Hydrock Himley Village, Bicester Ground Investigation Report

For Cala Homes (Cotswolds) Limited and Legal & General Homes

 Date:
 21 July 2023

 Doc ref:
 27141-HYD-XX-XX-RP-GE-1002-S0-P01

i

Document control sheet

Issued by	Hydrock Consultants Limited Hawthorn Park Holdenby Road Spratton Northampton NN6 8LD United Kingdom	T +44 (0)1604 842888 F +44 (0)1604 842666 E northampton@hydrock.com hydrock.com	
Client	Cala Homes (Cotswolds) Limited and Lega	al & General Homes	
Project name	Himley Village, Bicester		
Project title	Ground Investigation Report		
BIM reference	27141-HYD-XX-XX-RP-GE-1002-S0-P01		
Project reference	27141		
Date	21/07/2023		

Document production record		
Issue Number	S2	Name
Prepared by		Jamie Moore BSc (Hons) FGS
Checked by		Simon Cook BSc MSc C.Eng CGeol MIMMM FGS
Approved by		Paul Eastwood BSc MSc C Geol RoGEP

Document revision record			
Issue Number	Status	Date	Revision Details
S2	P01	21/07/2023	Draft

Hydrock Consultants Limited (Hydrock) has prepared this report in accordance with the instructions of the abovenamed Client, under the terms of appointment for Hydrock, for the sole and specific use of the Client and parties commissioned by them to undertake work where reliance is placed on this report. Any third parties who use the information contained herein do so at their own risk. Hydrock shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared or for use of the report by any parties not defined in Hydrock's appointment.

Contents

Exec	cutive summary	4
	Introduction	
2.	Site Overview	12
3.	Initial conceptual site model	14
4.	Ground investigations	17
5.	Ground investigation records and data	21
6.	Geotechnical assessment	31
7.	Geo-environmental assessment	41
8.	Waste and materials management	43
9.	Uncertainties and limitations	
10.	Recommendations for further work	59
11.	References	60

Tables

Table 2.1: Site referencing information	
Table 2.1: Site referencing information Table 2.2: Site description	
Table 4.1: Summary of site works	
Table 4.2: Summary of monitoring installations	
Table 4.3: Geo-environmental analyses of soils	
Table 4.4: Geo-environmental analyses of waters	
Table 4.5: Summary of sample numbers for geotechnical tests	
Table 5.1: Strata encountered	
Table 5.2: Summary of SOM and FOC	
Table 5.3: Groundwater occurrence	23
Table 5.4: Groundwater level data summary	
Table 5.5: Permeability test results	
Table 5.6: Range of ground gas data	
Table 5.7: Natural Moisture Content	
Table 5.8: Volume change potential	27
Table 5.9: PSD results summary	27
Table 5.10: Soil strength results and derived values	
Table 5.11: Summary of compressibility	
Table 5.12: Compaction study results	
Table 5.13: Shear strength of compacted sample	
Table 5.13: CBR results and derived values	
Table 5.14: Aggressive chemical environment concrete classification	30
Table 5.15: Intact rock strength results and derived values	30
Table 6.1: Geotechnical parameters recommended for design of Geotechnical Category 1 Structures (E	EC7)

Table 6.3: Preliminary earthworks assessment	33
Table 7.1: CoPC in soils which require further assessment (human health)	42
Table 7.3: Summary of water quality risk assessment protocol	44
Table 7.4: CoPC which require further assessment (controlled waters)	45
Table 7.6: Ground gas risk assessment	46
Table 7.7: Residual risks following risk evaluation	

Appendices

- Appendix A Drawings
- Appendix B Exploratory hole location plan, exploratory hole logs and photographs
- Appendix C Geotechnical test results and geotechnical plots
- Appendix D Site monitoring data and ground gas risk assessment
- Appendix E Contamination test results and GQRA
- Appendix F Preliminary geotechnical risk register
- Appendix G Plausible source-pathway-receptor contaminant linkages

Executive summary

Site information and	setting
Objectives	 to resolve any geotechnical and geo-environmental uncertainties identified in the Phase 1 Desk Study by refining and updating the preliminary Ground Model, based on the conditions met in accordance with the principles of Environment Agency (EA) 'Land Contamination: Risk Management' (LCRM) (2020); to identify any geo-environmental mitigation requirements to enable development to progress; and
	• to provide preliminary geotechnical recommendations for design.
Client	Cala Homes (Cotswolds) Limited and Legal & General Homes
Site name and location	The site name is Himley Village and the site is located off the B4030 to the west of Bicester, Oxfordshire
Proposed development	The site comprises 2 phases of work, the Main site and the additional site area. The proposed development of the main site is to comprise residential housing with gardens, associated infrastructure and areas of Public Open Space. Development of the additional areas comprises a care home and two areas designated for 'mixed use neighbourhood centre'
Site description	The site is irregular in shape and comprises two agricultural fields and has a total area of approximately 30ha. The site is bound to the north and west by further agricultural fields, to the east by industrial units and to the south by the B4030.
Desk study summary	
Topography	The site slopes from approximately 95m OD to 84m OD from north-west to south-east.
Hydrology	There is a small shallow stream running along the boundary between the two fields.
Site History	Review of historical Ordnance Survey mapping indicates very little change in land use from 1876 (the date of earliest mapping) to the present day, with only footpaths and field boundaries changing. The surrounding area has also remined largely unchanged with the exception of land to the north-east where a lime kiln, quarry and railway appear in 1919 around 1km from the site.
Geology	The geology at the site is recorded by the BGS as Cornbrash Formation (limestone) overlying the Forest Marble Formation (limestone / mudstone). There are no superficial deposits recorded.
Hydrogeology	The Cornbrash Formation and the Forest Marble Formation are both Secondary A aquifers. The site is not within a Source Protection Zone and there are no groundwater abstractions within 500m.
UXO risk	A non-specialist UXO assessment indicates a low bomb risk.
Preliminary conceptu	al site model based on desk study
Potential contaminant sources	 Pesticides and herbicides from agricultural practices Hydrocarbon vapours from potential VOC and petroleum hydrocarbon spillages/leaks associated with farm machinery PAH from on-site burning (identified as an activity undertaken very close to the site, and is likely to have occurred locally on site)

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

	 Spreading sewage waste on agricultural land (identified as an activity undertaken very close to the site and is likely to have occurred on site) Use of waste in construction: asbestos waste was historically commonly used to reinforce/repair site entrances (identified as an activity undertaken close to the site, and likely to have locally occurred on site)
Potential contaminant	 People (site users, neighbours) Development end use (buildings, utilities and landscaping)
linkages (for receptors for	Groundwater (Secondary A aquifer status of the Cornbrash Formation
which there is or will be a pathway)	Surface Water (drainage ditch)
Ground model prove	n by investigation
Ground and groundwater conditions	 The ground conditions as proven by the investigation undertaken at the site comprise: Localised Made Ground was encountered on the farmers track between
encountered by investigation	0.00m and 0.49m (bgl), comprising grey slightly sandy gravel with rare fragments of brick glass and asphalt
	• Topsoil – to maximum proven depth 0.50m below ground level (bgl), comprising brown slightly sandy gravelly clay with frequent rootlets of limestone and quartzite; over
	 Head Deposits – encountered between 0.20m and 0.80m bgl, comprising generally firm, locally stiff orangish brown sandy gravelly clay; over
	 Cornbrash Formation – encountered between 0.30m and 3.80m bgl, comprising generally, locally stiff, but occasionally soft, cream, orangish brown and grey mottled sandy clay with occasional limestone lithorelicts and beds of intact limestone; over,
	• Forest Marble Formation – encountered between 1.40m and >10.00m bgl, comprising stiff to very stiff grey and bluish grey laminated and slightly fissured sandy CLAY with occasional limestone lithorelicts.
	Groundwater was encountered at depths between 0.50m bgl and 3.20m bgl during the investigation in the Cornbrash Formation and the Forest Marble Formation. However, there are local variations in both probably due to the alternating beds of clay and limestone recorded.
	Water levels recorded post-fieldwork ranged from 1.15m to 2.31m bgl (92.67 to 84.25m OD)
Summary of geotech	nical conclusions
Groundwork	No buried man-made obstructions were encountered. However, whilst the likelihood of buried obstructions being encountered is low, difficult excavation is anticipated should excavations extend into the rock quality strata. Excavation to proposed founding depth generally should be readily achievable with standard excavation plant. Heavy duty excavation plant/breaking equipment may be required to excavate the rock quality strata. Whilst trial pit faces in the clay soils were noted to remain generally vertical
	without collapse, when fractured rock was encountered, some spalling was noted. Water seepages into excavations are likely to be adequately controlled by sump pumping, but in deep excavations alternative methods of dewatering are likely to be required.

Foundations	 It is recommended that foundations comprise: Strip/trench fill foundations at between 0.9m bgl and 2.5m bgl. Pad foundations at between 0.9m bgl and 2.5m bgl (if framed buildings are constructed). Piled foundations. Permissible net bearing pressure of 100 kN/m² should be available for strip/trench fill or pad foundations. Deepening of foundations/heave protection is likely to be required to allow for the effects of trees. Residential ground floor slabs should be suspended because of the presence of medium shrinkage potential clay soils; and suspended over a void where within the influencing distance of trees. Ground floor slabs for the community building(s) may require ground treatment to allow ground bearing slabs to be constructed. Foundation and ground floor slab recommendations are Ipreliminary and subject to change in the light of the finalised layout and confirmation of cut/fill requirements.
Roads and pavements	For road/pavement design, a design CBR of 2.5% is recommended on natural soils. The design CBR for road/pavement design on newly placed fill will be dependent on the degree of compaction achieved.
Sustainable drainage	Soakaway drainage is considered unsuitable for this site.
Buried concrete	Design Sulfate Class - DS-1 and ACEC Class AC-1s/AC-1. Equivalent to Design Chemical Class DC-1 for a 50 year design life.
Summary of geo-env	vironmental assessment
Human Health	PAH in the Made Ground associated with the track in the centre of the site.
Phytotoxicity	Results indicate that all Chemicals of Potential Concern are below the relevant GAC, therefore contaminant linkage is incomplete.
Controlled waters	Whilst there are exceedances of the water quality targets, these exceedances are considered not to represent a significant risk of pollution of Controlled Waters.
Radon:	The site is not within a radon affected area.
Construction materials:	Plastic or bitumastic products may be at risk from elevated PAH concentrations in areas of Made Ground associated with the farm track.
Potable water supply pipes	 Across the majority of the site standard pipework is envisaged. However, confirmation should be sought from the water supply company at the earliest opportunity. In the area surrounding the farm track PAHs are present and therefore barrier pipes should be installed in this area. However, confirmation should be sought from the water supply company at the earliest opportunity.
Ground gases or vapours:	Low risk from ground gases and CS1 conditions apply.

Enabling works	
Proposed mitigation measures	The mitigation measures proposed to remove unacceptable risks include the following two scenarios:
	• If the Made Ground associated with the Farm track is to remain on site:
	» The installation of a 600mm engineered cover system, in gardens and 450mm in public open space, comprising a bonded geogrid break layer (e.g. TX160G), subsoil beneath a topsoil thickness of between 150mm and 300mm
	» Installation of barrier pipework if water pipelines are to be installed.
	» If plastic pipes for drains and sewers are to be installed in this material, the pipework manufacturer should be consulted with regard the suitability of the pipework
	• If the Made Ground associated with the farm track is removed - the Made Ground must be removed from site or re-used underneath areas of hardstanding to break the SPR linkage and therefore no mitigation measures are required
	The methodology for the remediation should be presented in a Remediation Strategy, which will need to be submitted to the warranty provider and the regulatory authorities for approval.
	Verification reports by a competent independent geo-environmental specialist will be required following completion of any remedial works.
Earthworks	In order to undertake the proposed cut to fill earthworks and use of excavated materials in earthworks a site specific Earthwork Specification will be required to allow reuse of suitable materials along with the production of a Materials Management Plan and its approval by a Qualified Person.
	Verification reports by competent independent geotechnical specialists will be required following completion of any earthworks.
Waste management	Excavated soils to be disposed of as waste, are likely to be classed as non-hazardous.
	The Made Ground associated with the track is mostly classified as non-hazardous (4 out of 5 samples). However, one sample (HPO1) is classified as hazardous waste
Future considerations	
Further work	Following the ground investigation works undertaken to date, the following further works will be required:
	 discussion and agreement with utility providers regarding the materials suitable for pipework;
	 discussion and agreement with utility providers regarding the materials suitable for pipework;
	• discussions with regulatory bodies and the warranty provider regarding the conclusions of this report;
	 assessment of tree influence on foundations and design of foundations; production of a Foundation Zonation Plan;
	 discussions with piling Contractors regarding conclusions of this report and design of the piles;
	 provision of geotechnical design for the Category 2 structures (earthworks, and retaining structures.);
	 production of a Remediation Strategy and Verification Plan;
	• production of a Remediation Strategy and Vermeation Flan,

- production of a Materials Management Plan relating to reuse of soils at the site and import of soils to the site; and
- verification of the earthworks, remediation and materials management.

This Executive Summary forms part of Hydrock Consultants Limited report number 27141-HYD-XX-XX-RP-GE-1002-S0-P01 and should not be used as a separate document.

1. Introduction

1.1 Terms of reference

In May 2023, Hydrock Consultants Limited (Hydrock) was commissioned by Cala Homes (Cotswolds) Limited and Legal & General Homes (the Clients) to undertake a Phase 2 supplementary ground investigation at Himley Village Bicester. The site is located off the B4030 to the west of Bicester, Oxfordshire.

The site is currently agricultural fields.

Hydrock understands that site comprises 2 phases of work, the Main site and the additional site area. The proposed development of the main site is to comprise residential housing with gardens, associated infrastructure and areas of Public Open Space. Development of the additional areas comprises a care home and two areas designated for 'mixed use neighbourhood centre'. A proposed development layout (Pegasus Group Drawing reference P22-3093_DE_100_C_02), is presented in Appendix A.

The investigation works have been undertaken in accordance with Hydrock's proposal referenced (27141-HYD-XX-XX-FP-GE-0003-S2-P01 Dated 10th May 2023) and the Client's instructions to proceed (email dated 11/05/2023).

1.2 Objectives

The works have been commissioned to assist with the design of the development.

The objectives of the Phase 2 Ground Investigation are:

- » to resolve any geotechnical and geoenvironmental uncertainties identified in the Phase 1 Desk Study by refining and updating the preliminary Ground Model, based on the conditions met in accordance with the principles of Environment Agency (EA) 'Land Contamination: Risk Management' (LCRM) (2023);
- » to identify any geo-environmental mitigation requirements to enable development to progress; and
- » to provide preliminary geotechnical recommendations for design.

1.3 Scope

The site investigation includes a Phase 2 Ground Investigation.

The scope of the Phase 2 Ground Investigation comprises:

- » a ground investigation including trial pitting, hand pitting and rotary drilling to:
 - » obtain data on the ground and groundwater conditions of the site;
 - » allow collection of samples for geotechnical and chemical laboratory analysis;
 - » allow geotechnical field tests to be undertaken;
 - » install gas and groundwater wells;
- » groundwater and gas level monitoring;
- » groundwater sampling;
- » geotechnical and chemical laboratory analysis;
- » updating of the preliminary Ground Model;
- » preparation of a geotechnical risk register;
- » presentation of an initial geotechnical design recommendations;

- Hydrock
- » formulation of an updated Conceptual Site Model (CSM), including identification of any plausible contaminant linkages;
- » completion of a generic quantitative risk assessment of any identified chemical contaminants to establish 'suitability for use' under the current planning regime;
- » discussion of any potential environmental liabilities associated with land contamination (soil, water and gas); and
- » identification of outline mitigation requirements to ensure the site is 'suitable for use'.

1.4 Available information

The following documents, reports etc have been provided to Hydrock by Cala Homes (Cotswolds) Limited and Legal & General Homes for use in the preparation of this report:

- » Tim O'Hare Associates'. January 2023. 'Himley, Bicester Topsoil Resource Survey', ref: TOHA/22/8643/1/AC.
- » Dando Surveying Ltd. February 2023. 'Topographical Survey', ref: CHhimleyTOPO.
- » Pegasus Group. January 2023. 'Phase 2, 500 Testing Layout', ref: P22-3093_DE_100_C_02.
- » Hydrock. April 2023. 'Contamination Desk Study', Ref: 27141-HYD-XX-XX-RP-GE-1001-S2-P01, undertaken for Cala Homes (Cotswolds) Limited and Legal & General Homes.

It is understood that the Client defined in Section 1.1 has obtained assignment of the above documents and Hydrock has assumed full reliance can be placed upon their contents. Should this not be the case, Hydrock should be informed at the earliest opportunity.

1.5 Regulatory context and guidance

The investigation work has been carried out in general compliance with recognised best practice, including (but not limited to) BS 5930:2015, BS 10175:2011+A2:2017 and the AGS (2006) 'Good Practice Guidelines for Site Investigations'.

The geo-environmental section of this report is written in broad accordance with BS 10175:2011+ A2:2017, EA LCRM), (2021) and the AGS (2006) 'Good Practice Guidelines for Site Investigations'.

The methods used follow a risk-based approach, the first stage of which is a Phase 1 desk study and field reconnaissance, with any potential geo-environmental risks assessed qualitatively. This is done using the 'source-pathway-receptor contaminant linkage' concept to assess risk as introduced in the Environmental Protection Act 1990 (EPA, 1990). Any potential geotechnical risks are also assessed from the Phase 1 desk study and site reconnaissance stage.

Phase 2 comprises intrusive ground investigation work and testing. The factual information from the desk study and the ground investigation are used to develop the Conceptual Site Model (CSM). This CSM is based on a ground model of the site physical conditions and an exposure model of the possible contaminant linkages. The CSM forms the basis for Generic Quantitative Risk Assessment (GQRA) in accordance with current guidelines. This GQRA might lead to more Detailed Quantitative Risk Assessment (DQRA).

Professional judgement is then used to evaluate the findings of the risk assessments and to provide recommendations for the development.

The geotechnical section of this report is prepared in general accordance with BS EN 1997-1+A1: 2013, BS EN 1997-2:2007 and BS 8004:2015. This report constitutes a Ground Investigation Report (GIR) as described in Part 2 of Eurocode 7 (BS EN 1997-2) (EC7). However, it is not intended to fulfil the requirements of a Geotechnical Design Report (GDR) as specified in EC7.

Where relevant the relevant requirements of the current edition of NHBC Standards have also been applied.

The geo-environmental and geotechnical aspects are discussed in separate sections. Throughout the report the term 'geotechnical' is used to describe aspects relating to the physical nature of the site (such as foundation requirements). The term 'geo-environmental' is used to describe aspects relating to ground-related environmental issues (such as potential contamination). However, it should be appreciated that this is an integrated investigation and these two main aspects are interrelated. Designers should take all aspects of the investigation into account.

Remaining uncertainties and recommendations for further work are listed in Section 9 and Section 10.

2. Site Overview

2.1 Site referencing

The site is referenced in Table 2.1 and the location is indicated in Figure 2.1 and 2.2.

Table 2.1: Site referencing information

ltem	Brief Description
Site name	Himley Village, Bicester
Site address	To the north of the B4030, west of Bicester, Oxfordshire. The nearest postcode is OX26 1RT.
Site location and grid reference	The site is located off the B4030 approximately 500m east of the M40 and 50m west of the A4095 Howes Lane, Bicester Western Bypass. The site is approximately 2km west of Bicester town centre. The National Grid Reference of the approximate centre of the site is 455855E, 223172N.

A site location plan (Hydrock Drawing 27141-HYD-XX-XX-DR-GE-1001) is presented in Appendix A.

2.2 Site description and field reconnaissance survey

A field reconnaissance survey was undertaken on 24/05/2023 to visually identify assess potential geotechnical hazards, contaminant sources for future investigation and identification of possible source-pathway-receptor linkages. The weather was sunny and the ground conditions were dry.

A description of the site is presented in .

Table 2.2 Additional photographs are presented in Appendix A.

Table 2.2: Site description

Item	Brief Description
Site access	The site was accessed from the B4030 road to the south. Both fields are accessible by vehicles.
	Field 'A' has access via open gate at the time of reconnaissance. Field 'B' has a gap in the south-east corner between two hedgerows.
Site area	The site is irregular in shape and has a total area of approximately 30 ha.
Elevation, topography and any geomorphic features	The site slopes from approximately 95m above Ordnance Datum (OD) to 84 (OD) from the north-west to the south-east.
	A small shallow stream runs along the perimeter (excluding the east) of field 'B'. At the time of the site reconnaissance this was not flowing.
Site boundaries and surrounding land	To the north of the site are further agricultural fields, with an active farm (Himley Farm) approximately 280m from the northern site boundary. The track running through the site providing access to field 'A' is frequently used by this farm.
	To the east of the site are industrial units, used by a food distribution company, and a service yar. There is a landscape bund on the eastern site boundary of field 'B'. Further to the east of the site is the town of Bicester.
	The southern boundary of the site is delineated by the B4030, into Bicester town. Further south of the site on the opposite side of the B4030 is Bignell Park with several forested areas including but not limited to; Bignell Belt, Big Covert

	and Robin Hood Covert. Gagle Brook runs through the centre of the park, flowing north-west to south-east. There is a large residential property (Lovelynch House) to the immediate south- west of field 'A'. There is an abandoned house, chicken coops and garage located off site to the west of the access into field 'A'. The garage has suspected asbestos roofing. The boundary between fields 'A' and 'B' is a fence and hedgerow, with a drainage ditch running in a north-south orientation. This ditch runs along the
	perimeter of field 'B' (excluding the east).
Present land use	Present land use of both fields is agricultural, with a concrete access road leading up to the farm off site to the north (Himley Farm), in the east of field 'A'.
	Services were noted on both fields, including several manhole covers close to Himley House and the house to the south-west of field 'A'. Overhead electricity cables were also noted, one running from the site access to field 'A' to the house to the south-west of field 'A', another running in a south-west to north- east orientation and one on field 'B' running in a south-east to north-west orientation.
	Localised fly tipping, including wooden pallets and general waste, was noted just off site to the west of the access into field 'B'.
	A number of boreholes and evidence of soakaway testing from previous ground investigations were present across both fields.
Vegetation	A number of deciduous trees (10-20m high) and several hedges were identified around the site boundaries.
General site sensitivity	The site is within a largely agricultural area, with occasional houses, and the industrial area to the east.
Geology	The solid geology across the entire site is recorded by the BGS to comprise Cornbrash Formation (Limestone); no superficial deposits have been recorded.

For the full desk study report please see Hydrock report 27141-HYD-XX-XX-DS-GE-1001.

3. Initial conceptual site model

3.1 Introduction

The initial Conceptual Site Model (iCSM) incorporates evidence from the site walkover and the Desk Study investigations carried out at the site. The formulation of an initial Conceptual Site Model is a key component of the LCRM methodology. The iCSM incorporates a ground model of the site physical conditions and an exposure model of the possible contaminant linkages; it forms the basis for Generic Quantitative Risk Assessment (GQRA) in accordance with current guidelines.

3.2 Ground model

The preliminary ground model presented in Section 2 provides an understanding of the ground conditions and is the basis for preparing the preliminary geotechnical hazard assessment (Section 3.3) and the preliminary geo-environmental exposure model (Section 3.4).

3.3 Geotechnical hazard identification

Context 3.3.1

The preliminary geotechnical hazard identification has been undertaken in accordance with the general requirements of ICE/DETR Document 'Managing Geotechnical Risk' and the HE documents HD 41/15 and CD 622.

The following section sets out the identified geotechnical hazards and the development elements potentially affected (see Table J.1 in Appendix F for further information).

Plausible geotechnical hazards 3.3.2

Plausible geotechnical hazards identified at the site are:

- Soft/loose compressible ground (low strength and high settlement potential). »
- Shrinkage/swelling of the clay fraction of soils within the Cornbrash Formation under the » influence of vegetation.
- Lateral and vertical changes in ground conditions. »
- » Shallow groundwater.
- Seasonally changing groundwater conditions. »
- Difficulty excavating through the limestone beds »
- Solution features in limestone

Potential development elements affected 3.3.3

Development elements potentially affected by geotechnical hazards are:

- Buildings foundations. »
- Buildings floor slabs »
- Roads and pavements. »
- » Concrete below ground.
- Services. »

Health and safety risks to site Contractors and maintenance workers have not been assessed during these works and will need to be considered separately during design.

Hydrock

The above plausible geotechnical hazards and development elements affected have been carried forward for investigation and assessment. The investigation is presented in Section 5 and the assessment is presented in Section 0.

3.4 Geo-environmental exposure model

3.4.1 Context

The preliminary exposure model is used to identify geo-environmental hazards and to establish potential contaminant linkages, based on the source-pathway-receptor (SPR) approach.

A viable contaminant linkage requires all the components of an SPR to be present. If only one or two are present, there is no linkage and no further assessment is required.

Potential contaminants 3.4.2

For the purpose of this assessment the potential contaminants have been separated according to whether they are likely to have originated from an on-site or off-site source.

3.4.2.1 Potential on-site sources of contamination

- Pesticides and herbicides from agricultural practices (S1). »
- Hydrocarbon vapours from potential VOC and petroleum hydrocarbon spillages/leaks » associated with farm machinery (S2).
- PAH from on-site burning (identified as an activity undertaken very close to the site, and is likely » to have occurred locally on site) (S3).
- Spreading sewage waste on agricultural land (identified as an activity undertaken very close to >> the site and is likely to have occurred on site) (S4).
- Use of waste in construction: asbestos waste was historically commonly used to » reinforce/repair site entrances (identified as an activity undertaken close to the site, and likely to have occurred locally on site) (S5).

3.4.2.2 Potential off-site sources of contamination

- Pesticides and herbicides from agricultural practices (S6) »
- Hydrocarbon vapours from potential VOC and petroleum hydrocarbon spillages/leaks » associated with farm machinery (S7).
- PAH from off-site burning of agricultural waste (identified as an activity undertaken close to the » site) (S8).
- Spreading waste on agricultural land (identified as an activity undertaken close to the site) (S9). »
- Use of waste in construction (identified as an activity undertaken close to the site) (S10). »
- Asbestos within abandoned house and garage to the west of the access track (S11)

Potential receptors 3.4.3

The following potential receptors, in relation to the proposed site use, have been identified.

