0.00	mm	Strike	(mBGL) RWL	Type	Returns	REMA		
23/04/9 25/04/9 25/04/9	97		27.00		4.50				air	100%	1) Description from drillers d	aily rep	port.
25/04/9	97		40.00		5.86				air	100%	<ol><li>Inspection price</li></ol>	or to di	rilling
											(1.0 x 1.0 x 0.4 sample taken	m). 3 everv	) Jar
											1.00m. 4) 50m Standpipe inst	m	0
A11 12											25.00m BGL.		
All din		ons in mo e 1:50	etres	Fc	br Expl	anation of ations see	Symbols a Key Shee	and (	Checked B			tract	
Date Pri		06/06	/97							M. S		1742 m Al	G22



# **ALLIED EXPLORATION & GEOTECHNICS LTD**

Status:-

**FINAL** 

Date:- 04/06/97

#### DRILLHOLE LOG

Project:				Cito Imu							DRILLH	OLE No
Client:				Sile inv	esuga		F Upper H	leyford			рц	02
	De	fence Es	state Or	ganisat	ion	1. Sec.		e E450676	6.90 N227674.4	40	БП	-02
Method	& Equi	pment:	/D .					Ground Lo	evel(m(AOD)):	Date:	Sheet:	
			/Rotary	using a	a UMN	I C10TW			137.98	23-04-97	20	of 5
RUI	N DET	1					*	STRATA			2	-n-
Depth	TCR (SCR)	(SPT) Fracture	Red'cd Level	Legend	Depth Thick-			DES	CRIPTION			Geology Instru-
Deptit	RQD	Index	Level	r	ness)	Discontinu	uities	Deta		Main		E C
				┝┽┰┶┦	(1.57)				(As sheet 1 of Yellow brow		athored	1 A E
									LIMESTONE	Emoderately	strong.	14
											.004	14
			128.97 128.77		9.01 (0.20) 9.21				(1) Vollow b	rown modera	del.	
					0.28)				weathered L	IMESTONE	moderately	
			128.49		9.49				\strong.		- /	
				L_L_f(	0.52)				(1) Yellow bi weathered L	IMESTONE	ately	AF
			127.97		10.01				weak.		lioderatery	
					0.011				(1) Light bro	wn slightly w	veathered	AF
					0.91)				LIMESTONE Grey fresh L			E F
			127.06	-	10.92				weak.	INCO UNE I	nouerately	AF
			127.00		10.92				Yellow brow	n fresh LIMF	STONE	
									moderately		OTONE	EF
												E
					1.62)							E
				그그는								H
												AF
			125.44	+++	12.54							AF
					0.67)				(1) Dark brow weathered L	wn complete	ly	-96
									weathered L	INESTONE V	ery weak.	BB
			124.77	+++	13.21				Oranaa haa	12 - 1 - 14		A E
									Orange brow LIMESTONE	moderately	strong	BE
									with occasion	nal pockets o	of soft	RE
			F						brown clay.			
					2.29)							E E E
			F		2.29)							
			-									H F
			Ē									AF
			F	┷┰┷┽ ┯┷┯┽								HE
			122.48		15.50							BB
			L						(1) Yellow bro	own highly w	reathered	-A6
									LIMESTONE	weak.		BP
Drilling	Prog	ress and	Wator	Observ	ations							
Date		cos and				Core Dia	Water	(mBGL)	Flush		GENE	
23/04/	97		Depth 0.00	Cas	0.00	mm	Strike	(mBGL) RWL	Type F	Returns	REMA	
23/04/	97		27.00	) 4	1.50				air		) Description om drillers da	
25/04/ 25/04/	97 97		27.00		5.86					2	) Inspection p	oit
			10100						air	100% e	xcavated pric	m). 3) Jar
										Si	ample taken (	every
										I S	.00m. 4) 50m tandpipe inst	alled to
All -12			atur T							2	5.00m BGL.	
All dir		ons in me e 1:50	etres	FO	r Expl	anation of	f Symbols e Key Shee	and	Checked By:	Logged		tract No.
Date Pr		- 06/06/	/97	74	201011	10113 58	e ney She	515	1-10h	M. Sla		1742 m AEG22
		100									FOR	III AEUZA



### DRILLHOLE LOG

Project:				Site Inv	estina	tion at R	AF Upper H	lovford			DRILLH	IOLE	No
Client:							Location:				BH	-02	
		fence Es	state Or	ganisat	lion		Oxfordshi		.90 N22767	4.40			
Method			/Rotary	using	a UMN	A C10TW	1		vel(m(AOD)): 37.98	Date: 23-04-9	Sheet:	of 5	
RUN	N DET	AILS	1					STRATA					LE
	TCR (SCR)	(SPT) Fracture	Red'cd	Legend	Depth			DESC	RIPTION			Geology	1++X
Depth	RQD	Index	Level	Legend	ness)	Discontin	uities	Detai		Main		Geo	Bac
			120.09		(2.39)				LIMESTO	v brown highl NE weak.			
			117.09		- (3.00) - 20.89				Orange b LIMESTO	rown slightly NE moderate	weathered		
			116.67		0.42) 21.31				(1) Orang LIMESTO	e brown high NE weak.	ly weathered		
			115.91		0.76)				Dark grey weathered	thinly lamina MUDSTON	ated slightly E weak.		
									Dark grey MUDSTO	thinly lamina NE moderate	ited fresh ly weak.		
	Prog	ress and			1		Water	(mBCI)		ab	GENE		
Date 23/04/2 23/04/2 25/04/2 25/04/2	97 97 97	·	Depth 0.00 27.00 27.00 40.00		sing 0.00 4.50 5.86 5.86	Core Dia mm	Strike	(mBGL) RWL	Type air air	sh Returns 100% 100%	REMA 1) Description from drillers d 2) Inspection excavated prio (1.0 x 1.0 x 0.4 sample taken 1.00m. 4) 50r Standpipe ins 25.00m BGL.	derive aily re bit or to d km). 3 every	port. rilling 3) Jar
All din		ons in m e 1:50	etres	Fo	bbrev	anation of	of Symbols ee Key She	and	Cheoked B	y: Logg	ed By: Cor	tract	
Date Pri			/97				concy one	0.0	1 mar	IVI. 3	Slater Fo	1742 m A	2 EG22



### DRILLHOLE LOG

Project:			Si	te Investina	tion at B	AF Upper H	levford			DRILLF	OLE	No
Client:	P.4-1				uonarn	Location:				BH	-02	
Mathad			state Orga	anisation		Oxfordshir	e E450676.					
Method	O	penhole,	/Rotary u	ising a UMN	I C10TV	v		vel(m(AOD)): 37.98	Date: 23-04-9	Sheet: 7 4	of 5	
RUN	N DET	AILS					STRATA				-	1 =
Dooth	TCR (SCR)	(SPT) Fracture	Red'cd Level	Depth gend Thick-			DESC	RIPTION			Geology	1 +
Depth	RQD	Index	Level	ness)	Disconti	nuities	Detail		Main		e G	C a d HEO
Drilling			116	17.93)				(As sheet Dark grey MUDSTO	t 3 of 5) y thinly lamina DNE moderate	y weak. GENE	RAL	
23/04/			Depth 0.00	Casing 0.00	mm	Ştrike	(mBGL)   RWL	Туре	Returns	1) Description		ed
23/04/ 25/04/ 25/04/	97		27.00 27.00	4.50 25.86				air		from drillers d 2) Inspection	aily re	port.
			40.00	25.86				air	100%	excavated prio (1.0 x 1.0 x 0.4 sample taken 1.00m. 4) 50r Standpipe ins 25.00m BGL	or to d Im). 3 every nm	) Jar
All dir		ons in m e 1:50	etres	For Expl Abbrev	anation iations s	of Symbols see Key Shee	and (	Checked B	y: Logge M. S	d By: Cor	tract	
Date Pr		- 06/06	/97					10	141. 0			EG22



### **ALLIED EXPLORATION & GEOTECHNICS LTD**

Status:-

						DRI	LLHOL	E LOG			Date	FINA	
Project:			ç	Site Inv	estina	tion at RA	F Upper H	evford			DF	ILLHOL	E No
Client:	Dei	fence Es				L	ocation:	e E450676.9		4.40	-	BH-02	2
Method	& Equi	oment:					OXIOIUSIIIR	Ground Lev	el(m(AOD)):	Date:	Sheet	:	
			/Rotary	using	a UMN	A C10TW		1	37.98	23-04-9	7	5 of 5	
RUI	N DET	AILS (SPT)			Depth			STRATA	RIPTION			Geo l ogy	2.4
Depth	(SCR) RQD	Fracture Index	Red'cd Level	Legend	Thick- ness)	Discontinu	uities	DESCI		Main			ack
					_					y thinly lamina NE moderate			
			97.98		40.00				Borehole	complete at 4	0.00m P		1/4
Drillin	a Prog	ress and	Water	Ohsen	vation	s							
Date			Depth		sing	Core Dia	Water Strike	(mBGL) I RWL	Flu	Jsh		ENERAL	
23/04/ 23/04/ 25/04/ 25/04/	/97 /97 /97		0.00 27.00 27.00 40.00	) ) 2 ) 2	0.00 4.50 5.86 5.86	mm			Type air air	100%	1) Desc from dri 2) Inspe excavat (1.0 x 1. sample 1.00m.	ription deri Ilers daily ction pit ed prior to 0 x 0.4m). taken ever 4) 50mm pe installed	ived report. drilling 3) Jar Y
All di		ons in m e 1:50	etres	Fo	or Exp Abbrev	lanation o	of Symbols e Key She	and ( ets	hecked B	y: Logg M. S	ed By: later	Contrac 174	

Date Printed:- 06/06/97

23/04/97 23/04/97 25/04/97 25/04/97



1

# **ALLIED EXPLORATION & GEOTECHNICS LTD**

### DRILLHOLE LOG

Status:	
F	INAL
Date:-	04/06/97
DDU	LUCIEN

riojeci.				Site Im	vestiga	tion at R	AF Upper H	levford			DRIL	LHOLE	E No
Client:	Site Investigation at RAF Upper Heyford           lient:         Location:           Defence Estate Organisation         Oxfordshire E452454.60 N2273											BH-03	
Method			state Or	ganisa	ation		Oxfordshir						
Method	a Equi		nole usi	ng a U	MM C1	0TW			vel(m(AOD)): 21.71	Date: 29-04-9	7 Sheet:	1 of 1	
RUI	N DET							STRATA				56	1
Depth	TCR (SCR)	(SPT) Fracture	Red'cd Level	Legend	Depth Thick-			DESC	RIPTION			Geo l ogy	1 to to
Depin	RQD	Index			ness)	Disconti		Detai		Main			
			121.51	É, Í	+(0.2020 -(0.37)	0.00-4.3	0m Openho	ie arlling.		o stiff brown s own moderat			97.813
			121.14		0.57				weathere weak.	d LIMESTON	Emoderate	ly	6
			120.71		- <u>1.00</u>					own moderat d LIMESTON			
					[ [(1.21)				Yellow ma LIMESTO	oderately wea NE very weak	athered		
			119.50		2.21								
			119.11		(0.39) 2.60				weathered	brown mode	E weak.		
					[ _((0.81)					brown mode d LIMESTON			
			118.30		<u>3.41</u> (0.55)					noderately we	eathered		
			117.75		3.96				MUDSTO	NE weak.			
			117.41		(0.34) 4.30				slightly we	brown mode eathered LIM	ESTONE		
										omplete at 4.		_1	
									Diminolo c	ompiere at 4.	SUIT DOL.		
Drilling	g Prog	ress and	Water	Obser	vations	5					GE	NERAL	<u> </u>
Date			Depth		asing	Core Dia mm	a Water Strike	(mBGL) I RWL	Flu Type I	sh Returns		MARKS	
29/04/ 29/04/	97 97		0.00	0	0.00 0.00		1.10		air	100%	1) Descrip from drille 2) Inspecti	tion deriv	/ed
											excavated (1.0 x 1.0)	prior to o	drilling 3)
											Jar sample 1.00m. 4)	es taken 50mm	every
											diameter s installed to		
All di		ons in me e 1:50	etres	F	or Expl	anation	of Symbols	and	Checked B	y: Logge		Contrac	
Date Pr		- 06/06/	/97		ADDLeA	ations s	ee Key She	ets	11015	J. Fe		174 Form A	
		1 1										FORM A	LEG22



### DRILLHOLE LOG

Status:-FINAL Date:- 04/06/97

Project:	Troject: DRI											No
Client:						Location:	-	-		ВН	-04	
Mathead			state Org	anisation		Oxfordshire		10 N227054	.10		• ·	
Method	& Equi		hole usin	g a UMM C1	0TW			el(m(AOD)): 21.88	Date: 29-04-9	7 Sheet:	of 3	
RUI	N DET	AILS					STRATA				_	1,=
Denth	TCR (SCR)	(SPT) Fracture	Red'cd	Depth egend(Thick-			DESC	RIPTION			Geo l ogy	144
Depth	RQD	Index	LOVOI	ness)	Discontir		Detail		Main		Gec	Bac
			121.68		0.00-19.8	30m Openho	ole drilling.		f brown san			22.2.2
			121.28	(0.40)				LIMESTON (Boulders)	wn highly w IE weak to v	eathered ery weak.		
			120.82						n sandy CLA			88
								LIMESTON	wn highly w IE weak to v	eathered ery weak.		80
								Yellow brow weathered	wn slightly t	o moderately E moderately		
			119.35	(0.39) 2.92					wn moderat			
								Yellow brow	wn moderat	ely to slightly moderately		
			117.79	(0.28) (0.28) (0.27)				MUDSTON		1		
			116.33	(1.18)				Grey mode weathered weak.	rately to slig MUDSTONE	htly moderately		
				<u>5.55</u> (0.88)				Grey mode MUDSTON	rately weath E weak.	ered		
			115.45	6.43					rately to slig MUDSTONE			
Drilling	Proc	r000 07									1	10
Drilling	rilling Progress and Water Observations           Date         Depth         Casing         Core Dia         Water (mBGL)           Core Dia         Mater (mBGL)         Type									GENE		
29/04/ 29/04/	97 97		0.00 19.80	0.00 0.00	mm	Strike 16.82	RŴL	Type Flusi	Returns 100%	REMAI 1) Inspection p excavated prio (1.0 x 1.0 x 0.2 Jar samples ta 1.00m. 3) 50m diameter stanc installed to 19.	r to di Om). ken e im lpipe	2)
All dir		ons in me e 1:50	etres	For Expl Abbrevi	anation of ations se	of Symbols a se Key Shee	and C	hecked By:	Logge J. Fe	d By: Con	tract	
Date Pr		- 04/06	/97			stray oned			J. Fe		1742 m Al	



#### DRILLHOLE LOG

FINAL Date:- 04/06/97

Status:-

Project:			S	ite Investiga	tion at B	er Heyford DRIL				HOLE	No	
Client:			0	ite investiga		Location:				- в	H-04	
			state Org	anisation		Oxfordshir		.10 N22705				
Method	& Equi		nole usin	g a UMM C [.]	10TW			vel(m(AOD)): 21.88	Date: 29-04-9	Sheet:	2 of 3	
RUN	N DET						STRATA				6	<u>المراجع</u>
Death	TCR (SCR)	(SPT) Fracture	Red'cd	Depth egend(Thick-			DESC	CRIPTION			Geo l ogy	L+X
Depth	RQD	Index	Level	ness)	Disconti	nuities	Detai		Main		Ge	Bach
			110.92 110.55 110.31 109.06 108.86 108.86 108.28	(4.53) (4.53) (4.53) (0.37) 11.33 (0.24) 11.57 (1.25) (1.25) (0.58) 13.60 (0.48) 14.08				(As sheet Grey moo weathere between greenish Grey moo weathere moderate Grey fine slightly w moderate Grey moo weathere weak to m Grey fine slightly w moderate Grey moo weathere weak to m Grey fine slightly w	derately to sli d MUDSTON c.8.00-10.00r grey. derately to sli d sandy MUD ely weak to we grained mod eathered SAN ely weak to we derately to sli d sandy MUD noderately we grained mod eathered SAN	E weak. n BGL n BGL n BGL states of the seak. erately to NDSTONE seak. erately to NDSTONE seak. erately to IDSTONE seak. erately to IDSTONE seak.		
			105.95	(1.85)				MUDSTO weak.	NE weak to m	a noderately		
Drilling	Prog	ress and		bservation					]	GEN	ERAL	
Date			Depth	Casing	Core Dia mm	Water Strike	(mBGL)   RWL	Flu Type	sh Returns	0.00 mm	ARKS	
29/04/ 29/04/	97		0.00	0.00 0.00		16.82		air	100%	1) Inspectio excavated p (1.0 x 1.0 x Jar samples 1.00m. 3) 5 diameter sta installed to	n pit rior to d 0.20m). taken e 0mm ndpipe	drilling 2) avery
All dimensions in metres Scale 1:50 For Explanation of Symbols and Check Abbreviations see Key Sheets											ontract	
Date Pr		- 04/06	/97	100160	1410113 3	ce ney one	010	~193	_   J.Fe	rnley	174: orm A	EG22



## **ALLIED EXPLORATION & GEOTECHNICS LTD**

Status:-

CINIAL

C						DF	ILLHOL	E LOG				04/06	
Project:			5	Site Im	vestica	tion at F	AF Upper H	evford	64 D		DRIL	LHOLE	No
Client:	De	fonce Er					Location:		0.110			3H-04	
Method		fence Es	state Or	ganisa	ltion		Oxfordshire	Ground Leve			Sheet:		
			nole usi	ng a U	MM C	10TW			1.88	29-04-97		3 of 3	
RUI	N DET				1			STRATA				- BG	5/=
Depth	TCR (SCR)	(SPT) Fracture	Red'cd Level	Legend					RIPTION			Geology	nstr ent ackf
	RQD	Index			ness)	Disconti	nuities	Detail	Dark ore	Main y brown moder	otoby	B	HEO
			105.06		(0.89) 16.82				weather	ed MUDSTONE	weak.		
			103.82		(1.24)					y moderately w DNE weak.	eathered		
					(1.74)				Grey mo MUDSTC weak.	derately weathe DNE weak to mo	ered sandy oderately		
			102.08		19.80				Drillhole	complete at 19.	80m BGI		
Drilling	Prog	ress and	Water	Obsor	vation	2				7			
Date			Depth	1	asing	Core Dia	a Water ( Strike	mBGL) RWL	Flu	ush Returns		NERAL MARKS	
29/04/ 29/04/	97 97		0.00		0.00 0.00		16.82	UAL U	Type air	100%	1) Inspection excavated 1.0 x 1.0 x Jar sample 1.00m. 3) t diameter st installed to	on pit prior to d 0.20m). s taken e 50mm andpipe	2)

Checkod By:

0

All dimensions in metres Scale 1:50 Date Printed:- 04/06/97

For Explanation of Symbols and Abbreviations see Key Sheets

Date 29/04/97 29/04/97

Contract No.

Logged By: J. Fernley



#### ALLIED EXPLORATION & GEOTECHNICS LTD

Status:-

FINAL

Date:- 04/06/97

#### DRILLHOLE LOG

Project:				Site Inv	/estica	tion at R/	VF Upper H	evford			DRI	LLHOI	ENo
Client:													5
Method &			state Or	ganisa	lion		Oxfordshire				Chart		
Method	a cyui		nole usi	ng a U	MM C1	WT0			/el(m(AOD)): 20.20	Date: 05-05-97	Sheet:	1 of	1
RUN	DET	AILS						STRATA					
	TCR (SCR)	(SPT) Fracture	Red'cd	Legend	Depth			DESC	RIPTION				Instru-
Depth	RQD	Index	Level	Legend	ness)	Discontin		Detail		Main			Tus
			119.90		(0.30) 0.30		m Openhol	e drilling.	Firm to st	iff sandy grave	Ily CLAY		2
			119.20		(0.70)				(1) Yellow weathered very weak (Boulder)		ately weak to		
			118.96		1.00 (0.24) 1.24				the second se	iff sandy CLAY			
			118.24		(0.72) 1.96					own moderate d LIMESTONE			
					- (0.54)				weathered	brown moder	ately weak to		
			117.70		2.50 (0.25) 2.75				(1) Yellow	brown moder	ately		_:泪
			117.45						weathered	d LIMESTONE	weak.		
			116.81		(0.64) - - 				(1) Yellow weathered weak.	brown moder	moderate	ely	
			116.70		3.50				Grey mod MUDSTO	lerately weathe	ered	T	
Deillin	Prog	ress and	Water	Obser	vations	S			1		G	ENERA	
Drilling					asing	Core Dia mm	Water Strike	(mBGL) I RWL	Flu Type I	sh Returns		EMARK	
Drilling			Depth	0		111111	Suike	HVVL	I IVDE I	Heturns			
	97 97		0.0 3.5	0	0.00		1.96		air	100%	1) Descrip from drill 2) Inspec excavate (1.0 x 1.0 Jar samp 1.00m. 4 diameter installed	ers daily tion pit d prior t x 0.20n les take ) 50mm standpi	v report. o drilling n), 3) n every pe
Date 05/05/9 05/05/9	97 nensio	ons in m e 1:50	0.0	0 0   F	0.00 or Exp	lanation	22. 24. 25	and		100%	from drill 2) Inspec excavate (1.0 x 1.0 Jar samp 1.00m. 4 diameter installed d By:	ers daily tion pit d prior t x 0.20n les take ) 50mm standpi to 3.50n	v report. o drilling ח). 3) n every pe ח.



# DRILLHOLE LOG

Project:	Site Investigation at RAF Upper Heyford											No
Client:	nt: Location:											
Mather			state Or	ganisation		Oxfordshire	The second s				-06	
Method	∝ ⊏qui		nole usi	ng a UMM C	IOTW			vel(m(AOD)): 21.56	Date: 02-05-9	7 Sheet:	of 2	
RUI	N DET	AILS				:	STRATA				_	1,=
Death	TCR (SCR)	(SPT) Fracture	Red'cd	Depth Legend(Thick-				RIPTION			Geo l ogy	L + X
Depth	RQD	Index	Level	ness)	Discontin		Detail		Main		Gec	Bac
			121.26		0.00-16.	00m Openho	ble drilling.	Firm to st moderate	iff brown san hydrocarbor	dy CLAY with odour.		2 2
			120.76	(0.50)				Yellow bro	own moderat d LIMESTON /eak.	ely		S. 22.57.22.27.2 Instrument of the second se
			119.70	(1.06)				Firm brow moderate	n sandy CLA hydrocarbon	Y with odour.		
			119.06	(0.64)				Yellow bro weathered weak to w (Boulder).		ely E moderately		
			118.60	(0.46)				Firm brow	n sandy CLA	Y with faint		
			118.18	(0.42)				Yellow bro	own moderate	ely E weak.		
			117.85	(0.33) 3.71				Yellow bro weathered very weak	wn moderate	ely to highly E weak to		
			117.07					Yellow bro	wn moderate	ely to highly weak to		
			116.67					Yellow bro weathered moderatel	own moderate LIMESTONE y weak.	ely weak to		
			115.88	(0.79)				Dark grey MUDSTON	moderately v NE moderatel	veathered y weak.		
				(0.91)				Yellow bro weathered moderatel	own moderate I LIMESTONE y weak.	ly weak to		
			114.97 114.81	(0. 659 6.75				Yellow bro	wn moderate	ly		
				(1.55)					LIMESTONE moderately w VE weak.			
Drilling	Prog	ress and	Water	Observations	6				][	GENE		
Date			Depth	Casing	Core Dia mm	Strike	mBGL) RWL	Flus Type 1	sh Returns	REMA		
02/05/ 02/05/			0.00 16.00			12.55		air	100%	1) Inspection p excavated pric (1.0 x 1.0 x 0.3 Jar samples ta 1.00m. 3) 50n diameter stand installed to 16	oit or to d Om). ken e im dpipe	2) very
All dir		ons in mo	etres	For Expl	anation	of Symbols a	and C	Checked By			tract	
Date Pr	Scale 1:50 Abbreviations see Key Sheets J. Fernley										1742 m A	2 EG22



## ALLIED EXPLORATION & GEOTECHNICS LTD Status:-

#### DRILLHOLE LOG

Site Investigation at RAF Upper Heyford

		IAL /06/	1
	DRILLH	OLE	No
	BH	-06	
97	Sheet: 2 c	of 2	
		eo l ogy	ackfill

7

Client:	De	fence Es				Location: Oxfordshire E450556.40 N225597.10 Ground Level(m(AOD)): Date					1	BH	-06
Method	& Equi	pment:	nole usi			IOTW	Oxfordsrift	Ground Le		Date: 02-05-9	Shee		of 2
BUI	N DET			3				STRATA		02 00 0	· ]	20	
101	TCR	(SPT)	Red'cd		Depth				RIPTION				Geology Tretru-
Depth	(SCR) RQD	Fracture Index	Level	Legend	(Thick- ness)	Discontir	nuities	Detai		Main			eo u
	nab	macx	113.26		8.30			Dotta		IVICITI			
				:::::	(0.48)					grained mod			
			112.78		8.78				weathered	SANDSTON	E weak.		
					[ (0.51)				Grey fine	grained mod	erately		
			112.27	::::::	9,29				moderate	SANDSTON	E		
			112.06		(0.21) 9.50 (0.26) 9.76				Grey mod	erately weath	ered		
			111.80		9.76					NE moderate erately weath	-		
					(0.58)					NE moderate			
			111.22		10.34				Grey mod	erately weath	ered		
					\$					NE moderate erately weath			
					(0.71)				MUDSTO	NE moderate	y weak.	lidy	
			110.51		11.05								
					-				Grey fine weathered	grained mode SANDSTON	erately F		1
					È				moderate	ly weak to mo		/	
				:::::	(1.50)				strong.				
					-								
					F								
			109.01		12.55								
									Grey mod slightly we	erately weath eathered MUD	ered to		
									moderate		010112		
					-								
					(3.45)								
			105 50										4 5
			105.56		16.00				Drillhole c	omplete at 16	00m B(	31	
Drilling	a Proa	ress and	Water	Obse	rvation	S						GENE	DAL
Date		1	Depth		asing	Core Dia	a Water	(mBGL)	Flu:	sh		REMA	
2/05/	97		0.00	0	0.00	mm	Strike 12.55	HVVL	Туре	Returns	1) Inspe		
2/05/	97		16.00	0	0.00				air	100%	excava	ted prid	or to dril
											Jar sam	nples ta	30m). 2 aken eve
											1.00m. diamete	3) 50r	nm dpipe
											installe	d to 16	.00m B(
All dir		ons in m	etres	F	or Exp	lanation	of Symbols	and	Checked B		d By:	Cor	ntract M
		e 1:50			ALL	viations s	1		the second	- Logge	JU DY.		ILIQUL



### DRILLHOLE LOG

Status:-FINAL Date:- 04/06/97

Project:				Site Im			DRIL	LHOLE	No				
Client:	Site Investigation at RAF Upper Heyford           nt:         Location:           Defence Estate Organisation         Oxfordshire E451463.00 N226810.10											3H-07	
			state Or	ganisa	tion		Oxfordshir			.10			
Method	& Equi		nole usi	ng a U	MM C1	OTW			el(m(AOD)): 31.01	Date: 30-04-9	Sheet:	1 of 2	
RUI	N DET	AILS	1			8		STRATA		1	<u> </u>		1.=
	TCR	(SPT)	Red'cd		Depth				RIPTION			logy	1 1 1 1 1 1 1 1 1 1
Depth	(SCR) RQD	Fracture Index	Level	Legend	ness)	Discontin	uities	Detail		Main		Geolo	Bac
			130.61		(0.40) 0.40		)m Openho	le drilling.	Stiff brown occasional	sandy CLA' rootlets.	Y with		সমেচা
			130.27	ΪĹ	(0.34)					wn moderat			0.0
			150.27	<u></u>	(0.46)				(Boulder).	LIMESTON	E weak.	1	9. P.
			129.81		10 120					sandy CLA		_	A E
			129.66		0.0935					wn moderate			
									(Boulder).	1			
					-				<u></u>	sandy CLA			
					-				weathered	LIMESTONE		y	
					-	5×			moderately	/ weak.			
					Ē								
					<del>(</del> 3.21) C								:1:
					-								
								÷					
					-								
					Ē								
			126.36		4 65								
			126.19		4.65 (0.14.82				Yellow brow	wn moderate	ely to slight	у	
			125.86		(0.33) - 5.15				weathered weak.	LIMESTONE	moderatel	y /	
									Yellow brow	wn moderate	ly		
					(0.90)				moderately	weak.			1
			124.96		- 6.05				Yellow brow	wn moderate	ly to slight	y	VA
									\weak.				VA
										noderately to MUDSTONE		,	VA
					(1.50)				weak.		moderater		
					iu -								V/A
			100.40		-								VA
			123.46		(0.38)				Grey to bro	wn moderat	elv to	-	VA
			123.08		10.07.93					athered SAN			
Drilling	g Prog	ress and	d Water	Obser	vation						GE	VERAL	
Date							Water Strike	(mBGL)   RWL	Flus Type	h Returns	RE	ARKS	
30/04/ 30/04/	4/97 0.00 0.00 4/97 8.00 0.00						4.65		air	100%	1) Inspecti excavated		trilling
											(1.0 x 1.0 x	0.40m)	2) Jar
											samples ta 1.00m. 3)	50mm	
											diameter s installed to	5.50m E	BGL.
All dimensions in metres For Explanation							of Symbols	and C	Checked By	: Logae	ed By: 0	Contrac	t No
Date Pr		e 1:50 - 04/06	/97	/	Abbrev	iations se	ee Key Shee	ets	PAS	J. Fe		174	Contraction of the second s

Form AEG22



÷.,

### DRILLHOLE LOG

FINAL Date:- 04/06/97

Status:-

Project:	ject: Site Investigation at RAF Upper Heyford											DRILLHOLE No	
Client:							Location:				E	3 <mark>H</mark> -07	
Method		fence Es	state Or	ganisa	tion		Oxfordshir		.00 N22681				
Wethod	a cqui		nole usi	ng a U	MM C1	OTW			vel(m(AOD)): 31.01	Date: 30-04-9	Sheet:	2 of 2	
RUN	N DET	AILS						STRATA					1
Denth	TCR (SCR)	(SPT) Fracture	Red'cd	Legend	Depth Thick-			DESC	RIPTION			Geo l ogy	L 4
Depth	RQD	Index	Level 123.01		ness)	Disconti	nuities	Detai		Main		Ge	Bac
			123.01		8.00				Dark grey	ely weak. y moderately t	o slightly	1	
	s								weathere weak.	d MUDSTON	Emoderatel	/	
									Drillhole	complete at 8	.00m BGL.	-	
												-	
												8	
	Prog	ress and				Core Dia	a Water	(mBGL)	l Flu	ish		IERAL	
Date 30/04/	97		Depth 0.00		0.00	mm	Strike	(mBGL)   RWL	Туре	Returns		ARKS	
30/04/ 30/04/	97		8.00		0.00		4.65		air	100%	1) Inspectic excavated	prior to c	drilling
											(1.0 x 1.0 x samples tal	ken ever	2) Jar Y
											1.00m. 3) 5 diameter st	andpipe	
											installed to	5.50M B	GL.
All dir	nensic	ons in m	etres	F	or Evol	anation	of Symbols	and	Chooked D				
	Scal	e 1:50		1	Abbrev	iations s	see Key She	ets	Checked B		ed By: C rnley	ontract 174	
Date Pr	inted:	- 04/06/	/97				1					orm A	



#### 2 SOIL CHEMICAL ANALYTICAL RESULTS (ASPINWALL 1997)

### Appendix

#### **Results of Chemical Testing - Trial Pits**

Aspinwall&company June 1997

The Type :       SOIL       RAF Upper Heyford         eation :       RAF Upper Heyford         ent Contact :       Steve Hobbs         ent Contact :       Meconbs         ent Contact :       Steve Hobbs         ent Contact :       Meconb         ent Contact :       Steve Hobbs         ent Contact :       Meconb         ent Ref.       No         ent Ref.       Meconbs         ent Ref.       entop         entop       entop         ent entop       entop					ŗ	L D L													A
ASPINIVALL & COMPANY         Location:         Reve Hobbs:				023/02/		ADL		רכאר			Sampl	e Type							
Image: marked in the properties of the prop				197		APANY					Locati Client Client	on : Contac Ref. No		AF Upp eve Ho 033334	er Hey bbs	ford			NAMAS TESTING No. 1291
Image: constraint of the		Preliminary	Units	mqq	mad	maa	≁ maa	maa	Z	mun	mun	uuu	X				X		×
And         And <td></td> <td>U Validated</td> <td>Dataction Mathod</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>E 4</td> <td>i i</td> <td>HINA</td> <td>Indd</td> <td>uidd</td> <td>Hidd</td> <td>Endd</td> <td>bpm</td> <td>bpm</td> <td>шdd</td> <td>mqq</td>		U Validated	Dataction Mathod						E 4	i i	HINA	Indd	uidd	Hidd	Endd	bpm	bpm	шdd	mqq
Lead         Nickel On Leachate         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		NAMAC Assessment		2	<u>ז</u>	2	r J	-D	GP	e D	<u>o</u>	d D	ĒCP	БP	<u>G</u>	d d	ЮР	ICP	Q
Lead       Q       No       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q       Q <td></td> <td>INAIVIAS ACCIEGITED</td> <td>Detection Limits</td> <td>$\nabla$</td> <td>&lt;0.05</td> <td>$\overline{v}$</td> <td>7</td> <td>&lt;0,05</td> <td>⊽</td> <td>&lt;0.05</td> <td>$\overline{\nabla}$</td> <td>&lt;0.05</td> <td>$\overline{\mathbf{v}}$</td> <td>&lt;0.05</td> <td>2</td> <td>&lt;0.05</td> <td>v</td> <td>&lt;0.05</td> <td>7</td>		INAIVIAS ACCIEGITED	Detection Limits	$\nabla$	<0.05	$\overline{v}$	7	<0,05	⊽	<0.05	$\overline{\nabla}$	<0.05	$\overline{\mathbf{v}}$	<0.05	2	<0.05	v	<0.05	7
03         10         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)         -         (1)<		Sample Identity	Depth (m)	Arsenic	Arsenic On Leachate	Boron (Water Soluble)	Cadmium	Cadmium on Leachate	Chromium	Chromium on Leachate	Copper	Copper on Leachate	Mercury	Mercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate	Selenium
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TP 7	0.3	10	,	Ī	īv	•	17	ı	8	1	Ī	4	17	,	10		2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TP 7	1.2	60	,	-	4	1	6	•	4	1	Ž	1	7	•	5	1	V
		TP 8	0.3	20	1	2	Ϋ́	,	17	1	14	,	v		21	t	8	•	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		TP 8	-	19	1	2	۲.	1	41		m	ł	Σ	1	13	1	13		۲
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1P 9	0.6	27	1	t	V	ı	27	1	10	1	<del>ک</del>	1	18	1	14	,	V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1P 9	2	9	,	7	V	+	17	I	5	t	v	4	2	1	e		$\overline{\nabla}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	12.41	0.7	17	1	-	¥	-1	17	1	Ø	1	ν	1	11	1	16	,	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			c/.0 	8	1		Ÿ	1	15	1	5	1	2	,	13	1	32	1	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	1P 32	6.0	31	1	~	v	1	30	I	12	1	v	1	21	1	8	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	17 JZ		66	1	-	5	1	60	,	21	1	2	1	46	+	13	,	$\overline{V}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	17 30	6.0	26	1	-	5	1	22	1	თ	1	7	4	17	1	12	4	Ž
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		0.1	~ {	,	2	2	1	6	1	~	1	$\overline{\nabla}$	1	10	1	8	1	ম
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		cc.u	3	1	5	۲. ۲	,	35	1	თ	,	7	1	12	ţ	81	,	⊽
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	26 41	0.1	32	1	v	v	,	34	I	18	,	v	1	21	t	143	+	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		IP 52	0.5	35	1	$\overline{\nabla}$	v	1	38	•	11	,	Σ	1	24	•	10	,	۲
07     15     -     <1		TP 54	0.25	30	1	5	7	•	33	1	14	,	₽	1	19	1	28	•	v
02     11     -     <1		TP 54	0.7	15	1	v	v	,	44	ĩ	9	,	Σ	1	10	1	9		4
0.8         29         -         2         <1		TP 55	0.2	11	1	v	ţ,	1	10	1	IJ	1	Σ	-1	Q	•	4	,	۲.
0.25 19 - 2 <1 - 25 - 13 - <16		TP 55	0.8	53	1	а	v	,	23	1	15	,	2		17	1	18	4	$\overline{\nabla}$
	-	TP 56	0.25	19	1	2	<1	1	25	1	13	1	Σ	1	16	•	প্ল	1	¥



2			5	5		<u>г</u> ц	RESULTS		JS	0								•角(
2		Job Number : 97/01	97/01023/02/01					) - 		Sampl	Sample Type	: SOIL						
2	Client :		NWALL	<b>ASPINWALL &amp; COMPANY</b>	MPANY					Location	: uc	RA	RAF Upper Heyford	er Hey	ford			-);
		Date of Receipt : 01/05/97 (of first sample)	197							Client	Client Contact		Steve Hobbs	bbs			N A NO	NAMAS TESTING No. 1291
	Preliminary	Units	bpm	mdd	mdd	mqq	mdd	mad	maa					Hug				
L		<b>Detection Method</b>	СP	ICP	ICP	ICP	СР	БР	- GP	ICP	ICP 1	ICP	ICP ICP	LCP LCP	ICP	e de la		undol 1
	NAMAS Accredited	Detection Limits	2	<0.05	$\overline{\mathbf{v}}$	۲	<0.05	v	<0.05	₩	<0,05	2	<0.05	7	<0.05	i v	<0.05	2 V
Sample Number	Sample Identity	Depth (m)	Arsenic	Arsenic On Leachate	Boron (Water Soluble)	Cadmium	Cadmium on Leachate	Chromium	Chromium on Leachate	Copper	Copper on Leachate	Mercury	Mercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate	Selenium
21	TP 56	0.75	17	1	v	v		24	1	10	,	Ī		۲. ۲		ç		
22	TP 57	0.25	24	1	v	v	1	00				. 7		<u>,</u>		2 (	•	7
23	TP 57	-	15	,	v	-		200		Ξ α		7 3	1	- ;		<u>o</u> .	1	N
24	TP 58	0.4	22		V	<1		22		, ç		7	•	2 !	,	4	+	8
25	TP 58	*	24			1				2 1		v	1	1	1	12	1	2
26	TP108	0	ţ <del>ç</del>	,	7 3	7 3	1	3	,	2	,	2	1	27	,	μ	1	2
27	TD 108	0.4	2	1	۲	5	1	12	ı	17	,	$\overline{\mathbf{v}}$	4	11	,	14	•	۷
2R	TD 117		4	1	2	2	i	16	,	7	1	2	1	10	1	10	,	7
07 00		0.1	31	1	v	7	,	36	,	16	,	v	1	19	,	82	1	ž
67	17 110	0.0 70 c	16	,	V	Σ.	,	16	1	8	1	<del>آ</del>	1	11	,	13	1	v
34	811 YI	0.95	33	1	V	v	1	20	1	11	ŧ	ź	1	12	1	25	+	V
5 6	011 71	¢	21	,	5	7	•	30	1	12	1	v		21	,	o	4	\ ∇
33	TD 400	0.4	5	1	<u>v</u>	7	1	23	1	12	1	$\overline{\mathbf{v}}$	.1	13	1	15	,	2
00	221 A1	-	12	,	7	ţ.	ı	80	,	4	1	2	1	g	1	m	1	ħ
04 0	TP 123	0.1	22	,	v	v	1	31	1	12	t	-	1	13	1	71		<1
	1P 123	0.35	58	1	$\overline{\nabla}$	¢.	1	29	•	11	1	ν	1	18	,	16	,	7
00	1P 126	0.25	17	1	v	v	1	27	1	10	1	2	1	15	,	12	•	₽
10	IP 126	-	9	•	V	<del>ن</del>		٥	r	Э	,	√	1	4	,	2	1	2
00 00 00	TP 131	0.2	27	1	2	4 4	1	26	1	25	•	V	1	19		60		r
5	121 41	0.5	31	T	$\overline{\mathbf{v}}$	v	•	36	r	13	1	v	1	27	,	12		-
04	IP 133	0.25	5	,	2	Ţ.	J	a	•	4	1	۲.	1	9	1	cu		۲ ا
Printe	Printed on 30 June 1997	Checked by		And	)	ΑΑ	Alison B	Ball							٥	Dara 62	af one	

GL CHEM ANALYTICAL SERVICES TABLE OF RESULTS

GEOC

ASPINWALL & COMPANY Client :



## CHEM ANALYTICAL SERVICES g

TABLE OF RESULTS

97/01023/02/01 Job Number :

**ASPINWALL & COMPANY** Client :

Date of Receipt : 01/05/97 (of first sample)

Preliminary

RAF Upper Heyford Client Contact : Steve Hobbs Client Ref. No.: MD3333A Location :

SOIL

Sample Type :

TESTING No. 1291

		Units	bpm	mdd	mdd	mqq	mdd	mqq	mdd	mdd	mqq	mdd	mdd	mdd	mdd	bpm	mdd	mqq
	Valluated	Detection Method	ICP	ICP	ťСР	СP	СP	CP	бP	1CP	ЧĊ	đ	ġ	a S	đ	٥		<u>n</u>
	NAMAS Accedited	Dotoction Limits	1		5	; ·		5	5	2	5		5	2	2	5	2	5
			⊽	¢0,0>	v	v	<0.0>	v	<0.05	2	<0.05	v	<0.05	2	<0.05	$\overline{v}$	<0.05	⊽
Sample Number	Sample Identity	Depth (m)	Arsenic	Arsenic On Leachate	Boron (Water Soluble)	Cadmium	Cadmium on Leachate	Chromium	Chromium on Leachate	Copper	Copper on Leachate	Mercury	Mercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate	Selenium
41	TP 133 (A)	UNKNOWN	,	1	3	1		1	1		1	1	•		,	I		•
42	TP 1	0.1	17	- I	2	v	1	25	•	12	1	ž	,	15	•	11	1	-
43	TP 1	0.8	23	1	2	v	•	27	I	18	,	v	1	16	,	12	•	2
44	TP 2	0.4	17	,	$\overline{\mathbf{v}}$	v	1	თ	ı	9	1	V	.1	10	1	e	1	Ϋ́
45	TP 2	1.1	42	1	v	v	1	14	1	თ	,	Ā	1	13	,	4	1	v
46	TP 2	2	11	1	v	Ÿ		7	I	σ	,	v	1	ŋ	,	2	4	N
47	TP 3	0.4	18	1	$\overline{\nabla}$	ž	1	19		13	1	۲	i	13	•	13	,	۲
48	TP 3	6.0	13	1	5	۲. ۲	1	15	3	12	1	v	,	13	,	m	1	۲.
49	TP 4	0.3	15	1	ν	ž	,	a	I	9	1	۲	1	6	,	4		1
50	TP 4	0.8	16	ı	2	۲. ۲	,	12	•	7	1	v	ł	1	1	ę	1	V
51	TP 5	0.4	16	1	$\overline{\mathbf{v}}$	5	,	10	r	9	,	v	,	10	1	4	+	2
52	TP 5	0.85	12	1	2	5	1	4	1	Ø	1	v	1	14	1	4		v
53	TP 6	0.6	16	1	v	v	ı	21	1	13	1	7	1	17	1	12	1	$\overline{\mathbf{v}}$
54	TP 6	1.45	8	1	۲	v	1	14	1	14	•	$\overline{\mathbf{v}}$	,	11	t	e	+	8
55	TP 6	1.9	9	1	Ž	V	1	ى م	•	9	,	Σ	1	8	,	4	,	2
56	TP 59	0.9	-	1	2	v	1	Q	1	4	,	2		9	,	+	1	2
57	TP 59	0.15	22	I	V	v	,	17	I	7	1	v		12		8	1	v
58	TP 60	0.7	26	,	V	۲,	1	26	,	14	1	V	,	20	1	30	1	2
59	TP 60	~	20	1	7	v	,	12	1	7	1	v	,	14	,	9	•	2
60	TP 61	0.7	18	ı	V	2	1	16		21	1	Ÿ	1	18	,	10	1	V
Ite	Printed on 30 June 1997	Checked by	by	8			Alison E	Ball								Page 64 of 205	206 30 1	



GEOCI.			GL	H C	CHEM AN	NALYTICAL	TICAL		SERVICES	S								.9
5)		Job Number : 97/010	97/01023/02/01		TABLE	E OF RESULTS	RESL	JLTS		Sample	Sample Type	: SOIL						
2			IMALL	ASPINWALL & COMPAN	ΛΡΑΝΥ					Location	: uc		RAF Upper Heyford	er Hey	ford			NAMAS
		Date of Receipt : 01/05/97 (of first sample)	97						-	Client Client	Client Contact Client Ref. No.		Steve Hobbs MD3333A	bbs			TES No.	TESTING No. 1291
	Preliminary	Units	mqq	mqq	mdd	mdd	mdd	mdd	mdd	mdd	mqq	mdd	mdd	mdd	bpm	bpm	bpm	mdd
		<b>Detection Method</b>	IСР	СР	СР	ICP	IСР	ICP	ICP	ICP	ICP	ГСР	ICP	БР	ICP	ICP	ICP	ЮР
	NAMAS Accredited	Detection Limits	7	<0,05	v	v	<0.05	$\overline{\mathbf{v}}$	<0.05	Ϋ́	<0.05	v	<0.05	2	<0.05	۲	<0.05	4
Sample Number	Sample Identity	Depth (m)	Arsenic	Arsenic On Leachate	Boron (Water Soluble)	Cadmium	Cadmium on Leachate	Chromium	Chromium on Leachate	Copper	Copper on Leachate	Mercury	Mercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate	Selenium
61	TP 61	1.1	10	,	v	v		10	1	7	,	ī	+	11	,	2 2		v
62	TP 62	0.4	22	1	-	4	1	25	•	12	+	2	4	15		17	•	V
63	TP 62	0.8	9	t	-	۲.	,	4	1	e	,	v	1	ۍ ا	t	Ž	+	۶
64	TP 62	1.4	2	1	Q	5	1	80	1	9	1	V	1	80	1	5	1	₹.
65	TP 67	0.35	21	1	2	v	1	13	,	9	,	<u>v</u>	1	10	1	8	1	V
99	TP 67	1.3	10	1	м	v	•	16	I	8	t	¥	4	44	1	9	•	₽
67	TP 68	0.1	15	1	$\overline{\mathbf{v}}$	2	1	26	1	11	1	v	1	15	•	73	1	v
68	TP 68	0.8	15	1	0	√	,	9	1	4	,	5	•	6	1	4	1	2
69	TP 69	0.4	34	1	v	v		36	1	13	1	v		28	1	13	1	2
10/	1P 69	0.95	17	1	<u>v</u> .	v .	1	5	1	~	,	v	•	12	•	ω	ł	V
20	TD 20	0.2	3 5	1	<u>,</u>	v,	•	50	r	11		v		16	,	24	+	$\nabla$
73	TD 71		<u>n</u>	1	5	v .	1	20	1	£.	1	7	.1	თ	1	4	1	7
		0.1	<u>p</u>	1	5	v		14	1	თ	1	ν ν	1	<del>ന</del> ന	1	12	1	V
14	17 JI	0.4	ы	1	<del>v</del>	12	,	10	I	140	1	v	1	31	,	43	4	4
<u>و</u>	IP /1	1.1	1	1	•	1	ı	ı	1	.1	•	1	1	1	•		1	1
76	TP 73	0.3	16	1	v	v.	,	16	1	8	,	7	1	12	,	13	1	V
44	TP 73	0.6	25	1	2	v	1	22		11	,	Σ	1	15	,	18		v.
/8	TP 73	1.7	1	1	,	1	I	1	1	1	,	1	1	ī	•	1	,	,
6/	TP 78	0.2		1	3	•	•	1	1	ł	1	.1	•		,	I		,
80	TP 78 A	0.35	22	-	V	۰ <u>+</u>	1	13	1	7	•	7	1	11	,	7	,	V
Printe	Printed on 30 June 1997	Checked by	-	Kr 00	d	ΑΑ	Alison Ball	3all								Page 65 of 205	of 205	



.B			NAMAS TESTING No. 1291		mqq n		35 <1	Selenium	7	+	V	V V	2	<u>د</u>	2	2	2	۲	2	7	V	-	V	2	7	V	₹ V	Z
1948			265		mqq n	o ICP	<0.05	Lead Leachate	4	1	•	1	1	4	1	•	1	1	4	1	1		1	1	,	1	+	,
					mqq	БР		Lead	4	•	14	4	18	13	ø	12	3	13	6	29	+	2	2	-	ĩ	11	7	6
		RAF Upper Heyford			mdd	БР	<0.05	Nickel On Leachate	,	•	,	1	,	•	1	,	,	,	•	1	,	t	,	,	,	,	•	1
		per H	lobbs	3A	mdd	ICP	41	Nickel	5	1	17	9	18	15	80	12	2	14	4	10	4	æ	60	5	e	18	12	20
	SOIL	RAF Up	Steve Hobbs	MD3333A	mqq	GР	<0.05	Mercury On Leachate	,	1		1	1	•	1		1	1	ï	.,	,	ł	1	,	,	,	1	,
		œ			mqq	СP	$\overline{\mathbf{v}}$	Mercury	v	1	v	۲	v	v	ν	⊽	v	2	⊽	v	7	۲	Σ	2	v	$\overline{\nabla}$	2	$\overline{\nabla}$
	Sample Type	ion :	Client Contact	UIIENT KET. NO.	mqq	GР	<0,05	Copper on Leachate	•	•	,	1	J	1	,	1	ł	,	1	1	1	1	1	1	1	1	1	1
2 I	Samp	Location	Client	Client	mdd	ICP	2	Copper	Q	,	13	4	15	13	4	10	Q	12	$\overline{\nabla}$	2	ю	4	33	2	-	თ	00	11
					bpm	iср	<0.05	Chromium on Leachate	1	1	I	1	1	T	,	3	1	1	I	1	1	I	1	1	t	1	1	
	1				mqq	GР	v	Chromium	σ	1	21	10	23	<del>1</del> 9	7	16	80	21	4	21	9	13	15	8	20	28	20	61
ЦЦ					mdd	IСР	<0,05	Cadmium on Leachate	•	8	,	1	1	,	1	•	1	1	•	1	1	,	1	,	1	8	1	1
F OF	I				mdd	ICP	v	Cadmium	Ī	1	v	, t	V	$\overline{\nabla}$	ž	$\overline{\nabla}$	v	v	$\overline{\nabla}$	<u>v</u>	7	V	-	÷.	$\overline{v}$	Ϋ́	<del>v</del>	v
TARI	1	<b>NPANY</b>			mqq	ICP	₹	Boron (Water Soluble)	v	1	₽	ო	t	-	۴	0	V	$\overline{\nabla}$	2	5	5	5	2	4	2	$\overline{\nabla}$	v	7
	27/01023/02/01	& COI			mdd	СР	<0.05	Arsenic On Leachate	1	ı	1	1	1	1	1	1	1	,		1	1	1	1	,	1	1	1	1
		WALL	97		mqq	CP D	2	Arsenic	œ	1	V	æ	22	20	13	12	ø	30	4	20	-	<u></u> σ	15	12	18	29	16	- 
		ASPIN	01/05/97			ethod	imits																					
					Units	Detection Method	Detection Limits	Depth (m)	0.9	1.7	0.5	0.9	0.1	0.55	0.5		1.7	0.1	1.8	0.1	-	0.0	1.4	1.45	0.35	1.2	0.5	1.3
	Job Number	it :	Date of Receipt : (of first sample)			Deter	Dete																					_
	1 doL	Client :	Date (of first				edited	Sample Identity	TP 78 A	TP 78 A	79	79	80	80	139	139	139	00	00	10	D (	00	00	66	2/	72	/4	/4
				Dreliminary	dated		NAMAS Accredited		TP	TP	TP 79	TP 79	TP 80	TP 80	TP 139	TP 139	17 139			TD 40		00 7 I		1P 66	11 12	TP 72	1 1/4	IP /4
	~	2		Drei	□ Validated		NAI																					
2	/ //	2					لى	Sample Number	81	82	83	84	85	86	18	88	100	CO 901	107						711	113	4 L	0

CHEM ANALYTICAL SERVICES TABLE OF RESULTS Ð

GEOCI.



Job Number : Client :	97/01023/02/01 ASPINWALL & COMPANY	3/02/0 ALL 8	1 COMPANY	PANY				. 1	Sample Type Location :	Type: n:	SOIL	SOIL RAF Upper Hevford	r Hevf	ord		
Date of Receipt : 01/05/97 (of first sample)	5		)						Client C	Client Contact Client Ref. No.		Steve Hobbs MD3333A	bs	5		NAMAS TESTING No. 1291
Units ppm		1.000	mqq	bpm	mdd	mdd	bpm	mdq	mad	maa	mag		mm	mon	muu	
Detection Method ICP IC		12	ICP	ICP		ICP	ICP	ECP	ICP		-		a			
Detection Limits <1 <0		8	<0.05	√	V	<0,05	v	<0.05				<0.05		<0.05		50.05
			-							$\left  \right $	$\left  \right $		T			
Arsenic Arsenic Depth (m)		Ausenic on Leachate	Arsenic On Leachate	Boron (Water Soluble)	Cadmium	Cadmium on Leachate	Chromium	Chromium on Leachate	Copper	Copper on Leachate	Mercury	Mercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate
0.5 15 -		1	+	-	Ţ		17		00	-	Ţ.				c	
1.4 9 -	σ			V	7										a	•
	0 0			<del>,</del> c	, ,	1	= 1	•	4	,	5	1	g	•	2	t
4				4,	7	•	n	r.	m	1	<u>v</u>	•	4	•	8	4
24				5	5	1	25	1	12		-1	1	18	1	12	1
ן ת		1		2	<del>v</del>	1	13	1	Q	,	2	1	8	1	2	
		1		<u>v</u>	$\overline{\nabla}$	,	36	I	12	,	v	4	24	t	5	₹ •
		1		<u>v</u>	2	1	12	1	9	-	$\overline{\nabla}$	1	17	1	4	\ \ \ \
		1			$\overline{\nabla}$	1	24	1	12	1	۲.	1	19	1	23	<del>ک</del> ۱
		1			5	,	 თ	r	8	•	$\overline{\mathbf{v}}$	,	6	1	v	- 1
		1			<del>.</del>	1	21		10	,	7	1	15		10	1
		1			<del>.</del>	,	10	1	9	1	V	+	6	,	e	↓ ↓
		1			2	1	24	.1	10	•	2	1	17		14	V 1
	، ص	1			ţ,	1	12	1	9	•	Ž	1	11		m	-
		,			5	1	28	1	11	v	v	+	18	, , , , , , , , , , , , , , , , , , ,	31	+
		1		ν V	2	1	6		4	V	∑		7		1	<u>۷</u>
				• •	v	1	32	1	11	1 1	5	1	20	,	62	₹
				⊽ ⊽	ţ		44	I	9	V 1	۲. ۲	-	10		2	0
		1		2	4		27	1	10	V ,		-	18		16	V 1
	1	1			Ϋ́		4	1	e	v ,	v		5	,	+	+
0.4 1 13 -		1	_	₹ V		1	13	•	7	V +	2	-	10	<u> </u>	7	, 7
Checked by			1							Contraction of the local division of the loc		The second se				

GL CHEM ANALYTICAL SERVICES TABLE OF RESULTS

CEEOCI,



5			2	5	TABL	E OF	F RESULTS	· · · ·	JS	0								·A
2		mber :	97/01023/02/01	/01						Samp	Sample Type		SOIL					
2	Client :		JWALL	ASPINWALL & COMPANY	<b>NPANY</b>					Location	: uo	R	AF Upp	RAF Upper Heyford	/ford			2)
	_	Date of Receipt : 01/05/97 (of first sample)	26,							Client	Client Contact Client Ref No		Steve Hobbs	, sddo			NA EL	VAMAS TESTING No. 1291
	Preliminary	Units	mqq	mqq	bpm	mqq	mqq	mqq	maa	maa	mua		- man					
L		<b>Detection Method</b>	СР	ICP	ICP	ICP	ICP	ICP .	EP	ICP	ICP	ICP	E D	ICP ICP	ICP	a Ci	Eldd	mqq
	NAMAS Accredited	Detection Limits	$\overline{\mathbf{v}}$	<0.05	$\overline{\mathbf{v}}$	v	<0.05	v	<0.05	Ÿ	<0,05	4	<0.05	5	<0.05	5 ₽	<0.05	5 ₽
Sample Number	Sample Identity	Depth (m)	Arsenic	Arsenic On Leachate	Boron (Water Soluble)	Cadmium	Cadmium on Leachate	Chromium	Chromium on Leachate	Copper	Copper on Leachate	Mercury	Mercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate	Selenium
136	TP 89	1.9	ດ	,	v	v		۲.		Ľ		7		ţ				
137	TP 109	0.4	25	,	v	v	1	2		0 0		7 7	1		•	n	4	5
138	TP 109	1.2	7	1	ī	· •			,	ד מ	,	<u>,</u>	1	4	,	15	1	-
139	TP 109	1.65	20		2			- 40	1	t t	,	<u>v</u>	+	, ,	,	5	+	₽
140	TP 110	0.2	10	,	- 5	; ;		3 0	1	י ת		5	1	15	,		1	v
141	TP 110	0.5	2 00		7 7	7 1	1	, , ,	1	4,	1	¥	1	g	1	ມ	1	ţ.
142	TP 110	1 4	) ц		, c	, ,	,	ית	ı	4	1	5	1	Q	ł	4	4	<u>د</u>
143	TP 111	015	r 6		n 1	5	1	4	1	ო	1	2	1	5	1	2	1	-
144	TP 111	0.13	77 00	1	v .	5,	1	50	1	4	1	7	,	15	1	18		v
145	TP 113		8	' (	v .	۲, v	1	24	I.	<del>.</del>	1	V		16	1	11	,	Ŷ
146	TP 113A	4.0	1 4 1 4	40.02 10 0	<b>√</b> ,	4.	<0.05	72	<0.05	1338	<0.05	v	<0.05	16	<0.05	20	<0.05	$\overline{\nabla}$
147	TP 124	t c	0 6	c0.0>	5	4,	<0.05	187	<0.05	1799	0.44	v	<0.05	15	<0.05	38	0.21	V
148	TP 124	4 C +	7	1		v.	1	27	1	11	1	۲	1	20	1	12	1	V
149	TD 124	7. 4	= .	3	-	<u>v</u>	1	5	1	Q	1	7	1	6	,	m	1	+
150	TD 104	- <u>-</u> -	4 (	1	√ .	5	1	ო	I	4	1	⊽	4	4	1	v	4	2
151	17 124 171 124	1./	ø	1	5	7	ı	4		ۍ	1	v	1	9	,	₽	,	-
101	121 11	0.25	5	1	-	Ţ.	1	22	1	15	,	v	1	18	,	14	,	V
152	121 41	0.0	Q	1	-	v	,	4	t	Э	1	v	1	S	,	v	•	v
170	121 YI	1.6	1	1	,	1	1	,	•	1	1	1	1	,	1	+	1	
180	TD 10	0.2	R	1	5	ţ.	1	21	T	10	.1	v		13	,	16	4	2
2	11 10	0.8	9	- 0	2	V.	1	∞	1	4	1	Σ	1	7	1	-	1	V
inted	Printed on 30 June 1997	Checked by		Prov.		ΑΑ	Alison B	Ball								Page 68 of 205	of 205	000000000000000000000000000000000000000

GL CHEM ANALYTICAL SERVICES TABLE OF RESULTS

GEOC!.