- People (site users, neighbours) (R1) »
- Development end use (buildings, utilities and landscaping) (R2). >>
- Groundwater: Secondary A aquifer status of the Cornbrash Formation (R3). »
- Surface water: Pond and drainage ditch (R4). »

Hydrock

3.4.4 Potential pathways

The following potential pathways have been identified.

- Ingestion, skin contact, inhalation of dust and outdoor air by people (P1). »
- VOC, PAH and petroleum hydrocarbon contact with water supply pipes (P2). »
- VOC and petroleum hydrocarbon vapour ingress via permeable soils and/or construction gaps » (P3).
- Root uptake by plants (P4). »
- Migration of contaminant via leachate migration through the unsaturated zone in the Cornbrash » Formation (P5).
- Migration of contaminant via base flow to the surface waters (P6). »
- Overland flow to the surface waters (P7).

Health and safety risks to site development contractors and maintenance workers have not been assessed as part of this study and will need to be considered separately.

The above sources, pathways and receptors have been considered as part of the Preliminary Risk Assessment in accordance with LCRM (2023), are considered to be plausible in the context of this site and have been carried forward for investigation and assessment. The investigation is presented in Section 5 and the assessment is presented in Section 7 An assessment of the Source - Pathway -Receptor linkages is undertaken following the assessment (Section 7) and is presented in Appendix G (Table K.1).

3.4.5 Potential implications of climate change

Climate change has the potential to change the risk profile for conceptual site models and associated contaminant linkages. The impact of climate change on the CSM is site-specific, and a qualitative assessment of the potential impact of climate change on the CSM for this site is summarised below. The assessment has primarily utilised the guidance in Environment Agency (2010)¹ and SoBRA (2022)² which set out the UK context to climate change and land contamination. Both guidance documents advocate a "what if" scenario approach in the context of changes in ambient temperatures, an increase in the frequency of extreme rainfall/storm events and heatwaves/droughts, and long-term changes in groundwater and sea levels.

Those "what if" scenarios that are relevant to this CSM are:

- Increased long-term rainfall leading to increased infiltration and seasonally higher groundwater » levels.
- Increased frequency and/or magnitude of extreme rainfall events leading to short-term surface » flooding, surface water run-off, groundwater flooding, and/or land-based erosion.
- Increased frequency and/or magnitude of storm events leading to short-term drops in » barometric pressure and/or high winds.
- Occurrence of extreme cold and hot weather events leading to changes in ground conditions » such as soil temperature, evapo(trans)piration, and soil moisture (for example freeze-thaw effects and desiccation), decreased infiltration and fall in groundwater levels.
- Long-term decrease in rainfall leading to lower infiltration and fall in groundwater levels. »

¹ Environment Agency, 2010. Guiding Principles for Land Contamination. Part 2. FAQs, technical information, detailed advice and references, March 2010.

² SoBRA, 2022. Guidance on Assessing Risk to Controlled Waters from UK Land Contamination Under Conditions of Future Climate Change, Society of Brownfield Risk Assessment, August 2022.

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

Ground investigations 4.

4.1 Site works

The ground investigation works, including the rationale which was based on the findings of the preliminary risk assessment is summarised in Section3. For the investigation rationale of the historical investigations, please refer to the historical reports in Appendix A

The fieldwork took place between 5th June 2023 and 13th June 2023. The ground investigation locations were surveyed in using a topographic survey quality GPS and are shown on the Exploratory Hole Location Plan (Hydrock Drawing 27141-HYD-XX-XX-DR-GE-1008) in Appendix A.

The logs, including details of ground conditions, soil sampling, in situ testing and any installations, are also presented in Appendix B.

The weather conditions during the Hydrock fieldwork and for the previous week were sunny with occasional thunderstorms.

Activity	Method	No.	Name	Depth Range (m bgl)	<i>In situ</i> tests	Rationale
Main Site						
Drilling and F	Pitting					
Boreholes	Rotary cored	1	RC01	10	SPT	To determine limestone thicknesses and
	Rotary open hole	4	RO01- RO04	5	SPT	competency, to assess shallow ground conditions and allow installation of gas and groundwater monitoring and sampling wells.
Trial pits	Machine (JCB 140X)	22	TP01 - TP22	1.60 - 3.45	Hand shear vane (HSV)	For general site coverage and collection of samples
	Hand- excavated	5	HPO1 – HPO5	0.30 – 0.50	_	To determine construction of the existing access track with recovery of disturbed samples for chemical and geotechnical analysis.
Additional A	Additional Area					
Trial pits	Machine (JCB 140X)	22	TP23 – TP45	1.70 - 3.40	Hand shear vane (HSV)	For general site coverage and collection of samples

Table 4.1: Summary of site works

Monitoring wells to monitor groundwater levels and ground gas concentrations, and to facilitate the sampling of groundwater, were installed in all of the rotary boreholes. A summary of the monitoring well installations (including those from a previous ground investigation, which were also monitored as part of the current investigation (for completeness) is presented in Table 4.2.

Table 1 2 Cump manual	af	in a mit a rive or	installations
Table 4.2: Summary	OL	monilorina	installations

Location	Ground level (m OD)	Standpipe diameter (mm)	Screen top and base depth (m bgl)	Screen top and base elevation (m OD)	Piezometer Tip depth (m bgl) / (m OD)	Strata targeted
Hydrock 2	023					
RC01	94.73	19	2.80 to 3.80	91.93 to 90.93	3.35 / 91.38	Cornbrash
RO01	92.46	19	1.50 to 2.50	90.96 to 89.96	2.30 / 90.16	Formation
R002	91.95	19	0.60 to 1.20	91.35 to 90.75	0.77 / 91.18	
ROO3	86.94	19	1.00 to 1.80	85.94 to 85.14	1.36 / 85.58	
ROO4	89.75	19	1.00 to 1.60	88.75 to 88.15	1.35 / 88.40	
Previous g	round inve	estigation				
R01	92.44	50	3.00 to 5.00	89.44 - 87.44	-	Forest Marble Formation
RO2	94.68	50	1.50 to 5.00	93.18 – 89.68	_	Cornbrash Formation / Forest Marble Formation
RO3	91.99	50	2.00 to 5.00	89.99 - 86.99	-	Forest Marble Formation
RO4	90.71	50	1.50 to 3.50	89.21 – 87.21	-	Cornbrash Formation / Forest Marble Formation
RO5	89.47	50	3.50 to 5.00	85.97 - 84.47	-	Forest Marble
R06	89.7	50	3.00 to 5.00	86.70 - 84.70	-	Formation
R07	86.86	50	2.70 to 5.00	84.16 - 81.86	-	
R08	86.04	50	1.00 to 3.00	85.04 - 83.04	-	

4.2 Geo-environmental testing

4.2.1 Sampling strategy and protocols

Exploratory hole positions were determined by reference to the site conditions and uncertainties identified in the Initial Conceptual Model.

Certain specific features such as the track in the centre of the site was targeted for specific investigation, but a reasonably even spacing was used for the remainder of the site.

No specific sampling statistics or grid were utilised in this instance.

Samples were taken, stored and transported in general accordance with BS 10175:2011+A2:2017.

4.2.2 Geo-environmental monitoring

Gas monitoring boreholes have been monitored on three occasions to date. The results are presented in Appendix D. Monitoring is ongoing and this report will be updated on completion of the monitoring.

4.2.3 Geo-environmental laboratory analyses

The chemical test certificates for testing undertaken as part of Hydrock's investigation are provided in Appendix E and summarised in the table below., UKAS and MCERTS accredited procedures have been used where indicated.

The geo-environmental analyses undertaken on soils are summarised in

Table 4.3.

Table 4.3: Geo-environmental analyses of soils

Determinand Suite	Topsoil	Made Ground	Head Deposits	Forest Marble Formation
Hydrock minimum suite of determinands for solids*3	8	14	2	1
Hydrock Tier 2 TPH Suite and BTEX	-	8	-	-
Asbestos quantification	-	10	-	-
Pesticide screen	5	2	-	-

The soils chemical test data are interpreted and assessed in Sections 7.3 and 7.4.

The geo-environmental analyses undertaken as part of Hydrock's investigation on waters, are summarised in Table 4.4.

			-
Table 1 1 Coo	onvironment	alanalucoc	ofwatore
Table 4.4: Geo-	environnent	ui unuivses	or waters

Determinand Suite	Groundwater
Hydrock minimum suite of determinands for waters	6

The groundwater chemical test data are interpreted and assessed in Section 7.5.

³ Hydrock minimum soil suite comprises: As, B (water soluble), Be, Cd, Cr (total), Cr (VI), Cu, Hg, Ni, Pb, S (elemental), Se, V, Zn, cyanide (total), sulfide, pH, asbestos fibres, speciated polynuclear aromatic hydrocarbons (PAH, by GC-FID), total phenols and fraction of organic carbon

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

4.3 Geotechnical testing

4.3.1 Geotechnical laboratory testing

The geotechnical tests undertaken by Hydrock are summarised in Table 4.5 and the test certificates are provided in Appendix C. UKAS accredited procedures have been used as indicated on the laboratory test certificates

Table 4.5: Summary of sample numbers for geotechnical tests

Test	Made Ground	Head Deposits	Cornbrash Formation	Forest Marble Formation
Natural moisture content	-	3	19	4
Atterberg limits	-	3	19	4
Particle size distribution (wet sieve and sedimentation)	-	1	5	-
Sulfate and aggressive chemical environment classification for buried concrete classification (full BRE SD1 suite)	2	5	9	3
Remoulded California Bearing Ratio at natural moisture content	-	-	4	1
Dry density/moisture content relationship (2.5kg rammer compaction) with shear vane at each compaction point	-	_	3	-
Particle density	-	-	3	-
Uniaxial Compressive Strength (UCS)	-	-	-	1
Point Load Index	-	-	7	7

The geotechnical test data are summarised in Section 5.6 and interpreted in Section 6.

4.4 Constraints

Overhead services and underground services are present across the main site and additional works areas. Therefore areas around known services were not investigated as exploratory hole positions had to be located a minimum horizontal distance of 9m away from known underground and overhead services.

5. Ground investigation records and data

5.1 Physical ground conditions

Summary of strata encountered 5.1.1

The following presents a summary of the properties of the ground and groundwater conditions encountered, based on field observations, interpretation of the field data and laboratory test results, taking into account drilling, excavation and sampling methods, transport, handling and specimen preparation.

All relevant data from the Hydrock investigation discussed in Section 4 are used from this point forward.

Details of the Hydrock ground investigation works are provided in the logs in Appendix B, previous data are provided in Appendix A , a summary of the ground model is presented in Table 5.1 and the individual strata are described in the sections below. Relevant cross-sections are presented in Appendix A

Stratum	Depth to top	Depth to base	Thickness	Thickness
	(m bgl)	(m bgl)	(m) (range)	(m) (average)
Made Ground	0.00	0.25 – 0.49	0.25 – 0.49	0.35
Topsoil	0.00	0.20 – 0.50	0.20 – 0.50	0.32
Head Deposits	0.20 - 0.40	0.30 – 0.80	0.05 - 0.40	O.14
Cornbrash Formation	0.30 – 0.80	0.40 - 3.80	0.01 – 3.30	1.48
Forest Marble Formation	1.40 – 3.80	>2.10 - >10.00	>0.50 - >6.20	1.36

Table 5.1: Strata encountered

5.1.2 Surface covering

The following surface cover was identified during the field reconnaissance and the fieldworks:

- Vegetation (grass, trees, hedges), covering approximately 90% of the site. »
- A track which comprised gravel of limestone, flint, brick, and asphalt approximately 300m in » length.
- Structures (derelict house in the south of the site) covering approximately 800m² »

5.1.3 Made Ground

Below the surface covering, Made Ground was recorded across both the main site and additional works areas, with the exception of the field east of the track in the main site area.

In general, there are two main types of Made Ground:

- 'General' Made Ground, across most of the main site and additional works areas to depths of » between 0.25m and 0.40m, with an average thickness of 0.29m. Comprises brown slightly sandy gravelly clay, with gravel of limestone and rare fragments of brick.
- Made Ground associated with the track on site to depths of between 0.39m and 0.49m, with an average thickness of 0.42m. Comprises grey slightly sandy gravel, with rare fragments of brick, asphalt and glass.

Topsoil 5.1.4

Where the Made Ground was not encountered the exploratory holes encountered topsoil.

Topsoil was between 0.20m and 0.50m thick, with an average thickness of 0.32m across the main site and additional works areas. The topsoil comprised brown slightly sandy gravelly clay with frequent rootlets and fragments of limestone and guartzite.

For the purposes of this report, topsoil is defined as the upper layer of an in situ soil profile, usually darker in colour and more fertile than the layer below (subsoil), which is a product of natural chemical, physical, biological and environmental processes, but does not imply compliance with BS 3882:2015. Reuse of topsoil as a growing medium at the site should be determined by the landscape architect or the landscape Contractors.

Head Deposits 5.1.5

Head deposits were encountered underlying the Made Ground or topsoil across both the main site and additional works areas. They comprise generally firm, locally stiff orangish brown sandy gravelly clay, and were recorded as between 0.05m and 0.40m thick, with an average thickness of 0.14m.

5.1.6 Cornbrash Formation

Cornbrash Formation was encountered underlying the Made Ground, topsoil or head deposits across both the main site and additional works areas. Cornbrash Formation is between 0.01m and 3.30m thick, with an average thickness of 1.48m.

A base of Cornbrash Formation, Hydrock Drawing 27141-HYD-XX-ZZ-DR-GE-1009 is shown in Appendix A.

This generally consisted of a mixture of firm to stiff cream, orangish brown and grey mottled sandy clay with occasional limestone lithorelicts, cream gravel of limestone lithorelicts and strong grey vertically fractured limestone.

5.1.7 Forest Marble Formation

Forest Marble Formation was encountered underlying the Cornbrash Formation across both the main site and additional works areas and is between >0.50m and >6.20m thick.

This generally consisted of a mixture of stiff to very stiff grey mottled orangish brown and bluish grey, orangish brown laminated and fissured slightly sandy clay with occasional limestone lithorelicts, cream gravel of limestone lithorelicts and very strong grey limestone.

5.2 Obstructions

No obstructions were encountered during the investigation however, the less fractured, strong to very strong limestone encountered in the trial pits was very difficult to excavate.

5.3 Soil Organic Carbon Content

The fraction of organic carbon (FOC) and soil organic matter (SOM) derived from laboratory test results are summarised in Table 5.2. Further details of laboratory testing results are included in Appendix E.

Table 5.2: Summary of SOM and FOC

Stratum	Fraction of organic carbon (FOC) (range) (dimensionless)	Soil organic matter (SOM) (range) (%)
Main Site		
Made Ground	0.01 - 0.06	2.1 - 10.2
Topsoil	0.02 - 0.03	2.8 - 5.2
Head Deposits	0.01	1.9
Cornbrash Formation	0.01	1.6
Forest Marble Formation	0.01	1.7

5.4 Groundwater

5.4.1 Groundwater observations and levels

Groundwater encountered during the investigation is listed in Table 5.3. A groundwater observation represents the depth at which groundwater was first observed and is likely to be deeper than the actual water table level at that location.

Stratum	Date	Location	Fieldwork	Comment
			Groundwater observation (m bgl)	
Cornbrash	05/06/2023	RC01	1	
Formation	06/06/2023	R001	0.5	
	07/06/2023	ROO2	0.5	
	09/06/2023	ROO3	O.5	
	08/06/2023	ROO4	O.5	
	06/06/2023	TP01	2.4	Moderate flow rate.
	06/06/2023	TPO2	1.6	Moderate flow rate.
	06/06/2023	TP03	1.9	Slow flow rate.
	06/06/2023	TP07	1.4	Slow flow rate.
	07/06/2023	TPO9	1.45	Slow flow rate.
	07/06/2023	TP10	1.8	Slow flow rate.
	07/06/2023	TP12	2.1	Slow flow rate.
	07/06/2023	TP13	1.8	Slow flow rate.
	13/06/2023	TP16	1.8	Slow flow rate.
	13/06/2023	TP18	1.9	Slow flow rate.
	12/06/2023	TP20	1.8	Moderate flow rate.

Table 5.3: Groundwater occurrence

Stratum	Date	Location	Fieldwork	Comment
			Groundwater observation (m bgl)	
Cornbrash	08/06/2023	TP26	1.7	Slow flow rate.
Formation	07/06/2023	TP27	1.7	Slow flow rate.
	08/06/2023	TP28	1.6	Slow flow rate.
	09/06/2023	TP33	1.8	Slow flow rate.
	09/06/2023	TP35	1.7	Slow flow rate.
	09/06/2023	TP38	1.6	Slow flow rate.
	09/06/2023	TP41	1.8	Slow flow rate.
Forest	07/06/2023	TPO4	3.2	Slow flow rate.
Marble Formation	06/06/2023	TP06	2.7	Slow flow rate.
Formation	06/06/2023	TP07	2.0	Fast flow rate.
	13/06/2023	TP14	2.4	Slow flow rate.
	13/06/2023	TP15	2.2	Moderate flow rate.
	13/06/2023	TP17	3.0	Slow flow rate.
	13/06/2023	TP21	2.9	Moderate flow rate.
	12/06/2023	TP22	2.0	Moderate flow rate.
	08/06/2023	TP23	2.6	Slow flow rate.
	07/06/2023	TP31	2.6	Slow flow rate.
	07/06/2023	TP32	3.0	Slow flow rate.
	09/06/2023	TP34	2.0	Slow flow rate.
	12/06/2023	TP36	2.4	Slow flow rate.
	12/06/2023	TP37	2.8	Moderate flow rate.
	09/06/2023	TP39	1.8	Moderate flow rate.
	12/06/2023	TP40	2.5	Slow flow rate.
	09/06/2023	TP42	2.9	Slow flow rate.
	09/06/2023	TP43	1.7	Moderate flow rate.
	12/06/2023	TP44	2.8	Moderate flow rate.
	12/06/2023	TP45	2.5	Slow flow rate.

Groundwater levels recorded during post-fieldwork monitoring are summarised in Table 5.4.

Stratum	Date	Location	Post-fieldwoi	k monitoring	
	range		Depth to groundwater (range)	Groundwater elevation (range)	
			(m bgl)	(m OD)	
Cornbrash	16/06/23	RC01	1.59 – 2.06	93.14 - 92.67	
Formation	-	ROO1	1.75 – 1.84	90.71 - 90.62	
	28/06/23	R002	1.15 – 1.23	90.80 - 90.72	
		ROO3	1.79 – 1.90	85.15 - 85.04	
		ROO4	1.54 – 1.59	88.21 - 88.16	
Cornbrash Formation / Forest Marble Formation		RO2 RO4	1.97 - 2.04 1.73 - 1.79	92.67 - 92.64 88.93 - 88.85	
Forest Marble Formation		R01 R03 R05 R06 R07 R08	1.93 - 2.03 2.01 - 2.04 2.15 - 2.31 1.78 - 1.86 2.16 - 2.29 1.40 - 1.47	90.51 - 90.41 89.84 - 89.68 87.31 - 87.18 88.30 - 88.23 84.89 - 84.82 84.31 - 84.25	

Table 5.4: Groundwater level data summary

5.4.2 Groundwater summary

In general, groundwater was encountered at shallow depth in the Cornbrash Formation and the Forest Marble Formation. However, there are local variations in both the Cornbrash Formation and Forest Marble Formation probably associated with the alternating beds of clay and limestone recorded.

There is also deeper groundwater in the Forest Marble Formation, identified mainly in the southeast of the site, where this stratum is at shallow depth.

The hydraulic gradient of the groundwater, and hence the likely direction of flow, is generally towards the south/south-east, and these appear to be topographically controlled.

5.4.1 Permeability tests

The results of the permeability testing undertaken in the boreholes from the previous investigation on the site are summarised in Table 5.5. The results sheets are presented in Appendix B.

Testing was carried out in general accordance with the requirements of BS 5930:2015, using rising head methods.

Table 5.5: Permeability test results

Stratum	Location	Depth (m) (range)	Permeability (m/s)
Cornbrash and Forest Marble	RO2	1.5 – 5.0	2.8 x 10 ⁻⁷
Forest Marble	RO1	3.0 – 5.0	4.4 x 10 ⁻⁷
	R05	3.5 – 5.0	6.2 x 10 ⁻⁷
	R06	3.0 – 5.0	6.3 x 10 ⁻⁸
	R07	2.7 – 5.0	5.5 x 10 ⁻⁷

5.5 Ground gases (carbon dioxide and methane)

Records from the gas monitoring boreholes are presented in Appendix D and summarised in Table 5.6.

Three monitoring visits have been undertaken and the monitoring programme is complete. The data are assessed in Section 7.6

Table 5.6: Range of ground gas data

Stratum	Methane (%)	Carbon dioxide (%)	Oxygen (%)	Steady flow rate (l/hr)	Comment
Forest Marble Formation	<0.1	0.4 – 3.6	16.7 – 19.8	0 - 0.1	All the methane readings are
Cornbrash Formation / Forest Marble Formation	<0.1	0.2 – 2.3	16.7 – 19.2	-0.8 – 0.2	below the limit of detection and all the carbon dioxide readings are below 5%.

5.6 Geotechnical data

5.6.1 Introduction

Laboratory test results are contained in Appendix C with *in situ* test results shown on the relevant exploratory hole log or datasheet in Appendix B. The following sections summarise the main findings and provide interpretation where appropriate.

5.6.2 Moisture content

The volume change potential in terms of NHBC Standard (Chapter 4.2) have been determined from the results of plasticity index tests on samples of soil. These are summarised in Table 5.8.

Stratum	No. of tests	Natural Moisture Content (%) (Range)
Head Deposits	2	7.8 - 27
Cornbrash Formation	20	10 - 27
Forest Marble Formation	3	14 - 24

Table 5.7: Natural Moisture Content

5.6.3 Plasticity

The volume change potential in terms of NHBC Standard (Chapter 4.2) have been determined from the results of plasticity index tests on samples of soil. These are summarised in Table 5.8.

Stratum	No. of tests	Plas	Plasticity Index Modifie Plasticity II			Plasticity designation	Volume Change Potential		
		Min.	Max.	Av.	Min.	Max.	Av.		
Head Deposits	2	28	40	_4	15	36	_3	High	Medium
Cornbrash Formation	20	16	41	26	11	41	23	Intermediate to high	Medium⁵
Forest Marble Formation	3	10	33	_3	18	19	_3	Low to high	Low

Table 5.8: Volume change potential

5.6.4 Particle size distribution

Particle Size Distribution test (PSDs) results are summarised in Table 5.9 and summary descriptions and PSD plots of the material analysed are presented in Appendix C.

Stratum	No. of tests	Clay %	Silt %	Sand %	Gravel %	General description
Cornbrash Formation	9	13 - 60	26 - 57	10 - 24	2 - 28	Sandy silty clay/clayey silt, with occasional to some fine to coarse gravel sized lithorelicts of limestone
Cornbrash Formation (weathered limestone)	1	5	8	4	14	Limestone recovered as clayey fine to coarse gravel sized lithorelicts of limestone

Table 5.9: PSD results summary

5.6.5 Soil strength

Table 5.10 summarises information pertaining to the shear strength of the soils according to geological stratum. Factual results are summarised for laboratory tests, field tests (e.g. hand shear vane) and uncorrected Standard Penetration Tests (SPT). Where the SPT is used to infer shear strength by published correlation, this is also tabulated.

Table 5.10: Soil strength results and derived values

⁴ Insufficient data to calculate an 'average' value.

⁵ Out of 20 tests, three Atterberg Limits tests indicated high volume change potential (PI = 40 to 41). However, overall, a medium volume change potential is considered appropriate.

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

Stratum	No. of tests	SPT N value (range) ⁶	c _u (kPa)	Method
Head Deposits	1	-	120	Hand shear vane
Cornbrash Formation	7	8 - >50	40 - <240	Correlation with SPT (dynamic sampler) ⁷
	53	-	40 - 145	Hand shear vane
Forest Marble Formation	12	35 - >50	200 - <290	Correlation with SPT (dynamic sampler) ⁸
	38	-	90 - 147	Hand shear vane

It is recommended that the values based on SPT correlation in weathered rock, be taken as indicative only.

5.6.6 Compressibility

Table 5.11 presents a summary of the derived parameters for coefficient of consolidation and compressibility. The data indicates that the material is generally of medium to high compressibility over the pressure ranges tested.

Stratum	No. of tests / result s	SPT N value (range) ⁵	Method	Coefficient of volume compressibility (m _v) (m²/MN)
Cornbrash Formation	3	8 - >50	Correlation with SPT (dynamic sampler)	0.26 - 0.04 ⁹
Forest Marble Formation	5	35 - >50		0.04 - 0.0510

As these values are based on SPT correlation in weathered rock, it is recommended that they be taken as indicative only.

5.6.7 Compaction and moisture content

Table 5.12 presents a summary of the moisture content tests and compaction studies undertaken at the site.

⁶ Only data from clay strata are considered.

⁷ Based on an f1 value of 4.8 (based on average modified plasticity).

⁸ Based on an f1 value of 5.7 (based on lowest modified plasticity).

⁹ Based on an f2 value of 0.50 (based on average modified plasticity).

¹⁰ Based on an f2 value of 0.57 (based on lowest modified plasticity).

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

Table 5.12: Compaction study results

Stratum	No. tests	Method	Natural moisture content (%) (range)	Particle Density (Mg/m³) (range)	Optimum Moisture Content (%) (range)	Maximum Dry Density (Mg/m ³) (range)
Cornbrash Formation	3	2.5kg Rammer	10 - 20	2.62 - 2.72	11 - 19	1.69 - 2.01

5.6.8 Shear strength of compacted sample

Table 5.12 presents a summary of the moisture content tests and compaction studies undertaken at the site.

Table 5.13: Shear strength of compacted sample

Stratum	Method	Natural moisture content (%)	Moisture content of test sample (%)	Shear strength ¹¹ (kN/m²)
Cornbrash Formation	Lab vane	10	12	24
			15	9
		16	19	52
		20	23	56

5.6.9 Subgrade stiffness

The subgrade stiffness (CBR and Modulus of Subgrade Reaction) results are summarised in Table 5.14.

Table 5.14: CBR results and derived values
--

Stratum	No. tests	Method	Modulus of Subgrade Reaction k (MN/m²/m) (Range)	CBR (%) (Range)
Head Deposits	2	Correlation in accordance with CD 255 based on 'average' plasticity and thin construction	25	2.5
Cornbrash Formation	4	Laboratory remoulded sample at Natural Moisture Content (NMC)	38 - 61	5.3 - 12
	20	Correlation in accordance with CD 255 based on 'average' plasticity and thin construction	25	2.5

¹¹ Shear strength at lower moisture contents could not be measured due to the strength of the soil.

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

Forest	3	Correlation in accordance with CD	22	2.0
Marble		255 based on 'average' plasticity		
Formation		and thin construction		

Where using the CD255, 'k' has been back calculated from the Equivalent CBR.

5.6.10 Sulfate content

In accordance with BRE (Special Digest 1), the Design Sulfate (DS) classification and the Aggressive Chemical Environment for Concrete (ACEC) classification are presented in Table 5.15. The assessment summary sheets are presented in Appendix C.

Table 5.15: Aggressive chemical environment concrete classification

Stratum	No. tests	DS	ACEC
Made Ground	1	DS-1	AC-1
Head Deposits	5	DS-1	AC-1
Cornbrash Formation	10	DS-1	AC-1
Forest Marble Formation	3	DS-1	AC-1

5.6.11 Intact material strength – rock

Table 5.16 summarises information pertaining to the strength of the intact rock material (not rock mass) according to geological stratum and, if applicable, weathering zones or other variations within particular strata.

Where UCS testing has been scheduled but cannot be undertaken due to unsuitable core samples, point load tests have been undertaken in their place.

Factual results are summarised for laboratory and field tests. Where point load index tests are used to infer unconfined compressive strength (UCS), this is also tabulated. Rock strength terms follow the method of BS EN ISO 14689-1:2003.

Care should be exercised in using these assumed rock strength parameters for any purpose beyond the scope of this report because it may be that additional sampling and testing is required for certain purposes. The reader should refer to the original test results in Appendix C. Note also that rock mass properties, rather than intact rock material properties, may be more suitable for design purposes.

Stratum	No. of tests	Point load index (Range)		UCS (MPa) (range)	Method
		ls	ls(₅₀)		
Cornbrash Formation	7	0.14 – 2.55	0.18 – 2.92	-	Axial point load
Forest Marble Formation	7	0.56 – 2.21	0.72 – 2.58	-	Axial point load
	1	-	-	25.8	UCS test

Table 5.16: Intact rock strength results and derived values

Geotechnical assessment 6.

The following recommendations do not take into account any filling works to bring ground levels to finished level, as finished levels have not been provided. This report will therefore need to be updated once finished ground levels and the proposed housing layout have been finalised, and all recommendations should be considered preliminary.

6.1 Geotechnical categorization of the proposed development

Eurocode 7, Section 2 advocates the use of geotechnical categorization of the proposed structures to establish the design requirements.

The proposed development of the main site is to comprise low rise (2 to 3 storey) residential dwellings, with associated gardens, Public Open Space and infrastructure. The proposed development of the additional area is to comprise two areas designated for 'mixed use neighbourhood centre'.

Finished ground levels have not been provided at this stage, and this report will need to be updated on receipt of those levels. However, it is understood that some fill (and possibly cut, and possibly some retaining structures, are required.

Based on the above, for the purposes of this investigation, the proposed housing, care home and areas designated for 'mixed use neighbourhood centre' have been classed as Geotechnical Category 1. However, the fill (and if required cut) is classed as Geotechnical Category 2.

For Category 2 structures, the Geotechnical Category should be reassessed at the design stage and specific geotechnical design is required.

Following ground investigation and as part of the assessment provided in the following section, the preliminary geotechnical hazard identification undertaken in Section 3.3 has been updated.

Assessment has been undertaken in accordance with the general requirements of ICE/DETR Document 'Managing Geotechnical Risk' and the HE documents HD 41/15 and CD 622. The preliminary Geotechnical Risk Register following investigation is provided in Appendix F (Table J.3) and will need to be updated during future design works.

6.2 Characteristic design values

For design of Category 1 structures in accordance with BS EN ISO 1997-1 (EC 7), the geotechnical parameters given in Table 6.1 can be used for design.

These values have been determined from laboratory testing, *in situ* testing and by professional judgement using published data together with knowledge and experience of the ground conditions. Care should be exercised in using these assumed soil strength parameters for any purpose beyond the scope of this report because it may be that additional sampling and testing is required for certain purposes. The reader should refer to the original test results summarised in Section 5 and provided in Appendix B and Appendix C.

Parameter	Bulk unit weight kN∕m³	Effective angle of internal friction	Undrained shear strength kN/m ²	Coefficient of compressibility m²/MN	Modulus of subgrade reaction (IAN73/06) MN/m²/m
Stratum	γa	φ' ^{b c}	Cu ^e	m _v f	k ^g
Head Deposits	19	26	50	0.15	25
Cornbrash Formation	20	25	75	0.10	25
Forest Marble Formation	20	26	100	0.05	22

Table 6.1: Geotechnical parameters recommended for design of Geotechnical Category 1 Structures (EC7)

a. Estimated, based on the recommendations of BS 8004-2015.

b. Internal friction (φ') values for the cohesive in-situ material derived from BS 8004-2015, where φcv' is derived from plasticity index. The use of φcv' in the analysis is considered to provide a conservative estimate of φ'.BS 8002:1994
 Code of practice for Earth retaining structures, British Standards institution.

c. Site measurements and laboratory data.

d. Laboratory data.

e. Based upon the equilibrium long term CBR from CD255..

In accordance with BS EN ISO 1997-1 (EC 7), Hydrock consider the proposed earthworks would be classified as Category 2 structures. As part of the separate geotechnical design, the designer should determine the geotechnical design values.

6.3 Groundwork

6.3.1 Site preparation

The site is previously undeveloped and no buried man-made obstructions were encountered by this investigation. However, whilst the likelihood of buried obstructions being encountered is low, difficult excavation is anticipated should excavations extend into the rock quality strata.

Topsoil should be removed from beneath all building and hardstanding areas.

6.3.2 Groundworks

Excavation of shallow soils should generally be readily undertaken by conventional plant and equipment. However, excavation through any intact rock quality strata may require heavy-duty excavation plant/ripping plant.

Whilst trial pit faces in the clay soils were noted to remain generally vertical without collapse, when fractured rock was encountered, some spalling was noted. On this basis, random and sudden falls should be expected from the faces of near vertically sided excavations put down at the site, particularly if they are carried down into the fractured rock.

Temporary trench support, or battering of excavation sides, is recommended for all excavations that are to be left open for any length of time and will definitely be required where man entry is required. Particular attention should be paid to excavation at, or close to, site boundaries/adjoining existing roads/structures, where collapse of excavation faces could have a disproportionate effect.

A risk assessment of the stability of any open excavation should be undertaken by a competent person and appropriate measures adopted to ensure safe working practise in and around open

excavations. Further guidance on responsibilities and requirements for working near, and in, excavations can be obtained from the Construction Design and Management Regulations (2015); Construction Information Sheet 47: Inspections and Reports (2005) and HSG47: Avoiding Danger from Underground Services.

To ensure no loads are imposed on the sides of the excavation, spoil should not be placed immediately adjacent to the excavation. Spoil should be placed a suitable distance from the side of the excavation (as assessed by a competent person).

Based on site observations, the rate of water ingress to the proposed excavations is likely to be slow. However, where deep excavation (below approximately 1.6m bgl) is required, for example for deep drainage, then slow to moderate water inflow should be anticipated.

On this basis, for shallow excavations, groundwater control by sump pumping is likely to be sufficient. However, should excavation into the deeper strata, particularly the fractured rock, be required, groundwater control by sump pumping may be insufficient to deal with anticipated flows and alternative methods of dewatering, such as well points should be allowed for.

It should be recognised that groundwater levels may vary from those at the time of the investigation, for example in response to seasonal fluctuations and the timing of construction may dictate the extent of groundwater control required.

Any water pumped from excavations may need to be passed via settlement tanks (to reduce suspended solids) before being discharged to the sewer. Discharge consents may also be required.

6.3.3 Earthworks/reuse of site-won materials

Whilst Hydrock has not been provided with the specific requirements for earthworks (cut/fill depths and volumes), it is understood earthworks are proposed at the site. An initial assessment has been completed on the potential to reuse site-won materials as a General Fill material. This is summarised in Table 6.2.

The classification of materials depends on both the proposed end use and whether the material will meet the performance requirements of that end use. Based on Hydrock's understanding, the following assessment is based on General Fill.

Stratum	Proposed end use	Preliminary classification (SHW Series 600)	Comment	Suitability for improvement by the inclusion of binders
Topsoil	Open Space	Class 4 (Landscape Fill)	Unsuitable for General Fill due to high organic content. Can only be used in areas which are not sensitive to settlement.	Unlikely to be suitable
Head Deposits	External areas	Class 2 General Fill	Locally may be significantly dry of Optimum Moisture Content (OMC). Moisture conditioning (e.g. wetting down by bowser and	Likely to be suitable, but unlikely to be required.

Table 6.2: Preliminary earthworks assessment

Stratum	Proposed end use	Preliminary classification (SHW Series 600)	Comment	Suitability for improvement by the inclusion of binders
			rotavator) likely to be required.	
Cornbrash Formation	External areas	Class 2 General Fill ¹²	Generally at or close to Optimum Moisture Content (OMC).	Likely to be suitable, but unlikely to be required.
Forest Marble Formation	External areas	Class 2 General Fill ¹²	Unlikely to be excavated in significant volumes, due to depth below ground level.	Likely to be suitable, but unlikely to be required.

The earthworks will need to be undertaken under a Materials Management Plan (see Section 8.3).

Before the use of hydraulic binders is approved (if required), comprehensive testing will need to be completed by a specialist Contractor to satisfy both themselves and the Engineer of the suitability of the soils for treatment and to confirm that the requisite end-performance of the material is achievable. In all instances where improvement by the inclusion of binders is considered, a mix design is required and as part of this design, samples should be checked for swelling, even where very low sulfate values are recorded.

Where it is proposed to reuse site won materials as an engineered fill it will be necessary to develop an appropriate site-specific Earthworks Specification. The basis for the Specification should be BS 6031:2009 and the latest version of the SHW, Series 600 Earthworks. Once site proposals have been further defined more specific consideration will need to be given to the reuse of materials and reference should be made back to Hydrock.

6.3.4 Consolidation settlement from land raising

It is understood that some site levels are to raised, although it is not known by how much. This is likely to lead to consolidation settlement of the underlying natural clays. However, unless significant thicknesses of fill are placed (considered unlikely) settlements are likely to be relatively small.

A separate geotechnical design will be required to fully assess the impact of settlement and to design the ground improvement works. Site monitoring during the earthwork construction will be required to confirm the required settlements has been achieved.

6.4 Slope stability

Whilst there are no significant existing slopes on the site, it is possible that following the earthworks, there may be. Should this prove to be the case, slope stability will need to be considered as part of the detailed geotechnical design.

6.5 Retaining walls

It is possible that following the earthworks, there may be a requirement for retaining structures. Should this prove to be the case, and they are greater than 2.0m high, they will need to be considered as part of the detailed geotechnical design.

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

¹² Care will be required on excavation to ensure that oversize fragments of rock are not mixed with otherwise suitable clay.

It is recommended that any required retaining walls are individually designed using site-specific design criteria, assessed as part of the required geotechnical design. Associated as-built records will be required for verification purposes.

Allowance should be made in any design of the retaining walls for adequate drainage behind the structure, or for water seepage through the face of the wall. The overall stability of the retaining wall is not considered in this report. The stability of the retaining wall should be considered in the design process.

Foundation recommendations - residential properties 6.6

This section provides recommendations for the foundations for houses, garages and related buildings, based on the current NHBC Standards (2023).

The houses and (if to be built) flats proposed for the main site are currently considered to Geotechnical Category 1. Preliminary foundation recommendations for the foundations for houses and related buildings in this section are based on the geotechnical parameters provided in Section 6.2.

The permissible bearing pressures for foundations guoted for Category 1 structures in this report take into consideration traditional factors of safety against the risk of shear failure of the ground and should prevent undue or excessive total and differential settlement from the anticipated structural loadings.

6.6.1 Foundation types

On the basis of the ground conditions indicated from the current investigation, strip/trench fill foundations should be suitable across all areas of the main site. However, this does not take into account any filling works to bring ground levels to finished level, as finished levels have not been provided. This report will therefore need to be updated once finished ground levels and the proposed housing layout have been finalised.

Once finished ground levels and the proposed housing layout have been finalised a Foundation Zonation Plan will also be prepared.

6.6.1.1 Trench fill/strip foundations

Strip or trench fill foundations should be constructed below any Made Ground and at least 300mm into the undisturbed natural firm (or better) clay of the Head Deposits or Cornbrash Formation.

A permissible net bearing pressure of 100kN/m² is considered appropriate.

If enlarging the foundations is considered (for example because loads are such that the guoted bearing pressure is inadequate) this could lead to increased settlements and the above recommendations should be reviewed.

Based on the worst-case (Cornbrash Formation soils) NHBC volume change potential (medium), the minimum founding depth for strip or trench fill foundations is 0.9m below ground level, and to below the base of the Made Ground. Where fill is to be placed, foundations should be constructed at least 0.9m below original ground (pre-filling). If cut is proposed, should be constructed at least 0.9m below finished ground (post-cut).

Where close to trees, foundations will need to be deepened to below the depth of influence of the trees, and visible roots. Care should be taken when deepening foundations to allow for tree influence, as shrinkable clay soils locally underlie intact, or fractured rock strata that might otherwise be considered suitable founding formations.

Hydrock

Where foundation depths are stepped, for instance to match changes in depths due to trees or changes in ground conditions, the steps should be designed in accordance with the requirements of the NHBC Standards.

If trees are to be removed, the roots should be grubbed out and foundations extended to below the zone of disturbance created by this activity and to below any remaining root hairs. In addition, deepening of foundations in accordance with NHBC Standards will be required where strip or trench fill foundations are within the zone of influence of existing, removed or proposed trees and proposed shrub planting. A tree survey should be undertaken by an arboriculturist in accordance with BS 5837:2012 to identify the type, and height of existing trees on the site and including any off-site trees, which could have an effect on foundation design.

Where foundations are within the zone of potential desiccation from trees and are deeper than 1.5m bgl, a suitable compressible material or void former will be required on the inside faces of foundations to external walls and beneath ground bearing floor slabs.

Excavation of trench fill foundations in excess of 2.5m bgl is unlikely to be economic and may be impracticable to undertake due to fractured rock strata, which may result in trench collapse.

If foundations in excess of 2.5m depth are proposed, they should be designed by a Structural Engineer in accordance with the requirements of the NHBC Standards (Chapter 4.2.8) and NHBC Technical Requirement R5.

Hydrock recommends when trench fill foundations are deeper than 2.5m due to tree influence, the design should take into account soil desiccation risk assessed by plot-specific testing.

Foundation formations should be inspected by a geotechnical engineer or other suitably competent person to ensure the founding conditions are suitable and as indicated in this report. Any formation materials deemed as unsuitable should be excavated and replaced with lean mix concrete or deepened to suitable strata. If this is not possible, alternative solutions (such as piling) should be undertaken.

As the ground conditions at formation level are likely to be of variable type and stiffness (clays and weathered rock), it is recommended that foundation concrete should be reinforced with mesh, installed at the top and bottom of the foundation, across the zone of variable soil conditions.

Foundation excavations should be protected from rainfall, inflow of surface water, frost and freezing conditions. They should also be protected from drying out in hot dry weather.

Groundwater monitoring indicates generally low groundwater flow. Any water that collects at the base of the foundation excavations should be removed by pumping from a sump in the base. If significant inflow of groundwater is encountered (for example due to deepening into fractured rock) more extensive dewatering may be required to alloOw foundation construction.

The Cornbrash Formation, and if encountered, the Forest Marble Formation are over consolidated clays, which can swell and soften in contact with water. Therefore, care will be required to ensure that foundation excavations are kept as free of water as practicable. Foundation concrete should be poured as soon as practicable after excavation.

6.6.1.2 Piled foundations

Should deepening of foundations due to tree influence, or due to depth of fill, mean that founding depths in excess of 2.5m are required, piled foundations are recommended.

Depending on column loads and layouts, piles should extend through any Made Ground and soft to firm clay soils, to a suitable depth into the underlying Cornbrash/Forest Marble.

Driven piles/bored piles with the use of casing/CFA piles should be suitable to support the foundations for the houses. However, the choice of piling system should be undertaken by a

specialist piling Contractor and the design of piles is beyond the scope of this report. The decision on pile type and design should take into account the following factors relevant to the site:

- » Rock quality strata are expected which could cause piles to stop shallower than the design depths, or to deviate from the vertical, thereby reducing their capacity. In some circumstances, this could lead to pile breakage.
- » Hard driving may be necessary to penetrate intact rock at shallow depth known, or suspected to be underlain by clay soils.
- » Groundwater levels are in the range 1.15 2.31m bgl (92.67 to 84.25m OD) and temporary casing is likely to be required for bored piles. If CFA piles are used, concrete is placed as the auger is withdrawn, which can balance the water pressure if the operation is undertaken carefully.
- » Piles should extend a minimum of five pile diameters into the bearing stratum to mobilise sufficient end-bearing resistance to carry the required loads without unacceptable settlement.
- Where piles are to be constructed through compressible soils that have had ill placed over them, they be designed to cater for the potential down-drag effects of negative skin friction from the secondary consolidation of both the recently placed fill and the underlying clays.
- » Where foundations are constructed on clay soils within the influencing distance of trees design should include for the upper section of the pile to be sleeved or additional length allowed for to resist stresses from clay swelling or shrinkage. In addition, heave protection may be required on the inside faces and underside of the ground beams.

6.7 Foundation recommendations – 'mixed use neighbourhood centre'

6.7.1 Foundation types

On the basis of the ground conditions indicated from the current investigation, strip/trench fill foundations should be suitable for the 'mixed use neighbourhood centre'. However, this does not take into account any filling works to bring ground levels to finished level, as finished levels have not been provided. This report will therefore need to be updated once finished ground levels and the proposed housing layout have been finalised.

6.7.1.1 Trench fill/strip foundations

Strip or trench fill foundations should be constructed as detailed for residential properties above, with all the same caveats and precautions. A permissible net bearing pressure of 100kN/m² is considered appropriate.

6.7.1.2 Pad foundations

Should the 'mixed use neighbourhood centre' be designed as a framed building, pad foundations may be a more suitable founding solution.

A permissible net bearing pressure of 100kN/m² is considered appropriate.

If enlarging the foundations is considered (for example because loads are such that the quoted bearing pressure is inadequate) this could lead to increased settlements and the above recommendations should be reviewed.

Based on the worst-case (Cornbrash Formation soils) volume change potential (medium), the minimum founding depth for strip or trench fill foundations is 0.9m below ground level, and to below the base of the Made Ground. Where fill is to be placed, foundations should be constructed at least 0.9m below original ground (pre-filling). If cut is proposed, should be constructed at least 0.9m below finished ground (post-cut).

Deepening for tree influence, stepping of foundations and reinforcement across zones of different material type and/or stiffness should be undertaken in line with the recommendations above for strip/trench fill foundations for residential properties.

Excavation of pad foundations in excess of 2.5m bgl may be economic, but may still be impracticable to undertake due to fractured rock strata, which may result in excavation collapse.

If foundations in excess of 2.5m depth are proposed, they should be designed by a Structural Engineer, taking into account soil desiccation risk assessed by pad-specific testing.

Foundation formations should be inspected by a geotechnical engineer or other suitably competent person to ensure the founding conditions are suitable and as indicated in this report. Any formation materials deemed as unsuitable should be excavated and replaced with lean mix concrete or deepened to suitable strata. If this is not possible, alternative solutions (such as piling) should be undertaken.

Foundation excavations should be protected from rainfall, inflow of surface water, frost and freezing conditions. They should also be protected from drying out in hot dry weather.

Groundwater monitoring indicates a generally low groundwater flow. Any water that collects at the base of the foundation excavations should be removed by pumping from a sump in the base. If significant inflow of groundwater is encountered (for example due to deepening into fractured rock) more extensive dewatering may be required to alloOw foundation construction.

The Cornbrash Formation, and if encountered, the Forest Marble Formation are over consolidated clays, which can swell and soften in contact with water. Therefore, care will be required to ensure that foundation excavations are kept as free of water as practicable. Foundation concrete should be poured as soon as practicable after excavation.

6.7.1.3 Piled foundations

Should deepening of foundations due to tree influence, or due to depth of fill, mean that founding depths for trench fill or pad foundations are excessive, impractical or uneconomic, piled foundations are recommended.

The recommendations and caveats noted for piled foundations for residential properties apply equally to the 'mixed use neighbourhood centre'.

6.8 Working platform

A working platform will be required prior to the arrival on site of tracked piling plant. This should be designed and installed in accordance with BR470 (BRE 2004) based on data on the specific plant in accordance with an FPS certificate for the rig loadings.

6.9 Ground floor slabs - residential properties

In accordance with the NHBC standards, as Made Ground greater than 600mm thick and clay soils of medium volume change potential are present at the site, it is recommended that suspended floor slabs with a void be adopted.

6.10 Ground floor slabs - 'mixed use neighbourhood centre'

No details of the 'mixed use neighbourhood centre' have been provided so only generalised recommendations can be provided.

If practicable a suspended ground floor as outlined above for the residential properties, should be adopted for this building(s). If this is required, depending on the size of the building(s) and therefore the span of the floor, it is possible that the floor slab may have to be piled.

Slabs without a void (ground bearing or suspended cast in situ onto the ground) may be used if all of the following criteria are satisfied:

- » the minimum foundation depth (allowing for the influence of trees) is less than 1.5m;
- » any fill is suitable, well-compacted granular material and less than 600mm thick;
- » it is demonstrated that the soils are not desiccated and are at their equilibrium moisture content; and
- » ground floor construction is not undertaken when the surface soils are seasonally desiccated (i.e. during summer and autumn).

Another alternative would be local excavation and re-engineering of the upper layers of clay, to mitigate any desiccation effects and the adoption of a ground bearing slab. However, this is only likely to be suitable if the slab is entirely outwith the influence of trees.

Alternatively, if significant earthworks are proposed in this section of the site, consideration could be given to the placement of structural (as opposed to general) fill in the area of the proposed building(s) and a ground bearing slab adopted.

The floor slab should be designed by a structural engineer and a limit state assessment undertaken as part of the geotechnical design.

Prior to the placement of the founding materials and the construction of the ground bearing floor slab, the sub-formation and formation will need to be inspected and checked by a competent person to ensure the ground conditions at time of construction are consistent with the Specification and the design parameters derived from this ground investigation. Testing should be undertaken in accordance with The Concrete Society Technical Report 34 (The Concrete Society 2013) and DMRB IAN 73/06. It is recommended that the verification of the sub-formation and formation include, as a minimum, the measurement of modulus of sub-grade reaction (k) determined by static plate load testing.

6.11 Roads and pavements

Based on the test results and subject to *in situ* testing during construction, it is considered likely an equilibrium CBR of 2.5% will be achievable on the natural soils over the majority of the site.

Proof rolling of the formation level will be required and any loose or soft spots should be removed and replaced with an engineered fill, in accordance with a suitable Specification. The formation level will also need to be protected during inclement weather from deterioration; all slopes should be trimmed to falls to shed rain water and the surface sealed to limit infiltration.

Prior to the placement of the founding materials and the construction of the road pavement, the sub-formation and formation will need to be inspected and checked in accordance with a suitable specification to ensure the ground conditions are as expected. All testing should be carried out in accordance with DMRB IAN 73/06 to confirm that the ground conditions at time of construction are consistent with the previous design parameters.

Where the CBR is found to be less than 2.5%, the sub-grade may be unsuitable for both the trafficking of site plant and as support for a permanent foundation, without improvement works being undertaken. Improvement works should be carried out in accordance with DMRB IAN 73/06 Rev 1 Chapter 5.

In summary, consideration may be given to the following potential remedial techniques:

- » excavation and re-engineering or replacement of weaker soils;
- » the inclusion of geosynthetic reinforcement within the unbound layers of the capping and subgrade; or

where cohesive soils are present and they are deemed suitable for treatment with hydraulic » binders, to employ modification and/or stabilisation techniques on the formation.

The design CBR for road/pavement design on newly placed fill will be dependent on the degree of compaction achieved.

6.12 Drainage

Indicative permeability values are presented in Appendix C and are summarised in Table 5.5.

Whilst these values do not equate to soil infiltration rates, they indicate that soakaways are unsuitable for the site. However, the infiltration rates recorded may assist with attenuation as part of a Sustainable Urban Drainage System (SUDS).

6.13 **Buried concrete**

Based on guidelines provided in BRE Special Digest 1 (BRE 2005) and the information presented in Section 5.6.10 (Table 5.15), the shallow soils (Head Deposits, Cornbrash Formation and Forest marble Formation) can all be classified as Design Sulfate Class DS-1 and ACEC Class AC-1s (AC-1 for the Made Ground).

This equates to a Design Chemical Class¹³ of DC-1.

The designer should check and confirm the classification of concrete using the information presented in Appendix B and Appendix C during the design.

¹³ The calculated ACEC class can be used in accordance with BS 8500-1+A2 (2019), Table A.9 to select the Designated Concrete (DC) class for an intended working life of 50 years. However, the designer is referred to BS 8500-1+A2 (2019), for full details and notes to Table A.9, including any Additional Protective Measures (APMs).

Himley Village, Bicester| Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

7.1 Updated conceptual model

Updated ground model 7.1.1

The initial conceptual site model developed from the desk study and field reconnaissance survey Section 3 has been updated using the findings of the ground investigation and is presented in Cross-ref (usually Section 5). This CSM is the basis for the geo-environmental assessment presented in this section.