CHEM ANALYTICAL SF TABLE OF RESULTS           TABLE OF RESULTS           TABLE OF RESULTS           COMPANY           Company           ppm         ppm           ppm          ppm	USUBLE Chromium on Leachate 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SERVICES         Internet         Interne         Internet         Internet	SERVICES         Sample Type           ITS         Sample Type           ISBN 1000000000000000000000000000000000000
	NUclear         Participation         Participation<	Imple     Type       I	Imple Type :       SOIL         cation :       RAF Upper Heyl         cation :       RAF Upper Heyl         cation :       RAF Upper Heyl         ient Contact :       Steve Hobbs         ient :       Steve Hobbs



			Client : ASPINWALL & COMPANY Date of Receipt : 01/05/97 (of first sample)	197 197	D S S						Client Re	Client Contact Client Ref. No		Steve Hobbs	bbs			NA	NAMAS TESTING No. 1291
Image: constraint of the		] Preliminary   Validated	Units	mqq	mqq	mdd	шdd	mdd	mqq	bpm	mdd	mdd	. udo	mdd	14 CONTRACT	mdd	mag	maa	DDM
Nickel         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N <th>1</th> <th></th> <th><b>Detection Method</b></th> <th>GР</th> <th>GР</th> <th>ICP</th> <th>ICP</th> <th>СP</th> <th>СP</th> <th>IСР</th> <th>ICP</th> <th>ICP</th> <th>ICP</th> <th>ICP</th> <th>СP</th> <th>ICP</th> <th>ICP</th> <th>d D</th> <th>dCI</th>	1		<b>Detection Method</b>	GР	GР	ICP	ICP	СP	СP	IСР	ICP	ICP	ICP	ICP	СP	ICP	ICP	d D	dCI
Lead Leachate       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       <		NAMAS Accredited	Detection Limits	$\overline{\mathbf{v}}$	<0.05	v	5	<0.05	v	<0.05	2	<0.05	$\overline{\mathbf{v}}$	<0.05	5	<0.05	⊽	<0.05	
05         23         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·		Sample Identity	Depth (m)	Arsenic	Arsenic On Leachate	Boron (Water Soluble)	Cadmium	Cadmium on Leachate	Chromium	Chromium on Leachate	Copper	Copper on Leachate	Mercury	Mercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate	Selenium
12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12<		TP 47	0.5	29	,	τν	v		24	1	10	,	v		at at	,	ę		7
0.35         24         ··         (1)         ··         24         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1         ··         1		TP 47	1.2	5		v	Ý	1	11		<u>ں</u>		. r	,	2 a		2 u		7 3
		TP 63	0.35	24	1	v	<u>ک</u>		24	1	12	1	v	4	2 <del>2</del>	,	, t		7 5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TP 63	1.1	Ø	,	2	5	1	11	,	5 L	1	V	1	0		2 u		7 7
		TP 64	0.55	31	1	7	×1	1	30	,	13	1	v	,	23	1	10	,	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TP 64	1.3	11	1	v	v	4	თ	I	7	1	v		8	+	4		-
		TP 65	0.4	28	1	$\overline{\Sigma}$	V	1	34	1	10	,	v	1	8	1	10	,	V
		TP 65	1.3	7	,	2		1	8	,	4	,	Ť	,	7	1	4		0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TP 81	0.35	1	1	ĩ	1	1	,	r	1	1		,			ı	,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TP 81A	0.55	21	I	V	v.	1	30	1	4	,	2	-1	28	•	80	1	$\nabla$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TP 81A	1.4	ω	1	v	v	•	7	1	9	,	$\overline{\mathbf{v}}$	4	80	1	2	4	$\nabla$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TP 86	0.45	31	1	2	t,	1	68	1	81		$\overline{\nabla}$	1	41	1	51		V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		TP 86	1.2	24	1	5	<del>v</del>		26	1	11	1	5	1	21	,	15	1	N
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IP 92	0.4	R	1	v	ţ.	1	29	I	12	+	$\overline{\nabla}$	•	18	,	30		2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TP 92	1.4	13	1	$\overline{\nabla}$	۲,	1	11	1	g	4	V	1	6	•	co	,	Z
09     13     -     <1		TP 93	0.35	16	,	$\overline{\mathbf{v}}$	Ÿ	1	15	   ,	80	1	v		13	,	12		$\overline{\mathbf{v}}$
0.4     32     -     <1		TP 93	0.9	13	1	V	₹ V	1	17	ı	9	1	Σ		12	,	5	,	<b>v</b>
1.4     11     -     <1		TP 94	0.4	32	4	V	v	1	23	ł	42	1	2	1	25	4	98	t	<b>₽</b>
0.35 27 - <1 - 21 - 11 - <1 - 21 - 21 - 21 - 21		TP 94	1.4	11	1	$\overline{\mathbf{v}}$	$\overline{\nabla}$	1	15	1	11	,	v	, ,	12	,	16	+	₹
		TP 95	0.35	27	1	۲ ۲	<1	1	21	1	11	•	V	1	17		21	,	<b>\</b> ∑

GL CHEM ANALYTICAL SERVICES TABLE OF RESULTS

Job Number : 



·B			TESTING No. 1291		mdd	[CP	12	1	Selenium		7 (	N	₽	¥	⊽	₽	V	Ł	v.	Ŷ	4	1	Z	¢.	+	₽	4	۲	2	V	
	Juni	uul 2			шdd	ICP	<0.05	Lea	d Leachate		•	•		1	1	4	,	1		1	1	,	1	+	,	1	1	1	4	,	
					mqq	ICP	V		Lead	0	2 4	, !	17	24	21	m	10	З	9	27	32	1	21	9	8	a	12	13	ß	9	C
		yford			mqq	ICP	<0,05	Nickel	On Leachate				•	1	<b>ا</b>	,	1	,	1	ł	<b>,</b>	1	1	1	1	,	,		•	•	
		per He	obbs	Ŧ	mdd	ICP	v V		Nickel	47	<u>-</u> ç	2 8	२	24	17	7	11	თ	89	21	18	1	15	12	53	12	23	ମ୍ପ	9	7	
	SOIL	RAF Upper Heyford	Steve Hobbs	CCCCC I	шdd	ICP	<0.05	Mercury	y On Leachate		. 1		+	1	1	4	1		ŗ	a.	ı	1	1	1	1		4	1	4	1	
		œ			mdd	IСР	v	Ν	Mercury	4	v	. 1	<del>,</del>	<b>v</b>	7	2	Σ	2	$\overline{\nabla}$	7	7	1	v	ī	2	v	v	$\overline{\nabla}$	$\overline{\mathbf{v}}$	Ž	
	Sample Type	ion :	Client Contact		mdd	ICP	<0.05	Coppei	on Leachate	,	,		,	1	1	•	1	,	,	ì	+	1	J	1	•	J	,	,	,	1	
ES	Samp	Location	Client		mqq	ICP	2	(	Copper	o	6		- ;	2	4	Q	Q	ŝ	9	24	47	1	10	80	:-	4	17	20	4	4	
SERVICES					mdd	IСР	<0.05	Chromiu	m on Leachate	,		1			,	I	1	1	1	1	.1		1	1	,	1	t	. 1	r	1	
TICAL SE					mqq	GР	۶	Cł	nromium	23	11	28	2 U	3 8	2	œ	16	13	0	28	17	1	24	19	3	13	23	6	~	7	Ball
CHEM ANALYTICAL					mdd	ICP	<0.05	Cadmiun	n on Leachate		,	,			1	•	1	,	•	1	1	1	r	•	1	1	1	1	1	1	Alison F
NALY E OE	L	×			mdd	ICP	v	Ca	admium	v	v	Ý	. 1		v .	5	-	5	5	v .	7	, ,	v.	2	5	5	5	v	v	~	4
EM AI		COMPANY			шdd	БР	v	Boron (V	Vater Soluble)	2	-	2	. e.		n (	v (	2	2	- '	5	ກ			5	N .	F	~ .	4	v	2	
		ø		und .	ilidd	БР	<0.05	Arsenic	On Leachate	1	•	1			y.	1	1	,	,	1.	,	,	1	1	1	1	1	1	1	- <	XXX
Ğ	97/01023/02/01	ASPINWALL	197	muu	idd	<u>с</u>	2	A	rsenic	24	23	27	34	đ	2 5	2 5	<u>א</u> ל	2 L	0 6	07 6	3	• č	- -	ה כ	1 5	2 8	3 [	2	<u>N</u>	12	Δ Λc
	17040		Date of Receipt : 01/05/97 (of first sample)	Unite		Detection Method	Detection Limits	De	pth (m)	1.2	0.4	0.4	0.4	03	0.0	<u>0</u>	t v	τ. - τ	0.		0. r.	2. C	c.b	7.1	t c	0. 4	4. C	7'I	0	0.2	Checked by
	Job Number :			Preliminary	U Validated		NAMAS Accredited	Samp	le Identity	TP 95	TP 96	TP 97	TP 98	TP 99	TP 99	TP 100	TP 100	TP 100	TP 102	TP 102	TP 102	TP 103	TP 103	TP 104	TP 104	TD 105	TP 105	TP 105	001 01		Printed on 30 June 1997
GEOC).	// //	$\overline{\boldsymbol{y}}$				L		Sampl	e Number	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	24	Printed

RAF Upper Heyford

SOIL

Sample Type :

Location :

**ASPINWALL & COMPANY** 

97/01023/02/01

Job Number :

Client :

Ö	7///
GB	

	(of first	(of first sample)								Client	Client Contact Client Ref. No.		Steve Hobbs MD3333A	abbs A			Εž	TESTING No. 1291
	Ualidated	Units	mdd	mqq	mdd	mqq	mqq	mqq	mqq	mqq	mdd	mdd	mad	maa	maa	maa	mad	Service of the servic
		Detection Method	GР	GР	ICP	IСР	ICP	ICP	IСР	ICP	СP	ICP	CP	a ⊈				
	NAMAS Accredited	Detection Limits	<u>v</u>	<0,05	v	v	<0.05	v	<0.05	ž	<0.05	ī	<0.05	5 5	200	ž i		5
Γ												Ī	3	,	3	7	800	5
Sample Number	Sample Identity	Depth (m)	Arsenic	Arsenic On Leachate	Boron (Water Soluble)	Cadmium	Cadmium on Leachate	Chromium	Chromium on Leachate	Copper	Copper on Leachate	Mercury	Mercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate	Selenium
241	TP 121	0.2	23	,	v	īv		36	.1	42		<b>T</b> 1		,				
242	TP 121	1.2	60	,	~	Ţ,		4		2 1		7	+	ת	•	65	•	2
243	TP 125	0.1	18	,	1	- 5		5 5	1	0	•	v	+	7	1	8	1	$\overline{\mathbf{v}}$
244	TP 125	0.6	20		- c	7	,	17	1	42	,	2	1	13	1	14	+	5
245	TP 130	0.45	44		4 7	, ,	1	53	1	თ	,	$\overline{\nabla}$	1	14	1	12	1	v
246	TP 130		. 5		7 (	<u>,</u>	1	4	1	7	1	7	1	10	J	4	1	⊽
247	TP 132	0.1	2 12		4 0	v .	•	~ !	I	4	1	ν Σ	+	7	,	e	+	v
248	TP 132	0.7	VC			t ,	1	64		21	1	2	1	16	1	126	1	2
249	TP 140	0.0	т 1	,	N 1		,	5	1	œ	1	<del>،</del>	,	16	1	5	1	0
250	TP 140	13	2 5	1		v 1	-1	10	I	Ω	1	$\overline{\nabla}$	ı	11	1	5	1	۶
-	TP 10	C	2 0	,	N 3	Ţ,	1	5	1	Q	,	v	1	80	,	m	1	$\nabla$
252	TP 10	0.0 C t	2 <	1	v .	- '		19	1	20	1	v	4	14	1	34	1	V
253	TP 12	01	t [	,	V 1	5 3	1	4	1	ŝ	1	V V	1	S	1	5	,	7
-	TP 12		. <u>r</u>	•	7 7	7	1	5	1	5	.1	<del>ک</del>	1	13	1	30	1	⊽
255	TP 12	13	2 ~		7 3		4	_	r	ۍ	t	$\overline{\mathbf{v}}$	1	œ	t	e	•	v.
256	TP 14	0.4	> <del>;</del>		7 3	v 1	1	4	1	m	4	2	1	Ω	1	<1	1	Z
-	TP 14		<u>v</u> c	,	<u>,</u>			14	1	53	,	$\overline{\nabla}$	1	11	1	23	•	4
-	TP 15	- 2	N L	1	V.	2	,	4	I	Э	1	v	,	4	1	8	ſ	7
-	TP 15	t u	<u>n</u> (	1	v.	v <del>1</del>	1	13	1	8	1	V	1	6	+	12	1	-
-	TP 15	с. — с	3 ;	1	5	$\overline{\nabla}$	1	18	1	10	,	v	1	15	1	19		⊽
-		C.2	} =		<u>۲</u>	V.	1	16	1	Ø	1	ک ا	1	12	,	6	1	V
ec	Printed on 30 June 1997	Checked by	×	2 Secol		A	Alison B	Ball										

Sample Type:         Soll         Cadmim         Pm         Pm         Pm         Pm         Pm           0         pm	CEOC!			GL		CHEM ANALYTICAL TABLE OF RESUI	ALY E OF	ALYTICAL SE OF RESULTS		SERVICES _TS	S Ш						1.1	Q	·B
Client:         ASPINVALL& COMPANY         Coation:         RAF Upper Heyrord Client Contact:         RAF Upper Heyrord Client Contact:         RAF Upper Heyrord Client Contact:         Automatical Client Contact:         RAF Upper Heyrord Client Contact:         Automatical Client Con	5			023/02					)		Samp	le Type		OIL					(≯
Defection:         Client contact:         Steve Hobs: <ul> <li> <ul> <ul> <li> <ul> <ul> <li> <ul> <ul> <li> <ul> <ul> <ul> <ul> <ul> <ul> <ul></ul></ul></ul></ul></ul></ul></ul></li></ul></ul></li></ul></ul></li></ul></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul></li></ul>	5			NWALL	- & COI	ΝΡΑΝΥ					Locati	: uo	R	AF Upp	oer Hey	/ford		uul	(z)
Image: constraint of the sector of	•	Preliminary		197							Client Client	Conta Ref. N		teve Ho D3333,	abbs A			Z	NAMAS TESTING No. 1291
Image: control of the contro		□ Validated	Units	mqq	mdd	mdd	mdd	mqq	mqq	bpm	шдд	mad	maa	maa	mon	autu	- mun		
And       Lead			Detection Method	GР	IСР	ICP	ICP	СР	ICP	ICP	ICP	ICP	<u>م</u>						udd
Lead Leachale       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       <		NAMAS Accredited	Detection Limits	v	<0.05	v	v	<0.05	v	<0.05		<0.05	5 5	2021	5 3		<u>א</u>	-1 <u>5</u>	5 D
Lead Leachate       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       <	$\left  \right $					T			T			2	7	3.5/	-	5	5	<0.05	V
01         25         ×         <1         ×         24         ×         11         ×         14         ×         14         ×         14         ×         14         ×         14         ×         14         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         ×         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15 <t< td=""><td>Sample Number</td><td>Sample Identity</td><td>Depth (m)</td><td>Arsenic</td><td>Arsenic On Leachate</td><td>Boron (Water Soluble)</td><td>Cadmium</td><td>Cadmium on Leachate</td><td>Chromium</td><td>Chromium on Leachate</td><td>Copper</td><td>Copper on Leachate</td><td>Mercury</td><td>Mercury On Leachate</td><td>Nickel</td><td>Nickel On Leachate</td><td>Lead</td><td>Lead Leachate</td><td>Selenium</td></t<>	Sample Number	Sample Identity	Depth (m)	Arsenic	Arsenic On Leachate	Boron (Water Soluble)	Cadmium	Cadmium on Leachate	Chromium	Chromium on Leachate	Copper	Copper on Leachate	Mercury	Mercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate	Selenium
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	TP 16	0.1	25	1	v	v		24	1	11	,	7		;		!		
045         15         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×         ×	2	TP 16	1.2	໑	.,	7	v	1	13		: vo	,	7 V	•	<u>t</u> o	,	2	,	-
15         9         -         -         10         -         6         -         -         10         -         17         -         18         -         18         -         18         -         16         -         17         -         18         -         103         1         -         12         1         -         10         -         1         -         1         -         1         -         13         -         16         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1	n	TP 17	0.45	15	•	v	ν	,	DC		, ;		;	,	0	+	a	1	2
035         19         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	4	TP 17	1.5	0		v	-1		3 \$		± L	,	5	•	17	1	18	+	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	TP 19	0.35	σ		. r			2 {		n	1	2	1	8	1	2	1	v
	9	TP 19	1.25	2 σ		N 7	7 3	1	05	•	16	1	5	1	21	1	33	1	V
06         17         -         -         -         -         -         -         -         -         1         -         166         -         20         -         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         167         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         167         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·         166         ·	2	TP 38	0.3	> 7		7 3	v r		2	1	9	1	$\overline{\mathbf{v}}$	ł	00	1	5	+	2
2         4         -         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		TP 38	06			7	<del>,</del>	1	თ :	1	21	,	2	1	20	1	166	t	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	TP 38	C		1		 v	•	18	,	65	,	v	,	19	1	123	1	⊽
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	TP 39	3 4	5 t	,	v ,	5	,	9	I	4	,	$\overline{\mathbf{v}}$	1	5	,	14	,	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	TP 39	00	t v	r	<u>,</u>	v ,	1	24	1	23	4	v	1	15	,	767	+	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01	TP 40	0.35	r [	1		v .		0	1	9	1	v		7	,	e	4	₽
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	TP 41	0.35	3		7 7	5	1	10	1	10	1	2	,	13		106	1	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	TP 41	14	i 7		7 3	7 .	1	UF	,	10	,	<del>ک</del>	1	19	ı	34	1	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TP 42	0.35			7		,	4	1	2	•	ν	1	7	t	3		4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TP 42		- (			5	1	~	•	თ	,	<b>∑</b>	1	80		16	,	$\Delta$
0.1     22     -     <1		TP 43	·	n (	1	2	v	r.	ۍ ۲	1	2	3	v	1	4	,	~	1	V
0.1     22     -     -     5     -     9     -     -     7     -     3     -       2     -     -     1     -     24     -     27     -     17     -     3     -       2     -     1     -     1     -     24     -     27     -     17     -     299     -	_	TP 43	t u	7	,	v 1	v,	1	32	r	Ø	,	v	1	18	t	6	•	7
2 <1 - 24 - 27 - 17 - 129 - 299 - 200 - 21 - 22 - 21 - 22 - 22 - 22 - 2		TP 44	01	t 6	I 10	v 1	5 1	1	ی ا	1	ത	4	$\overline{\mathbf{v}}$	1	7	1	n	+	V
		TP 44	2	1 7		- - -	7 7	1	24	r	27	,	v	1	17	1	299	4	\ ∇
	0 104	20 1		£	-8	-		4	۵		2	1	2	1	4	•	2	•	V



TABLE OF RESU	
TA	97/01023/02/01
	Job Number :

ASPINWALL & COMPANY Date of Receipt : 01/05/97

(of first sample)

Preliminary

Client :

RAF Upper Heyford Client Contact : Steve Hobbs SOIL Sample Type : Location :

Client Ref. No.: MD3333A

TESTING No. 1291

		Units	maa	maa	man	maa	- Hand			000000000000000000000000000000000000000								
	U Validated	Detection Mathad			2	IIIAA	Hinda	undd	mqq	ррт	mdd	mdd	mqq	mdd	mqq	bpm	mqq	mqq
			CP	<u>0</u>	СP	е О	дŊ	GР	ICP	ICP	ICP	ICP	ICP	ICP	бP	ICP	ŝ	. <u>c</u>
لتنبيه	NAMAS Accredited	Detection Limits	$\overline{\mathbf{v}}$	<0.05	۶	v	<0.05	v	<0.05	7	<0,05	v	<0.05	v	<0.05	2 V		2 3
Sa				Ar	Boi		Ca		Ch		с		N				3	7
mple Number	ample Identity	Depth (m)	Arsenic	senic On Leachate	ron (Water Soluble)	Cadmium	dmium on Leachate	Chromium	romium on Leachate	Copper	Copper on Leachate	Mercury	lercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate	Selenium
281	TP 90	0.4	13	,	v	v	,	¢,		α		1		ļ				
282	TP 90	1,1	4			. 7		2		0	•	v	+	73	•	31	4	V
283	TP 91		- 6			<u>,</u> .	1	14	•	ø	,	2	,	10	4	æ	t	V
284	TP 01	0.1	3 (	1	5	5	1	16	1	18	,	$\overline{\nabla}$	4	13	•	27	•	2
785	10 E	c/.n	۵	1	2	۲	1	7	ı	£	1	Ÿ	1	7	1	e	,	۲ ۲
		1.2	-	,	5	v	1	4	1	e	1	4	1	9	,	4	,	Ţ
0	19 1	2.3	v	1	V	v	4	4	т	-	,	Ī	,	V		•		-
287	TP 93	1.6	4	1	V	ž	1	7	1	4	,	Σ				- 1	•	7
288	TP 97	1.7	12	1	V	v		4		u				- 1	-	7	1	₽
289	TP 98	1.6	10	. 1	0	5		- u		ו כ	,	<u>_</u>	1	<u>`</u>	,	m	1	⊽
290	TP 101	0.5	16		1 7		1	n ;	ı	n	1	$\overline{\nabla}$	1	80	1	4	.1	2
291	TP 101	16	2 σ		7 -		1	F .	1	20	,	5	ł	15	1	26	1	$\overline{\nabla}$
292	TP 128	0.35	) ţ	•	-	<u></u>	•	4	1	8	1	₽	,	œ	1	7	•	Ž
293	TP 128		- 1	1	√ .	1>	1	15	1	8	,	v	í	13		12	,	2
301	TP11	C	, ,	1	۲	v	1.	0	1	ю	,	7	3	9	,	N	,	2
302	TP11	0.2	<del>.</del> .	1	⊽ '	v .	ą	0	I	2	t	۶	1	2	•	V	1	\ ∇
303	TP13		- 3	,		5	1	თ	1	v	1	Σ	1	5	•	<b>1</b>	1	2
304	TD12	to	-	1	5	$\overline{\mathbf{v}}$	,	80	1	Ÿ	1	5	,	4	,	<b>41</b>	•	~
305	0C10T	LC	v .	1	v V	ţ	1	2	ı	ν	1	V	1	1	1	Ţ	1	<1
306	TD100	00°.0	⊽ .	1	V	v	I	10	•	v	1	$\overline{\mathbf{v}}$	1	5		n	t	V
307	TD120	c/.n	v.	1	Ţ.	v.		9	1	$\overline{\mathbf{v}}$	1	$\overline{\mathbf{v}}$	a	2	,	Э	1	⊽
	071 11	4.1	√	-	₹	v.	1	10	•	v	,	$\overline{\nabla}$	1	e 1		7	,	V
nte	Printed on 30 June 1997	Checked by	y	2000		Α	Alison Ball	all								Dace 74	100 90	

GEOCI,

RAF Upper Heyford

SOIL

Sample Type :

Location :

ASPINWALL & COMPANY

97/01023/02/01

Job Number

Client :

TESTING No 1291		DDM		5 ₽	Selenium		۲	v	⊽	V	V	5	۲	V	2	V	. 0	Ž	•	- 17	- 7		⊽	v	V	V	7
NA BT		mad	ŝ	50 05 50 05	Lead Leachate		+	0.19		,	1	4	1	•		,		1	,				•	•	r	•	
		bpm	ICP	V	Lead		8	11	+	7	V	39	4	16	10	2	10	19	4	15	¢.	; ,	0	15	7	6	5
		mdd	ICP	<0.05	Nickel On Leachate		ł	0.09	1	1	J.	t	•	,			t	1	,	,			,	1	1	,	
obbs	A	mdd	ICP	۲	Nickel		1	10	9	22	9	15	2	ន	14	11	16	18	12	11	18	ç	2	4	10	3	12
Steve Hobbs	MD3333A	mqq	ICP	<0.05	Mercury On Leachate		+	<0.05	1	,	1	4	1	,	1	1	1	1	1	•	1	,		1	1	•	1
		mdd	ICP	v	Mercury		v	2	2	$\overline{\nabla}$	¥	$\overline{\mathbf{v}}$	$\overline{\nabla}$	$\overline{\mathbf{v}}$	v	$\overline{\mathbf{v}}$	v	<u>۲</u>	v	v	$\overline{\nabla}$	ī	7	7	<u>v</u>	2	Σ
Client Contact :	Client Ref. No.	mqq	ЧÖ	<0,05	Copper on Leachate		•	0.08	1	1	1	1		,	1		•	1	,	1	•	,			1	1	1
Client	Client	шдд	ICP	₩	Copper		4	13	m	11	4	13	-	84	6	σ	45	16	14	12	11	7	σ	ə r	<u>, ;</u>	11	~
		bpm	ICP	<0.05	Chromium on Leachate		1	<0.05	r	,	1	ı	,	,	t	,	I	1	1	I	,	1	1		1	ı	•
		mqq	GР	۶	Chromium	ç	<u>n</u>	~ I	n	23	9	22	2	10	17	80	13	19	12	6	21	6	16	α		0	13
		mdd	В	<0,05	Cadmium on Leachate		-20.01	02.02	•	1	1		1	1	1	i	+	1	ī	,	-1	•	,			•	1
		mqq	СÞ	v	Cadmium	2	7 7	7	7 3	5	v	5	5	V	2	4	2	2	Ŷ	v	v	Ÿ	ţ,	۰ ۲	. 2	, ,	ż
		mqq	ICP	⊽	Boron (Water Soluble)	ŗ,		- 7	7 7	7	<u>v</u>	v	5	'	۲.	5	2	2	5	v	2	$\overline{\mathbf{v}}$	√	V	v	7	7
		mdd	CP CP	<0.05	Arsenic On Leachate		0.05			,	,	,	1	1	,	,	1	1	,	,	1	,	1	1			
197		mdd	d D	2	Arsenic	13	19	! e.	2 B	3	ې م	<u>°</u> (	v {	3 8	77	2	16	17	Ξ	13	26	16	25	16	28	۲ ۲	2
Date of Receipt : 01/05/97 (of first sample)	- Inite	UIIIIS		Detection Limits	Depth (m)	0.3	0.7	1.5	0.4	14	C <del>1</del> .	1.0	t. e	0.0		7	0.4 7 C	0.0		0.0-0.3	0.45	-	0.3	1.2	0.35	1.2	
Date of R (of first samp)	Preliminary	□ Validated	- 11	NAMAS Accredited D	Sample Identity	TP138	TP138	TP138	TP141	TD141	TP142	TP142	TP143	TP143	TP143	Print Print	TP144	TP144	101 AC	17140	1140	C4171	TP146	TP146	TP147	TP147	
					Sample Number	308	309	310	311	312	313	314	315	316	317	318	319	320	324	300	373	750	324	325	326	327	1

V

1

ŝ

..... Alison Ball

Checked by ....

Printed on 30 June 1997

Dana 75 af ane



CHEM ANALYTICAL SERVICES	TABLE OF RESULTS
J	

ASPINWALL & COMPANY

Date of Receipt: 01/05/97 (of first sample)

97/01023/02/01

Job Number :

Client :

TESTING No. 1291

RAF Upper Heyford

SOIL

Sample Type : Location : Client Contact : Steve Hobbs

	-	2	2	2	2
GEOC		2	2	2	Ū

No. 1291	maa		<u>5</u>   ∑	Selenium	c	4 T	7 5	7	N	2	2	V	v	4	$\overline{\nabla}$	$\overline{\nabla}$	V	-	$\nabla$	V	V	v	.   <u>v</u>	dQN	V
N	maa		<0.05	Lead Leachate		, ,		+	,	1	<0.05	1	1	4	1	•	1	,	t	,		,	,		1
	mag	. a	5 V	Lead	¢.	2 0	1 2		1/	¥	18	11	4	8	35	85	÷	N	N	9	10	~	9	NDP	10
	mqq	EDP.	<0.05	Nickel On Leachate	,		,		1	, ,	<0.05	1	,		1	t	1	1	1	•	,	•		1	
T	mdd	ICP	V	Nickel	17	: 6	17		2	ه ا	3	17	10	5	18	16	e	4	S	00	17	5	13	NDP	26
MD3333A	mdd	ICP	<0.05	Mercury On Leachate			1		1	1 C	S.02	1	ı	1	1	4	1	1	•	1	3	1	-1	1	
	mdd	СP	⊽	Mercury	¥	v	۲ ۲	. 2	7 7	<u>,</u>	v	7	$\overline{\mathbf{v}}$	×1	2	Ţ.	√	V	v	$\overline{\mathbf{v}}$	<del>ا</del>	۲ ۲	ν	NDP	
Client Ref. No. :	mdd	ICP	<0.05	Copper on Leachate	,	,	,				CD'A	4	1	1	,	,	1		t.	1	1	,	1	1	1
Client	mdd	ICP	v	Copper	11	7	12	Ľ	> <	t q	י מ	ი	2	4	11	10	2	e	4	9	ດ	e	7	NDP	15
	mdd	ICP	<0.05	Chromium on Leachate	1	,	I			20.05	3	1	3	ı	1	1	1	1	1		3	r	1	1	
	mqq	GР	<1 د	Chromium	23	11	17	7	1	. 0	} ;	45 	19	10	28	37	4	ç	9	14	35	5	24	NDP	25
	mdd	СР	<0.05	Cadmium on Leachate		1	,	1		<0.05	2	1		1	1	,	1	1	1	1	1	1	1	+	1
	шdd	ICP	v	Cadmium	ī	v.	v	2	Ť	- V		; ;		5	v	<u>v</u>	lv	v	ţ.	4	v	Ť	۰ <b>1</b>	NDP	~ <u>,</u>
	mdd	1CP	v	Boron (Water Soluble)	īv	V	1	√	V	m		t c	ч.	v ,	0	2	Z		<del></del>	с С	5	V	V	NDP	√
	mdd	ICP	<0.05	Arsenic On Leachate	1	1	1		,	<0,05			,	,	,	1	,	r	1	1	1	1	1	1	
	mqq	Б	v	Arsenic	28	13	25	23	5	72	30	10 10	0	N (	97	07	1 t	~		6	51	m	22	NDP	26
	Units	Detection Method	Detection Limits	Depth (m)	0.8	0.2	0.3	0.5	1.2	0.2	0.5	о <b>г</b>	0.0	0.00	ק ק ע	0.2	2.5		7.1	0.3	1.1	2	0.35	1.3	0.5
	U Validated		NAMAS Accredited De	Sample Identity	TP148	TP148	TP149	TP149	TP149	TP 35	TP 35	TP 35	TD 53	TD 53	TD 53	TP 106	TD 106						TP 129	TP 129	IP 134
		L		Sample Number	328	329	330	331	332	335	336	337	338	339	340	341	CPE	343	344	345	ale		34/	348	349

Page 76 of 205

Checked by .....Alison Ball



RAF Upper Heyford

SOIL

Sample Type :

Location :

		Date of Receipt : 01/05/97 (of first sample)	97							Client	Client Contact Client Ref. No		Steve Hobbs	bbs			N SN SN	NAMAS TESTING No. 1291
	Preliminary     Validated	Units	bpm	mdd	mqq	mqq	mdd	mdd	mdd	mad	maa		muq	- mon	2			
L		Detection Method	IСР	ICP	ICP	ICP	СР	ICP	СР	ICP	d C					iiidd	Endd	udd
	NAMAS Accredited	<b>Detection Limits</b>	$\overline{\nabla}$	<0,05	v	⊽	<0.05	⊽	<0.05	ν	<0.05	5 5	20.05	<u>5</u> 2	2 2 2	5 1	ICP 10 DF	CP.
					l	T			T				3	,	S	7	8	⊽
Sample Number	Sample Identity	Depth (m)	Arsenic	Arsenic On Leachate	Boron (Water Soluble)	Cadmium	Cadmium on Leachate	Chromium	Chromium on Leachate	Copper	Copper on Leachate	Mercury	Mercury On Leachate	Nickel	Nickel On Leachate	Lead	Lead Leachate	Selenium
350	TP 134	-	15	1	-	ī		26	I	6	,	Ī		<del>ب</del>		q		
351	TP 134	1.6	ىد م	1	V	5	1	11	1	0		7		2 0	,	<u>o</u> ,	•	5
352	TP 135	0.2	e	1	v	v		LC.	,	1 0	•	7	,	0	,	7	,	$\nabla$
353	TP 135	0.5	80	,	+	₹ V		1 (		a u		; ;	+	4	•	2	+	$\overline{\mathbf{v}}$
354	TP 135	1.7	2	,	2			- 6		2	1	v	1	<u>ດ</u>	ĩ	<b>е</b>	1	2
355	TP 147	0.2	29	,		7 5	1	0 6	,	n ;	1	2	1	2	J	<u>ب</u>	,	1
356	TP 137	0.0	1 7		4 7	7	1	20	ı	14	1	v	1	33	1	8	4	v
359	TP34	0.3	7 5	1	7 7	v,	1	10		9	.1	$\overline{\nabla}$	1	6	4	N	,	$\nabla$
360	TP34	12	14		7 7	7 3	,	10	1	۵ ۵	,	2		6	,	m	,	-
361	TP112	i	t u	1	v .	5	1	<u>6</u>	t	ø	1	2	1	6	1	2	,	N
362	TP112	. u	2 3	1	- 0	<u>.</u>	1	53	1	<del>р</del>	1	2	1	13	1	47	1	V
			<u>±</u>	1	7	v.	4	12	1	9	,	5	1	o	, t	a	1	⊽
rinte	Printed on 30 June 1997	Charked hu		6.0				-										
		עוופרענת ח	y	reex.		ΑΑ	Alison Ball	lle							(		1	

CHEM ANALYTICAL SERVICES TABLE OF RESULTS Ð

**ASPINWALL & COMPANY** 97/01023/02/01 Job Number : Client :

GEOCI.

Job Number::       97/01023/02/01         Client::       ASPINWALL & G         Date of Receipt :       01/05/97         Preliminary       Units         Validated       Units         NAMAS Accredited       Units         I       TP7         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I													10.0	
Client ::       ASPINWALL &         Date of Receipt ::       O1/05/97         Of first sample)       Date of Receipt ::       O1/05/97         Preliminary       Units       ppm       p         NAMAS Accredited       Detection Method       Icr       Icr       Icr         Names Accredited       Detection Method       Icr       Icr <td>3/02/01</td> <td></td> <td></td> <td></td> <td>)</td> <td>Sa</td> <td>Sample Tvpe</td> <td></td> <td>SOIL</td> <td></td> <td></td> <td></td> <td>Luu</td> <td></td>	3/02/01				)	Sa	Sample Tvpe		SOIL				Luu	
Date of Receipt : 01/05/97         Date of Receipt : 01/05/97           Image: Contrast sample)         Confirst sample)           Image: Contrast sample)         Units           Image: Contrast sample)         Detection Method           Image: Contrast sample)         Image: Contrast sample)						-							Ju	X
Date of Receipt : 01/05/97           Outlinary         Units         ppm           Preliminary         Units         ppm           Validated         Units         Detection Method         ICP           NAMAS Accredited         Detection Method         ICP         ICP           Image: Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)           Image: Image of the sample)           Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)           Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)           Image of the sample of the sample)         Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)           Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)           Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)         Image of the sample)           Image of the sample)	ALL &	COMPANY				Lo	Location :	_	RAF Upper Heyford	per He	yford		ul ²	
Determinary         Units         ppm           Validated         Units         Detection Method         ICP           NAMAS Accredited         Detection Method         ICP           Image: State of the st						0	Client Contact		Steve Hobbs	obbs				TESTING No. 1291
Validated         Detection Method			-			5	CIIENT KET. NO.		MD3333A	A N			•	
NAMAS Accredited         Detection Limits         Addition         Addit					ppm pp	bpm pp	mqq mqq		%	mdd	%			1/10
Debt         Diamonal         Description         Defection         Limits         Aoi           NAMAD Accreated         IP 7         1         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3	CP	ICP	Soxtec	TLC	TLC 1	TLC TI	TLC Spectro	ro Visual	Grav	Gravi	leco	Matar	Matar	
Selenium Leachate       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	0.1 <1	<0.05	41 V	2	V		<1 <0.1	1	V	V	<0.01	<0.01	20.01	-0000
Selenium Leachate       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>			Sc		Tol		H						50	5
Inime Teachate       Image: Second seco	Seler	Zin	olvent	Min	-			A		DC	Acid S	f	P	- valet
dentity       TP 34       0.3       1.2       0.3         accurate       1.12       1.12       0.3       1.12         accurate       1.12       0.3       1.12       0.3         accurate       1.12       1.12       0.3       1.12         accurate       1.12       0.3       1.12       0.3         accurate       1.12       1.12       0.3       1.12         accurate       0.3       0.3       1.12       1.12         accurate       0.3       1.17       1.17       1.17         accurate       0.3       0.3       1.17	Zino	c In Le	Extrac	n, Oil /		150/1	alent C	sbest	Asbe	M/Me0	iol. Sul	oH of L	oH Val	
TP7     0.3     T.2       TP8     0.3     1.2       TP8     0.3     -       TP8     0.3     -       TP8     0.3     -       TP8     0.3     -       TP9     0.6     -       TP31     0.6     -       TP31     0.75     -       TP32     0.75     -       TP33     0.75     -       TP34     0.75     -       TP35     0.9     -       TP35     0.1     -       TP51     0.1     -       TP52     0.1     -       TP54     0.5     -       TP54     0.7     -       TP55     0.1     -       TP55     0.7     -		achate	table Matte	Paraffin	tile Aromati		hrome (aci	os Type	estos	OH Extract	phate as S	eachate	ie in Soil	le Sulphate 04
TP 7     1.2     1.2       TP 8     0.3     -       TP 8     0.3     -       TP 9     0.6     -       TP 9     0.6     -       TP 31     0.75     -       TP 32     0.5     -       TP 33     0.5     -       TP 34     0.5     -       TP 51     0.1     -       TP 52     0.1     -       TP 54     0.1     -       TP 54     0.5     -       TP 54     0.7     -       TP 54     0.7     -       TP 54     0.7     -       TP 54     0.7     -       TP 55     0.7     -	- 37	,	r i	+	cs		(b				D4			as
TP 8     0.3       TP 8     1       TP 9     0.6       TP 31     0.7       TP 31     0.7       TP 31     0.7       TP 32     0.75       TP 32     0.75       TP 32     0.75       TP 33     0.75       TP 34     0.75       TP 35     0.9       TP 51     0.9       TP 52     0.1       TP 52     0.1       TP 54     0.5       TP 54     0.65       TP 54     0.75       TP 55     0.7	35					1 1	1	1	1	411	0.05	T	7,86	0.005
TP8     1       TP9     0.6       TP31     0.75       TP31     0.75       TP32     0.5       TP32     0.1       TP51     0.1       TP52     0.1       TP53     0.1       TP54     0.1       TP55     0.5       TP55     0.7       TP55     0.7		r.	1	1	,	1	1	i.	ı	571	0.06	,	8.27	0.013
TP9     0.6       TP31     0.7       TP31     0.7       TP31     0.7       TP31     0.7       TP32     0.75       TP32     0.5       TP32     0.5       TP32     0.5       TP32     0.5       TP32     0.5       TP32     0.5       TP32     0.1       TP51     0.1       TP52     0.1       TP54     0.5       TP54     0.7			4		1	1	1	r.	,	332	0.07	1	7.96	0.019
TP 9     2       TP 31     0.7       TP 31     0.7       TP 31     0.75       TP 32     0.5       TP 32     0.9       TP 32     0.1       TP 51     0.1       TP 52     0.1       TP 52     0.1       TP 54     0.5       TP 54     0.5       TP 55     0.7			1	1		1	1	T	r	115	0.04	1	7.98	0.006
TP31     0.7     .       TP31     0.75     .       TP32     0.5     .       TP32     0.5     .       TP32     0.5     .       TP35     0.9     .       TP36     0.9     .       TP51     0.1     .       TP51     0.1     .       TP51     0.1     .       TP52     0.1     .       TP52     0.1     .       TP54     0.1     .       TP54     0.1     .       TP52     0.1     .       TP54     0.5     .       TP54     0.5     .       TP54     0.5     .       TP54     0.7     .			1	1	1	•	•	1	,t	382	0.05	1	7.93	0.005
TP 31     0.75     .       TP 32     0.5     .       TP 32     0.5     .       TP 32     0.5     .       TP 36     0.9     .       TP 51     0.1     .       TP 52     0.1     .       TP 52     0.1     .       TP 54     0.5     .       TP 54     0.5     .       TP 54     0.5     .       TP 54     0.7     .       TP 55     0.7     .		1		1	,	ı ı	•	ì	30)	140	0.08	ı	8.41	0.019
TP 32     0.5       TP 32     1       TP 32     1       TP 32     1       TP 36     0.9       TP 51     0.1       TP 51     0.1       TP 52     0.1       TP 54     0.5       TP 54     0.55       TP 55     0.7			1	1		1	1	i	а	808	0.07	1	9.25	0.019
TP 32     1       TP 36     0.9       TP 51     0.1       TP 51     0.1       TP 51     0.1       TP 52     0.1       TP 54     0.25       TP 55     0.7		,		1	1	1	I	I	ī	2543	0.42	1	8.20	0.592
TP 36     0.9     -       TP 51     0.1     -       TP 51     0.1     -       TP 52     0.5     -       TP 54     0.25     -       TP 55     0.7     -		r		1	т ,	ſ	1	x	i	200	0.04	ı	7.98	0.007
TP 51     0.1       TP 51     0.1       TP 51     0.35       TP 52     0.1       TP 52     0.1       TP 52     0.1       TP 52     0.5       TP 54     0.25       TP 54     0.25       TP 54     0.7       TP 55     0.7			1	1	1	1	1	r	ı	373	0.02	1	7.83	<0.003
TP 51     0.35     -       TP 52     0.1     -       TP 52     0.5     -       TP 54     0.25     -       TP 54     0.25     -       TP 54     0.75     -       TP 55     0.7     -	JQ	1	1		I t	1	1	I	i	628	0.05	I	7.98	0.003
TP 52 0.1	20	1		1	1	1	1	ı	3	976	0.02	1	7.88	0.011
TP 52 0.5	- 12	,		1	1	1	1	I.	ı.	2658	0.05	1	7.93	0.007
TP 54 0.25	45	1			1	1	1	1	i.	1710	0.04	1	7.70	0.013
0.7	4 0	1	1	1	•	1	1	1		181	0.01	,	7.85	0.004
0.0	27	1			1	1	•	ı	-1	754	0.02	1	7.86	0,008
0.2	3 5		•		1	1	1		a.	189	0.04	,	8.07	0.004
. 0.0	27 77		1		•	1	1	я	r	1372	0.08	+	8.41	0.014
0.25	t c	1	•		1	1	•	a.	1	2094	0.07	1	8.21	0.015
	 		-		1	•	1	'n	1	1404	0.04	1	7.83	0.009

GL CHEM ANALYTICAL SERVICES

GEOC).

.A		NAMAS	0. 1291	1 In		EUU UV		Water Solub S	le Sulphate a 04	is	0.006	0.027	0.012	0.172	<0.003	0.046	0.012	0.011	0.005	0.016	0.003	0:090	0.017	0.011	0.006	0.007	0.014	0.026	0.022	0.015
			N		Alatar 6			pH Vali	ie in Soil				8.20	8,88	7.98	8,14	7.69											7.67 0		8.31 0
					Matar	<0.01	T	pH of L	eachate		ı		1	1		r	•	r	1	,	1	1	r	ı	,	,	ı	•	r	
		yford		%	leco	<0.01		Acid Sol. Sul	phate as SO	4	0.06	0.06	0.06	0.09	0.06	0.06	0.05	0.02	0.05	0.05	<0.01	0.10	0.05	c0.0	0.04	0.05	0.06	0.21	0.03	0.09
		RAF Upper Heyford Steve Hobbs	A	mdd	Gravi	V		DCM/Me0	DH Extract	000	823	7919	1093	330	339	318	350	1461	888	5878	1/4	1030	092	807	279	256	334	2244		1711
	SOIL	RAF Upper H Steve Hobbs	MD3333A	%	Grav	<0.001		Asbe	estos		1	,	3	1	ĩ	ï	ı	r.	r.	,	8		i		ï	ĩ	1	I	t.	
					Visual	NONE		Asbesto	os Type		,	1	1	1		ï	1	E	1	1	1	1	1	,		1	r.	i.	1	
	Sample Type	Location : Client Contact	Client Ref. No.	bpm	Spectro	<0.1	ŀ	Hexavalent C	hrome (acid)		,				1	r	1	,	,		r					,		1		,
ES	Samp	Location Client Co	Client	шdd	TLC	2		ТРН В	y TLC	,		1	•	,	1	•	1	1	1	•					1			1	•	1
ALYTICAL SERVICES	•			mdd	TLC	V		NSO / I	Resins	1		•	ı	1	1	1	1	1	r	, ,			1				t	•	L.	
TICAL SE				mqq	TLC	⊽	To	tal Non-Vola	tile Aromatic	S 1	,		,	1	1	1	,	,	,	1 1	1	,	1		. ,			1		Rall
YTICA				mqq	TLC	2		Min. Oil /	Paraffin		,			1	T	•	i	•	,		1	1	,			,	,			Alison F
NALY F OF		≻		mqq	Soxtec	2	s	olvent Extrac	table Matter	1	1	,		1	1	•	1				1		1		,	1	. 1		1	
CHEM AN	זמ	MPAN		mdd	ICP	<0.05		Zinc In Le	achate	1	1	,			,	,		ţ		1	1	1	1		,	1	1	1		6
	2/01	- & CO		mdd	СP	2		Zino	5	39	42	30	44	ν _ε	5	the ce	67	34	83	46	49	11	78	54	46	15	196	57	22	Red
ġ	97/01023/02/01	ASPINWALL & COMPANY 01/05/97		mqq	ЧÖ	<0.1		Selenium L	eachate		,		1	1	,	1		,	1	ł	1	1	,	1	1	1	1	- 1	1	y
				Units	Detection Method	Detection Limits		Depth	ו (m)	0.75	0.25	-	0.4	~	0.2	1.1	0.1	0.5	0.95	1,5	0.4	-	0.1	0.35	0.25	-	0.2	0.5	0.25	Checked by
		Client : Date of Receipt (of first sample)	Preliminary	□ Validated		NAMAS Accredited		Sample I	dentity	TP 56	TP 57	TP 57	TP 58	TP 58	TP108	TP 108	TP 117	TP 118	TP 118	TP 118	TP 122	TP 122	TP 123	TP 123	TP 126	TP 126	TP 131	TP 131	TP 133	Printed on 30 June 1997
GEOC.	"	ン			L			Sample N	lumber	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	Printed

Image: Additional additica additicadditica addite additional additional additional additio	GEOC			ษ์		EMA	NALY	TICA		SFRVICES	С. Ц							C	
Image: International control of the internatinternatinternate control of the international control of the int	2					TABL	E OF	RESI			) 1	ł						)lu	·B(
Math         Math <th< td=""><td>Ŵ</td><td></td><td></td><td>JWALL 97</td><td>. &amp; COI</td><td>MPAN</td><td></td><td></td><td></td><td></td><td>Samp Locat Client</td><td>le Typ ion : Conta</td><td></td><td>OIL AF Up_i</td><td>ber He</td><td>yford</td><td></td><td></td><td>AMAS</td></th<>	Ŵ			JWALL 97	. & COI	MPAN					Samp Locat Client	le Typ ion : Conta		OIL AF Up _i	ber He	yford			AMAS
Image: mark to the part of the		eliminarv	8								Client	Ref. N		Leve п.	A			FZ	ESTING lo. 1291
		□ Validated	Units	mqq	mqq	mqq	mdd	mqq	mqq	mdd	mdd	mqq		%	maa	%			10
Image: biole in solid			Detection Method	е	ICP	ICP	Soxtec	TLC	LC	TLC	TLC	Spectro	Visual	Grav	Gravi	PCD	Matar	Mator	git Canocher 4
pH Value in Soil         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x		NAMAS Accredited	Detection Limits	<0.1	2	<0.05	Ÿ	4	v	$\overline{\nabla}$	Ÿ	<0.1	NONE	<0.001	v	<0.01	<0.01		
SO4         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I							S		T									5	2007
UNKNOWN         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·           101101 <t< td=""><td>Sample Number</td><td>Sample Identity</td><td>Depth (m)</td><td>Selenium Leachate</td><td>Zinc</td><td>Zinc In Leachate</td><td>olvent Extractable Matter</td><td>Min. Oil / Paraffin</td><td>otal Non-Volatile Aromatics</td><td>NSO / Resins</td><td>TPH By TLC</td><td>Hexavalent Chrome (acid)</td><td>Asbestos Type</td><td>Asbestos</td><td>DCM/MeOH Extract</td><td>Acid Sol. Sulphate as SO</td><td>pH of Leachate</td><td>pH Value in Soil</td><td></td></t<>	Sample Number	Sample Identity	Depth (m)	Selenium Leachate	Zinc	Zinc In Leachate	olvent Extractable Matter	Min. Oil / Paraffin	otal Non-Volatile Aromatics	NSO / Resins	TPH By TLC	Hexavalent Chrome (acid)	Asbestos Type	Asbestos	DCM/MeOH Extract	Acid Sol. Sulphate as SO	pH of Leachate	pH Value in Soil	
01         +         45         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	41	TP 133 (A)	UNKNOWN	,	,	1			5	T						4			s
08         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	42	TP 1	0.1		45	,	1			ı	1	,	WHILE	12.0	1	1	ı	+	•
04         ·         14         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	43	TP 1	0.8	1	ŭ			,		1	1	1	a.	ī	1067	0.06	,	7.22	0.012
11.         1.         1.         1.         1.         1.         1.         1.         1.1         0.08         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16         3.16     <	4	TP 2	0.4	1	14		1		1	1	•	1	1	1	611	0.05	I	7.70	0.006
	45	TP 2	-				1	, ]	1	1	1		1	i	341	0.08	1	8.16	0.011
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	46	TP 2	2		12 26.7	1	1	2 2	80	86	25	1	1	ĩ	112	0.08	,	7.94	0.007
010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010 <td>47</td> <td>TP 3</td> <td>0.4</td> <td>-1</td> <td>50 F</td> <td>r</td> <td>1</td> <td>5</td> <td>ວກ</td> <td>219</td> <td>4</td> <td>ı</td> <td>1</td> <td>,</td> <td>259</td> <td>0.06</td> <td>1</td> <td>8,14</td> <td>0.013</td>	47	TP 3	0.4	-1	50 F	r	1	5	ວກ	219	4	ı	1	,	259	0.06	1	8,14	0.013
	48	TP 3	6.0	,	37	1	1	1	,	,	1	r		ı	436	0.05	,	7.64	0.006
0.8         0.7         0.7         0.7         0.7         0.7         0.7         0.8         0.6         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1 <td>49</td> <td>TP 4</td> <td>0.3</td> <td></td> <td>1 4</td> <td></td> <td>1</td> <td></td> <td>,</td> <td>,</td> <td>1</td> <td></td> <td>i</td> <td>I.</td> <td>433</td> <td>0.09</td> <td>r</td> <td>8.12</td> <td>0.015</td>	49	TP 4	0.3		1 4		1		,	,	1		i	I.	433	0.09	r	8.12	0.015
0.4       0.4       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>50</td> <td>TP 4</td> <td>0.8</td> <td>1</td> <td>5 6</td> <td></td> <td></td> <td></td> <td>,</td> <td>1</td> <td>1</td> <td>,</td> <td>1</td> <td>E)</td> <td>1259</td> <td>0.07</td> <td>ı</td> <td>8,16</td> <td>0.017</td>	50	TP 4	0.8	1	5 6				,	1	1	,	1	E)	1259	0.07	ı	8,16	0.017
0.85         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •	51	TP 5	0.4	,	36		1	1	1	1	1	ı	4	1	432	0.09	•	7.99	0.019
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	52	TP 5	0.85	1	69			,	1	1	4		a	91		0.07	1	8,19	0.016
1145       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       <	53	TP 6	0.6	1	47		1	1	,	1	1	1	a.	4	-	<0.01	1	8,13	0.055
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	54	TP 6	1.45	1	: 5		1	1	1	,	1	1	1	1		<0.01	1	7.71	D.067
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55	TP 6	1.9		ίσ			•	,	ı	1	1	1	1	266	0.02	r	8.10	0.012
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	56	TP 59	60	,	5 ¢		•	1			1	r.	1	i	1381	0.06	,	8.28	0.009
0.7     ·     ·     ·     ·     ·     ·     7.61       0.1     ·     60     ·     ·     ·     ·     432     0.01     ·     7.61       1     ·     60     ·     ·     ·     ·     ·     ·     7.61     ·     7.61       0.7     ·     60     ·     ·     ·     ·     ·     ·     7.83       0.7     ·     22     ·     ·     ·     ·     ·     ·     7.83       0.7     ·     35     ·     ·     ·     ·     ·     ·     800	57	TP 59	0.15	,	30.05	1	,		1	1	1	1	1	1		0.04	1	8.33	D.008
1     -     -     -     -     -     -     7.83       0.7     -     22     -     -     -     -     1     -     7.83       0.7     -     35     -     -     -     -     -     27     0.04     -     8.00       0.7     -     35     -     -     -     -     -     -     277     0.04     -     8.00	58	TP 60	0.7				1	1	1	r	1	ı	1	ī	432	0.01	1	7.61	0.016
0.7 0.7 27 0.04 * 8.00	59	TP 60	-		20 00	,	1	1	,		1	1	1	9		<0.01	,	7.83	0.005
2	60	TP 61	0.7	1	35		,	•	1	x I	+	1	1			0.04	r		0.005
	rinted	on 30 lune 1007			N N			1	1		1	1	i.	1	_	0.03	•		0.026

ഗ

TESTING No. 1291

RAF Upper Heyford

SOIL

Sample Type :

Location :

ASPINWALL & COMPANY

Date of Receipt: 01/05/97 (of first sample)

97/01023/02/01

Job Number :

Client :

Client Contact : Steve Hobbs

5 Miles	
	2

1.2	Ъ	Spectro1	<0.003	Water Soluble Sulphate a SO4	IS	0.005	0.008	<0.003	<0.003	0.005	<0.003		1177	<0.003	0.004	0.006	0.023	0.004	0.007	0.017		0.000		2222		,	0.024
		Meter	<0.01	pH Value In Soil		88	7.78	8.38	8.38	7.59	8,23		₽	8.19	7.50	8.19	8,02	8.22	7.80	8,04	,	7.74			+		8.28
		Meter	<0.01	pH of Leachate		I		1			1			1	I	1	r	1	4	I	,	,				ı	
%	5	Leco	<0.01	Acid Sol. Sulphate as SO	4	0.00	0.04	0.04	0.08	0.04	0.03	<0.01		cn.n	0.01	0.06	0.03	0.04	0.01	<0.01	1	0.02	0.04				0.03
maa	Indd	Gravi	<۲	DCM/MeOH Extract	100	400	305	221	419	95	1051	939	201	120	404	339	761	209	692	4097	1	611	1024				ORC
%	2	Grav	<0.001	Asbestos	T		ı	ı		,	1	1		1	r.	I.	E	Е	t	1	4	1	,				
	0.00	Visual	NONE	Asbestos Type		,	r.	1	ı.	4		1			I.	a)	1	а	1	1	3		1	1			,
mdd		Spectro	<0.1	Hexavalent Chrome (acid)					1	1		,			1	1	1	a.	а	т	1	ı	1				
ррт	2 1	C T C	2	TPH By TLC	gg	}	•	1	1	r	4	1			1	1	1	1	1	4	1	1	1	1	1		
bpm	i	-FC	2	NSO / Resins	306	}	•	1	ı	1	I	•	,		1		ı	,	,	1		1	r		1		
mdd	F	2	v	Total Non-Volatile Aromatic	s m	<u>,</u>	1	1	1	ı	1	4	,			,	1	1	,	1	1	,	1		,		
mdd	¢ F	٢	$\overline{\mathbf{v}}$	Min. Oil / Paraffin	86			•	1	,		1			,	1	1	1	1	•	,	1	1	1	1	1	
mdd	Contron Contron	Dattoo	v	Solvent Extractable Matter	,	1		1	1	1	4	,				1	•	1	,		1	r	1	1		1	
mdd		2	<0.05	Zinc In Leachate	ı			1	1	1	1	•	,	,			1	,	1	T		3	r		1		
mdd	aci	5	2	Zinc	30	54	α	0	4	26	23	107	17	64	; «	2	40	10	4 1	9p	1	42	45	1	1	31	K V
mdd	d C	5	<0.1	Selenium Leachate	,	1			1		1	1	•			,	•	1	1	+	1	•	1	1	•	,	4
Units	<b>Detection Method</b>		Defection Limits	Depth (m)	1.1	0.4	80	0.0 F	- -	0.35	1.3	0.1	0.8	0.4	0.95	200	4.0	- 5		0.4	1.1	0.3	0.6	1.7	0.2	0.35	
Validated		NAMAS Accredited		Sample Identity	TP 61	TP 62	TP 62	TP 62		12 0/	1P 67	TP 68	TP 68	TP 69	TP 69	TP 70	TP 20	TP 71	TD 71			17 /3	1P /3	TP 73	TP 78	TP 78 A	Drinted on 30 lune 1997
				Sample Number	61	62	63	64	u u	n u	0 10	19	68	69	70	71	72	73	74	75	2	0	1	8/	26	80	inted

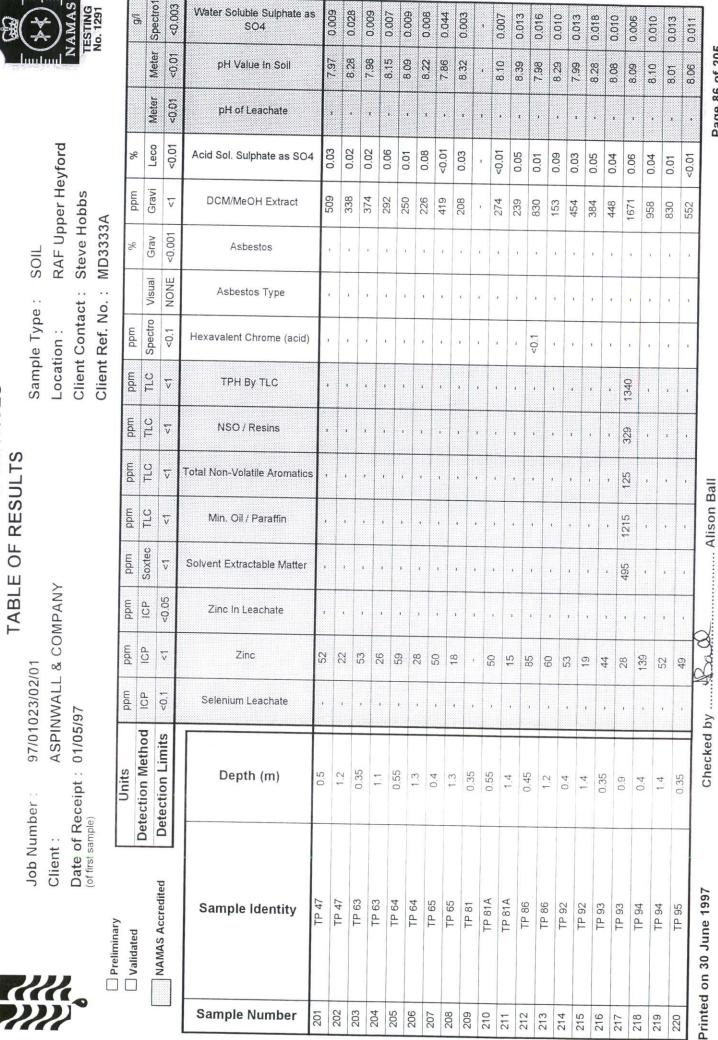
Daws 04 - 5 001

Anticipation of the contract of	GEOC			Ċ					L C		Ĺ							$\left( \right)$	
Obs Number:         971010230201         Solution         Sample Type:         Solution           Client:         ASTNUALL & COMPANY         Location:         RAF Upper Heytone           Client:         ASTNUALL & COMPANY         Location:         RAF Upper Heytone           Client:         ASTNUALL & COMPANY         Location:         RAF Upper Heytone           Client:         ASTNUALL         Contact:         Steve Hobbs           Client contact:         Steve Hobbs         Electron Method         Proper Heytone           Outse         Point         Point         Point         Point         Point           Obsection         Point         Point         Point         Point         Point         Point           Outse         Point         <	2			5	5		E OF	RESI		אאוכ	л Ц								·B
Image: Mark and the stand of factors in the stand of fa	2	2		023/02/	01	1	5				Samp	le Type		OIL				luul	
Alt         Alt <td>W°</td> <td></td> <td>ceipt :</td> <td>JWALL 97</td> <td>&amp; COI</td> <td>MPANY</td> <td></td> <td></td> <td></td> <td></td> <td>Locat Client</td> <td>ion : Conta</td> <td></td> <td>AF Up_i teve Ho</td> <td>ber Hey obbs</td> <td>/ford</td> <td></td> <td></td> <td>AMAS</td>	W°		ceipt :	JWALL 97	& COI	MPANY					Locat Client	ion : Conta		AF Up _i teve Ho	ber Hey obbs	/ford			AMAS
Here         Here <t< td=""><td></td><td>eliminary</td><td></td><td></td><td>ſ</td><td></td><td></td><td></td><td></td><td></td><td>Client</td><td>Ref. N</td><td></td><td>D3333,</td><td>Д</td><td></td><td></td><td>Z</td><td>lo. 1291</td></t<>		eliminary			ſ						Client	Ref. N		D3333,	Д			Z	lo. 1291
Mathematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problematical problema		Validated	Units	mqq	mdd	mdd	mqq	mdq	mqq	mqq	mdd	mqq		%	mdd	%			GA
Image: bit in the solution of the solut			Detection Method	СP	СР	ЮР	Soxtec	TLC	TLC	TLC	TLC	Spectro	Visual	Grav	Gravi	Leco	Meter	Meter	Shantro
PH Value In Soli       S       i       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S		NAMAS Accredited	Detection Limits	<0.1	2	<0.05	v	2	4	5	2	<0.1	NONE	<0.001	v	<0.01	<0.01	<0.01	CDC003
SO.4         Go         SO.4         Go         SO.4         SO.							s		To			ł						j	
SOA       GO       IOO       IO	Sampl	Samp	De	Seleniu		Zinc Ir	Solvent Ex	Min. C	otal Non-V	NSC	TPI	Hexavaler	Asb	A	DCM/	Acid Sol.	рH	pH ¹	Water Sc
03         17         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	e Number	le Identity	pth (m)	m Leachate	Zinc	1 Leachate	tractable Matter	)il / Paraffin	olatile Aromatics	) / Resins	H By TLC	nt Chrome (acid)	estos Type	sbestos	MeOH Extract	Sulphate as SO4	of Leachate	Value In Soil	
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	81	TP 78 A	0.0		17	1			5 1					T	0007	4			s
05         5         5         5         5         5         5         5         5           09         5         19         5         1         5         1         5         1         5         5           01         5         19         5         1         5         1         5         1         5         1         5           01         5         61         5         5         5         5         5         5         5         5           055         5         61         5         5         5         5         5         5         5         5           11         5         61         5         5         5         5         5         5         5         5           11         5         4         5         5         5         5         5         5         5         5           11         5         4         5         5         5         5         5         5         5           118         5         6         5         5         5         5         5         5         5         5	82	TP 78 A	1.7	1	1	1		1		,			ı	1	1329	¢0.0	r	8.29	0.004
019         ·         109         ·         109         ·         109         ·         109         ·         109         ·         109         ·         109         ·         109         ·         109         ·         109         ·         109         ·         109         ·         103         109         ·         103         109         ·         103         109         ·         103         109         ·         103         109         ·         103         109         ·         103         109         ·         103         101         ·         103         101         ·         ·         103         101         ·         ·         103         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · </td <td>83</td> <td>TP 79</td> <td>0.5</td> <td>1</td> <td>51</td> <td>1</td> <td>4</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ï</td> <td></td> <td>1</td> <td>•</td> <td>1</td> <td>,</td>	83	TP 79	0.5	1	51	1	4	,						ï		1	•	1	,
01         1         1         1         1         1         1         1         1         240         007         1         8.23           055         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td< td=""><td>84</td><td>TP 79</td><td>0.9</td><td>1</td><td>19</td><td></td><td>,</td><td></td><td>1</td><td>1</td><td>•</td><td></td><td>1</td><td>I.</td><td>323</td><td>.018</td><td>ı</td><td>7.57</td><td>0.02</td></td<>	84	TP 79	0.9	1	19		,		1	1	•		1	I.	323	.018	ı	7.57	0.02
055         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	85	TP 80	0.1	1	61 5				,	1	1	1	ı	. L.	240	0.07	1	8.23	0.017
05         -         16         -         -         -         -         -         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         -         7.64         1.60         1.60         1.76 <th< td=""><td>86</td><td>TP 80</td><td>0.55</td><td>1</td><td>46</td><td>1</td><td></td><td></td><td>,</td><td>,</td><td>1</td><td>1</td><td>ï</td><td>з</td><td>675</td><td>0.03</td><td>,</td><td>7.68</td><td>0.009</td></th<>	86	TP 80	0.55	1	46	1			,	,	1	1	ï	з	675	0.03	,	7.68	0.009
11         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	87	TP 139	0.5	i	16				,	1	1	ī	I	ı	393	0.02	I	7.84	0.006
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	88	TP 139	1.1		C7						1	ĉ	r	r	769	0.04	1	8.08	0.011
	89	TP 139	1.7	,	i at			ß	=	404	10/	1	E	r	517	0.02	1	7.64	0,007
18       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	105	TP 50	0.1	1	5.2			1	1	ı	•	1	a.	t.	283	0.07	r	7.99	0.003
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	106	TP 50	1.8	,	17			r	,	1	1	a.	1	i.	7106	0.03	•	8.05	0.023
1       1       5       5       5       5       0.01       5       8.56       0.01       5       8.06         0.6       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5	107	TP 49	0.1	1	88					1		1	1	1	1116	0.06	I	8.43	0.008
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	108	TP 49	-		} «			1	,	1	1		1	,	855	0.01	1	8.06	0.010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	109	TP 66	0.6	1	) (C		1	1	1	1	1	ı	,	ı.	1665	0.05	,	8.38	0.010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	TP 66	14		р С		r .	, ((	, ,	1		ı	1	1	631	0.12	,	10.13	0.109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	TP 66	1 45		y u		1	230	ر	196	233	,	1	1	429	0.05	4	8.13	0.049
12       -       42       -       -       -       -       1206       <0.01	12	TP 72	0.35		3 0	1	a	20	5	66	67	1	ï	1	167	0.05	1	8.35	0.017
0.5     -     -     -     -     -     -     7.84       1.3     -     31     -     -     -     -     -     7.84       1.3     -     27     -     -     -     -     -     806       1.3     -     27     -     -     -     -     241     0.04     -     7.97	13	TP 72	1 2		1 5		1	,	,	r	1	ı	ī	ı		<0.01	1	8.01	0.007
1.3     1.3     -     -     -     -     -     8.06       1.3     -     27     -     -     -     -     662     0.03     -     8.06	14	TP 74	0.5		4 7 7		1	,	,	1	1	ı		а		<0.01		7.84	0.005
	15	TP 74	13		27		1	4	1	1	4	1	1	1	662	0.03	1	8.06	0.010
	- into a				-8	1	1	1	1	1	1	ĩ			241	0.04		7.97	0.013

·B(		NAMAS	TESTING No. 1291	40	15		Water Soluble Sulphate a SO4	s coo			0000			0.012	0.009	0.019	0.008	0.004	0.015	<0.003	0.018	0.003	0.009	0.009	0.005	0.004	0.050	
		wi z	FZ		Addar	<pre>xvicuti x0.01</pre>	pH Value In Soil	7 83	3 († - a	2 0	7 07	8 30	22 4	8.18	7.89	8.43	7.79	8.42	7.82	8.30	7.77	8.31	7.95	8.27	7.90	8.36	8.54	~ 5 JUE
					Mater	<0.01	pH of Leachate					,	1		1	ı	•	1		,	I	1	,	,	1	1		Dara 22
		/ford		%		<0.01	Acid Sol. Sulphate as SO	4 60	0.07	0.04	2000	0.05	<0.01	0.04	<0.01	0.05	0.01	0.03	<0.01	0.05	<0.01	0.04	<0.01	0.03	<0.01	0.05	0.04	
		RAF Upper Heyford	obbs A	maa	Gravi	~ 1	DCM/MeOH Extract	687	971	202	226	206	306	206	623	907	466	1459	618	600	3920	222	1118	204	484	657	474	
	SOIL	AF Upp	Steve Hobbs MD3333A	%	Grav	<0.001	Asbestos		1	,	Ţ	,	,	a.	1	-	1	2	1		1	1	1	j.	3	- 1		
					Visual	NONE	Asbestos Type		,			,	1	a	ï	.1	1	ı	r	1	1	1	1	1	9	1		
	Sample Type	: uo	Client Contact Client Ref. No.	mqq	Spectro	<0.1	Hexavalent Chrome (acid)		,				,	1	ī		i	ı	I,	1	-1	1	i.	1	1	1		
S	Sampl	Location	Client	mdd	TLC	Ÿ	TPH By TLC	1	675	280	,	4	4	,	1	1	1		1	1	4	1	,	1	1	4	1	
SERVICES TS				mdd	TLC	v	NSO / Resins	I	295	291	1	,	r	•	J	L	•	,		,	r	1	1	T	1	I		
	)			mdd	TLC	⊽	Total Non-Volatile Aromatic	ŝ +	-	45	,	1	• •		,	1	1	,	1	1	•	4	,	ı.	,	,	,	Ball
TICAL SE RESULTS				mdd	TLC	7	Min. Oil / Paraffin		674	168	1	1	1	1	1		i	4	1	1	+	1	1	1	1	,	1	Alison B
ALY E OF				mdd	Soxtec	v	Solvent Extractable Matter	1	1	•	1	1	1	1	1	1	1	4	1	1	4	1	1	1	1	4	1	ΑΑ
TABLE		ASPINWALL & COMPANY		mdd	ICP	<0.05	Zinc In Leachate	1	,	1		,	,	,	1	r	1	1	.1	1	1	1	1	1		1		
E CHE		& CON		mqq	ICP	5	Zinc	30	4	30	46	15	45	15	54	76	338	2	44	2	89 3	11	57	707	14	7	22	ADUX
Ģ	97/01023/02/01	IMALL	97	mqq	ICP	<0.1	Selenium Leachate		1	1	1	ı	,	1	,	,	1		1	1	•	1	1	,	1	1	-	
			Date of Receipt: 01/05/97 (of first sample)	Units	<b>Detection Method</b>	Detection Limits	Depth (m)	0.5	1.4	1.9	0.45	1.25	0.5	1.5	0.3	0.8	1.0	0.0	7.0	0.0	0.1	0.7	0.4	00.1	4.0	4	0.4	Checked by
	Job Number			Preliminary     Validated		NAMAS Accredited	Sample Identity	TP 75	TP 75	TP 75	TP 76	TP 76	TP 77	TP 77	TP 82	TD 82	TD 83	TP 84	TD 84	TD RC	TD RK	TD 07	TD 87	TD 88	TD 88	TD 80	60 11	on 30 June 1997
GEOC!							Sample Number	116	117	118	119	120	121	122	621	125	126	127	128	129	130	131	132	133	134	135	3	Printed on