Updated exposure model 7.1.2

Following the ground investigation, the plausible contaminant sources, receptors and pathways identified in the preliminary geo-environmental exposure model (Section 3) have been updated or confirmed as follows.

7.1.2.1 Sources

The following potential source has been added to the exposure model.

- Made Ground associated with the track in the centre of the site, possibly including elevated » concentrations of metals, metalloids, asbestos fibres, Asbestos Containing Materials (ACM), polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons (S12).
- General Made Ground across both the main site and additional works areas, possibly including » elevated concentrations of metals, metalloids, asbestos fibres, Asbestos Containing Materials (ACM), polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons (S13)
- Potential asbestos containing materials associated with the abandoned house and garage on » site. (S14)

7.1.2.2 Receptors

No receptors have been removed from, or added to, the exposure model.

7.1.2.3 Pathways

No pathways have been removed from, or added to, the exposure model.

Using the updated ground model and updated exposure model, generic risk assessment is undertaken as presented below.

7.2 Risk assessment approach

Using the updated CSM, a Tier 2 generic quantitative risk assessment (GQRA) for identified receptors based on all media sampled has been undertaken in accordance with the principles of LCRM.

Firstly, the risks associated with the identified potential contaminant linkages have been estimated using standardised methods (typically involving comparison of site data with published 'screening values'). Secondly, where screening values are exceeded, the result has been evaluated in an authoritative review of the findings with other pertinent information to determine whether or not the exceedance is or is not acceptable in the site-specific circumstances.

The data sets used in the assessment comprise the analytical results obtained by Hydrock as listed in Section 5.

In cases where potentially unacceptable risks are indicated and/or the land is potentially unsuitable for its intended use, actions such as more advanced stages of risk assessment (Tier 3, detailed quantitative risk assessment (DQRA)) or remediation are proposed in Section 7.10.

73 Human health risk assessment

7.3.1 Soils Assessment

7.3.1.1 Generic Assessment Criteria

The soil screening values used are generic assessment criteria (GAC) (i.e. derived in accordance with EA CLEA guidance (2009) using the updated exposure model detailed in Defra SP1010 (2014). with the exception of published C4SLs. The term 'GAC' used in this report is inclusive of all generic soil screening values.

Based on the proposed development, generic assessment criteria (GAC) based on a default residential with homegrown produce CLEA land use scenarios have been adopted.

GAC are selected based on the following hierarchy:

- Category 4 Screening Levels (C4SL), where available. »
- SoBRA Acute GAC for free cyanide, as acute dose toxicity is the primary risk driver. »
- Hydrock GAC, derived by Hydrock as detailed in Appendix E. »

The results of the assessment are presented in Appendix E.

7.3.1.2 Data sets

The data sets used in this report are based on the conceptual site model and the proposed development, and are summarised as:

- Made Ground associated with the track in the centre of the site: »
- 'General' Made Ground across the site: »
- Topsoil; »
- natural soils of the Head Deposits; >>
- natural soils of the Cornbrash Formation: and »
- natural soils of the Forest Marble Formation

GAC based on a soil organic matter (SOM) of 2.5% have been adopted for all soils based on laboratory results. Assessment sheets are presented in Appendix E

7.3.1.3 Assessment Results

Based on individual test results that exceed the GAC, the chemicals of potential concern (CoPC) which require further assessment are summarised in Table 7.1.

Table 7.1: CoPC in soils which require further assessment (human health)

CoPC	GAC (mg/kg)	GAC Source	No. samples	Min. (mg/kg)	Max. (mg/kg)	No. samples >GAC
Made Ground associate	ed with the t	rack in the c	entre of the si	te		
Benz(a)anthracene	12	Hydrock Derived	15	0.10	34.00	2
Benzo(a)pyrene	5	C4SL - CL:AIRE 2014	15	0.10 28.90		3

Benzo(b)fluoranthene	3.3	Hydrock Derived	15	0.10	32.60	5
Chrysene	22	Hydrock Derived	15	0.10	33.70	2
Dibenz(ah)anthracene	0.29	Hydrock Derived	15	0.10	3.45	5

All samples submitted for analysis of metals, petroleum hydrocarbons (PHCs), and pesticides reported concentrations below the GAC and/or laboratory limit of detection.

As shown in Table 7.1, the CoPC in the Made Ground associated with the track in the centre of the site, are benz(a)anthracene (2 out of 6 samples), benzo(a)pyrene (3 out of 6 samples), benzo(b)fluoranthene (5 out of 6 samples), chrysene (2 out of 6 samples) and dibenz(ah)anthracene (5 out of 6 samples). The presence of benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene and dibenz(ah)anthracene in the Made Ground associated with the track requires further consideration.

The phrase 'further assessment required' is used to denote soil concentrations that exceed a GAC. This does not necessarily mean that the soil is 'contaminated' or not otherwise suitable for use. The assessment and any mitigation required are to ensure the site does not pose an 'unacceptable risk' as defined under Planning and Part 2A of EPA 1990.

Asbestos 7.3.2

Asbestos was not identified in any of the laboratory testing of soil samples.

Risk evaluation 7.3.3

The screening exercise has identified PAH's in Made Ground associated with the track in the centre of the site, at concentrations above the GAC. These are considered further here to assess if the exceedance may be acceptable with respect to the proposed development. The phrase 'further assessment' does not necessarily mean that the soil is 'contaminated' or not fit for use.

7.3.3.1 PAH's in the Made Ground associated with the track in the centre of the site

There are a number of PAH's in exceedance of the GAC's for a residential with home grown produce (2.5% SOM) land use including:

- » Benzo(a)anthracene at a maximum UCL of 34mg/kg above the GAC of 12mg/kg, recorded in samples taken from HP01 and HP05.
- » Benzo(a)pyrene at a maximum UCL of 28.90mg/kg above the GAC of 5mg/kg, recorded in samples taken from HP01, HP02 and HP05.
- » Benzo(b)fluoranthene at a maximum UCL of 32.60mg/kg above the GAC of 3.3mg/kg, recorded in samples taken from HP01, HP02, HP03 and HP05.
- » Chrysene at a maximum UCL of 33.70mg/kg above the GAC of 22mg/kg, recorded in samples taken from HP01 and HP05.
- » Dibenz(ah)anthracene at a maximum UCL of 3.45mg/kg above the GAC of 0.29mg/kg, recorded in samples taken from HP01, HP02, HP03 and HP05.

There are PAH's in exceedance of the GAC's in four out of the five samples taken along the track. Hydrock considers that the Made Ground associated with the track on site is unsuitable for a residential with home grown produce land use. In addition, the screening exercise identified that benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene and dibenz(ah)anthracene were also in exceedance of the POS GAC's and therefore is unsuitable for a POS end use. If residential with

home grown produce or POS land use is proposed in this area, an engineered cover system is required to break the source-pathway-receptor linkage with regard to human health, related to asbestos and heavy metal contamination.

This Made Ground material would however, be suitable for use underneath areas of hardstanding where direct contact with the soil is impossible. This is due to elevated concentrations of PAH's only presenting a risk to human health if direct contact is possible.

7.4 Phytotoxicity risk assessment

Risk estimation 7.4.1

Priority phytotoxic chemical concentrations have been screened against published values to determine the likely risk to plant growth (phytotoxic GAC). Phytotoxic GAC based on a pH of >7% have been adopted for all soils based on laboratory results.

As with human health, individual sample test results are compared directly with the phytotoxic GAC.

Results indicate that all CoPC are below the relevant phytotoxic GAC, therefore the contaminant linkage is incomplete.

7.5 Pollution of controlled waters risk assessment

Risk estimation 7.5.1

The risks to groundwater and surface water from contaminants on site have been assessed in accordance with the Environment Agency (2006) Remedial Targets Methodology (RTM).

Site contaminant loadings are compared with relevant screening values (Water Quality Targets(WQTs), which are linked to the CSM.

Acceptable WQT are defined for protection of human health (based on Drinking Water Standards (DWS)) and for protection of aquatic ecosystems (Environmental Quality Standards (EQS)).

As related specifically to this site, the data are compared with criteria selected in accordance with the methodology presented in Appendix E. This methodology involves selecting which of several alternative risk scenarios apply in this case. The assessment is presented in

Table 7.2 below, with the justification for the scenarios selected explained in the following text:

- Cornbrash Formation secondary A aquifer. »
- Forest Marble Formation is a principal aquifer. »
- There is a drainage ditch running down the centre of the site »
- There is a pond just off the north eastern corner of the site, however this pond is up slope of the site and at very low risk of groundwater on site leeching into it,

Table 7.2: Summary of water quality risk assessment protocol

Hydrock	2 Water body receptors	Secondary receptors	Example contaminant linkages	RTM level and data used	Water quality targets
D	Groundwater Surface water.	Human health (abstraction).	Contaminants from site leach or seep into a groundwater body that feeds inland surface	RTM Level 2 - Groundwater. Direct comparison of	DWS EQS (inland)

HX drock Water body receptors	Secondary receptors	Example contaminant linkages	RTM level and data used	Water quality targets
	Aquatic ecosystem.	water by base flow. The surface water may be used for human consumption and is an aquatic ecosystem.	surface water samples	

Notes:

Some EQS are water hardness dependent. This is measured either in the receiving surface water or in groundwater (if it is part of the pathway), or is estimated from national maps.

Inland waters EQS applicable to freshwater, 'other' waters EQS applicable to coastal or transitional waters.

This table and the results of the assessment are considered as a first screening for potential risks of pollution of Controlled Waters. More specific requirements may be stipulated by the relevant Agency.

The results of the screening assessment are presented in Appendix E and are summarised in Table 7.3.

In some instances, the reporting limit (or detection limit) quoted by the laboratory may be greater than the WQT that it is being assessed against. As the current exercise is an initial screening assessment, further assessment of these elements has not been undertaken.

CoPC	₩QT (µg/l)	Basis for WQT	No. samples	No. samples above LoD	Min. (µg∕l)	Max. (µg∕l)	No. samples exceeding WQT and above LoD
Shallow grour	ndwater ii	n the Cornbrash	Formation o	and Forest M	larble Form	nation	
Copper	1	EQS	5	5	0.7	2.7	4
Nickel	4	EQS	5	5	5	6.5	5
Lead	1.2	EQS	5	5	0.7	2.3	4
Free Cyanide	1	EQS	5	5	1.5	5.1	5

 Table 7.3: CoPC which require further assessment (controlled waters)

Note: the maximum recorded value is compared with the water quality target.

7.5.2 Risk evaluation

The EQS for copper, nickel, lead and free cyanide are exceeded as shown above in Table 7.4.

Whilst there are exceedances of the water quality targets, these exceedances are considered not to represent a significant risk of pollution of Controlled Waters from an on-site source as there is no

evidence of artificial accumulations of these substances on the site. Either they originate from the natural geology (Shand et. al. 2007) or they represent inflow from an off-site source. +

Furthermore, the inland waters EQSs for copper, nickel and lead are based on the bioavailable fraction and because bioavailability has not been calculated for these metals the assessment is conservative as it assumes 100% bioavailability.

It would be technically challenging and probably disproportionately costly to remove these natural contaminants from the water or to prevent further infiltration.

Hydrock believes that the risks to Controlled Waters do not need further consideration.

7.6 Ground gases risk assessment

7.6.1 Data

It is judged from the available evidence that the gas generation potential at the site is negligible and as such the monitoring regime suggested by CIRIA is not proportionate to the risk. The justification for this is there are no landfills are located within 500m of the site and there is no evidence of significant thicknesses of biodegradable or Made Ground material on the site. However, three monitoring rounds over three weeks have been undertaken to confirm the insignificant nature of risk.

Hydrock has undertaken the three monitoring rounds, including during periods of falling, but not low atmospheric pressure. As such, the conclusions presented below are not considered to approximate to worst-case conditions.

7.6.2 Assessment

The risks associated with the ground gases methane (CH₄) and carbon dioxide (CO₂) have been assessed using BS 8485:2015 +A1:2019, which cites the guidelines published by CIRIA (C655, 2007) (known as Situation A).

There is an alternative assessment method described by the NHBC (2007) which is referenced in BS8485 as good practice guidance and is directly relevant to residential houses built under the NHBC scheme with beam and block construction ground floors. As this building construction design is not applicable for the planned development being considered in this report the risk assessment has been carried out using the characteristic situation approach detailed in BS 8485.

The assessment guidelines set out in Table 2 of BS 8485 are based on interpretation of the gas concentrations and the gas flow rates. The quantitative assessment has been carried out by comparing the individual gas concentrations and gas screening values (GSV¹⁴) in Appendix A with the published CS thresholds (BS 8485 Table 2), in addition to a worst-case GSV assessment in accordance with section 6.3.7 of BS 8485. The assessment is summarised in Table 7.4 and the full assessment is presented in Appendix D.

In addition, Table 7.4 summarises a ternary plot assessment of the data (assessment of ground gas ratios ($O_2 + N_2$, CO_2 and CH_4)), undertaken in general accordance with guidance by Wilson et. al. (2018). The ternary plot assessment is presented in Appendix D.

Table 7.4: Ground gas	s risk assessment
-----------------------	-------------------

	Min	Max	Typical	Comment
Steady Flow Rate (l/hr)	0	O.8	<1	87.5% of the steady flow rates are <0.01.

¹⁴ Note: GSV is synonymous with 'site characteristic hazardous gas flow rate' (Q_{hgs}) of BS 8485:2015 +A1:2019 Table.

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023 46

	Min	Max	Typical	Comment
Methane (%)	0.1	0.1	<1	There are no concentrations of methane
Carbon Dioxide (%)	0.2	3.6	<5	elevated above 1% and no concentrations of carbon dioxide, elevated above 5%. Assessment of the data on a ternary plot of ground gas ratios (O ₂ + N ₂ , CO ₂ and CH ₄), in accordance with guidance by Wilson et. al. (2018), indicates the ground gas present is likely to represent fresh air.
Carbon Monoxide (ppm)	0	2	>1	-
Hydrogen Sulphide (ppm)	0	1	>1	-
Oxygen (%)	16.7	19.8	<17	-
Carbon Dioxide GSV based on Maximum Values (Site) (I/hr)	0	0.00027	<0.07	CS1
Methane GSV based on Maximum Values (Site) (l/hr)	0	0.0008	<0.07	CS1

⁽ⁱ⁾ Hydrock assume that values are considered to be atypical if 95% or more of the remaining data are less than the value under consideration

For the purposes of the calculation, where the recorded gas flow rate is below the manufacturer's limit of detection for the instrument used, the detection limit has been adopted for the gas flow rate.

As indicated in Table 7.4, the computed GSV for carbon dioxide and methane indicates CS1 conditions and methane and carbon dioxide at concentrations are 'typically' below 1% and 5% respectively. As such, the site is classified as Characteristic Situation 1 (Situation A).

Based on the data no mitigation measures are required.

7.6.3 Off-site risks from carbon dioxide and methane

The National Planning Policy Framework requires that a developed site should be incapable of being determined as contaminated land under Part 2A of the Environmental Protection Act 1990. This position includes a consideration of the potential for off-site migration of ground gases that may impact on adjacent properties.

Consequently, it may be necessary to consider the imposition of measures to protect adjacent, offsite receptors. In this case due to the negligible ground gas level recorded, this is not required.

7.7 Construction materials risk assessment

7.7.1 Water pipelines

A formal water pipe investigation and risk assessment is beyond the scope of this report. However, the findings of this investigation have been compared to the threshold values in Water UK HBF (2014), Table 1 as far as is practicable.

The site is predominantly previously undeveloped, with a small area of Made Ground associated with the track in the centre of the site. Assessment has indicated no exceedance of the threshold

values in the greenfield part of the site therefore standard pipework is considered suitable, subject to agreement with the water supply company.

However, in the area surrounding the Made Ground track on site, a number of the threshold values for petroleum hydrocarbons are exceeded. Therefore, barrier pipes are required for water pipelines installed in this material, subject to agreement with the water supply company.

7.7.2 Other construction materials

Plastic pipes for drains and sewers are manufactured from unplasticized poly(vinyl chloride) (PVC-U), polypropylene (PP) or polyethylene (PE). These materials may be affected by the presence of organic compounds in the soil.

In accordance with the British Plastics Federation Guidance (August, 2018), in the greenfield areas of the site, concentrations of PAH, and BTEX are below 100mg/kg and concentrations of petroleum hydrocarbons (TPH) are below 200 mg/kg, PVC-U, PP or PE pipework is considered suitable.

In accordance with the British Plastics Federation Guidance (August, 2018), in the Made Ground track material, concentrations of PAH are above 100mg/kg and the concentrations of petroleum hydrocarbons (TPH) are above 200 mg/kg, the pipework manufacturer should be consulted with regard the suitability of the pipework.

The implications for buried concrete are discussed in Section 6.13.

7.8 Contamination risks to ground workers

7.8.1 Introduction

Whilst risks to construction workers are not discussed in detail, the following section discusses potential risks that should be considered.

Information presented in this document is provided to assist in managing the risk associated with contamination in soil and groundwater at the site but is not definitive. The Contractors are responsible for undertaking their own assessments and assessing what risks are present and what control measures are required.

Task specific risk assessments and method statements should be in place, and risks and required mitigation measures communicated to all relevant personnel prior to the works commencing. Appropriate PPE and, if required, RPE should be provided and utilised.

7.8.2 Metals, metalloids, PAH and petroleum hydrocarbons

The soils contain PAH's recorded as pervasive concentrations throughout the Made Ground associated with the track in the centre of the site.

7.8.3 Ground Gas

It is noted that concentrations of carbon dioxide (an asphyxiant) in the soil exceed HSE Workplace Exposure Limits for personnel in the working environment of 1.5% for short term (15 minutes) exposure and 0.5% for long term exposure. Furthermore, soil concentrations of oxygen are below the HSE recommendations of 18%.

Soil gas concentrations are not necessarily reflected by those in the breathing zone, as such, all Contractors and maintenance workers should be made aware of the possible presence of carbon dioxide and should take all necessary health and safety precautions when working in trenches or confined spaces.

7.8.4 Asbestos

As no clearly identifiable ACM has been seen during the site walkover or during the ground investigation and no fibres have been detected in soil samples analysed by laboratory testing, CAR2012 does not apply. The contractors should undertake a watching brief during the works. If any suspect material is encountered, works in that area of the site should stop, the area fenced off and Hydrock should be notified.

7.9 Findings of the generic contamination risk assessments

The potential sources, pathways and receptors identified in the desk study (27141-HYD-XX-XX-RP-GE-1001-S2-P01) have been investigated (Sections 5 and 0) and assessed (Sections 7.2 to 7.7). A Source-Pathway-Receptor linkage assessment has been undertaken and is presented in Appendix G (Table K.2).

A summary of the Source-Pathway-Receptor (SPR) contaminant linkages for which the risks may be unacceptable and require mitigation (those that are moderate or higher) are discussed in

Table 7.5.

Table 7.5 assumes the following SPR linkages which have been discounted (subject to agreement) at the risk evaluation stage are confirmed by the regulators and the warranty provider as not requiring further consideration (mitigation). If these assumptions are not agreed during regulatory discussions, the conclusions as noted in

Table 7.5

Table 7.5: Residual risks following risk evaluation

Conta	minant Linkage			Comments	
Pollutant Linkage	Sources	Pathways	Receptors	General	Mitigation
PL 1.	Pervasive PAH's in the Made Ground associated with the track in the centre of the site.	Ingestion, inhalation or direct contact.	Human health. Water Supply Pipes	Significant exceedance of the GAC in relation to PAH's.	Mitigation required in the form of an engineered cover system in the area of the track should this material remain in place. In addition, barrier pipes are required for water pipelines installed in this material, subject to agreement with the water supply company. If plastic pipes for drains and sewers are to be installed in this material, the pipework manufacturer should be consulted with regard the suitability of the pipework. Alternatively, if this Made Ground material was removed from site or

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023 49

Conta	minant Linkage		Comments		
Pollutant Linkage	Sources	Pathways	Receptors	General	Mitigation
					reused in areas underneath hard-standing, this would break the SPR linkage and no mitigation measure would be required.

7.10 Mitigation measures

The outline remediation strategy presented below is provided for guidance only, and does not represent a 'Remediation Options Appraisal', or a 'Remediation Strategy', prepared in accordance with LCRM (2021).

As shown in

Table 7.5 (and subject to regulatory (and NHBC) agreement), Hydrock consider the following mitigation is required to ensure the site is suitable for use for the proposed end use.

If the Made Ground track is to remain on site:

- The installation of a 600mm engineered cover system, in gardens and 450mm in public open » space, comprising a bonded geogrid break layer (e.g. TX160G), subsoil beneath a topsoil thickness of between 150mm and 300mm (PL1).
- Installation of barrier pipework if water pipelines are to be installed. (PL1). »
- If plastic pipes for drains and sewers are to be installed in this material, the pipework » manufacturer should be consulted with regard the suitability of the pipework (PL1).

If the Made Ground track is to be removed the Made Ground must be removed from site or re-used underneath areas of hardstanding to break the SPR linkage and therefore no mitigation measures are required. (PL1).

The methodology for the remediation should be set out in a Remediation Strategy (which will include the 'Implementation Plan', the 'Verification Plan' and the 'Long Term Monitoring and Maintenance Plan'), which will need to be submitted to the warranty provider and the regulatory authorities for approval.

In addition, the production of a Materials Management Plan and its approval by a Qualified Person will be required to allow reuse of suitable material at the site in accordance with waste regulations.

Verification reports by a competent independent geo-environmental specialist will be required following completion of any remedial works (including ground gas membrane installation).

8. Waste and materials management

Introduction 8.1

The Waste Framework Directive (WFD) (2009/98/EC) defines waste as 'any substance which the holder discards or intends to discard.' In a geo-environmental context, the waste is most often 'soil' and the two main scenarios are offsite disposal of the material as a waste and/or reuse of the material on site. For cost and sustainability reasons, reuse is preferred to off-site disposal.

Section 8.2 below describes the key issues relating to off-site disposal to landfill and Section 8.3 considers requirements relating to reuse of soils and materials management.

8.2 Waste disposal

8.2.1 Principles

Based on the WFD, any material excavated on site may be classified as waste and it is the responsibility of the producer of a material to determine whether or not it is waste. Where off-site disposal is undertaken, the following guidance applies.

Classification is a staged process:

- » A hazardous waste is defined under the WFD as one which possesses one or more of fifteen defined hazardous properties. If a waste is not defined as hazardous, then it is non-hazardous.
- Where the materials are soil, it is then be assigned using the 'List of Waste Codes', which » classifies the material as either:
 - hazardous (17-05-03), which is defined as "soil and stones containing hazardous substances"; » or
 - » non-hazardous (17-05-04), which is defined as "soil and stones other than those mentioned in 17-05-03".
 - » Hydrock utilise the proprietary assessment tool, HazWasteOnline™ to undertake this assessment.
- Waste Acceptance Criteria (WAC) testing is then undertaken if required, and are only applicable » following classification of the waste, and only where the waste is destined for disposal to landfill. The WAC are both qualitative and quantitative. The WAC and the associated laboratory analyses (leaching tests) are not suitable for use in the determination of whether a waste is hazardous or non-hazardous.

It should be noted that some non-hazardous wastes may be suitable for disposal at an inert landfill as non-hazardous waste, subject to meeting the appropriate waste acceptance criteria.

It should be noted that classification must be undertaken on the waste produced, by the waste producer. Necessary sampling frequency to adequately characterise a soil population is defined within WM3.

Further discussion with regards to the characterisation process for different scenarios and waste types is provided below.

Topsoil

Topsoil is biodegradable, therefore if it is surplus to requirements and cannot be re-used in accordance with a Materials Management Plan, it cannot be classified as inert. As such, topsoil needs to be classified by a staged assessment and sampling process and would either be classified as hazardous or non-hazardous, depending upon the results of the assessment.

Greenfield sites

Waste from completely greenfield sites may be accepted at a landfill as inert waste if it meets the requirements of paragraph 10 (wastes acceptable without testing at landfills for inert waste) of the Landfill (England and Wales) (Amendment) Regulations (2005) ('the Regulations') can be met. Paragraph 10 of the Regulations states, "soils may be able to be classified as inert waste without testing, if:

- they are single stream waste of a single waste type; »
- there is no suspicion of contamination and they do not contain other material or substances such » as metals, asbestos, plastics, chemicals, etc.....

As such, where the site is greenfield and the waste producer is confident about the quality of a soil (i.e. naturally occurring and uncontaminated), further sampling and laboratory testing is not necessary for the Basic Characterisation and this can be undertaken on qualitative Waste Acceptance Criteria testing.

In this instance the waste producer can characterise the waste based on visual assessment and written description of the waste in addition to supporting evidence such as a desk study assessment of the greenfield status. However, it should be noted this characterisation is subject to agreement by the landfill operator who may require testing to be undertaken to confirm classification.

Contaminated or potentially contaminated sites

If the site is brownfield, contaminated or potentially contaminated, the waste must undergo an initial waste classification exercise using background information on the source and origin of the waste and assessment of chemical test data in accordance with Environment Agency Technical Guidance WM3.

If following the initial waste classification exercise, the soils are acceptable for disposal to a nonhazardous landfill, further qualitative Waste Acceptance Criteria (WAC) testing is not required.

However, if soils are potentially able to be disposed to an inert landfill as non-hazardous waste, or require testing to determine if they can be disposed of to a stable non-reactive hazardous or hazardous class of landfill, the next stage of assessment is to undertake qualitative WAC testing. This will determine the Basic Characterisation and the landfill category at which the soils can be accepted.

Hazardous material must be subjected to WAC testing to determine whether it requires treatment before it can be accepted at the hazardous landfill, while non-hazardous material can be tested to determine whether it may be suitable for placement in an inert landfill.

8.2.2 HazWasteOnline[™] assessment

As the site is greenfield, HazWasteOnline[™] assessment is not technically required. However, it has been undertaken for completeness during the site investigation. The output of the HazWasteOnline[™] assessment is provided in Appendix E and a summary of the preliminary waste classification is provided below in Section 8.2.4.

Hydrock

8.2.3 WAC testing

As the site is greenfield, quantitative WAC testing is not required and as such has not been undertaken at this stage. Whilst unlikely, if requested, WAC testing may be required during the Basic Characterisation process required by the Landfill operator for the excavated material prior to disposal.

8.2.4 Preliminary waste disposal options

The site is greenfield (as proven by the desk study assessment and a visual assessment of the soils). However, the HazWasteOnline[™] assessment have been undertaken. As long as no unexpected contamination is encountered and if suitable segregation of different types of natural waste streams is put in place, for soils to be disposed of, it is considered that:

- » The Made Ground associated with the track is mostly classified (4 out of 5 samples) as non-hazardous based on the HazWasteOnline[™] assessment. However, one sample (HPO1) is classified as hazardous waste based on HP 3(i): Flammable, HP 7: Carcinogenic and HP11: Mutgenic, further details are included in the HazWasteOnline[™] assessment (Appendix E).
- » The 'general' Made Ground, topsoil, head deposits, Cornbrash Formation and Forest Marble Formation are likely to be classified as non-hazardous waste.

8.2.5 General waste comments

It should be noted that:

- » It is the waste producer's responsibility to segregate the waste at source and waste producers must not mix waste materials/streams or dilute hazardous components, for example by mixing with less or non-hazardous waste on site to meet WAC limit values.
- » The above preliminary assessment has been made on the basis of the soils tested as part of the ground investigation, using the HazWasteOnline[™] assessment. However, the formal classification of waste can only be undertaken on the material to be disposed of, and by the waste producer and the receiving landfill as license conditions vary from landfill to landfill.
- » Basic Characterisation should be undertaken in accordance with Environment Agency guidance by the waste producer. Hydrock can assist if required and this report will assist the characterisation. However, Basic Characterisation does not form part of the current commission and would require further assessment and testing on the wastes actually to be disposed.
- » Once the waste producer has undertaken an initial Basic Characterisation on each waste stream, they can manage the soils as part of the on-site processing programme (for example, stockpiling, treatment, screening and separation). The waste producer and landfill operator will then need to agree the suite of compliance testing for regularly generated waste to demonstrate compliance with the initial Basic Characterisation prior to disposal.
- » At the time of disposal, additional testing on the excavated soils to be disposed of, will likely be necessary.
- » Non-hazardous and hazardous soils require pre-treatment (separation, sorting and screening) prior to disposal.
- » The costs for disposal of non-hazardous and hazardous soils are significant compared to disposal of inert material.

- In addition to disposal costs, landfill tax will be applicable. Non-hazardous and hazardous » waste will generally be subject to the Standard Rate Landfill Tax. Inert or inactive waste will generally be subject to the Lower Rate Landfill Tax. The landfill tax value changes each April and can be found at https://www.gov.uk/government/publications/rates-and-allowanceslandfill-tax/landfill-tax-rates-from-1-april-2013.
- Before a waste producer can move waste to a landfill site for disposal, they need to check the » landfill site has the appropriate permit and must have completed the following¹⁵:
 - » Duty of care transfer note / Hazardous Waste consignment note, including comment as to if pre-treatment has been undertaken; and
 - Basic Characterisation of the waste, to include: description of the waste; waste code (using » list of wastes); composition of the waste (by testing, if necessary) and; WAC testing (if required).

8.3 Materials management

8.3.1 Introduction

Soils that are to remain on site, should be managed and reused in accordance with a Materials Management Plan (MMP), prepared in accordance with 'The Definition of Waste: Development Industry Code of Practice', Version 2 (CL:AIRE), known as the DoWCoP. Where all aspects of the DoWCoP are followed the soils are considered not to be waste, because they were never discarded in the first place.

Version 2 of the DoWCoP clearly sets out the principles and an outline of the requirements of a MMP. The following compliance criteria must be seen to apply to the MMP for the site:

- Factor 1: Protection of human health and protection of the environment.
- Factor 2: Suitability for use, without further treatment. .
- Factor 3: Certainty of Use. •
- Factor 4: Fixed Quantity of Material.

The reuse of soils at sites should be considered during the planning and development design process so that compliance with issues such as fixed quantity and certainty of use clearly relate to agreed site levels. Suitability of Use is normally evident from the remediation strategy or the design statement, which form an integral part of a MMP. However, some soils may need to be tested postexcavation to prove they are suitable for use.

Once the MMP is finalised, it must be declared by a Qualified Person (QP). The Declaration is an online submission as part of which the QP is required to confirm that the declaration is being made before the relevant works have commenced (i.e. it is not a retrospective application).

Once all material movements have been completed in accordance with the MMP a verification report must be produced, kept for 2 years and provided to the EA on request.

It should be noted that failure to comply with the requirements of the DoWCoP when re-using materials has potentially significant consequences for the waste holder. The risk is that the reused materials are still regarded as a waste that has been illegally deposited. From 1 April 2018, the scope of Landfill Tax has been extended to sites operating without the appropriate environmental disposal permit, and operators of illegal waste sites will now be liable for Landfill Tax. Further

¹⁵ ENVIRONMENT AGENCY. November 2010. Guidance on waste acceptance procedures and criteria. Waste acceptance at landfills. The Environment Agency.

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

information is available at: <u>https://www.gov.uk/government/publications/landfill-tax-disposals-</u>not-made-at-landfill-sites/landfill-tax-disposals-not-made-at-landfill-sites.

If soils are excavated and reused on sites (or moved to another site) without a MMP, exemption, or appropriate Permit in place, anyone who knowingly facilitates the disposal may be '*jointly and severally liable*' to any assessment of tax, fines or prosecution.

8.3.2 Materials management scenarios

The materials management scenarios present on site are discussed below.

It should be noted that more than one scenario may apply, dependent upon where the soils are proposed for reuse.

8.3.2.1 Clean, naturally occurring materials – reused on the site of origin

Where soils are naturally occurring, uncontaminated and are reused on the site they are excavated (i.e. greenfield site with documented site history, with no Made Ground), they will fall outside the Waste Framework Directive (WFD) (i.e. they will not be a waste when reused on the site of origin).

However, there needs to be certainty of that reuse, and evidence is necessary to support this strategy, for example through information provided during the planning process. The onus is on the developer to demonstrate that the materials are not a waste and will never become a waste. As such, a Materials Re-use Strategy is recommended to show certainty. Alternatively, if the volume of material is under 1,000 tonnes, then a U1 waste exemption may be applied for from the Environment Agency.

It may be noted that some 'clean naturally occurring materials' may still fail the 'suitable for use' test, for example, soils with a naturally high organic content may not be suitable for use because of their propensity to produce ground gases such as methane. Rules regarding other more unusual circumstances such as where natural soils contain an unacceptably high mineral content are described in the DoWCoP.

8.3.2.2 Clean, naturally occurring materials – transferred to other sites

Where soils are naturally occurring, uncontaminated and are transferred to other sites (i.e. direct transfer), they will not become waste as long as the transfer is undertaken in accordance with the DoWCoP. A MMP must be prepared for the receiving site and the materials movement must be noted in the MMP of the Donor site. This movement must have been declared to CL:AIRE prior to the works commencing.

8.3.2.3 Made Ground and other contaminated soils

On sites where Made Ground or contaminated soils are present, any soils excavated will be a waste as soon as they are excavated (even if they are clean, naturally occurring materials), unless they are subject to reuse in accordance with the DoWCoP. As such, for any brownfield site or a site where Made Ground is present and soils are being moved and reused, the materials could be deemed a waste, subject to either:

- a Materials Management Plan (MMP), to prevent the material being classified as a waste following reuse; or
- an exemption (for limited volumes); or
- an environmental permit, dependant on its status.

Other commonly occurring circumstances are:

If Made Ground is being moved between sites, it must be ensured that appropriate permits are in place to ensure the soils are not classified as a waste. Made Ground cannot be moved between sites under DoWCoP alone and would require relevant permits as part of the MMP documentation for the Hub site the material is being treated at.

8.3.2.4 Made Ground and other contaminated soils

All recycled materials (6F2 etc.) must be produced under the 2013 WRAP 'Quality Protocol: Aggregates from inert waste', whether on site or off-site. If they are not, they will be deemed a waste and can only be used on site under a permit. More information can be found at https://www.gov.uk/government/publications/quality-protocol-production-of-aggregates-frminert-waste.

8.3.2.5 Geotechnical improvement requirements

Construction activities carried out on uncontaminated soils solely for the purpose of improving geotechnical properties e.g. lime / cement modification, are not generally regarded as waste treatment operations and do not require a permit.

However, should processing be needed (such as screening, treatment or improvement), that would constitute a waste activity and require a mobile treatment permit. This may be as simple as removing oversize material with an excavator bucket, to using a riddle bucket to remove hardcore to full mechanical screening.

Uncertainties and limitations 9.

9.1 Site-specific comments

Overhead services and underground services are present across the main site and additional works areas. Therefore areas around known services were not investigated as exploratory hole positions had to be located a minimum horizontal distance of 9m away from known underground and overhead services.

9.2 General comments

Hydrock Consultants Limited (Hydrock) has prepared this report in accordance with the instructions of Cala Homes (Cotswolds) Limited and Legal & General Homes (the Client), by e-mail under the terms of appointment for Hydrock, for the sole and specific use of the Client and parties commissioned by them to undertake work where reliance is placed on this report. Any third parties who use the information contained herein do so at their own risk. Hydrock shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared or for use of the report by any parties not defined in Hydrock's appointment.

This report details the findings of work carried out in June 2023. The report has been prepared by Hydrock on the basis of available information obtained during the study period. Although every reasonable effort has been made to gather all relevant information, not all potential environmental constraints or liabilities associated with the site may have been revealed.

Hydrock has used reasonable skill, care and diligence in the design of the investigation of the site and in its interpretation of the information obtained. The inherent variation of ground conditions allows only definition of the actual conditions at the locations and depths of trial pits and boreholes at the time of the investigation. At intermediate locations, conditions can only be inferred.

Groundwater data are only representative of the dates on which they were obtained and both levels and quality may vary.

Unless otherwise stated, the recommendations in this report assume that ground levels will remain as existing. If there is to be any re-profiling (e.g. to create development platforms or for flood alleviation) then the recommendations may not apply.

Information provided by third parties has been used in good faith and is taken at face value; however, Hydrock cannot guarantee its accuracy or completeness.

Where the existing reports prepared by others have been provided by the Client, it is assumed that these have been either commissioned by the Client, or can be assigned to the Client, and can be relied upon by Hydrock. Should this not be the case Hydrock should be informed immediately as additional work may be required. Hydrock is not responsible for any factual errors or omissions in the supplied data, or for the opinions and recommendations of others. It is possible that the conditions described may have since changed through natural processes or later activities.

The work has been carried out in general accordance with recognised best practice. Unless otherwise stated, no assessment has been made for the presence of radioactive substances or unexploded ordnance. Where the phrase 'suitable for use' is used in this report, it is in keeping with the terminology used in planning control and does not imply any specific warranty or guarantee offered by Hydrock.

The chemical analyses reported were scheduled for the purposes of risk assessment with respect to human health, plant life and controlled waters as discussed in the report. Whilst the results may be useful in applying the Hazardous Waste Assessment Methodology given in Environment Agency Technical Guidance WM3, they are not primarily intended for that purpose and additional analysis will be required at the time of disposal to fully classify waste. Discussion and comment with regards to waste classification are preliminary and do not form the requirements of 'Basic Characterisation' as required.

Assessment and testing for the presence of coal tar has only been completed at the locations of exploratory holes undertaken for risk assessment purposes. This investigation is not designed to provide a definitive assessment of the risk from coal tar, nor the waste classification for bituminous bound pavement arisings at the site.

Unless otherwise stated, at the time of this investigation the future routes of water supply pipes had not been established. This investigation and sampling strategy may not be fully compliant with UKWIR recommendations. Consequently, a targeted investigation and specific sampling and chemical testing may be required at a later date once the routes of the supply pipes are known. In addition, it is recommended that the relevant water supply company be contacted at an early stage to confirm its requirements for assessment, which may not necessarily be the same as those recommended by UKWIR.

Whilst the preliminary risk assessment process has identified potential risks to construction workers, consideration of occupational health and safety issues is beyond the scope of this report.

The non-specialist UXO screening has been undertaken for the purposes of ground investigation only (i.e. low risk activity in accordance with CIRIA Report C681). Further assessment should be undertaken with regards to other higher risk activities e.g. construction.

Please note that notwithstanding any site observations concerning the presence or otherwise of archaeological sites, asbestos-containing materials or invasive weeds, this report does not constitute a formal survey of these potential constraints and specialist advice should be sought.

Any site boundary line depicted on plans does not imply legal ownership of land.

10. Recommendations for further work

Following the ground investigation works undertaken to date, the following further works will be required:

- » discussion and agreement with utility providers regarding the materials suitable for pipework;
- » discussions with regulatory bodies and the warranty provider regarding the conclusions of this report;
- » assessment of tree influence on foundations and design of foundations;
- » production of a Foundation Zonation Plan;
- » discussions with piling Contractors regarding conclusions of this report and design of the piles;
- » provision of geotechnical design for the Category 2 structures (earthworks, and retaining structures.);
- » production of a Remediation Strategy and Verification Plan;
- » production of a Geotechnical Design and Earthworks Specification;
- » production of a Materials Management Plan relating to reuse of soils at the site and import of soils to the site; and
- » verification of the earthworks, remediation and materials management.

11. References

ASSOCIATION OF GROUND INVESTIGATION SPECIALISTS. 2006. Guidelines for Good Practice in Site Investigation. Issue 2. AGS, Beckenham.

ASSOCIATION OF GROUND INVESTIGATION SPECIALISTS. 2019. Waste Classification for Soils – A Practitioners' Guide. AGS, Beckenham.

BRE. 1980. Low-rise buildings on shrinkable clay soils: Part 1. BRE Digest 240. Building Research Establishment, Garston.

BRE. 1999. The influence of trees on house foundations in clay soils. BRE Digest 298. Building Research Establishment, Garston.

BRE. 2016. Soakaway design. BRE DG 365. BRE, Garston.

BRE. 2004. Working platforms for tracked plant: good practice guide to the design, installation, maintenance and repair of ground-supported working platforms. BR470. BRE, Garston.

BRE. 2005. Concrete in aggressive ground. BRE Special Digest 1, 3rd Edition. BRE, Garston.

BRITISH PLASTIC FEDERATION. August 2018. 'Designing Drains and Sewers for Brownfield Sites. Guidance Notes'. BPF Pipes Group (https://www.bpfpipesgroup.com/media/29155/Designing-drains-and-sewers-for-brownfield-sites.pdf)

BRITISH STANDARDS INSTITUTION. 2003. Geotechnical investigation and testing - Identification and classification of rock - Part 1: Identification and description. BS EN ISO 14689-1 Incorporating Corrigendum No.1. BSI, London

BRITISH STANDARDS INSTITUTION. 2004+A1 2013. Eurocode 7 – Geotechnical design - Part 1: General rules. BS EN 1997-1+A1. Incorporating Corrigendum February 2009. BSI, London.

BRITISH STANDARDS INSTITUTION. 2007. Eurocode 7 – Geotechnical design - Part 2: Geotechnical investigation and testing. BS EN 1997-2. BSI, London.

BRITISH STANDARDS INSTITUTION. 2009. Code of practice for earthworks. BS 6031 Incorporating Corrigendum No.1:2010. BSI, London.

BRITISH STANDARDS INSTITUTION. 2011. Code of Practice for Investigation of Potentially Contaminated sites. BS 10175 Incorporating Amendment No. 2:2017. BSI, London.

BRITISH STANDARDS INSTITUTION. 2012. Trees in relation to design, demolition and construction – Recommendations. BS 5837. BSI, London.

BRITISH STANDARDS INSTITUTION. 2013. Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs) BS 8576. BSI, London.

BRITISH STANDARDS INSTITUTION. 2015. Code of Practice for Foundations. BS 8004. BSI, London.

BRITISH STANDARDS INSTITUTION. 2015. Specification for topsoil. BS 3882. BSI, London.

BRITISH STANDARDS INSTITUTION. 2015. Code of practice for ground investigations. BS 5930. BSI, London.

BRITISH STANDARDS INSTITUTION. 2015+A2 2019. Concrete – complementary British Standard to BS EN 206-1 – Part 1: Method of specifying and guidance to the specifier. BS 8500-1+A2 2019. BSI, London.

CARD, G., WILSON, S. and MORTIMER, S. 2012. A pragmatic approach to ground gas risk assessment. CL:AIRE Research Bulletin RB17. CL:AIRE, London.

CARD, G., LUCAS, J., WILSON, S., 2019. Risk and reliability in gas protection design - 20 years on. Ground Engineering, August/September 2019.

CL:AIRE. 2011. The Definition of Waste: Development Industry Code of Practice, Version 2. Contaminated Land: Applications in the Real Environment (CL:AIRE), London.

CL:AIRE. 2016. CAR-SOIL™ Control of Asbestos Regulations 2012 - Interpretation for Managing and Working with Asbestos in Soil and Construction and Demolition Materials: Industry guidance. Contaminated Land: Applications in the Real Environment (CL:AIRE), London.

CL:AIRE, 2018. Ground gas monitoring and 'worst-case' conditions. Technical Bulletin 17, CL:AIRE, Buckinghamshire, August 2018.

CL:AIRE, 2020. Professional Guidance: Comparing Soil Contamination Data with a Critical Concentration. CL:AIRE, Buckinghamshire. ISBN 978-1-905046-35-5.

CL:AIRE, 2021. Good practice for risk assessment for coal mine gas emissions. CL:AIRE, Buckinghamshire. ISBN 978-1-905046-39-3

CLAYTON, C. R. I. 2001. Managing Geotechnical Risk. Improving productivity in UK building and construction. Thomas Telford, London.

CONCRETE SOCIETY, THE. 2013. Concrete industrial ground floors. A guide to design and construction. Technical Report 34 (4th Ed.). The Concrete Society, Camberley.

DEPARTMENT FOR ENVIRONMENT FOOD AND RURAL AFFAIRS (DEFRA). 2005. 'Landfill (England and Wales) (Amendment) Regulations', (with reference to previous iterations of the regulations).

DEFRA. 2014. SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document. Defra, London.

ENVIRONMENT AGENCY. 2006. Remedial Targets Methodology. Hydrogeological Risk Assessment for Land Contamination. The Environment Agency, Bristol.

ENVIRONMENT AGENCY. November 2010. Guidance on waste acceptance procedures and criteria. Waste acceptance at landfills. The Environment Agency.

ENVIRONMENT AGENCY. November 2011. Treatment of waste for landfill. Report -GEHO1111BVDF-E-E 913_11, Version 2 The Environment Agency. http://publications.environmentagency.gov.uk/pdf/GEHO1111BVDF-E-E.pdf

ENVIRONMENT AGENCY. 2021. Waste classification. Guidance on the classification and assessment of waste (1st Edition v1.2.GB) Technical Guidance WM3. The Environment Agency.

ENVIRONMENT AGENCY. 2023. Land Contamination: Risk Management (LCRM). The Environment Agency.

HATANAKA, M, UCHIDA, A, KAKURAI, M, and AOKI, M. 1980. A consideration on the relationship between SPT N-value and internal friction angle of sandy soils. Journal of Structural and Construction Engineering (Transactions of AIJ). 63. 125-129. 10.3130/aijs.63.125_2.

HEALTH and SAFETY EXECUTIVE. December 2005. Construction Information Sheet 47: Inspections and Reports (CIS 47 (Rev 1)). HSE.

HEALTH and SAFETY EXECUTIVE. 2014. HSG47 - Avoiding danger from underground services (Third edition). HSE.

HIGHWAYS AGENCY. 2009. Design Guidance for Road Pavement Foundations (Draft HD25). Interim Advice Note 73/06. Rev 1. Highway Agency, London.

HIGHWAYS AGENCY. 2014. Manual of Contract Documents for Highway Works, Specification for Highway Works: Volume 1, Amendment August 2014. Highway Agency, London.

THE HIGHWAYS AGENCY. 2015. Design Manual, Road and Bridges: Volume 4, Geotechnics and Drainage; Section 1, Earthworks; Part 3, HD 41/15, Maintenance of highway geotechnical assets. HD 41/15

THE HIGHWAYS AGENCY. 2019. Design Manual for Roads and Bridges. Managing Geotechnical Risk. CD 622 Rev O. Highway Agency, London.

MALLETT, H., COX, L., WILSON, S., and CORBAN, M. 2014. Good practice on the testing and verification of protection systems for buildings against hazardous ground gases. CIRIA Report C735. Contaminated Land: Applications in Real Environments, London.

UK HEALTH SECURITY AGENCY (UKHSA) and BRITISH GEOLOGICAL SURVEY. December 2022. Indicative Atlas of Radon Potential for Great Britain (Version 3) (https://www.ukradon.org/information/ukmaps)

MINISTRY OF HOUSING, COMMUNITIES and LOCAL GOVERNMENT (MHCLG). Internet published Planning practice guidance https://www.gov.uk/government/collections/planning-practiceguidance. MHCLG. London

NATHANAIL P., JONES A., OGDEN, R., AND ROBERTSON A. 2014. Asbestos in soil and made ground: a guide to understanding and managing risks. CIRIA Report C733 Contaminated Land: Applications in Real Environments, London,

NHBC and ENVIRONMENT AGENCY. 2008. Guidance for the safe development of housing on land affected by contamination. R&D Publication 66, 2 Volumes.

NHBC. 2023. NHBC Standards. NHBC, Milton Keynes. https://nhbc-standards.co.uk/

NHBC FOUNDATION. 2023. Hazardous ground gas - an essential guide for housebuilders. NF94. NHBC, Milton Keynes

PECK, R.B., HANSON, W.E., AND THORNBURN, T.H., Foundation Engineering, 2nd Edn, John Wiley, New York, 1967, p.310.

RAWLINS, B. G., McGRATH, S. P., SCHEIB, A. J., CAVE, N., LISTER, T. R., INGHAM, M., GOWING, C. and CARTER, S. 2012. The advanced geochemical atlas of England and Wales. British Geological Survey, Keyworth.

SCIVYER, C. and JAGGS M. 2023. Radon: Guidance on protective measures for new buildings. Building Research Establishment Report BR 211 6th Edition. BRE, Garston.

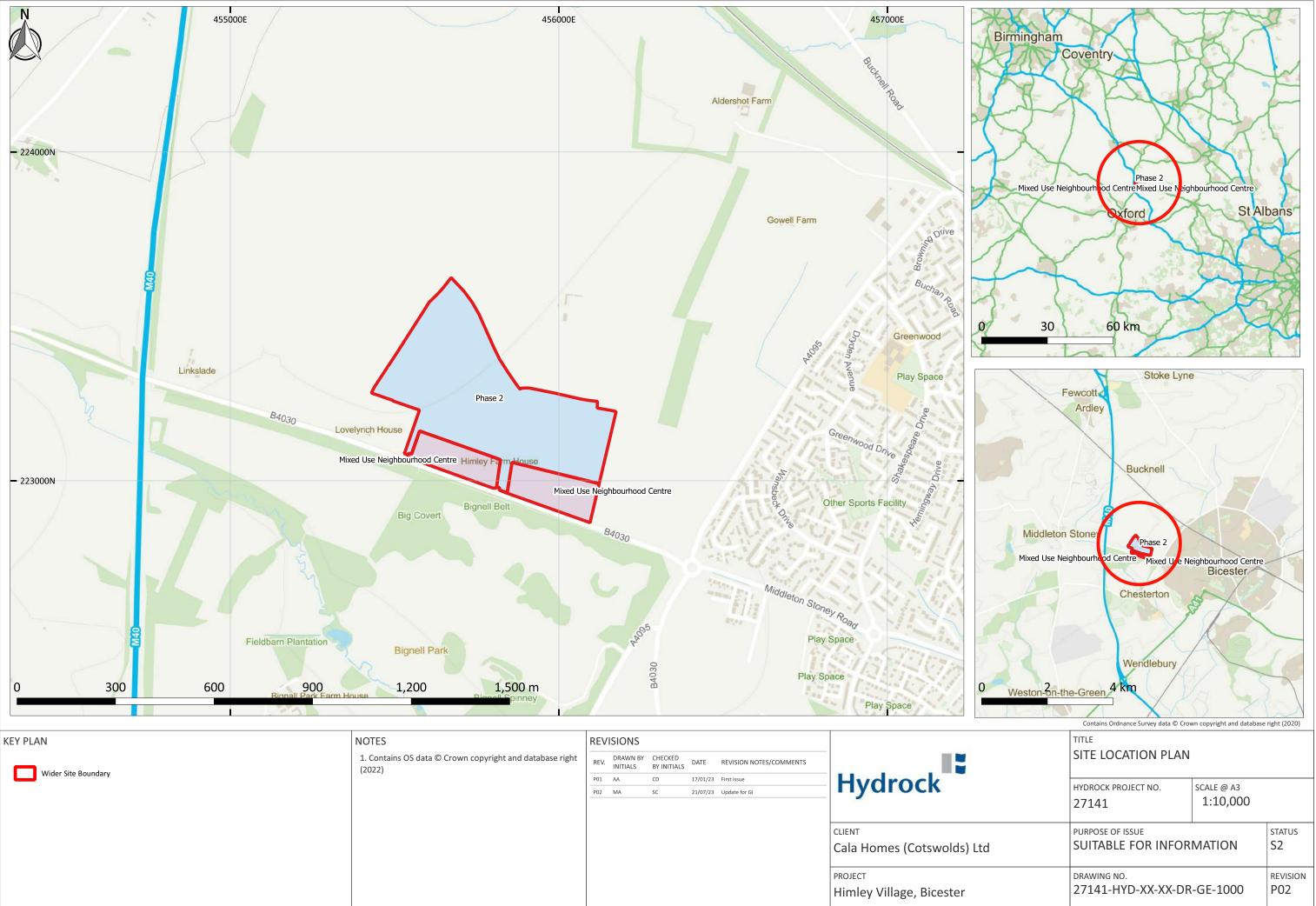
SHAND, P., EDMUNDS, W.M., LAWRENCE, A.R., SMEDLEY, PAULINE, BURKE, S. 2007. The natural (baseline) quality of groundwater in England and Wales. Environment Agency, 72pp. (RR/07/006)

SoBRA, 2017. Development of Generic Assessment Criteria for Assessing Vapour Risks to Human Health from Volatile Contaminants in Groundwater. 90pp. Version 1.0.