Ample Type:         Soll           Condition:         RAF Upper Heyford           Display         PPP         PPP         PPP           PPP         PPP         PPP         PPP         PPP           PPP         PPP <th>P</th> <th></th> <th></th> <th>ۇ</th> <th>בי כ</th> <th></th> <th></th> <th>DE CI</th> <th>ALY IICAL SERVICES</th> <th>XVIC.</th> <th>ŝ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>·B</th>	P			ۇ	בי כ			DE CI	ALY IICAL SERVICES	XVIC.	ŝ								·B
Client: ASPINVALL & COMPAN.           Client: ASPINVALL & COMPAN.           Client Contact: Steve Hobbs	ノ			023/02/							Samo	le Tvn						Jun	
Interclution:         ASEMUNALL & COMPANY           Clean is a set of the formation:         RAFE Upper Heyford           Clean is a set of the formation:         Set of the formation:           Additional           Additional         Immediated for the formation is the		_		10010	-							ic i ypa		OIL			*	ų	
Teleminal Telescipits of tools	D	_		NWALL	& COI	APANY					Locat	ion :	R	AF Up	per He	yford		ul	
Minimulativity         Minimul	•			26,							Client	Conta Ref. N		teve H D3333	obbs A		•		TESTING No. 1291
Image: constrained by the co		Preliminary     Validated	Units	mqq	mqq	mdq	mdd	mqq	mad	maa	шаа	maa		70		2			
Operation         Operation <t< td=""><td>l</td><td></td><td><b>Detection Method</b></td><td>СP</td><td>ICP</td><td>ICP</td><td>Soxtec</td><td>TLC</td><td>TLC</td><td>TLC</td><td>TIC</td><td>Spectro</td><td>Vicual</td><td>e laver</td><td>ppul director</td><td><i>e</i>, <i>e</i>, <i>e</i>, <i>e</i>, <i>e</i>, <i>e</i>, <i>e</i>, <i>e</i>,</td><td></td><td></td><td>1/6</td></t<>	l		<b>Detection Method</b>	СP	ICP	ICP	Soxtec	TLC	TLC	TLC	TIC	Spectro	Vicual	e laver	ppul director	<i>e</i> ,			1/6
Marka         Marka <th< td=""><td></td><td>NAMAS Accredited</td><td>Detection Limits</td><td>&lt;0.1</td><td>V</td><td>&lt;0.05</td><td>₽ V</td><td>V</td><td>⊽</td><td>v</td><td></td><td>&lt;0.1</td><td>NONE</td><td>&lt;0.001</td><td></td><td>&lt;0.01</td><td>Meter</td><td>Meter</td><td>Spectro1</td></th<>		NAMAS Accredited	Detection Limits	<0.1	V	<0.05	₽ V	V	⊽	v		<0.1	NONE	<0.001		<0.01	Meter	Meter	Spectro1
PH of Leachate       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A							5		T						-	10.02		5.02	500.02
TPa0     TTPa0     TTTPa0     TTPa0     TTPa0	Sample Number	Sample Identity	Depth (m)	Selenium Leachate	Zinc	Zinc In Leachate	Solvent Extractable Matter	Min. Oil / Paraffin	otal Non-Volatile Aromatics	NSO / Resins	TPH By TLC	Hexavalent Chrome (acid)	Asbestos Type	Asbestos	DCM/MeOH Extract	Acid Sol. Sulphate as SO4	pH of Leachate	pH Value In Soil	Water Soluble Sulphate a SO4
TP 103     TP 10     TP 103     TP 10     TTP 1     TP 10     TTP 1     TP 10     TTP 1     TTTP 1     TTTTP 1     TTTTTP 1     TTTTP 1     TTTTTP 1     TTTTTP 1     TTTTTTTTTT	36	TP 89	1.9	1	16	1	4	1.	i 1	1	,	,			373	0.05		06.0	s bio
TP109     TP109     TP109     TP109     TP109     TP109     TP109     TP109     TP109     TP10     TP109     TP10     TP10     TP11     TTP1     TP11     TTP1     TTP1	37	TP 109	0.4	1	37	1	1	1	,	1	1	,		I	348	0.02		3 3 a	
TP109     TP109     TP109     TP109     TP109     TP10     TP10     TP10     TP10     TP10     TP11     TP1     TP11     TP11     TP1     TP1     TP11     TP11     TP1     TP1     TP11     TP11     TP11     TP11     TP11     TP11     TP1     TP1     TP11     TP1     TP1     TP11     TP1     TP	8	TP 109	1.2	1	15	1	4	108	7	188	108		,		206	30.0			
TP 110     D         TP 110     D         TP         TP         TP 110     D         TP         TP         TP	33	TP 109	1.65	-1	35	1	1		,	.1	1	,		1	561	000	r ,	0.10	
TP110     TP110     TP110     TP110     TP110     TP110     TP110     TP11     TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1      TP1	6	TP 110	0.2	1	16	1	1	i	,	1	1	١,			229	70.0		S C a	
IP110         14         •         9         ·         •         9         ·         9         ·         9         ·         9         ·         9         ·         9         ·         9         ·         101         101         101         101         101         015         0         43         ·         1         ·         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	41	TP 110	0.5	1	17	1	1		,	I					616	0.03	, I	2-00	0.000
IPTIT         0.15         ·         49         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	7 5	IP 110	1.4	1	თ	,	1	1	,	•	1	1		1	305	0.06		8 43	0.010
TP113         0.0         -         40         -         40         -         40         -         1         1         0         -         712         0.05         ·         7         0.04         7.86         ·         7         1         7         601         252         0.04         7.86         ·         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 </td <td>2 7</td> <td>TP 111</td> <td>0.15</td> <td>r</td> <td>49</td> <td>3</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>,</td> <td>, i</td> <td>I.</td> <td></td> <td>3619</td> <td>0.02</td> <td>,</td> <td>7.88</td> <td>0.013</td>	2 7	TP 111	0.15	r	49	3	1		1	1	,	, i	I.		3619	0.02	,	7.88	0.013
TP113A         0.4         0.1         1355         <0.05         r         r         r         r         NONE         0.01         2522         0.04         735           TP113A         0.4         <0.1	- 40	TD 113	0.7	' '	6	1	5	,	1	ı	1	ī	1	1	712	0.05	1	8.24	0.017
TP 124       0.1 $400$ $1.3$ $\cdot$	9	TP 113A	0.4	1.0	1365	<0.05	1	ı	. 1	,	1	IJ	NONE	<0.001	2522	0.04	7.89	8.28	0.033
TP 124         12         7         70         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7<	24	TP 124	t.0		4004	1./3	1	1	1	1		<0.1	NONE	<0.001	1066	0.02	7.97	8.12	0.036
TP 124       11.9       1.9       1.4       1.9       1.4       1.9       1.3       0.05       543       0.05       543       0.05       1.3       0.05       1.3       0.05       1.3       0.05       1.3       0.05       1.3       0.05       1.3       0.05       1.3       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05       0.05 <td>φ</td> <td>TP 124</td> <td>10</td> <td>1</td> <td>2 5</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>ı</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>339</td> <td>&lt;0.01</td> <td>,</td> <td>7.77</td> <td>0.005</td>	φ	TP 124	10	1	2 5		1	1	1	ı	1		1	1	339	<0.01	,	7.77	0.005
TP 124       1.7       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·<	0	TP 124	i 0		t u	1	,		, (	1	1	ı		T.	737	0.05	1	8.23	0.019
TP 127       0.25       -       58       -       5/55       13       657       5768       -       -       6437       0.07       ·         TP 127       0.25       -       58       -       -       58       -       -       54       0.01       ·       5768       -       -       6437       0.07       ·       56       ·       58       ·       -       512       0.01       ·       52       0.01       ·       52       0.01       ·       52       0.01       ·       52       0.01       ·       52       0.01       ·       52       0.01       ·       52       0.01       ·       52       0.01       ·       52       0.01       ·       52       0.01       ·       53       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57	0	TP 124	1 7		7 (	1	1	84/3	ກ	290	8482	ı	1	9	8780	0.22	I	7.92	0.044
TP 127       0.9       •       12       •       12       •       312       0.01       •         TP 127       0.9       •       12       •       •       12       •       12       •       312       0.01       •         TP 127       1.6       •       12       •       •       •       12       •       312       0.01       •         TP 127       1.6       •       58       •       •       •       12       •       12       •       •       12       •       •       •       12       0.06       •       •       •       •       12       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •	-	TP 127	0.25		, au		1	CC/C	13	657	5768	ı	1	i î	6437	0.07	,	8.09	0.022
TP 127       1.6 <t< td=""><td>2</td><td>TP 127</td><td>6.0</td><td></td><td>3 6</td><td>1</td><td>2</td><td>1</td><td>,</td><td>3</td><td>1</td><td>ı</td><td>1</td><td>1</td><td>312</td><td>0.01</td><td>1</td><td>7.75</td><td>0.005</td></t<>	2	TP 127	6.0		3 6	1	2	1	,	3	1	ı	1	1	312	0.01	1	7.75	0.005
TP 18 0.2 58 5 58 5 58 5 58 5 58 5 58 5 58 5 58	0	TP 127	16		1	L	,	,	,	1	1	1	ï	a	292	0.06	T	8,35	0.008
TP 18 0.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	6	TP 18	0.2		a a	1	1	1		,	1	1	ĩ	а.	1	1	•	1	,
	0	TP 18			5 4	,	1	•	,	1			ï	ı	800	0.05	1	7.74	0.016
			0.0	1	0		1	1			1				120	0.08	-	8.23	0.006

G. CHEM ANALYTICAL SFRVICES


GEOCI



·B(	=( ≯ ≮ )		TESTING	No. 1291			4	<0.003	Water Soluble Sulphate as SO4	s Coo		7000	2000	0.011	1.306	0.022	0.013	0.004	0.008	0.008	0.006	0.011	0.016	0.011	1	0.007	0.010	0.025	0.016	0.032	000000000000000000000000000000000000000
) <b>- J</b> y	ulu	m,						<0.01	pH Value In Soil	ς <b>*</b> α		2 0 0 0	0 0		08.9	8.17	8.16	7.84	8,40	7.98	8.19	8.20	8.15	8,17	,	8.31	8.01	8.38	7.87	7.61	No. of the second se
						Antor		<0.01	pH of Leachate						,	1		1	1	•	1	1	•	ı	•	1	1		ı		Manager and a second second
		syford			70	R 1		<0.01	Acid Sol. Sulphate as SO4	0 OR	900	50.0	200	5	PC.0	70.0	0.06	0.02	0.07	0.01	0.03	0.08	0.04	<0.01	1	0.05	0.03	0.06	0.03	0.05	
		RAF Upper Heyford	obbs	A		Pipini Gravi		V	DCM/MeOH Extract	174	3631	872	200	200	40	4940	269	256	529	413	388	153	7911	10506	1	3993	385	190	314	192	
	SOIL	AF Up	Steve Hobbs	MD3333A	70	Grav		<0.001	Asbestos	1		,					1		1	,	1	1	r.	1	ı.	4		-1	а	.1	
		R				Visual		NONE	Asbestos Type		,	,	1	0		,	,	,	1	r	r		1	1	1	1	5	1	1	1	
I	Sample Type	ion :	Client Contact	Client Ref. No.	muu	Spectro		<0.1	Hexavalent Chrome (acid)			1	,						1	1	I.	r	1	2	1	1	1	i		1	
	Samp	Location	Client	Client	maa	TLC	2	7	TPH By TLC	49	,	•	1	,			1		,	1	1	1	1	4	1	1		1	1	+	
					ppm	TLC	7	7	NSO / Resins	125	,	1		1	,			ı.		,	<b>x</b>			I	•	3	ĩ	1	1	,	
RESULTS					maa	TLC	7	,	Total Non-Volatile Aromatics	60	1	1	1	,	,						1	,	,	,	1	,	1	1	,	1	
					mqq	TLC	2	-	Min. Oil / Paraffin	41	1	•	1	,	,	1		,					1	•	1	,	,	1	,	1	
E OF					mdd	Soxtec	v	•	Solvent Extractable Matter	1	1	1	,	1		,	,	1	. ,				, L	C005	1	1	4	1	1	1	2
TABL		COMPANY			mdd	ICP	<0.05		Zinc In Leachate	1	1	I	1	3			3						1	1	1	3	ı	4	1		0
	01	& COI			mqq	ICP	V		Zinc	13	44	51	15	271	95	21	53	13	52	43	16	184		<u>t</u>	1	11/	28	24	00	15	
	97/01023/02/01	<b>ASPINWALL</b> &	97		mdd	ICP	<0.1		Selenium Leachate	,	.1	4	,	1	,	1		,	1			,		,	1	1	,	1	4	-	9
		ASPIN	Date of Receipt : 01/05/97	(əldu	Units	Detection Method	Detection Limits		Depth (m)	1.6	0.35	0.5	1.2	0.3	0.2	1	0.5	1.5	0.4	0.5	1.1	0.4	0.0	0.0	0.0	0.4	4.0	7.1	t.0	£.1	Chockod h.
		Client :			Preliminary		NAMAS Accredited		Sample Identity	TP 18	TP 20	TP 20	TP 20	TP 21	TP 22	TP 22	TP 23	TP 23	TP 24	TP 25	TP 25	TP 26	TP 27	TP 27	TD 28	TP 45	TD AF	TP 46	TD AG		Printed on 30 June 1997
5	2	2						J	Sample Number	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200		rintad

GL CHEM ANALYTICAL SERVICES TABLE OF RESULTS

GEOC).



CHEM ANALYTICAL SERVICES G

Page 86 of 205

GEOC			Ċ		CHEM A		V UL			C							C	
2	(		č	5	TABL	E OF	RESUL		SERVICES	л Ц								·8
2		Job Number : 97/010	97/01023/02/01					) - 		Samp	Sample Type		SOIL				Lunt	
シ	Client :		ASPINWALL	ø	COMPANY					Location	ion :	R	AF Upp	RAF Upper Heyford	/ford			~ '
		Date of Receipt : 01/05/97 (of first sample)	67							Client	Client Contact Client Ref. No		Steve Hobbs	bbs			Z	IN AIM AS TESTING No. 1291
	Preliminary     Validated	Units	mqq	mqq	mqq	mqq	mdd	mqq	mqq	mad	mdd	.	*	r mud	70			
L		<b>Detection Method</b>	IСР	ICP	ICP	Soxtec	TLC	TLC	TLC	TLC	Spectro	Visual	Grav	Gravi		Matar	Matar	
	NAMAS Accredited	Detection Limits	<0.1	2	<0.05	۲.	4	₽ V	v	۲	<0.1	NONE	<0.001		<0.01	<0.01		<0.003
						S		То			F				/			3
Sample Number	Sample Identity	Depth (m)	Selenium Leachate	Zinc	Zinc In Leachate	olvent Extractable Matter	Min. Oil / Paraffin	tal Non-Volatile Aromatic	NSO / Resins	TPH By TLC	lexavalent Chrome (acid	Asbestos Type	Asbestos	DCM/MeOH Extract	Acid Sol. Sulphate as SC	pH of Leachate	pH Value In Soil	Water Soluble Sulphate SO4
221	TP 95	1.2		45	,		,	s,			)				4			as
222	TP 96	0.4	1	28	,	1	1	,				1		314 1 OF	0.04	1	8.8	0.008
223	TP 97	0.4		53	1		,	,						8	0.04	+	8.8/	0.032
224	TP 98	0.4	,	64		1			L	1	,	1		1152	60.0	ı	9.81	0.159
225	TP 99	0.3		20					,	1	ı	r	,	372	0.01	1	7.58	0.014
226	TP 99	61		, r				,	, ,	1	1		1	630	0.04		7.99	0.027
227	TP 100	0.4		2 7	ı		ş	4	114	62	1	1	1	177	0.04	ı	8,13	0.024
228	TP 100	t 7 F	,	1 0	1	1	1	1	1	1		1	I.	312	0.04	,	7.32	0.029
229	TP 100	t u	,	2 8	3	,	6	17	242	57	1	1	1	299	0.05	1	8.20	0.023
230	TP 102		,	5 K	1	1	126	-	291	137	r	ī	))	429	0.05	1	8.05	0.039
231	TP 102		1		,	1	1	1	1	1	ī.	i.	Е	4675	0.01	1	7.58	0.014
232	TP 102	0 v		t 20	3	1	1	,	1	4	ï	r.	T.	1881	0.02	1	8.18	0.013
233	TP 103	0.0	1	, <u>1</u>	1	1	,	1	1	1		1	ı	1	1	,	,	1
234	TP 103		1	4/	1	1	1	,	,	1	1	r	ī	747	0.04	,	8.17	0.012
235	TP 104	7:-	1	<u>ಕ್ಷ</u> ್ ಕ್	1	4	1	1	I	ł	а	I.	1	123	0.06	ı	8,18	0.013
236	TP 104	t o	i	70	.1	1	1	1	1	1	r.	r	ĩ	560	0.01		7.92	0.013
237	TP 105	2. V	1.	44	3	,	1	,	1	1	1	1	1	211	0.05	1	8.32	0.004
238	TP 105	c.F		1 6	1	1	,		1	1	1	i.	1	387	0.06	ı	8.03	0.012
239	TP 105	<u>.</u>	1	0) ¢	1.	1	61	18	135	59	1	4	ĩ	214	<0.01		7.08	0.009
240	TP 119			2 6	1	4	14	m	6	17	r	1	1	107	0.27	1	7.86	0.060
		7:0				,	1	,		1			5	141	0.09		8.41	0.018
all	Finited on 30 June 1997	Checked by	÷	XXVVXX		Α	Alison B	Ball							ſ	1		

·B			NAMAS	No. 1291	10	0			c	0 0.024				20100				3 0.015	0.008	0.004	0.015	0.005	0.005	0.027	<0,003	0.008	0.008	
	A.		10			Matar Matar		-		τ 		S	- 0,40			- 8.07	- 8.34	- 8.28	- 7.91	- 8.29	- 7.95	- 8,43	- 8.24	- 7.99	8,46	8.18	7.97	
		ford			%	c			4 2	0.04	000	40.04	80.0	0.07	0.03	0.04	0.07	0.08	0.04	0.06	0.03	0.06	0.05	0.10	0.05	0.04 -	0.02	
		RAF Upper Hevford	obbs	A	mad	Gravi		DCM/MeOH Extract	487	122	agg	2000	728	261		105	250	219	118	75	236 (	42 (	174 0	1463 0			351 0	100
	SOIL	AF Upr	Steve Hobbs	MD3333A	%	Grav	<0.001	Asbestos	1	6				i	1	1	1	1	a.	a.	1	ı	1	r.	1	1	ŗ	
						Visual	NONE	Asbestos Type			,		1		т	'n	ı		1	1	1	1	1	r	т	г	r	
	Sample Type	Location :	Client Contact	Client Ref. No.	mdd	Spectro	<0.1	Hexavalent Chrome (acid)		1	1		1	1	1	I	ï	1	į	Ĩ	ı	1	T	ı	з	1	Ł	10
SEC	Sam	Loca	Clier	Clier	mqq		V	TPH By TLC		1			1	+	1	1	,	1	•	1	1	1	1	301	1	1	•	108
SERVICES	)				udd u	-	2	NSO / Resins	ı	,	ī		1	1	1	1	T	•	1	1	,	1		1159	1	,	1	250
and the second se					mqq m		₹	Total Non-Volatile Aromatic	S +	1	1	1	J	t	1	1	,	•	1	1	,	1	1	174	•	1		¢†
OF RESUI					mqq mqq	oxtec TLC	<1 <1	Min. Oil / Paraffin Solvent Extractable Matter	<u> </u>	1	•	1	1	,	1	1	1	1	•	1	1	•	1	127	1	I	1	10
		PANY			d mdd	ICP Sp	<0.05	Zinc In Leachate	1		1	,	1	T	1	1	i T		,	1	,	1	1	1	1	1		1
		ASPINWALL & COMPANY			mdd	ГСР	4	Zinc	68	10	53	42	32	13	156	34	25	17	3 5	2 a	3	t 1	2 6	32	- 55	51	5 6	1 15
GL	97/01023/02/01	JWALL	26,		mqq	<u>с</u>	<0.1	Selenium Leachate		1	1	-1	-1	4	1	1	,	1		1		1	1			1		1000 I 10
		ASPIN			Units	Detection Method	Detection Limits	Depth (m)	0.2	1.2	0.1	0.6	0.45	1.1	0.1	7.0	2.0	0.1 0.3	0.0		-		2		0.4	1.5	25	P.7
	Job Number :	Client :	Date of Receipt (of first sample)	Preliminary			NAMAS Accredited De	Sample Identity	TP 121	TP 121	TP 125	TP 125	TP 130	TP 130	TP 132	TD 140	TD 140	TP 10	TP 10	TP 12	TP 12	TP 12	TP 14	TP 14	TP 15	TP 15	TP 15	<b>b</b>
2		2				L		Sample Number	241	242	243	244	245	246	247	047	250	251	252	253	254	255	256	257	258	259	260	

Page 88 of 205

Checked by .....Alson Ball

Printed on 30 June 1997

GL CHEM ANALYTICAL SERVICES TABLE OF RESULTS

GEOCH.

		(	Ċ			į	1									$\langle$	
		ē	טער אבאש TABL		E OF RESUI	RESI	ICAL SE ESULTS	SERVICES	ES							2	*78
Job Number :		97/01023/02/01				-	1		Samp	Sample Type		SOIL				Juni	
Client : Date of Re (of first sample)	ceipt :	ASPINWALL & COMPANY 01/05/97	. & COI	MPAN					Client Con	Location : Client Contact		RAF Upper Heyford Steve Hobbs	ier Hey	yford			NAMAS NAMAS No. 1991
	Units	mqq	mdd	mdd	mdd	mqq	mdd	maa			.	MID3333A		10			
	<b>Detection Method</b>	СР	СР	ICP	Soxtec	TLC	TLC	TLC		Spectro	Vicual	e Crav	ppin	<u>8</u>			15
	Detection Limits	<0.1	Ŷ	<0.05	v	2	v	V	V	<0.1	NONE		GIAVI	Leco	Meter		Spectro1
							T				INCINE	100.02	v	<0.01	<0.01	<0.01	<0.003
	Depth (m)	Selenium Leachate	Zinc	Zinc In Leachate	Solvent Extractable Matter	Min. Oil / Paraffin	otal Non-Volatile Aromatic	NSO / Resins	TPH By TLC	Hexavalent Chrome (acid)	Asbestos Type	Asbestos	DCM/MeOH Extract	Acid Sol. Sulphate as SO	pH of Leachate	pH Value in Soil	Water Soluble Sulphate a SO4
	0.4	,	42	1	,		s ,	T			1			4			is
	1.1	1	304	1	,	1			1	1	1	1	136	0.05	1	8.14	600.0
	0.1		67	1			,	1	,	ı	1	1	619	0.05	1	8.04	0.007
	0.75	.1	16			, ac	, 40	I	, j	1	E	ĩ	838	0.05	1	7,96	0.012
	1.2	1	14			3 5	8	<u> </u>	4	4	1	r.	219	0.06	i.	7.97	0.023
1	23		5	,	1	à ť	12/	532	234	ĩ	1	з	767	0.15	,	7.97	0.074
1	16		- 4	1	4	202	~	109	37	1	з	ar.	146	0.06	I	8,14	0.006
	17		2 5	1	1	948	23	185	1001	ï	л	ı	1158	0.08	•	8.17	0.018
			t ų	,	1	1	1	1	1	I.	a.	1	208	0.06	1.	8.24	0.004
	50		2 0	1	,	1	1	t	1	ı	1	1	103	0.05	I	8,15	0.003
	16		23		1	r	,	1	1	E.	ı	1	620	0.03		8.11	0.009
	0.35	,	37	1			1	ı	1	ı	1	1	142	0.06	1	8.41	0.012
	1.5	,	10		1	1	,	1	1	1	1	ĩ	622	0.05		7.92	0.007
	0.2		<u>J</u> U	1	1	1	1	1	1	1	r.		124	0.06	1	8.29	0.005
	0.7	•	n ĉ	1	,	1	,	I	4	a	ı	1	122	0.03	I	8.27	0.006
1			2 2	•	1	1	1	1	1	ı	1	E	550	<0.01		8.30 (	0.017
1			7 4	1	1	1	,	.1	1	I	1	.т.		<0.01	1	8.18 (	0.007
	0.35		- cc		ĩ	,	,	1	,	,	a	1	208	0.03	1	8,41 (	0.051
1	0.75	*	2 4		1	1	,		1		т	-	2102	0.04	•	8.45	0.060
	1.4	1	5		1		,	1	1	э.	,	(		0.05	ı	8.56 0	0.036
	Charked hv		M. W		-				,		,	-	602	0.05		8.61 C	0.058
	A DOLOGICA D		- ALAN		AI	Alison B	Ball							D.	Page 90 of 205	of 205	

	•
н <u>н</u>	

## GL CHEM ANALYTICAL SERVICES TABLE OF RESULTS

Job Number : 97/01023/02/01	Client : ASPINWALL & COMPANY
-----------------------------	------------------------------

Date of Receipt : 01/05/97 (of first sample)

Sample Type : SOIL Location : RAF Upper Heyford Client Contact : Steve Hobbs Client Ref. No. : MD3333A



40	50	tomode	<0.003	Water Soluble Sulphate a SO4	s	0.017	0.061	0.030	0.017	0.062	0143			U.U89	0.017	0.063	0.078	0.073	0.035	0.076	<0.003	0.030			900.0	1.90.0	0.026
	Administ		<0.01	pH Value in Soil		8.16	8.27	8.81	7.92	8.29	8.24		3 2	9	7.95	8.31	8.39	7.77	8.21	8.35	7.89	8 23					8.36
	Mator	INICICI	<0.01	pH of Leachate		1	7.84		1		1			1	r	4	I	,	,	ı		1	,		-	1	
%		L	<0.01	Acid Sol. Sulphate as SO4	1	<0.01	0.08	0.03	<0.01	0.04	0.03	0.03	90.0	0.0	0.03	0.03	0.04	0.01	0.04	0.11	0.02	0.03	0.08			5.0	0.02
mdd	Gravi		۲.	DCM/MeOH Extract		1537	4517	1165	441	2118	7124	131	307	100	237	219	600	488	183	907	154	236		-			230
%	Grav		<0.001	Asbestos	T	i	î	ı.	E	r	a	1				,	1	ï	1		1	1	1				1
	Visual	1101	NONE	Asbestos Type	T		I.	i	ı.	1	а	1			1	1	i.	r	1		а	1			,		
mdd	Spectro		-1.U>	Hexavalent Chrome (acid)	T		1	1	1	i	1	,			1	1	1	1	1	ı	1		1	1	1		-
mqq	TLC		7	TPH By TLC		r	1	770	1	1	1069	1	74	5	8	1	4	32	30	4	1	1	538	456		1	
mdd	TLC	7	,	NSO / Resins		1	1	394	1	,	6048	,	323	215	2		1	456	203	1		1	764	116	1		
mdd	TLC	5	,	Total Non-Volatile Aromatics			,	36	,	1	556	,	37	<u>د</u>	<u> </u>	,	1	<u>ه</u>	,	1	4	1	16	4	,		
mdd	TLC	V		Min. Oil / Paraffin			ı	734	1	1	513	1	47	16	2	,	.	26	3	1	1	,	522	452	1	1	
mqq	Soxtec	v	Ī	Solvent Extractable Matter	•		•		1	1	1	1	,				4	1	1	1	1	1	1	1	4	1.	
mdd	ICP	<0.05	T	Zinc In Leachate	1	u c	2	3		1	ı	1	3	r			1	1	1	I		,	ı	1	1		
mdd	БP	$\overline{\nabla}$	T	Zinc	66	30	3 ;	7		0 10	185	9	205	38	27		8 6	30	3 2	40 E	3 5	3	57	34	57	28	KK
mdd	СР	<0.1	T	Selenium Leachate	•	<0.1	5	1	1	1	•	1	,	1	1	,							1			1	R
Units	Detection Method	Detection Limits		Depth (m)	0.3	0.7	С Т	0	1 15	<u>}</u>	7.0	1.4	0.3	0.45	1.2	0.4	50	11	0.0.03	0.45	-		0.3	1.2	0.35	1.2	8
□ Validated		NAMAS Accredited	1	Sample Identity	TP138	TP138	TP138	TP141	TP141	TP142	241 H	7411	1P143	TP143	TP143	TP144	TP144	TP144	TP145	TP145	TP145	TD116	17140	1F140	TP147	TP147	Drintod on 20 line 1007
				Sample Number	308	309	310	311	312	313	314	1 10	0.0	316	317	318	319	320	321	322	323	324	375	27	220	321	and hotel

OF RESULTS         Sample Type :         Solution :         RAF Upper Heyford           Location :         RAF Upper Heyford         Location :         RAF Upper Heyford           Dient Contact:         Steve Hobbs         Steve Hobbs         Steve Hobbs           Simple Type :         Solut Ref. No.:         MD3333A           Mpm         ppm	GEOC).			GL		CHEM ANALYTICAL	NALY	TICA	L SE	SERVICES	ES							A	
Differential company         Differential company         Differential company         Differential company         Differential company         Differential company           Inferentiate and/or frequencies         Inferentiation         Inferentiation <td< td=""><td></td><td></td><td></td><td>023/02</td><td></td><td>TABL</td><td>ЕОЕ</td><td>RESI</td><td>JLTS</td><td></td><td>Samp</td><td>le Tvne</td><td></td><td></td><td></td><td></td><td></td><td>luu</td><td></td></td<>				023/02		TABL	ЕОЕ	RESI	JLTS		Samp	le Tvne						luu	
Image: marked bit in the state in	V			NWALL		MPAN					Locat	ion :		AF Up	oer Hey	/ford		y z	
Deficient         Definition         Definiti	•	Preliminary		197							Client	Conta Ref. N		eve Ho D3333,	obbs A				ESTING Io. 1291
Detection Method         ICP		Validated	Units	mqq	mqq	mqq	mdd	mdd	mqq	mdd	mdd	mqq		%	muu	70			1
Tectol Linits         1         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         <			Detection Method	СP	ICP	ICP	Soxtec	TLC	TLC	TLC		Spectro	Visual	Crav.	inc.	R 1			Б
pH Value in Soil         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x		NAMAS Accredited	Detection Limits	<0.1	$\nabla$	<0.05	۶	Ž	v	V	V	<0.1	NONE	<0.001		<0.01	kn n1	Meter <0.01	Spectro
SO4         IO	s	s		;			Soh		Tota			He				A		<b>D</b> D D	N N
SO41         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M	Samp	Samp	De	Selenii		Zinc	lvent E	Min.	al Non-	NS	TF	exavale	Asl		DCM	cid Sol	рH	рH	Vater S
08         57         •         110         68         49         128         •         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126	le Number	le Identity	epth (m)	ım Leachate	Zinc	n Leachate	xtractable Matter	Oil / Paraffin	Volatile Aromatic	0 / Resins	'H By TLC	nt Chrome (acid	pestos Type	Asbestos	MeOH Extract	. Sulphate as SC	of Leachate	Value In Soil	oluble Sulphate SO4
02         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	328	TP148	0.8	•	57	ı		110	s ¢	AGR	ac+	)				)4			as
03         ·         68         ·         ·         22         4         42         25         ·         7         7         006         ·         650           05         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · <td< td=""><td>329</td><td>TP148</td><td>0.2</td><td>1</td><td>30</td><td></td><td>,</td><td>1</td><td>2</td><td>} .</td><td>3</td><td>1</td><td></td><td>1</td><td>626</td><td>0.03</td><td>ı</td><td>8.23</td><td>0.109</td></td<>	329	TP148	0.2	1	30		,	1	2	} .	3	1		1	626	0.03	ı	8.23	0.109
05         ·         77         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	330	TP149	0.3	•	68	1	,	3		ç	, L		ъ	1	305	0.06	1	8.20	0.106
12         2         13         2         440         11.3         2         7         11.3         2         1         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         7         7         6         007         5         6         6         7         6         7         7         1         1         6         007         5         6         7         7         1         7         1         6         6         7         7         7         1         7         1         7         7         1         7         7         1         7         7         1         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7	331	TP149	0.5	1	12		,	1101	t 6	4 7 1 2	S S	1	а.	1	67	0.05	1	8.96	0.194
02         401         78         4005         5         949         40         179         989         5         162         0.06         5         852           15         5         44         5         5         265         259         444         524         5         7         7         7         87           15         5         17         5         5         265         259         444         524         5         7         7         7         7         8         7         7         8         7         7         8         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 <td>332</td> <td>TP149</td> <td>1.2</td> <td>,</td> <td>13</td> <td>,</td> <td></td> <td>5</td> <td>Y K</td> <td>140</td> <td>3</td> <td>,</td> <td>9</td> <td>ł</td> <td>1550</td> <td>0.07</td> <td>1</td> <td>8.20</td> <td>0.132</td>	332	TP149	1.2	,	13	,		5	Y K	140	3	,	9	ł	1550	0.07	1	8.20	0.132
05         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         1         -         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         7         1         -         7         1         -         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7	335	TP 35	0.2	<0.1	78	<0.05		- 070	, Ç		, (		1	1	162	0.06	,	8.52	0.135
115         •         17         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	336	TP 35	0.5	1	44	2			3	2		r	8	i	1169	0.11	1	8,22	0.102
03         1         1         1         1         1         1         1         04         5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	337	TP 35	1.5		17		1	202	A07	494	524	1	1	i	1021	0.01	ı	7.87	0.020
19         19         1         19         1         11         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>338</td> <td>TP 53</td> <td>0.3</td> <td></td> <td>152</td> <td></td> <td></td> <td>•</td> <td>,</td> <td>1</td> <td>,</td> <td>1</td> <td>1</td> <td>ı</td> <td>211</td> <td>0.04</td> <td>1</td> <td>8.14</td> <td>0.014</td>	338	TP 53	0.3		152			•	,	1	,	1	1	ı	211	0.04	1	8.14	0.014
26       ·       42       ·       ·       ·       ·       ·       ·       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       7/45       ·       8/45       ·       8/35       ·       8/35       ·       8/35       ·       8/35       8/35       8/35       8/35 <td>139</td> <td>TP 53</td> <td>1,9</td> <td>1</td> <td>. <u>r</u></td> <td></td> <td></td> <td>- 200</td> <td>· .</td> <td>. 0</td> <td>-</td> <td>1</td> <td>Ē.</td> <td>r.</td> <td>2472</td> <td>0.18</td> <td>1</td> <td>11.27</td> <td>0.128</td>	139	TP 53	1,9	1	. <u>r</u>			- 200	· .	. 0	-	1	Ē.	r.	2472	0.18	1	11.27	0.128
0.3       0.3       0.       34       0.       34       0.       34       0.       34       0.0       36       0.01       5       765         1       1       0.       34       0.       0.       1       0.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>840</td><td>TP 53</td><td>2.6</td><td>,</td><td>42</td><td>,</td><td></td><td>£77</td><td>0 0 0</td><td>Z09</td><td>/ 187</td><td>1</td><td>1</td><td>е</td><td>3089</td><td>0.06</td><td>•</td><td>7.45</td><td>0.027</td></t<>	840	TP 53	2.6	,	42	,		£77	0 0 0	Z09	/ 187	1	1	е	3089	0.06	•	7.45	0.027
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	41	TP 106	0.3	,	34	,		5	3	510	101	1	1	1	986	<0.01	1	7,65	0.025
112       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	42	TP 106	-	,	10	,			1	1	1	1	а	<i>r</i>	922	0.26	1	8.55	0.395
0.3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	43	TP 106	1.2	,	11			•	,	1	1	1		1	187	0.05	1	6.85	0.058
11       1       47       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	44	TP 107A	0.3	-1	: 4			1	,	1	1	1	1	1	515	0.05	ı	8,36	0.057
2       .       10       .       .       .       .       811         2       .       10       .       .       .       .       814         0.35       .       28       .       .       844       .       844         1.3       .       NDP       .       .       .       8.44       .       8.44         0.35       .       28       .       .       .       .       8.44       .       8.44         0.35       .       28       .       .       .       .       .       8.44       .       8.44         0.35       .       .       .       .       .       .       .       8.44       .       8.44         0.35       .       .       .       .       .       .       .       8.44       .       8.44         0.5       .       .       .       .       .       .       .       8.44       .       .       .       8.44       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .	45	TP 107A			2 4			1	1		1	1	1	ı	527	0.11	,	8.33	0.077
0.35 0.05 149 0.05 8.44 0.35 0.05 13 8.44 0.5 13 0.05 10 0.04 8.26 0.5 13 0.04 10 0.04 10 8.26 0.5 10 0.04 10 8.26 0.03 10 0.04 10 0.04 10 0.04 0.04 10 0.04 10 0.04 10 0.04 0.05 10 0.04 10 0.04 10 0.04	46	TP 107A	2	3	- CF		ı.		,	1	4	1	4		238	0.02	1	8.11	0.068
1.3     1.3     1.00     0.04     8.26       0.5     1.49     1.1     1.01     0.04     1.02       0.5     1.1     1.1     1.1     1.1     1.1	47	TP 129	0.35	,	8C			,	•	ı	1	I	1	ī.		0.05	1	8.44	0.018
0.5 · 49 · · · · · · · · · · · · · · · · ·	48	TP 129	1.3	1	AUN		1	1	1	1	1	1	1	1	_	0.04	4	8.26	0.012
CLEASE MANN 7.97	49	TP 134	0.5		49			•	1	ı			3		_	NDP	1	NDP	NDP
	inted	on 30 line 1997			N N			1	•		1		,	1	_	0.03	-	7.97	0.010



Sample Type :

Image: Non-Volatile Attractable Matter         Asbestos Type         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A <t< th=""><th></th><th>Date of Receipt: 01/05/97 (of first sample)</th><th>67</th><th>01/05/97</th><th></th><th></th><th></th><th></th><th></th><th>Client Contact Client Ref. No.</th><th>ontact Sef. No.</th><th></th><th>каг upper неутога Steve Hobbs MD3333A</th><th>er Hey bbs</th><th>/ford</th><th></th><th>N HN</th><th>NAMAS TESTING No. 1291</th></t<>		Date of Receipt: 01/05/97 (of first sample)	67	01/05/97						Client Contact Client Ref. No.	ontact Sef. No.		каг upper неутога Steve Hobbs MD3333A	er Hey bbs	/ford		N HN	NAMAS TESTING No. 1291
Detection         PH Value in Soit         8         8         8         8         8         8         8         8         8         8         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9 <th>dated</th> <th>Units</th> <th>mqq</th> <th>mqq</th> <th>mdd</th> <th>mdd</th> <th>mdd</th> <th>mdd</th> <th>mdd</th> <th>mqq</th> <th>mdd</th> <th></th> <th>%</th> <th></th> <th>70</th> <th></th> <th></th> <th></th>	dated	Units	mqq	mqq	mdd	mdd	mdd	mdd	mdd	mqq	mdd		%		70			
Bar       DPH Value in Soit       Si       S			СP	GР	ICP	Soxtec	TLC	TLC	TLC		_	lenal		inda (	۹ -	;		1/6
PH Value in Soil         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th=""> <thc< th=""> <thc< th="">         &lt;</thc<></thc<></thc<>	MAS Accredited	-	<0.1	2	<0.05	v	7	7	1		-	-	Glav	Gravi	Leco	Meter		Spectro1
SO4       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O					2		7	, -	v	5	-+	-	:0.001	₹	<0.01	<0.01	<0.01	<0.003
1         ·         51         ·         131         27         200         150         ·         51         ·         51         ·         51         ·         51         ·         53         00           1         16         ·         10         ·         38         14         106         52         ·         ·         100         ·         853         00           0         ·         11         ·         ·         ·         38         14         106         52         ·         100         ·         853         00         00         ·         853         00         00         ·         853         00         00         ·         853         00         00         ·         853         00         00         ·         853         00         00         0         00         0         00         0         00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Sample Identity</td> <td>Depth (m)</td> <td>Selenium Leachate</td> <td>Zinc</td> <td>Zinc In Leachate</td> <td>Solvent Extractable Matter</td> <td>Min. Oil / Paraffin</td> <td>Total Non-Volatile Aromatic</td> <td>NSO / Resins</td> <td>TPH By TLC</td> <td>Hexavalent Chrome (acid)</td> <td>Asbestos Type</td> <td>Asbestos</td> <td>DCM/MeOH Extract</td> <td>Acid Sol. Sulphate as SO</td> <td>pH of Leachate</td> <td>pH Value In Soil</td> <td>Water Soluble Sulphate SO4</td>	Sample Identity	Depth (m)	Selenium Leachate	Zinc	Zinc In Leachate	Solvent Extractable Matter	Min. Oil / Paraffin	Total Non-Volatile Aromatic	NSO / Resins	TPH By TLC	Hexavalent Chrome (acid)	Asbestos Type	Asbestos	DCM/MeOH Extract	Acid Sol. Sulphate as SO	pH of Leachate	pH Value In Soil	Water Soluble Sulphate SO4
16       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       1       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	TP 134	t	,	51	1	,	131	+	260	150	)	+	+	1	4			as
02       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	TP 134	1.6	1	10	1		30			3	,	1	1	420	0.07	ı	8.33	0.020
05       -       11       -       -       -       -       -       -       850       -       850         17       -       8       -       -       -       -       -       -       821       006       -       850         02       1       -       8       -       -       -       -       119       006       -       823         02       1       -       1       -       -       1       -       -       823       820       823         03       12       1       12       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>TP 135</td> <td>0.2</td> <td>,</td> <td>11</td> <td></td> <td></td> <td>8</td> <td></td> <td>108</td> <td>22</td> <td>1</td> <td>r</td> <td>1</td> <td>160</td> <td>0.01</td> <td>,</td> <td>8.03</td> <td>0.015</td>	TP 135	0.2	,	11			8		108	22	1	r	1	160	0.01	,	8.03	0.015
17       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	TP 135	0.5	-1	11			•	1	1	4	г	ī	1	921	0.05	1		0.010
02       1       74       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	TP 135	1.7	1	. α	1	1	1	1	1	1	a.	1		1119	0.08	1		0.017
09       1       21       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	TP 147	0.2		74		1	1	1	,	1	1	1		185	0.06	1		0.013
03       1       03       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	TP 137	6.0	,	24			+	1	1	4	,	1	-		0.02	I		0.021
12       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21       21 <td< td=""><td>TP34</td><td>0.3</td><td></td><td>36</td><td></td><td>1</td><td>1</td><td>,</td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td>0.04</td><td>•</td><td></td><td>0.006</td></td<>	TP34	0.3		36		1	1	,		1	1				0.04	•		0.006
Checked have been been been been been been been be	TP34	1.2		21			,	1	1	1	1	1			0.05			0,100
1.6                  1037         1.15              1037         1.15              1037         1.15	TP112	0.5	,	76		1	,	1	1	4	1				0.06	r		0.052
	TP112	1.6	,	2, 60		1	1	,		1	-	1			0.15			0.359
Checked hv				}		ı	•	1	1	4	-	1	1		0.05			0.064
Checked hv																		
Checked hv																		
Checked hv																		
Checked hv																		
Checked hv																-		
Checked hv																		
Checked hv																		
Checked hv (Ko 00)												-						
Checked hv												-						
	June 1997	Chockod h.									_	-	_	_				

GL CHEM ANALYTICAL SERVICES TABLE OF RESULTS

> Job Number : Client :

GEOC).

97/01023/02/01

Client Ret ⁼ MD3333A/2850     Date Sample Received= 25/497     Separatory Fumel Ext= N0       Sample Matrix= 501     Date Knacted/Prepared= 21/507     Sonstee Extraction= Yes       Job Number:= 97/1023/02/01     Date Knacted/Prepared= 21/507     Sonstee Extraction= Yes       Job Number:= 97/1023/02/01     Date Knacted/Prepared= 25/5097     Column Extraction= Yes       Job Number:= 97/1023/02/01     Date Knacted/Prepared= 25/5097     Column Extraction= Yes       Job Number:= 97/1023/02/01     Date Knacted/Prepared= 25/5097     Column Extraction= Yes       Internal Standard= A > 22.4.4.6.8.8. HEFTAMETHYLUNONA     Extract     Hydrocarbons     Column Extraction= No       Sample     Sample     None     Depth     Total Soluble Extract     Hydrocarbons     Interpretation       Inform     0.10     3279     392     No Identification, requires GCMS       Inform     0.10     3279     392     No Identification, requires GCMS       Inform     0.10     3279     392     No Identification, requires GCMS       Inform     0.10     3279     392     No Identification, requires GCMS	DV			Diesel Range Organics by G.C.	Jrganics	
Internal Standard:= A := 2.2.4.4.6.8.8. HEPTAMETHYLNONANE B:= 1-CHLOROOCTADE Sample Depth Total Soluble Extract Hydrocarbons Identity (mg/kg) (mg/kg) (mg/kg) TP 50 0.10 3279 392 392 392 392 392 392 392 392 392 392 392	$Matrix = \frac{1}{50}$ $Matrix = \frac{50}{10}$ $mber = \frac{97}{10}$	D3333A/2850 il /1023/02/01	Dat	ate Sample Received:= e Extracted/Prepared:= Date Analysed:=	25/4/97 21/5/97 25/5/97	Separatory Funnel Ext:= No Soxtec Extraction:= Yes Column Extraction:= No
TP 50 0.10 3279 392 TP 50 0.10 3279 392			A := 2,2,4,4,6,8,8	, HEPTAMETHYLNONANE	B :- 1-CHLOROOCTAE Diesel Range	C := SQUAL
1P 30     0.10     3279     392       1P 30     0.10     3279     392       1P 30     1P 30     1P 30       1P 30     1P 30 <t< td=""><td>ber</td><td>Identity</td><td>Indeci</td><td>1 Otal Soluble Extract (mg/kg)</td><td>Hydrocarbons (mg/kg)</td><td>Interpretation</td></t<>	ber	Identity	Indeci	1 Otal Soluble Extract (mg/kg)	Hydrocarbons (mg/kg)	Interpretation
		1P 50	0.10	3279	392	No Identification, requires GCMS
				-		
	_					

I NAMAS I RESTING	Separatory Funnel Ext:= No Soxtec Extraction:= Yes Column Extraction:= No	CaNE C:- SOUALANE Interpretation Possible Coal Tar (PAH'S) Biodegraded Diesel/Carboxylic Acids	а . Л ^С
S	Sepa	CANE C:- SQUALANE Interpret Possible Coal Tar (PAH'S) Biodegraded Diesel/Carbo	
CAL SERVICE rganics	30/4/97 28/5/97 29/5/97 B - 1.CHIOROOCTADECAME	Diesel Range Hydrocarbons (mg/kg) 2050 119	
GEOCHEM ANALYTICAL SERVICES Diesel Range Organics by G.C.	Date Sample Received:= <u>30/4/97</u> Date Extracted/Prepared:= <u>28/5/97</u> Date Analysed:= <u>29/5/97</u> 2.2.4.4.6.8.8. HEPTAMETHYLNONANF B - 1.5	Total Soluble Extract (mg/kg) 9665 495	
GEOC	Dat Date A := 2,2,4,4,6,8,8, 1	Depth 0.30 0.90 0.90	
	3333A 023/02/01 mal Standard:=		
GEOCHEM	Client Ref:= MD3333A Sample Matrix= Soil Job Number:= $97/1023/02$ Internal St	Sample number 194 217 217	

LESTING TESTING	Sep	Interpretation Weathered Diesel/Carboxylic Acids Weathered Diesel/Carboxylic Acids
GEOCHEM ANALYTICAL SERVICES Diesel Range Organics by G.C.		Diesel Range Hydrocarbons (mg/kg) 62 108
GEOCHE	Date Sample Received:= Date Extracted/Prepared:= Date Analysed:=	Depth 0.40 0.10 0.10 Checked by
	3333A 023/02/01 5404	
GEOCHEM	Client Ref= <u>MD3333A</u> Sample Matrix= <u>Soil</u> Job Number:= <u>97/1023/02</u>	Sample number 256 261 261



## **GEOCHEM ANALYTICAL SERVICES**

Diesel Range Organics

hy

by G.C.



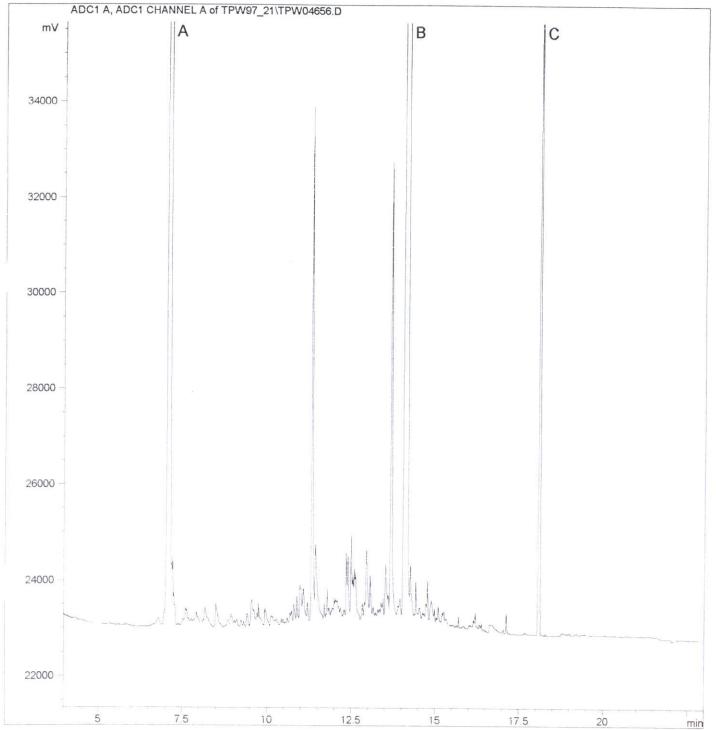
Client Ref:= MD3333A Sample Matrix= Soil Job Number:= 97/1023/02/01

Date Sample Received:= 02/05/97 Date Extracted/Prepared:= 25/05/97 Date Analysed:= 27/05/97

Soxtec Extraction:= Yes Column Extraction:= No

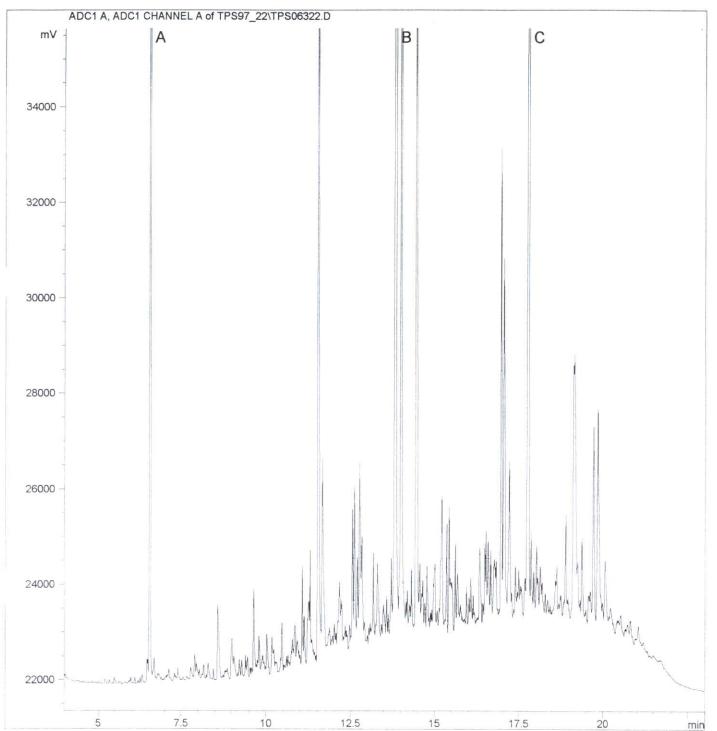
Separatory Funnel Ext:= No

Internal Standard:= A > 2,2,4,4,6,8,8, HEPTAMETHYLNONANE B > 1-CHLOROOCTADECANE C > SQUALANE


	Interpretation	Weathered Diesel/Carboxylic Acids											
Diesel Range	Hydrocarbons (mg/kg)	871											
Total Soluble	Extract (mg/kg)	7124										0.0	Lo L
-	Depth	0.20											Checked by
-	Sample Identity	TP142											
0	Sample number	313											

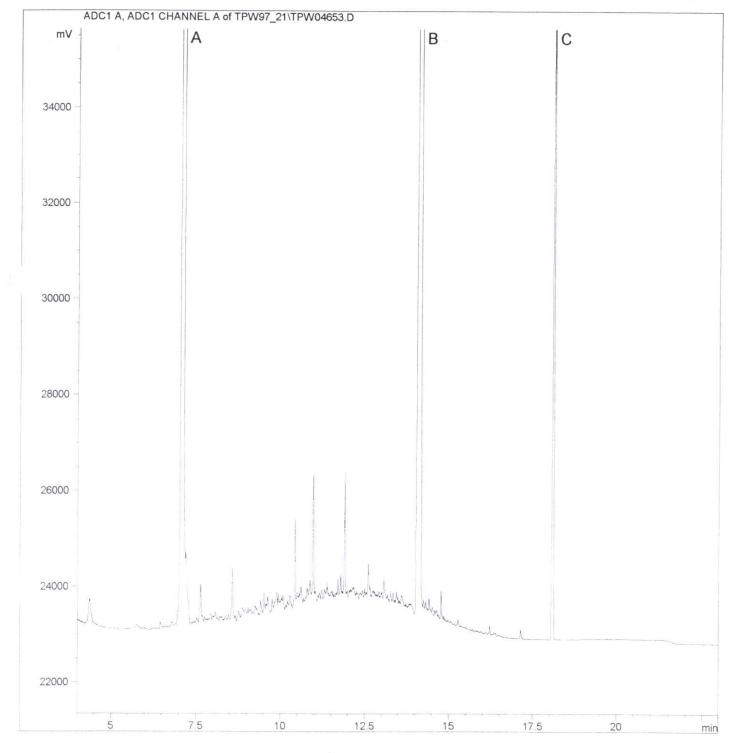
דיחוי זה 11 במפע

Ref:= MD3333A $atrix= Soil Soil I C atrix= Soil Soil Soil I C atrix= Soil Soil I C atrix= Soil Sold I C atrix= Soil C atrix$	Date Sample Received:=       3/6/97         Date Extracted/Prepared:=       4/6/97         Date Analysed:=       4/6/97         S.8.8, HEPTAMETHYLNONANE       B :- 1-CHLOROOCTADECANE         S.8.8, HEPTAMETHYLNONANE       B :- 1-CHLOROOCTADECANE         Date Jobule Extract       Total Soluble Extract         Total Soluble Extract       Diesel Range         Mydrocarbons       (mg/kg)         1860       56         Biode       516         No Ic       516	Separatory Funnel Ext:= No Soxtec Extraction:= Yes Column Extraction:= No ECANE C:= SQUALANE Interpretation Biodegraded Diesel/Carboxylic Acids No Identification, requires GCMS
Internal Standard:= A:- 2,2,4,4,6,8,8, le Sample Depth er Identity GL-1.0 BH6 GL-1.0 BH6 1.0-2.0		ECANE C :- SQUALANE Interpretation Biodegraded Diesel/Carboxylic Acids No Identification, requires GCMS
BH6 BH6		Biodegraded Diesel/Carboxylic Acids No Identification, requires GCMS
BH6		No Identification, requires GCMS
	U	







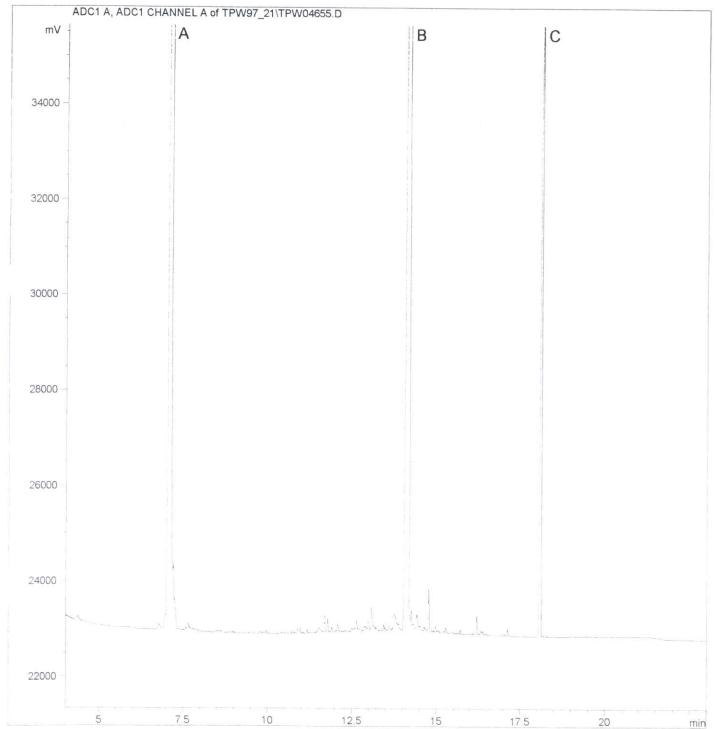







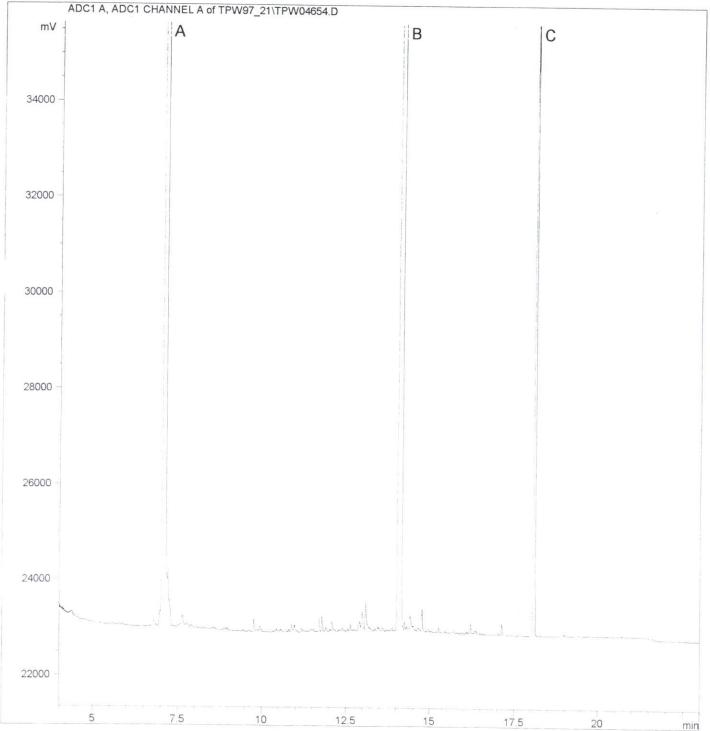

By G.C. 1023-217

GEOCHEM ANALYTICAL SERVICES Diesel Range Organics Analysis



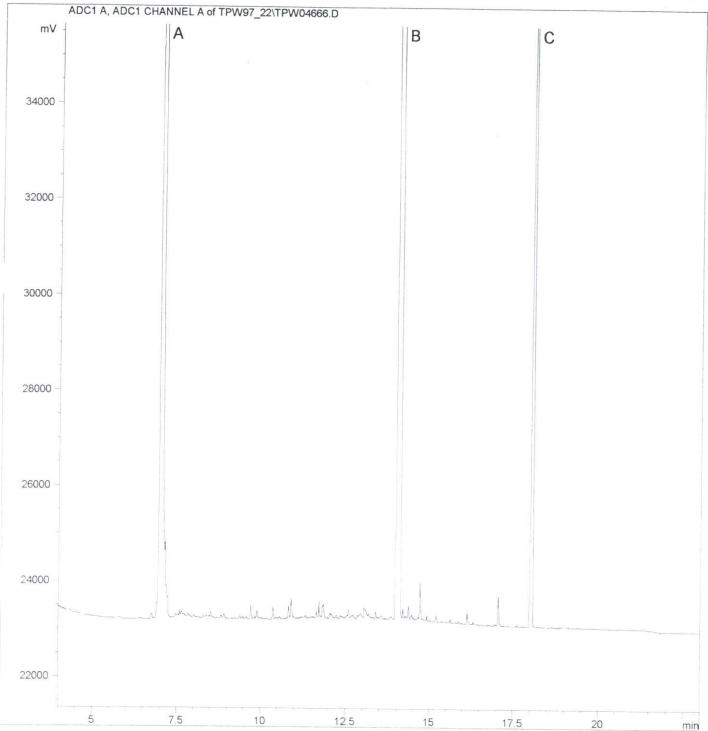




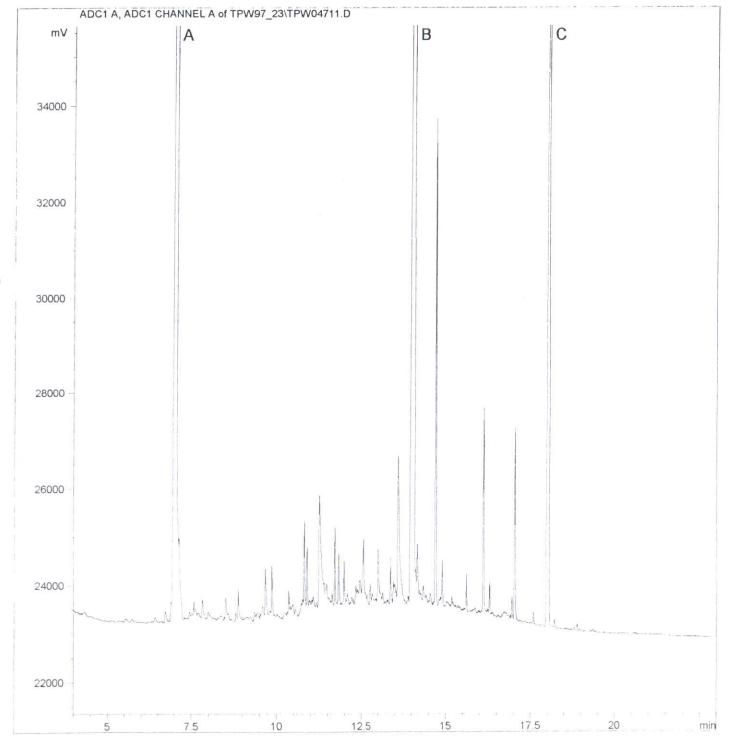




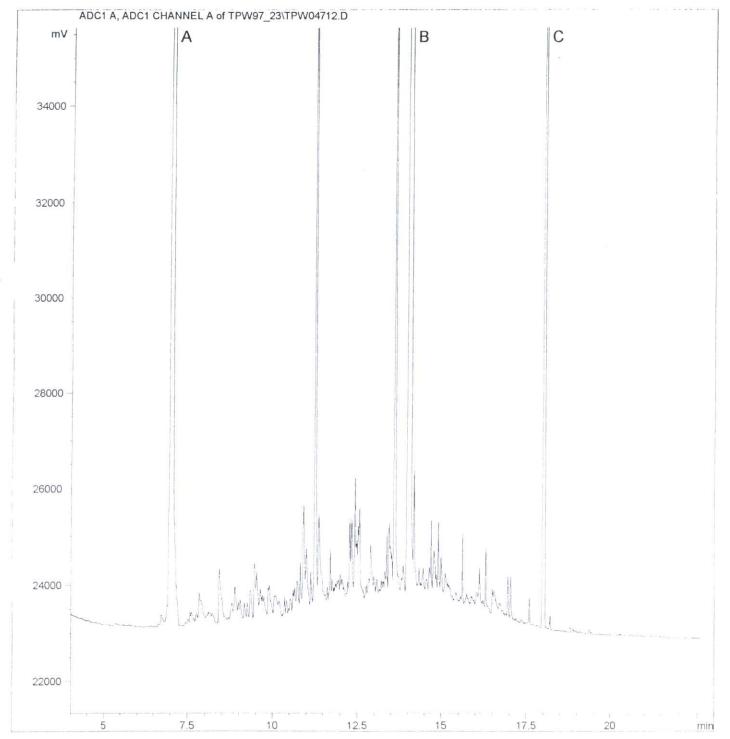





















(

### **GEOCHEM ANALYTICAL SERVICES**

Petrol Range Organics By GC



Job No:	97/1023/02/01
Client:	Aspinwall & Company
Matrix:	Soil
Units:	μg/kg

Sample	Sample	Depth	Total
No	Ref	m/ft	Volatiles
105	TP 50	0.1	<10
	(	<u> </u>	Δ
			()
(	Checked by	Da	



Petrol Range Organics By GC



Job No: 97/1023/02/01

Client:	Aspinwall & Company
Matrix:	Soil
Units:	µg/kg

Sample	Depth	Total
Ref	m/ft	Volatiles
TP 27	0.3	<10
	•	
	Ref	Ref m/ft

0 Checked by .. 20



Petrol Range Organics By GC



Job No: 97/1023/02/01

Client:	Aspinwall & Company
Matrix:	Soil
Units:	µg/kg

Sample	Sample	Depth	Total
No	Ref	m/ft	Volatiles
256	TP 14	0.4	<10
261	TP 16	0.1	<10

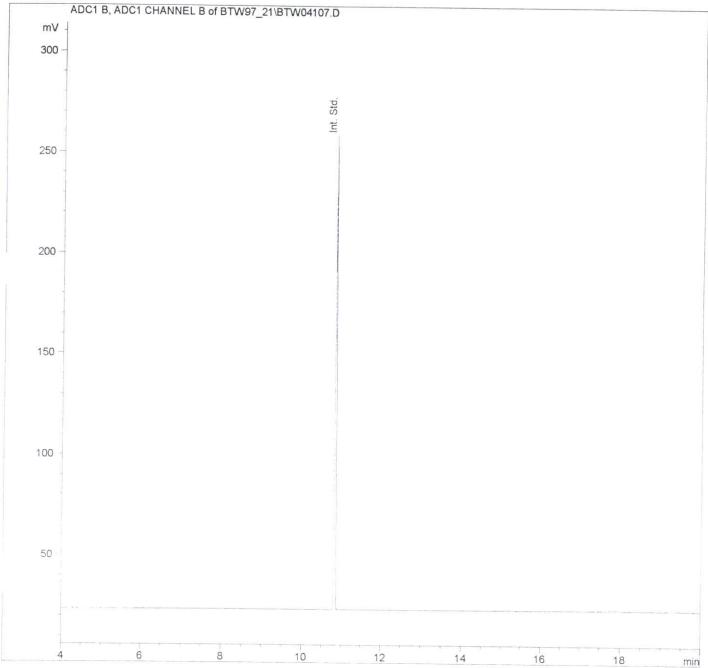
Checked by Lowich



Petrol Range Organics By GC

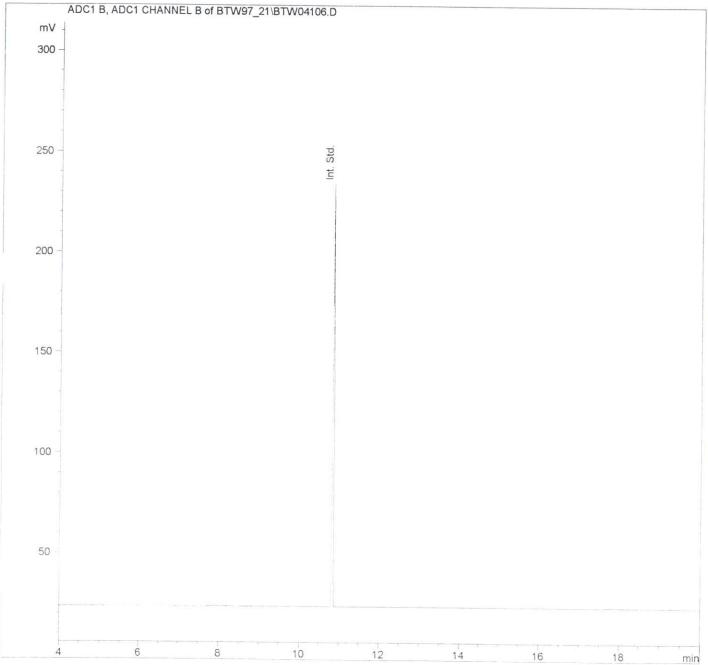


Job No: 97/1023/02/01


Client:	Aspinwall & Company
Matrix:	Soil
Units:	μg/kg

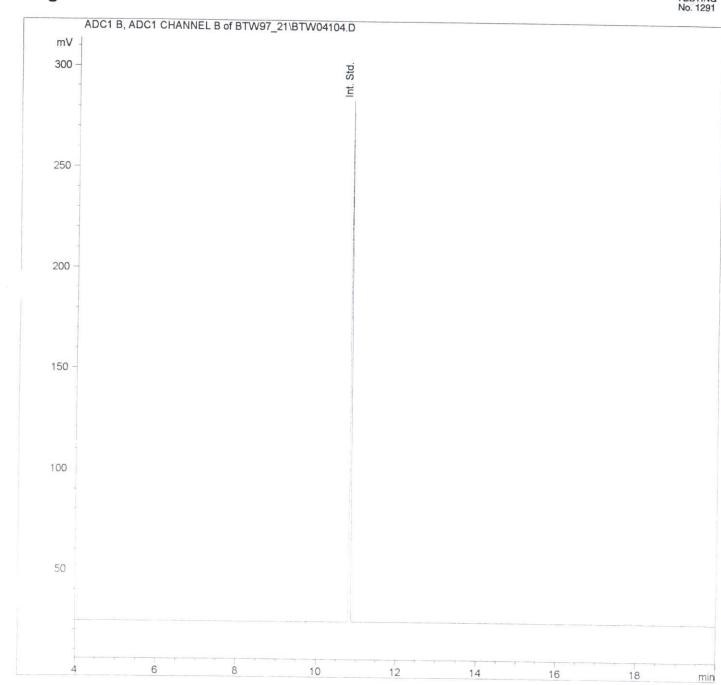
Sample	Sample	Depth	Total
No	Ref	m/ft	Volatiles
414	BH 6	GL-1.0	<10
415	BH 6	1.0-2.0	<10
	f		


Checked by..... 5A














1023-256

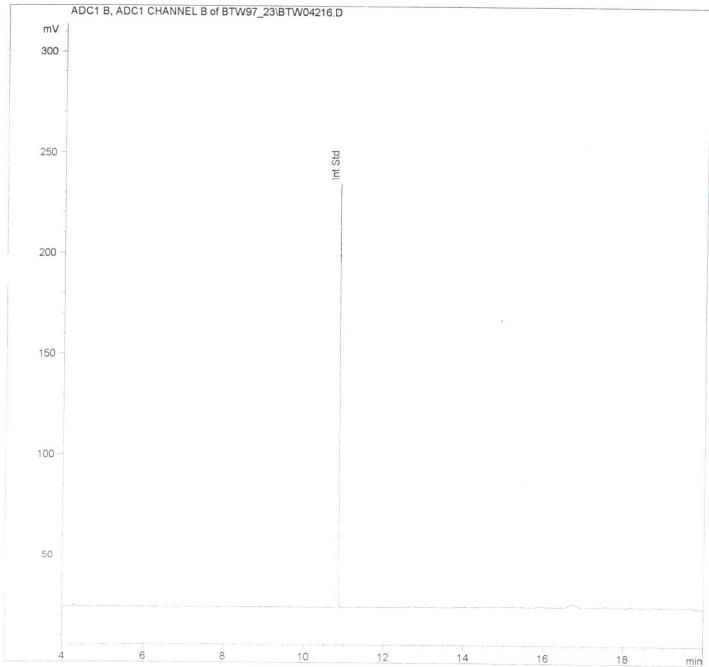


TESTING



#### GEOCHEM ANALYTICAL SERVICES Gasoline Range Organics (G.R.O.) Analysis By G.C.




	ADC1 B, ADC1 CHANNEL B of BTW97_21\BTW04105.D	1				
mV		1				
300 -	(i)					
500	Ē					
1						
	_					
250 -						
200 -						
200						
1						
-						
-						
150 -						3
-						
100						
100						
50						
Ì	<u> </u>	· · · · · · · · · · · · · · · · · · ·				
4	6 8 10	12	14	16	18	min



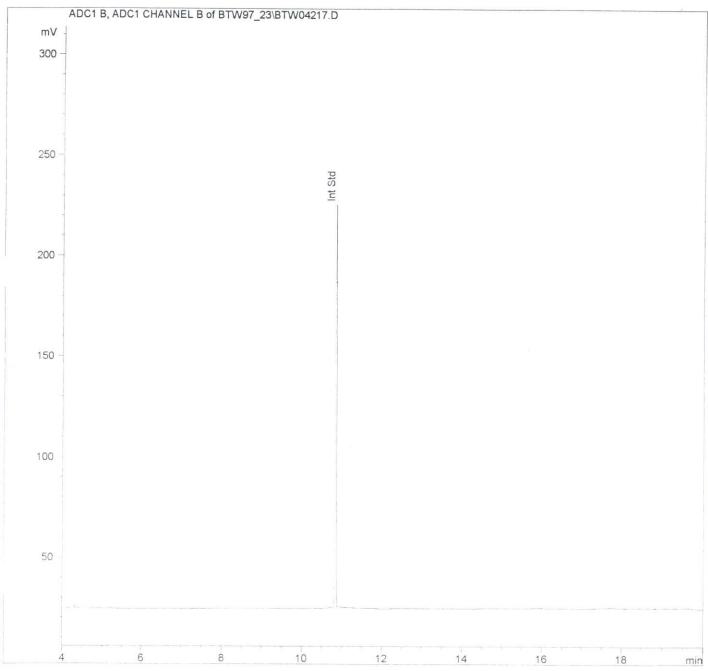
#### GEOCHEM ANALYTICAL SERVICES BTEX & GRO Analysis By G.C.

1023-414





Peak #	R T (min)	Response Factor	Amount (ppb)	Name
1	0.0	0.0	0	Benzene
2	0.0	0.0	0	Toluene
3	10.8	1.0	20000	Int Std
4	0.0	0.0	0	Ethyl Benzene
5	0.0	0.0	0	p,m Xylene
6	0.0	0.0	0	o-Xylene
				-


* NB. Amounts shown as Zero represent less than the P.Q.L. (<10ppb) Job Number: 97/01023/02/01



#### GEOCHEM ANALYTICAL SERVICES BTEX & GRO Analysis By G.C.

1023-415





Peak #	R T (min)	Response Factor	Amount (ppb)	Name
1	0.0	0.0	0	Benzene
2	0.0	0.0	0	Toluene
3	10.8	1.0	20000	Int Std
4	0.0	0.0	0	Ethyl Benzene
5	0.0	0.0	0	p,m Xylene
6	0.0	0.0	0	o-Xylene

* NB. Amounts shown as Zero represent less than the P.Q.L. (<10ppb) Job Number: 97/01023/02/01 Geochem Group Limited



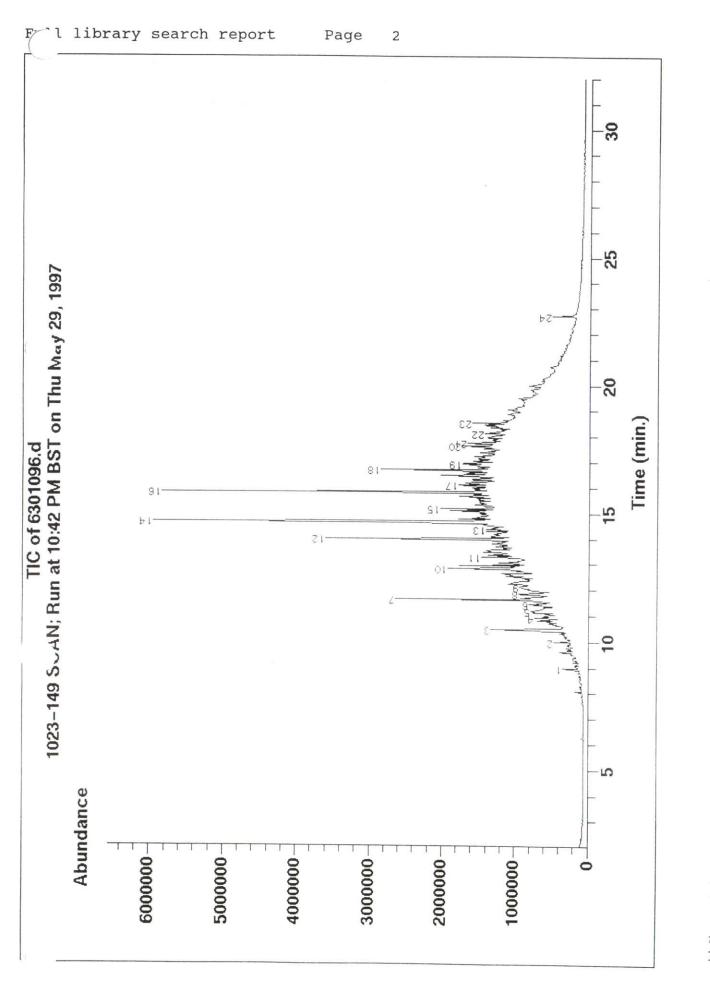
 $\left( \right)$ 

# **GEOCHEM ANALYTICAL SERVICES**

Semi-Volatiles By G.C.M.S.



Sample Matrix:	Soil	
Our Reference:	97/1023/02/01	
Date Sample Received:	25/4/97	
Date Extracted/Prepared:	23/5/97	
Separatory Funnel Ext:	No	
Soxtec Extraction:	Yes	
Column Extraction:	No	
Date Analysed:	29/5/97	
GC-MS Mode:	SCAN	
Internal Standard:	External	


Sample Number	149		
Sample Identity	TP124 1.90		
P.Q.L.	10		
Units	μg/kg		
1	11411		
2	20291		
3	31164		
4	32335		
5	27761		
6	12074		
7	52796		
8	12903		
9	15424		
10	65557		
11	84464		
12	125686		
13	17213		
14	183854		
15	49261		
16	183696		
17	29241		
18	83364		
19	63062		
20	27708		
21	38498		
22	17343		
23	39211		
24	6646		

~ ( >9 Checked By: ......

Full library search report Page 1

Search results for Data File /chem/hp1/6301096.d 1023-149 SCAN Injected Thu May 29 97 10:42:23 PM by Geochem Analytical Services

Peak	Retention		
Number	Time	Prob.	Compound Name
1	8.961	72	Hexadecane, 2,6,10,14-tetramethyl-
2	9.998	38	Cyclopentane, 1-methyl-3-(1-methylethyl)
3	10.462	91	Dodecane, 2,7,10-trimethyl-
4	10.927	95	Naphthalene, 1,3-dimethyl-
5	11.173	95	Naphthalene, 2,7-dimethyl-
6	11.418	58	4-Hexenoic acid, 3-methyl-2,6-dioxo-
7	11.609	87	Undecane
8	11.855	80	Tetracontane, 3,5,24-trimethyl-
9	12.101	62	17-Pentatriacontene
10	12.810	64	Dodecane
11	13.275	55	Dodecane, 5,8-diethyl-
12	13.957	87	Dodecane, 2-methyl-8-propyl-
13	14.367	52	4-Hexenoic acid, 3-methyl-2,6-dioxo-
14	14.640	93	Heptadecane, 2,6-dimethyl-
15	15.159	89	Dodecane, 5,8-diethyl-
16	15.815	86	Hexadecane, 2,6,10,14-tetramethyl-
17	16.088	64	Decane
18	16.689	91	Octacosane
19	16.908	70	Undecane
20	17.618	83	1-Hexadecene
21	17.754	70	Ethanol, 2-(dodecyloxy)-
22		64	i meenyi 2,0 uloxo-
23		76	Pentadecane, 2-methyl-
24	22.729	80	1,2-Benzenedicarboxylic acid, 3-nitro-



Geochem Group Limited Page 154 of 205

Job Number: 97/01023/02/01



(

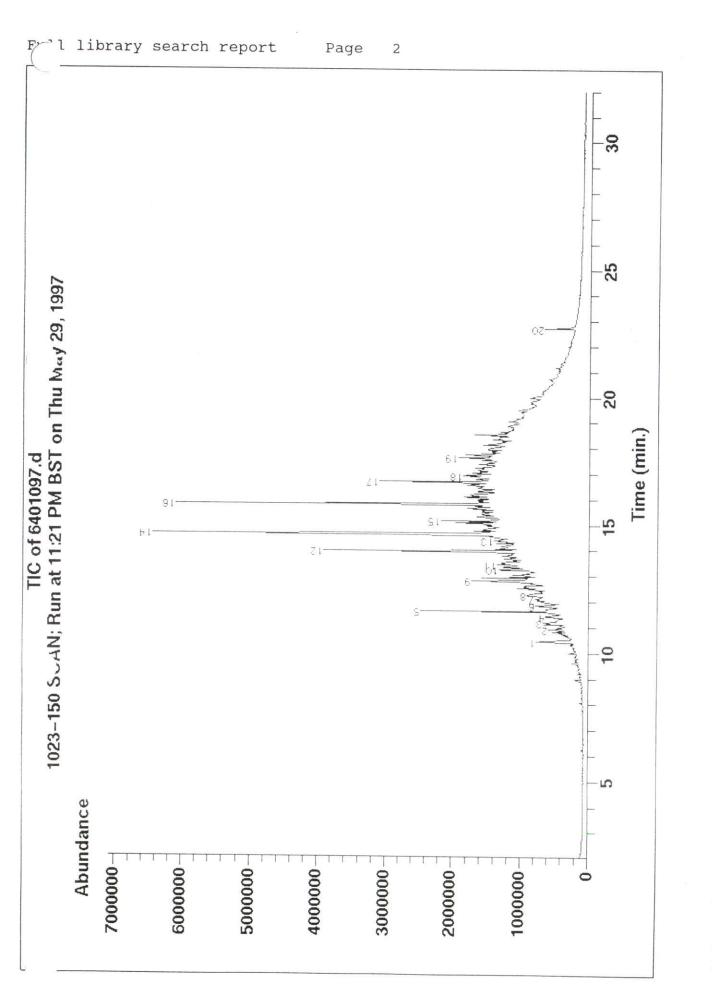
# **GEOCHEM ANALYTICAL SERVICES**

Semi-Volatiles By G.C.M.S.



Sample Matrix:	Soil
Our Reference:	97/1023/02/01
Date Sample Received:	25/4/97
Date Extracted/Prepared:	23/5/97
Separatory Funnel Ext:	No
Soxtec Extraction:	Yes
Column Extraction:	No
Date Analysed:	29/5/97
GC-MS Mode:	SCAN
Internal Standard:	External

Sample Number	150
Sample Identity	TP124 1.70
P.Q.L.	10
Units	μg/kg
1	μg/kg 29173
2	30485
3	30177
4	14163
5	60327
6	15453
7	25402
8	22533
9	84486
10	19816
11	58799
12	107083
13	13821
14	227035
15	58293
16	283979
17	107571
18	108225
19	108639
20	11582


Checked By: 0 .....

Full library search report

1

Search results for Data File /chem/hp1/6401097.d 1023-150 SCAN Injected Thu May 29 97 11:21:54 PM by Geochem Analytical Services

Peak Retention Number Time Prob. Compound Name -------------1 10.434 90 Heptadecane, 2,6,10,14-tetramethyl-2 10.925 96 Naphthalene, 1,8-dimethyl-3 11.143 97 Naphthalene, 1,5-dimethyl-4 11.416 55 1-Dotriacontanol 5 11.607 83 Undecane 6 11.853 80 Tetracontane, 3,5,24-trimethyl-7 12.098 80 Oxirane, [(hexadecyloxy)methyl]-8 12.262 92 Naphthalene, 1,4,6-trimethyl-9 12.809 42 Undecane 13.274 10 55 Dodecane 13.383 11 52 1-Dotriacontanol 13.957 12 83 Heptadecane, 2,6-dimethyl-13 14.367 52 4-Hexenoic acid, 3-methyl-2,6-dioxo-14 14.641 93 Heptadecane, 2,6-dimethyl-15 15.160 89 Dodecane, 5,8-diethyl-15.815 16 87 Heptadecane, 2,6,10,15-tetramethyl-17 16.689 94 Tetradecane 18 16.908 83 Heptadecane, 2,6,10,14-tetramethyl-19 17.618 Hexadecane, 2,6,10,14-tetramethyl-83 20 22.727 80 1,2-Benzenedicarboxylic acid, 3-nitro-



Geochem Group Limited Page 157 of 205

Job Number: 97/01023/02/01

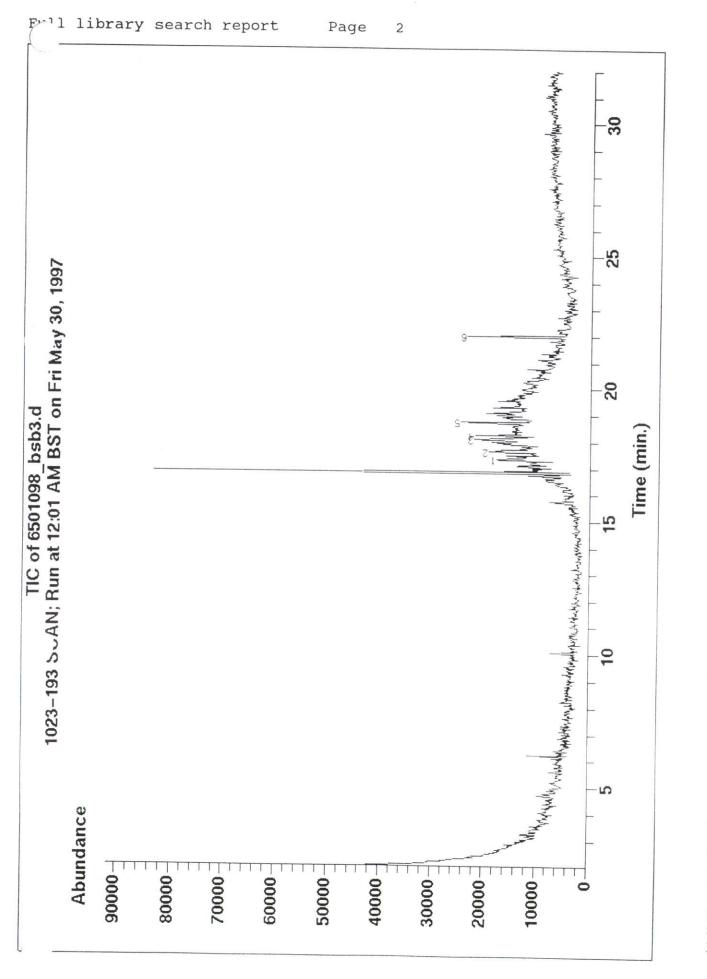


Semi-Volatiles By G.C.M.S.



Sample Matrix:	Soil
Our Reference:	97/1023/02/01
Date Sample Received:	30/4/97
Date Extracted/Prepared:	23/5/97
Separatory Funnel Ext:	No
Soxtec Extraction:	Yes
Column Extraction:	No
Date Analysed:	29/5/97
GC-MS Mode:	SCAN
Internal Standard:	External

Sample Number Sample Identity P.Q.L. Units	193
Sample Identity	TP26 0.40
P.Q.L.	10
Units	μg/kg
1	μg/kg 370
2	413
3	697
4	90
5	768
6	447
$\frown$	


Checked By: aure

Full library search report Page 1

Search results for Data File /chem/hp1/6501098_bsb3.d 1023-193 SCAN Injected Fri May 30 97 12:01:26 AM by **BSB** MODIFIED

Peak Retention Number Time

Number	Time	Prob.	Compound Name
1	17.352	15	2(1H)-Pyridinone, 1-methyl-
2	17.680	43	Cyclohexane, 1-(cyclohexylmethyl)-2-ethy
3	18.089	49	Cyclohexane, 1-(cyclohexylmethyl)-4-ethy
4	18.253	22	1,3-Hexadiene, 3-ethyl-2-methyl-, (Z)-
5	18.745	47	Tridecane, 5-propyl-
6	21.998	47	2,5-Octadecadiynoic acid, methyl ester





(

### **GEOCHEM ANALYTICAL SERVICES**

Semi-Volatiles By G.C.M.S.

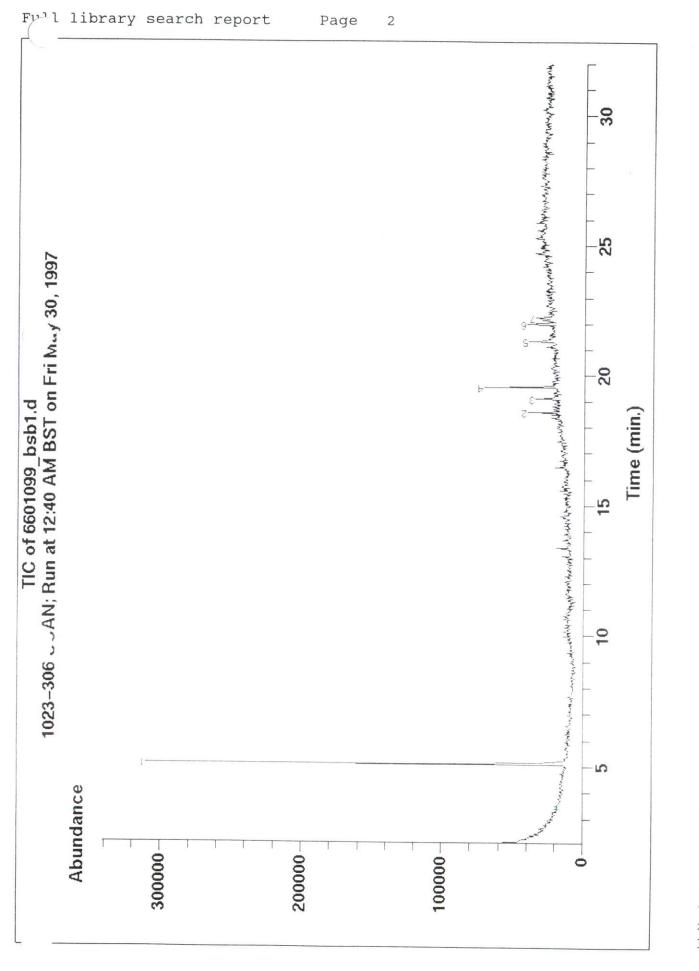


Sample Matrix:	Soil	
Our Reference:	97/1023/02/01	
Date Sample Received:	2/5/97	
Date Extracted/Prepared:	25/5/97	
Separatory Funnel Ext:	No	
Soxtec Extraction:	Yes	
Column Extraction:	No	
Date Analysed:	30/5/97	
GC-MS Mode:	SCAN	
Internal Standard:	External	

Sample Number	306
Sample Identity	TP120 0.75
Sample Number Sample Identity P.Q.L.	10
Units	μg/kg 52834
1	52834
2	5229
3	5414
4	9333
5	5844
6	4551
7	4259

Da Checked By: 50 5

Full library search report


Page 1

2

Search results for Data File /chem/hp1/6601099_bsb1.d 1023-306 SCAN Injected Fri May 30 97 12:40:56 AM by **BSB** MODIFIED

Peak Retention

Number	Time	Prob.	Compound Name
1 2 3 4 5 6 7	5.090 18.576 19.121 19.556 21.327 22.007 22.253	50 95 94 46 50 22 52	Heptane, 1,1'-oxybis- Fluoranthene Pyrene 2-Hexene, 5-methyl-, (E)- 2,4(1H,3H)-Pyrimidinedione, 5-nitro- Benzonitrile, m-phenethyl- 3,6-Phenanthrenedicarbonitrile





Semi-Volatiles By G.C.M.S.

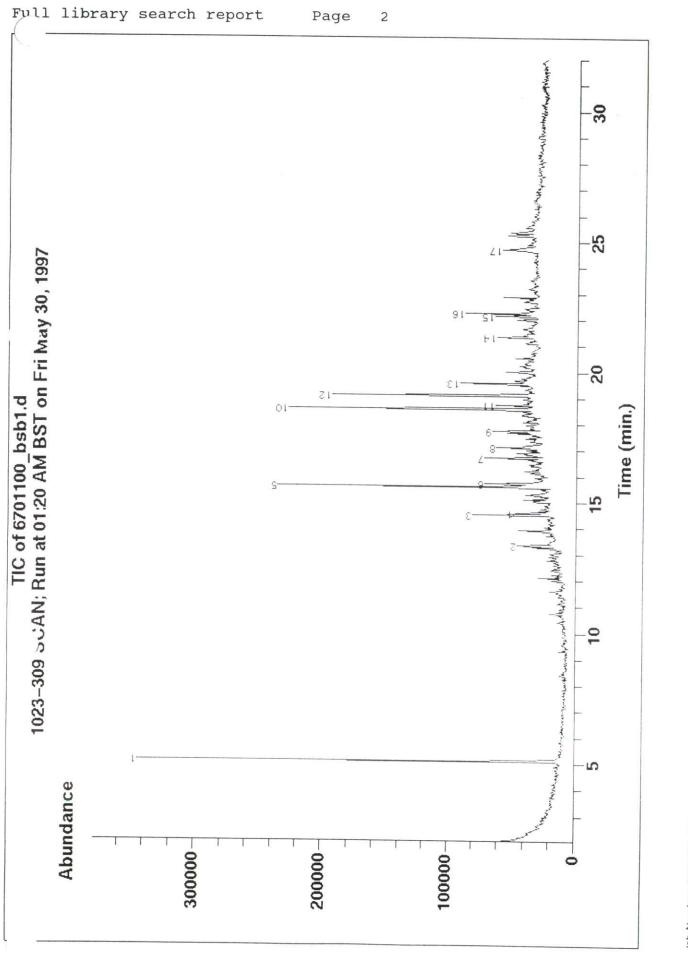


Sample Matrix:	Soil
Our Reference:	97/1023/02/01
Date Sample Received:	2/5/97
Date Extracted/Prepared:	25/5/97
Separatory Funnel Ext:	No
Soxtec Extraction:	Yes
Column Extraction:	No
Date Analysed:	30/5/97
GC-MS Mode:	SCAN
Internal Standard:	External

Sample Number	309
Sample Identity	TP138 0.70
P.Q.L.	10
Units	μg/kg
1	μg/kg 54148
2	9238
3	9123
4	9476
5	38977
6	16675
7	8164
8	12080
9	6583
10	27646
11	5048
12	30409
13	10404
14	5033
15	7860
16	12558
17	11314

Checked By: Dand

Full library search report Page 1


14 M

.

Search results for Data File /chem/hp1/6701100_bsb1.d 1023-309 SCAN Injected Fri May 30 97 01:20:30 AM by **BSB** MODIFIED

Peak Number	Retention Time	Prob.	Compound Name
1	5.089	40	1-Decene, 2,4-dimethyl-
2	13.350	96	Hexadecane
3	14.524	94	Tridecane
4	14.606	76	Butane, 2-iodo-2-methyl-
5	15.615	95	Anthracene
6	15.752	74	Octacosane
7	16.734	95	Tetradecane
8	17.116	49	(5-CHLORO-8-QUINOLINATO-0,N) BORANE
9	17.744	89	Pentadecane
10	18.589	97	Pyrene
11	18.726	60	Tridecane, 2-methyl-
12	19.108	70	Fluoranthene
13	19.571	45	Cyclopentane, 3-hexyl-1,1-dimethyl-
14	21.344	53	Octadecanoic acid, butyl ester
15	22.163	96	Chrysene
16	22.244	96	Triphenylene
17	24.727	98	Benz[e]acephenanthrylene

Geochem Group Limited Page 165 of 205



Job Number: 97/01023/02/01

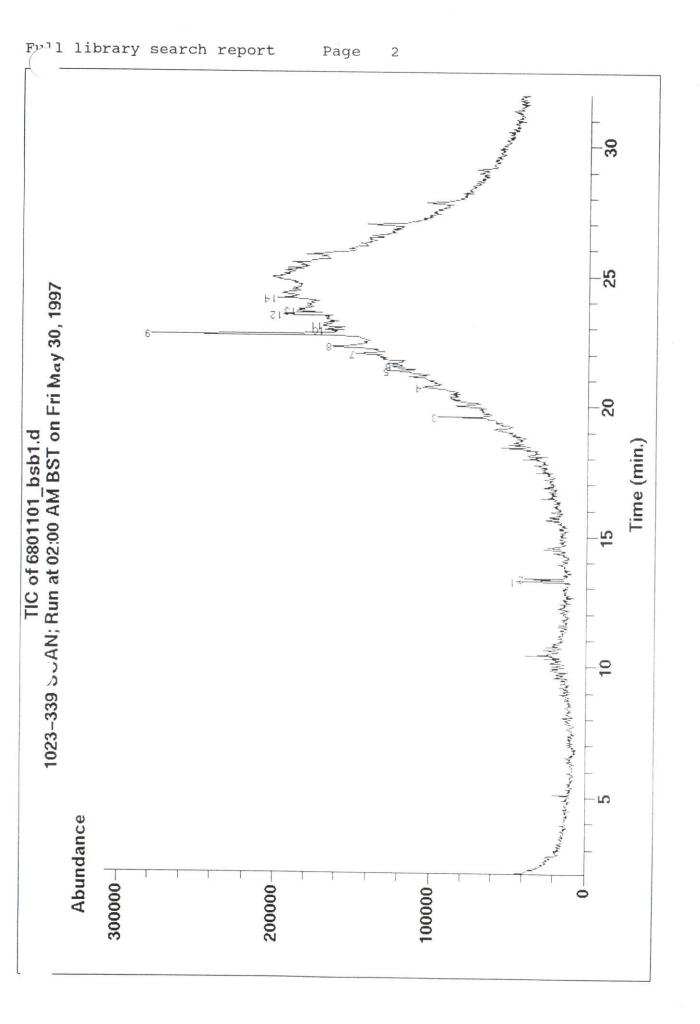


Semi-Volatiles By G.C.M.S.



Sample Matrix:	Soil	
Our Reference:	97/1023/02/01	
Date Sample Received:	2/5/97	
Date Extracted/Prepared:	25/5/97	
Separatory Funnel Ext:	No	
Soxtec Extraction:	Yes	
Column Extraction:	No	
Date Analysed:	30/5/97	
GC-MS Mode:	SCAN	
Internal Standard:	External	

Sample Number Sample Identity P.Q.L.	339
Sample Identity	TP53 1.90
P.Q.L.	10
Units	μg/kg
1	μg/kg 486
2	888
3	769
4	1054
5	920
6	796
7	830
8	2203
9	4952
10	810
11	961
12	2196
13	656
14	714


Checked By: .....

Full library search report Page 1

Search results for Data File /chem/hp1/6801101_bsb1.d 1023-339 SCAN Injected Fri May 30 97 02:00:00 AM by **BSB** MODIFIED

Peak Retention Number Time Prob. Compound Name 1 13.267 2,4(1H,3H)-Pyrimidinedione, 5-nitro-38 2 13.376 Heptane, 1,1-dimethoxy-36 3 19.565 38 1-Undecene, 5-methyl-4 20.712 43 1-Octadecanethiol 5 21.341 72 4-Hexenoic acid, 3-methyl-2,6-dioxo-21.505 6 72 1-Hentetracontanol 7 21.997 Cyclohexane, (2,2-dimethylcyclopentyl)-38 Cyclohexane, 1-(1,5-dimethylhexyl)-4-(4-8 22.271 58 58 Cyclohexane, 1-(1,5-dimethylhexyl)-4-(4-1,2-Benzenedicarboxylic acid, diisooctyl Octadecane, 1-chloro-4-Hexenoic acid, 3-methyl-2,6-dioxo-Pentacosane 7 Cyclotetradecane, 1,7,11-trimethyl-4-(1-Cyclotetradecane, 1,7,11-trimethyl-4-(1-7) Cyclotetradecane, 1,7,11-trimethyl-4-(1-7) Cyclotetradecane, 1,7,11-trimethyl-4-(1-7) Cyclotetradecane, 1,7,11-trimethyl-4-(1-7) Cyclotetradecane, 1,7,11-trimethyl-4-(1-7) Cyclotetradecane, 1,7,11-trimethyl-4-(1-7) Cyclotetradecane, 1,7,11-trimethyl-4-(1-7) 9 22.735 10 22.927 11 23.091 12 23.501 13 23.637 14 24.129

Job Number: 97/01023/02/01



Geochem Group Limited Page 169 of 205

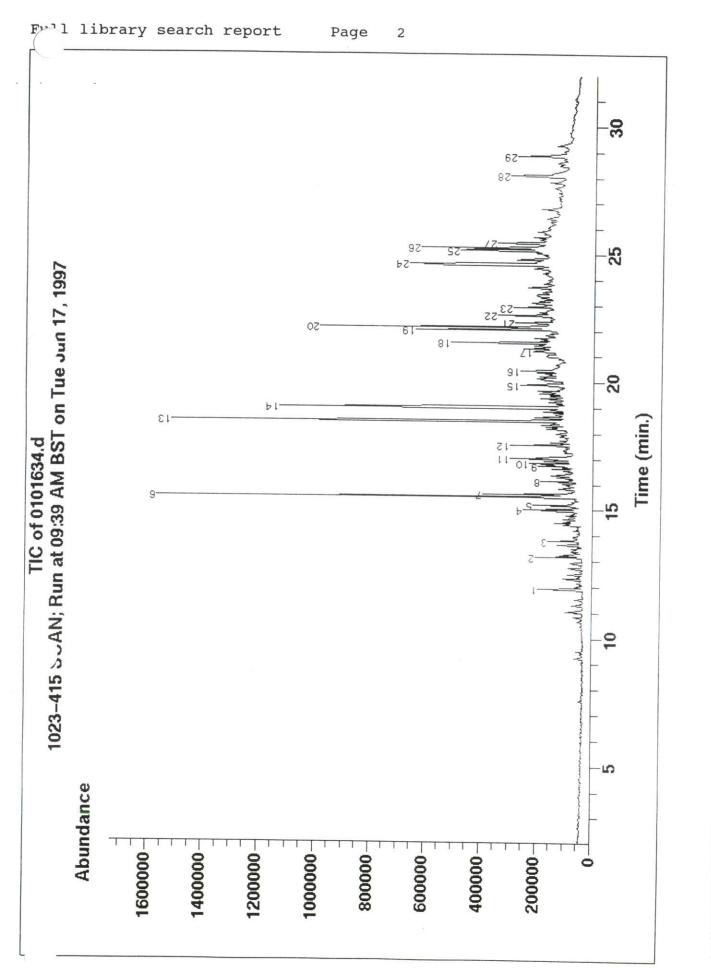
Job Number: 97/01023/02/01



Semi-Volatiles By G.C.M.S.



Sample Matrix:	Soil
Our Reference:	97/1023/02/01
Date Sample Received:	3/6/97
Date Extracted/Prepared:	11/6/97
Separatory Funnel Ext:	No
Soxtec Extraction:	Yes
Column Extraction:	No
Date Analysed:	17/6/97
GC-MS Mode:	SCAN
Internal Standard:	External


Sample Number	415		
Sample Number Sample Identity P.Q.L.	BH6 1.0-2.0m		
P.Q.L.	1		
Units	mg/kg		
1	mg/kg 2		
2	6		
3	2		
4	5		
5	3		
6	24		
7	6		
8	2		
9	3		
10	3		
11	8		
12	4		
13	25		
14	27		
15	5		
16	4		
17	2		
18	4		
19	10		
20	15		
21	3		
22	5		
23	3		
24	16		
25	7		
26	9		
27	3		
28	8		
29	5		

malaz Checked By:....

Geochem Group Limited Page 170 of 205 Full library search report Page

Search results for Data File /chem/hp1/0101634.d 1023-415 SCAN Injected Tue Jun 17 97 09:39:04 AM by Geochem Analytical Services

Peak Retention Number Time Prob. Compound Name ------1 11.906 76 Acenaphthene (8CI) 2 13.163 93 9H-Fluorene 3 13.791 94 Dibenzofuran, 4-methyl-4 14.966 42 Azulene, 7-ethyl-1,4-dimethyl-5 15.185 83 Dibenzothiophene 6 15.513 96 Phenanthrene 7 15.622 94 Anthracene 8 16.114 91 1,1'-Biphenyl, 2-azido-9 16.742 96 Anthracene, 2-methyl-10 16.824 94 Anthracene, 2-methyl-17.015 11 58 4H-Cyclopenta[def]phenanthrene 17.561 12 95 9,10-Anthracenedione 13 18.489 96 Fluoranthene 19.008 14 87 Pyrene 15 19.908 94 11H-Benzo[b]fluorene 16 20.454 92 Heptadecane 17 21.218 70 7H-Benz[de]anthracen-7-one 18 21.546 91 Benzo[ghi]fluoranthene 19 22.038 98 Benz[a]anthracene 20 22.147 93 Triphenylene 21 22.338 93 3,4-DIHYDROCYCLOPENTA(CD)PYRENE (ACEPYRE 22 22.611 49 1,2-Benzenedicarboxylic acid, diisooctyl 23 22.939 86 Hexadecane 24 24.633 97 Benzo[j]fluoranthene 25 25.153 96 Benzo[j]fluoranthene 26 25.262 97 Benz[e]acephenanthrylene 27 25.453 Benzo[j]fluoranthene 97 28 28.105 96 Indeno[1,2,3-cd]pyrene 29 28.870 95 Dibenzo[def,mno]chrysene





Volatile Organics Analysis

# by

G.C.M.S.



							the second
-	T.L.N.	Sample number	226				
	Job Number	Client Ref	TP 99				
		Depth	1.9				
9	7/01023/02/01	Date analysed	12/5/97				
		Matrix	Soil				
Peak	CAS No:	Units	μg/kg				
2T	75-71-8	Dichlorodifluoromethane	<1				
3T	74-87-3	Chloromethane	<1		-		
4T	75-01-4	Vinyl chloride					
5T	74-83-9		<1				
6T	75-00-3	Bromomethane	<1				
		Chloroethane	<1				
7T	75-69-4	Trichlorofluoromethane	<1				
8T	156-60-5	trans-1,2-Dichloroethene	<1				
9T	75-09-2	Dichloromethane	<1				1
10T	75-35-4	1,1-Dichloroethene	<1				
11T	75-34-3	1,1-Dichloroethane	<1				
12T	156-59-2	cis-1,2-Dichloroethene	<1				
13T	74-97-5	Bromochloromethane	<1				
14T	67-66-3	Chloroform	<1				
16T	107-06-2	1,2-Dichloroethane	<1				
17T	71-55-6	1,1,1-Trichloroethane	<1	+			
3T	563-58-6	1,1-Dichloropropene	<1				
T	71-43-2	Benzene	<1				
20T	56-23-5	Carbontetrachloride					
201 22T	74-95-3		<1				-
		Dibromomethane	<1				
23T	78-87-5	1,2-Dichloropropane	<1				
24T	79-01-6	Trichloroethene	<1				
25T	10061-01-5	cis-1,3-Dichloropropene	<1				
26T	10061-02-6	trans-1,3-Dichloropropene	<1				
27T	79-00-5	1,1,2-Trichloroethane	<1				
29T	108-88-3	Toluene	<1				
30T	142-28-9	1,3-Dichloropropane	<1				
31T	124-48-1	Dibromochloromethane	<1				
32T	106-93-4	1,2-Dibromoethane	<1				
33T	127-18-4	Tetrachloroethene	<1				
35T	108-90-7	Chlorobenzene	<1				
36T		Ethylbenzene	<1				
37T	106-42-3/108-38-3	n/m-Xylene	<1				
38T		Styrene	<1				
39T		o-Xylene					
40T		1,1,2,2-Tetrachloroethane	<1				
			<1				
41T		1,2,3-Trichloropropane	<1				
43T	98-82-8	Isopropylbenzene	<1				
14 <u>T</u>	108-86-1	Bromobenzene	<1				
T		2-Chlorotoluene	<1				
+6T	103-65-1	Propylbenzene	<1				
47T		1,2,4-Trimethylbenzene	<1				
48T		4-Isopropyltoluene	<1				
49T		1,3,5-Trimethylbenzene	<1	1			
50T	95-50-1	1,2-Dichlorobenzene	<1				
52T		1,4-Dichlorobenzene	<1				
53T		sec-Butylbenzene	<1				
54T		tert-Butylbenzene	<1				
55T		1,3-Dichlorobenzene	<1				
56T		n-Butylbenzene	<1				
57T		1,2-Dibromo-3-chloro-propane	<1				
571 58T		1,2-Dibromo-3-chioro-propane				-	
59T			<1				
		Naphthalene	<1				
60T		1,2,3-Trichlorobenzene	<1				
61T	87-68-3	Hexachlorobutadiene	<1				
			Mart of Contract o				

Water blank subtracted Job Number: 97/01023/02/01 Approved by

April on Con

Geochem Group Limited Print name Page 北WoF100NES



Volatile Organics Analysis

by

G.C.M.S.



		Sample number	1 010	1 050		
	Job Number		217	228	238	
	10D INUMDER	Client Ref	TP 93	TP 100	TP 105	
97		Depth Data analysis	0.9	1.4	1.2	
71	7/01023/02/01	Date analysed	9/5/97	9/5/97	9/5/97	
- 1.	0.001	Matrix	Soil	Soil	Soil	
Peak	CAS No:	Units	μg/kg	μg/kg	μg/kg	
2T	75-71-8	Dichlorodifluoromethane	<1	<1	<1	+
3T	74-87-3	Chloromethane	<1	<1	<1	+
4T	75-01-4	Vinyl chloride	<1	<1	<1	+
5T	74-83-9	Bromomethane	<1	<1		
6T	75-00-3	Chloroethane	<1		<1	
7T	75-69-4	Trichlorofluoromethane		<1	<1	
8T	156-60-5	trans-1,2-Dichloroethene	<1	<1	<1	
9T	75-09-2	Dichloromethane	<1	<1	<1	
91 10T	75-09-2		<1	<1	<1	
101 11T		1,1-Dichloroethene	<1	<1	<1	
	75-34-3	1,1-Dichloroethane	<1	<1	<1	
12T	156-59-2	cis-1,2-Dichloroethene	<1	<1	<1	
13T	74-97-5	Bromochloromethane	<1	<1	<1	+
14T	67-66-3	Chloroform	<1	<1	<1	+
16T	107-06-2	1,2-Dichloroethane	<1	<1	<1	+
17T	71-55-6	1,1,1-Trichloroethane	<1	<1	<1	+
`8T	563-58-6	1,1-Dichloropropene	<1	<1	<1	+
9T	71-43-2	Benzene	<1	<1	1110	+
20T		Carbontetrachloride	<1	<1		+
22T		Dibromomethane	<1	<1	<1	
23T		1,2-Dichloropropane	<1		<1	
24T		Trichloroethene		<1	<1	
241 25T		cis-1,3-Dichloropropene	<1	<1	<1	
251 26T			<1	<1	<1	
201 27T		trans-1,3-Dichloropropene	<1	<1	<1	
		1,1,2-Trichloroethane	<1	<1	<1	
29T		Toluene	<1	<1	<1	
30T	142-28-9	1,3-Dichloropropane	<1	<1	<1	t
31T	124-48-1	Dibromochloromethane	<1	<1	<1	t
32T	106-93-4	1,2-Dibromoethane	<1	<1	<1	t
33T		Tetrachloroethene	<1	<1	<1	<u>+</u>
35T	108-90-7	Chlorobenzene	<1	<1	<1	<u>├</u>
36T	100-41-4	Ethylbenzene	<1	<1	9433	<b>├</b> ───
37T	106-42-3/108-38-3	n/m-Xvlene	<1	<1	9433	<b>↓</b>
38T		Styrene	<1	<1		<b></b>
39T	and the second se	o-Xylene	<1		<1	
40T		1,1,2,2-Tetrachloroethane		<1	<1	
401 41T	the second s		<1	<1	<1	
411 43T		1,2,3-Trichloropropane	<1	<1	<1	
	and the second sec	Isopropylbenzene	<1	<1	1677	
14 <u>T</u>		Bromobenzene	<1	<1	<1	
<u> </u>		2-Chlorotoluene	<1	<1	<1	
+6T		Propylbenzene	<1	<1	1928	[
47T	95-36-3	1,2,4-Trimethylbenzene	<1	53	3784	· · · · · · · · · · · · · · · · · · ·
48T		4-Isopropyltoluene	<1	<1	<1	·
49T	108-67-8 1	1,3,5-Trimethylbenzene	<1	<1	11725	r
50T	95-50-1 1	1,2-Dichlorobenzene	<1	<1	<1	r
52T		1,4-Dichlorobenzene	<1	<1	<1	·
53T		sec-Butylbenzene	<1	<1	944	·
54T		tert-Butylbenzene	<1	<1	944 <1	·
55T		1,3-Dichlorobenzene	<1	<1		·
56T		n-Butylbenzene	<1		<]	
57T		1,2-Dibromo-3-chloro-propane		<1	1456	
58T			<1	<1	<1	
59T		1,2,4-Trichlorobenzene	<1	<1	<1	
		Naphthalene	<1	<1	2664	
50T		1,2,3-Trichlorobenzene	<1	<1	<1	(
51T	87-68-3 F	Hexachlorobutadiene	<1	<1	<1	·
						·
					+	
			I		+	
			t+	+		
			-			

Water blank subtracted Job Number: 97/01023/02/01 Approved by

Geochem Group Limited Print name Page J7W df. JONES



Volatiles Analysis by G.C.M.S.



		Sample number	284	Τ	
Jo	b Number	Client Ref	TP91		
		Depth	0.75	 	
97	/1023/02/05	Date analysed	12/5/97		 
	1020102102	Matrix		 	 
			Soil	 	
D 1	CLON.	Dilution factor (P.Q.L)	5		
Peak	CAS No:	Units	μg/kg		
2T	75-35-4	1,1-Dichloroethene	<5		
3T	75-09-2	Dichloromethane	<5		
4T	156-59-2	trans-1,2-Dichloroethene	<5		
5T	75-34-3	1,1-Dichloroethane	<5		
6T	156-60-5	cis-1,2-Dichloroethene	<5		
7T	67-66-3	Chloroform	<5		
8T	594-20-7	2,2-Dichloropropane	<5		
10T	107-06-2	1,2-Dichloroethane	<5		
11T	71-55-6	1,1,1-Trichloroethane	<5		
12T	563-58-6	1,1-Dichloropropene	<5		
T T	71-43-2 56-23-5	Benzene Gerhen Tetrachlarida	<5		
1 16T	74-95-3	Carbon Tetrachloride	<5		 
161 17T		Dibromomethane	<5		
1/1 18T	78-87-5 75-27-4	1,2-Dichloropropane Bromodichloromethane	<5		
181 19T	79-01-6	Trichloroethene	<5	 	
20T	10061-01-6		<5	 	
201 21T	10061-01-6	cis-1,3-Dichloropropene	<5	 	
211 22T	79-00-5	trans-1,3-Dichloropropene 1,1,2-Trichloroethane	<5	 	
22 T	108-88-3	Toluene	<5	 	
241 25T	124-48-1	Dibromochloromethane	<5	 	
25T	106-93-4	1,2-Dibromoethane	<5	 	 
201 27T	127-18-4	Tetrachloroethene	<5	 	 
27T	108-90-7	Chlorobenzene	<5 <5	 	
30T	100-41-4	Ethylbenzene	<5	 	 
31T	1330-20-7	Xylenes(meta & para)	<5	 	 
32T	75-25-2	Bromoform	<5	 	 
33T	100-42-5	Styrene	<5	 	
34T	79-34-5	1,1,2,2-Tetrachloroethane	<5	 	 
35T	95-47-6	o-Xylene	<5	 	
² 6T	142-28-9	1,3-Dichloropropane	<5	 	 
T	98-82-8	Isopropylbenzene	<5	 	 
JYT	108-86-1	Bromobenzene	<5	 	 
40T	95-49-8	2-Chlorotoluene	<5	 	 
41T	103-65-1	n-Propylbenzene	<5	 	 
42T	106-43-4	4-Chlorotoluene	<5	 	 
43T	108-67-8	1,3,5-Trimethylbenzene	<5	 	 
44T	25155-15-1	4-Isopropyltoluene	<5	 	 
45T	95-63-6	1,2,4-Trimethylbenzene	<5	 	 
46T	95-50-1	1,2-Dichlorobenzene	<5		 
48T	541-73-1	1,3-Dichlorobenzene	<5	 	 
49T	135-98-8	sec-Butylbenzene	<5	 	 
50T	98-06-6	tert-Butylbenzene	<5	 	 
51T	106-46-7	1,4-Dichlorobenzene	<5	 	 
52T	104-51-8	n-Butylbenzene	<5	 	 
	<ul> <li>Contract and a Contract</li> </ul>	Total Other Volatiles	<5	 	 

N.B. Water blank subtracted

Approved by

NA.O

# High dilution factor

* Out of calibration

Geochem Group Limited Page 175 of 205

Print name

J.W.F.JONES

Job Number: 97/01023/02/01



# Tentatively Identified Compounds



by GCMS

Method:	Purge & Trap	
Detection:	GC/MS	
Mode:	Full scan	
Internal Std:	Internal & Surrogate	********
Conc:	100µg/kg	*****
Matrix:	Soil	*****
Our ref:	97/1023-284	
Your ref:	TP 91	

Compound Identification	R.Time (min)	Conc. (µg/kg)
Carbon disulphide	7.08	18
		Carbon disulphide 7.08

#### Units: µg/kg

Approved by:

Volatiles Analysis by

G.C.M.S.

		Sample number	310		
Jo	b Number	Client Ref	TP138		
		Depth	1.50		
97/1023/02/06		Date analysed	22/05/97	 	 
		Matrix	Soil	 	 
		Dilution factor (P.Q.L)		 	 
Peak	CAS No:	Units	10	 	 
			μg/kg		
2T 3T	75-35-4	1.1-Dichloroethene	<10	 	
4T	75-09-2	Dichloromethane	*43	 	
41 5T	75-34-3	trans-1.2-Dichloroethene	<10	 	
6T	156-60-5	1.1-Dichloroethane	<10	 	
7T	67-66-3	cis-1,2-Dichloroethene Chloroform	<10		
8T	594-20-7	2.2-Dichloropropane	<10	 	
10T	107-06-2	1.2-Dichloroethane	<10	 	
101 11T	71-55-6	1,1,1-Trichloroethane	<10 <10	 	 
12T	563-58-6	1,1-Dichloropropene	<10		
121 13T	71-43-2	Benzene	<10	 	 
IT	56-23-5	Carbon Tetrachloride	<10	 	 
.6T	74-95-3	Dibromomethane	<10	 	 
17T	78-87-5	1,2-Dichloropropane	<10	 	 
18T	75-27-4	Bromodichloromethane	<10	 	 
19T	79-01-6	Trichloroethene	24	 	 
20T	10061-01-6	cis-1,3-Dichloropropene	<10	 	 
21T	10061-02-5	trans-1.3-Dichloropropene	<10	 	 
22T	79-00-5	1,1.2-Trichloroethane	<10		 
24T	108-88-3	Toluene	<10	 	 
25T	124-48-1	Dibromochloromethane	<10	 	 
26T	106-93-4	1,2-Dibromoethane	<10	 	 
27T	127-18-4	Tetrachloroethene	<10		 
29T	108-90-7	Chlorobenzene	<10		 
30T	100-41-4	Ethylbenzene	<10		 
31T	1330-20-7	Xylenes(meta & para)	<10		 
32T	75-25-2	Bromoform	<10		 
33T	100-42-5	Styrene	<10		 
34T	79-34-5	1,1,2,2-Tetrachloroethane	<]()		 
35T	95-47-6	o-Xylene	<1()		
36T	142-28-9	1,3-Dichloropropane	<1()		 
38T	98-82-8	Isopropylbenzene	<10		
Ϋ́Τ	108-86-1	Bromobenzene	<1()		
τUγ	95-49-8	2-Chlorotoluene	< ] ()		
41T	103-65-1	n-Propylbenzene	<10		
42T	106-43-4	4-Chlorotoluene	<10		
43T	108-67-8	1,3,5-Trimethylbenzene	<10		
44T	25155-15-1	4-Isopropyltoluene	<10		
45T	95-63-6	1.2.4-Trimethylbenzene	<10		
46T	95-50-1	1.2-Dichlorobenzene	<10		
48T	541-73-1	1.3-Dichlorobenzene	<10		
49T	135-98-8	sec-Butylbenzene	<10		
50T	98-06-6	tert-Butylbenzene	<10		
51T	106-46-7	1,4-Dichlorobenzene	<10		
52T	104-51-8	n-Butylbenzene	<10		
		Total Other Volatiles	4678		

#### N.B. Water blank subtracted

Approved by

# High dilution factor

* Out of calibration

Print name

J.W.F.JONES

Geochem Group Limited Page 177 of 205

Job Number: 97/01023/02/01



Volatiles Analysis by

#### G.C.M.S.

TESTING No. 1291

		Sample number	313	234	331	
Jo	b Number	Client Ref	TP142	TP146	TP149	
		Depth	0.20	0.30	0.50	
97/1023/02/06		Date analysed	19/05/97	19/05/97	20/05/97	 
		Matrix				 
			Soil	Soil	Soil	
		Dilution factor (P.Q.L)	5	5	10	
Peak	CAS No:	Units	µg/kg	μg/kg	μg/kg	
2T	75-35-4	1,1-Dichloroethene	<5	<5	<10	
3T	75-09-2	Dichloromethane	38	<5	30	 
4T	156-59-2	trans-1,2-Dichloroethene	<5	<5	<10	
5T	75-34-3	1,1-Dichloroethane	<5	<5	<10	
6T	156-60-5	cis-1,2-Dichloroethene	<5	<5	<10	
7T	67-66-3	Chloroform	<5	<5	<10	
8T	594-20-7	2.2-Dichloropropane	<5	<5	<10	 
10T	107-06-2	1.2-Dichloroethane	<5	<5	<10	
11T	71-55-6	1,1,1-Trichloroethane	<5	<5	<10	
12T	563-58-6	1.1-Dichloropropene	<5	<5	<10	 
13T	71-43-2	Benzene	<5	<5	<10	 
1T	56-23-5	Carbon Tetrachloride	<5	<5	<10	 
16T	74-95-3	Dibromomethane	<5	<5	<10	 
17T	78-87-5	1.2-Dichloropropane	<5	<5	<10	 
18T	75-27-4	Bromodichloromethane	<5	<5	<10	 
19T	79-01-6	Trichloroethene	<5	<5	<10	 
20T	10061-01-6	cis-1,3-Dichloropropene	<5	<5	<10	 
21T	10061-02-5	trans-1,3-Dichloropropene	<5	<5	<10	 
22T	79-00-5	1,1,2-Trichloroethane	<5	<5	<10	
24T	108-88-3	Toluene	<5	<5	26	
25T	124-48-1	Dibromochloromethane	<5	<5	<10	
26T	106-93-4	1.2-Dibromoethane	<5	<5	<10	 
27T	127-18-4	Tetrachloroethene	<5	<5	<10	 
29T	108-90-7	Chlorobenzene	<5	<5	<10	 
30T	100-41-4	Ethylbenzene	<5	<5	<10	 
31T	1330-20-7	Xylenes(meta & para)	<5	<5	36	
32T	75-25-2	Bromoform	<5	<5	<10	 
33T	100-42-5	Styrene	<5	<5	<10	
34T	79-34-5	1,1,2,2-Tetrachloroethane	<5	<5		 
35T	95-47-6	o-Xvlene	<5	<5	<10	 
36T	142-28-9	1,3-Dichloropropane	<5	<5	30	 +
38T	98-82-8	Isopropylbenzene	<5	<5	<10	
T	108-86-1	Bromobenzene	<5		<10	
TUT	95-49-8	2-Chlorotoluene	<5	<5	<10	 
41T	103-65-1	n-Propylbenzene	<5	<5	<10	 
42T	106-43-4	4-Chlorotoluene	<5	<5	<10	 
43T	108-67-8	1.3.5-Trimethylbenzene	<5	<5	<10	 
44T	25155-15-1	4-Isopropyltoluene		<5	457	
45T	95-63-6	1.2.4-Trimethylbenzene	<5	<5	<10	 
46T	95-50-1		<5	6	524	 
48T	541-73-1	1.2-Dichlorobenzene	<5	<5	<10	 
49T		1.3-Dichlorobenzene	<5	<5	<10	
	135-98-8	sec-Butylbenzene	<5	<5	<10	
50T	98-06-6	tert-Butylbenzene	<5	<5	187	
51T	106-46-7	1.4-Dichlorobenzene	<5	<5	<10	
52T	104-51-8	n-Butylbenzene	<5	<5	<10	
		Total Other Volatiles	<5	17	21013	

 $\overline{\mathcal{N}}$ 

#### N.B. Water blank subtracted

Approved by

# High dilution factor

* Out of calibration

Print name

J.W.F.JONES

.....

Job Number: 97/01023/02/01

Geochem Group Limited Page 178 of 205





## Tentatively Identified Compounds



by

# GCMS

Method:	Purge & Trap
Detection:	GC/MS
Mode:	Full scan
Internal Std:	Internal & Surrogate
Conc:	100µg/kg
Matrix:	Soil
Our ref:	97/1023-331
Your ref:	TP 149

Peak No:	Compound Identification	R.Time (min)	Conc. (µg/kg)
а	3-methyl-Octane	23.56	579
b	3,5-dimethyl-Octane	25.98	1137
С	2,6-dimethyl-Octane	26.40	2067
d	1-ethyl-2-methyl-Benzene	27.17	525
e	2-methyl-Nonane	27.66	1609
f	2,6-dimethyl-Nonane	30.04	1106
g	butyl-Cyclohexane	30.59	909
			L

Units: µg/kg

Approved by:

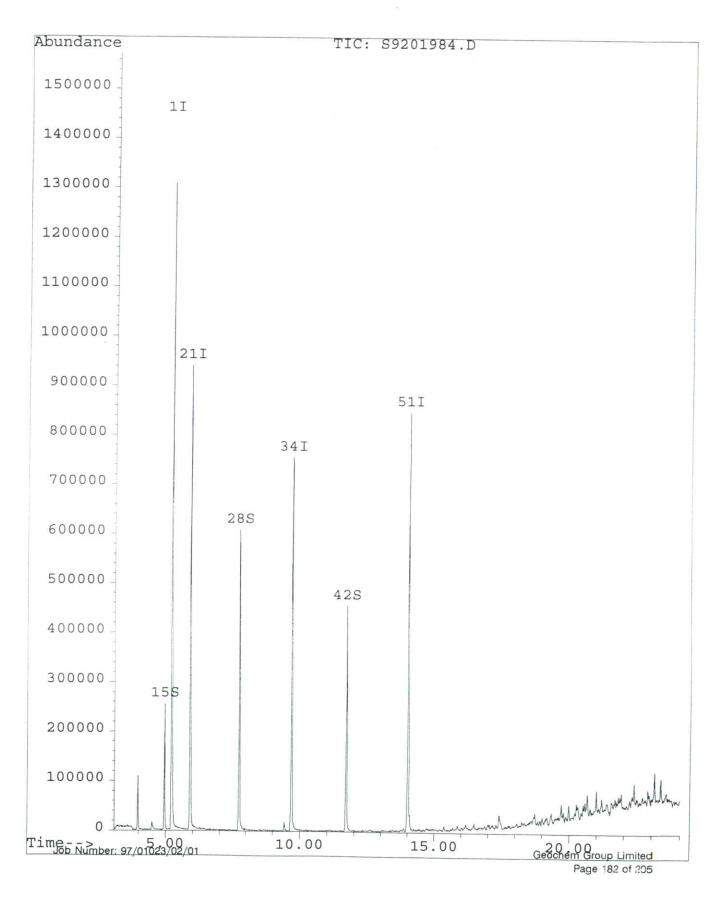


Volatile Organics Analysis

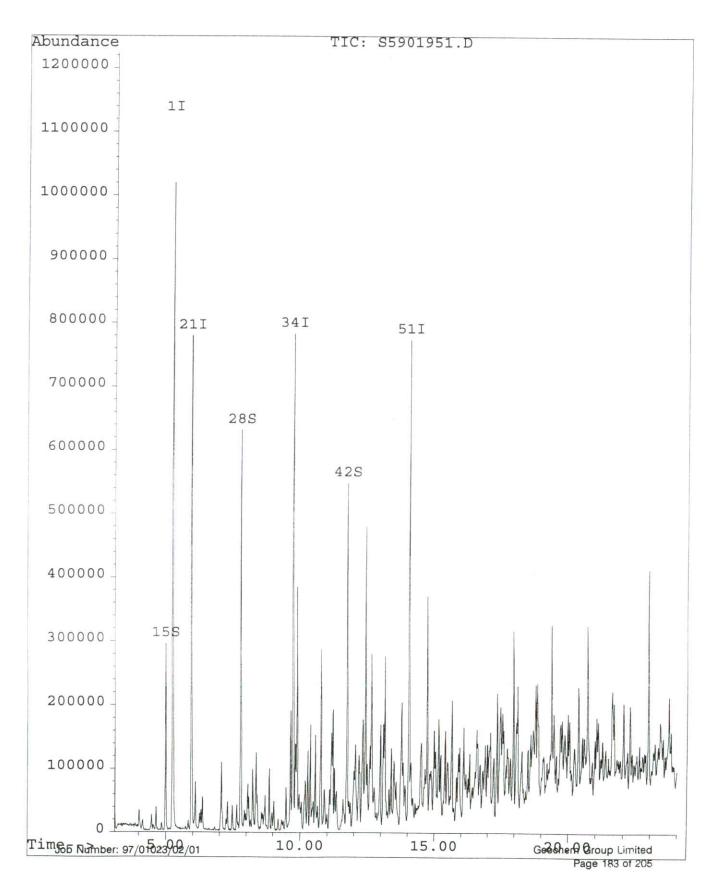
# by

G.C.M.S.