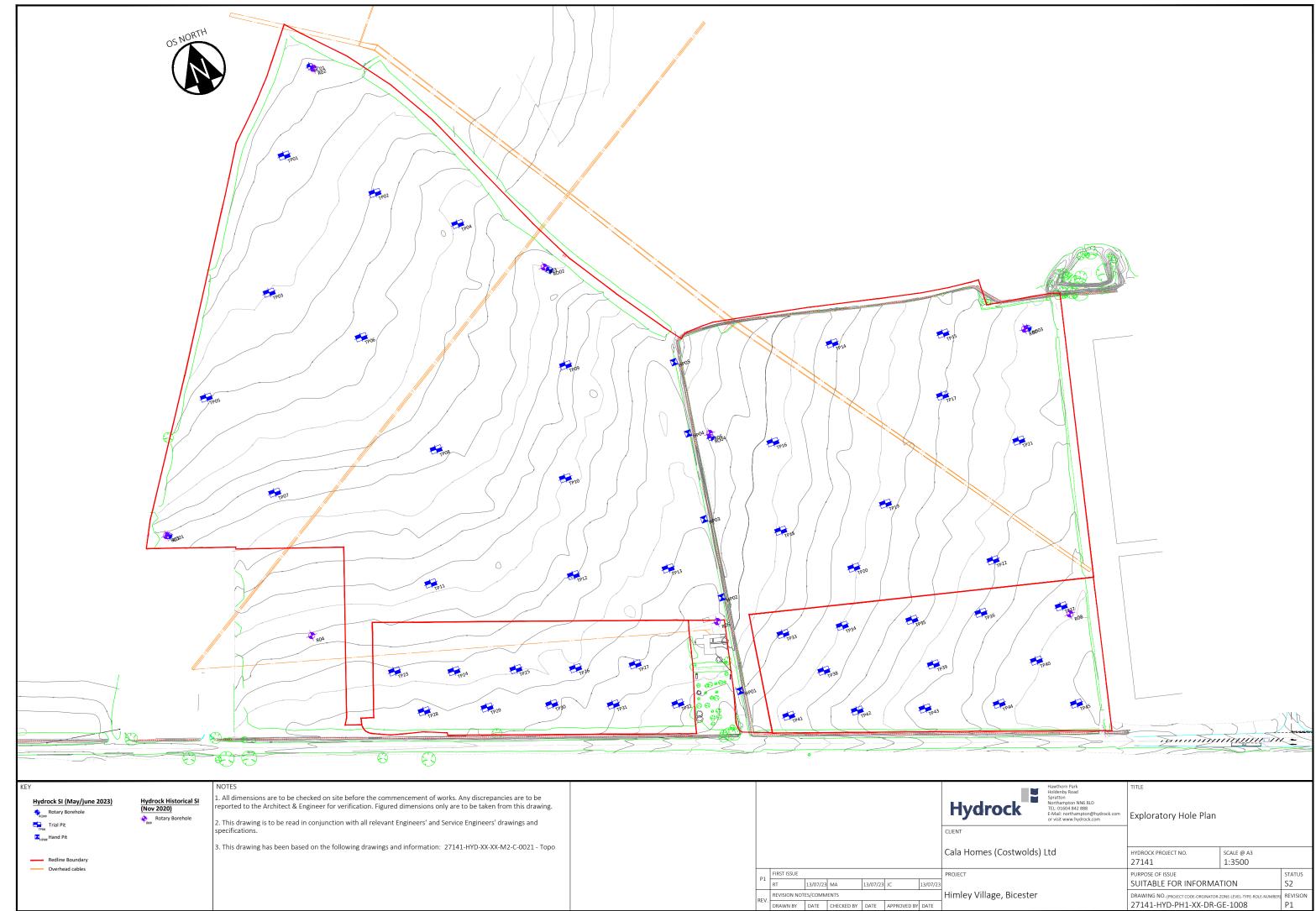
STONE, K., MURRAY, A., COOKE, S., FORAN, J. and GOODERHAM, L. 2009. Unexploded ordnance (UXO), a guide to the construction industry. CIRIA Report C681. Contaminated Land: Applications in Real Environments, London.

STROUD, M. A. 1975. The standard penetration test in insensitive clays and soft rocks. Proceedings of the European Symposium on penetration testing, 2, 367-375.

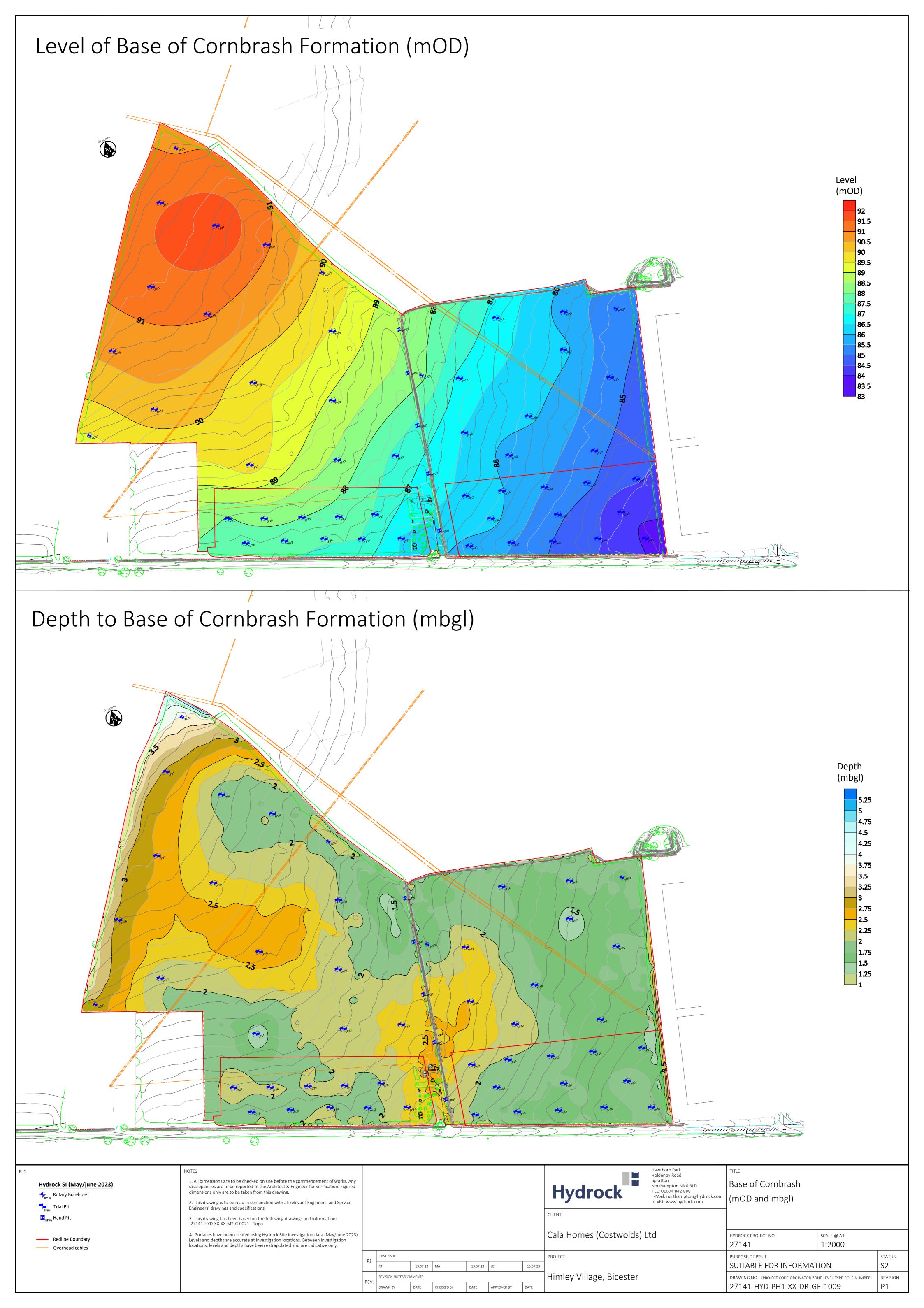
TOMLINSON. M.J. 2001. Foundation Design and Construction (6th Edition and 7th Edition). Prentice Hall Press

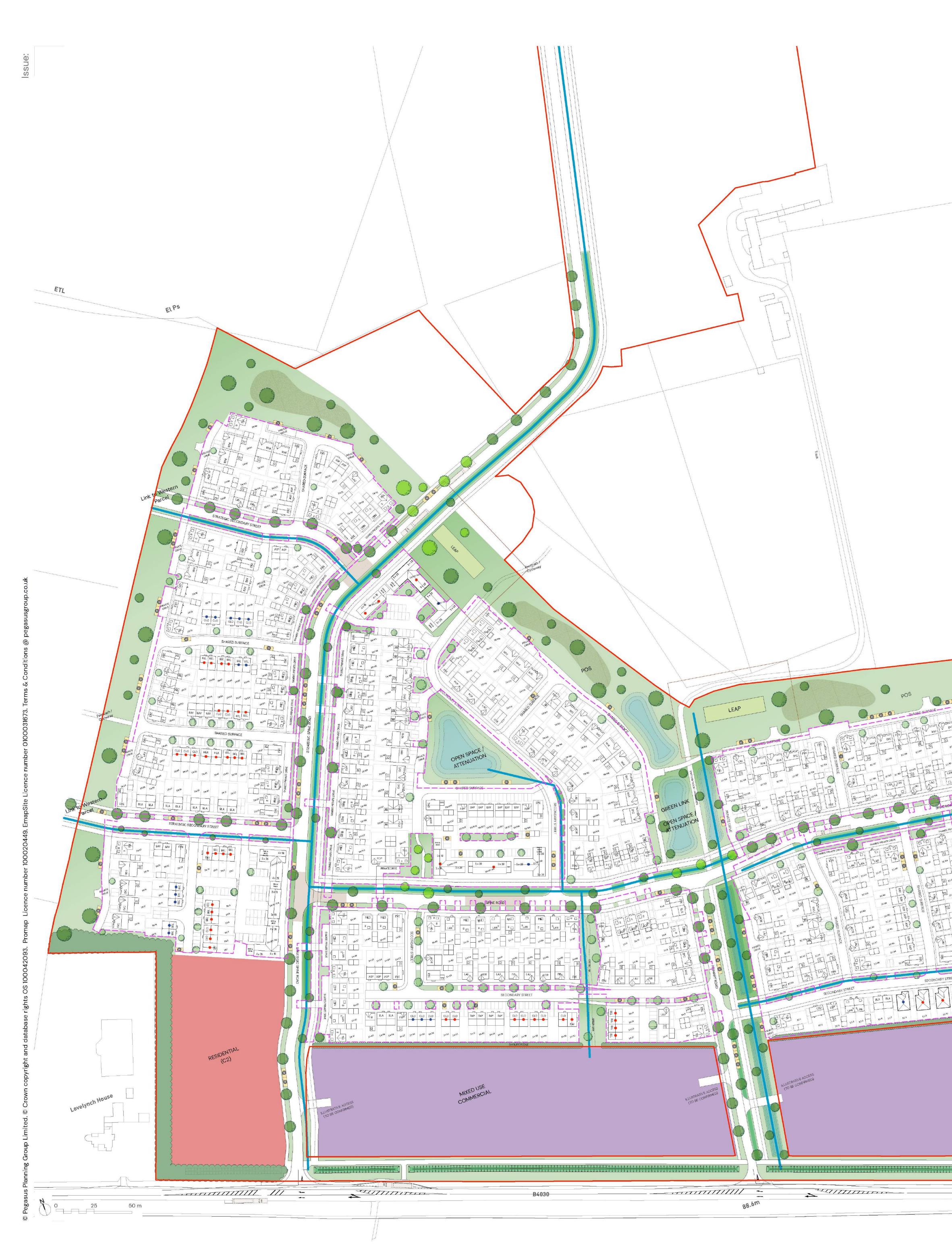

WASTE AND RESOURCES ACTION PROGRAMME (WRAP). October 2013. Quality Protocol. Aggregates from inert waste. End of waste criteria for the production of aggregates from inert waste.

WATER UK HBF. January 2014. Contaminated Land Assessment Guidance. Water UK and the Home Builders Federation.



Appendix A Drawings


Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023



KEY PLAN	NOTES	REV	ISIONS				
Wider Site Boundary	1. Contains OS data © Crown copyright and database right (2022)	REV.	DRAWN BY INITIALS	CHECKED BY INITIALS	DATE	REVISION NOTES/COMMENTS	
			AA	CD	17/01/23	First issue	Hydrock
		P02	MA	SC	21/07/23	Update for GI	- Hydrock
							CLIENT
							Cala Homes (Cotswolds) Ltd
							PROJECT
							Himley Village, Bicester

Hawthom Park Holdenby Road Spraton Northampton NN6 8LD TEI: 01604 842 888 E-Mail: northampton@hydrock.com or visit www.hydrock.com		Exploratory Hole Plan					
		hydrock project no. 27141	SCALE @ A3 1:3500				
Bicester		PURPOSE OF ISSUE	status S2				
		DRAWING NO. (PROJECT CODE-ORGINATOR-J 27141-HYD-PH1-XX-DR-G	revision P1				

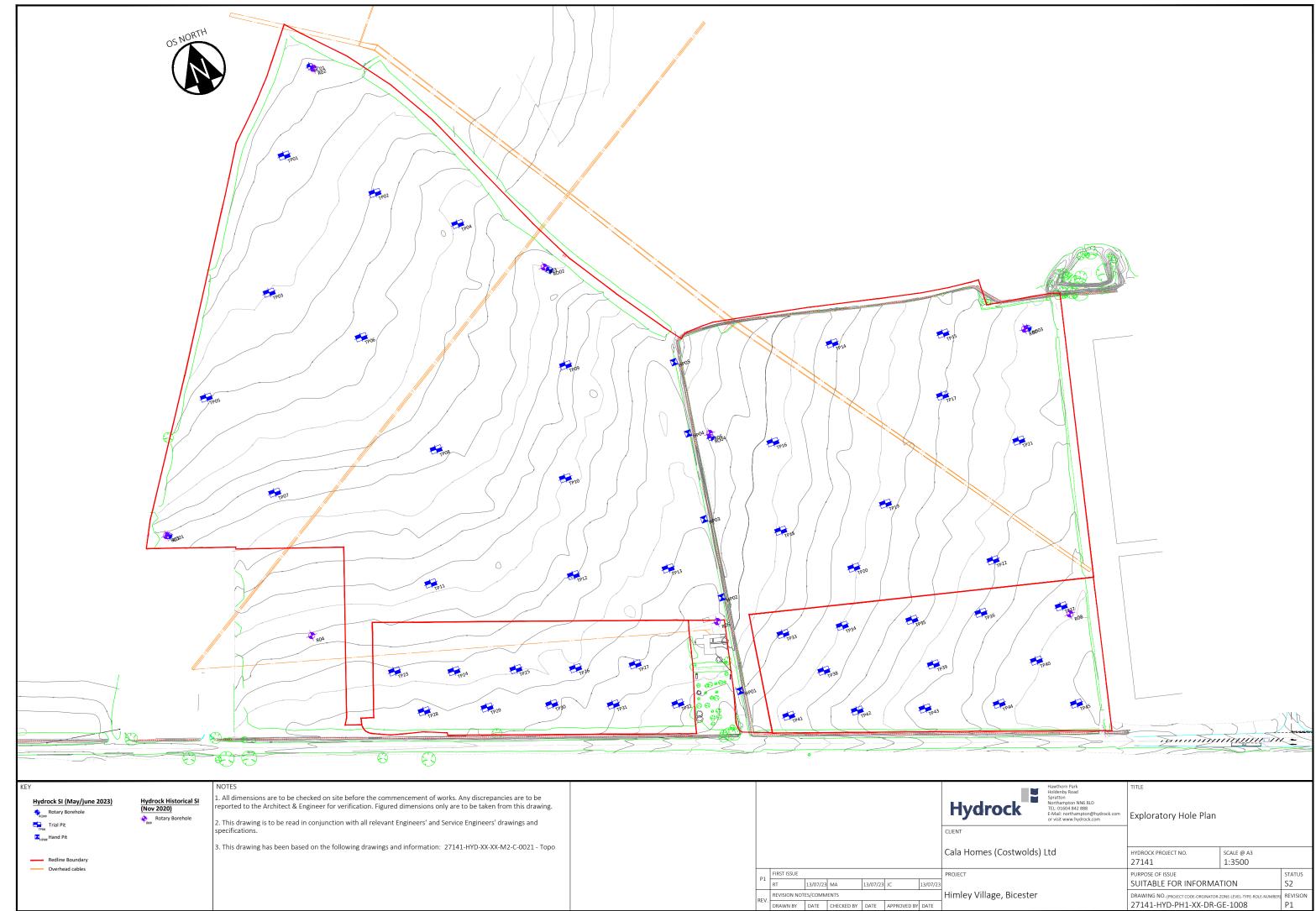
	Himl	ey Schedule of Accommodation 70% - Private Housing					KEY:	
Pond	No. of Storey Dusetype Beds Height SQF	T Ph2 A Ph2 B	TOTAL COUNT ON Ph2C SITE	I Total SQFT	2012	ALA Private mix required %		SED LAND
	Flat 1 3 to 4 Flat 2 3 to 4 Aspen 2 2	540 14 0 760 15 0 797 3 6	0 0 6 6	14 7,560 15 11,400 15 11,955	4% 16%	2.86% 20.00%		
	Bayberry 2 2 horn **ADDED 3 2 Chestnut 3 2 edar ** ADDED 3 2	863 4 13 952 3 8 1001 0 1 1001 0 3	3 2	25 21,575 13 12,376 5 5,005 5 5,005			ATTENUATION	
	Everglade 3 2 Fir **ADDED 3 2 Fourleaf 3 2	1001 0 3 1085 7 21 1089 6 6 1119 3 10	i 5	5 5,005 39 42,315 17 18,513 22 24,618	48%	48.57%	NDA	
		1132 4 0 1262 3 6 1296 6 0) 0 ; 8	4 4,528 17 21,454 17 22,032			AFFORDABLE	RENT
Mult	Laurel 3* 2 berry **ADDED 4 2.5	1357 5 8 1444 4 11 1547 9 9	3 15 0	28 37,996 15 21,660 20 30,940			SHARED OWN	ERSHIP
	oplar **ADDED 4 2	1553 1 3 1599 3 3 1672 1 12	3 1 5 5	5 7,765 11 17,589 18 30,096	33%	28.57%		NG
Wis	Tulipwood42.5White beam52teria **ADDED52	1684 8 8 1957 1 15 1984 0 0		24 40,416 21 41097 0 0			ILLUSTRATIVE PLANTING ARE	ORCHARD EA WITHIN POS
	Privat 30%	Total 100 143 - Affordable Housing (all NDSS) Affordable Rent (70%):	107 35	435,895		100%	ILLUSTRATIVE WITHIN SWALI	
на	No. of Storey Dusetype Beds Height SQF		TOTAL COUNT ON Ph2C SITE	Total SQFT	Plotted %	CALA AR mix required %		
	Flat 1 3 to 4 Flat 2 3 to 4 Bellflower 2 2	540 6 8 760 9 9 850 4 15) <mark>15</mark> 3	24 12,960 33 25,080 21 17,850	23% 51%	26% 49%		
C	Bungalow 3 1 lover** ADDED 3 2 Daisy 3 2	1001 0 0 1016 7 8 1016 1 1	3 3 3 3 0	3 3,003 18 18,288 2 2,032	22%	22%		
		1250 0 2 R Total 27 43 Itermediate Housing (30%): 30% 30%	2 2	4 5,000 05 84,213	4%	4%		
на	No. of Storey Beds Height SQF		Ph2C Count on Si	te Total SQFT	Plotted %	CALA termediate mix required %		
	Flat 1 3 to 4 Flat 2 3 to 4 Bellflower 2 2	540 0 0 760 8 9 850 0 7		0 0 17 12,920 13 11,050	0% 69%	9% 60%		
	Bungalow21lover** ADDED32Daisy32Gardenia42	850 0 0 1016 3 4 1016 0 1 1148 0 0	2 2 2	1 850 9 9,144 3 3,048 2 2,296	27% 4%	27%		
	Intermediat	1148 0 0 eTotal 11 21	13 4	45 39,308	4 70	4%		
	Private	• Total 100 143	3 107 3 5	50 435,895				
	AR/SI Intermediat Affordable		. 13 4	05 84,213 45 39,308 50 123521				
		TOTAL 38 64		00 559,416				
	NDA (gro Coverage		13.234	ha ac 12 32.70 17,106.28 sqf	t / acre			
	DPH			37.78 dp				
					D MAR'			
				KING 2				
				REVIEW				
			REVIEW	V EXTENT C	F CRATE	S AND PLA	ANTING	
		-		HYDROCK I ER AREA / N			L VITH CLIENT	
	0 0	, L						
PUMP STATION OCATON		03/03/2023	С		nto three phases.	. Amendments ma	de to highways and drair	nage following consultant
	Barris Barris	03/02/2023 03/02/2023	B	comments Minor amendme First formal issue		3-9		
	Unit 7 Ostal 1							
	8	DATE	NO	REVISION NOTE				
UNV DUAN ROP A DUA CONTRACTION ATTENUATION								
		CON		ΤΙΛΙ		AET		
		CON	IDEN	TIAL -				
		Phase	e 2, 50	00 Te	sting	z Lav	out	
			-,-,-		· · · · c	> / `		
SHARED SURFACE		HIML		LAGE	BIC	ESTE	R	
	Unit 6 Stal 1	1 111 • 1121			, םכ			
		CLIENT						
DISE DISE	gloffication and a second seco	CALA (Co	otswolds)					
MIXED USE COMMERCIAL	Becond Flox							
		DATE	00	SCALE		TEA		APPRVD
HOORE	A B B B B B B B B B B B B B B B B B B B	26/01/20	23	1:1000 @	OAO	ED	E EMH/I	MCC
		12						5
		DRAWING	NUMBER					

DRAWING NUMBER

86.1m

С	2	500 units split into three phases. Amendments made to highways and drainage following consultant comments
В	3	Minor amendment around plots 6-9
A	N Contraction of the second seco	First formal issue

PEGASUS GROUP


Appendix B

Exploratory hole location plan, exploratory hole logs and photographs

Exploratory hole location plan

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

Hawthorn Park Holdenby Road Spration Northampton NN6 &D TEL: 01604 842 888 E-Mail: northampton@hydrock.com or visit www.hydrock.com		TITLE Exploratory Hole Plan					
		hydrock project no. 27141	SCALE @ A3 1:3500				
Bicester		PURPOSE OF ISSUE	status S2				
		DRAWING NO. (PROJECT CODE-ORGINATOR-J 27141-HYD-PH1-XX-DR-G	revision P1				