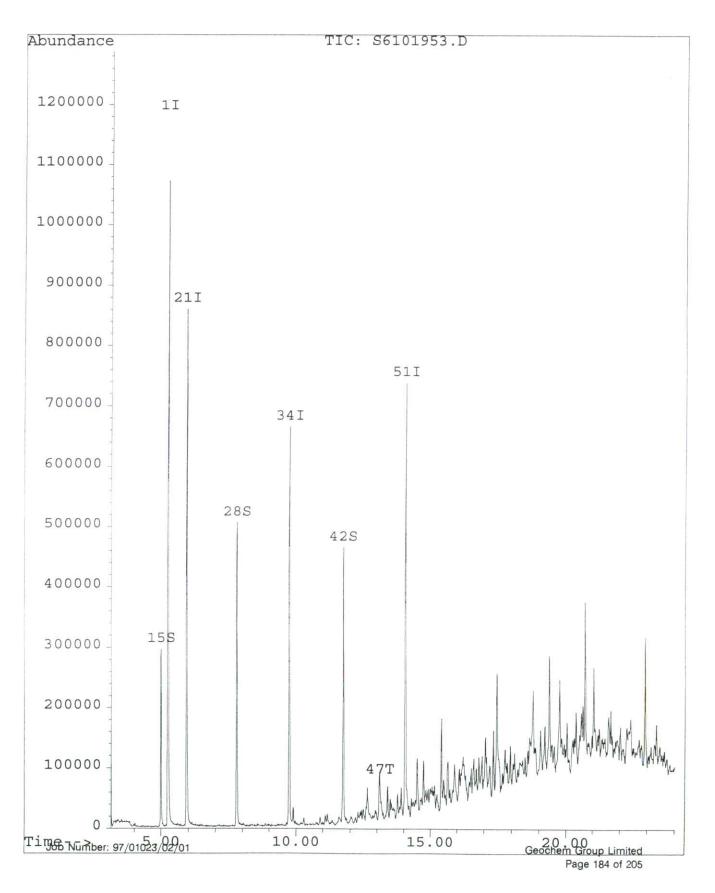



		Sample number	100	1			
-1 - 2	Job Number	Client Ref	335	350			5267
5	10D Humber		TP 35	TP 134	'		
0"	= /01 032 /03 /01	Depth Date analysed	0.2	1.0	/		
71	7/01023/02/01	Date analysed	12/5/97	1210101	Ţ'		
- 1.	0101	Matrix	Soil	Soil	1		
Peak	CAS No:	Units	μg/kg	μg/kg	+	r	
2T	75-71-8	Dichlorodifluoromethane	<1	<1	+		
3T	74-87-3	Chloromethane	<1	<1	+	F	
4T	75-01-4	Vinyl chloride	<1	<1	+	t	
5T	74-83-9	Bromomethane	<1	<1			
6T	75-00-3	Chloroethane	<1				
7T	75-69-4	Trichlorofluoromethane	<1	<1	_ <b>_</b>		
8T	156-60-5	trans-1,2-Dichloroethene		<1			
9T	75-09-2	Dichloromethane	<1	<1			
91 10T			<1	<1			
	75-35-4	1,1-Dichloroethene	<1	<1		í	
11T	75-34-3	1,1-Dichloroethane	<1	<1	1 ,	· · · · · · · · · · · · · · · · · · ·	
12T	156-59-2	cis-1,2-Dichloroethene	<1	<1	+	·	
13T	74-97-5	Bromochloromethane	<1	<1	++	·	
14T	67-66-3	Chloroform	<1	<1	++		
16T	107-06-2	1,2-Dichloroethane	<1	<1	++		
17T	71-55-6	1,1,1-Trichloroethane	<1	<1	++		
'8T	563-58-6	1,1-Dichloropropene	<1		++		
JT	71-43-2	Benzene		<1			
20T	56-23-5		<1	<1			
		Carbontetrachloride	<1	<1			
22T	74-95-3	Dibromomethane	<1	<1			
23T	78-87-5	1,2-Dichloropropane	<1	<1	1 1		
24T	79-01-6	Trichloroethene	<1	<1	+		
25T	10061-01-5	cis-1,3-Dichloropropene	<1	<1	++		
26T	10061-02-6	trans-1,3-Dichloropropene	<1	<1	++		
27T	79-00-5	1,1,2-Trichloroethane	<1	<1	++		
29T	108-88-3	Toluene	<1		++		
30T	142-28-9	1,3-Dichloropropane		<]	++		
301 31T	142-28-9	Dibromochloromethane	<1	<]			
311 32T			<1	<1			
	106-93-4	1,2-Dibromoethane	<1	<1			
33T	127-18-4	Tetrachloroethene	<1	<1	1		
35T		Chlorobenzene	<1	<1	+		
36T	100-41-4	Ethylbenzene	<1	<1	+		
37T	106-42-3/108-38-3	3 p/m-Xylene	<1	<1	++		
38T	100-42-5	Styrene	<1	<1	++		
39T		o-Xylene	<1	<1	++		
40T		1,1,2,2-Tetrachloroethane	<1		++		
401 41T				<1			
411 43T		1,2,3-Trichloropropane	<1	<1			
		Isopropylbenzene	<1	<1			
44T		Bromobenzene	<1	<1			
T		2-Chlorotoluene	<1	<1	++		
.6T	103-65-1	Propylbenzene	<1	<1	++		
47T	95-36-3	1,2,4-Trimethylbenzene	<1	73	+		
48T		4-Isopropyltoluene	<1	<1	++		
49T		1,3,5-Trimethylbenzene	<1	<1	++		
50T		1,2-Dichlorobenzene	<1		++		
501 52T		1,4-Dichlorobenzene		<1			
521 53T			<1	<1			
531		sec-Butylbenzene	<1	<1			
54T		tert-Butylbenzene	<1	<1			
55T		1,3-Dichlorobenzene	<1	<1			
56T		n-Butylbenzene	<1	<1	tt-		
57T	96-12-8	1,2-Dibromo-3-chloro-propane	<1	<1	++		
58T		1,2,4-Trichlorobenzene	<1	<1	+		
59T		Naphthalene	<1	<1	++		
60T		1,2,3-Trichlorobenzene			<b></b>		
61T			<1	<1			_
<u>311</u>	87-08-3	Hexachlorobutadiene	<1	<1			
		(/					
1		[/		,			
					tt-		_
			· /		1		
			<b>└───</b> ┤		++		-

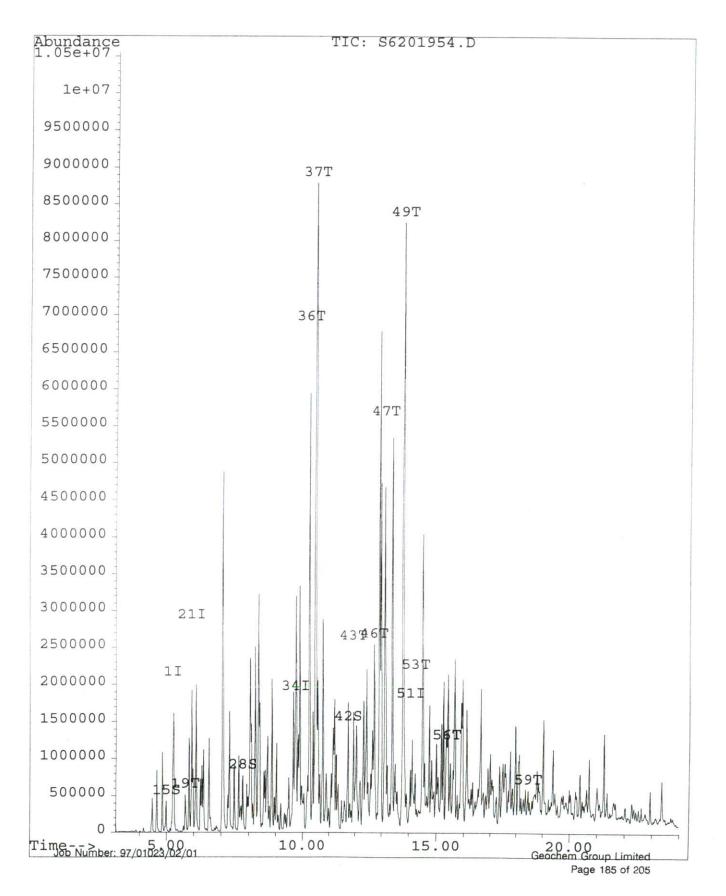
Water blank subtracted


Job Number: 97/01023/02/01 Approved by

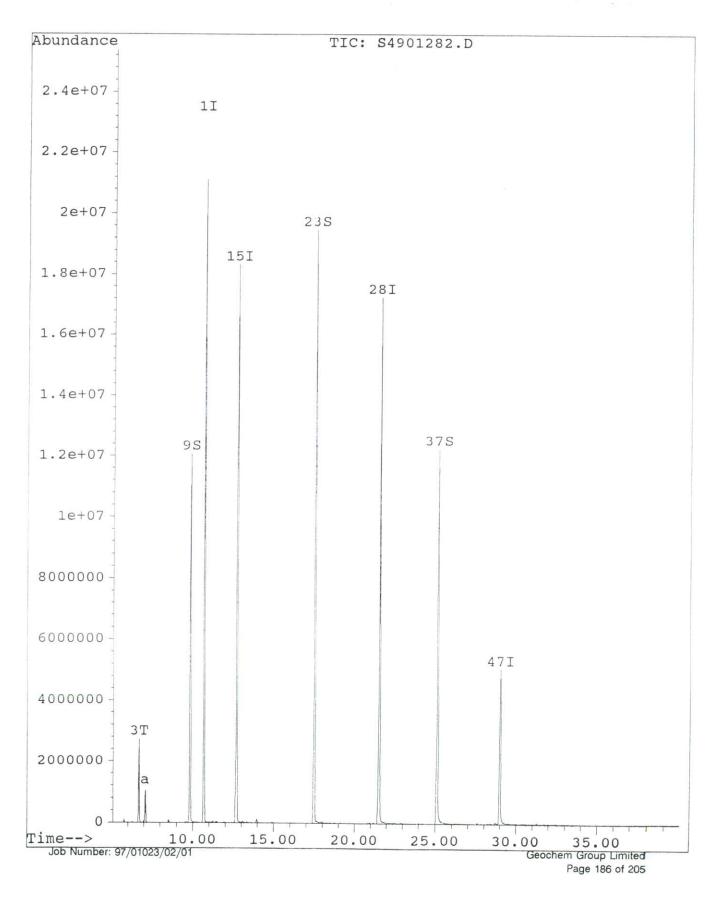
Geochem Group Limited Print name Page JAV. F.JONES


File : C:\HPCHEM\1\DATA\120597\S9201984.D Operator : Geochem Analytical Services Acquired : 12 May 97 10:53 pm using AcqMethod 60VOCHS Instrument : MSD Vols5 Sample Name: 1023-226 Misc Info : Vial Number: 15

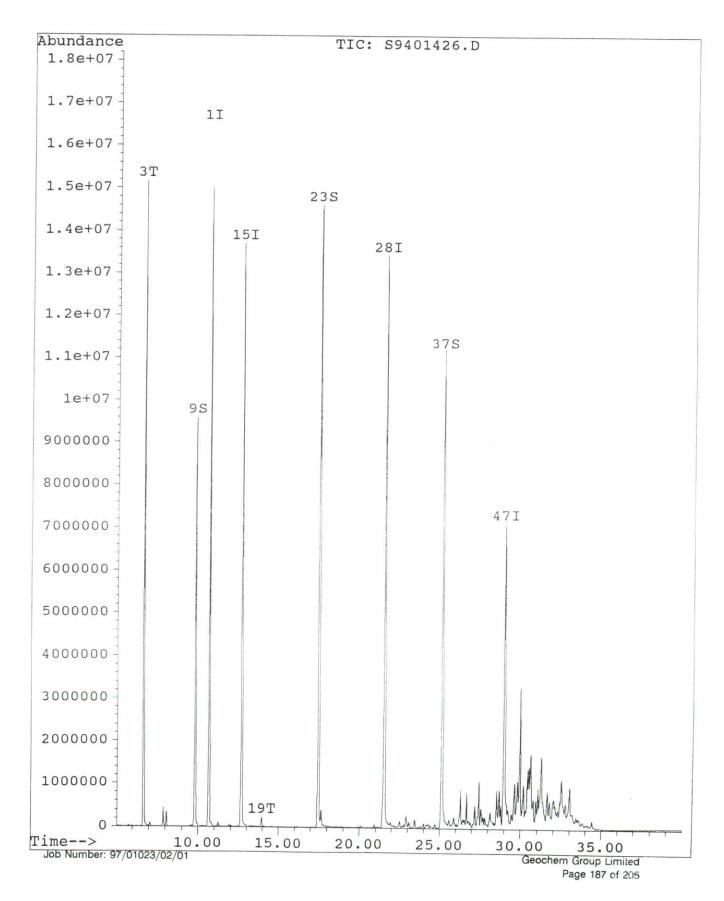



File :	C:\HPCHEM\1\DATA\090597\S5901951.D
Operator :	Geochem Analytical Services
Acquired :	10 May 97 7:00 am using AcqMethod 60VOCHS
Instrument :	MSD Vols5
Sample Name:	
Misc Info :	
Vial Number:	30




File : C:\HPCHEM\1\DATA\090597\S6101953.D Operator : Geochem Analytical Services Acquired : 10 May 97 8:09 am using AcqMethod 60VOCHS Instrument : MSD Vols5 Sample Name: 1023-228 Misc Info : Vial Number: 32

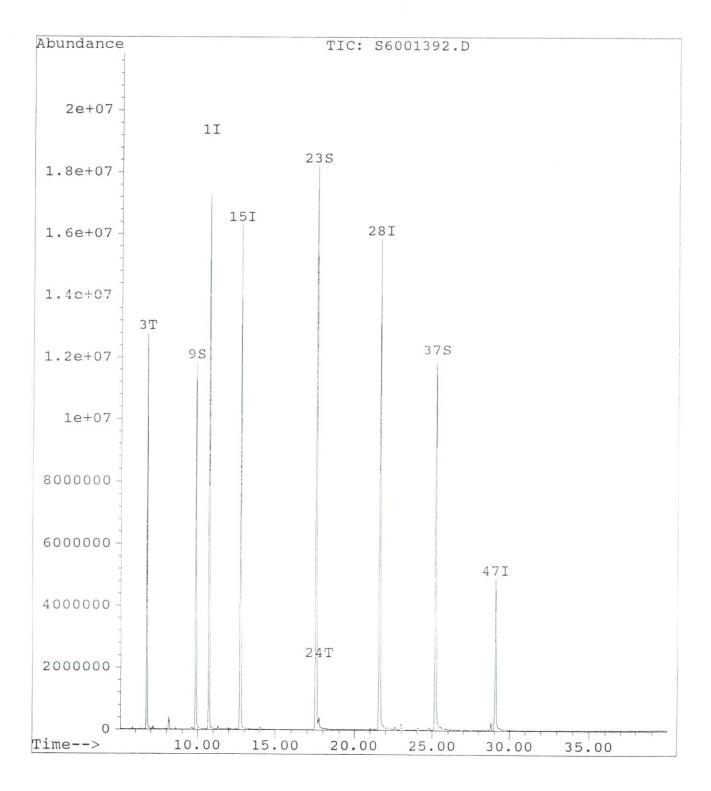



C:\HPCHEM\1\DATA\090597\S6201954.D
Geochem Analytical Services
10 May 97 8:43 am using AcqMethod 60VOCHS
MSD Vols5
1023-238
33



File :	C:\HPCHEM\1\DATA\S4901282.D
Operator :	Geochem Analytical Services
Acquired :	12 May 97 11:15 pm using AcqMethod VOLENV
Instrument :	
Sample Name:	
Misc Info :	Aspinall & Company
Vial Number:	49



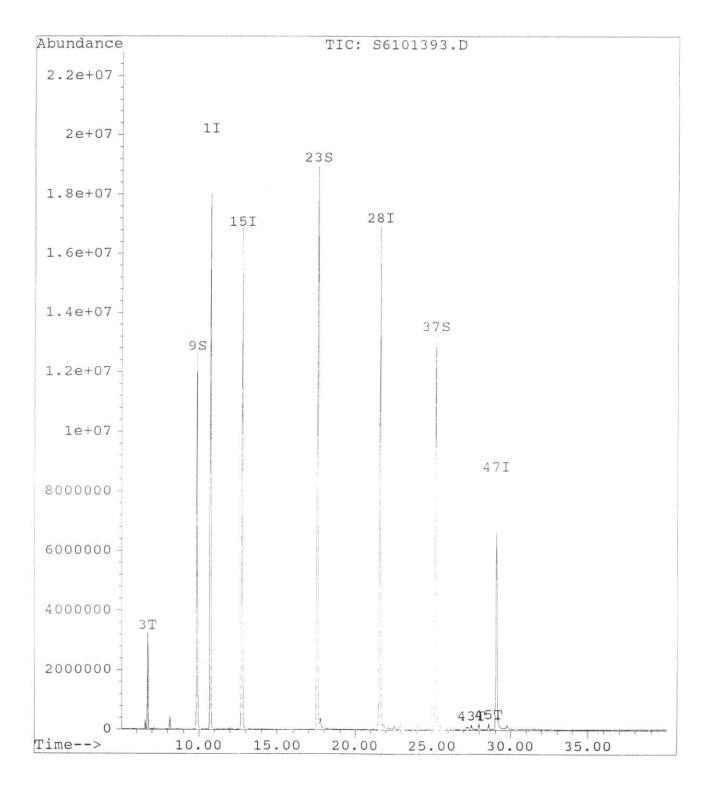

Operator :	C:\HPCHEM\1\DATA\S9401426.D Geochem Analytical Services
Acquired :	22 May 97 9:11 am using AcqMethod VOLENV
Instrument :	5971 MSD
Sample Name:	1023/6-310
Misc Info :	Aspinwall & Company
Vial Number:	94



#### Quantitation Report

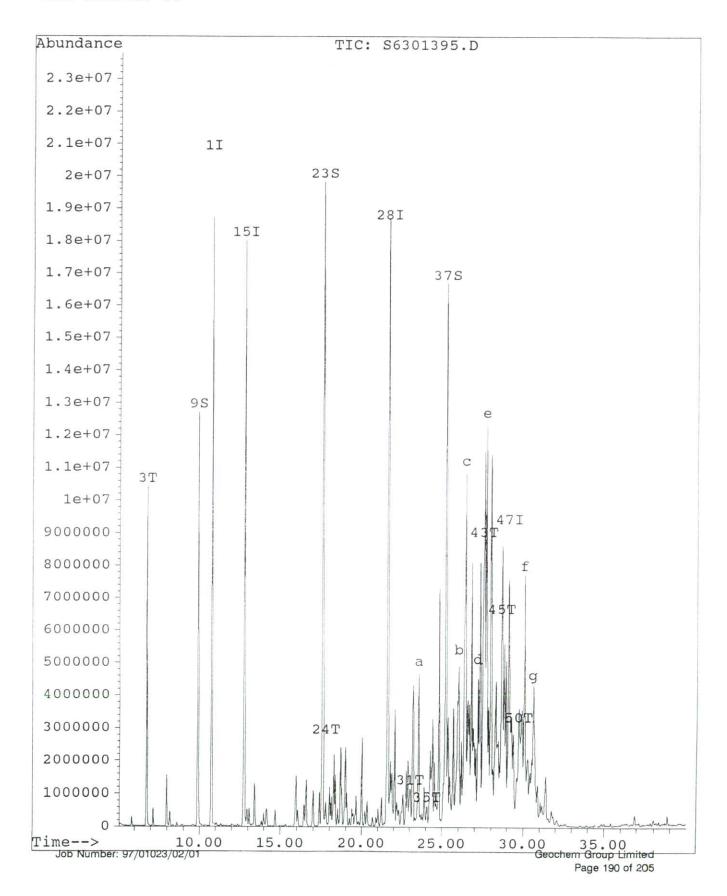
Data File :	C:\HPCHEM\1\DATA\S6001392.D		
Acq Time :	19 May 97 8:22 pm	Operator:	Geochem
Sample :	1023/6-313	Inst :	5971 MS
Misc :	Aspinwall & Company	Multiplr:	1.00
Quant Time:	May 20 11:55 1997	-	1999-1997-1997 - 9975

Method	:	C:\HPCHEM\1\METHODS\VOLENV.M
Title	:	Volatile standards for 5 point calibration
Last Update	:	Thu May 15 10:40:37 1997
Response via	:	Multiple Level Calibration




Job Number: 97/01023/02/01 S6001392.D VOLENV.M

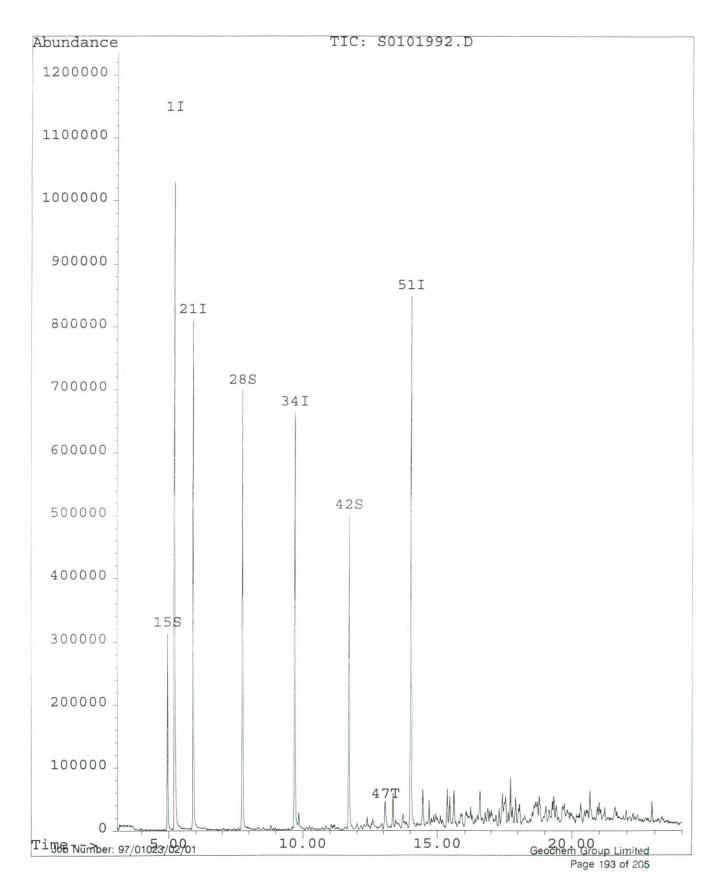
#### Quantitation Report


Data File :	C:\HPCHEM\1\DATA\S6101393.D		
Acq Time :	19 May 97 9:19 pm	Operator:	Geocher
Sample :	1023/6-324	Inst :	5971 M£
Misc :	Aspinwall & Company	Multiplr:	1.00
Quant Time:	May 21 11:39 1997	-	

Method	:	C:\HPCHEM\1\METHODS\VOLENV.M
Title	:	Volatile standards for 5 point calibration
Last Update	:	Thu May 15 10:40:37 1997
Response via	:	Multiple Level Calibration



Job Number: 97/01023/02/01 S6101393.D VOLENV.M


File :	C:\HPCHEM\1\DATA\S6301395.D
Operator :	Geochem Analytical Services
Acquired :	20 May 97 9:58 am using AcqMethod VOLENV
Instrument :	
Sample Name:	1023/6-331
Misc Info :	Aspinwall & Company
Vial Number:	63



File : C:\HPCHEM\1\DATA\120597\S9901991.D Operator : Geochem Analytical Services Acquired : 13 May 97 2:53 am using AcqMethod 60VOCHS Instrument : MSD Vols5 Sample Name: 1023-335 Misc Info : Vial Number: 22



File :	C:\HPCHEM\1\DATA\120597\S0101992.D
Operator :	Geochem Analytical Services
Acquired :	13 May 97 3:28 am using AcqMethod 60VOCHS
Instrument :	MSD Vols5
Sample Name:	1023-350
Misc Info :	
Vial Number:	23







Sample Matrix:	Soil
Our Reference:	97/10
Date Sample Received:	25/4/
Date Extracted/Prepared:	23/5/
Extraction procedure:	Micro
Column Extraction:	No
Date Analysed:	29/5/
GC-MS Mode:	SIM
Internal Standard:	Exter

Soil
97/1023/02/01
25/4/97
23/5/97
Microwave
No
29/5/97
SIM
External

	Sample No.	105		
	Client Ref.	TP50 0.10		
	P.Q.L.	10		
CAS Number	Units	μg/kg		
91-20-3	Naphthalene	1038		
208-96-8	Acenaphthylene	662		
83-32-9	Acenaphthene	1826		
86-73-7	Fluorene	2069		
85-01-8	Phenanthrene	20548		
120-12-7	Anthracene	5306		
206-44-0	Fluoranthene	29922		
129-00-0	Pyrene	26112		
56-55-3	Benz[a]anthracene	13440		
218-01-9	Chrysene	13706		
205-99-2	Benzo[b]fluoranthene	10216		
207-08-9	Benzo[k]fluoranthene	11084		
50-32-8	Benzo[a]pyrene	13828		
191-24-2	Benzo[g,h,i]perylene	10155		
53-70-3	Dibenz[a,h]anthracene	1729		
193-39-5	Indeno[1,2,3-cd]pyrene	7950		
	Total P.A.H.	169591		

Approved by: ······





Sample Matrix:	Soil
Our Reference:	97/1023/
Date Sample Received:	30/4/97
Date Extracted/Prepared:	23/5/97
Extraction procedure:	Microwa
Column Extraction:	No
Date Analysed:	29/5/97
GC-MS Mode:	SIM
Internal Standard:	External

Soil
97/1023/02/01
30/4/97
23/5/97
Microwave
No
29/5/97

	Sample No.	194	217	
	Client Ref.	TP27 0.30	TP93 0.90	
	P.Q.L.	10	10	
CAS Number	Units	μg/kg	µg/kg	
91-20-3	Naphthalene	420	33	
208-96-8	Acenaphthylene	971	23	
83-32-9	Acenaphthene	7962	15	
86-73-7	Fluorene	6387	45	
85-01-8	Phenanthrene	59407	172	
120-12-7	Anthracene	17965	47	
206-44-0	Fluoranthene	79957	606	
129-00-0	Pyrene	62879	575	
56-55-3	Benz[a]anthracene	30171	314	
218-01-9	Chrysene	29060	382	
205-99-2	Benzo[b]fluoranthene	23944	431	
207-08-9	Benzo[k]fluoranthene	23059	401	
50-32-8	Benzo[a]pyrene	29689	485	
191-24-2	Benzo[g,h,i]perylene	22750	548	
53-70-3	Dibenz[a,h]anthracene	3879	82	
193-39-5	Indeno[1,2,3-cd]pyrene	16990	463	
	Total P.A.H.	415490	4623	

Approved by:....





Sample Matrix:	Soi
Our Reference:	97/
Date Sample Received:	1/5
Date Extracted/Prepared:	23/
Extraction procedure:	Mi
Column Extraction:	No
Date Analysed:	29/
GC-MS Mode:	SIN
Internal Standard:	Ext

o. ''
Soil
97/1023/02/01
1/5/97
23/5/97
Microwave
No
29/5/97
SIM
External

	Sample No.	256	261	285	
	Client Ref.	TP14 0.40	TP16 0.10	TP91	
	P.Q.L.	10	10	10	
CAS Number	Units	μg/kg	μg/kg	µg/kg	
91-20-3	Naphthalene	116	75	412	
208-96-8	Acenaphthylene	67	12	10	
83-32-9	Acenaphthene	102	<10	11	
86-73-7	Fluorene	103	14	118	
85-01-8	Phenanthrene	1418	44	132	
120-12-7	Anthracene	328	13	<10	
206-44-0	Fluoranthene	4212	132	67	
129-00-0	Pyrene	3710	120	44	
56-55-3	Benz[a]anthracene	1721	68	16	
218-01-9	Chrysene	2069	107	31	
205-99-2	Benzo[b]fluoranthene	1839	94	28	
207-08-9	Benzo[k]fluoranthene	1802	84	22	
50-32-8	Benzo[a]pyrene	2201	102	15	
191-24-2	Benzo[g,h,i]perylene	1774	93	29	
53-70-3	Dibenz[a,h]anthracene	304	20	<10	
193-39-5	Indeno[1,2,3-cd]pyrene	1504	92	26	
	Total P.A.H.	23271	1071	961	

Approved by: .....





Sample Matrix:	Soil
Our Reference:	97/1
Date Sample Received:	2+6
Date Extracted/Prepared:	23/5
Extraction procedure:	Mic
Column Extraction:	No
Date Analysed:	29/5
GC-MS Mode:	SIM
Internal Standard:	Exte

	Soil
	97/1023/02/01
	2+6/5/1997
	23/5/97
	Microwave
	No
	29/5/97
	SIM
-	External

	Sample No.	313	336		
	Client Ref.	TP142 0.20	TP35 0.50		
	P.Q.L.	10	10		
CAS Number	Units	µg/kg	μg/kg		
91-20-3	Naphthalene	214	103	1	
208-96-8	Acenaphthylene	26	12		
83-32-9	Acenaphthene	80	45		
86-73-7	Fluorene	197	96		
85-01-8	Phenanthrene	637	851		
120-12-7	Anthracene	64	157		
206-44-0	Fluoranthene	141	913		
129-00-0	Pyrene	104	712		
56-55-3	Benz[a]anthracene	26	294		
218-01-9	Chrysene	61	326		
205-99-2	Benzo[b]fluoranthene	50	240		
207-08-9	Benzo[k]fluoranthene	31	240		
50-32-8	Benzo[a]pyrene	39	293		
191-24-2	Benzo[g,h,i]perylene	53	233		
53-70-3	Dibenz[a,h]anthracene	13	40		
193-39-5	Indeno[1,2,3-cd]pyrene	54	186		
	Total P.A.H.	1788	4740		

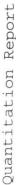
Approved by: .....

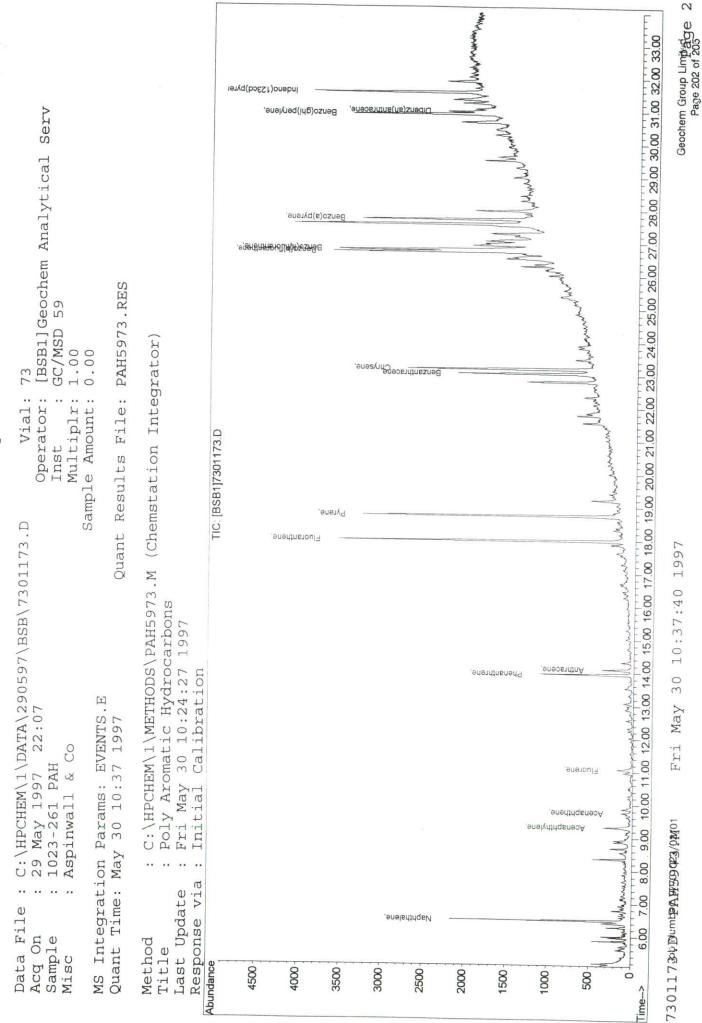
N Geocnem Group Limpage Page 198 of 205 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 31.00 31.00 32.00 33.00 Indeno(123cd)pyrene, 3 enslynad(ing),97998ndtns(ns)znadi Geochem Analytical Services Benzo(a)pyrene, a and the south of the second se Quant Results File: PAH5973.RES 59 GC/MSD (Chemstation Integrator) 1.00 00.00 Chrysener, Senzanthracene, 69 Sample Amount: Vial: Multiplr: Operator: Inst TIC: 6901169.D Pyrene, -Inoranthene Fri May 30 10:35:28 1997 C:\HPCHEM\1\DATA\290597\6901169.D C:\HPCHEM\1\METHODS\PAH5973.M Poly Aromatic Hydrocarbons Fri May 30 10:24:27 1997 Anthracene Phenanthrene. Initial Calibration MS Integration Params: EVENTS.E 19:00 Quant Time: May 30 10:35 1997 Aspinwall & Co Fluorene 1023-105 PAH 29 May 1997 Acenaphthene, 69011694 Bumberten B9730201 Acenaphthylene, Response via ••• Last Update 7.00 Data File Naphthalene 6.00 Acq On Sample Method Title Misc Abundance 800000 600000 500000 000006 700000 400000 300000 200000 100000 ò lime-->

Quantitation Report

Geocinem Group Limpedge Page 199 of 205 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 30.00 31.00 32.00 33.00 Indeno(123cd)pyrene, 2 Diberz(ah)anthra&AASo(ghi)perylene, VMM TANA Geochem Analytical Services geuzo(a)pyrene -endtorgeutiteseet Quant Results File: PAH5973.RES 59 GC/MSD C:\HPCHEM\1\METHODS\PAH5973.M (Chemstation Integrator) 1.00 0.00 Chrysona (Chrysona) 70 WWW V Multiplr: Sample Amount: Vial: Operator: Quantitation Report Inst TIC: 7001170.D h, yrene, ananthene Fri May 30 10:35:45 1997 C:\HPCHEM\1\DATA\290597\7001170.D Poly Aromatic Hydrocarbons Fri May 30 10:24:27 1997 Anthracene, Phenanthrened Initial Calibration MS Integration Params: EVENTS.E 19:47 Quant Time: May 30 10:35 1997 00 Fluorene 1023-194 PAH Aspinwall & 29 May 1997 Acenaphthene, eceusphinylene, 8.00 ••• ••• Response via ... Last Update 6.00 7.00 Data File lanelenthalene, Acq On Sample Method Title Misc Abundance 800000 600000 400000 2000000 1800000 600000 1400000 1200000 000000 ò 200000 Ime-->

2


Quantitation Report


Analytical Serv		,e	rioufi <del>(d)QBNB6</del> bufi(x)oz nenyq(s)ozne8 — eq(idg)ozne8 — 21)onebni	леб јапйгаселе,	ns)znediO	WW WWW		Geochem Group LimBearche
D Vial: 71 Operator: [BSB1]Geochem Inst : GC/MSD 59 Multiplr: 1.00 Sample Amount: 0.00 Results File: PAH5973.RES emstation Integrator)	TIC: [BSB1]7101171.D	,ananthenene, Pyrene,	aner, aner, aner			Murd Warmen was and Weller	00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00	
1011 Qu 3.M	Fri May 30 10:24:27 1997 Initial Calibration			anenthrenet ^q	Aphthylene, norene, Anthracene,	eoy Ace	10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00	1997 1997 1997 10:37:18 1997
Data File : C: Acq On : 29 Sample : 102 Misc : AsF MS Integration Quant Time: May Method : Title :	Last Update : Response via : Abundance 20000	16000 -	14000 - 12000 -	8000 -	6000 4000 19ne,	- Naphtha	Time> 6.00 7.00 8.00 9.00	/ TOTI / TAT Daning HALLON /

Genchem Group LimPredGe 2 Page 200 of 205

Fri May 30 10:37:18 1997

																	2
C											d(123cq)b		190511711	B(RB)ZN9d		MM	30.00 31.00 32.00 33.00 Geochem Group Limpedge Page 201 of 205
	Analytical Services 9	co v								ttri <del>gner fi</del> ft	zueg						20,00 20,00 20,00
Report	: 72 : Geochem : GC/MSD 5 : 1.00	Amount: 0.00 s File: PAH5973.RES	.on Integrator)	72.D						.ene2 ₅ 되	to a construction of the second s					0 21 00 22 00 23 00 24 00 25 00 25 00	
Quantitation	72.D	Sample A Quant Results	3.M (Che	TIC: 7201172.D	'eu	Е <del>носоц</del> ие.										00 15.00 17.00 18.00 19.00 20.00	
	C:\HPCHEM\1\DATA\290597\72011 29 May 1997 21:20 1023-256 PAH Aspinwall & Co	1 Params: EVENTS.E ay 30 10:35 1997	: C:\HPCHEM\1\METHODS\PAH597 : Poly Aromatic Hydrocarbons : Fri May 30 10:24:27 1997 : Initial Calibration							'au	ເອາດໂຕຍຕອ	ча –		ητήτην ιρητήτος οις Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότιας Απότια Απότιας Απότιας Απότιας Απότιας Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότισι Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότια Απότι Απότι Απότια Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Απότι Α Απότι Α Απότι Απότι Α Απότι Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Απ	Acena eroul Fluore	0 000 10.00 11.00 12.00 13.00 14.00 15.00 16.00	Fri May 30
	Data File : C Acq On : 29 Sample : 10 Misc : As	MS Integration Para Quant Time: May 30	lod .e . Update onse via	120000 -	110000	100000	- 00006	80000 -	70000 -	60000	50000	40000 -	30000-	20000 hthalene,	10000 qeN	Time-> 0 +	72011720 DumbRAM5973/0M01





C	tical Serv															alyq(by Malang				0 29.00 30.00 31.00 32.00	Geochern Group Limited Ge 2 Page 203 of 205	
	74 [BSB1]Geochem Analytical 3C/MSD 59 1.00	73.RES	(													:		d(e)ozu		.00 25.00 26.00 27.00 28.0		
on Report	Vial: ' perator: nst : ( altiplr: 1	cs File:	ation Integrator	TIC: [BSB1]7401174.D													'aue'	guðsku		19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 30.00 31.00 32.00		
Quantitation	SSB\7401174.D OI II Mu Sample	Quant Resi	PAH5973.M (Chemstation arbons 1997	TIC: [BSB												'еџеч	luorant	Pyrene		00 16.00 17.00 18.00 19.00	:38:02 1997	
	: C:\HPCHEM\1\DATA\290597\BSB\7 : 29 May 1997 22:53 : 1023-285 PAH : Aspinwall & Co	cion Params: EVENTS.E : May 30 10:37 1997	: C:\HPCHEM\1\METHODS\ : Poly Aromatic Hydroc : Fri May 30 10:24:27 a : Initial Calibration							6				eua		,ene,	throng the second se		Apple and possible UNAL WAY AND	8.00 9.00 10.00 11.00 12	Fri May 30 10	
	Data File : Acq On : Sample : Misc :	MS Integration Quant Time: May	Method Title Last Update Response via		15000-	14000	13000 13000	12000	11000	10000 -	0006	8000	7000	6000	5000 -	4000 -	3000	2000	N M.	Time> 6.00 7.00	740117740011744000000000000000000000000	

N Geochem Group Limited C Page 204 of 205 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 indeno(123cd)pyrene, [BSB1] Geochem Analytical Serv Dibenzendianspreadene, Benzo(a)pyrene, .9.996878991849184969.9 Quant Results File: PAH5973.RES 59 GC/MSD (Chemstation Integrator) 1.00 0.00 75 Benzantinezneg Multiplr: Sample Amount: Vial: Operator: Quantitation Report TIC: [BSB1]7501175.D Inst **Byrene**, C:\HPCHEM\1\DATA\290597\BSB\7501175.D Fluoranthene. Fri May 30 10:38:24 1997 C:\HPCHEM\1\METHODS\PAH5973.M Poly Aromatic Hydrocarbons Fri May 30 10:24:27 1997 Initial Calibration Phenanthrened Anthracene MS Integration Params: EVENTS.E 23:39 Quant Time: May 30 10:38 1997 whe Aspinwall & Co 1023-313 PAH Fluorene 29 May 1997 Acenaphthene, JUNN MAN 7501175050000865845993/08/07 Acenaphthylene, Response via ••• Last Update Data File anelentingene, When Acq On Sample Method Title Misc 40 Abundance 18000 16000 14000 12000 00001 8000 6000 4000 2000 Time-->

al Serv															(48) <u>2090</u>		M. M. W.	30.00 31.00 32.00 33.00	Geochem Group Limited Ge Page 205 of 205 of
them Analytica	ى م																U NU		
	: 0.00 : PAH5973	integrator)									'eue:	วยานุบชีว	skiuc) skiuci					22.00 23.00 24.00 25.00	
Oper Inst Mult	sample Am Results	(Chemstation I	TIC: [BSB1]7601176.D		'əuə <del>uşı</del>	neneul <del>7</del>	,ene,	id -									Mary Construction	18.00 19.00 20.00 21.00	266
	ηQ	DS\PAH5973.M rocarbons 27 1997 on		'eue	าศากรกษ	ча							'eu	eosidin	A		a e de ce	16.00	30 10:38:46 19
HPCHEM\1\DATA\290 May 1997 00:25 3-336 PAH inwall & Co	Params: EVENTS.E 30 10:38 1997	C:\HPCHEM\1\METHC Poly Aromatic Hyd Fri May 30 10:24: Initial Calibrati													ierthqsn	гөрд	where the second second	10.00 11.00 12.00 13.00	Fri May
File : On : le : :		lod : e : Update : onse via :	1dance 18000	6000	4000 -	2000	0000	8000	2000	1000 -	2000 -	0000				000	0	100 Niumber: 07/01029	7601176. D""PAHS973. W"
	<pre>ile : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76</pre>	<pre>File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 On : 30 May 1997 00:25 On : 30 May 1997 00:25 Inst</pre>	<pre>a File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 On : 30 May 1997 00:25 Ole : 1023-336 PAH : 1023-336 PAH c : 1023-336 PAH c : 1023-336 PAH c : 1023-336 PAH it Time: may 30 10:38 1997 it Time: May 30 10:38 1997 cod : C:\HPCHEM\1\METHODS\PAH5973.M (Chemstation Integrator) c : Poly Aromatic Hydrocarbons c : Poly Poly Poly Poly Poly Poly Poly Poly</pre>	File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 : 30 May 1997 00:25 : 1023-336 PAH : 1023-336 PAH : 1023-336 PAH : 2023-336 PAH : 2030 :	<pre>a File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 On : 30 May 1997 00:25 ole : 1023-336 PAH c : Aspinwall &amp; Co c : PAH5973.FES c : PAH5973.FES c : PaH5973.FES c : Poly Aromatic Hydrocarbons c : Poly Aromatic Hydrocarbons c : Poly Aromatic Hydrocarbons c Update : Fri May 30 10:24:27 1997 onse via : Initial Calibration c : Initian c : Initian c : Initial Calibration c : Initian c : In</pre>	a File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 On : 30 May 1997 00:25 On : 30 May 1997 00:25 Dle : 1023-336 PAH : 1023-336 PAH : 1023-336 PAH : 1023-336 PAH : 1023-336 PAH : 1023-336 PAH Multiplr: 1.00 Multiplr: 1.00 Sample Amount: 0.00 Multiplr: 1.00 Sample Amount: 0.00 integration Params: EVENTS.E Wultiplr: 1.00 Sample Amount: 0.00 Multiplr: 1.00 Sample Amount: 0.00 Out Results File: PAH5973.RES tood : C:\HPCHEM\1\METHODS\PAH5973.M (Chemstation Integrator) e : Poly Aromatic Hydrocarbons CUpdate : Fri May 30 10:24:27 1997 Conse via : Initial Calibration TC:[BSB17601176.D] TC:[BSB17601176.D]	<pre>A File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 On : 30 May 1997 00:25 On : 30 May 1997 00:25 On : 30 May 1997 00:25 Onerator: [BSB1]Geochem Analytical Inst : GC/MSD 59 Multiplr: 1.00 Multiplr: 1.00 Sample Amount: 0.00 Integration Params: EVENTS.E Und : C:\HPCHEM\1\METHODS\PAH5973.M (Chemstation Integrator) e : Poly Aromatic Hydrocarbons Update : Fri May 30 10:24:27 1997 Onse via : Initial Calibration TC:[BSB1]F601176.D TC:[BSB1]F601176.D </pre>	<pre>A File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 On : 30 May 1997 00:25 On : 30 May 1997 00:25 Dle : 1023-336 PAH C : Aspinwall &amp; Co C</pre>	a File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 On : 30 May 1997 00:25 On : 30 May 1997 00:25 Operator: [BSB1]Geochem Analytical inst : GC/MSD 59 Multiplr: 1.00 Sample Amount: 0.00 integration Params: EVENTS.E t Time: May 30 10:38 1997 Od : C:\HPCHEM\1\METHODS\PAH5973.M (Chemstation Integrator) e : Poly Aromatic Hydrocarbons Update : Fri May 30 10:24:27 1997 Onse via : Initial Calibration TC:[BSB1]F01176D TC:[BSB1]F01176D	<pre>A File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 On :: 30 May 1997 00:25 On :: 30 May 1997 00:25 Dle :: 1023-336 PAH Dle :: 1023-336 PAH Dist :: 1000 Dist :: 1000 Multiplr:: 1.000 Multiplr:: 1.000 Multiplr:: 1.000 Dist Params: EVENTS.E Ample Amount: 0.000 Integration Params: EVENTS.E A Quant Results File: PAH5973.RES Od :: C:\HPCHEM\1\METHODS\PAH5973.M (Chemstation Integrator) e :: Poly Aromatic Hydrocarbons Onse via : Initial Calibration TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB1]FG0176.D TC:[BSB</pre>	<pre>A File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 Om :: 30 May 1997 00:25 Om :: 30 May 1997 00:25 Operator: [BSB1]Geochem Analytical ile :: 1023-336 PAH Om :: Aspinwall &amp; CO Differ: : Doly Aromatic: Differ: : PAH5973.M (Chemstation Integrator) cd Differ: : Poly Aromatic: Hydrocarbons Differ: : Poly Aromatic: Hydrocar</pre>	<pre>A File : C:\HPCHEM\1\DaTA\290597\BSB\7601176.D Vial: 76 On :: 30 May 1997 00:25 On :: 1023-336 PAH Derator: [BSB1]Geochem Analytical Serv integration Params: EVENTS.E Different integration Params: EVENTS.E Con :: Aspinwall &amp; CO integration Params: EVENTS.E Con :: Aspinwall &amp; CO integration Params: EVENTS.E Con :: Aspinwall &amp; CO integration Params: EVENTS.E Con :: C:\HPCHEM\1\METHODS\PAH5973.M (Chemstation Integrator) con :: C:\HPCHEM\1\METHODS\PAH5973.M (Chemstation Integrator) conse via : Initial Calibration Conse via : Initial Ca</pre>	<pre>A File : C:\HPCHEMV1\Darm\290597\BSB\7601176.D Vial: 76 On : 30 May 1997 00:25 On : 1023-336 PAH : 1000 Derator: [BSB1]Geochem Analytical Serv Integration Params: EVENTS.E : Aspinwall &amp; Co minist : 1000 Sample Amount: 0.00 integration Params: EVENTS.E Outant Results File: PAH5973.RBS integration Params: EVENTS integration Params: EVENTS.E Outant Results File: PAH5973.RBS integration Params: EVENTS integration Params int</pre>	<pre>a File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 On :: 30 May 1997 00:25 On :: 30 May 1997 00:25 On :: 0.00 Derator: [BSB1]Geochem Analytical Serv :: : aCNSD 59 Dinttiplr: 1.00 Dinttiplr: 1.00 Sample Amount: 0.00 Integration Params: EVENTS.E On :: 0.00 Integration Params Integration Params: EVENTS.E On :: 0.00 In</pre>	<pre>a File : C:\HPCHEM\1\DATA\290597\BSB\7601176.D Vial: 76 On :: 30 May 1997 00:25 On :: 30 May 1997 00:25 AMB197 00:00 AMB1917: 1:000 3MM161917: 1:0000 3MM161917: 1:0000 3MM161917: 1:0000000000000000000000000000000000</pre>	a File : C:\HPCHEM(1\Darma/290597\BSB\7601176.D     Vial: 76       On : 30 May 1997     00:25       On : 100 : 30 May 1997     00:25       De : 100 : 30 May 1997     00:38       De : 100 : 10:38 HPM     Multiple:       Multiple:     0.00       Sample Amount: 0.00     Sample Amount: 0.00       Discretion Params: EVENTS.E     Ouant Results File: PAH5973.RES       Ouant Results File: PAH5973.M (Chemistation Integrator)     Discretion: Params: EVENTS       Discretion:     Foldate : Foly Arromatic Hydrocarbons       Discretion:     File:       Discret     File:       Discreti	<pre>A File : C:\HPCHEM\!/DATA\200597\BSB\7601176.D Vial: 76 On : 1023-336 FM1 ON :</pre>	ata File : C:\HPCHEMY.I/DATA/290597/BSB\7601176.D Vial: 76 cq 0n :: 302/335 File : (2) cq 0n :: 1n1:al : (	HBM/1/DATA/290597/BSB/7601176.D Vial: 76 Vial: 76 S PAH 36 PAH 36 PAH all & CO 36 PAH all & CO 36 PAH all & CO 36 PAH 10:38 1997 10:38 1987 10:38 198

in lund of	( <b>7</b> -
$\Re(\star)$	129
Co the N	No.
Indud	

·囹(		$\left( \right)$	NAMAS TESTING No. 1291		mdd	ЦС	2	TPH By:1LC	-	• •
-		ш ²	Ϊ		bpm	TLC	Ž	NSO / Resins		
1.		ð			mdd	TLC	۲	Total Non-Volatile Aromatics		
) e		EYFOF			mdd	TLC	Ł	Min. Oil / Paraffin		
		PER HI	S d		mdd	СР	<0.05	Zinc		
	WATER	RAF UPPER HEYFORD	S.HOBBS		mdd	ICP	<0.1	Selenium		
		R			mdq	ICP	<0.05	Lead		
	Sample Type :	: uoi	Client Contact : Client Ref. No. ·		mdd	ICP	<0,05	Nickel		
111	Samp	Location :	Client		mdd	ICP	<0,05	Magnesium		
JCHEM ANALYTICAL SERVICE TABLE OF RESULTS					bpm	ICP	<0.05	Mercury		
L SEI					mdd	ICP	<0,05	Copper		
ALYTICAL SEI					mdd	ICP	<0,05	Chromium		
E OF		~			mdd	ICP	<0.05	Cadmium		
EM AN		<b>ASPINWALL &amp; COMPANY</b>			mdd	ICP	<0.05	Calcium		
HDC	01	& COI			mdq	ICP	<0.05	Boron		
	97/01023/02/01	IWALL	97		mdd	ICP	<0,05	Arsenic		
			Date of Receipt : 23/04/97 (of first sample)		Units	Detection Method	Detection Limits	Depth (m)		
	Job Number :	Client :		Preliminary		1	NAMAS Accredited	Sample Identity		
GEO	2	2				L	]	Sample Number		

	UNKNOWN	•	•	r.	+	•	,	1		•	τ		•	•	v	C	
TP 91 W	UNKNOWN	,		•		1	•		1				1	0		25	
TP138	UNKNOWN	•	• •	1	1		,			,	3		,			ſ	) (U
TP138	UNKNOWN	0.69	<0.05	139.00	1.32	0.64	0.87	<0.05	3.07	1.10	315	<0.1		, ,	-	_	<b>D</b>
TP 106	UNKNOWN	1	1	1	1		1		1			; .	3				• -

# Page 96 of 205

Checked by ...... Alison Ball

Printed on 19 June 1997

huntum	S	18-
se	4	NS
	)∑	E
J	N.	щъ
milim	14	
		NAMAS

<b>CHEM ANALYTICAL SERVICE</b>	TABLE OF RESULTS

Page 102 of 205

Checked by ..... Alison Ball

Printed on 19 June 1997

# Appendix

# **Results of Chemical Testing - Boreholes**

Aspinwall&company June 1997 8

hundrund o	-
Dr AL	S91
·注意 ) 图 (**	E
C S	ËN
hutud	

RAF UPPER HEYFORD

Location :

WATER

		N
		le Type :
ш		Sample
L SERVIC	S	
TICAL S	<b>-E OF RESULTS</b>	
ALY	E OF R	
HEM AN	TABLI	
C		01

97/01023/02/01 Job Number :

**ASPINWALL & COMPANY** Client :

Date of Receipt: 23/04/97 (of first sample)

0

Client Contact : S.HOBBS Client Ref. No.: MD3333A

Validated		NAMAS Accredited		Sample Identity	BH 3B	BH 3B	BH 3B	BH 3B	ВНЗВ	
OUNTS	<b>Detection Method</b>	Detection Limits		Depth (m)	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN		NINONINIO
mdd	ICP	<0.05	0.02	Arsenic		2.28	•		-	1
mdd	ICP	50.02	00.02	Boron	,	<0.05	,			,
bpm	ICP	10.05	cn.u.	Calcium		164.00	1			
mdd	ICP	30.01	cn'ny	Cadmium		<0.05				1
mdd	ICP	1000	cu,u>	Chromium		<0.05	•			,
mdd	ICP	100	<0'0>	Copper	,	0.13	,			•
mdd	ICP	1000	<0.05	Mercury	T	<0.05	,			1
bpm	ICP		<0,05	Magnesium		2.13			<b>I</b>	•
mdd	ICP		<0.05	Nickel		0 21				
bpm	ICP		<0.05	Lead		110		1	•	8
mdd	ICP	5	<0.1	Selenium		• •	5		1	1
mad	a	5	<0.05	Zinc		. U	2	•	•	
maa	C F	3	v	Min. Oil / Paraffin		V		,	•	•
maa		נ	2	Total Non-Volatile Aromatic	s	v	•	1		1
muu		۲ ۲	V	NSO / Resins		7				
And		2	v	TPH By TLC		Σ	•	•	•	,

;										Ball	Alicon Ball		3	Dred	bv	Checked by	Printed on 19 June 1997	or
				i	1	1		1	•	•	1	1				15	BHIB	
	•	J.	•	<0.05	<0.1	<0.05	<0.05	2.87	80.	<0,05	¢0.0>	c0.02	191.00	00.0-	20.02	2		
7	N	5	7	8						10.0		10.05	107 80	<0.05	<0.05	15	BH1B	
			7								1	4	1	1		15	BH1B (bailed)	
~	•	v	t	•	4					•		•	1			2		
•	•	,	,	•												15	BH1B	
						,	,		3	1			3	,	•	38	BH1A	
				,	•				4	4	1	•	•	•	1	38	BHIA	
	•	x	*	•	•	x		4	r	•	•	•	L	14				
,	•		,	c0.02		0,0	3.7									38	BH1A	
•				200	-	200	<0.05	11 97	14	<0.05	<0.05	<0.05	178.20	0.12	<0.05	38	BH1A	
0	•	v	N		,	1	ł	•	ı		•	•			1	38	BHIA	
9	15	2		•	•	1	•	•	3	1	•	a.	1	-	•	25	BH 2	



RAF UPPER HEYFORD

WATER

Sample Type :

Location :

Client Contact : S.HOBBS Client Ref. No. : MD3333A

	☐ Preliminary ✓ Validated	Units	mqq	mdd	mqq	mdd	mqq	mqq	mqq	mdd	mdd	mqq	mdd	mdd	bpm	mdd	mqq	mad
L		Detection Method	IСР	ICP	ICP	ICP	ICP	CP	ICP	ĨСР	ICP	ICP	ICP	СР	TLC	TLC	TLC	TLC
	NAMAS Accredited	Detection Limits	<0.05	<0.05	<0.05	<0.05	<0,05	<0.05	<0.05	<0.05	<0,05	<0.05	<0.1	<0,05	v	V	V	۲
Sample Number	Sample Identity	Depth (m)	Arsenic	Boron	Calcium	Cadmium	Chromium	Copper	Mercury	Magnesium	Nickel	Lead	Selenium	Zinc	Min. Oil / Paraffin	Total Non-Volatile Aromatics	NSO / Resins	TPH By TLC
372	BH1B	15	+	1	1	+	,	,	r	,	.1	ı	4	,	,	5 1		
373	BH1B	15	,	•		1	ı			,		,	,					
374	BH2	25	,	,	3	4		,	,								•	•
375	BH2	25	0.71	0.37	115.30	<0.05	<0.05	20.05	<0.05	α,				- LC C	7	v	n	5
376	BH2	25				}	2	2	3	2	3.07	CD.02		60.02		,	,	•
377	BH2	25				•	r	,	,	,	,	,	1	1	1	,	,	,
378		2 4	,	,	r	•	•	1	r	•	,	I.	1	•	•	I	1	•
370	700	07	1	1	,	1	1	•		,	,	,	1	1	1	4	,	•
610	BH3A	4	1	3	1	•	•	,	3	,	,	r	,	,	۲.	Ÿ	2	⊽
380	BH3A	4	<0.05	<0.05	124.40	<0.05	<0.05	<0.05	<0.05	2.46	<0.05	0.06	<0.1	<0.05	1	ı	,	
381	BH3A	4	ī	1	1	1	1	1	1	1	,	,	1	1	•		,	•
382	BH3A	4	,	1	1	1	,	,	1		,	,		+	1	ī		,
383	BH3A	4	1		ı.	1.	1	ı	1	1	,	,	1	1	ı		1	
384	BH4	13	1	1	1	,	I.	,	,	,	. ,	,	1	1	7	Ÿ	v	⊽
385	BH4 (bailed)	13	,	•	1	4	,	,	r	•	t	I	•	4	v	v	v	4
386	BH4	13	<0.05	<0.05	113.40	<0.05	<0.05	<0.05	.06	6.58	<0.05	<0.05	<0.1	<0.05	,		,	,
387	BH4	13	1	,	1	1		,	,	•	1	,	,		,	,		
388	BH4	13	•	1		1	,	,	I		,	,						
389	BH4	13	1	1	1	,		1	1	,				,				
390	BH5	3	•	1	1			,	1	+	,	I		•	ī	5		7
391	BH5 (bailed)	3	1	' (		1	,			1			1	1	<u>ک</u>	. <u>v</u>	- 7	V
rinte	Printed on 19 June 1997	Checked by	y	PG	R		Alison Ball	Ball								Dago 07 of 205	200 30	8

**DCHEM ANALYTICAL SERVICE** TABLE OF RESULTS

**ASPINWALL & COMPANY** 97/01023/02/01 Job Number : Client :

**B** 

Date of Receipt: 23/04/97 (of first sample)

			ASPINWALL & COMPANY	ASPINWALL & COI	MPANY					Location	Sample Type : Location :		RAF UPPER HEYFORD	PER H	EYFOR	Q		NAMAS
L		(of first sample)								Client	Client Ref. No.		MD3333A	0 5			E N	TESTING No. 1291
L	Validated	Units		mqq	mdd	mdd	mqq	mqq	bpm	mdd	mqq	mqq	mdd	mdd	mdd	mdd	mdd	mqq
		Detection Method		ICP	ICP	ICP	СP	СP	ICP	ICP	СР	IСР	ICP	IСР	TLC	1FC	TLC	TLC
	NAMAS Accredited	Detection Limits	<0,05	<0,05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0,05	<0.05	<0.1	<0.05	v	2	5	2
Sample Number	Sample Identity	Depth (m)	Arsenic	Boron	Calcium	Cadmium	Chromium	Copper	Mercury	Magnesium	Nickel	Lead	Selenium	Zinc	Min. Oil / Paraffin	Totał Non-Volatile Aromatic	NSO / Resins	TPH By TLC
392	BH5	е	<0.05	0.22	141.80	0.22	0.07	<0.05	<0.05	2.71	<0.05	0.23	<01	0.15		s		
393	BH5	e	1	.1	1	1		1		1	,			, ,	,	r .		•
394	BH5	3	,	,	3		•	,	3	1	1	ı		,	,			
395	BH5	e	1			1	1	,		1			,	1				
396	BHG	12	1	,			1	,	,	,	.1.	,	,	1	v	۰ ۲۷	7	V
397	BH6	12	<0.05	0.08	152.50	0.10	<0.05	<0.05	60	9.31	<0.05	<0.05	<0.1	0.06	,	- I	• •	- ,
398	BH6	12	1	1	•	1	,	,			,	,	,	1	•		1	
665	BH6	12	,	1	,	•	1	,	,	,	3	1	,	,	,	1	,	,
400	BH6	12	,		ı			2	E		,	ī			1	I		
104	BH/	4 ,	1	1	1	1	1	1	•	1	1	1	1	1	v	¢.	V	V
204	DH/ (Dalled)	4 .	•	1	1	1	•	1	1	•	,	T	4	,	v	۲ ۲	2	⊽
404	рц7	4	<0.05	<0.05	135.00	<0.05	<0.05	<0.05	<0.05	2.78	<0.05	0.09	<0.1	0.08	1	1	1	1
ADE	200	4 ,	1	,	,	r:	1	1	,	,	,	1	,	1	1	,	,	,
ADA	947	4	•	1	1	4	•	1	I	•	.1	I	1	•	1	1		•
1 0	100	4	1	1	1	1	1		1	1	4	.1	,	1	4			•
40/	SPRING B	SURFACE	1	1	3		,	,	J	1	,	,	a	1	ž	v	~	2
400	SPRING D	SURFACE	,	1	1	1	1	,		1	1	· .	1		۲	5	v	7
409	SPRING	SURFACE	1	4		•	1	,	1	1	,	•	1	1	v	<u>م</u>	۲. ۲	A
410	SPRING I	SURFACE	<0.05	<0.05	57.53	<0.05	<0.05	<0.05	<0.05	1.37	<0.05	0.07	<0.1	0.10	,	1		
411	SPRING	SURFACE	1	-	•	1	1			1	,	,	1	1	,	•		

Contraction of	hindu	10	
-	(m	A	De lo
•≑₿		Z	E P
G	17	A	SE O
	Luntin	Z	⊢≤

					-	IL CH	JCHEMIAN	E OF	ALYTICAL SERVICE	L SEI	RVICI	ш							
Image: Problem	Job Number :	mber :	mber :	123/02/01	01							Samp	le Type		A TER				
Diameter         Status         Statu	Client : ASPINWALL & COMPANY			IWALL & C	S S	NO	<b>IPANY</b>					Locati	: uoi	Я	AF UPI	PER HI	EYFOR	D	
Here $Here         Here         $	Date of Receipt : 23/04/97 (of first sample)			97								Client Client	Conta Ref. N		HOBB D3333	S A		l	NA Ng
Image: Properties of the solution of the solut	mdd	mdd	mdd	$\vdash$	mqq	-	mdd	bpm	mdd	mqq	mqq	mad	maa	and a	muq	melom		00.01	
Image: Second	Detection Method Spectro	Detection Method Spectro	Spectro		ATU		1	0	Flame P	Gravi	R	KONE	KONE	KONE	KONE	Meter	Mater	Titrat	mqq
Alkalinity Total       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·	NAMAS Accredited Detection Limits <10 <0.5	Detection Limits <10	<10	-+	<0.5	-	<0.01	ŝ	Q	v	<1	<5	<0.5	<0.01	ę	<0.004	<0.01	v Iv	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BOD in unfiltered water COD On Unfiltered Sample Depth (m) Sample Identity	COD On Unfiltered Sample	COD On Unfiltered Sample		BOD in unfiltered water	About the Addition		Potassium	Sodium	DCM/MeOH Extract	Tot. Org. Carbon in Wate	Chloride (soluble)	Nitrate (soluble)	Phosphate (soluble)	Sulphate (soluble)	Electrical Conductivity	pH Value in Water	Alkalinity Total	Bicarbonate
·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     · <td>TUNKNOWN BE HB</td> <td>UNKNOWN</td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td>6</td> <td>r ur</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TUNKNOWN BE HB	UNKNOWN				+				6	r ur								
0.08         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·	BH 3B UNKNOWN -		UNKNOWN	1	1			ę	10		>		,			•		1	
5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5 <td>BH 3B UNVSNOWN</td> <td></td> <td>NWGNEND</td> <td>•</td> <td>1</td> <td></td> <td>0.08</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>Ť</td> <td>0.18</td> <td>42</td> <td>0.614</td> <td>7.21</td> <td>007</td> <td>400</td>	BH 3B UNVSNOWN		NWGNEND	•	1		0.08					2	Ť	0.18	42	0.614	7.21	007	400
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	UNKNOWN 10	10		<0.5	1	3 -				1		,	I			T.	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BH 3B UNKNOWN -		UNKNOWN	1	1	-	,						,			1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										•		<b>b</b>	•						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BH 2 25 .		25			1	1			18	. 1								Ī
6         40         -         -         30         233         0.12         101         0.645         7.27         480           -         -         -         -         -         -         -         -         -         480           -         -         -         -         -         -         -         -         -         480           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	BH1A 38 -	38		1	1	1		1	-1	e	2		1				10.74	,	
·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     · <td>BH1A 38 -</td> <td>38</td> <td></td> <td>1</td> <td>ï</td> <td>1</td> <td>1</td> <td>6</td> <td>64</td> <td>,</td> <td></td> <td>30</td> <td>23.3</td> <td>0.15</td> <td></td> <td></td> <td>; † ; †</td> <td></td> <td></td>	BH1A 38 -	38		1	ï	1	1	6	64	,		30	23.3	0.15			; † ; †		
-     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td>BH1A 38 -</td> <td></td> <td>38</td> <td>1</td> <td></td> <td>40.0</td> <td>0.04</td> <td></td> <td></td> <td>1</td> <td></td> <td>3</td> <td>2</td> <td>4</td> <td></td> <td></td> <td>121</td> <td>480</td> <td>480</td>	BH1A 38 -		38	1		40.0	0.04			1		3	2	4			121	480	480
·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·	BH1A 38 478 11.1	38 478	478		1.1	1911						•	•	1	•	•	•		4
-     -     -     -     -     -     -       -     2     2     -     -     -     -       -     2     2     -     -     -     -       -     2     2     -     -     -     -       -     2     2     -     -     -     -       -     12     -     -     19     93.4     0.06     56     0.549     7.25     330       -     -     -     -     -     -     -     -     -     -		38			1		,					•		4	1	1	•		
-     -     -     -     -     -     -       -     -     2     -     -     -     -     -       <3	BH1B 15 1		15			1					, (		•	3		•	,		
<3	BH1B (bailed) 15		15				t			7 0	2	•	,	r	4	,			
<3     12     -     19     93.4     0.06     56     0.549     7.25     330       -     -     -     -     -     -     -     -     -     -										7	1			1					
			2 2				2		12	1	3			0.06					30
		2	-			* C	10.01		1	,		1	4		4				

Page 102 of 205

Checked by ..... Alison Ball

rinted on 19 June 1997



	>									Samp	Sample Type		WATER				
	nary	: F <b>Receipt</b> : ^{mple)}	ALL	٥ð	COMPANY					Location : Client Con Client Ref.	Location : Client Contact Client Ref. No.		RAF UPPER HEYFORD S.HOBBS MD3333A	PER HI S	EYFOF	Ð	NAMAS NAMAS Resting
Validated	ed	Units	mqq	mqq		mqq	mdd	mdd	mqq	шdd	mqq	mqq	mdd	ms/cm	D	obm(CaCO	maa
	NAMA C A STATEMENT		Spectro	ATU		Flame P	Flame P	Gravi	R	KONE	KONE	KONE	KONE	Meter	Meter	Titrat	
	o Accredited	Detection Limits	<10	<0.5	<0.01	ę	Q	$\overline{\nabla}$	4	<5	<0.5	<0.01	ę	<0,004	<0,01	V	v
Sample Number	Sample Identity	Depth (m)	COD On Unfiltered Sample	BOD in unfiltered water	Ammoniacal Nitrogen in Water	Potassium	Sodium	DCM/MeOH Extract	Tot. Org. Carbon in Wate	Chloride (soluble)	Nitrate (soluble)	Phosphate (soluble)	Sulphate (soluble)	Electrical Conductivity	pH Value in Water	Alkalinity Totat	Bicarbonate
372	BH1B	15	<10	<0.5	1				r								
373	BH1B	15	1	1		,			c.		,	x	+	,	•	1	
374	BH2	25	•	1					, 1	•	,	1	1	1	4	,	1
375	BH2	25	,	1		7	y	0		. 9	,	1	1	•	,	1	+
376	BH2	25	,	1	0.26	. ,	3		1	₽ 	970	0.63	324	1.029	8.11	90	60
377	BH2	25	30	1.2	1	,			5	1	,	•	i	,	1	ı	1
378	BH2	25	-1	1		,			1	+	1	1	4	•	•	ı	•
379	BH3A	4	•	1	,	,		- C	· c	,	1	1	1	1	,	1	,
380	BH3A	4	1	5	T	ę	14	4 1	4 1	, t	, c F	, 00			,	1	•
381	BH3A	4	1	1	<0.01	1		,		2,	2	500		2/4.0	7.38	480	480
382	BH3A	4	14	0.7	1	4		1	I	,	, ,		1	1	,	1	t
383	BH3A	4	1	1	-		1			-				•	,	r	
384	BH4	13	ı	1	,	1		۲ ۲	6	,		1	1		1	1	1
	BH4 (bailed)	13	•	ı	I	4		<b>1</b>	. 1			3	1		,		,
386	BH4	13	1	I.		m	21	1		ų		, ,			•	I	4
387	BH4	13	1	1	<0,01	,			,	2	2.02	50.2	8	/cc.0	7.43	280	280
388	BH4	13	<10	<0.5	I			,			,	3	r	,	,	1	
389	BH4	13	1		1	,	1				•	1	,			I	1
390	BH5	e		1	1		4	-	Ľ	1	,		1	1		•	1
391 BI	BH5 (bailed)	3	,				1	· 1	<b>.</b>		1	I	4	•	t	1	4



		Date of Receipt : 23/04/97 (of first sample)	23/04/97	ŏ	COMPANY					Sample T Location Client Co	Sample Type : Location : Client Contact		WATER RAF UPPER HEYFORD S.HOBBS	PER HI	EYFOR	D	
	Dreliminary	Units	mqq	mqq	mqq	mqq	maa	mac	maa			. 4		1			
	Validated	<b>Detection Method</b>	Spectro	ATU		٩	Flame P	Gravi	R	KONE	KONE	KONE	KONF	Matar	Matar	ppm(caco	mqq
	NAMAS Accredited	Detection Limits	<10	<0.5	<0.01	ę	ę	<1	v	55	<0,5	<0.01	Ŷ	<0.004	<0.01		1 Iue
Sample Number	Sample Identity	Depth (m)	COD On Unfiltered Sample	BOD in unfiltered water	Ammoniacal Nitrogen In Water	Potassium	Sodium	DCM/MeOH Extract	Tot. Org. Carbon in Water	Chloride (soluble)	Nitrate (soluble)	Phosphate (soluble)	Sulphate (soluble)	Electrical Conductivity	pH Value In Water	Alkalinity Total	Bicarbonate
392	BH5	3		1	1	ę	14		1	53	20 Z	0.00	ç	1000	2		
393	BH5	e	,	Ŧ	<0.01	1	1	1		3 1	202	30.0 -	8	0.024	57.	300	300
394	BH5	m	<10	<0.5	1		,		1		,		1	1	1		1
	BH5	e	1	1		1	1	)		1				•	,	1	
	BHG	12	I		1	.1	1	v	9	1	,				,		,
	BHG	12	,	1	T	5	19	,	1	5	<0.5	0.11		0 607			
	BH6	12	1	1	0.02	1		1	.,					, , ,	\$		3
	BH6	12	77	2.8	3	,	,	1	,	1	,	,	,		,	. ,	1
	BHG	12	,	6	I	1	,	1	r		,	t		-1	1	T	
	BH7	4		3	1	1	1	۲.	ۍ ا	1	,	1		,	+		1
	BH7 (bailed)	4	,	4	1	J		Ţ.	3		1	3	,	•	•		
	ри7	4	1	4	ı	ç	12	1	1	10	<0.5	0.02	10	0.587	7.14	400	400
	7110 2110	4,	, ,	4	0.04	,	,	1	•	,	,	,	,	I	,	,	,
	BH/ BH7	4	<10	<0.5	r	,	•	,	. 1	ı		.1		+	,	1	4
	1	4	1	1	1	1	1	1	1	,	1	•		-1	1		1
		SURFACE	1	j.	1	,	1	<u>^</u>	3	1	,	3	1	1	,	1	
		SURFACE	,	1	1	1	,	7	t :		,	r.		,	1	r	4
		SURFACE	1	tin in the second s	1	1	r	7	9	•	1	1	,	1	1	•	,
		SURFACE	•	1	1	ΰ	13	1	1	17	4.7	0.04	17 0	0.362	7.87	550	550
	SPRING	SURFACE	1	1	D DA								the second secon				

# **GEOCHEM ANALYTICAL SERVICES**

Diesel Range Organics

by: G.C.



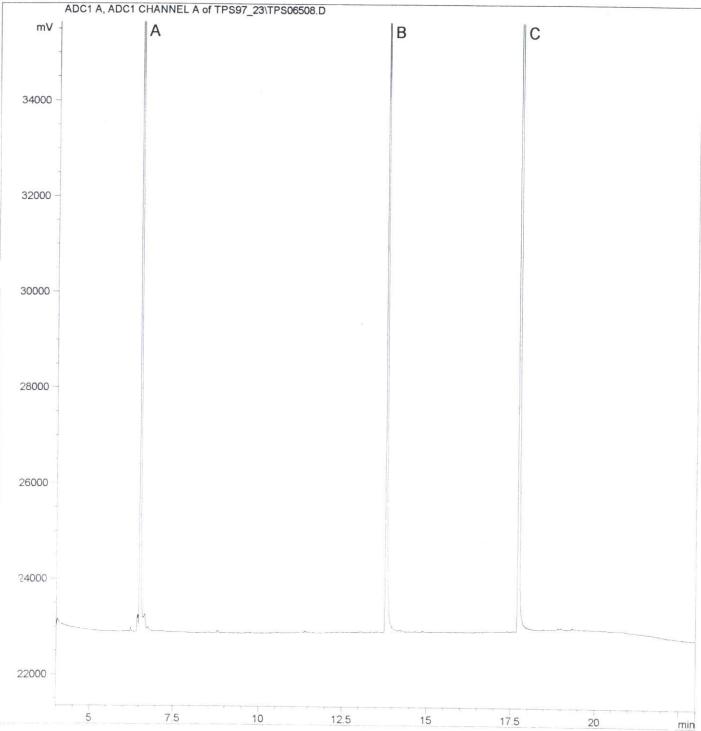
Client Ref:= MD3333A/2847	Water	97/1023/02/01
Client Ref =	Sample Matrix=	Job Number:=

Date Sample Received:= 24/4/97 Date Extracted/Prepared:= 6/6/97

Date Analysed:= 7/6/97



Internal Standard:= A := 2,2,4,4,6,8,8, HEPTAMETHYLNONANE B := 1-CHLOROOCTADECANE C := SQUALANE

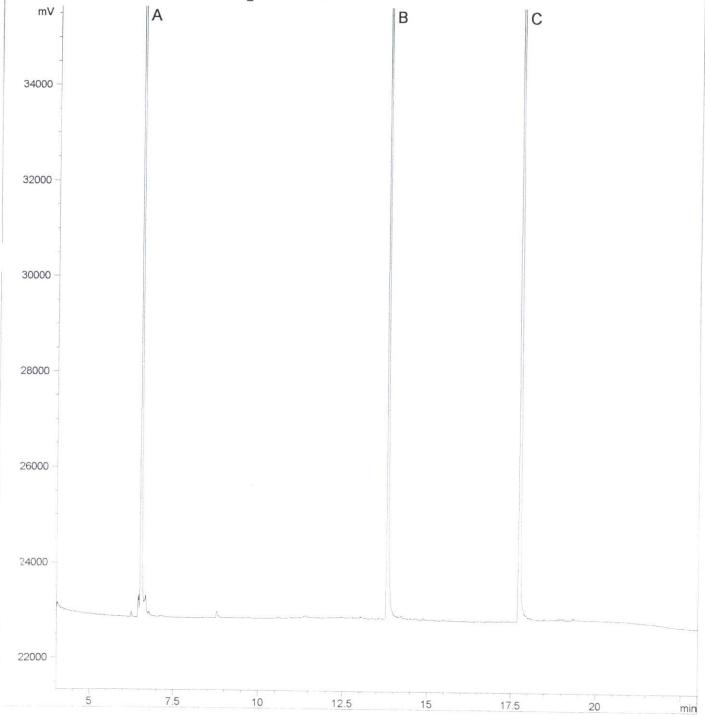

		-	I DIAL DUIUUIC EALIACI	ITVUIOCALOONS	Internretation
number	Identity		(mg/litre)	(µg/litre)	
060	SPRING D	T		17	No Identification Possible
095	SPRING L	ı	$\bigtriangledown$	31	No Identification Possible
100	SPRING M	ı	[>	< 10	No Identification Possible
154	SPRING B			< 10	No Identification Possible
159	SPRING C2	E		24	No Identification Possible
164	SPRING G1	r.		< 10	No Identification Possible
169	SPRING P1	t		< 10	No Identification Possible
174	SPRING R2	1	2	< 10	No Identification Possible
294	BH 3B	1	c	< 10	No Identification Possible
363	BH 1A	1	c	< 10	No Identification Possible
368	BH 1B	1	2	< 10	No Identification Possible
369	BH 1B(bailed)	1	2	< 10	No Identification Possible
374	BH 2	1	2	17	No Identification Possible
379	BH 3A	ı	2	< 10	No Identification Possible
384	BH 4	i		< 10	No Identification Possible
385	BH 4(bailed)	i.		< 10	No Identification Descible
390	BH 5	ī		10	No Identification Descible
391	BH 5(bailed)	4	$\overline{\nabla}$	< 10	No Identification Describio
396	BH 6	-1		17	No Identification Describio
401	BH 7	I		< 10	No Identification Possible

Page 106 nf 205

A MANAS	Separatory Funnel Ext:= Yes Soxtec Extraction:= No Column Extraction:= Yes	Interpretation lentification Possible	Page 107 of 2
ICAL SERVICE Drganics	24/4/97 6/6/97 7/6/97 B - 1-CHIOROGTADFCANF		
GEOCHEM ANALYTICAL SERVICES Diesel Range Organics by G.C.	Date Sample Received:= 24/4/97 Date Extracted/Prepared:= 6/6/97 Date Analysed:= 7/6/97	Total Soluble Extract (mg/litre)	
GEOC	Di Dati A :- 2,2,4,4,6,8,8		k);
	Client Ref.= MD3333A/2847 ample Matrix= Water Job Number:= 97/1023/02/01 Internal Standard:=	Sample Identity BH 7(bailed)	
GEOCHEN	Client Ref.= MD33 Sample Matrix= Water Job Number:= 97/102 Intern	Sample number 402	

Page 107 of 205

1023-294

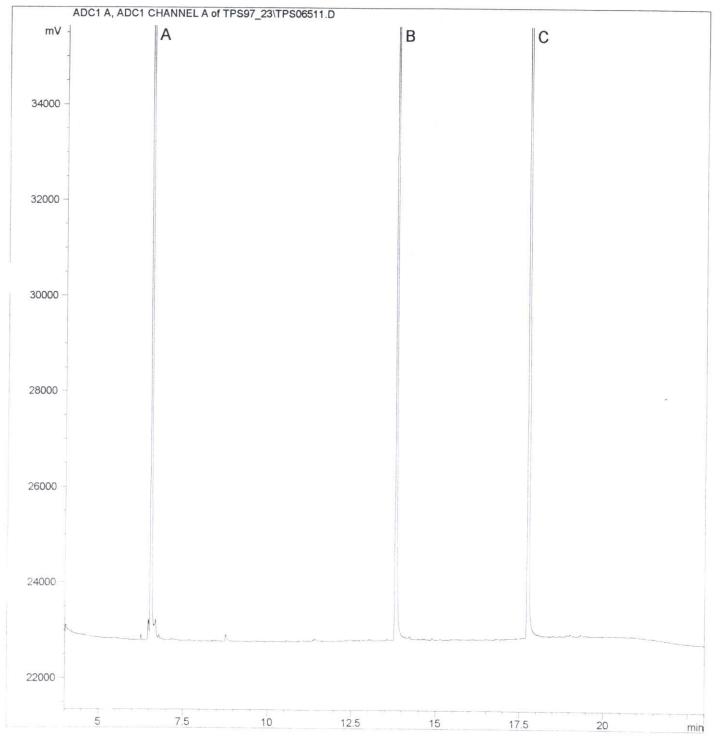





GEOCHEM

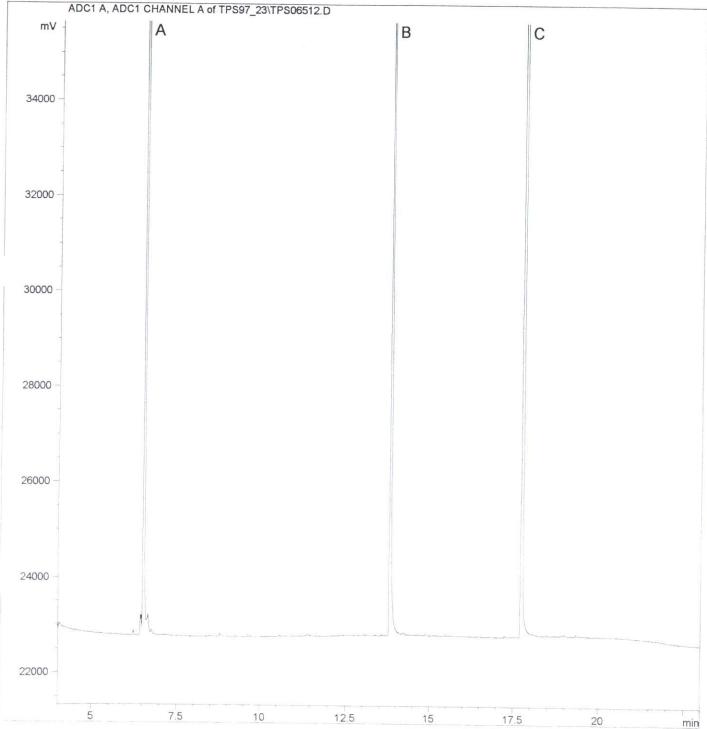
# Diesel Range Organics Analysis By G.C. 1023-363 ADC1 A, ADC1 CHANNEL A of TPS97_23\TPS06509.D

GEOCHEM ANALYTICAL SERVICES




GEOCHEM





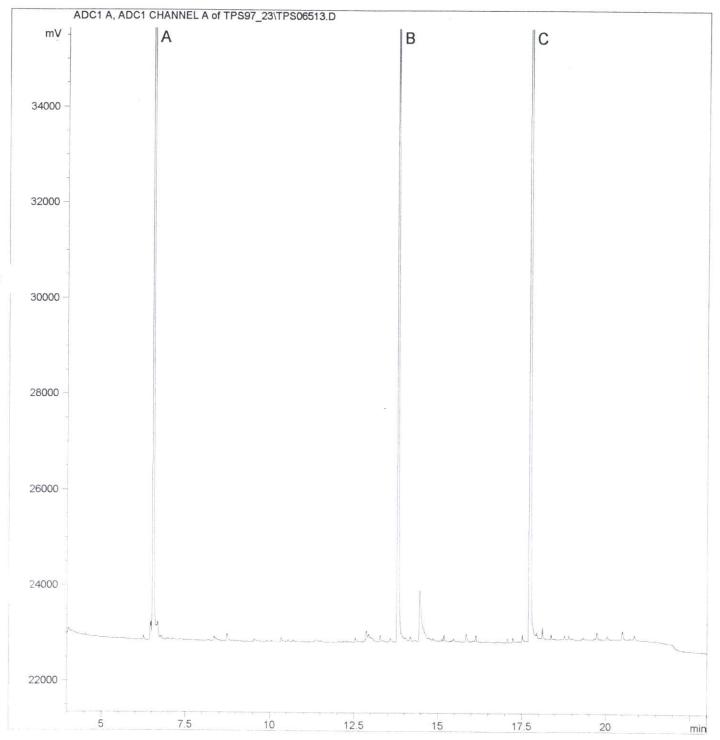






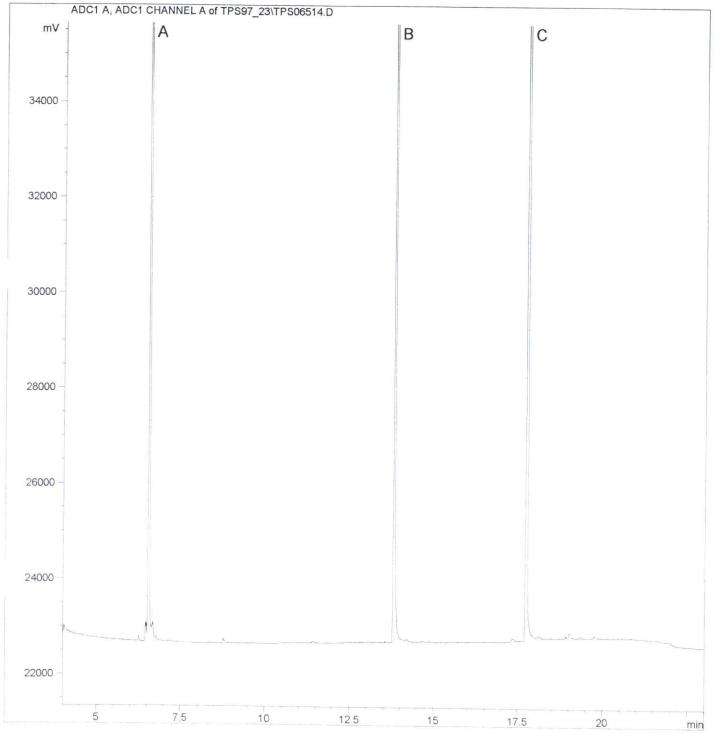






Diesel Range Organics Analysis By G.C.

GEOCHEM ANALYTICAL SERVICES

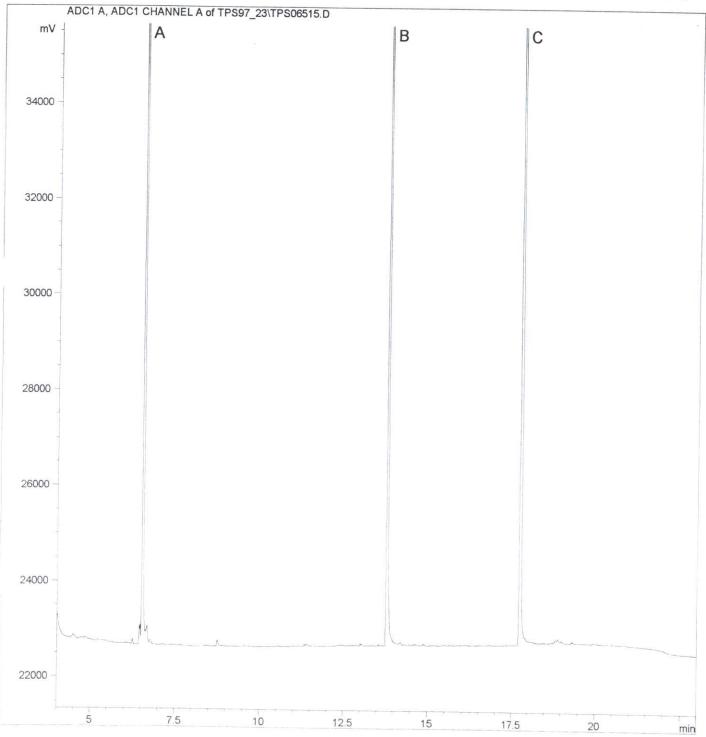
GEOCHEM


# NAMAS TESTING No. 1291





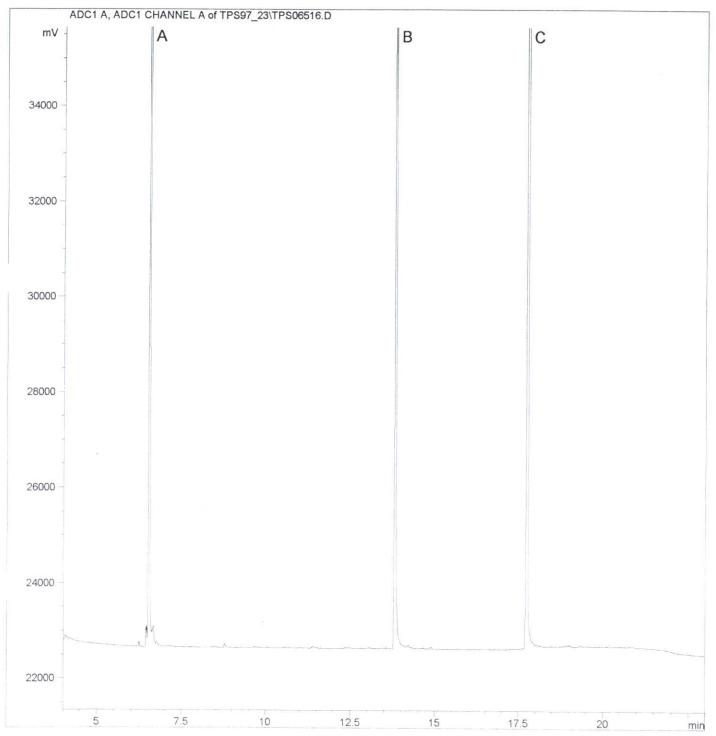




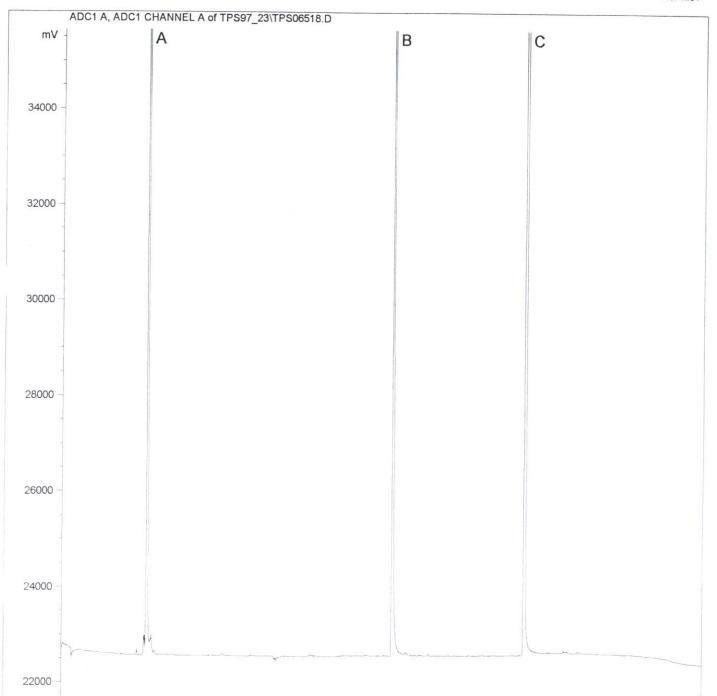



GEOCHEM

### GEOCHEM ANALYTICAL SERVICES Diesel Range Organics Analysis By G.C.







GEOCHEM

### GEOCHEM ANALYTICAL SERVICES Diesel Range Organics Analysis By G.C.





1023-390



7.5

10

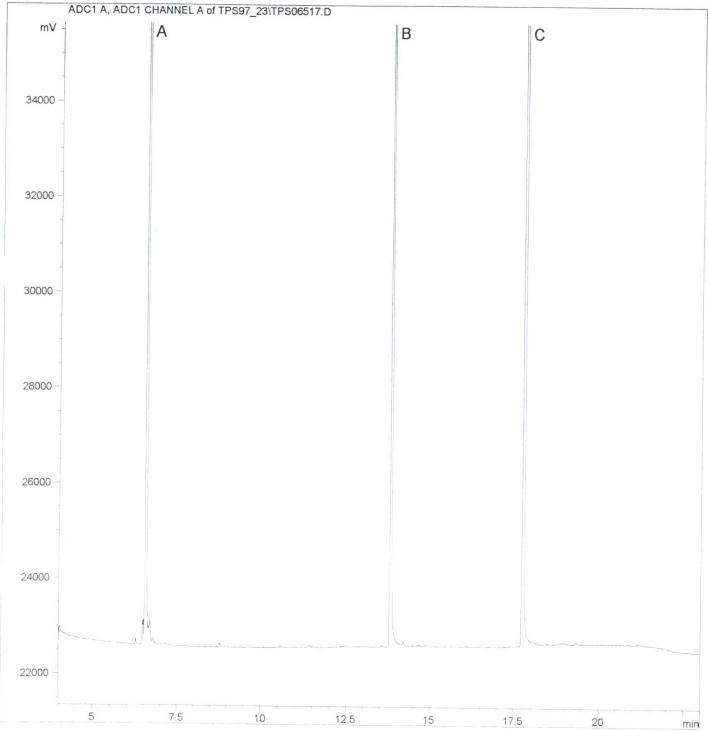
12.5

15

17.5

5

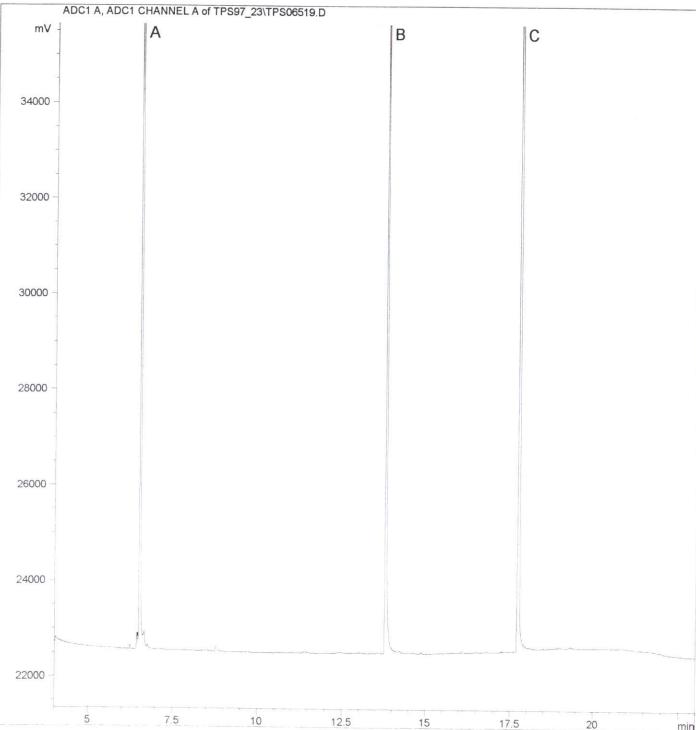
20


min





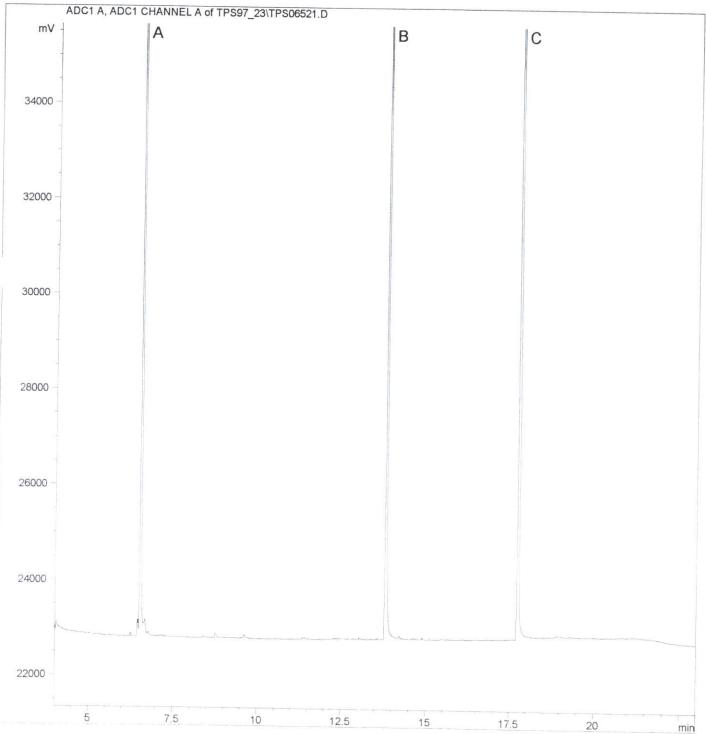













min







1023-402

В

С

ADC1 A, ADC1 CHANNEL A of TPS97_23\TPS06522.D

А

### GEOCHEM ANALYTICAL SERVICES Diesel Range Organics Analysis By G.C.

34000 32000 30000 28000 26000 24000 22000



5

7.5

10

12.5

15

17.5

GEOCHEM

mV

20

min

# Appendix

9

Appendix

# **Results of Chemical Testing - Springs**

Aspinwall&company June 1997



# **JCHEM ANALYTICAL SERVICE** TABLE OF RESULTS

97/01023/02/01
Job Number :

**ASPINWALL & COMPANY** Client :

Date of Receipt: 23/04/97 (of first sample)

Preliminary

Client Contact : S.HOBBS

Client Ref. No. : MD3333A

	111	and the
50N	N A	~ 1.
Ē		₩
щò	ショ	20/2
F~	Z	- L
	uul ²	Jun

RAF UPPER HEYFORD

WATER

Sample Type :

Location :

Detection         Method         Co         Co <thco< th="">         Co         Co</thco<>			Units	mqq	mqq	mqq	mdd	mdd	mqq	mdd	mad	maa	maa	maa	mua	muu	man		
Manual         Manua         Manua         Manua <th></th> <th>V Validated</th> <th>Detection Mathod</th> <th></th> <th>4</th> <th>0</th> <th>0</th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th>22</th> <th>222</th> <th>1</th> <th>linda</th> <th>uidd</th> <th>шdd</th> <th>mdd</th>		V Validated	Detection Mathod		4	0	0			-	-		22	222	1	linda	uidd	шdd	mdd
V         NSO / Resine         V         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · <t< th=""><th></th><th></th><th></th><th>13.4</th><th></th><th>CP CP</th><th>CP</th><th>СР</th><th>ĞР</th><th>СР</th><th>ЧÜ</th><th>GР</th><th>ICP</th><th>БP</th><th>ЧÖ</th><th>ЦC</th><th>TLC</th><th>TLC</th><th>TLC</th></t<>				13.4		CP CP	CP	СР	ĞР	СР	ЧÜ	GР	ICP	БP	ЧÖ	ЦC	TLC	TLC	TLC
NSO / Resine       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V <t< th=""><th></th><th>NAMAS Accredited</th><th>Detection Limits</th><th>&lt;0.05</th><th>+</th><th>&lt;0.05</th><th>&lt;0.05</th><th>&lt;0,05</th><th>&lt;0.05</th><th>&lt;0.05</th><th>&lt;0.05</th><th>&lt;0,05</th><th>&lt;0.05</th><th>&lt;0.1</th><th>&lt;0.05</th><th>⊽</th><th>v</th><th>$\overline{\mathbf{v}}$</th><th>2</th></t<>		NAMAS Accredited	Detection Limits	<0.05	+	<0.05	<0.05	<0,05	<0.05	<0.05	<0.05	<0,05	<0.05	<0.1	<0.05	⊽	v	$\overline{\mathbf{v}}$	2
UNKNOWN         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C </th <th>Sample Number</th> <th>Sample Identity</th> <th>Depth (m)</th> <th>Arsenic</th> <th>Boron</th> <th>Calcium</th> <th>Cadmium</th> <th>Chromium</th> <th>Copper</th> <th>Mercury</th> <th>Magnesium</th> <th>Nickel</th> <th>Lead</th> <th>Selenium</th> <th>Zinc</th> <th>Min. Oil / Paraffin</th> <th>Total Non-Volatile Aromatic</th> <th>NSO / Resins</th> <th>TPH By TLC</th>	Sample Number	Sample Identity	Depth (m)	Arsenic	Boron	Calcium	Cadmium	Chromium	Copper	Mercury	Magnesium	Nickel	Lead	Selenium	Zinc	Min. Oil / Paraffin	Total Non-Volatile Aromatic	NSO / Resins	TPH By TLC
UNKNOWN	90	SPRING D	UNKNOWN	•	,	x	•	,	,	x		,	ı		.	41	5 ¥V	V	2
UNKNOWN       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       : </td <td>91</td> <td>SPRING D</td> <td>UNKNOWN</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>298.00</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>3.69</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>102</td> <td>&lt;0.05</td> <td>•</td> <td>•</td> <td>ī</td> <td>7</td>	91	SPRING D	UNKNOWN	<0.05	<0.05	298.00	<0.05	<0.05	<0.05	<0.05	3.69	<0.05	<0.05	102	<0.05	•	•	ī	7
UNKNOWN         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         : </td <td>92</td> <td>SPRING D</td> <td>UNKNOWN</td> <td></td> <td></td> <td>1</td> <td>4</td> <td>•</td> <td>,</td> <td>1</td> <td>,</td> <td>,</td> <td></td> <td>1</td> <td>3</td> <td></td> <td></td> <td>•</td> <td>1</td>	92	SPRING D	UNKNOWN			1	4	•	,	1	,	,		1	3			•	1
UNKNOWN         · · · · · · · · · · · · · · · · · · ·	93	SPRING D	UNKNOWN	1	1		1	1								,	r	•	•
UNKNOWN         · · · · · · · · · · · · · · · · · · ·	94	SPRING D	UNKNOWN	,	,		1	,	,						1		1	1	1
UNKNOWN         c005	95	SPRING L	UNKNOWN	•	,	1	,							,	1	1	1	1	•
UNKNOWN         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I </td <td>96</td> <td>SPRING L</td> <td>UNKNOWN</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>184.00</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>KO 05</td> <td>30.07</td> <td>90.0</td> <td>100</td> <td>I C</td> <td></td> <td></td> <td>5</td> <td>⊽</td> <td>2</td> <td>2</td>	96	SPRING L	UNKNOWN	<0.05	<0.05	184.00	<0.05	<0.05	KO 05	30.07	90.0	100	I C			5	⊽	2	2
UNKNOWN       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       : </td <td>97</td> <td>SPRING L</td> <td>UNKNOWN</td> <td></td> <td>,</td> <td>,</td> <td></td> <td></td> <td>2</td> <td>200</td> <td>R.</td> <td>22.02</td> <td>S.o.</td> <td></td> <td>cu.u2</td> <td>,</td> <td>•</td> <td>1</td> <td>1</td>	97	SPRING L	UNKNOWN		,	,			2	200	R.	22.02	S.o.		cu.u2	,	•	1	1
UNKNOWN       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>98</td> <td>SPRING L</td> <td>NWOWN</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>,</td> <td>3</td> <td>,</td> <td>,</td> <td>,</td> <td>1</td> <td>1</td> <td>1</td> <td>ı</td> <td>,</td>	98	SPRING L	NWOWN						,	,	3	,	,	,	1	1	1	ı	,
UNKNOWN       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::       ::	66	SPRING	IINIKNOWN			ſ	1	,	,	1	,	,	1	1		ı	ı	r	t.
UNKNOWN	100	SPRING M		•		1	1	,	1	•	1	•	1	1	1	,	•	1	•
UNKNUWN       <0.05       177.00       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05	3				1	1	4	•	1	3	,	1	3	ï	•	$\overline{\mathbf{v}}$	Ϋ́	Ÿ	2
UNKNOWN         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         · </td <td>5 6</td> <td></td> <td>UNKNOWN</td> <td>&lt;0.0&gt;</td> <td>&lt;0.05</td> <td>177.00</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>2.05</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.1</td> <td>&lt;0.05</td> <td>,</td> <td></td> <td>1</td> <td>•</td>	5 6		UNKNOWN	<0.0>	<0.05	177.00	<0.05	<0.05	<0.05	<0.05	2.05	<0.05	<0.05	<0.1	<0.05	,		1	•
UNKNOWN       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       · </td <td>3 6</td> <td></td> <td>UNKNOWN</td> <td>,</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>,</td> <td>r</td> <td>1</td> <td>,</td> <td>ı.</td> <td>1</td> <td>ı</td> <td>1</td> <td>1</td> <td>,</td> <td>,</td>	3 6		UNKNOWN	,	1	1	1	1	,	r	1	,	ı.	1	ı	1	1	,	,
UNKNOWN        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<	5 4	M SURING M	UNKNOWN	•	1	ī	1	1	1	x	1	1	I	1	+	t	x	4	
UNKNOWN       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <	4				4		1	1	4		1	1	1	1	1	1	,	,	4
UNKNOWN       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <0.05       <	. 4			•	1	3	,	1	1	1	,	1	3	•	1	ž	Ÿ	-	⊽
UNKNOWN       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . </td <td>2 4</td> <td></td> <td>UNKNOWN</td> <td>ຊຸດຳດ&gt;</td> <td>&lt;0.05</td> <td>173.00</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>2.26</td> <td>&lt;0.05</td> <td>&lt;0.05</td> <td>&lt;0.1</td> <td>&lt;0.05</td> <td>,</td> <td>r</td> <td>,</td> <td></td>	2 4		UNKNOWN	ຊຸດຳດ>	<0.05	173.00	<0.05	<0.05	<0.05	<0.05	2.26	<0.05	<0.05	<0.1	<0.05	,	r	,	
Checked by	3 12		UNKNOWN	1	•	1	1	,	,		1	,	•	1	1	,	,	,	
Checked by		SPRINGB	UNKNOWN	4	•	3		1	,	1	4	,	1	1	•	t	ı	•	,
Checked by April Alison Ball	20	SPRING B	UNKNOWN	1		•	1	1			1			,	1	,		,	,
	nte	d on 19 June 1997	Checked I	by {	ond	X	d	Vlison E	3all										

OCHEM ANALYTICAL SERVI     TARI F OF RESULTS	97/01023/02/01
	971

	Job Number :	Client :	Date of Receipt
GEOC	// //	2	

**ASPINWALL & COMPANY** 

Date of Receipt: 23/04/97 (of first sample)

Sample Type :	WATER
-ocation :	RAF UPPER HEYFORD
Client Contact :	S.HOBBS
Client Ref. No. :	MD3333A

	W	
1	S.	95
	13	E Å
$( \rightarrow )$	12	S o
$\sim$	z	FZ
	II Lase	
		NAMAS

	Validated	Units	mqq	mqq	mqq	mdd	mqq	mdd	mdd	mdd	mqq	mdd	mdd	mqq	mad	maa	maa	man
L		Detection Method	СР	ICP	ICP	ICP	ICP	СP	ГСР	ICP	СP	ICP	ICP	CP .	Ē	ĒF	Ē	T I I
6111	NAMAS Accredited	Detection Limits	<0.05	<0,05	<0.05	<0.05	<0.05	<0.05	20.02	10.01		L C		5	3	2	3	ר
							2	3	20.02	5.57	Si A	S. D.	<0.1	<0.05	V	2	4	2
Sample Number	Sample Identity	Depth (m)	Arsenic	Boron	Calcium	Cadmium	Chromium	Copper	Mercury	Magnesium	Nickel	Lead	Selenium	Zinc	Min. Oil / Paraffin	Total Non-Volatile Aromatic	NSO / Resins	TPH By TLC
159	SPRING C2	UNKNOWN	,	,	x	•	,	,	1	•		1	,		F.	s Ŧ		
160	SPRING C2	UNKNOWN	<0.05	<0.05	228.00	<0.05	<0.05	<0.05	<0.05	2.95	<0.05	<0.05	ç	200	7	7	-	7
161	SPRING C2	UNKNOWN		,		•	•	,	,		3	8	22	20.02	1	•	,	1
162	SPRING C2	UNKNOWN	1	1	,	.1	,	ţ				,	a	•	t	ı	4	,
163	SPRING C2	UNKNOWN	1	,	,	,	,	,		,	1	•	1	1	,	,	,	1
164	SPRING G1	UNKNOWN	•	,	I		,			•	,	,	1	,	,	,	1	.F.
165	SPRING G1	UNKNOWN	<0.05	<0.05	248.00	<0.05	<0.05	KO OS	20.02	. 60		I C	•		v	v	1	$\nabla$
166	SPRING G1	UNKNOWN		1	,			3	3	3	20.02	Sin	5	କମ:D>	,	1	1	1
167	SPRING G1	UNKNOWN	,	,				,	,	•	,	,		1	,	I	ı	,
168	SPRING G1	UNKNOWN	,	,				,	t	4	,	1	1	•	1	ı	ı	1
169	SPRING P1	INKNOWN						,	1	,	•		1	i	1	i.	ł	,
170	SPRING P1	NWUNNNI	20.05	- 20.05	215.00	· ·	, L	, ,	I	4	1	1		•	⊽	¥	1	⊽
171	SPRING P1	UNKNOWN	} i 1	-	, ,	0.5	60.02	cn'ny	c0.0>	3.72	<0.05	<0.05	<0.1	<0.05	ı	1	1	
172	SPRING P1	UNKNOWN	•	,	I	4		•	F.	3	5	,	,	1	,	•	1	ŀ
173	SPRING P1	UNKNOWN	- 1	,	,			,		•	,	a	•	•	,	r	4	•
174	SPRING R2	UNKNOWN	1	,	3				•	1	,	•	1	1	•	1	t	•
175	SPRING R2	UNKNOWN	<0.05	<0.05	246.00	<0.05	10.05	20.01	10.01	, ,	, ,	,	,	1	2	¥	2	2
176	SPRING R2	UNKNOWN				3	2	2007	3.52	<u>»</u>	\$0.02	<0.05	<b>0</b>	<0.05	1	ı	r	
177	SPRING R2	UNKNOWN	•	,	,		1	,	•	•	1	,	1	1	1	,	1	1
178	SPRING R2	UNKNOWN	1					1	1		1	1		•	,	I	•	,
	Drintod on 40 Lond									1	•	•	1	1	1			



RAF UPPER HEYFORD

Location :

		WATER
<b>JCHEM ANALYTICAL SERVICE</b>	TABLE OF RESULTS	01 Sample Type :
()		0

97/01023/02/01	
Job Number : 9	Client ·

Client : ASPINWALL & COMPANY

Date of Receipt : 23/04/97 (of first sample)

Client Contact : S.HOBBS Client Ref. No. : MD3333A

No. 1291		mud	IIIdd	ЦC Д		7	TPH By TLC
Z		mud		ЦС	1	,	NSO / Resins
		maa		TLC	5		Total Non-Volatile Aromatics
		maa	Ī	2	V		Min: Oil / Paraffin
A		bpm	5	1	<0.05		Zinc
Client Ref. No.: MD3333A		mdd	0,01	2	<0.1		Selenium
o. : M		mdd	a	5	<0.05		Lead
Ref. N		mdd	ICP	5	<0.05		Nickel
Client		uidd	ICP		<0.05		Magnesium
	muu	E Inda	ICP		<0.05		Mercury
	muu	inda	СP	1	c0.0>		Copper
	maa		ICP	10.01	cu.u2		Chromium
	ppm		ICP	10.05	3.07		Cadmium
	mdd		ICP	<0.05	200		Calcium
	bpm	1	ICP	<0.05			Boron
	bpm	44	r Cr	<0.05			Arsenic
	Units	Detection Mathad	Defection Method	Detection Limits			Depth (m)
Preliminary	Potebile/			NAMAS Accredited			Sample Identity
			L		1		Sample Number

Depth (m) Depth (m)	Ŭ Ŭ		Job Number : 97/01	C	СН	DCHEM AI TABL	NALY E OF	NALYTICAL SERVICE	L SEF JLTS	RVICE		F							·B(
Victor         NSO / Resins         .           u         1         Total Non-Volate Aromatics         .           u         1         1         Selenium         .         .           u         1         1         1         .         .           u         1         1         1         .         .           u         1         1         .         .         .           u         1         1         .         .         .           u         1	$\mathcal{W}$			197	& CO	MPANY					Sampl Locati Client	e Iype on : Contac	••	ATER NF UPF HOBB\$	ER HE	EYFOR	9		MAS
Image: second		Preliminary	Units	mdd	mqq	mqq	mad	maa	muq		client	Ket. No		033334				N	. 1291
1       V       NSO / Resins       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . <t< th=""><th></th><th></th><th><b>Detection Method</b></th><th>ICP</th><th>ICP</th><th>ICP</th><th>ICP</th><th>E D</th><th>a c</th><th></th><th></th><th>Edd</th><th>mdd</th><th>mdd</th><th>mdd</th><th>mqq</th><th>mqq</th><th>mqq</th><th>mqq</th></t<>			<b>Detection Method</b>	ICP	ICP	ICP	ICP	E D	a c			Edd	mdd	mdd	mdd	mqq	mqq	mqq	mqq
V         NSO / Resins         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <t< th=""><th></th><th>NAMAS Accredited</th><th>Detection Limits</th><th>&lt;0.05</th><th>&lt;0.05</th><th>&lt;0.05</th><th>10.05</th><th></th><th>2 0</th><th>2</th><th><u>ז</u></th><th>d C</th><th>СР</th><th>IСР</th><th><u>n</u></th><th>ЦС</th><th>TLC</th><th>TLC</th><th>TLC</th></t<>		NAMAS Accredited	Detection Limits	<0.05	<0.05	<0.05	10.05		2 0	2	<u>ז</u>	d C	СР	IСР	<u>n</u>	ЦС	TLC	TLC	TLC
NSO / Resine       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . <t< th=""><th></th><th></th><th></th><th></th><th>2</th><th>200</th><th>0.07</th><th>cn'ny</th><th>c0.0^</th><th>&lt;0.05</th><th>&lt;0.05</th><th>&lt;0.05</th><th>&lt;0.05</th><th>&lt;0.1</th><th>&lt;0.05</th><th>۶</th><th>v</th><th>2</th><th>7</th></t<>					2	200	0.07	cn'ny	c0.0^	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	۶	v	2	7
OLARACE	Sample Number	Sample Identity	Depth (m)	Arsenic	Boron	Calcium	Cadmium	Chromium	Copper	Mercury	Magnesium	Nickel	Lead	Selenium	Zinc	Min. Oil / Paraffin	Total Non-Volatile Arom	NSO / Resins	TPH By TLC
	112	SPRING I	SURFACE														atics		
	13	SPRINGI	SURFACE		,	1	4	•	,	ı	+	•	ı		•	•	Ţ	•	
	+	)		1		1		1	•	1	,			1	1				
	+																,	,	P.
	-																		
	-																		
	-																		
					-														
							_	_											
	-																		
	-																		
	-																		
	_																		
	+																		
	104	101																	



Client : Date of Receipt Of first sample) (of first sample) (of first sample) (of first sample) (of first sample) Detection Detection	ASPIN ASPIN Method Limits Deuth (m)	UNC COD On Unfilter		PANY												lu
Sample Identity		E COD On Unfilter							Client Con	Location : Client Contact		RAF UPPER HEYFORD S.HOBBS	ER HE	EYFOR	Q	NAMAS TESTING
Sample Identity		COD On Unfilter	t	bpm	mdd	mqq	mdd	mqq		CIIENT KET. NO.		MD3333A	T ms/cm			2
	Depth (m)	⊖ COD On Unfilter	ATU	Colour F	Flame P	Flame P	Gravi				-		Mater	Matar		mqq
Sample Identity	Depth (m)	COD On Unfilter	<0.5	<0.01	ŝ	Q	-1	v					×0.004			HITE
Sample Identity	Depth (m)	OD On Unfilter					T						thoras	1077	v	V
		red Sample	BOD in unfiltered water	Ammoniacal Nitrogen In Water	Potassium	Sodium	DCM/MeOH Extract	Tot. Org. Carbon in Water	Chloride (soluble)	Nitrate (soluble)	Phosphate (soluble)	Sulphate (soluble)	Electrical Conductivity	pH Value in Water	Alkalinity Totat	Bicarbonate
SPRING D UN	UNKNOWN	,	,	1			53	e								
SPRING D UN	UNKNOWN	1	1	1	10	18		, ,	- V	C 10				1	ı	
SPRING D	UNKNOWN	4	1	0.05					5		-n.ui	- AQ	0.919	7.79	300	300
SPRING D UN	UNKNOWN	<10	<0.5		1				1	,	3	+	,		I	4
SPRING D UN	UNKNOWN	1	1		.,	1			1		1.	1	1	1	1	1
SPRING L UN	UNKNOWN	•	1	1			55	, r	1	1	,	,	1	,	1	,
SPRING L UN	UNKNOWN	1	4		ę	20	}	>		, 0	1 [		•		x	
SPRING L UN	UNKNOWN			0.05	•				5		20.0	5/ 0	0.654	7.76	260	260
	UNKNOWN	<10 <	<0.5	t	1					, ,	<b>1</b>	, 1	,	,	,	
	UNKNOWN	1	1	1			1				ı	1		,	r	,
	UNKNOWN	,	1	1			.46			, ,	a ,	1	i	,		1
	UNKNOWN			1	33	16				c	100	-		,		
	UNKNOWN	ı	-	0.09	1	1	1				5		/00/0	1.36	250	250
SPRING M UN	UNKNOWN	<10 <	<0.5	I								1	1	,		1
SPRING M UNI	UNKNOWN	1	1		1					,	1	1		1	r	4
SPRING B UNI	UNKNOWN	,								1		1	1	1	•	
SPRING B UNI	UNKNOWN						-	N		-	.1	1	1	,	1	
SPRING B UNI	UNKNOWN		C	0 40		2	-		а 8	0 0.17	0.02	4 0	0.685	7.52	300	300
SPRING B UNI		<10 <(	<0.5 <0.5			1	1	4	,	1	,	1	-1			1
SPRING B			2				1	1	1	,	1	4	,	t	1	



		umber :	97/01023/02/01	101													
		f Receipt :	ASPINWALL & COMPANY 23/04/97	& COI	APANY	2		8		Sample T Location Client Co	Sample Type : Location : Client Contact		WATER RAF UPPI S.HOBBS	PER HI S	WATER RAF UPPER HEYFORD S.HOBBS	Q	
	ry	Units	mdd	mqq	maa	maa	maa	audu	muu	Client	Client Ref. No.		MD3333A	A			No. 1291
	V Validated	<b>Detection Method</b>	Spectro	ATU		a	Flame D	indd iver0		ppm h	mqq	mdd	mdd	ms/cm		ppm(CaCO	mdd
	NAMAS Accredited	Detection Limits	<10	<0.5	1		2		<u> </u>	NONE	KUNE	KONE	KONE	Meter	Meter	Titrat	Titre
			(			?	7	7	v	Ŷ	<0.5	<0.01	ę	<0.004	<0.01	V	V
Sample Number	Sample Identity	Depth (m)	COD On Unfiltered Sample	BOD in unfiltered water	Ammoniacal Nitrogen In Water	Potassium	Sodium	DCM/MeOH Extract	Tot. Org. Carbon in Water	Chloride (soluble)	Nitrate (soluble)	Phosphate (soluble)	Sulphate (soluble)	Electrical Conductivity	pH Value In Water	Alkalinity Totat	Bicarbonate
159	SPRING C2	UNKNOWN			ī			-	٩								
160	SPRING C2	UNKNOWN		1		Ş	24		>	03			+	•	+	1	4
161	SPRING C2	UNKNOWN	•	1	0.95	•				3		20.02	ŋ	0.858	7.72	233	233
162	SPRING C2	UNKNOWN	<10	<0.5	,	1	,		r		1	1	•		,	r	•
163	SPRING C2	UNKNOWN	1	i	,	,	,				1		1	1	,		1
164	SPRING G1	UNKNOWN	•	4	T	1	,	-	, c	,	,	,	,	1	,	,	1
165	SPRING G1	UNKNOWN	i	- 1		33	ų V	-	4	1 C	' '	1	+	•	t	1	4
166	SPRING G1	UNKNOWN	4	1	0.61	, ,	2 ,		•	07 V	1.05	0.02	71	0.791	7.83	<b>6</b> 4	400
167	SPRING G1	UNKNOWN	<10	<0.5		,		1		,	,	1	,	,	,	1	1
168	SPRING G1	UNKNOWN	,				1	,		1	,	1	,	•	,	5	4
169	SPRING P1	UNKNOWN	4	1	3		•	-				•	1	1	+	,	1
170	SPRING P1	UNKNOWN	1	1		8	22		, ,	20	0.90	1 0		+	,	1	1
171	SPRING P1	UNKNOWN	1	1	0.08	,	.	- 1		5	0.00	70.0Z	22	0.796	7.94	367	367
172	SPRING P1	UNKNOWN	<10	<0.5	r			,		n li	,	,	1	r	1	1	1
173	SPRING P1	UNKNOWN	1	1					r	•	•	1	•	,	,	I	+
174	SPRING R2	UNKNOWN	,		1			c		•			1	1	1		1
175	SPRING R2	UNKNOWN	,			ç	, <u>(</u>	7	-	,	<b>r</b>	1	1	,	<b>s</b>	1	,
176	SPRING R2	UNKNOWN			a+ c	2	<u>×</u>	,	t	18	17.1	<0.01	69 (	0.798	7.32	433 4	433
	SPRING R2	UNKNOWN	0	<0.5	2	1	1	1		1	•	•	1	,		,	1
178	SPRING R2	UNKNOWN					,		1	•	,	1	•	•	t	I	4
Printad on						•	1	1	•						ALL RADING RADING RADING TO A REAL OF		ACCOUNTS OF



RAF UPPER HEYFORD

Client Contact : S.HOBBS Client Ref. No.: MD3333A

Sample Type : WATER

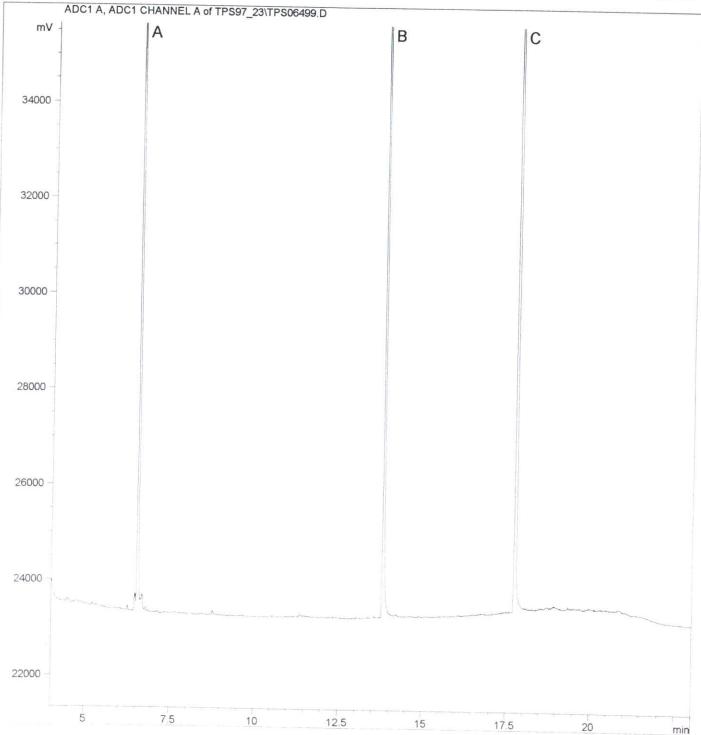
Location :

- SERVICE:	ILTS
<b>EM ANALYTICAI</b>	TABLE OF RESU
CH	

					1	0		
CHEM ANALYTICAL TABLE OF RESU					bpm	Flame P	Q	Sodium
E OF					mdd	Flame P	<3	Potassium
EM A		ASPINWALL & COMPANY			mqq	Colour	<0.01	Ammoniacal Nitrogen Ir Water
		& COI			bpm	ATU	<0.5	BOD in unfiltered water
-	97/01023/02/01	IWALL	97		mdd	Spectro	<10	COD On Unfiltered Samp
		ASPIN	ceipt :		Units	<b>Detection Method</b>	Detection Limits	Depth (m)
	Job Number	Client :		Preliminary	Validated		NAMAS Accredited De	Sample Identity
E E	2	2				L		Sample Number

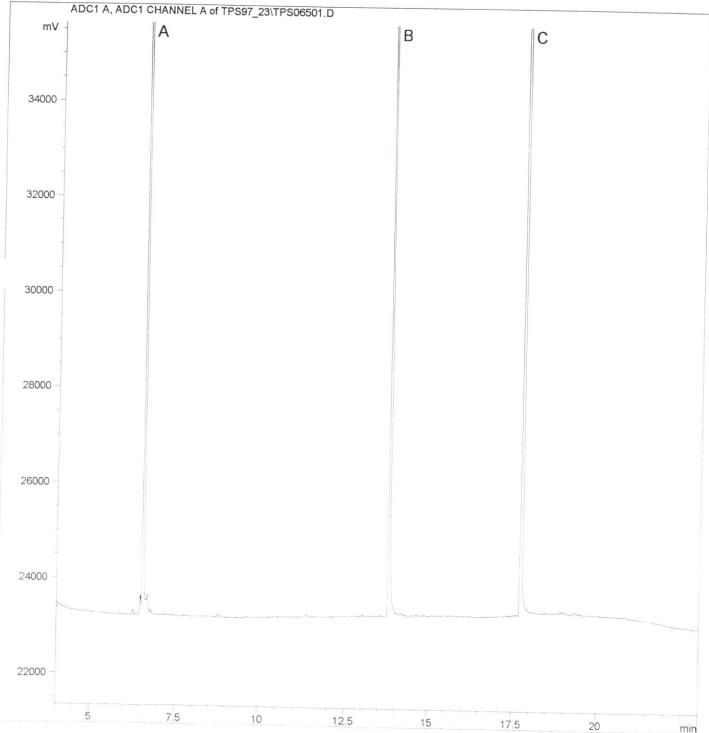
maa	Titre	2	Bicarbonate
ppm(CaCO	Titrat	v	Alkalinity Total
ā	Meter	<0.01	pH Value In Water
ms/cm	Meter	<0,004	Electrical Conductivity
mdd	KONE	ç	Sulphate (soluble)
bpm	KONE	<0.01	Phosphate (soluble)
mdd	KONE	<0.5	Nitrate (soluble)
mdd	KONE	ស	Chloride (soluble)
mdd	R	£	Tot. Org. Carbon in Water
mdd	Gravi	<1	DCM/MeOH Extract
mqq	Flame P	ç	Sodium
bpm	Flame P	€	Potassium
mdd	Colour	<0.01	Ammoniacal Nitrogen In Water
mdd	ATU	<0.5	BOD in unfiltered water
mdd	Spectro	<10	COD On Unfiltered Sample
		Detection Limits	Depth (m)
Validated		NAMAS Accredited De	Sample Identity
	Ŀ		Sample Number

9
, , ,
3 1



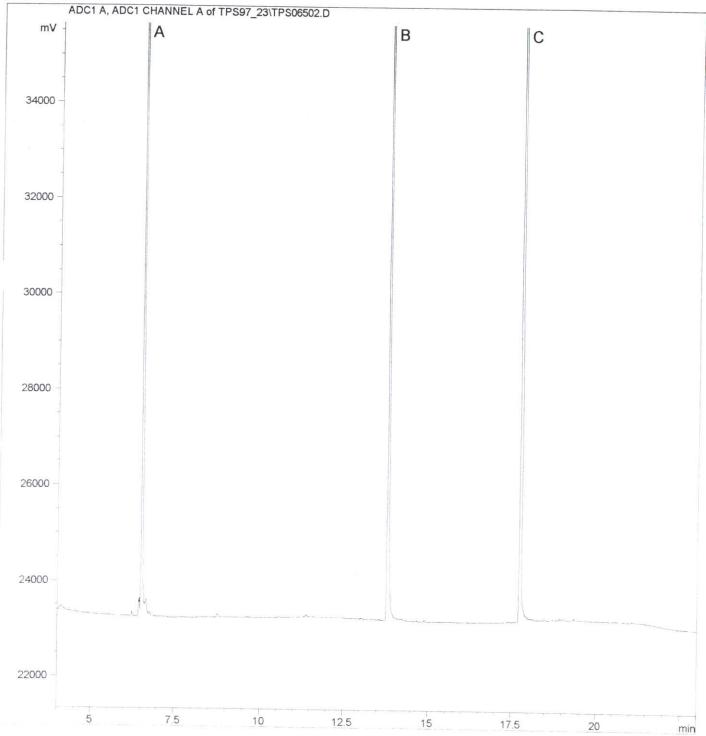

Job Number:       97010230201       IABLE OF RSUL Team       Sample Type:       WATE         Job Number:       37010230201       Client:       ASPINWALL & COMPANY       Locations:       EAF UDPER HEYCORD         Date of Receipt:       2300497       Client:       ASPINWALL & COMPANY       Locations:       EAF UDPER HEYCORD         Intel of Receipt:       2300497       Client:       Client:       Client Contact:       S.HOBBS         Intel of Receipt:       2300497       Failer of Receipt:       Client Ref. (no. in the second ref.	E C			~	CHEM	IN A	VALY	TICA	L SEF	<b>RVICE</b>	ы								.5
Clent: ASPINNALL & COMANT           Affitting           Affitting <th>2</th> <th></th> <th></th> <th>023/02/</th> <th></th> <th>IABL</th> <th>п С</th> <th>RESC</th> <th>JLIS</th> <th></th> <th>Samol</th> <th>e Tvne</th> <th></th> <th>A TED</th> <th></th> <th></th> <th></th> <th></th> <th></th>	2			023/02/		IABL	п С	RESC	JLIS		Samol	e Tvne		A TED					
Image: State of the s	2			NWALL	& COI	APANY					Locati	on : no		ALEN VF UPF	PER HE	YFOR	C		¥)
Open Unitary       Image: Section Method       Image: Section Method       Image: Section Method         Image: Method       Image: Method       Image: Method       Image: Method       Image: Method         Image: Method       Image: Method       Image: Method       Image: Method       Image: Method         Image: Method       Image: Method       Image: Method       Image: Method       Image: Method         Image: Method       Image: Method       Image: Method       Image: Method       Image: Method         Image: Method       Image: Method       Image: Method       Image: Method       Image: Method         Image: Method       Image: Method       Image: Method       Image: Method       Image: Method         Image: Method       Image: Method       Image: Method       Image: Method       Image: Method         Image: Method       Image: Method       Image: Method       Image: Method       Image: Method       Image: Method         Image: Method       Image: Method       Image: Method       Image: Method       Image: Method       Image: Method       Image: Method         Image: Method       Image: Method       Image: Method       Image: Method       Image: Method       Image: Method       Image: Method       Image: Method       Image: Method       Image: Method       Imag				797							Client	Contac Ref M		HOBB			C	NA TES No.	STING
Dependent         Image: Solution (Solution)         Alkalinity: Total         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x </th <th></th> <th>Preliminary     Validated</th> <th>Units</th> <th>mqq</th> <th>mqq</th> <th>mdd</th> <th>bpm</th> <th>mqq</th> <th>mdd</th> <th>maa</th> <th>ppm</th> <th>man</th> <th></th> <th>locco.</th> <th></th> <th></th> <th></th> <th></th> <th></th>		Preliminary     Validated	Units	mqq	mqq	mdd	bpm	mqq	mdd	maa	ppm	man		locco.					
Image: Section of the sectio	L		<b>Detection Method</b>	Spectro	ATU			Flame P	Gravi	<u> </u>		KONE	-		Meter	Matar	n(caco	mqq	
Alkalinihy Total       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x       x		NAMAS Accredited	Detection Limits	<10	<0.5	<0.01	Ŷ	Ŷ	2	₽ V		<0,5			<0.004	<0.01		+llfe	
SURFACE       <10       05       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       <1       1       1       1       1       <	Sample Number	Sample Identity	Depth (m)	COD On Unfiltered Sample	BOD in unfiltered water	Ammoniacal Nitrogen In Water	Potassium	Sodium	DCM/MeOH Extract	Tot. Org. Carbon in Wate	Chloride (soluble)	Nitrate (soluble)	Phosphate (soluble)	Sulphate (soluble)	Electrical Conductivity	pH Value In Water	Alkalinity Total	Bicarbonate	
	412	SPRING I	SURFACE	<10	<0.5	1			,	r ,									
	413	SPRING I	SURFACE	•	1	,		-		r	,	•	r	•	•	,	r	•	
									r	•	•			1	1	•		4	
	rinto d				-														

,			by G.C.		
Client Ref:= <u>MD33</u> Sample Matrix= <u>Water</u>	Client Ref:= MD3333A/2847 ple Matrix= Water	Dat	Date Sample Received:= 24/4/97 Date Extracted/Prepared:= 6/6/97	24/4/97 6/6/97	Separatory Funnel Ext:= Yes
ob Number	Job Number:= 97/1023/02/01		Date Analysed:= 7/6/97	7/6/97	Column Extraction:= Yes
	Internal Standard:-	A :- 2,2,4,4,6,8,8	2,2,4,4,6,8,8, HEPTAMETHYLNONANE	B := 1-CHLOROOCTADECANE	ECANE C :- SQUALANE
Sample	Sample	Depth	Total Soluble Extract	Diesel Range Hydrocarhone	
number	Identity		(mg/litre)	(µg/litre)	Interpretation
060	SPRING D	4,		17	No Identification Domitte
095	SPRING L	ı		31	No Identification Possible
100	SPRING M	1		< 10	No Identification Possible
154	SPRING B	1	-	< 10	No Identification Dossible
159	SPRING C2	1	-	24	No Identification Docciblo
164	SPRING G1	ī	1	< 10	No Identification Possible
169	SPRING P1	1	-	< 10	No Identification Possible
174	SPRING R2	г	2	< 10	No Identification Possible
294	BH 3B	I	3	< 10	No Identification Possible
303	BHIA	r	3	< 10	No Identification Possible
308	BHIB	1	2	< 10	No Identification Possible
605	BH 1B(bouled)	1	2	< 10	No Identification Possible
3/4	BH 2	1	2	77	No Identification Possible
610	BH 3A		2	< 10	No Identification Possible
204	BH 4	ı	<1	< 10	No Identification Possible
200	BH 4(bailed)	-	<1	< 10	No Identification Possible
590	BH 5	1	_	10	No Identification Possible
391	BH 5(bailed)	ı	$\overline{\nabla}$	< 10	No Identification Possible
396	BH 6	ĩ	~	17	No Identification Possible
401	BH 7	r.		< 10	No Identification Possible



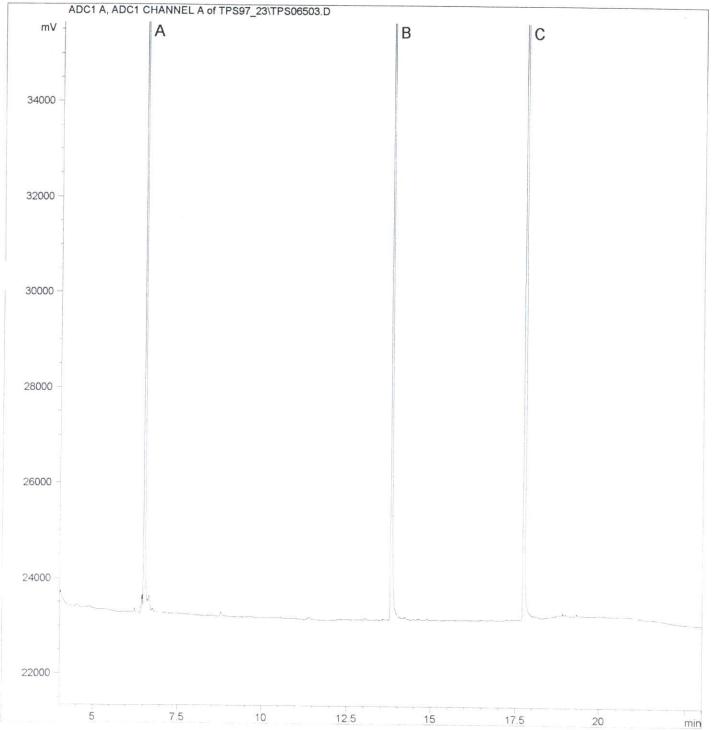




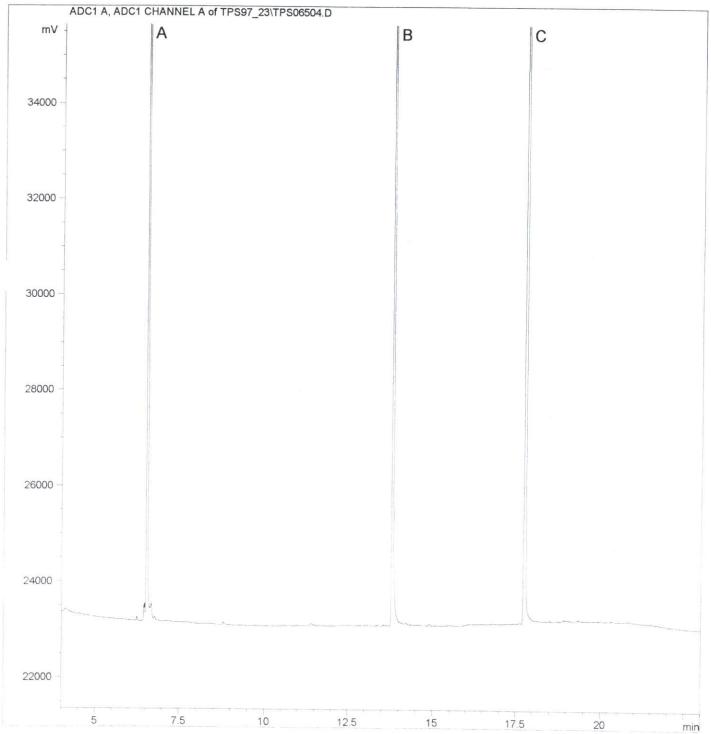




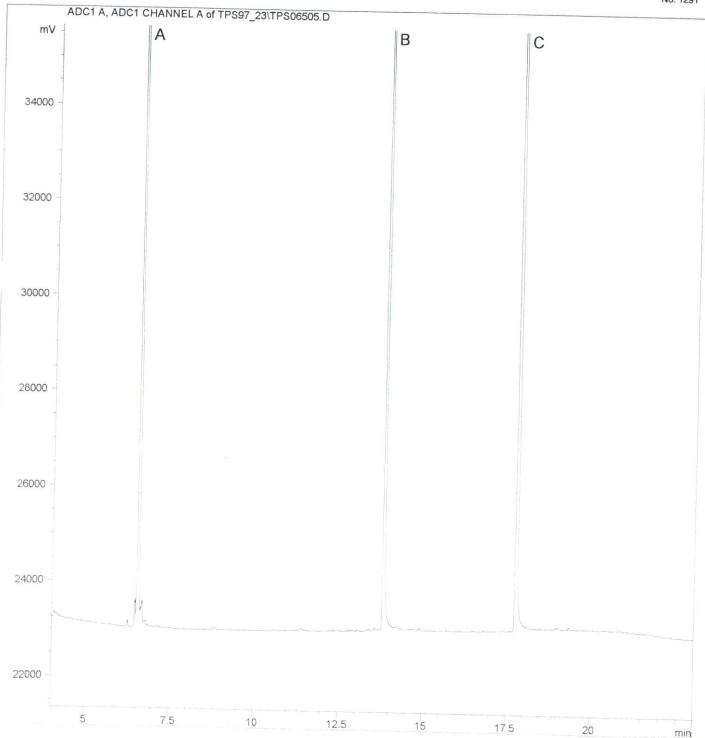




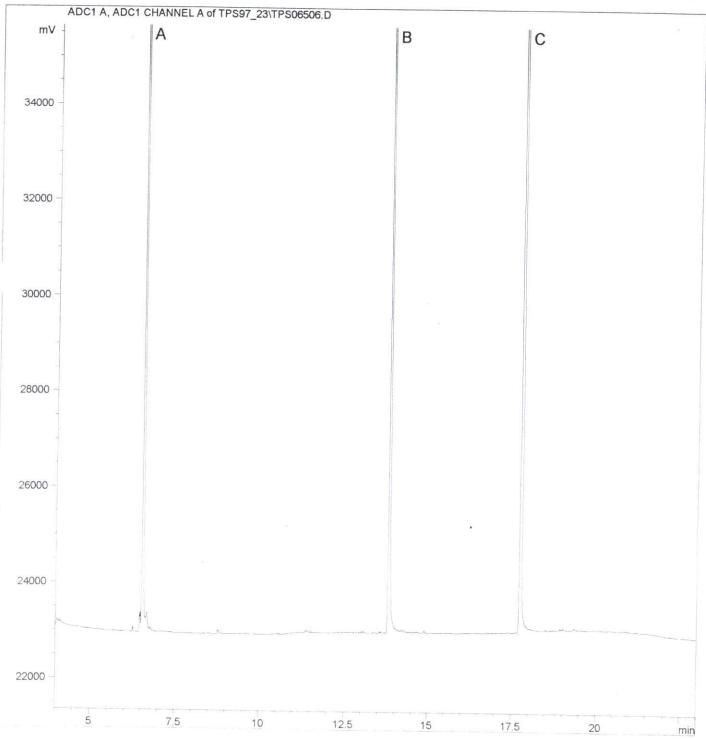




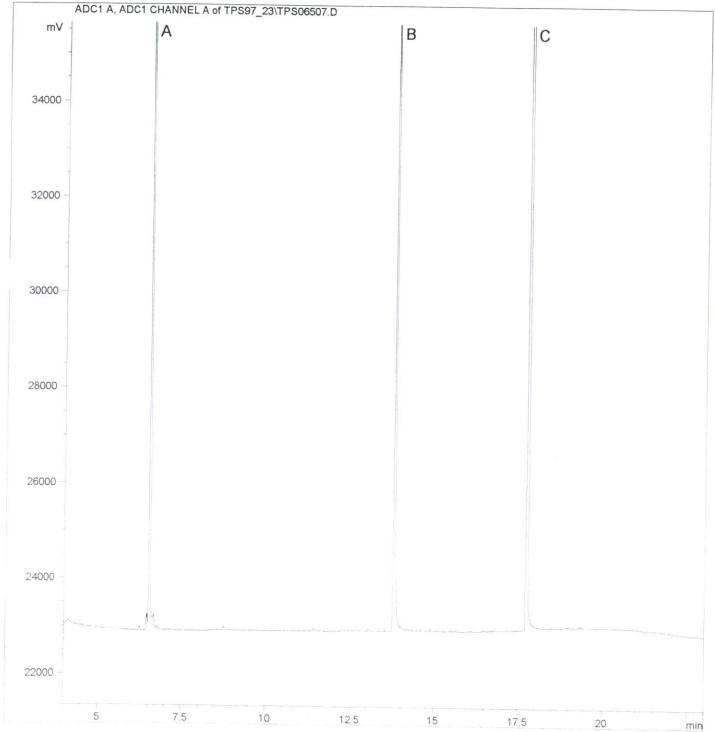





















3 MAY 2008 SURFACE WATER AND GROUNDWATER MONITORING RESULTS (ENVIROS)

Validated  Preliminary	ALc	ontro			ries Ar Of Res	-	^M MCEF * Subcor	150 17025 decredited			
Job Number:	08/084	57/02/01			Matrix	:	LIQUII	)	» Shown	on prev. r	eport
Client:	Enviros	s Consul	ting Ltd		Locatio	n:	Not Spe				
Client Ref. No.:	NR025		U			Contact	-				
Sample Identity	BH3A	BH3B	BH4	BH4D	BH7	BH8	BH9	BH10			
Depth (m)	2.5	2.0	12.0	25.0	3.0	3.0	3.5	2.9		м	
Sample Type	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID		eth	LoD
Sampled Date	06.05.08	06.05.08	06.05.08	06.05.08	06.05.08	06.05.08	05.05.08	06.05.08		od (	LoD/Units
Sample Received Date	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08		Method Code	its
Batch		1	1	1	1	1	1	1			
Sample Number(s)	1-10	11-20	21-30	31-39	40-49	50-58	59-67	68-76			
Calcium Dissolved (ICP-MS)	130000	120000	110000	110000	130000	150000	150000	140000		TM152 [#]	<160 ug/l

Job Number: **Client: Client Ref. No.:**  08/08457/02/01 Enviros Consulting Ltd NR0250002

## Report Kov .

Kepor	<u>t Key :</u>		Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10					
NDP	No Determination Possible	*	Subcontracted test					
NFD	No Fibres Detected	»	Result previously reported (Incremental reports only)					
#	ISO 17025 accredited	Μ	MCERTS Accredited					
PFD	Possible Fibres Detected	EC	Equivalent Carbon (Aromatics C8-C35)					

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

## Summary of Method Codes contained within report :

	ry of Method Codes cont	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample ¹	Surrogate Corrected	
Method No.	Reference	Description	L7025 edited	RTS	/Dry ple 1	)gate ected
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS	~		NA	

¹Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. NA = not applicable.