Exploratory hole logs

		, I				Pro	ject	: H	imley Village				oreho RC	ole N :01	lo	
Hyd	lro	CK												ол 5.1 о	f 1	
/lethod:	Potar		d			Data	(c)· 0	5/06	/2023 - 06/06/2023	Logged By: J		Ť			Mars	shal
		-	otswolds and I	_egal			. ,					_				Silai
General	Home	S							80.17, 223579.82	Checked By:	MA/SC			: Wa		
lydrock	Projec					-		evel	94.73m OD					e: 1:5	50	1
ample/Core un (m)	Depth	· · ·	es / Tests			nical L	Min	Water- Strikes	Stratum	Description		a bth	Thickness (m)	Level m OD	Legend	Instrum- entation
	(m) 0.00 -	Туре В	Results	TCR	SCR	RQD	lf: Mean Max	<u>א ר</u> ו	Firm brown slightly sandy sli	ahtiv araveliv drv CL	AY with	Depth mbgl	ΈĘ	n Ce	Ĕ	Ins
	0.50 0.10	ES							frequent rootlets. Gravel is si limestone.				(0.50)			
	0.50 - 0.80	в							(TOPSOIL) Firm orangish brown, light br	rown and grey mottle	ed sandy	0.50		94.23	<u></u>	
	0.90	D							CLAY with occasional sub-an sized oolitic limestone lithore	elicts and rootlets.	gravel					
									(CORNBRASH FORMATION	4)	1 -		(1.30)			
20 - 1.80 00% rec	1.20	SPT	N=8 (2,3,2,2,1,3)								-		(,	-		-
											-					
80 - 3.00	1.75	D					15	-	From 1.70m: Becoming Strong light orangish brown	shelly oolitic calcare		1.80		92.93	ΠĒ	
	2.08 - 2.15	С					50 90		slightly weathered LIMESTO to closely spaced, undulating	g rough, open to mo	derately			-		
	2.30 - 2.34	С		100	61	0			wide with orangish brown sta sub-horizontal, vertical and s	sub-vertical. Vertical	fractures		(1.20)			
	2.58 - 2.62	С							from 2.10m to 2.12m, 2.16m 2.82m to 3.00m. Vertical frac with orangish brown staining	tures are undulating				-		
00 - 4.00	2.92 - 3.03	с						_	(CORNBRASH FORMATION Soft brown mottled grey CLA	۷)		3.00 3.10	(0.10)	91.73 91.63		
	3.00	SPT	50/50mm (22,3,50)				40 75		fine to coarse gravel sized lin (CORNBRASH FORMATION	mestone lithorelicts.		0.10	(0.10)	01.00		
	3.21 - 3.28	С	(;-;)	100	100	47	90		Strong thinly bedded light or coarse grained calcarenite s	angish brown shelly	oolitic		(0.70)	-		
	3.30 - 3.40	С							LIMESTONE. Beds are light closely spaced. Fractures an	grey and orangish b		3.80		90.93		
00 - 5.50	3.71 - 3.89	С					_		spaced, undulating rough, or orangish brown staining and	pen to moderately w	ide with 4		(0.45)	-		
	3.98 - 4.14	С							horizontal, vertical (CORNBRASH FORMATION		·	4.25		90.48		
	4.00	SPT	50/30mm (25,50)						From 3.10m to 3.15m: Very strong grey shelly fine g	grained calcarenite]			-		
	4.10 - 4.25	С		15	13	10			LIMESTONE with occasiona green staining.		d rare		(1.25)	-		
	4.80	D							(FOREST MARBLE FORMA From 4.00m to 4.16m:	Non-intact.	5					
									Stiff greyish green CLAY with limestone lithorelicts, fine to	medium gravel size		5.50		00.22		
50 - 7.00 00% rec	5.50	SPT	50/150mm (7,11,21,27)						(FOREST MARBLE FORMA	TION)		5.50		05.23		
50 - 7.00	6.00	D							From 4.95m: Becoming Very stiff grey CLAY with occ rounded fine to coarse grave	asional sub-angular	r to sub-			-		
	0.00			0	0	0			and rare fine sand to coarse material.				(1.20)			
				Ū	Ŭ	Ŭ			(FOREST MARBLE FORMA	TION)	-			-		
									Very stiff dark grey CLAY wit	h extremely closely	spaced	6.70		88.03		
.00 - 8.50	7.40						_		horizontal bedding fissures a fish scale fossils and carbon	and rare medium gra			(0.70)	-		
	7.10	D							(FOREST MARBLE FORMA Below 7.25: Becoming	,	rk ·	7.40	(,	87.33		
									green. Very stiff dark greyish green			7.40		87.33		
	7.85	D		27	27	15			angular fine to coarse gravel extremely closely spaced ho	rizontal bedding fiss	ures and		(0.62)	-		
							60	-	rare medium gravel sized fis plant fossils.		arbonised ₈ /	8.02		86.71		
	8.35 -	с					230 490		(FOREST MARBLE FORMA Very strong grey shelly fine g	grained calcarenite	/·					
50 -).00	8.48 8.60 -	с					1		LIMESTONE with occasiona sized fragments of bivalve for Fractures are closely to med	ssils and rare green	staining.					
	8.80 8.80 - 9.00	с							clean horizontal, sub-horizon vertical fracture from 8.50m	ntal and sub-vertical	. Sub-					
	9.00 9.00 - 9.18	с		100	98	98			brown staining 80 degrees. (FOREST MARBLE FORMA				(1.98)			
	9.18 9.22 - 9.50	С		100	30	90				,		1				
	9.72 -	с														
	10.00							4	End of Para	hole at 10.00m		10.00		84.73		
I		Progree	ss and Observ	ations				1	Chiselling Gene	ral Remarks:			nic cc	molod	to 1 9	10m
Rig Date	-	Borehole	e Casing Casing	Water	Flush		eturns	Fro	n To Duration bgl th	nd pit dug to 1.20 en rotary cored to	0 10.00m bg	jl. 3)	Casir	ng diar	neter	
05/0	6 1030	Depth (m 1.80 3.00	n) Depth (m) Diam.(mm) E	Depth (m)	Type Wate Wate	r	olour)	(m	Boreh	m from 1.20m to tole collapsed from	m 7.00m bg	l to	5.50m	bgl o	vernigł	ht. 5
05/0 05/0	6 1400 6 1700	4.00 5.50	2.50	1.00	Wate Wate	r r			install	ndwater encounte led at 3.35m bgl. l	Response z	zone	betwe	en 2.	80m a	nd
06/0 06/0 06/0	6 1130	7.00 5.50 7.00	2.50	1.00	Wate Wate Wate	r				n bgl. Borehole ba m bgl.	ackfilled with	n bei	ntonite	e from	3.80m	n to
06/0		8.50			Wate					-						
											1	ned in	deperal -	accordor-	e with BS	5020-

								Pro	iect	: H	imlev	Villag	е			Bo	reho	ole I	lo	
Ц	d	ro	c k					-			,	0					RO	01		
Ну	^u		CK													Pag	je No	o. 1 (of 1	
Meth	od: F	Rotary	/ Corec	ł			1	Date	(s): 0	6/06	6/2023 -	07/06/20)23	Logged By: J					: Mars	shalls
			mes Co	otswold	ds and	Legal	& (Co-o	rds: 4	1554	48.95, 2	223270.5	58	Checked By:	MA/SC	F	lush	: Wa	ter	
		lomes Projec	s t No: 2	7141			(Grou	nd Le	evel	92.46n	ו OD					Scale	ə: 1:	50	
Sample/Co		,		s / Tests	;	N	lechan										ess		σ	∊∊⋶
Run (m)		Depth (m)	Туре	Res	sults	TCR	SCR	RQD	Min If: Mean Max	Water- Strikes		Str	ratum	Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
		0.00 - 0.50	В								fine to co	arse limesto		l is angular to sub-ro	ounded	0.30	(0.30)	92.16		
										▼		NE.			/		(0.50)			
												ASH FORM				0.80	()	91.66		
												RASH FORM			1 -	-				
		1.20	SPT		50mm 11,30)											-				
																-				
		2.00	SPT	50/4	5mm										2 -	-	(2.20)			
		2.00			,50)											-				
																-				
																-				
		3.00	SPT		5mm ,50)						LIMESTO				3-	3.00		89.46		
				,	, ,						(FURES	I MARBLE F	-ORMA	(TON)		-				
																-				
															4 -	-	(2.00)			
																-				
																-				
																-				
												E	nd of Bor	ehole at 5.00m	5-	5.00		87.46		
																-				
																-				
															6 -	-				
																-				
																-				
																-				
															7 -	-				
																-				
															8 -					
																-				
																-				
															9 -	-				
																-				
													,		10 -					
		F	Progres	s and	Observ	ations	6				Chisel	ling	1) Ha	ral Remarks: nd pit dug to 1.20						
Rig	Date	Time		Depth (m)	Casing Diam.(mm)	Water Depth (m)	Flush Type	(C	eturns olour)	Fro (m		Duration (HH:MM)	to 5.0 encou	0m bgl. 3) Boreho untered at 0.50m l	ble did not o bgl. 5) Piez	collar ome	ose. 4 ter tip) Gro insta	undwat lled at 2	er 2.30m
	06/06 06/06 06/06	1430 1515 1550	0.40 1.20 2.00	0.00 0.00 0.00			Water Water Water						bgl. R backf	Response zone be illed with bentonite	tween 1.50 e from 2.50)m ar)m to	nd 2.5 5.00r	0m b n bgl	gl. Bore . 6) Gro	hole
	06/06 06/06	1630 1705	3.00 5.00	0.00		0.50	Water Water						condi	tions interpreted f	rom drillers	logs	and a	an ad	jacent	
																	apper-1		oo with DC	5030-2015

Ну	dro	Project: Himley Village Rotary Cored Date(s): 07/06/2023 - 08/06/2023											F	RO	02		
Metho	d: Ro	arv Co	ored				Date	(s): 0	7/06		Ť			: Mar	shalls		
Client:	Cala	Home		olds and	Legal	<u>0</u>				302.27, 223364.79			-	lush	-		
	al Hon		o: 27141							: 91.95m OD			-	Scale			
-		·	mples / Te		M												
Sample/Core Run (m)	e Dept (m) 0.00	^h Тур	ie l	Results	TCR	SCR	RQD	D g If: Mean Max	Strike	Strat Brown gravelly CLAY. G	um Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation
	0.50)							▾	fine to coarse limestone (TOPSOIL) Yellow LIMESTONE. (CORNBRASH FORMA		- - - - - - - - - - - - - - 	0.50	(0.50)	91.45		
	1.20) SP		N=34 1,16,8,5,5)						Grey CLAY.		- 1 - - -	1.20	(0.70)	90.75		
				, .,., , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						(CORNBRASH FORMA Grey CLAY with limesto (CORNBRASH FORMA	ne cobbles.		1.50	(0.50)	90.45		
	2.00) SP		0/55mm (25,50)						Grey LIMESTONE. (FOREST MARBLE FO	RMATION)		2.00		89.95		-
	3.00) SP		N=35 0,6,7,8,14)								- - 3 - - - - - - - - - - - - - - - - -		(3.00)			
	4.00) SP		0/45mm (25,50)								- - - 4 - - - - - - - - - - - - - - - -					-
	5.00) SP		0/45mm (25,50)						End	of Borehole at 5.00m	- - - - - - - - - - - - - - - - - - -	5.00		86.95		
												6 - - - - - - - - - - - - - - - - - - -					
				d Obaam	votion -					Chinelling	eneral Remarks:	- - - - - - - - - - - - - -					
	07/06 1 07/06 1 07/06 1 07/06 1 07/06 1 07/06 1	ime Bor Dep 200 0 300 1 400 2 500 3 645 4	rehole Casir	(m) Diam.(mm)	Vations Water Depth (m) 0.50	Flush Type Water Water Water Water Water	(CC	eturns olour)	Fro (m	Cniselling 1: m To Duration to) (m) (HH:MM) by R B G G) Hand pit dug to 1.2 9 5.00m bgl. 3) Casir gl. 4) Borehole did nu t 0.50m bgl. 6) Piezo esponse zone betwe ackfilled with benton round conditions inte djacent Hydrock bore	ng diameter 1 ot collapse. 5 ometer tip inst een 0.60m an ite from 1.20r erpreted from	42m) Gr alle d 1. n bg d dril	nm fro ound d at 0 20m l gl to 5 lers lo	m 0.0 water .77m ogl. B .00m ogs ar	00m to encou bgl. orehole bgl. 7) nd an	1.20m ntered
												Logo	ged in	general a	accordan	ce with BS	5930:20

								Pro	ject	: H	imley	Villag	е				oreho			
Ну	dr	.00	⁻k [■]					-			-	-					RO	03		
•••	u															Pag	je No	э. 1 e	of 1	
			Corec					Date	(s): 0	9/06	6/2023			Logged By: JI	М	C	Drille	d By	: Mar	shalls
Client Gene				otswold	ls and	Legal	& (Co-o	rds: 4	1561	40.89, 2	23192.6	69	Checked By:	MA/SC	F	lush	n: Wa	ater	
			, t No: 2	7141			(Grou	nd Le	evel:	: 86.94m	OD				:	Scale	e: 1:	50	
Sample/Co	re		Sample	s / Tests		N	lechan	ical Lo	-	ter- kes		C 1		Deserintian			ness		p	⊧e≣
Run (m)	D(epth (m)	Туре	Res	ults	TCR	SCR	RQD	Min If: Mean Max	Water- Strikes				Description		Depth mbgl	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
		00 - .50	В									arse limesto		l is angular to sub-ro	ounaea		(0.43)			
										▼	Orange b	-7 rown LIMES RASH FORI	STONE			0.43		86.51		
											(CORNER		VIATIO	N)						
		.20	SPT	N=	.33										1 -		(1.37)			8_8
	'	.20		(5,11,10																
																1.80		85.14		
	2	.00	SPT	50/35	5mm						Grey CLA (FOREST	.Y. Marble F	ORMA	TION)	2 -				- <u>-</u> -	
				(17,	,50)												(0.90)			
																0.70		84.24		
											Grey LIM (FOREST	ESTONE MARBLE F	ORMA			2.70		84.24		-
	3	.00	SPT	50/30 (25,										- ,	3 -					
																	(2.00)			-
	4	.00	SPT	50/50											4 -					
				(25,	,50)															-
																4.70		82.24		-
											Grey CLA (FOREST	Y. MARBLE F	ORMA	TION)			(0.30)			-
														ehole at 5.00m	5-	5.00		81.94	<u></u>	
															6 -					
															7 -					
															8 -					
															9 -					
															10 -					
		F	rogres	s and (Observ	ations	6				Chisel	ing		ral Remarks: nd pit dug to 1.20	m bal. 2) R	otarv	/ 00er	n hole	d from	0.00m
Rig	Date	Time	Borehole Depth (m)	Casing Depth (m)	Casing Diam.(mm)	Water Depth (m)	Flush Type		eturns olour)	From (m		Duration (HH:MM)	bgl to	5.00m bgl. 3) Bor untered at 0.50m b	ehole did r	not c	ollaps	e.4)	Ground	water
	09/06 09/06 09/06	1100 1430 1500	0.50 4.00 5.00	0.00 0.00 0.00		0.50	Water Water Water						bgl. F	Response zone bei illed with bentonite	tween 1.00	m ar	nd 1.8	80m b	gl. Bore	ehole
	33/00	1000	5.00	0.00		0.00	valer						condi	tions interpreted fr ock borehole from	rom drillers	logs	and	an ad	jacent	-
																F. 10				
			1	1						1	1	1	1		Loc	aded in	general	accordar	ice with BS	5930:2015

								Pro	iect	: H	imley	Villag	е			Bo	oreh	ole I	٩٥	
Ну	d	-	-1/						j = ·	• •			-				RC	04		
шy	u		LK													Pag	je No	o. 1 (of 1	
Metho	od: F	Rotary	Corec	ł				Date	(s): 0	8/06	6/2023			Logged By:					: Mars	shalls
Client Gene	: Cal	a Hor	mes Co	otswold	ls and	Legal	&	Co-o	rds: 4	1558	376.76, 2	23197.3	38	Checked By	: MA/SC	F	lush	n: Wa	ater	
			t No: 2	7141				Grou	nd Le	evel	: 89.75m	OD					Scal	e: 1:	50	
Sample/Co	re	-	Sample	s / Tests		N	/lechar	nical Lo	og	er- ies							less		g	É S ≣
Run (m)	D	Depth (m)	Туре	Res	sults	TCR	SCR	RQD	Og Min If: Mean Max	Strik				Description		Depth mbal	Thickness (m)	Level m OD	Legend	Instrum- entation / Backfill
		0.00 - 0.50	В								fine to coa	arse limesto		l is angular to sub	-rounded	-	(0.50)			
												.) //ESTONE.				0.50		89.25		
												RASH FORM	NATION	N)		•				
															1	-	(1.10)			
	1	1.20	SPT		50mm 11,30)											-				H
											Grey CLA	Y.				1.60		88.15		
		2.00	SPT	50/4	5mm						(FOREST	MARBLE F	ORMA	TION)		•			==	
		2.00	5-1		,50)										2	-				
																-			<u> </u>	
																•	(2.40)		<u> </u>	
	3	3.00	SPT		5mm										3	-				
				(22,	,50)											-				
																-				
																4.00		85.75	F	
											LIMESTO (FOREST	NE. MARBLE F	ORMA	TION)	4	-		00.10		
																-	(1.00)			
																-				
												E	nd of Bor	ehole at 5.00m	5	5.00		84.75		
																-				
																-				
																-				
															6	-				
																-				
																-				
															7	-				
																-				
																-				
																-				
															8	-				
																-				
																-				
															9	-				
																•				
																-				
																•				
													0		10	-				
		F	-		Observ						Chisell	-	1) Ha	ral Remarks: nd pit dug to 1.						
Rig	Date 08/06	Time 1400	Borehole Depth (m) 0.50		Casing Diam.(mm)	Water Depth (m) 0.50	Flush Type Water	(c	eturns olour)	Fro (m		(HH:MM)	encou	0m bgl. 3) Bore untered at 0.50r	n bgl. 5) Piez	zome	ter tip	insta	lled at '	1.35m
	08/06 08/06	1450 1530	1.20 2.00	0.00 0.00		0.50 0.50	Water Water						backf	Response zone illed with bento	nite from 1.60)m to	5.00	m bgl	. 6) Gro	enole ound
	08/06	1600	3.00	0.00		0.50	Water							tions interprete ock borehole fro						
																aged in	deneral	accordar	nce with BS	5030-2015

				Project: Himley Village			Frialpit			
Hydro	ock ⁻						TPO			
							ge No.			
Method: Tria		tswolds and L	000 8		Logged By: JN		Check		-	
General Hor			-eyai a	Co-ords: 455636.96, 223520.91	Stability: Unst	able.	Dimen	2.50m		
Hydrock Proj	ect No: 27	141	1	Ground Level: 94.44m OD	Plant: JCB 14	0X	0.65m	1] .	1:25
S	Samples / Tes	ts	Water- Strikes	Stratum Descri	ption		fe -	Thickness (m)	D el	Poend
Depth (m)	Туре	Results	Surkes	Brown slightly sandy gravelly CLAY with frequent	rootlets and occasio	nal roots with a	Depth mbgl	Ē	Level m OD	
0.10	ES			low coble content of sub-angular limestone. Grav limestone. (TOPSOIL)			0.40	(0.40)	94.04	
				Brown slightly sandy CLAY with frequent rootlets a to coarse gravel sized limestone lithorelicts and a limestone lithorelicts. (CORNBRASH FORMATION)				(0.50)	0.01	
				Stiff orangish brown mottled grey slightly sandy C to coarse gravel sized limestone lithorelicts. (CORNBRASH FORMATION)	LAY with occasional	sub-angular fin	0.90 e 1 - -	(0.50)	93.54	
1.35	HSV	122kPa					1.40		93.04	
1.50	В			Firm orangish brown mottled grey slightly sandy C gravel sized limestone lithorelicts and a medium o limestone lithorelicts. (CORNBRASH FORMATION)			-	(0.70)		
				Stiff orangish brown mottled grey slightly sandy C	LAY with occasional	sub-angular fin	2 - 2.10 e		92.34	
2.30 2.40	HSV D	127kPa	J	to coarse gravel sized limestone lithorelicts. (CORNBRASH FORMATION)			2.50	(0.40)	91.94	
				LIMESTONE. (CORNBRASH FORMATION) <i>Below 2.50m: Very hard digging.</i> Base of Excavation at	2.60m		2.60	(0.10)	91.84	
							3 -			
							-			
							4 -			
							-			
General Remark							5 -			

				Project: Himley Village		٦	Trialpit			
Hydro	ock ["]						TPC)2		
						Pa	ge No.	1 of	1	
Method: Tria		towoldo and	0.000	Date(s): 06/06/2023	Logged By: JN		Check			
General Hon		tswolds and I	_egai &	Co-ords: 455694.12, 223468.79	Stability: Unst	able.	Dimen	sion: 2.50m		
Hydrock Proj	ect No: 27	141	1	Ground Level: 93.72m OD	Plant: JCB 14	0X	0.65m] .	1:25
	Samples / Tes		Water- Strikes	Stratum Descr	iption		g bth	Thickness (m))D DD	Legend
Depth (m)	Туре	Results	Guikes	Brown slightly sandy gravelly CLAY with frequent	rootlets and occasio	nal roots and	Depth mbgl	ΈÊ	Level m OD	Ĕ
0.10	ES			insect burrows with a low cobble content of sub-a sized fragment of brick. Gravel is sub-angular fine (MADE GROUND)	e to coarse of limesto	one.	0.30	(0.30)	93.42	
				Firm orangish brownish slightly sandy gravelly Cl sub-angular tabular limestone and rare rootlets a angular fine to coarse of tabular limestone and w (HEAD DEPOSITS)	nd insect burrows. G	ravel is sub-	0.50	(0.20)	93.22	
0.70	D			Firm brownish grey mottled orangish brown slight angular fine to coarse gravel sized tabular limest content of sub-angular tabular limestone lithorelic (CORNBRASH FORMATION)	one lithorelicts and a					
							- 1 -	(0.80)		
				Firm cream, dark grey and orangish brown mottle angular fine to coarse gravel sized oolitic limestor (CORNBRASH FORMATION)		occasional sub-	1.30		92.42	
1.70	В			From 1.40m to 1.50m: Band of limestone col	bbles.		-	(0.50)		
				Firm brownish grey mottled orangish brown slight angular fine to coarse tabular limestone lithorelict (FOREST MARBLE FORMATION) From 1.80m to 2.60m: Possible polished sur	ts.	occasional sub-	2 -		91.92	
							-			
2.50 2.50	D HSV	107kPa					-	(1.40)		
							- - 3 -			
							3.20		90.52	
				Base of Excavation a						
							4 -			
							-			
							-			
							- - 5 -			

1) Trial pit terminated at 3.20m bgl due to collapse. 2) Trial pit sides spalling from 1.00m to 2.60m due to water ingress. 3) Groundwater encountered at 1.60m bgl. Groundwater entered the pit at a moderate rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village		7	Trialpi			
Hydro	ock						TP			
					1	I	ge No.			
Method: Tria		tewolde and		Date(s): 06/06/2023	Logged By: JN		Check		-	
Seneral Hor		tswolds and	∟eyai &	Co-ords: 455588.95, 223423.48	Stability: Stab	le.	Dimer	1 sion 2.50m		
-lydrock Proj				Ground Level: 93.97m OD	Plant: JCB 14	0X	0.65m			1:2:
Depth (m)	Samples / Tes	Results	Water- Strikes	Stratum Desc	ription		Depth mbal	Thickness (m)	Level m OD	puepe
Bobar (m)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Brown slightly sandy gravelly CLAY with frequen insect burrows with a medium cobble content of				F5	ع تـ	
				angular fine to coarse of limestone. (TOPSOIL)	sub-angular inneston	e. Graver is sub-	-	(0.35)		
				Stiff light brown slightly sandy slightly gravelly C	LAY with a low cobble	content of sub-	0.35		93.62	X
0.50	ES			angular limestone. Gravel is sub-angular fine to calcareous nodules.			-	(0.25)		
				(HEAD DEPOSITS) Firm orangish brown mottled grey slightly sandy			0.60		93.37	
				angular fine to coarse gravel sized limestone lith of sub-angular limestone lithorelicts. (CORNBRASH FORMATION)	orelicts and a mediur	n coddle conten				
4.00								(0.60)		
1.00 1.00	D HSV	90kPa					1-			
				Cream mottled orangish brown clayey sub-angu			1.20 1e	-	92.77	
				lithorelicts with a high cobble content of sub-ang (CORNBRASH FORMATION) From 1.20m to 1.90m: High cobble content			1			
				דוטווי ו.צטווי נט ו.שטווו. חופה content	ง จนม-สาเฐนเลr limesto	ni c .	-	(0.70)		
1.85	в						-			
1.00				Very strong light grey stained orangish brown oc LIMESTONE.	olitic coarse grained c	alcarenite	2 2.00	(0.10)	92.07 91.97	* <u>*</u>
				(CORNBRASH FORMATION)						
				Base of Excavation	at 2.00m					
							1			
							-			
							-			
							-			
							3			
							3 -			
							-			
							-			
]			
							4 -			
							-			
							-			
							1			
							-			
General Remark							5 -			

1) Trial pit terminated at 2.00m bgl due to very difficult digging in shallow rock. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 1.90m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			Trialpit			
Hydro	ock ^{••}						TPC)4		
						Pa	ige No.	1 of	1	
Method: Tria				Date(s): 07/06/2023	Logged By: JN	N	Check		-	
General Hom		tswolds and	Legal &	Co-ords: 455746.99, 223423.50	Stability: Stab	le.	Dimen	sion 2.50m	s: S	cal
Hydrock Proj		141		Ground Level: 92.87m OD	Plant: JCB 14	0X	0.65m] .	1:25
	amples / Tes		Water- Strikes	Stratum Desc	cription		a t	Thickness (m)	el DD	edend
Depth (m)	Туре	Results	Suikes	Brown slightly sandy gravelly CLAY with frequer	nt rootlets and occasio	onal roots and	Det	ĒÊ	Level m OD	-
				insect burrows with a low cobble content of sub- sized fragment of brick. Gravel is sub-angular fir (MADE GROUND)			el - - 0.30	(0.30)	92.57	
				Firm light brown sandy slightly gravelly CLAY wi angular limestone and occasional rootlets. Grav limestone. (HEAD DEPOSITS)			-	(0.30)		
0.65	D			Firm brownish grey mottled orangish brown sligh			0.60		92.27	
0.65	ES			angular fine to coarse gravel sized tabular limes content of sub-angular tabular oolitic and micritic (CORNBRASH FORMATION)			ets.	(0.40)		
1.00 - 1.10	В	001 5		Stiff cream, orangish brown and grey mottled sa	Indv CLAY with occas	ional sub-angul	1.00 ar		91.87	
1.05	HSV	83kPa		fine to coarse gravel sized tabular limestone lith sub-angular tabular limestone lithorelicts. (CORNBRASH FORMATION)			-			
							-	(0.80)		
1.50 1.50	D HSV	128kPa					-			
							1			
				Firm brownish grey mottled orangish brown sligh			1.80		91.07	
				angular fine to coarse gravel sized tabular fine g (FOREST MARBLE FORMATION)			2 -			
							2 -			
							-			
2.30 2.30	B HSV	118kPa						(1.10)		
							-			
							-			
				Stiff bluish grey slightly sandy CLAY with occasi	onal sub-angular fine	to coarse grave	2.90		89.97	
2.10	Р			sized grey micritic limestone lithorelicts and rand (FOREST MARBLE FORMATION)	domly oriented fissure	S.	3 -	(0.30)		
3.10 3.10	B HSV	123kPa		Base of Excavation	at 3.20m		3.20		89.67	
							-			
]			
							-			
							4 -			
							-			
							-			
							1			
							1			
							-			
							-			
eneral Remark							5 -			

General Remarks: 1) Trial pit terminated at 3.20m bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 3.20m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			Trialpi			
Hydro	ock ⁻ '						TP(
							ge No			
Method: Tria				Date(s): 06/06/2023	ged By: JN	Л	Check			
Client: Cala I General Hon		tswolds and L	.egal &	Co-ords: 455514.08, 223362.73 Stat	oility: Unst	able.	Dimer	1 sion : 2.50m	s: S	cal
- - Hydrock Proj		'141		Ground Level: 93.55m OD Plan	nt: JCB 14	0X	0.65m	2.5011] '	1:25
S	amples / Tes	sts	Water-	Stratum Description			_	Thickness (m)		pu
Depth (m)	Туре	Results	Strikes				Dept	(m)	Level m OD	Leaend
0.10	ES			Brown slightly sandy gravelly CLAY with frequent rootlet insect burrows with a low cobble content of sub-angular angular fine to coarse of limestone. (TOPSOIL)	r limestone. Gr	avel is sub-	0.35	(0.35)	93.20	
0.60 0.60	D HSV	117kPa		Firm brownish grey mottled orangish brown slightly san angular fine to coarse gravel sized of tabular limestone content of sub-angular tabular limestone lithorelicts and (CORNBRASH FORMATION)	lithorelicts and		-	(0.65)		
0.95	D			Strong light grey stained orangish brown oolitic coarse g	grained calcare	enite	- 1- 1.00		92.55	
				LIMESTONE. Vertical fractures are randomly oriented w Recovered as cobbles and boulders. (CORNBRASH FORMATION)	vith horizontal	bedding fractur	es - -	(0.60)		
				At 1.50m: Very hard digging and limestone less frac Base of Excavation at 1.60m	ctured.		1.60		91.95	
							2 -			
							3 - -			
							-			
							4 -			
							-			
							5 -			