Job Number:08/08457/02/01Client:Enviros Consulting LtdClient Ref. No.:NR0250002

## Summary of Coolbox temperatures

Batch No.	Coolbox Temperature (°C)
1	14.4

Preliminary		Table Of Results								^M MCERTS accredited * Subcontracted test				
Job Number: Client: Client Ref. No.:		57/02/01 5 Consul 0002			Matrix Locatio Client		LIQUII Not Spe Craig S	ecified	» Shown	» Shown on prev. report				
Sample Identity	BH3A	BH3B	BH4	BH4D	BH7	BH8	BH9	BH10						
Depth (m)	2.5	2.0	12.0	25.0	3.0	3.0	3.5	2.9		M	LoD/Units			
Sample Type	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID		etho				
Sampled Date	06.05.08	06.05.08	06.05.08	06.05.08	06.05.08	06.05.08	05.05.08	06.05.08		Method Code	/Uni			
Sample Received Date	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08		ode	its			
Batch	1	1	1	1	1	1	1	1		1				
Sample Number(s)	1-10	11-20	21-30	31-39	40-49	50-58	59-67	68-76						
Arsenic Dissolved (ICP-MS)	< 0.75	<0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75		TM152 [#]	<0.75 ug/l			
Boron Dissolved (ICP-MS)	52	45	230	230	46	52	45	42		TM152 [#]	<20 ug/l			
Cadmium Dissolved (ICP-MS)	< 0.22	<0.22	< 0.22	< 0.22	<0.22	< 0.22	< 0.22	< 0.22		TM152 [#]	<0.22 ug/l			
Chromium Dissolved (ICP-MS)	<1	<1	<1	<1	<1	<1	<1	<1		TM152 [#]	<1 ug/l			
Copper Dissolved (ICP-MS)	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6		TM152 [#]	<1.6 ug/l			
Lead Dissolved (ICP-MS)	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4		TM152 [#]	<0.4 ug/l			
Magnesium Dissolved (ICP-MS)	2900	1900	11000	11000	2900	3700	3300	2900		TM152 [#]	<40 ug/l			
Nickel Dissolved (ICP-MS)	1.9	2.2	1.8	<1.5	2.8	2.2	<1.5	2.2		TM152 [#]	<1.5 ug/l			
Selenium Dissolved (ICP-MS)	<1	<1	<1	<1	<1	<1	<1	<1		TM152 [#]	<1 ug/l			
Zinc Dissolved (ICP-MS)	15	8	13	18	10	6	<5	13		TM152 [#]	<5 ug/l			
Mercury Dissolved (CVAF)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		TM183 [#]	<0.01 ug/l			
Carbonate Alkalinity as CaCO3	<2	<2	<2	<2	<2	<2	<2	<2		TM043 [#]	<2 mg/l			
BOD	<1	<1	4	3	<1	<1	2	2		TM045 [#]	<1 mg/l			
COD	<5	26	54	52	79	170	27	44		TM107 [#]	<5 mg/l			
Conductivity (at 25 deg.C)	0.65	0.55	0.60	0.60	0.63	0.69	0.66	0.64		TM120 [#]	<0.014 mS/cm			
Potassium Dissolved	0.9	0.9	3.8	3.8	0.5	0.6	0.5	0.6		TM083	<0.2 mg/l			
Sodium Dissolved	7.4	6.5	12	11	6.5	6.5	6.2	6.5		TM083	<0.2 mg/l			
Nitrate as NO3	30	25	10	12	13	1.6	1.8	11		TM102 [#]	<0.3 mg/l			
Sulphate (soluble)	36	19	46	47	6	9	7	4		TM098 [#]	<3 mg/l			
Chloride	13	7	10	10	7	6	6	6		TM097 [#]	<1 mg/l			
Phosphate (Ortho as PO4)	< 0.08	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08		TM100 [#]	<0.08 mg/l			
Ammoniacal Nitrogen as N	<0.2	<0.2	0.3	0.3	<0.2	< 0.2	<0.2	< 0.2		TM099 [#]	<0.2 mg/l			
Total Organic Carbon	4	3	3	3	3	3	4	3		TM090 [#]	<3 mg/l			
Resorcinol Low Level	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5		TM062	<0.5 ug/l			
Catechol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		TM062	<0.5 ug/l			
Phenol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		TM062	<0.5 ug/l			
Cresols Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		TM062	<0.5 ug/l			
Xylenols Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		TM062	<0.5 ug/l			
1 Napthol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		TM062	<0.5 ug/l			
2.3.5 Trimethyl-Phenol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		TM062	<0.5 ug/l			
2-Isopropyl Phenol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		TM062	<0.5 ug/l			

Validated

## $\checkmark$

# ALcontrol Laboratories Analytical Services # ISO 17025 accredited

Validated 🗸 Preliminary	ALcontrol Laboratories Analytical Services Table Of Results								<ul> <li>[#] ISO 17025 accredited</li> <li>^M MCERTS accredited</li> <li>* Subcontracted test</li> <li>» Shown on prev. report</li> </ul>			
Job Number:		57/02/01		Matrix:			LIQUID		» Shown on prev. report			
Client: Client Ref. No.:	Enviros NR025		ting Ltd	0		Location: Client Contact		Not Specified				
Sample Identity	BH3A	BH3A BH3B		BH4D	BH7	BH8	BH9	BH10				
Depth (m)	2.5	2.0	12.0	25.0	3.0	3.0	3.5	2.9		Me	Γ	
Sample Type	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID		etho	,οD,	
Sampled Date	06.05.08	06.05.08	06.05.08	06.05.08	06.05.08	06.05.08	05.05.08	06.05.08		Method Code	LoD/Units	
Sample Received Date	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08	07.05.08		ode	its	
Batch	1	1	1	1	1	1	1	1				
Sample Number(s)	1-10	11-20	21-30	31-39	40-49	50-58	59-67	68-76				
Phenols Low Level Total of 8 Speciated	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		TM062	<0.5 ug/l	
pH Value	7.31	7.46	7.50	7.40	7.18	7.18	7.13	7.21		TM133 [#]	<1.00 pH Units	
Solvent Extract	1	2	2	2	1	2	<1	2		TM078 [#]	<1 mg/l	
EPH (DRO) (C10-C40) Aqueous	<10	<10	<10	<10	120	110	<10	28		TM172 [#]	<10 ug/l	
Mineral Oil Aqueous	<10	<10	<10	<10	<10	87	<10	16		TM172 [#]	<10 ug/l	
GRO (C4-C10)	<10	<10	<10	<10	<10	<10	<10	<10		TM089 [#]	<10 ug/l	
GRO (C10-C12)	<10	<10	<10	<10	<10	<10	<10	<10		TM089 [#]	<10 ug/l	
Benzene	<10	<10	<10	<10	<10	<10	<10	<10		TM089 [#]	<10 ug/l	
Toluene	<10	<10	<10	<10	<10	<10	<10	<10		TM089 [#]	<10 ug/l	
Ethyl benzene	<10	<10	<10	<10	<10	<10	<10	<10		TM089 [#]	<10 ug/l	
m & p Xylene	<10	<10	<10	<10	<10	<10	<10	<10		TM089 [#]	<10 ug/l	
o Xylene	<10	<10	<10	<10	<10	<10	<10	<10		TM089 [#]	<10 ug/l	
Sum m&p and o Xylene	<10	<10	<10	<10	<10	<10	<10	<10		TM089 [#]	<10 ug/l	
Sum of BTEX	<10	<10	<10	<10	<10	<10	<10	<10		TM089 [#]	<10 ug/l	
MTBE	<10	<10	<10	<10	<10	<10	<10	<10		TM089 [#]	<10 ug/l	

Job Number: **Client: Client Ref. No.:**  08/08457/02/01 **Enviros Consulting Ltd** NR0250002

## **Report Key :**

NDP	No Determination Possible
NFD	No Fibres Detected
#	ISO 17025 accredited
PFD	Possible Fibres Detected

Results expressed as (e.g.) 1.03E-07 is equivalent to  $1.03 \times 10^{-7}$ 

* Subcontracted test **»** 

Result previously reported (Incremental reports only)

MCERTS Accredited Μ

- EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

#### **Summary of Method Codes contained within report :**

<u>Summa</u>	ry of Method Codes cont	ISO Accr	MCI Accr	Wet Sam	Surr Corr	
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample ¹	Surrogate Corrected
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples	~		NA	
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999	Determination of BOD5 (ATU) by Oxygen Meter	~		NA	
TM062	MEWAM BOOK 124 1988.HMSO/ Method 17.7, Second Site property, March 2003	Determination of Phenolic compounds by HPLC with electro- chemical detection			NA	
TM078	Modified: US EPA Method 3535	Solid phase extraction of waters	~		NA	
TM083	Method 3111, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 7610	Determination of Sodium and Potassium by Flame Photometer			NA	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			NA	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	~		NA	
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water	~		NA	
TM097	Modified: US EPA Method 325.1 & 325.2	Determination of Chloride using the Kone Analyser	~		NA	
TM098	Method 4500E, AWWA/APHA, 20th Ed., 1999	Determination of Sulphate using the Kone Analyser	~		NA	
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser	~		NA	
TM100	BS 2690: Part 105:1983	Determination of Phosphate using the Kone Analyser	~		NA	
TM102	Method 4500H, AWWA/APHA, 20th Ed., 1999	Determination of Total Oxidised Nitrogen using the Kone Analyser	~		NA	
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit	~		NA	

¹Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C.

NA = not applicable.

Job Number: **Client: Client Ref. No.:**  08/08457/02/01 Enviros Consulting Ltd NR0250002

## **Report Key :**

NDP	No Determination Possible
NFD	No Fibres Detected
#	ISO 17025 accredited
PFD	Possible Fibres Detected

Results expressed as (e.g.) 1.03E-07 is equivalent to  $1.03 \times 10^{-7}$ 

Subcontracted test

Result previously reported (Incremental reports only)

MCERTS Accredited Μ

*

**»** 

- EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

### **Summary of Method Codes contained within report :**

	ry of Method Codes cont	ISO Accr	MCH Accre	Wet Sam	Surrogate Corrected	
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample ¹	ogate 'ected
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter	~		NA	
TM133	BS 1377: Part 3 1990	Determination of pH in Soil and Water using the GLpH pH Meter	~		NA	
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS	~		NA	
TM172		EPH in Waters	~		NA	
TM183	BS EN 23506:2002, (BS 6068- 2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry	~		NA	

¹Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. NA = not applicable.

Job Number:08/08457/02/01Client:Enviros Consulting LtdClient Ref. No.:NR0250002

## Summary of Coolbox temperatures

Batch No.	Coolbox Temperature (°C)
1	14.4

Validated 🗸 Preliminary	ALc	ontro			ries Ar Of Res	nalytic sults	cal Sei	vices	<ul> <li>[#] ISO 17025 accredited</li> <li>^M MCERTS accredited</li> <li>* Subcontracted test</li> <li>» Shown on prev. report</li> </ul>			
Job Number:	08/0855	58/02/01			Matrix	:	LIQUI	D				
Client:	Enviros	Consul	ting Ltd	ing Ltd		Location:		ecified				
Client Ref. No.:	NR025	0002	C		Client	Contact	Craig S	mith				
Sample Identity	BH 1A	BH 1B	BH 2	BH 5	BH 6	BH11	STREAM B	STREAM I	STREAM M			
Depth (m)	37.00	14.00	22.00	2.50	10.00	3.0		-		Μ	н	
Sample Type	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	etho	oD	
Sampled Date	06.05.08	07.05.08	06.05.08	07.05.08	07.05.08	07.05.08	08.05.08	07.05.08	08.05.08	Method Code	LoD/Units	
Sample Received Date	08.05.08	08.05.08	08.05.08	08.05.08	08.05.08	09.05.08	09.05.08	08.05.08	09.05.08	ode	its	
Batch	1	1	1	1	1	3	2	1	2			
Sample Number(s)	1-9	10-18	20-28	29-37	39-47	98-106	80-88	53-61	89-97			
Arsenic Dissolved (ICP-MS)	< 0.75	0.88	2.7	< 0.75	< 0.75	< 0.75	0.95	1.2	<0.75	TM152 [#]	<0.75 ug/l	
Boron Dissolved (ICP-MS)	190	100	490	110	110	71	43	160	51	TM152 [#]	<20 ug/l	
Cadmium Dissolved (ICP-MS)	< 0.22	<0.22	< 0.22	< 0.22	< 0.22	0.38	< 0.22	< 0.22	<0.22	TM152 [#]	<0.22 ug/l	
Calcium Dissolved (ICP-MS)	190000	140000	120000	120000	130000	130000	130000	99000	140000	TM152 [#]	<160 ug/l	
Chromium Dissolved (ICP-MS)	2	4	2	3	<1	3	2	1	<1	TM152 [#]	<1 ug/l	
Copper Dissolved (ICP-MS)	2.3	3.9	<1.6	2.6	1.7	3.6	<1.6	1.8	<1.6	TM152 [#]	<1.6 ug/l	
Lead Dissolved (ICP-MS)	<0.4	0.5	<0.4	<0.4	<0.4	1.9	<0.4	<0.4	<0.4	TM152 [#]	<0.4 ug/l	
Magnesium Dissolved (ICP-MS)	11000	2800	8100	1900	7100	2900	2200	2900	2500	TM152 [#]	<40 ug/l	
Nickel Dissolved (ICP-MS)	6.7	2.4	5.5	2.1	3.3	2.8	<1.5	2.4	2.3	TM152 [#]	<1.5 ug/l	
Selenium Dissolved (ICP-MS)	<1	<1	<1	<1	<1	<1	2	1	<1	TM152 [#]	<1 ug/l	
Zinc Dissolved (ICP-MS)	210	22	15	10	21	<5	14	14	12	TM152 [#]	<5 ug/l	
Mercury Dissolved (CVAF)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	TM183 [#]	<0.01 ug/l	
Carbonate Alkalinity as CaCO3	<2	210	<2	<2	<2	<2	70	<2	40	TM043 [#]	<2 mg/l	
BOD	<1	<1	4	2	<1	2	<1	1	<1	TM045 [#]	<1 mg/l	
COD	200	29	200	65	<5	310	<5	5	<5	TM107 [#]	<5 mg/l	
Conductivity (at 25 deg.C)	1.0	0.69	0.71	0.60	0.67	0.62	0.61	0.55	0.61	TM120 [#]	<0.014 mS/cm	
Potassium Dissolved	2.6	2.0	5.7	1.7	4.2	0.8	1.2	2.3	0.9	TM083	<0.2 mg/l	
Sodium Dissolved	30	7.4	41	13	8.9	6.0	6.0	13	8.4	TM083	<0.2 mg/l	
Nitrate as NO3	22	46	<0.3	2.8	<0.3	0.4	17	5.4	9.7	TM102 [#]	<0.3 mg/l	
Sulphate (soluble)	120	34	67	12	47	9	23	17	23	TM098 [#]	<3 mg/l	
Chloride	64	20	12	25	11	6	10	19	14	TM097 [#]	<1 mg/l	
Phosphate (Ortho as PO4)	<0.08	<0.08	< 0.08	<0.08	<0.08	< 0.08	< 0.08	< 0.08	<0.08	TM100 [#]	<0.08 mg/l	
Ammoniacal Nitrogen as N	<0.2	<0.2	0.3	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	TM099 [#]	<0.2 mg/l	
Total Organic Carbon	<3	<3	6	4	4	3	3	4	3	TM090 [#]	<3 mg/l	
Resorcinol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l	
Catechol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l	
Phenol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l	
Cresols Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l	
Xylenols Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	TM062	<0.5 ug/l	
1 Napthol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	TM062	<0.5 ug/l	
2.3.5 Trimethyl-Phenol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	TM062	<0.5 ug/l	

Validated 🗹 Preliminary 🗍 Job Number:		ontro] 58/02/01	Т		ries A1 Of Res Matrix	sults	<b>cal Sei</b> liquii		<ul> <li>[#] ISO 17025 accredited</li> <li>^M MCERTS accredited</li> <li>* Subcontracted test</li> <li>* Shown on prev. report</li> </ul>				
Client: Client Ref. No.:	Enviros NR025	s Consul 0002	ting Ltd		Locatio Client	on: Contact	Not Spo Craig S						
Sample Identity	BH 1A	BH 1B	BH 2	BH 5	BH 6	BH11	STREAM B	STREAM I	STREAM M				
Depth (m)	37.00	14.00	22.00	2.50	10.00	3.0		-		Μ	_		
Sample Type	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	ethe	<b>`</b> 0D		
Sampled Date	06.05.08	07.05.08	06.05.08	07.05.08	07.05.08	07.05.08	08.05.08	07.05.08	08.05.08	od (	LoD/Units		
Sample Received Date	08.05.08	08.05.08	08.05.08	08.05.08	08.05.08	09.05.08	09.05.08	08.05.08	09.05.08	Method Code	its		
Batch		1	1	1	1	3	2	1	2				
Sample Number(s)		10-18	20-28	29-37	39-47	98-106	80-88	53-61	89-97				
2-Isopropyl Phenol Low Level		< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	TM062	<0.5 ug/l		
Phenols Low Level Total of 8 Speciated	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l		
pH Value	7.27	7.38	7.44	7.44	7.41	7.24	7.83	8.08	7.74	TM133 [#]	<1.00 pH Units		
Solvent Extract	1	2	<1	1	1	<1	<1	1	<1	TM078 [#]	<1 mg/l		
EPH (DRO) (C10-C40) Aqueous	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM172 [#]	<10 ug/l		
Mineral Oil Aqueous	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM172 [#]	<10 ug/l		
GRO (C4-C10)	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
GRO (C10-C12)	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
Benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
Toluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
Ethyl benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
m & p Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
o Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
Sum m&p and o Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
Sum of BTEX	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
MTBE	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		

Validated  Validated Validated	ALc	ontro			ries A1 Of Res	nalytic sults	al Ser	vices	^M MCER * Subcor	7025 accre RTS accreo ntracted te	lited st
Job Number:	08/0855	58/02/01			Matrix	:	LIQUII	)	» Shown	on prev.	report
Client:	Enviros	s Consul	ting Ltd		Locatio	on:	Not Spe	ecified			
Client Ref. No.:	NR025		U			Contact	-				
Sample Identity	STREAM P	STREAM R	STREAM C	STREAM D	STREAMF	STREAMG	STREAMT	STREAM U	STREAM Y		
Depth (m)	-	-								Μ	I
Sample Type	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	ethe	oD
Sampled Date	07.05.08	07.05.08	08.05.08	08.05.08	08.05.08	08.05.08	08.05.08	08.05.08	08.05.08	Method Code	LoD/Units
Sample Received Date	08.05.08	08.05.08	09.05.08	09.05.08	09.05.08	09.05.08	09.05.08	09.05.08	09.05.08	ode	its
Batch	1	1	3	3	3	3	3	3	3		
Sample Number(s)	62-70	71-79	107-115	116-124	125-133	134-141,177	142-150	151-159	160-168		
Arsenic Dissolved (ICP-MS)	< 0.75	< 0.75	0.77	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	TM152 [#]	<0.75 ug/l
Boron Dissolved (ICP-MS)	150	120	60	82	73	110	92	110	92	TM152 [#]	<20 ug/l
Cadmium Dissolved (ICP-MS)	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	TM152 [#]	<0.22 ug/l
Calcium Dissolved (ICP-MS)	140000	160000	160000	170000	160000	150000	99000	210000	170000	TM152 [#]	<160 ug/l
Chromium Dissolved (ICP-MS)	1	4	2	4	4	4	4	6	3	TM152 [#]	<1 ug/l
Copper Dissolved (ICP-MS)	2.3	2.8	2.0	3.2	1.7	2.3	2.5	3.1	2.1	TM152 [#]	<1.6 ug/l
Lead Dissolved (ICP-MS)	<0.4	<0.4	1.6	1.7	1.5	1.5	1.4	1.4	1.7	TM152 [#]	<0.4 ug/l
Magnesium Dissolved (ICP-MS)	3800	3500	3300	3600	2600	3600	2400	4300	3600	TM152 [#]	<40 ug/l
Nickel Dissolved (ICP-MS)	1.9	2.2	2.0	2.4	1.5	2.0	2.3	3.7	2.4	TM152 [#]	<1.5 ug/l
Selenium Dissolved (ICP-MS)	<1	<1	2.0	<1	<1	<1	<1	<1	<1	TM152 [#]	<1 ug/l
Zinc Dissolved (ICP-MS)	14	12	<5	<5	<5	<5	<5	<5	<5	TM152 [#]	<5 ug/l
Mercury Dissolved (CVAF)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	TM132 TM183 [#]	<0.01 ug/l
Carbonate Alkalinity as CaCO3	<2	<2	<2	<2	<2	<2	<2	<2	<2	TM043 [#]	<2 mg/l
BOD	1	<1	<1	<1	<1	<1	<1	1	<1	TM045	<1 mg/l
COD	7	<5	<5	5	<5	16	<5	9	<5	TM045	<5 mg/l
Conductivity (at 25 deg.C)	0.74	0.78	0.90	0.84	0.76	0.78	0.64	0.56	0.90		<0.014 mS/cm
Potassium Dissolved										TM120 [#]	<0.2 mg/l
Sodium Dissolved	4.7	1.5 9.3	1.2 23	6.8 11	1.5 9.3	2.4	1.5 22	2.4	1.2 23	TM083 TM083	<0.2 mg/l
	39										_
Nitrate as NO3 Sulphate (soluble)	53	30 54	150 36	76 51	52 41	32 58	3.9	4.4	150 37	TM102 [#] TM098 [#]	<0.3 mg/l
Chloride	22	20	45	51 27	23	58 22	32	30	46	TM098 TM097 [#]	<3 mg/l
Phosphate (Ortho as PO4)	<0.08	<0.08	<0.08	<0.08	<0.08		<0.08	<0.08	<0.08		<1 mg/1 <0.08 mg/1
Ammoniacal Nitrogen as N	<0.08	<0.08	<0.08	<0.08	<0.08	0.15 <0.2	<0.08	<0.08	<0.08	TM100 [#] TM099 [#]	<0.08 mg/l
Total Organic Carbon	<0.2	<0.2		<0.2			<0.2	<0.2 6	<0.2	TM099" TM090 [#]	<0.2 mg/l
Resorcinol Low Level	<0.5	<0.5	<3	<0.5	<3	<3			> <0.5	TM090 TM062	<3 mg/l <0.5 ug/l
			<0.5		<0.5	<0.5	<0.5	<0.5			<0.5 ug/l
Catechol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	
Phenol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l
Cresols Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l
Xylenols Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l
1 Napthol Low Level	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l
2.3.5 Trimethyl-Phenol Low Level	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l

Validated✓Preliminary	ALC	ontro			Tes Al Of Res	nalytic sults	al Ser	vices	^M MCER * Subcor	<ul> <li>[#] ISO 17025 accredited</li> <li>^M MCERTS accredited</li> <li>* Subcontracted test</li> <li>» Shown on prev. report</li> </ul>			
Job Number: Client: Client Ref. No.:	08/0855 Enviros NR0250	Consul			Matrix Locatio Client		LIQUII Not Spe Craig S	» Snown	i on prev. i	report			
Sample Identity	STREAM P	STREAM R	STREAM C	STREAM D	STREAMF	STREAMG	STREAMT	STREAM U	STREAM Y				
Depth (m)	-	-								Me	Г		
Sample Type	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	tho	oD/		
Sampled Date	07.05.08	07.05.08	08.05.08	08.05.08	08.05.08	08.05.08	08.05.08	08.05.08	08.05.08	Method Code	LoD/Units		
Sample Received Date	08.05.08	08.05.08	09.05.08	09.05.08	09.05.08	09.05.08	09.05.08	09.05.08	09.05.08	ode	ts		
Batch	1	1	3	3	3	3	3	3	3				
Sample Number(s)	62-70	71-79	107-115	116-124	125-133	134-141,177	142-150	151-159	160-168				
2-Isopropyl Phenol Low Level	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	TM062	<0.5 ug/l		
Phenols Low Level Total of 8 Speciated	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	TM062	<0.5 ug/l		
pH Value	7.97	7.68	7.57	7.62	7.74	7.93	7.73	8.10	7.57	TM133 [#]	<1.00 pH Units		
Solvent Extract	2	2	<1	1	<1	<1	<1	<1	<1	TM078 [#]	<1 mg/l		
EPH (DRO) (C10-C40) Aqueous	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM172 [#]	<10 ug/l		
Mineral Oil Aqueous	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM172 [#]	<10 ug/l		
GRO (C4-C10)	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
GRO (C10-C12)	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
Benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
Toluene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
Ethyl benzene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
m & p Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
o Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
Sum m&p and o Xylene	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
Sum of BTEX	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		
MTBE	<10	<10	<10	<10	<10	<10	<10	<10	<10	TM089 [#]	<10 ug/l		

## Nolidated ALcontrol Laboratories Analytical Services # ISO 17025 accredited

Validated 🖌 Preliminary	ALc	ontro		ries Ar Of Res	•	al Ser	vices	^M MCEF	7025 accre RTS accreontracted te	lited
Job Number: Client: Client Ref. No.:		58/02/01 s Consul 0002		Matrix Locatio Client (	on:	LIQUII Not Spe Craig S	ecified	» Shown	i on prev. i	report
Sample Identity	STREAMZ									
Depth (m)			 						Μ	I
Sample Type	LIQUID								etho	_oD
Sampled Date	08.05.08								od (	LoD/Units
Sample Received Date	09.05.08								Code	its
Batch	3								Image: Constraint of the second sec	
Sample Number(s)	169-176									
Arsenic Dissolved (ICP-MS)	-								TM152 [#]	<0.75 ug/l
Boron Dissolved (ICP-MS)	-								TM152 [#]	<20 ug/l
Cadmium Dissolved (ICP-MS)	-								TM152 [#]	<0.22 ug/l
Calcium Dissolved (ICP-MS)	-								TM152 [#]	<160 ug/l
Chromium Dissolved (ICP-MS)	-								TM152 [#]	<1 ug/l
Copper Dissolved (ICP-MS)	-								TM152 [#]	<1.6 ug/l
Lead Dissolved (ICP-MS)	-								TM152 [#]	<0.4 ug/l
Magnesium Dissolved (ICP-MS)	-								TM152 [#]	<40 ug/l
Nickel Dissolved (ICP-MS)	-								TM152 [#]	<1.5 ug/l
Selenium Dissolved (ICP-MS)	-								TM152 [#]	<1 ug/l
Zinc Dissolved (ICP-MS)	-								TM152 [#]	<5 ug/l
Mercury Dissolved (CVAF)	-								TM183 [#]	<0.01 ug/l
Carbonate Alkalinity as CaCO3	-								TM043 [#]	<2 mg/l
BOD	-								TM045 [#]	<1 mg/l
COD	-								TM107 [#]	<5 mg/l
Conductivity (at 25 deg.C)	-								TM120 [#]	<0.014 mS/cm
Potassium Dissolved	-								TM083	<0.2 mg/l
Sodium Dissolved	-								TM083	<0.2 mg/l
Nitrate as NO3	-								TM102 [#]	<0.3 mg/l
Sulphate (soluble)	-								TM098 [#]	<3 mg/l
Chloride	-								TM097 [#]	<1 mg/l
Phosphate (Ortho as PO4)	-								TM100 [#]	<0.08 mg/l
Ammoniacal Nitrogen as N	-								TM099 [#]	<0.2 mg/l
Total Organic Carbon	-								TM090 [#]	<3 mg/l
Resorcinol Low Level	<0.5								TM062	<0.5 ug/l
Catechol Low Level	<0.5								TM062	<0.5 ug/l
Phenol Low Level	<0.5								TM062	<0.5 ug/l
Cresols Low Level	<0.5								TM062	<0.5 ug/l
Xylenols Low Level	<0.5								TM062	<0.5 ug/l
1 Napthol Low Level	<0.5								TM062	<0.5 ug/l
2.3.5 Trimethyl-Phenol Low Level	<0.5								TM062	<0.5 ug/l

Validated✓Preliminary	ALc	ontro	^M MCEF	^M MCERTS accredited * Subcontracted test						
Job Number: Client: Client Ref. No.:	08/0855 Enviros NR025	Consul	ting Ltd	Matrix Locatio Client		» Shown on prev. report				
Sample Identity	STREAMZ									
Depth (m)								Μ	_	
Sample Type	LIQUID							etho	LoD/Units	
Sampled Date	08.05.08							od (	/Un	
Sample Received Date	09.05.08							Method Code	its	
Batch	3							(b		
Sample Number(s)										
2-Isopropyl Phenol Low Level	<0.5							TM062	<0.5 ug/l	
Phenols Low Level Total of 8 Speciated	<0.5							TM062	<0.5 ug/l	
pH Value	-							TM133 [#]	<1.00 pH Units	
Solvent Extract	-							TM078 [#]	<1 mg/l	
EPH (DRO) (C10-C40) Aqueous	<10							TM172 [#]	<10 ug/l	
Mineral Oil Aqueous	<10							TM172 [#]	<10 ug/l	
GRO (C4-C10)	<10							TM089 [#]	<10 ug/l	
GRO (C10-C12)	<10							TM089 [#]	<10 ug/l	
Benzene	<10							TM089 [#]	<10 ug/l	
Toluene	<10							TM089 [#]	<10 ug/l	
Ethyl benzene	<10							TM089 [#]	<10 ug/l	
m & p Xylene	<10							TM089 [#]	<10 ug/l	
o Xylene	<10							TM089 [#]	<10 ug/l	
Sum m&p and o Xylene	<10							TM089 [#]	<10 ug/l	
Sum of BTEX	<10							TM089 [#]	<10 ug/l	
MTBE	<10							TM089 [#]	<10 ug/l	

Job Number: **Client: Client Ref. No.:**  08/08558/02/01 Enviros Consulting Ltd NR0250002

## **Report Key :**

NDP	No Determination Possible
NFD	No Fibres Detected
#	ISO 17025 accredited
PFD	Possible Fibres Detected

Results expressed as (e.g.) 1.03E-07 is equivalent to  $1.03 \times 10^{-7}$ 

Subcontracted test

Result previously reported (Incremental reports only)

MCERTS Accredited Μ

*

**»** 

EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

#### **Summary of Method Codes contained within report :**

<u>Summa</u>	ry of Method Codes cont	ained within report :	ISO Accr	MCI Accr	Wet Sam	Surr Corr
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample ¹	Surrogate Corrected
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples	~		NA	
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999	Determination of BOD5 (ATU) by Oxygen Meter	~		NA	
TM062	MEWAM BOOK 124 1988.HMSO/ Method 17.7, Second Site property, March 2003	Determination of Phenolic compounds by HPLC with electro- chemical detection			NA	
TM078	Modified: US EPA Method 3535	Solid phase extraction of waters	~		NA	
TM083	Method 3111, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 7610	Determination of Sodium and Potassium by Flame Photometer			NA	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			NA	
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	~		NA	
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water	~		NA	
TM097	Modified: US EPA Method 325.1 & 325.2	Determination of Chloride using the Kone Analyser	~		NA	
TM098	Method 4500E, AWWA/APHA, 20th Ed., 1999	Determination of Sulphate using the Kone Analyser	~		NA	
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser	~		NA	
TM100	BS 2690: Part 105:1983	Determination of Phosphate using the Kone Analyser	~		NA	
TM102	Method 4500H, AWWA/APHA, 20th Ed., 1999	Determination of Total Oxidised Nitrogen using the Kone Analyser	~		NA	
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit	~		NA	

¹Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C.

NA = not applicable.

Job Number: **Client: Client Ref. No.:**  08/08558/02/01 Enviros Consulting Ltd NR0250002

*

**»** 

## **Report Key :**

NDP	No Determination Possible
NFD	No Fibres Detected
#	ISO 17025 accredited
PFD	Possible Fibres Detected

Results expressed as (e.g.) 1.03E-07 is equivalent to  $1.03 \times 10^{-7}$ 

Subcontracted test

Result previously reported (Incremental reports only)

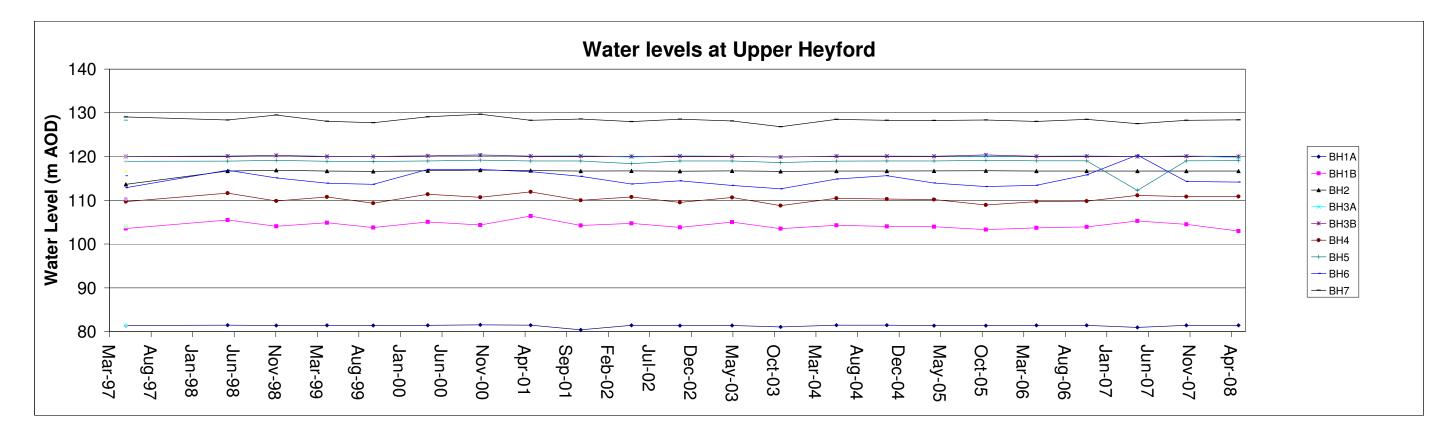
Μ MCERTS Accredited

EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

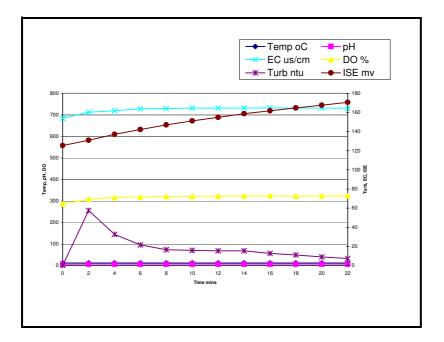
## **Summary of Method Codes contained within report :**

<u>Summa</u>	ry of Method Codes cont	ained within report :	ISO Acci	MC Acci	We Sar	Sur Cor
Method No.	Reference	Description	ISO 17025 Accredited	MCERTS Accredited	Wet/Dry Sample ¹	Surrogate Corrected
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter	~		NA	
TM133	BS 1377: Part 3 1990	Determination of pH in Soil and Water using the GLpH pH Meter	~		NA	
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS	~		NA	
TM172		EPH in Waters	~		NA	
TM183	BS EN 23506:2002, (BS 6068- 2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry	~		NA	


¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. NA = not applicable.

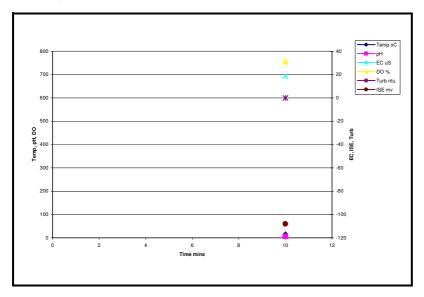
Job Number:08/08558/02/01Client:Enviros Consulting LtdClient Ref. No.:NR0250002

## Summary of Coolbox temperatures


Batch No.	Coolbox Temperature (°C)
1	13.0
2	8.6
3	16

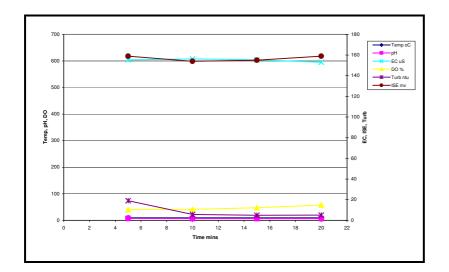
Location	Ground	09-May-97	11-May-98	03-Nov-98	05-May-99	19-Oct-99	03-May-00	08-Nov-00	09-May-01	06-Nov-01	08-May-02	30-Oct-02	06-May-03	28-Oct-03	17-May-04	15-Nov-04	04-May-05	07-Nov-05	09-May-06	06-Nov-06	08-May-07	01-Nov-07	07-May-08
	Elevation																						
	m AOD	mAOD	mAOD	mAOD	mAOD																		
BH1A	116.42	81.40	81.46	81.40	81.42	81.38	81.42	81.52	81.46	80.42	81.42	81.35	81.38	81.07	81.47	81.46	81.37	81.34	81.42	81.42	80.96	81.42	81.42
BH1B	116.42	103.57	105.51	104.08	104.87	103.77	105.05	104.37	106.41	104.27	104.72	103.80	105.02	103.52	104.29	104.02	103.97	103.32	103.70	103.94	105.29	104.52	102.97
BH2	137.98	113.67	116.70	116.88	116.68	116.64	116.78	116.93	116.82	116.70	116.73	116.65	116.73	116.63	116.68	116.68	116.73	116.78	116.68	116.71	116.68	116.70	116.68
BH3A	121.71	120.04	120.12	120.32	120.07	120.03	120.16	120.41	120.11	120.16	119.86	120.16	120.07	119.86	120.11	120.11	120.11	120.12	120.10	120.13	120.02	120.14	119.73
BH3B	121.71	120.03	120.09	120.29	120.03	120.03	120.16	120.37	120.08	120.11	120.06	120.11	120.06	119.91	120.09	120.09	120.07	120.39	120.07	120.11	120.01	120.08	120.06
BH4	121.88	109.72	111.63	109.86	110.78	109.33	111.40	110.68	111.93	110.00	110.78	109.51	110.65	108.80	110.47	110.28	110.18	108.93	109.72	109.83	111.13	110.83	110.88
BH5	120.20	118.92	118.97	119.13	118.94	118.90	119.00	119.17	119.00	119.00	118.38	119.00	119.00	118.65	118.96	119.00	119.01	119.15	119.05	119.04	112.26	119.05	119.08
BH6	121.56	112.88	116.86	115.11	113.91	113.66	117.05	117.06	116.56	115.48	113.75	114.46	113.42	112.65	114.86	115.64	113.96	113.16	113.44	115.81	120.34	114.32	114.16
BH7	131.01	129.07	128.38	129.50	128.06	127.76	129.09	129.69	128.28	128.58	128.01	128.54	128.13	126.83	128.50	128.29	128.25	128.36	128.03	128.51	127.51	128.28	128.39




#### Borehole 1B

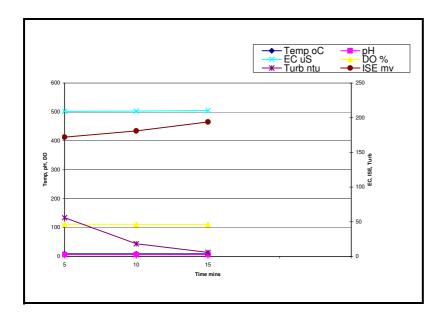
Time	Temp oC	рН	EC us/cm	DO %	ISE mv	Turb ntu
0	12.0	6.16	683.7	64.4	125.5	-0
2	11.8	6.35	712.3	69.4	131.0	57.5
4	11.9	6.43	718.6	71.1	137.1	32.6
6	12.0	6.47	728.4	71.6	142.2	21.6
8	12.1	6.50	729.1	72.2	147.1	16.5
10	11.9	6.51	731.3	72.4	151.2	15.9
12	11.9	6.53	731.3	72.6	154.9	15.4
14	12.0	6.54	731.3	72.7	158.7	15.4
16	12.1	6.55	732.6	72.9	161.8	12.7
18	12.0	6.56	731.3	72.6	164.7	11.1
20	12.0	6.56	731.3	72.8	167.7	9.1
22	12.1	6.56	730.5	72.9	170.6	7.3



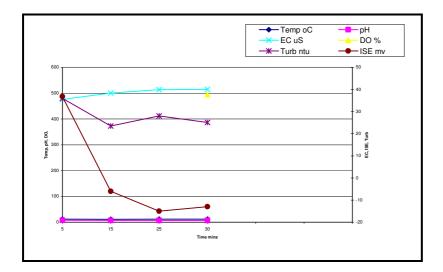

Time	Temp oC	pН	EC uS	DO %	ISE mv	Turb ntu
10	15	6.91	693.0	31.3	-108	>120

BH dried up

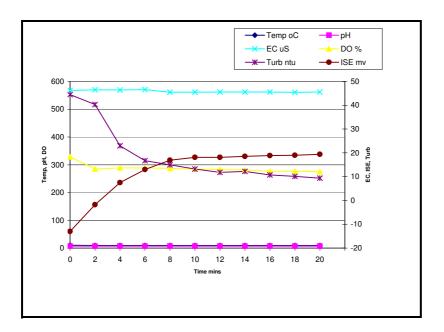



#### Borehole 3A

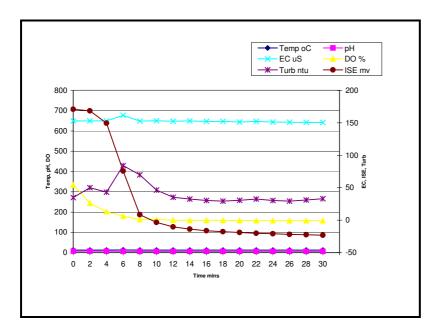
Time	Temp oC	pН	EC uS	DO %	ISE mv	Turb ntu
5	9.8	7.30	604.0	10.4	159.0	19.0
10	9.8	6.81	608.0	10.7	154.0	5.7
15	9.8	6.73	604.0	12.2	155.0	5.0
20	9.8	6.69	595.0	14.9	159.0	5.1



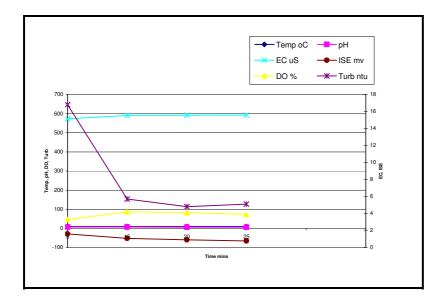

#### Borehole 3B


Time	Temp oC	pН	EC uS	DO %	ISE mv	Turb ntu
5	9.4	6.74	502.0	46.5	172.0	56.0
10	9.4	6.74	503.0	46.3	181.0	18.4
15	9.4	6.74	505.0	46.2	194.0	6.1

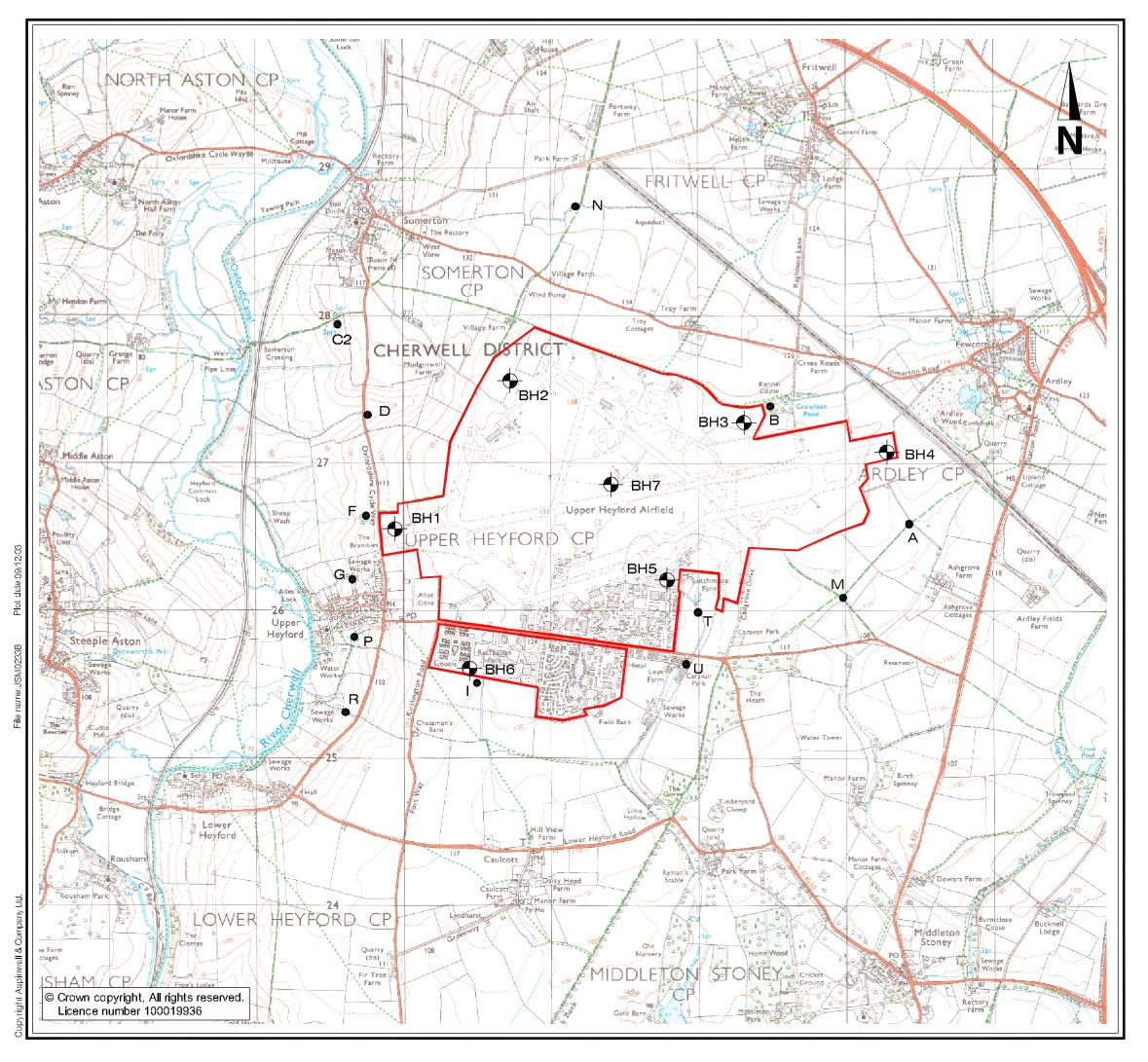



Time	Temp oC	рН	EC uS	DO %	ISE mv	Turb ntu
5	11.6	7.40	476.0		36.8	36.0
15	11.3	6.79	501.0		-6.0	23.5
25	11.5	6.75	514.0		-15.0	28.1
30	11.5	6.78	515.0	37.8	-13.0	25.1




Time	Temp oC	pН	EC uS	DO %	ISE mv	Turb ntu
0	10.2	6.73	567.8	18.3	-13.0	44.5
2	9.5	6.65	570.3	13.2	-1.8	40.3
4	9.5	6.66	569.6	13.7	7.5	23.0
6	9.4	6.66	570.4	13.7	13.0	16.7
8	9.4	6.66	561.4	13.5	16.9	15.0
10	9.5	6.67	561.5	13.2	18.1	13.2
12	9.5	6.67	562.2	13.0	18.1	11.8
14	9.4	6.67	562.2	12.8	18.5	12.2
16	9.4	6.67	562.2	12.3	18.9	10.7
18	9.4	6.68	560.7	12.3	19.0	10.1
20	9.4	6.68	562.2	12.1	19.4	9.4




Time	Temp oC	нq	EC uS	DO %	ISE mv	Turb ntu
0	13.0	6.93	649.5	54.2	171.0	34.8
2	12.7	6.79	649.4	26.2	168.5	50.2
4	13.0	6.72	649.5	13.2	149.4	43.1
6	13.4	6.67	676.9	6.1	75.7	84.0
8	12.3	6.62	648.5	1.1	8.5	69.7
10	12.5	6.62	649.8	1.0	-3.4	46.5
12	12.6	6.61	647.4	0.0	-10.2	35.4
14	12.6	6.61	649.3	-0.2	-13.8	32.6
16	12.7	6.60	646.8	-0.3	-16.1	30.4
18	12.7	6.60	646.8	-0.3	-17.7	29.5
20	12.8	6.60	644.0	-0.4	-19.0	30.6
22	12.8	6.60	646.8	-0.6	-20.2	32.7
24	12.8	6.60	643.4	-0.6	-21.0	30.4
26	12.8	6.60	642.7	-0.7	-22.0	29.3
28	12.8	6.60	642.1	-0.6	-22.4	31.2
30	12.7	6.60	641.8	-0.7	-23.2	33.0



Time	Temp oC	рН	EC uS	DO %	ISE mv	Turb ntu
5	9.9	7.21	573.0	3.3	-29.0	16.8
15	9.9	6.75	590.0	4.2	-52.0	5.7
20	9.9	6.68	591.0	4.1	-60.0	4.8
25	9.9	6.64	592.0	3.9	-66.0	5.1



Analyte	UKAS Accredited	LoD/ Units	BH4	BH4D	% Difference	STREAM C2	STREAM Y	% Difference	UK Drinking Water Standards	Other Standards (Old UK DWS/ WHO)
Arsenic	Y	<1 ug/l	< 0.75	< 0.75	-	0.77	< 0.75	-1.3	10	2110/ 1110/
Boron	Y	<10 ug/l	230	230	0.0	60	92	21.1	1000	
Cadmium	Y	<0.4 ug/l	< 0.22	< 0.22	-	<0.22	<0.22	-	5	
Calcium	Y	<5 ug/l	110000	110000	0.0	160000	170000	3.0		250000
Chromium	Y	<1 ug/l	<1	<1	-	2	3	20.0	50	
Copper	Y	<1 ug/l	<1.6	<1.6	-	2.0	2.1	2.4	2000	
Lead	Y	<1 ug/l	< 0.4	< 0.4	-	1.6	1.7	3.0	25	
Magnesium	Y	<5 ug/l	11000	11000	0.0	3300	3600	4.3		50000
Nickel	Y	<1 ug/l	1.8	<1.5	-9.1	2.0	2.4	9.1	20	
Selenium	Y	<1 ug/l	<1	<1	-	2	<1	-33.3	10	
Zinc	Y	<3 ug/l	13	18	16.1	<5	<5	-		5000
Mercury	Y	<0.05 ug/l	< 0.01	< 0.01	-	< 0.01	< 0.01	-	1	
Alkalinity Total as CaCO3	Y	<2 mg/l	<2	<2	-	<2	<2	-		
BOD	Y	<1 mg/l	4	3	-14.3	<1	<1	-		
COD	Y	<10 mg/l	54	52	-1.9	<5	<5	-		
Electricity Conductivity (at 25 deg C)		<0.014 mS/cm	0.60	0.60	0.0	0.90	0.90	0.0	2.5	
Potassium	Y	<0.2 mg/l	3.8	3.8	0.0	1.2	1.2	0.0		12
Sodium	Y	<0.2 mg/l	12	11	-4.3	23	23	0.0	200	
Nitrate	Y	<0.3 mg/l	10	12	9.1	150	150	0.0	50	
Sulphate (soluble)	Y	<3 mg/l	46	47	1.1	36	37	1.4	250	
Chloride	Y	<1 mg/l	10	10	0.0	45	46	1.1	250	
Phosphate (Ortho as PO4)	Y	<0.08 mg/l	< 0.08	< 0.08	-	< 0.08	< 0.08	-		
Ammoniacal Nitrogen as N	Y	<0.2 mg/l	0.3	0.3	0.0	< 0.2	< 0.2	-	0.5	
Total Organic Carbon (TOC)	Y	<1 mg/l	3	3	0.0	<3	3	0.0		
Resorcinol Low Level	Y	<0.5 ug/l	< 0.5	< 0.5	-	< 0.5	< 0.5	-		
Catechol Low Level	Y	<0.5 ug/l	< 0.5	< 0.5	-	< 0.5	< 0.5	-		
Phenol Low Level	Y	<0.5 ug/l	< 0.5	< 0.5	-	< 0.5	< 0.5	-		
Cresols Low Level	Y	<0.5 ug/l	< 0.5	< 0.5	-	< 0.5	< 0.5	-		
Xylenols Low Level	Y	<0.5 ug/l	< 0.5	< 0.5	-	< 0.5	< 0.5	-		
1 Napthol Low Level	Y	<0.5 ug/l	< 0.5	< 0.5	-	< 0.5	< 0.5	-		
Trimethyl-Phenol Low Level	Y	<0.5 ug/l	< 0.5	< 0.5	-	< 0.5	< 0.5	-		
2-Isopropyl Phenol Low Level	Y	<0.5 ug/l	< 0.5	< 0.5	-	< 0.5	< 0.5	-		
Total Phenols Low Level	Y	<0.5 ug/l	2.3	1.9	-	< 0.5	<0.5	-		
pH Value	Y	<1.00 pH Units	7.50	7.40	-0.7	7.57	7.57	0.0		
Solvent Extractable Matter	Y	<1 mg/l	1	2	33.3	<1	<1	-		
EPH (DRO) (C10-C40)	Ν	<10 ug/l	<10	<10	-	<10	<10	-		
EPH (Mineral Oil)	N	<10 ug/l	<10	<10	-	<10	<10	-		
GRO (C4-C10)	Y	<10 ug/l	<10	<10	-	<10	<10	-		
GRO (C10-C12)	Y	<10 ug/l	<10	<10	-	<10	<10	-		
Benzene	Y	<10 ug/l	<10	<10	-	<10	<10	-	1	
Toluene	Y	<10 ug/l	<10	<10	-	<10	<10	-		700
Ethyl benzene	Y	<10 ug/l	<10	<10	-	<10	<10	-		300
m & p Xylene	Y	<10 ug/l	<10	<10	-	<10	<10	-		500
o Xylene	Y	<10 ug/l	<10	<10	-	<10	<10	-		500
MTBE	Y	<10 ug/l	<10	<10	-	<10	<10	-		





SCALE	NTS	N	NR0250002A		
CONTENT	SLH	DRAWN	JSM		
CHECKED		DATE	JUNE 2006		

## BOREHOLE AND SURFACE SAMPLING LOCATIONS

## FIGURE 1


## REDEVELOPMENT OF UPPER HEYFORD

## NORTH OXFORDSHIRE CONSORTIUM

REV. DESCRIPTION

DATE

KEY:	
<b>+</b>	Borehole locations
٥	Surface water sampling locations
	G is downstream of springs G1, G2 & G3
	T is downstream of springs /outfalls K & L $$
	P is downstream of springs P1 & P2
	A, F & N will only be sampled if flowing





#### **4 CORRESPONDENCE WITH THE ENVIRONMENT AGENCY**

creating a better place



Dr D. Anderson Environs Consulting Ltd Culham Science Centre Abingdon Oxfordshire OX14 3DB PINS ref: Our ref: LPA ref: APP/C3105/A/08/2080594 WA/2008/105141/01-L01 08/00716/OUT

Date:

04 September 2008

RECEIVED - 8 SEP 2008

Dear Dr Anderson

#### OUTLINE APPLICATION FOR NEW SETTLEMENT OF 1075 DWELLINGS, TOGETHER WITH ASSOCIATED WORKS AND FACILITIES INCLUDING EMPLOYMENT USES, COMMUNITY USES, SCHOOL, PLAYING FIELDS AND OTHER PHYSICAL AND SOCIAL INFRASRUCTURE. HEYFORD PARK, CAMP ROAD, UPPER HEYFORD

Thank you for the answers to our questions about the POL System/ POL 19 at RAF Upper Heyford contained in your letter dated 28 August 2008. The answers provide some of the information that was missing from the Environmental Statements and POL Statement. We have reviewed the Travers Morgan 1994 and the ERM 1997 reports and our interpretation is that the ring main was flushed through and water filled and not cleaned. There is also ambiguity as to whether POL 5 was still operational after the POL system was cleaned.

Your letter of 28 August and the reports have brought further areas of concern to our attention that have not been addressed in the POL or Environmental Statements. Namely that numerous fuel spills associated with the POL System have occurred on site; that there are no records of whether the old pipe work was removed when the main aviation fuel distribution ring was replaced in the late 1980s; a further distribution ring (redundant) extended to the northern boundary and that the tanks not connected to the POL were used to store waste fuel. We therefore still feel that the risk to Controlled Waters from the POL System, whether it is from the connected ring of tanks and pipe work, isolated tank stations or redundant pipe work, has not been fully addressed. We are also concerned about contamination caused by fire fighting chemicals that are likely to have been used on site.

The major development in terms of construction is of the settlement area that is disconnected from the Airfield and therefore the POL System. The outline application incorporates the airfield, but because of its conservation status of historic interest, many buildings will undergo a change of use rather than demolition and re-



construction. The current development proposal is to leave the POL tanks and pipe work in situ and we believe that the POL System (parts of which are already over 50 years old) is likely to deteriorate. In the answer to question nine of our letter dated 12 August 2008 it appears that only parts of the site may be investigated and remediated and this therefore does not allay our concerns over the site wide POL System in general. The risk of land being redeveloped within the planning process, falling back into the Part IIA contaminated land regime, has not been fully addressed.

Your letter of 28 August 2008 states the intention for a full land contamination assessment of the POL System to be carried out. No mention of contamination assessment of the full POL System has been made in the POL Statement or the Environmental Statements provided with the 07/02991/OUT and 08/00716/OUT planning applications. Only localised contamination has been addressed, therefore we would like to see these statements amended to incorporate a remediation strategy for the entire POL System.

Given the age of the tanks, we also expect to see plans (for subsequent agreement), for replacement of tanks at and other controls to meet current industry standards at POL 19. I refer you to the DEFRA Groundwater Protection Code: Petrol Stations and other Fuel Dispensing Facilities involving Underground Storage Tanks.

Based on the information supplied to date, we are still unable to withdraw our objection to the 08/00716/OUT application. We would, however, still like to try and resolve this matter before the public inquiry and I will summarise our position /concerns regarding the POL System:-

Pre-development discussions about the RAF Upper Heyford base were based on the premise that the POL System was included in the Conservation Area of Historic Interest. We need to know if the pipe work as well as the fuel tanks within the POL structures are considered to be features specifically identified to be of historic significance.

It is our preference that all tanks and pipe work of the POL System be removed and appropriate investigation and remediation undertaken. If tanks were to be retained as part of the Conservation Area then we expected tanks to be isolated by removing all pipe work. We need to know if the current development plans include the removal of tanks and pipe work for all or any part of the POL System.

If plans do not include the removal of the POL System then we would like to see a commitment to investigating and remediating the POL System prior to or concurrent with the development of the settlement area and should the Inspector be minded to approve this planning application then we will recommend conditions.

If you have any questions please don't hesitate to contact me.

Cont/d..

Yours sincerely creating a better place

M.n. held



#### Michelle Kidd Planning Liaison Officer

Direct dial 01491 828455 Direct fax 01491 834703 Direct e-mail michelle.kidd@environment-agency.gov.uk

cc The Planning Inspectorate, Cherwell District Council, Pegasus Planning Group





#### **TODAY'S BUSINESS TOMORROW'S WORLD**



YOUR REF: OUR REF: CONTACT NAME: DIRECT DIAL: DIRECT FAX: E-MAIL:

NR0250003 /dua/120908 Duncan Anderson 01235 468808 01235 468828 duncan.anderson@enviros.com

Michelle Kidd Planning Liason Officer Environment Agency (Thames West) Red Kite House Howbery Park Wallingford OX10 8BD

12 September 2008

#### Dear Ms Kidd,

#### Re: OUTLINE PLANNING APPLICATION, HEYFORD PARK, CAMP ROAD, UPPER HEYFORD RESPONSE TO ENVIRONMENT AGENCY OBJECTION

Thank you for your letter dated 4th September 2008 (ref WA/2008/105141/01-L01) relating to the POL system at Heyford Park. We look forward to discussing the POL system in more detail at our forthcoming meeting on Monday 15th September, but in the meantime we would like to respond to your latest letter. The following letter therefore seeks to clarify further queries you have raised (following your review of reports by Travers Morgan 1994 and ERM 1997).

#### POL 5

Your letter states that there is ambiguity as to whether POL 5 was still operational after the POL system was cleaned. Your query presumably arises from the statement in the Travers Morgan report; 'all fuel installations, except the kerbside pump stations 5 and 19 are presently free of fuel, clean and filled with water'. However, a status report commissioned by the Defence Estate Organisation and written by the Airfields and Bulk Fuels Group in 1996 (summarised in ERM 1996) confirms that POL 5 was cleaned and water filled in 1993. Since the latter report was written two years after the Travers Morgan report, we do not consider there to be any ambiguity in relation to POL 5. We have had recent discussions with the member of staff at Defence Estates who commissioned the 1996 status report and she has confirmed that only POL 19 has continued to operate since cleaning.

#### **Fuel Spills**

Your letter states that numerous fuel spills associated with the POL system have occurred on site. Fuel spills were reported in both the Travers Morgan and ERM reports. The spills were later investigated by Aspinwall (1997) and the results of this investigation were reported in the Environmental Statement (2007). The following text briefly summarises the spills reported and demonstrates that this potential contamination has been investigated and that no significant residual contamination remain at the spill sites.

#### Travers Morgan 1994

The report stated that major fuel spillages at the site were rare and were dealt with via the system of oil water interceptors. It was further confirmed that all pressurised pipework was subjected to a rigorous testing policy and hence the potential for major leakage was minimised through careful routine monitoring. The Environmental Technician for the base confirmed that the following leaks had occurred:

ENVIROS CONSULTING LTD, BUILDING D5, CULHAM SCIENCE CENTRE, NR ABINGDON, OXFORDSHIRE. OX14 3DB Registered No: 1721409, **T** +44 (0) 1235 468 800, **F** +44 (0)1235 468 828 , **W** <u>www.enviros.com</u> Enviros is a Carillion plc company and a founding member of the CAT Alliance Ltd



Page 2 of 4

- Minor spill at POL 17.
- Fuel spill at POL 19 majority of fuel recovered through the drainage system.

The Environmental Technician confirmed that the NRA were involved and informed of environmental problems at the base.

#### ERM Desk Study 1996

The report states that there have been a number of fuel spill incidents at the base. The following spills were reported:

- Fuel leaks and spills at POL 17 contamination was cleaned to 'above standards'
- Unleaded fuel leak at POL 19 majority of fuel recovered from associated interceptor. Unknown volume of impacted soil was removed from site by the USAF.
- Fuel spill at POL 21 some contaminated soil removed
- Fuel spill at POL 23 3,500 gallon spillage
- On site aircraft incident all contaminated soil from the incident were disposed off site

#### Aspinwall Factual and Interpretative Reports 1997

A targeted investigation was carried out by Aspinwall in 1997, based on possible sources of contamination identified in ERM's 1997 report. In addition to other potential contamination sources, the investigation targeted identified fuel spillage areas including POL 17, 19, 21 and 23. The targeted investigation comprised a soil vapour survey and the collection of soil samples for analysis from trial pits. Some water samples were also collected from trial pits to provide a preliminary indication of contamination. Deep groundwater monitoring boreholes were also installed across the site to assess groundwater quality in the underlying aquifer (and these continue to be monitored on biannual basis). A summary of the results of this investigation are reported and discussed in the Environmental Statement (2007).

In summary therefore, we consider that investigations completed to date have adequately assessed spill areas and not identified any significant residual contamination that requires further assessment at this outline planning stage. Furthermore, groundwater monitoring, which has been generally completed on a twice annual basis continually since 1999, indicates that there have been no significant releases to the underlying aquifer which suggests a lack of gross contamination at the site. However, further investigation and assessment of previously identified areas of contamination will be required at the detailed design stage.

#### **Old pipework**

The main aviation fuel distribution ring was almost entirely replaced between 1987 and 1989. It has not been confirmed whether the old pipework was removed prior to installing the new pipework. However, it is highly unlikely that all fuel would not have been removed from the old pipework even if the pipework was left in situ. As indicated in our previous letter, all pipework of the former aviation fuel ring will be located at the detailed design stage. The contents will be sampled and assessed (including a risk assessment relating to any original pipework located) and an appropriate remedial solution will be implemented.



Page 3 of 4

#### Storage of waste fuel

Waste fuel was stored at POL 17 (isolated from the main ring), but records provided confirm that all tanks at this POL were cleaned and filled with water. This has been confirmed by recent testing of two of the tanks, in which <10 and 20  $\mu$ g/l of TPH were recorded respectively. As stated in our previous letter and the POL Statement (6th February 2008), all POL tanks will be sampled and tested at the detailed design stage in order to provide an optimum remedial solution for each tank (some preliminary tank testing has taken place as reported in the POL Statement).

#### Risk to Controlled Water from the POL System

Your letter states that the Environment Agency 'still feel that the risk to controlled waters from the POL System, whether it is from the connected ring of tanks and pipework, isolated tank stations or redundant pipework, has not been fully assessed'. As required by current guidance, a preliminary assessment of risk to controlled waters has been carried out (reported in the Environmental Statement 2007) and a preliminary remediation strategy has been outlined (POL Statement 2008). Whilst records indicate that the POL System has been cleaned and water filled, preliminary testing indicates that residual levels of hydrocarbons remain, and our preliminary remedial strategy involves the removal and / or treatment of water in the system. At the detailed design stage, further investigation work will be carried out, after which a further assessment of environmental risk associated with the POL will be completed, followed by the development of the preliminary strategy into a detailed remediation strategy and ultimately remediation. The potential risk to controlled waters from the POL System will therefore be addressed in accordance with environmental and planning guidance / legislation. Meanwhile, the groundwater quality in the underlying aquifer continues to be assessed through biannual monitoring of boreholes located across the site and by monitoring of springs and streams around the site.

#### **Fire Fighting Chemicals**

Fire fighting chemicals may have been used in the fire practise pond (ERM 1996). The fire practice area was investigated in the Aspinwall investigation (1997) by completing a soil vapour survey around the area and by excavating a number of trial pits in close proximity to the pond, with assessment of soil samples for a comprehensive range of inorganic and organic substances. The possible requirement for further investigation and assessment of this area will be considered at the detailed design stage.

#### Other points raised in Environment Agency Letter (4th September 2008)

- 1. Your interpretation of our previous response (letter dated 28th August 2008) is that 'only parts of the site may be investigated and remediated'. We can confirm that all potential contaminant sources within the wider site will be investigated, not just in the development area. This includes the entire POL System and is necessary to assess the risk posed to controlled waters.
- 2. Your letter suggests that 'only localised contamination has been addressed' and you would like to see statements amended to incorporate a remediation strategy for the entire POL system. We reiterate that the remediation strategy (currently at preliminary stage) will address the potential risk posed by the whole of the POL System, not just localised areas. For the purpose of clarity, we can include this clarification in our forthcoming Supplementary Statement to be sent to the Planning Inspectorate (see comments below).
- 3. Your letter states that you would expect to see plans for replacement of tanks and other agreements to meet current industry standards at POL 19. We have made enquiries to our client in relation to this matter and will provide further information in due course.

Page 4 of 4

- 4. In relation to English Heritage's requirements, our understanding is that they would like the visible parts of the POL to remain. We do not believe they have any interest in underground pipework.
- 5. Subject to further investigation and assessment, our preliminary remediation strategy is to remove water from the POL System, to clean residual hydrocarbons from the pipe and tank surfaces, but to ultimately leave the pipes and tanks in place (albeit that some local sections of pipe may need to be removed within the development area where these constrain development activities such as foundation construction). Clearly, at the detail design stage and post remediation, we will need to demonstrate that the remaining pipework and tanks will not / do not pose an unacceptable risk to the environment (including controlled waters). As per the last paragraph in your letter, we confirm our commitment to investigate and remediate the POL System prior to or concurrent with the development of the settlement area. Planning conditions recommended by the Environment Agency would clearly provide an effective method of monitoring this commitment.

We look forward to discussing these points in more detail with you next week and we are confident we can demonstrate that environmental risk at the site will be addressed in accordance with planning requirements such that you will be able to remove your current objection.

Please note that we will be submitting a Supplementary Statement to the Planning Inspectorate by the 24th September 2008. Correspondence relating to this further statement is attached.

#### Yours sincerely For Enviros Consulting Limited

**Reviewed and Approved by:** 

#### Dr Duncan Anderson Senior Consultant

Jeve Hoth

Dr Steve Hobbs Director

Encl: Planning Inspectorate letter 21 August 2008, Enviros letter to Planning Inspectorate 3rd September 2008

#### **TODAY'S BUSINESS TOMORROW'S WORLD**



YOUR REF: OUR REF: CONTACT NAME: DIRECT DIAL: DIRECT FAX: E-MAIL:

NR0250003 /dua/280808 Duncan Anderson 01235 468808 01235 468828 duncan.anderson@enviros.com

Michelle Kidd Planning Liason Officer Environment Agency (Thames West) Red Kite House Howbery Park Wallingford OX10 8BD

28 August 2008

Dear Ms Kidd,

#### Re: OUTLINE PLANNING APPLICATION, HEYFORD PARK, CAMP ROAD, UPPER HEYFORD RESPONSE TO ENVIRONMENT AGENCY OBJECTION

Further to your letters dated 18th July (ref WA/2008/104144/01-L01) and 12th August 2008 (ref WA/2008/104144/01-L02); we write to address your queries and concerns on behalf of our client, the North Oxfordshire Consortium (NOC). Your first letter stated that the Environment Agency (EA) 'object to the application as submitted because the applicant has not supplied adequate information to demonstrate that the risks posed to groundwater can be safely managed'. The letter further indicated that the EA consider that 'the proposed development poses an unacceptable risk of causing a detrimental impact to groundwater quality'. The letter raised specific concerns in relation to the Petrol, Oil and Lubricant (POL) system and in particular to POL 19. In particular, the letter indicated that, 'the POL system may still be in operation and may remain in operation through the approval of this application'. The letter therefore raised concerns that the POL system may pose a risk to groundwater. The letter stated that, in order to address the objection, the applicant would need to demonstrate:

- whether the POL system has been used since it was cleaned;
- whether POL 19 has been isolated from the wider system; and
- how the petrol station structure at 89a (location of POL19) currently receives and intends to receive its fuel supply.

Your second letter asked nine specific questions in relation to POL system, many of which were also discussed in the first letter. Pegasus responded to this letter on the 15th August, confirming that Enviros would contact the EA in response to the questions posed.

This letter addresses the specific queries raised in both EA letters and also demonstrates that our client proposes to develop the site in accordance with good practice and current guidance (including PPS23, CLR 11 and the EA Groundwater Protection Policies and Practices). The information presented below is based on a review of reports, site plans, walk over surveys and interviews with site staff.

#### POL system

The 505 hectare former RAF Upper Heyford was occupied by the 20th Fighter Wing of the USAF (82 no. F111 swing-wing bombers) between the mid 1950s and 1993. A POL system

ENVIROS CONSULTING LTD, BUILDING D5, CULHAM SCIENCE CENTRE, NR ABINGDON, OXFORDSHIRE. OX14 3DB Registered No: 1721409, **T** +44 (0) 1235 468 800, **F** +44 (0)1235 468 828 , **W** <u>www.enviros.com</u> Enviros is a Carillion plc company and a founding member of the CAT Alliance Ltd



Page 2 of 4

comprising two distribution rings of connected underground and semi-buried tanks and approximately 13km of underground pipework provided fuel for operations at the base. Additional tanks not connected to the ring were also present at the base.

Aviation fuel was pumped to the POL ring system from a local distribution point at Islip, six miles south (the fuel was pumped from Southampton via Basingstoke to Islip). A system of valves and pumps at the base controlled the points of discharge independently of Islip. Tanks not connected to the distribution rings were filled by tanker and were used to store diesel, petrol and waste fuel. The main aviation fuel distribution ring was almost entirely replaced between 1987 and 1989 and now comprises 150mm diameter plastic coated steel pipe. It has not been confirmed whether the old pipework was removed prior to installing the new pipework. A further fuel distribution ring which extends to the northern boundary was made redundant 'several years' prior to 1994.

The POL system operated until the early 1990s and was cleaned (fuel removed) and filled with water in 1993 and 1994. It is also reported that the pipelines / ring main connecting the POL facilities was flushed through and filled with water. The system was also completely disconnected from the national fuel pipeline, and valves were installed on the southern edge of the site to allow the National Pipeline Agency to inspect the pipe from Islip.

The POL ring system has not been used since it was cleaned. However, POL 19 which was never connected to the POL ring system remains in partial use today.

#### POL 19

POL 19 was constructed in the 1950s for the storage of petrol and diesel. All available plans indicate that POL 19 was not connected to the POL ring system which is consistent with the fact that the former stored diesel and petrol while the later contained aviation fuel. The facility contained six underground storage tanks, each with a volume of 54.5m³. Two of the tanks were decommissioned and filled with concrete in the early 1990s. In 1996, the remaining four tanks were being used for the storage of diesel (2 tanks) and unleaded petrol (2 tanks) for use by a vehicle distribution company.

POL 19 was visited by Enviros on Thursday 9th August 2008 to investigate current operations. Paragon currently operates the POL. Since 1997, a further tank has been decommissioned and filled with foam. Three tanks remain in use, two storing diesel and one unleaded petrol. There are four refuelling points, one of which has been foam filled, corresponding to the decommissioned tank. Two of the refuelling points receive diesel and one receives unleaded petrol. Fuel is currently delivered to the facility by tanker and is dispensed to the three standpipes. To the best of our knowledge this method of delivery is set to continue in the future. Paragon has stated that the three tanks in use are filled to a maximum of 50,000 litres (i.e. the tanks are never filled to the full capacity of 54,500 litres). The refuelling area contains volume gauges for each tank and readings are recorded daily by Paragon.

All original pipework (brown in colour) was observed to be disconnected and blanked off and there is no evidence of connection of the tanks to a wider fuel system (e.g. POL ring). The three tanks in use and the fourth foam filled tank are connected to silver coloured pipes (assumed new pipes since military use of the site). Observation of the six manhole entrances to the tanks confirms that two of the tanks are concrete filled and one tank is foam filled.

There are five vehicle dispense points, each fitted with an automatic cut off system. Dispense volumes are compared daily with tank volume readings and computer records are maintained by Paragon. The company report that leakages from the tanks have not been recorded. We understand that daily dispense and tank volume records will continue to be kept, and therefore any tank leakages will be quickly identified.

#### Further investigation, assessment and remedial design



In accordance with the requirements of PPS23 and the guidance in CLR11, a phased approach is proposed for the continued investigation and assessment of the POL system. The preliminary remedial strategy for the POL system was outlined in POL Statement dated 6th February 2008. This document also indicated that sampling and testing of additional tanks will be undertaken at the detailed design stage in order to determine the optimum solution for each tank. Testing of water in the pipework will also be carried out, together with an assessment of the location of underground pipework and the status of valves in the system. Following this investigation work, a further assessment of environmental risk associated with the POL will be completed, followed by the development of the preliminary strategy into a detailed remediation strategy and ultimately remediation.

#### Answers to questions in 12th August 2008 letter

- (1) MOD personnel confirmed that the pipework was cleaned and water filled (ERM report 1997).
- (2) POL 19 has been used (and is currently being used) for the supply of petroleum hydrocarbon fuels since the cleaning of the POL system.
- (3) POL 19 is currently being used to supply diesel and petrol to a vehicle distribution company.
- (4) Building 89a houses the controls for the refuelling area and the computer that controls the refuelling pumps.
- (5) Records indicate that POL 19 has always been isolated from the wider POL system (Travers Morgan 1994, ERM 1997).
- (6) Defence Estates and NOC have confirmed that only POL 19 has continued to operate since the time of cleaning.
- (7) Fuel is supplied by tanker to POL 19.
- (8) The location of POL tanks is well understood. However, there are some uncertainties as to the exact location of underground pipework, which is to be addressed at the detailed design stage. Measures will be included in the detailed remediation strategy to ensure that minor works do not damage the POL infrastructure.
- (9) As outlined in the POL Statement and discussed above, a staged investigation and assessment approach will be undertaken with respect to the POL system and other potential contaminative uses at the site. Based on this information, a detailed remedial strategy will be developed which will include any necessary remediation to ensure that development of the site or parts of the site does not pose an unacceptable risk to human health or the environment.

#### **Concluding comments**

The POL ring system has not operated since it was cleaned and filled with water in the early 1990s. The system has also been isolated from the regional supply pipe from Islip. The only POL facility known to be in continued operation is POL 19. There is no evidence that POL 19 was ever connected to the wider POL system (former aviation fuel ring) and this is consistent with the different fuel types (diesel and petrol) stored at the facility. Three of the tanks at POL 19 have been decommissioned, while three remain in use. The tanks are used to store diesel (2 tanks) and unleaded petrol (1 tank) for Paragon's vehicle fleet. Fuel is delivered by tanker to three standpipes connected to the tanks. It is understood that fuel will continue to be delivered and received in this manner. Daily records are maintained of the tank and dispense volumes and the company report no identified tank leaks. POL 19 therefore continues to operate independently of the wider POL system.

In accordance with planning requirements and current guidance, a phased approach to the investigation and assessment of the POL is proposed. The preliminary remediation strategy was



Page 4 of 4

outlined in the POL Statement and this will be developed into a detailed remediation strategy following additional investigation at the detailed design stage.

We trust that this letter adequately addresses the concerns raised in your recent letters, such that the EA objection can be removed. However, should you require further clarification, please do not hesitate to contact us or should you require a meeting, we would be happy to meet at your office in Wallingford.

Yours sincerely For Enviros Consulting Limited

**Reviewed and Approved by:** 

Juna J Miden

Dr Duncan Anderson Senior Consultant

H. E. Hulding

Heidi Hutchings Consulting Group Manager

From Green, Sarah (sarah gre Sent: 18 July 2008 11 03 To Jenny Barker Cc Kidd, Michelle, Davres, Subject RE Upper Heyford POI Attachments, WA104144 doc, WA105 Hi Jenny, Hi Jenny, Subject the delay in commenting or please find attached our response to the apologies for the delay in commenting or i've also attached a letter i've sent to PIN latest application for their consideration sarah Sarah Green Sarah Green	Green, Sarah [sarah green@environment-agency gov uk] 18 July 2008 11 03
From Green, S Sent: 18 July 2 To Jenny B: Cc Kidd, Mit Subject RE Upp Attachments. WA1041 Hi Jenny, Please find attached our n apologies for the delay in I've also attached a letter latest application for their sarah Sarah Green Fel 01491 820485	barah (sarah green@environment-agency gov uk) 2008 11 03
Sent: 18 July 2 To Jenny Bi Cc Kidd, Mit Subject RE Upp Attachments, WA1041 Hi Jenny, please find attached our n apologies for the delay in I've also attached a letter latest application for their sarah sarah Green Fainning Lieison Techn Tel 01491 828485	2008 11 03
To Jenny Bi Cc Kidd, Mit Subject RE Upp Attachments, WA1041 Hi Jenny, please find attached our r apologies for the delay in i've also attached a letter latest application for their sarah sarah Teen Flaining Lilaison Techn Tel 01491 820485	
Cc Kidd, Mit Subject RE Upp Attachments, WA1041 Hi Jenny, please find attached our r apologies for the delay in I've also attached a letter latest application for their sarah Sarah Green Flaining Llaison Techn Teil 01491 820485	arker
Subject RE Upp Attachments, WA1041 Hi Jenny, Please find attached our n apologies for the delay in l've also attached a letter latest application for their latest application for their sarah Sarah Green Flaining Llaison Techn Tei 01491 828485	Kidd, Michelle, Davies, Gillian
Hi Jenny, please find attached our r apologies for the delay in l've also attached a letter latest application for their sarah Sarah Green Flaining Llaison Techn Tei 01491 828485	Subject KE Upper Heyrord F-UL & S-ULS Attachments, WA104144 doc, WA103250_02 doc
please find attached our n apologies for the delay in l've also attached a letter latest application for their sarah Sarah Green Plaining Llaison Techn Tel 01491 828485	
I've also attached a letter latest application for their sarah Sarah Green Planning Liaison Techn Tei 01491 828485	please find attached our response to the 2008 application - hopefully this clarifies our position and my apologies for the delay in commenting on this, if you need to discuss further please give me a call
sarah Sarah Green Planning Llaison Techn Tel 01491 828485	Ive also attached a letter Ive sent to PINS in relation to the appeal notifying them that we've objected to the latest application for their consideration
Sarah Green Planning Llaison Techn Tel 01491 828485	
	ucal Specialist
Environment Agency (Thames West) Red Kite House Howbery Park Wallingford OX10 8BD	ames West)
www environment-agency gov uk	א מסא עול
Would you like advice on Refer to "Building a Bette	Would you like advice on environmental issues and opportunities for your development ? Refer to "Building a Better Environment – a guide for developers" available to download from our website
The guide received a con	The guide received a commendation from the RTPI 2007 Planning Awards
From: Jenny Barker [mailto.Jenny.Barker@C Sent: 18 July 2008 10.43 To: Kidd, Michelle, Davies, Gillian, Green, Sa Cc: SimManley; Simon Downs, David Hanger	From: Jenny Barker [mailto.Jenny.Barker@Cherweli-DC gov uk] Sent: 18 July 2008 10'43 To: Kidd, Michelle, Davies, Gillian, Green, Sarah Cc: SimManley; Simon Downs, David Hanger
Subject: Upper Heyford	I POL & SUDS
	Chck <u>here</u> to report this email as spam
Following our recent mer objection 1 would be gra	Following our recent meeting I have received the attached letter from NOC which refers to the EA having no objection 1 would be grateful if you could clarify the position
<<05191847 tth>>With regard to surface w between drainage featur retained trees The ques drainage features 1 think shown on parameter plai	<<05191847 tf>> <<05191847 tf>> With regard to surface water drainage When we met I rasied concerns regarding the potential conflict between drainage features and other elements of the application such as play features, school pitches and retained trees. The question was asked why should such features have precedents over the requirements for drainage features I think the answer is that the play features and school pitches and school pitches and school pitches and school pitches are all shown on parameter plans accompanying the planing application whils the drainage plan only appears in

ť,

-

18/07/2008

World Anvironment Day 2008 - Time for a new routine Take part in our campaign by telling us what one thing you will do to stand up to climate change Visit our website to tell us and find out more wew_environment.agency.gov ut/wed Whilst the Council has taken every reasonable precaution to minimise the risk of computer software viruses, it cannot accept liability for any damage which you may sustain as a result If we have sent you information and you wish to use it please read our terms and conditions which you can get by calling us on 08708 506 506 Find out more about the Environment Agency at www environment-agency gov uk Information in this message may be confidential and may be legally privileged If you have received this message by mistake, please notify the sender immediately, delete it and do not copy it to anyone else We have checked this email and its attachments for viruses But you should still check any attachment Page 2 of 2 This e-mail (including any attachments) may be confidential and may contain legally privileged information You should not disclose its contents to any other person If you are before opening it We may have to make this message and any reply to it public if asked to under the Freedom of Wiformation Act, Data Protection Act or for litigation Email messages and attachments sent to or Information Act, Data Protection Act or for litigation Email messages and attachments sent to or If form any Environment Agency address may also be accessed by someone other than the sender or recipient, for business purposes Unless expressly stated otherwise, the contents of this e-mail represent only the views of the Environmental Statement which has the role of identifying significant environmental effects not defining of such viruses You should carry out your own virus checks before opening the e-mail (and/or any attachments) the sender and does not impose any legal obligation upon the Council or commit the not the intended recipient, please notify the sender immediately the development for which planning permission is sought Senior Planning Officer (Major Developments) Council to any course of action jenny barker@cherwell-dc.gov.uk Upper Heyford POL & SUDS Planning Housing & Economy Cherwell District Council www.cherwell-dc.gov.uk Tel 01295 221828 Jenny Barker

18/07/2008

Ms Jenny Barker Cherwell Distruct Council Planning & Development Services Bodicote House White Post Road Bodicote Banbury

Our ref: WA/2008/104144/01-L01 Your ref: 08/00716/OUT

Date: 18 July 2008

OX15 4AA

Dear Ms Barker

OUTLINE APPLICATION FOR NEW SETTLEMENT OF 1075 DWELLINGS, TOGETHER WITH ASSOCIATED WORKS AND FACILITIES INCLUDING EMPLOYMENT USES, COMMUNITY USES, SCHOOL, PLAYING FIELDS AND OTHER PHYSICAL AND SOCIAL INFRASRUCTURE

HEYFORD PARK, CAMP ROAD, UPPER HEYFORD

Thank you for your letter of consultation on this planning application Please accept my apologies for the delay in responding We OBJECT to the application as submitted because the applicant has not supplied adequate information to demonstrate that the risks posed to ground water can be safely managed We recommend that planning permission should be refused on this basis

## Reason

Government policy as set out in PPS23 notes the key role that the planning system plays in determining the location of development which may give rise to pollution, either directly or indirectly, and in ensuring that other uses and developments are not, as far as possible, affected by major existing or potential sources of pollution Our approach to groundwater protection is set out in our recently revised policy 'The Environment Agency, Groundwater Protection Policies and Practices' (2007) In implementing our policy we will oppose development proposals that may pollute groundwater especially where the risks of pollution is high and the groundwater asset is of high value We also seek to ensure that applicants provide adequate information to demonstrate that the risks posed by development to such groundwater

Environment Agency Red Kite House Howbery Park, Wailingford, Oxfordshire, OX10 8BD Customer servees line 08708 505 505 Email enquires@environment-agency gov uk www environment-agency gov uk ContVd assets can be safely managed In this instance the applicant has failed to provide this information

In this case we consider that the proposed development poses an unacceptable risk of causing a detrimental impact to groundwater quality

The site is located over a major aquifer and has many areas of already identified contamination that may potentially be a threat to groundwater quality. Of primary concern is the site wide POL (Petrol, Oil and Lubncant) system that includes numerous tanks (28, possibly 34 tanks) and a 13 Km network of pipe-work that the applicant is intending to retain in situ Our position on development at this site has changed since we commented on a previous application ref 07/02991/OUT because new information has come to light that raises serious questions about that adsquacy of the Environmental Statement and conflicting information that has been presented by the applicant This was highlighted in our letter to the Planning Inspectorate on 20 May 2008 The 2007 Environmental Statement contained information that suggested the POL system had been cleaned, and our response was made on the understanding that this had been carned out, and the POL system was either no longer operational or had been cleaned to an acceptable standard However, the 2008 Environmental Statement contains information to suggest that the applicant is pursuing approval for change of use of structure 89a (this is in the same location as POL 19) to a petrol pumping station, a use which we have recently been made aware has been subject to a number of temporary approval for 5 years is also being sought through a separate planning application.

As such, it appears that the POL system may still be in operation and intended to remain in operation through approval of this application. We are concerned that deterioration of the POL system may result in substances leaking into groundwater causing pollution which we find unacceptable because our monitoring records show that groundwater quality to date is generally good The Environmental Statement fails to address this risk

in order to address our objection, the applicant will need to demonstrate,

- whether the POL system has been used since it was cleaned in 1990 and,
  - whether POL 19 has been isolated from the wider system and,
    how the petrol station at structure 89a currently receives and how it is intended to receive its fuel supply

This information should be requested under Regulation 19 of The Town and Country Planning (Environmental Impact Assessment) (England and Wales) Regulations 1999

Yours sincerely

Michelle Kidd Planning Liaison Officer Direct dial 01491 828455 Direct fax 01491 834703 Direct e-mail michelle kidd@environment-agency gov uk cc Pegasus Planning Group Lip			R
Alian Direc Direc C P C		 	

Sian Evans Planning Inspectorate Room 4/04 Kite Wing Temple Quay House 2 The Square, Temple Quay Bristol BS1 6PN

Our ref: WA/2007/103250/02-L01 Your ref: APP/C3105/A/08/2069312 Date: 18 July 2008

BS1 6PN

Dear Ms Evans,

APPEAL AGAINST NON-DETERMINATION FOR NEW SETTLEMENT OF 1075 DWELLINGS, TOGETHER WITH ASSOCIATED WORKS AND FACILITIES INCLUDING EMPLOYMENT USES, COMMUNITY USES, SCHOOL, PLAYING FIELDS AND OTHER PHYSICAL AND SOCIAL INFRASRUCTURE

# HEYFORD PARK, CAMP ROAD, UPPER HEYFORD

Further to my letter to you of 20 May 2008 in relation to this appeal, I would like to provide further comments in relation to this proposal that I feel it is necessary for the inspector to be made aware of

In my previous letter to you, I raised a concern we have regarding contaminated land and potential contamination of groundwater as a result of this proposal. We have since reviewed and responded to Cherwell District Council on a separate outline planning application, wrtually identical to this scheme ref. 08/00716/OUT, that we have objected to as we do not consider the applicant has assessed the potential risk of pollution sufficiently. Please find attached my response to Cherwell District Council that explains why we are objecting in more detail If I can offer any further assistance to help the Inspector in coming to his/her decision on this appeal, please do not hesitate to contact me

Yours sincerely

Michelle Kidd Planning Liaison Officer Direct dial 01491 828455 Direct fax 01491 834703 Direct e-mail michelle kidd@environment-agency gov uk

cc Cherwell District Council

Environment Agency Red Kite House, Howbery Park, Crowmarsh Gifford, Oxon, Wallingford, OX10 8BD Customer services line 08708 506 506 Email enquines@ervironment-agency gov uk <u>www.environment-agency gov uk</u> creating a better place



Mr. M. Dobson Pegasus Planning Group Llp 6-20 Spitalgate Lane Cirencester Gloucestershire GL7 2DE

Our ref: PINS ref: LPA ref: Date:

NY Z D

WA/2008/104144/01-L02 APP/C3105/A/08/2080594 08/00716/OUT 12 August 2008

Dear Mr. Dobson

#### OUTLINE APPLICATION FOR NEW SETTLEMENT OF 1075 DWELLINGS, TOGETHER WITH ASSOCIATED WORKS AND FACILITIES INCLUDING EMPLOYMENT USES, COMMUNITY USES, SCHOOL, PLAYING FIELDS AND OTHER PHYSICAL AND SOCIAL INFRASTRUCTURE. HEYFORD PARK, CAMP ROAD, UPPER HEYFORD

With regard to the forthcoming appeal (Ref: APP/C3105/A/08/2080594/NWF) concerning the above site and planning application, we are writing to request further information that if supplied, may allow us to withdraw our objection outlined in our letter to Cherwell District Council dated 18 July 2008 (Ref WA/2008/104144/01-L01).

Our objection is based on the unacceptable risk to groundwater as there is insufficient evidence to demonstrate that the risks posed to groundwater can be safely managed. The current proposal is for the POL system (Petrol, Oil and lubricants) - a 13 Km pipe network with 28, (possibly 34) above and underground tanks to be left in situ. We are concerned that over time this POL system may deteriorate and could leak, thus causing contamination of controlled waters. Since we now understand that part of the POL System (POL 19) is being used currently as a petrol filling station, our major concern is that if POL 19 was not isolated from the system, there could have been migration of petroleum hydrocarbons back into the entire POL System.

Conflicting information has been provided with the 2007 and 2008 applications regarding the POL System and we have listed these below. We have then asked a number of questions, which if answered satisfactorily, may allow us to risk assess this site.

a) Environmental Statement 12.4.3. – September 2007 states that the POL System tanks were cleaned and filled with water.



b) Environmental Statement 12.4.3. – September 2007 states that POL 19 was not drained, cleaned or filled and in 1999 was in use by QEK for storage and supply of diesel and petrol. No documentation to confirm either a specification of the cleaning and filling or certificates of completion has been located to date.

c) Environmental Statement 12.4.5. – September 2007 states that there are three basic types of tank in the POL System. The third type are four sites where petrol or diesel was stored and these tanks number either 6 or 12 underground tanks.

d) POL Statement – Revision B - 6 Feb 2008 states that the POL System was cleaned and filled with water. POL 19 is listed on the cleaning schedule as being cleaned by Huntington Tank Cleaning Ltd.

e) POL Statement – Revision B - 6 Feb 2008 states that the on-site POL is completely disconnected from the national fuel pipeline.

f) Schedule RD-4af Building Significances; and Retention and Proposed Use Class (June 2008) - Plan reference 89A is listed as a Petrol pump booth 'to be retained' however the Supporting Planning Statement (June 2008) and the Environmental Statement dated February 2008 refers to 'Change of use for Structure 89a to a petrol pump station'.

#### Questions:-

1) Was the pipe work (as well as the tanks), cleaned?

2) Has POL 19 been used for the supply of petroleum hydrocarbon fuels since the cleaning of the POL system?

3) Is Building 89a part of POL 19 and is Building 89a/POL 19 currently being used for the distribution or supply of petroleum hydrocarbon fuels?

4) Is Building 89a a petrol pump booth or a petrol pump station?

5) Is POL 19 isolated from the 13 km POL System that crosses the entire airfield complex and was it isolated at the time of cleaning?

6) If POL 19 has been used since cleaning are there other POL Stations on the site that have also been used since cleaning?

7) How does the filling station at POL 19 /Building 89a receive its fuel and is it supplied by tanker or is another part of the POL pipe work used to supply fuel to POL 19 / Building 89a?

8) There appears to be uncertainty (point above) in the tank inventory. How therefore are you proposing to protect the POL tanks and pipe work during minor developments of the airfield such as fencing or the installation of site service ducts?
9) Under PPS23, land being redeveloped within the planning process should not fall back into the Part IIA contaminated land regime. What assurances can you make to ensure that this does not happen?

It would be appreciated if the answers to these questions are returned to us by Monday 18 August 2008 in order for us to try and resolve this matter before the public inquiry.

If you have any questions please don't hesitate to contact me.

Cont/d..

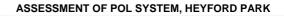
Yours sincerely

creating a better place

m.n. udd



#### Michelle Kidd Planning Liaison Officer


Direct dial 01491 828455 Direct fax 01491 834703 Direct e-mail michelle.kidd@environment-agency.gov.uk

cc Cherwell District Council, ARUP





#### **5 ASSESSMENT OF THE POL SYSTEM**



# Ê

#### 1. INFORMATION SOURCES

A comprehensive review audit of all available information on the former POL system has been undertaken. The NOC offices at Heyford Park were visited on five occasions (14th, 17th and 23rd April, 29th and 30th May 2008) to review information held by NOC. Information provided by NOC included; tank operation manuals, tank inspection and maintenance records, POL plans and consultants' reports. Anecdotal information was obtained from discussions with a number of NOC staff during these visits. A site walkover of the former POL system at Heyford Park was carried out on 17th and 23rd April and an active military air base was visited on May 1st to observe an operational POL system.

These information sources are described in brief in the section below. Relevant information from all of these documents has been incorporated into this assessment.

#### Tank Operation Manuals

USAF / NATO Bulk Storage Operations Manuals for four of the POL (published by the British Pipeline Agency and the Department of the Environment) are held by the NOC. There is a specific manual for each of; POL 23A, 23B, 24 and 25 (A and B). The manuals describe the operation of these large (maximum operating capacities 1836 – 4487 m³) NATO semi buried steel tanks. The manuals contain a description of JP4 fuel (although JP8 was used at the time of closure of Upper Heyford), including Health and Safety considerations, a description of the facility and operational details. The manuals also include plans of the site layout, the components of the facility (storage tank, pump pit and filter separator) and operational diagrams (control panels and fuel flow diagrams).

#### **Tank Inspection and Maintenance Records**

The records are held by NOC and include POL location plans, inspection certificates, work requests / instructions and service / maintenance sheets. Inspection certificates are titled 'certificate for approval of a bulk fuel installation' and the section 'certified that the installation is fit in all respects' is signed and dated 1984. These certificates include a record of the type and size of tanks and the fuel type used. The work requests / instructions include orders to; remove fuel (to Cleansing Services Group) and to clean tanks (to Hunting Tank Cleaning Ltd). Records exist for the following POL; 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23 and 24.

#### Site Disposal – Stage 1 Survey, Travers Morgan, 1994

This report documents a survey / inventory of the site carried out for Defence Land Agents in 1994. Relevant sections of the report comprise a brief description of the POL Liquid Fuel Installations (including Figure 12, a plan of the POL system), an outline of contaminated land issues and a review of surface water drainage.

#### Land Quality Assessment Phase 1, ERM, 1997

A phase 1 desk study was undertaken by ERM for the Defence Estates Organisation in 1997. The report outlines 'previously identified sources of contamination' and describes the POL system. Details of each POL are listed, including tank volume, fuel type and cleaning history.

# Ê

#### Land Quality Assessment Factual Report, Aspinwall, 1997

This report provides a detailed description of the site setting (geology and hydrogeology) and the results of a targeted intrusive investigation (based on findings of ERM desk study). The investigation comprised; soil vapour surveys in POL areas (including along the POL supply ring), trial pitting for soil sampling in engineering / maintenance and POL areas, borehole drilling for groundwater monitoring along the perimeter of the site (6 No. boreholes) and in the centre of the site (1 No. borehole) and spring and outfall sampling around the site.

#### Land Quality Assessment Interpretative Report, Aspinwall, 1997

This report discusses the results of the previous Aspinwall intrusive investigation. The investigation identified hydrocarbon contamination in soil at POL storage locations 20 and 21. The results of spring and groundwater sampling indicated that the underlying aquifer was not being affected by contamination recorded in the overlying soils.

### Appendices to Environmental Statement, Volume 2, the Barton Willmore Planning Partnership, 1999

This report includes a section on baseline conditions (Appendix GH1; based on Aspinwall 1997 reports), using information from the earlier Aspinwall reports and a section on fuel facilities and associated pipelines (Appendix G381 – Buchanan Consulting Engineers). The latter contains a detailed description of the POL (including Drawing No. G381/27) and a discussion of potential remedial options. A further section outlines proposals for further groundwater monitoring (Appendix GH8).

#### Heyford Park: POL Statement, Arup, 6th February 2008

This statement comprises supplementary information for Cherwell District Council on the POL System. The document briefly summarises the POL system and includes a layout plan (Drawing No. CU_002) and a summary table that details tank numbers, capacities, fuel types and cleaning records. Chemical analysis results of water samples from six of the tanks are presented and outline remedial options are discussed.

#### POL Plans (NOC data room)

A number of POL plans are held in a data room by NOC. The plans date from the 1950s to 1980s and comprise sectional, plan and engineering drawings of the POL their components (tanks, pipes, pumps, valves, electric cables).

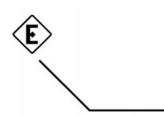
#### Master Plan, Sanitary Sewerage System

A Sewerage layout plan dated 1980 and produced by the Department of the Air Force is held by NOC. The plan shows the layout of sewerage pipework at the base, and the layout of the sewerage treatment works south of Camp Road. This has been used to assess possible tank drawdown discharge locations to sewer.

#### 2. OVERVIEW OF POL

#### Overview

The 505 hectare former RAF Upper Heyford was occupied by the 20th Fighter Wing of the USAF (82 no. F111 swing-wing bombers) between the mid 1950s and 1993. A POL system comprising two distribution rings of connected underground and semi-buried tanks and approximately 13km of underground pipework provided fuel for operations at the base. Additional tanks not connected to the ring were also present at the base. The total capacity of the POL system was reported as approximately 30 million litres.


Aviation fuel was pumped to the POL ring system from a local distribution point at Islip, six miles south (the fuel was pumped from Southampton to Islip). A system of valves and pumps at the base controlled the points of discharge independently of Islip (i.e. fuel flow to each POL was controlled by a valve between the distribution ring and the POL and fuel flow to and from the tank (s) within each POL was controlled by additional valves and pumps). Tanks not connected to the distribution rings were filled by tanker.

The main aviation fuel distribution ring was almost entirely replaced between 1987 and 1989 and comprises a 150mm diameter plastic coated steel pipe (it is assumed the old pipework was removed prior to installing the new pipework, but this has not been verified). A small section of pipe beneath the runway at its eastern crossing was not replaced at this time. A further fuel distribution ring which extends to the northern boundary was made redundant 'several years' prior to 1994.

The POL system (tanks and pipelines) was reportedly cleaned (fuel removed) and filled with water in 1993 and 1994 (note - POL 19 remains in use). The system is now completely disconnected from the national fuel pipeline, and valves have been installed on the southern edge of the site to allow the National Pipeline Agency to inspect the pipe from Islip.

The types of POL tanks present at the site are summarised as follows:

- Large capacity tanks connected to the aviation fuel distribution rings; NATO specification circular semi-buried storage tanks constructed from epoxy coated steel (POL numbers 23A, 23B, 24, 25A and 25B) and other circular semi-buried storage tanks (POL numbers 21A, 21B, 21C and 22). The NATO specification tanks were constructed in the 1970s and are semi-buried steel lined tanks encased in concrete and mounded with earth. The age of the other circular semi-buried storage tanks (POL numbers 21A, 21B, 21C and 22) is uncertain, but an as built drawing of POL 21 suggests they may have been installed by 1961. The tanks have capacities of between 763m³ and 4,754m³; the NATO specification tanks being the largest. The tanks stored JP-8 aviation fuel.
- 2. Smaller capacity buried tanks connected to the aviation fuel distribution rings and designed to directly refuel aircraft via hydrants (POL numbers 3, 6, 7, 8, 9, 10, 11, 13, 14 and 16). These tanks were constructed in the 1950s and / or 1960s and were single or twin steel tanks of 190m³ to 380m³ encased in a concrete pit and covered by a concrete slab. The tanks were connected to hydrants on the airfield via control pits. The tanks stored JP-8 aviation fuel but only No's 3, 7, 8 and 10 were reported as operational (not known whether this means the other POL were never operational or just at the time of base closure).



- 3. Kerbside pump stations which provided fuel for road vehicles (POL numbers 1 and 19).
- 4. Clusters of 6 or 12 No. steel underground tanks not connected to the aviation fuel distribution rings and used to store petrol and diesel (POL numbers 2, 17 and 20). Each tank has a capacity of approximately 55m³. These tanks were constructed in the 1940s.
- 5. Other tanks located on the site include four small 15-23m³ diesel / petrol tanks (POL 4 and 12) and two 378m³ underground storage tanks (POL 5) connected to the distribution ring.

In addition to the POL system there are a number of small, isolated heating oil tanks and a former petrol station located south of Camp Road.

#### Environmental Risk Associated with the POL System

Heyford Park is located over a Major Aquifer that is utilised for supply and is surrounded by a number of high quality watercourses. The site is therefore highly sensitive with respect to controlled waters. The environmental risk posed by the POL system relates to both historic spills (many of which have been identified and investigated) and leakage from existing tanks and pipework which contain water contaminated with hydrocarbons.

The following are considered to pose a potentially unacceptable risk to controlled waters (and therefore should be targeted in any future assessment):

- The entire POL system of tanks and associated pipework which is likely to contain variable concentrations of hydrocarbon contamination in water;
- Refuelling areas of POL; dispensers / filling stations and hydrants where spillage was likely; and
- Oil water interceptors and soakaways.

Visual / olfactory evidence of hydrocarbon contamination (e.g. vegetation die back) was not observed during the walkover survey.

## Options for Management / Mitigation of Environmental Risk Associated with POL System

Possible options for managing the environmental risk posed by the POL system have been reviewed at this preliminary stage and include:

- Draining down the water in the POL system and leaving all POL infrastructure in place, but empty;
- Draining down the water in the POL system and backfilling (e.g. with demolition materials); or
- Removing the POL system completely.

It is unlikely that one option would be suitable for the entire system which comprises four or five different tank types, filtration and pump houses, substantial lengths of below ground pipeline and short lengths of above ground pipeline.

#### 3. DETAILED INVENTORY OF POL SYSTEM

#### AVIATION FUEL ENTRY POINT (FROM ISLIP)

Aviation fuel entered the south-west corner of the site from Islip. The fuel was passed through a 'fuel entry compound'; comprising a filter pit, surge compressor, line strainer and several valves (based on knowledge of active air base, fuel may have been blended in the fuel entry compound). The fuel then passed to valve pit No. 1 located to the north-west of the compound. Valve pit No. 1 has three valves; two on the main / southern distribution ring and one on pipework from the fuel entry compound.

<b>TYPE 1 TANKS</b>	- LARGE CAPACIT	YC	CIRCULAR SEMI-BURIED STORAGE TANKS (INCLUDING NATO SPECIFICATION TANKS)
POL Site	Capacity m3 (fuel)		
(Facility No.)			Description including current condition
POL 21 21A (392) 21B (394) 21C (393)	736 (JP-8) 736 (JP-8) 1453 (JP-8)		Located in south-west of site close to aviation fuel entry point (from Islip) and off main / southern distribution ring. Large grass covered earth mound containing three semi-buried steel lined tanks encased in reinforced concrete. The date of construction is unknown, but an as built drawing of POL 21 suggests the three may have been installed by 1961. Aviation fuel was delivered to the tanks from a pipe connected to the distribution ring; controlled by valve in valve pit No. 2. A further six valves controlled fuel delivery to and from the tanks. Drawings indicate that the main fuel delivery pipework to POL 21 was replaced in approximately 1961 (unknown whether original pipework remains in the ground). Certificate of approval for bulk fuel installation dated 1983; tanks described as 'uncoated'. Tanks cleaned and filled with water in 1993 (records of instruction to Hunting Tank Cleaning Ltd 1992). Fuel spill recorded in May 1990, some soil removed. Arup collected water samples from POL 21A, 21B and 21C; 85, 11 and 17 mg/l TPH recorded respectively.
			Current description - locked valve pit located on western side of mound; valve pit 2. A second large manhole is located to the east of the mound (No. 3). Pipework and valve complex to west of mound with six pipes into mound and three pipes exiting, two of which are capped off (according to drawings, pipe to Valve Pit 2 is in place, pipes to POL 2 and fuel entry compound are capped off). Additional pipe running east-west just north of mound also capped off. Pump electrics derelict / non operational. Concrete roof above each tank with locked access manhole to 'pump room', additional 'unlabelled manhole' and vertical tube with hatch (dip hatch). Ventilation ducts also present on the mound. No visual / odour indications of contamination during walkover survey. A storm water manhole is located on the western side of the mound, possibly connected to an interceptor just south of Camp Road. The nearest foul sewer is located to the east of the POL at facility 294.
POL 22 (395)	1457 (JP-8)		Located off northern section of northern distribution ring. Large grass covered earth mound containing semi-buried steel lined tank encased in reinforced concrete. The date of construction is unknown, but an as built drawing of POL 22 suggests the tank may have been installed by 1961. Certificate of approval for bulk fuel installation dated 1983; tanks described as 'epoxy coated'. Tanks cleaned and filled with water in 1993 (records of instruction to Hunting Tank Cleaning Ltd 1992).

		Site not visited during walkover survey.
POL 23 23A (285) 23B (269)	4440 (JP-8) 1947 (JP-8)	Located in north of site off northern section of main / southern distribution ring and southern section of northern distribution ring. Two large grass covered earth mounds; NATO specification circular semi-buried storage tanks constructed from epoxy coated steel. Each tank contains a pump pit, ventilation ducts, an access manhole and a dip hatch. The facility also has an oil water interceptor, an electrical switch room, filtering facilities and filling stations. Constructed to NATO Specification in the 1970s. Aviation fuel was delivered to the tanks from a pipe connected to the distribution ring; controlled by valve in valve pit No. 20, with a further two vales (valve pits 23A and 23B) controlling distribution to each tank. Instruction to Cleansing Services Group Ltd to skim off oil contaminated water, 1992. Tanks cleaned and filled with water in 1993.
		Fuel spill recorded in 1992.
		Current description – POL in derelict condition, pump electrics derelict / non operational, filtering facility building in very poor condition. Cut off pipework observed in filtering facilities, both inside building and external. Manhole observed which could be valve pit 23B. No visual / odour indications of contamination during walkover survey.
POL 24 (269)	4754 (JP-8)	Located in west of site off western section of main / southern distribution ring. Large grass covered earth mound; NATO specification circular semi-buried storage tank constructed from epoxy coated steel. Tank contains a pump pit, ventilation ducts, an access manhole and a dip / monitoring hatch. The facility also has an oil water interceptor, an electrical switch room, filtering facility and filling stations. The interceptor drained to a soakaway and a further two soakaways were located off the POL road. Constructed to NATO Specification in the 1970s. Aviation fuel was delivered to the tanks from a pipe connected to the distribution ring; controlled by valve in valve pit No. 24A. Certificate of approval for bulk fuel installation dated 1983; tanks described as 'epoxy coated'. Tanks cleaned and filled with water in 1994 (records of instruction to Hunting Tank Cleaning Ltd 1994).
		Arup collected a water sample from this tank and recorded 0.55 mg/l TPH. Current description – POL in derelict condition, pump electrics derelict / non operational, filtering facility building in very poor condition. Cut off pipework observed in filtering facility. Valve pit 24A located. No visual / odour indications of contamination during walkover survey.
POL 25 25A (376) 25B (377)	4508 (JP-8) 4503 (JP-8)	Located in south-east of site off the south-east section of main / southern distribution ring. Two large grass covered earth mounds; NATO specification circular semi-buried storage tanks constructed from epoxy coated steel. Each tank contains a pump pit, ventilation ducts, an access manhole and a dip / monitoring hatch. The facility also has an oil water interceptor, an electrical switch room, filtering facilities and filling stations. The interceptor drained to a soakaway and a further soakaway was located off the POL road. Constructed to NATO Specification in the 1970s.

E

ASSESSMENT OF POL SYSTEM, HEYFORD PARK
Aviation fuel was delivered to the tanks from a pipe connected to the distribution ring; controlled by valve in valve pit No. 25A. Tanks cleaned and filled with water in 1994.
Current description – POL in derelict condition, pump electrics derelict / non operational, filtering facility building in very poor condition. Disconnected pipework and evidence of filter decommissioning (in 1993) observed in filtering facility. Manhole observed which could be Valve Pit 25A (POL Plan), west of POL 25A. No visual / odour indications of contamination during walkover survey.

POL Site	Capacity m3 (fuel)	
(Facility No.)		Description including current condition
POL 3 (275)	2 X 378 (JP-8)	Located in the south-west of the site, connected to POL 21. Two buried tanks connected to four control pits on the edge of the runway, in turn connected to four hydrants on the runway. Designed to directly refuel aircraft, but anecdotal evidence suggests that this did not take place and instead tankers were filled at these POLs with refuelling in hangars. Constructed in the 1950s and / or 1960s and encased in a concrete pit and covered by a concrete slab. POL 3 reported as having been operational. Tanks cleaned and filled with water in 1993. Current description – POL in derelict condition, pump electrics derelict / non operational, filtering facility decommissioned. Fuel entry pipe from POL 21 disconnected. No visual / odour indications of contamination during walkover survey.
POL 6 (382)	1 X 189 (JP-8)	Located in the south-east of the site, close to POL 25. Single buried tank, constructed in the 1950s and / or 1960s and encased in a concrete pit and covered by a concrete slab. Reported as having never been operational / not operational at time of base closure. Tank cleaned and filled with water in 1993. Site not visited during walkover survey.
POL 7 (385)	1 X 189 (JP-8)	Located in the south-east of the site, off the south-east section of the main / southern distribution ring. Single buried tank, constructed in the 1950s and / or 1960s and encased in a concrete pit and covered by a concrete slab. Drawing shows oil / water interceptor adjacent to POL building (in ground). POL 7 was reported as operational. Tank cleaned and filled with water in 1993. Current description – POL in derelict condition, pump electrics derelict / non operational, filtering facility decommissioned ('inactive" typed on filtration unit). Pipework disconnected. No visual / odour indications of contamination during walkover survey.

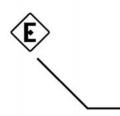
	1 X 189 (JP-8)	Located in the south-east of the site, off the south-east section of the main / southern distribution ring. Single buried tank, constructed in the 1950s and / or 1960s and encased in a concrete pit and covered by a concrete slab. POL 8 was reported as operational. Tank cleaned and filled with water in 1993.
		Current description – POL in derelict condition, pump electrics derelict / non operational, filtering facility decommissioned (1993). Pipework disconnected. No visual / odour indications of contamination during walkover survey.
POL 9 (215)	2 X 189 (JP-8)	Located in the north of the site, close to the northern site boundary and off the northern distribution ring. Two buried tanks, constructed in the 1950s and / or 1960s and encased in a concrete pit and covered by a concrete slab. Tank cleaned and filled with water in 1993.
		Arup collected a water sample from one of these tanks and recorded 0.34 - 0.51 mg/l TPH.
		Current description – POL in derelict condition, pump electrics derelict / non operational. Pipework disconnected both at possible fuel entry point and in filtration section of the POL. No visual / odour indications of contamination during walkover survey.
POL 10 (219)		
	2 X 189 (JP-8)	Located in the north of the site off the northern distribution ring. Two buried tanks, constructed in the 1950s and / or 1960s and encased in a concrete pit and covered by a concrete slab. Drawing shows oil / water separator adjacent to POL building (in ground). Tank cleaned and filled with water in 1993.
		Arup collected a water sample from one of these tanks and recorded 0.28 mg/I TPH.
		Current description – POL in derelict condition, pump electrics derelict / non operational. Pipework disconnected between tanks and interceptor. No visual / odour indications of contamination during walkover survey.
POL 11 (229)		
	1 X 189 (JP-8)	Located in the north of the site, off the northern distribution ring. Single buried tank, constructed in the 1950s and / or 1960s and encased in a concrete pit and covered by a concrete slab. Reported as having never been operational / not operational at time of base closure. Drawing shows oil / water separator adjacent to POL building (in ground). Tank cleaned and filled with water in 1993.
		Site not visited during walkover survey.
POL 13 (283)	1 X 189 (JP-8)	Located in the north of the site, off POL 23. Single buried tank, constructed in the 1950s and / or 1960s and encased in a concrete pit and covered by a concrete slab. Tank cleaned and filled with water in 1993.
		Current description – POL in derelict condition, pump electrics derelict / non operational. Pipework disconnected. No visual / odour indications of contamination during walkover survey.

Ê

POL 14 (284)	2 X 189	Located in the north of the site, off the northern distribution ring. Two buried tanks, constructed in the 1950s and / or 1960s and encased in a concrete pit and covered by a concrete slab. Tank cleaned and filled with water in 1993. Site not visited during walkover survey.
POL 16 (242)	1 X 189 (JP-8)	Located in the north of the site, off the northern distribution ring. Single buried tank, constructed in the 1950s and / or 1960s and encased in a concrete pit and covered by a concrete slab. Reported as having never been operational / not operational at time of base closure. Site not visited during walkover survey.

TYPE 3 TANKS	TYPE 3 TANKS – KERBSIDE PUMP STATIONS PROVIDING FUEL FOR ROAD VEHICLES			
POL Site (Facility No.)	Capacity m3 (fuel)	Description including current condition		
POL 1 (270)	142 (Diesel)	Located in west of site close to POL 24 (not connected to distribution ring). Single buried tank, construction similar to Type 2 tanks. Note – reported as used for diesel, drawing shows pipework connecting to two hydrants on tarmac. Tank cleaned and filled with water in 1993. Current description – POL in derelict condition, pump electrics derelict / non operational. Pipework disconnected.		
		No visual / odour indications of contamination during walkover survey.		
POL 19 (614)	6 X 54 (Unleaded Petrol, Diesel)	Located in the south of the site, just south of but not connected to the main / southern distribution ring. Constructed in 1950 for the storage of petroleum and diesel. Reported in 1997 that tanks 1 and 6 were filled with concrete, while the other tanks remained in use; tanks 2 and 3 with diesel, tanks 4 and 5 with unleaded petrol. One of these tanks has since been decommissioned (foam filled).		
	(3 tanks remain in use; 2 diesel & 1 unleaded petrol)	Three tanks currently in use, operated by Paragon Fleet Solutions (2 No. diesel and 1 No. unleaded petrol). Operator confirmed tank volumes checked daily and regular pressure testing conducted.		
		Unleaded fuel spill in 1993, emulsified product recovered from interceptor. Offset fill pipe excavated and removed with unknown quantity of soil. Following incident, all tanks were taken out of service and 2 No. were decommissioned (concrete filled). Records suggest that the remaining 4 No. tanks were cleaned before being brought back into use (instructions to Hunting Tank Cleaning Ltd 1993 and 1994; prepare and clean tanks).		

Ê


POL Site	Capacity m3 (fuel)	
(Facility No.)		Description including current condition
POL 2 (254)	6 X 188 (Diesel)	Located in south-west of site close to POL 21. Six buried unlined steel tanks, constructed in the 1940s. Tanks cleaned and filled with water in 1993.
		Current description – POL in derelict condition, pump electrics derelict / non operational. Pipework disconnected. In addition to six buried tanks, unknown mound structure in north of site with ventilation stacks and stepped access into basement buildings in the mound. No visual / odour indications of contamination during walkover survey.
		According to drawings, POL 2 was connected to fuel system connected to both POL 21 and southern / main distribution ring. Pipe to POL from POL 21 noted as disconnected (see POL 21 above). However, connection to POL 21 not consistent with storing diesel and it is considered that either POL 2 previously stored aviation fuel or it was never connected to the southern / main distribution ring. The former is perhaps more likely as further drawing shows pipework from POL 2 connected to hydrants.
POL 17 (245)		
	12 X 55 (Fuel Waste)	Located in north-west of site, close to but not connected to northern aviation fuel distribution ring. Twelve buried unlined steel tanks, constructed in the 1940s, form POL 17. Reported in 1997 that tanks 7, 8, 9, 10 and 11 cleaned and water filled, tank 12 formerly contained lead product but was filled with concrete and tanks 1, 2, 3, 4, 5 and 6 were still operational. Subsequent records confirm that tanks 1, 2, 3, 4, 5 and 6 were cleaned, degassed and filled with water (order May 1994, work carried out by Hunting Tank Cleaning).
		Enviros sampled water from 2 No tanks in August 2008 and recorded 0.01 mg/l TPH in Tank 3 and 0.020 mg/l TPH in Tank 6.
		Current description – no longer in operation, POL in derelict condition, pump electrics derelict / non operational. Pipework disconnected. No visual / odour indications of contamination during walkover survey.
POL 20 (375)	12 X 56 (Diesel, Mogas	Located in south-east of site, just south of, but not connected to main / southern aviation fuel distribution ring. Twelve buried unlined steel tanks, constructed in the 1940s. Reported in 1997 that all tanks, with exception of 5 and 9, were cleaned and filled with water. Tank 5 reported to contain Mogas and tank 9 reported to contain diesel.
		Enviros tested water from tank 9 in August 2008 and recorded 19 mg/I TPH (confirms that the tank has been water filled but some residual fuel remains).
		Current description – no longer in operation, POL in derelict condition, pump electrics derelict / non operational. Pipework disconnected. No visual / odour indications of contamination during walkover survey.

Ê

POL Site (Facility No.)	Capacity m3 (fuel)	Description including current condition
POL 4	2 X 22.7 (petrol and diesel)	Underground storage tank, condition unknown.
POL 5 (385)	2 X 378 (Mogas)	Located in south-west of site connected to main / southern aviation distribution ring. Two buried tanks, cleaned and filled with water in 1993. Site not visited during walkover survey.
POL 12	2 X 15.1 (petrol and diesel)	Underground storage tank, condition unknown.
POL 15	Unknown (unknown)	Underground storage tank, condition unknown.

#### POL PIPEWORK

The POL system reportedly contains approximately 13km of pipework, most of which is underground. The pipework comprises two connected distribution rings; the southern and northern distribution rings, and pipework within each POL. The main / southern aviation fuel distribution ring was almost entirely replaced between 1987 and 1989 and comprises a 150mm diameter plastic coated steel pipe (it is assumed the old pipework was removed prior to installing the new pipework, but this is not known). A small section of pipe beneath the runway at its eastern crossing was not replaced at this time. The northern fuel distribution ring which extends to the northern boundary was made redundant 'several years' prior to 1994. All POL pipelines were reportedly flushed through and water filled as part of the site decommissioning.



#### 4. OPERATION OF THE POL SYSTEM

To better understand how the POL system functioned when Upper Heyford was operational, an operational air base with a comparable POL system was visited on 1st May 2008 by Duncan Anderson of Enviros.

#### **Operational base system outline**

The POL system at the air base visited comprised a distribution ring with an off site piped supply of aviation fuel and a number of 'bulk fuel installations' (BFI). The BFI are large NATO specification grass covered semi-buried tanks, similar to POL 21, 23, 24 and 25 at Heyford Park (Type 1). Hydrants (Type 2), as found at Heyford Park, were not present at this air base. Instead, fuel is taken from the BFI to the aircraft by tanker.

Aviation fuel is pumped from an off site source and is blended in a fuel entry compound prior to entry into the distribution ring. A three way valve pit is located adjacent to each BFI and the valves are left closed when not receiving fuel. Two of the valves control fuel movement in the distribution ring and the third controls fuel to the BFI. Underground pipework was marked on a site plan but not on the ground.

The BFI visited comprised a large grass covered mound housing two tanks. Fuel passes from the valve pit to a 'pump / filter house'. Fuel enters through a pipe in the floor of the building and following filtration passes to the tanks (valve controlled) through pipes in the side of the building. Fuel passes back from the tanks via the pump house to dispensers located kerbside (again valve controlled).

The BFI also contained a 'control room' with computerised gauges to monitor fuel levels in the tanks. A manual dip hatch, located above each tank, was also used for level monitoring and for sampling. Manhole covers above the tanks were pointed out as the best points of access, should the system ever require pumping out (circular manholes providing access to the tank via step ladder). Drain down of the tanks is typically achieved by pumping into tankers at the dispensers, but it is also possible to transfer fuel between BFIs via the distribution line (through valve selection).

In ground oil water interceptors are present adjacent to the dispense area to collect any spillages.

#### Similarities to and implications for Heyford Park

The POL at this operational air base is similar to the newest phase of POL at Heyford Park. The following similarities were noted:

- At both bases, fuel is / was supplied by pipe from off site to a ring pipework distribution system.
- The operational air base also had a plan showing the POL pipework layout, but the location of the pipes was not marked on the ground and hence the precise location was not clear. The situation is the same at Heyford Park where the location of pipework is not denoted on the ground.
- The position of a valve pit next to a POL is the same at both locations, and it is considered likely that the valve pits at Heyford Park (not accessed) will

contain three valves as at this airbase (such an arrangement is shown on the Heyford Park POL Plan – i.e. two valves controlling flow around the distribution ring and one valve controlling flow to the POL). The implication is therefore that each POL connected to the distribution ring at Heyford Park can be isolated from the external pipework by closing a valve. Even if the valves at Heyford Park are no longer operable (ie rusted); it should be possible to determine whether they are closed or open (length of thread visible).

- The BFI visited at the operational air base bore many similarities to the newer largest NATO specification tanks at Heyford Park (POL 21, 23, 24, 25); large grass covered mound housing tanks, similar road layout to dispensers, filtration facility building, electrical switch room. It is therefore considered that the operation of these two systems is likely to be very similar and there is therefore readily available knowledge regarding procedures necessary to drain down the tanks.
- The filtering facility building (or filtering / pump house) at the operational base contained valve control for fuel entering the BFI, fuel entering the tanks and fuel passing to the dispensers. At the operational air base, all pipework was connected. Hence, at Heyford Park, disconnected pipework indicates that the system has at least in part been isolated. The presence of disconnected pipework in POLs 23, 24 and 25 coming out of the floor of the building, suggests that either the external supply (from distribution ring via valve pit) or the supply to the dispensers has been cut off. This means that drain down of the system at Heyford Park will need to be completed from individual tanks rather than from the whole system.
- In addition to a computerised system, the dip hatches above the tanks are used at the operational base to measure fuel levels. These dip hatches are also used to collect fuel samples. Similar dip hatches are present above the tanks at Heyford Park and hence if serviceable could be used for the same purpose.
- At both bases, there is manhole access into the tanks which at Heyford Park could be used for pumping out of the tanks. The manhole would also provide access for the sampling of sludge, if present in the tank, and could possibly be used for backfilling.
- Both bases have oil water interceptors to collect spillage from the dispense areas. Whilst the interceptors are designed to collect fuel spilt, these are clearly high risk areas for contamination, particularly in the event of damage to pipework / interceptor or malfunction of the system.
- Clearly, drain down of tanks at the operational base is achieved via the dispensers, however, fuel can also be transferred between BFIs via the distribution line. Discussions with staff at the base indicate that drain down of pipework through the return of fuel to the off site pumping station is unlikely to prove viable; pumps on base would probably not be capable and it is unlikely that the Oil Pipeline Agency (OPA) would accept returned fuel for quality reasons. Hence, at Heyford Park, where the dispensers are no longer operable, options for drain down include direct pumping out of the tanks or transfer of water via existing pipelines (assuming valves are operable; would need to be under gravity or with the use of additional pumps as existing pumps are unlikely to function).

#### **Operation of the POL System at Heyford Park**

Based on information in the preceding chapters and the visit to the operational air base, the operation of the POL system at Heyford Park is summarised as follows:

- Isolated tanks (not on distribution ring) contained fuels for motor vehicles (POL 1, 19, 20) and waste fuels (POL 17). Fuel would have been taken to and removed from these POLs by tanker.
- The base had two connected aviation fuel distribution rings (southern / main ring and northern ring) with fuel supplied by pipe from Islip. Fuel entering the site was controlled by pumping from Islip, while discharge around the base was controlled independently by a system of valves.
- Two main types of POL are connected to the aviation fuel distribution rings; Type 1 tanks (large capacity semi-buried steel tanks – POL 21, 22, 23, 24, 25) and Type 2 tanks (smaller capacity buried tanks / hydrants – POL 3, 6, 7, 8, 9, 10, 11, 13, 14, 16).
- The fuel supply to each POL was controlled by a valve (i.e. valve pit with three way valve system between distribution ring and each POL). Based on a similar operational base, it is likely that each POL was closed off from the distribution rings except when additional fuel was required (i.e. each POL was isolated from supply through closure of a valve or valves).
- Supply to tanks within each POL was controlled by additional valves in the filtering facility. The discharge of fuel from the tanks to the dispense points was also controlled by valves.
- At Type 1 POL tanks, fuel was dispensed to tankers. The Type 2 POL or hydrants were designed to refuel aircraft directly but anecdotal evidence suggests that this method of refuelling was rarely used and tankers also collected fuel from the hydrants.

#### Current condition of the POL System at Heyford Park

The POL system has not operated since 1993 / 1994 and was partially decommissioned in 1993 and 1994. Decommissioning comprised the removal of fuel from tanks and pipework and replacement with water, the deactivation of filtration system and the disconnection of the external fuel supply from Islip. There is also evidence that much of the pipework at the POL has been disconnected / capped off. The pump and other electrics are also derelict / non operational. External valves are rusted and it is considered unlikely that they could be turned. Valves in the valve pits could not be accessed and hence there condition is not known.