		!		Project: Himley Village			Trialpit			
Hydro	ock	,					TPC)6		
						Pa	ge No.	1 of	1	
Method: Tria			<u>-</u>	Date(s): 06/06/2023	Logged By: JN		Check			
Client: Cala I General Hon		swolds and I	Legal &	Co-ords: 455645.09, 223365.70	Stability: Stab	le.	Dimen	sion: 2.50m	s: S	cal
Hydrock Proj		141		Ground Level: 93.37m OD	Plant: JCB 14	0X	0.65m] '	1:25
5	Samples / Test	IS	Water-	Stratum Desc	cription		£ –	Thickness (m)	≂ 0	pue
Depth (m)	Туре	Results	Strikes	Brown slightly sandy gravelly CLAY with frequer	•	nal roots and	Dept	Thic (m)	Level m OD	Legend
0.10	ES			insect burrows with a low coble content of sub- sized fragment of brick. Gravel is sub-angular fit (MADE GROUND)	angular limestone and	d one fine grave	0.30	(0.30)	93.07	
0.50 0.50	B HSV	115kPa		Firm brownish grey mottled orangish brown slig angular fine to coarse gravel sized of tabular lim content of sub-angular tabular limestone lithorel (CORNBRASH FORMATION)	estone lithorelicts and					
1.00	D						1 -	(0.90)		
1.00	HSV	75kPa					1.20		92.17	
				Strong light grey stained orangish brown oolitic LIMESTONE. Vertical fractures are randomly or Recovered as cobbles and boulders. (CORNBRASH FORMATION)	iented with horizontal	bedding fracture		(0.20)	91.97	
				Cream mottled orangish brown very clayey sub- limestone lithorelicts with a high cobble content (CORNBRASH FORMATION)			-			- <u>-</u>
2.00	в						2 -	(0.90)		· · · · · · · · · · · · · · · · · · ·
2.35 2.35	D HSV	123kPa		Stiff brownish grey mottled orangish brown silty to coarse gravel sized of oolitic and micritic lime		sub-angular fin	2.30 e		91.07	
				(FOREST MARBLE FORMATION)			2.70	(0.40)	90.67	× ×
2.90 2.90	B HSV	115kPa		Stiff grey silty CLAY with randomly oriented fisse (FOREST MARBLE FORMATION)	ires.		-	(0.50)		×
2.00		How a		Base of Excavation	at 2.20m		3 -		90.17	×
							-			
							-			
							4 -			

1) Trial pit terminated at 3.20m bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 2.70m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			ialpit			
Hydro	ock						ΓPC			
					1	Pag	e No.	1 of	1	
Method: Tria				Date(s): 06/06/2023	Logged By: JN		heck			
Client: Cala I General Hon		tswolds and	Legal &	Co-ords: 455539.19, 223273.99	Stability: Unst	able.	imen	2.50m	s: S	cale
Hydrock Proj		'141		Ground Level: 92.33m OD	Plant: JCB 14	0X 0	.65m	2.0011	_ ·	1:25
	Samples / Tes		Water- Strikes	Stratum Desc	cription		pth gl	Thickness (m)	el DD	-egend
Depth (m)	Туре	Results	Ounces	Brown slightly sandy gravelly CLAY with frequer insect burrows with a low cobble content of sub-			De De		Level m OD	Ĕ
				sized fragment of brick. Gravel is sub-angular fin (MADE GROUND) Firm brownish grey mottled orangish brown slig cobble content of sub-angular tabular limestone	ne to coarse of limesto htly sandy gravelly CL and rare rootlets. Gra	one. AY with a medium		(0.25)	92.08	
0.50 0.50 0.50	D ES HSV	120kPa		fine to coarse of tabular limestone and white cal (HEAD DEPOSITS)			- 0.65	(0.40)	91.68	
0.80	В			Strong light grey stained orangish brown coarse Vertical fractures are randomly oriented with hor as cobbles and boulders. (CORNBRASH FORMATION)			-	(0.45)		
				Cream mottled orangish brown clayey sub-angu lithorelicts with a high cobble content of sub-ang (CORNBRASH FORMATION)	ular fine to coarse GRA gular limestone lithore	AVEL of limestone icts.	1.10	(0.30)	91.23	
				Very strong light grey oolitic coarse grained calc (CORNBRASH FORMATION) From 1.40m to 2.00m: Very hard digging an to toothed bucket.				(0.60)	90.93	
2.10 2.10	D HSV	112kPa		Stiff grey mottled orangish brown silty CLAY. (FOREST MARBLE FORMATION)			2.00		90.33	
2.10	1150	112NI &					-	(0.80)		
2.80	D			Base of Excavation	a at 2.80m		2.80		89.53	× ×
							-			
							-			
							- 4 -			
							-			
							5 -			

1) Trial pit terminated at 2.80m bgl due to collapse. 2) Trial pit sides spalling from 1.40m to 2.80m due to fractured rock. 3) Groundwater encountered at 1.40m. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village		I I	rialpi			
Hydro	ock ["]						TP()8		
						Pa	ge No.	1 of	1	
Method: Tria				Date(s): 07/06/2023	Logged By: JN		Check		-	
Client: Cala I <u>General Hon</u>		tswolds and Le	egal &	Co-ords: 455670.29, 223262.49	Stability: Stabl	le.	Dimer	1 sion 2.50m	s: S	cal
- 		141		Ground Level: 92.39m OD	Plant: JCB 14	0X	0.65m	2.5011		1:2
S	Samples / Tes	ts	Water-	Stratum Descr	intion		_	Thickness (m)		7
Depth (m)	Туре	Results	Strikes				Depth mbal	(Ĵ Hick	Level m OD	
0.10	ES			Brown slightly sandy gravelly CLAY with frequent insect burrows with a low cobble content of sub-a sized fragment of brick. Gravel is sub-angular find (MADE GROUND)	angular limestone and e to coarse of limesto	d rare fine grave one.	0.25	(0.25)	92.14	
0.40	В			Firm orangish brownish slightly sandy gravelly CL sub-angular tabular limestone and rare rootlets a angular fine to coarse of tabular limestone. (HEAD DEPOSITS)	nd insect burrows. G	ravel is sub-	0.45	(0.20)	91.94	
0.60	HSV	98kPa		Firm cream, orangish brown and grey mottled slig angular fine to coarse gravel sized tabular limest content and low boulder content of sub-angular ta (CORNBRASH FORMATION)	one lithorelicts and a	medium cobble	- - - -	(0.65)		
1.00 1.00	D HSV	82kPa		Strong brown oolitic coarse grained calcarenite L randomly oriented with horizontal bedding fractur boulders. (CORNBRASH FORMATION)			1 - 1.10 - - -	(0.40)	91.29	
1.80 1.90	B HSV	145kPa		Stiff cream, orangish brown and grey mottled san fine to coarse gravel sized tabular limestone litho sub-angular tabular limestone lithorelicts. (CORNBRASH FORMATION)				(1.30)	90.89	
3.00 3.00	B HSV	90kPa		Firm brownish grey mottled orangish brown slight angular fine to coarse gravel sized tabular fine gr rootlets. (FOREST MARBLE FORMATION)			- - 2.80 e - 3 - -	(0.50)	89.59	
				Base of Excavation a	t 3.30m		3.30		89.09	
							4			
General Remark	ks:						- - 5 -			

				Project: Himley Village			Trialpit			
Hydro	ock						TPC			
							ge No.			
Method: Tria		tswolds and		Date(s): 07/06/2023	Logged By: JN		Check			
General Hon		iswoius anu	Leyal a	Co-ords: 455788.75, 223289.93	Stability: Unst	able.	Dimen	2.50m		
Hydrock Proj	ect No: 27	141		Ground Level: 91.44m OD Plant: JCB 140X Stratum Description						1:25
Depth (m)	Samples / Tes	Results	Water- Strikes	Stratum Desc	ription		Depth mbgl	Thickness (m)	Level m OD	Legend
0.10	ES			Brown slightly sandy gravelly CLAY with frequer insect burrows with a low cobble content of sub- angular fine to coarse of limestone. (TOPSOIL)			-	(0.40)		
0.60	В			Firm light brown sandy slightly gravelly CLAY wi angular limestone and occasional rootlets and a cobbles. Gravel is sub-angular fine to coarse of limestone. (HEAD DEPOSITS)	pocket (1m x 1m) of	limestone	0.40 	(0.40)	91.04	
0.90 1.00	HSV D	93kPa		Stiff cream, orangish brown and grey mottled sa fine to coarse gravel sized tabular limestone lith sub-angular tabular limestone lithorelicts. (CORNBRASH FORMATION)			ar	(0.65)		
				Strong light grey stained orangish brown coarse Vertical fractures are randomly oriented with hor as cobbles and boulders. (CORNBRASH FORMATION) Cream mottled orangish brown clayey sub-angu	izontal bedding fractu	res. Recovered	1.45 1.60	(0.15)	89.99 89.84	
1.80	В			(CORNBRASH FORMATION)	ular limestone lithorel			(0.40)	89.44	
							3			

1) Trial pit terminated at 2.00m bgl due to collapse. 2) Trial pit sides spalling from 0.60m to 2.00m. 3) Groundwater encountered at 1.45m bgl. Groundwater encountered at 1.45m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			rialpit			
Hydro	ock [®]						TP1	0		
- y ar c						Paç	je No.	1 of	1	
Method: Tria				Date(s): 07/06/2023	Logged By: JN	1 0	Check	ed B		
Client: Cala I <u>General Hor</u> r		swolds and	Legal &	Co-ords: 455758.20, 223206.45	Stability: Stabl	e. I	Dimen	sion: 2.50m	s: S	cal
Hydrock Proj		141		Ground Level: 91.00m OD	Plant: JCB 14	x	0.65m	2.30111		1:2
S	amples / Test	ts	Water-	Otratura Dava		I	-	ness		7
Depth (m)	Туре	Results	Strikes	Stratum Desc	•		Depth mbgl	Thickness (m)	Level m OD	- dend
0.10 1.00 1.00 1.40	B HSV HSV	95kPa 93kPa		Brown slightly sandy gravelly CLAY with frequer insect burrows with a low cobble content of sub- sized fragments of brick. Gravel is sub-angular the (MADE GROUND) Firm orangish brownish slightly sandy gravelly C angular tabular limestone and rare rootlets and fine to coarse of tabular limestone. (HEAD DEPOSITS) Strong light grey stained orangish brown crystal LIMESTONE. Vertical fractures are randomly or Recovered as cobbles and boulders. (CORNBRASH FORMATION) Stiff cream, orangish brown and grey mottled sli angular fine to coarse gravel sized tabular limes content and low boulder content of sub-angular (CORNBRASH FORMATION)	angular limestone and ine to coarse of limest CLAY with a high cobbinsect burrows. Grave line coarse grained ca ented with horizontal ghtly sandy CLAY with tone lithorelicts and a	I rare fine gravel one. e content of sub l is sub-angular lcarenite bedding fracture occasional sub medium cobble	0.25 - 0.30 - 0.60 S	(0.25) (0.05) (0.30)	<u>90.75</u> 90.70 90.40	
				Very strong brown oolitic coarse grained calcare (CORNBRASH FORMATION) Base of Excavation			4 - - - - - - - - - - - - - - - - - - -	(0.20)	89.20	

1) Trial pit terminated at 2.00m bgl due to very difficult digging in shallow rock. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 1.80m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			Trialpi			
Hydro	ock [¶]						ΤP΄	11		
- y ar c						Pa	ige No	1 of	1	
Method: Tria				Date(s): 07/06/2023	Logged By: JN	N	Check			
Client: Cala I General Horr		tswolds and I	_egal &	Co-ords: 455630.30, 223164.75	Stability: Stab	le.	Dimer	1 sion 2.50m	s: S	cal
Hydrock Proj		141		Ground Level: 91.20m OD	Plant: JCB 14	0X	0.65m	2.3011] '	1:2
S	amples / Tes	ts	Water-	Stratum Desc	ription			Thickness (m)		20
Depth (m)	Туре	Results	Strikes		•		Depth	Ξ Ξ Ξ Ξ	Level m OD	
0.20 0.20	D ES			Brown slightly sandy gravelly CLAY with frequen insect burrows with a low cobble content of sub- angular fine to coarse of limestone. (TOPSOIL)	angular limestone. Gr	ravel is sub-	0.30	(0.30)	90.90	
				Orangish brownish clayey sub-angular fine to co lithorelicts and rare rootlets. (CORNBRASH FORMATION) Strong light grey stained orangish brown coarse Vertical fractures are randomly oriented with hori as cobbles and boulders. (CORNBRASH FORMATION) Firm cream, orangish brown and grey mottled sli angular fine to coarse gravel sized tabular limest content and low boulder content of sub-angular t (CORNBRASH FORMATION)	grained calcarenite L zontal bedding fractu ghtly sandy CLAY wit ione lithorelicts and a	IMESTONE. Ires. Recovered th occasional si medium cobbl	0.40 I I JD-	(0.10) (0.30) (0.40)	90.80 90.50	
1.00	В						1 -		90.10	
				Very strong brown oolitic coarse grained calcares (CORNBRASH FORMATION)	nite LIMESTONE.		-	(0.30)	89.80	
1.50 1.50	B HSV	138kPa		Stiff thinly laminated cream, orangish brown and frequent sub-angular fine to coarse gravel sized cobble content of sub-angular tabular limestone closely spaced orangish brown oolitic limestone. (FOREST MARBLE FORMATION)	tabular limestone lithe lithorelicts. Laminatio	orelicts and a lo	th w -	(0.70)	03.00	
General Remark				collapse. 3) Groundwater not encountered. 4			- - 5 -			

				Project: Himley Village			Trialpi			
Hydro	ock ^{**}						ΤΡ´			
					1		ige No			
Method: Tria		towoldo and	odel 0	Date(s): 07/06/2023	Logged By: JN	N	Check		-	
General Hor		tswolds and L	_egal &	Co-ords: 455738.00, 223132.42	Stability: Unst	able.	Dimer	2.50m		Scale
Hydrock Proj		141	1	Ground Level: 90.53m OD	Plant: JCB 14	0X	0.65m			1:25
Depth (m)	amples / Tes _{Type}	ts Results	Water- Strikes	Stratum Desc	ription		Depth	Thickness (m)	Level m OD	Leaend
0.10	ES			Brown slightly sandy gravelly CLAY with frequent insect burrows with a low cobble content of sub- angular fine to coarse of limestone.			-	(0.25)		
				(TOPSOIL) Firm orangish brownish slightly sandy gravelly C angular tabular limestone and rare rootlets and in fine to coarse of tabular limestone. (HEAD DEPOSITS) Strong light grey stained orangish brown coarse Vertical fractures are randomly oriented with hori as cobbles and boulders. (CORNBRASH FORMATION)	nsect burrows. Grave grained calcarenite L	I is sub-angular	r 	(0.05)	90.28 90.23	
				Firm cream, orangish brown and grey mottled sli					89.43	
1.30 1.30	D HSV	127kPa		angular fine to coarse gravel sized tabular limest content of sub-angular tabular limestone lithorelie (CORNBRASH FORMATION)			-	(0.90)		
			•	Very strong brown oolitic coarse grained calcared (CORNBRASH FORMATION)			2.00	(0.20)	88.53	
							3 -			
General Remark	ks:						- - 5 -			

1) Trial pit terminated at 2.20m bgl due to very difficult digging in shallow rock. 2) Trial pit sides spalling from 0.60m to 2.20m. 3) Groundwater encountered at 2.20m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			rialpit			
Hydro	ock ["]					·	TP1	3		
	! *					Pag	e No.	1 of	1	
Method: Tria				Date(s): 07/06/2023	ged By: JN		heck			
General Hon		tswolds and Le	egal &	Co-ords: 455809.95, 223111.94 Sta	bility: Stabl	e.	Dimen	sion: 2.50m	s: S	cal
Hydrock Pro		'141		Ground Level: 89.78m OD Pla	nt: JCB 140)X).65m			1:2
S	Samples / Tes	sts	Water-	Stratum Description	n		c	Thickness (m)		
Depth (m)	Туре	Results	Strikes				Depth mbgl	(m)	Level m OD	Ledend
0.20	ES			Brown slightly sandy gravelly CLAY with frequent root insect burrows with a low cobble content of sub-angula sized fragments of brick. Gravel is sub-angular fine to (MADE GROUND)	ar limestone and	rare fine gravel	0.30	(0.30)	89.48	
				Strong light grey stained orangish brown crystalline co LIMESTONE. Vertical fractures are randomly oriented Recovered as cobbles and boulders. (CORNBRASH FORMATION)				(0.90)		
1.40 1.40	D HSV	97kPa		Firm cream, orangish brown and grey mottled slightly s to coarse gravel sized tabular limestone lithorelicts and low boulder content of sub-angular tabular limestone li (CORNBRASH FORMATION)	d a medium cob		1.20 e	(0.60)	88.58	
1.75	в		-				1.80		87.98	
			-	Strong brown oolitic coarse grained calcarenite LIMES (CORNBRASH FORMATION)	TONE.		- 2 -	(0.30)		
2.20	В			Cream mottled orangish brown clayey sub-angular fine lithorelicts with a high cobble content of sub-angular lir (CORNBRASH FORMATION)			-	(0.30)	87.68	
				Stiff thinly laminated orangish brown and grey mottled occasional sub-angular fine to coarse gravel sized table Laminations are extremely closely spaced orangish bro (FOREST MARBLE FORMATION)	ular limestone li	horelicts.	2.40		87.38	
2.80 2.80	D HSV	137kPa					3 -	(0.80)		
				Base of Excavation at 3.20m	n		3.20		86.58	
							4 -			
							-			
							5 -			

1) Trial pit terminated at 3.20m bgl 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 1.80m. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village		-	Trialpit			
Hydro	ock						TP1	4		
-yur						Pa	ge No.	1 of	1	
/lethod: Tria				Date(s): 13/06/2023	Logged By: JN	Л	Check			
Client: Cala I General Hon		tswolds and L	egal &	Co-ords: 455991.98, 223234.33	Stability: Stab	le.	Dimen	sions 2.50m	s: S	cal
lydrock Proj		'141		Ground Level: 88.61m OD	Plant: JCB 14	0X	0.65m	2.5011] ·	1:2
S Depth (m)	Samples / Tes	i ts Results	Water- Strikes	Stratum Desc	cription		Depth mbgl	Thickness (m)	Level m OD	Leaend
Depin (m)	Туре	Results		Brown sandy slightly gravelly CLAY with frequer insect burrows. Gravel is sub-angular to rounder quartzite. (TOPSOIL)				<u>(0.30)</u>	<u>3 E</u>	
0.45 0.50	B ES			Firm light yellowish brown slightly sandy slightly content of sub-angular tabular limestone. Grave limestone. (HEAD DEPOSITS) From 0.30m to 0.52m: In the eastern half of stained orangish brown ooilitic shelly coarse g	l is sub-angular fine to f the pit - Very strong li rrained calcarenite LIM	o coarse of ght grey ESTONE.	0.30 - -0.52	(0.22)	88.31 88.09	
0.80	HSV D	85kPa		Vertical fractures are randomly oriented with the Recovered as clayey cobbles and boulders. Firm cream, orangish brown and grey mottled sl angular fine to coarse gravel sized tabular limes content of sub-angular tabular limestone lithorel	ightly sandy CLAY wit tone lithorelicts and a	h frequent sub- low cobble				
1.00				(CORNBRASH FORMATION)				(1.28)		
2.00	в			Stiff thinly laminated orangish brown and grey m sandy CLAY with frequent sub-angular fine to co lithorelicts. Laminations are extremely closely sp	arse gravel sized tab	ular limestone	1.80 e	(0.30)	86.81	
2.00	нsv в	133kPa		lithorelicts and sand. (FOREST MARBLE FORMATION) Cream clayey sub-angular fine to coarse GRAVI with a high cobble content of sub-angular tabula (FOREST MARBLE FORMATION)			-	(0.30)	86.51	
2.70	D			Stiff thinly laminated greyish brown and grey mo angular fine to coarse gravel sized tabular limes extremely closely spaced orangish brown oolitic (FOREST MARBLE FORMATION)	tone lithorelicts. Lami		2.40		86.21	
2.70	нsv	127kPa					3 - 3.05	(0.65)	85.56	
				Very strong grey oolitic fine grained shelly LIME (FOREST MARBLE FORMATION) Base of Excavation			3.10	(0.05)	85.51	
							4 -			

1) Trial pit terminated 3.10m bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 2.40m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village		-	Trialpit			
Hydro	ock						TP1	5		
- yur						Pa	ge No.	1 of	1	
Method: Tria				Date(s): 13/06/2023	Logged By: JN	Л	Check	ed B	y: M	A/S
Client: Cala I General Hon		tswolds and L	.egal &	Co-ords: 456076.59, 223211.74	Stability: Stab	le.	Dimen		s: S	cale
Hydrock Proj		141		Ground Level: 87.56m OD	Plant: JCB 14	0X	0.65m	2.50m	י ר	1:25
S	Samples / Tes	ts	Water-					ness		p
Depth (m)	Туре	Results	Strikes	Stratum Des	•		Depth mbgl	Thickness (m)	Level m OD	Legend
0.10	ES			Brown sandy slightly gravelly CLAY with frequer insect burrows. Gravel is sub-angular to rounder quartzite. (TOPSOIL)			- 0.30	(0.30)	87.26	
				Orangish brownish slightly sandy gravelly CLAY angular tabular limestone and rare rootlets and fine to coarse of tabular limestone. (HEAD DEPOSITS) Very strong light grey stained orangish brown o LIMESTONE. Vertical fractures are randomly or bedding fractures. Recovered as cobbles and b (CORNBRASH FORMATION)	insect burrows. Grave olitic shelly coarse gra iented with clay infill a	l is sub-angular	0.40	(0.10)	87.16	
1.20 1.20	D HSV	105kPa		Firm cream, orangish brown and grey mottled s angular fine to coarse gravel sized tabular limes content of sub-angular tabular limestone lithore (CORNBRASH FORMATION)	stone lithorelicts and a	low cobble	1.00 b- 	(0.80)	86.56	
2.00 2.00 2.10	D HSV B	125kPa	Ţ	Stiff thinly laminated orangish brown and grey n sandy CLAY with frequent sub-angular fine to c lithorelicts. Laminations are extremely closely s and sand. (FOREST MARBLE FORMATION)	oarse gravel sized tabi paced orangish brown EL of grey micritic lime	ular limestone oolitic limeston	2.20	(0.40)	85.76 85.36	
				with a high cobble content of sub-angular tabula (FOREST MARBLE FORMATION) Stiff thinly laminated greyish brown and grey mo			2.60	(0.40)	84.96	•
2.80	D			sub-angular fine to coarse gravel sized tabular l extremely closely spaced orangish brown oolitio (FOREST MARBLE FORMATION)	limestone lithorelicts. L limestone and sand.		2.90	(0.30)	84.66	
				Very strong grey oolitic fine grained shelly LIME (FOREST MARBLE FORMATION) Base of Excavation			<u>2.95</u>	(0.05)	84.61	
							4 -			

1) Trial pit terminated 2.95m bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 2.20m bgl. Groundwater entered the pit at a moderate rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			Trialpit			
Hydro	ock						TP1			
					1		ge No.			
Method: Tria				Date(s): 13/06/2023	Logged By: JN	N	Check		-	
General Hor		swolds and L	egai &	Co-ords: 455921.53, 223177.16	Stability: Stab	le.	Dimen	2.50m		
Hydrock Pro	ject No: 27	141		Ground Level: 89.22m OD	Plant: JCB 14	0X	0.65m			1:25
Cepth (m)	Samples / Test	S Results	Water- Strikes	Stratum Des	cription		Depth mbgl	Thickness (m)	Level m OD	Legend
0.20	ES			Brown sandy slightly gravelly CLAY with freque insect burrows. Gravel is sub-angular fine to co (TOPSOIL)		onal roots and		(0.25)		
0.80 0.80	B HSV	100kPa		Orangish brownish slightly sandy gravelly CLAN angular tabular limestone and rare rootlets and fine to coarse of tabular limestone. (HEAD DEPOSITS) Very strong light grey stained orangish brown o LIMESTONE. Vertical fractures are randomly oi bedding fractures. Recovered as cobbles and b (CORNBRASH FORMATION) Firm light yellowish brown, orangish brown and occasional sub-angular fine to coarse gravel siz low cobble content of sub-angular tabular limes rootlets. (CORNBRASH FORMATION)	insect burrows. Grave olitic shelly coarse gra iented with clay infill a oulders. grey mottled slightly s eed tabular limestone l	I is sub-angular ined calcarenite nd horizontal andy CLAY with ithorelicts and a	0.70	(0.05)	88.92 88.92 88.52	
2.20	в		¥	Strong grey micritic fine grained LIMESTONE. (CORNBRASH FORMATION) From 1.80m to 1.85m: Band of cream grav micritic limestone. Gravel is sub-angular fine Cream clayey sub-angular fine to coarse GRAV a high cobble content of sub-angular micritic lin (CORNBRASH FORMATION) Stiff thinly laminated greyish brown and grey m sub-angular fine to coarse gravel sized tabular	to coarse of micritic lim EL of micritic limeston lestone lithorelicts. ottled slightly sandy Cl limestone lithorelicts. I	estone. e lithorelicts wit _AY with freque	- 2.40 nt	(0.10)	87.42 87.32 86.82	
3.00 3.00	D HSV	128kPa		extremely closely spaced orangish brown colitie (FOREST MARBLE FORMATION)	innesione and sand.		- - - - - - - - - - - - - - - - - - -	(1.00)	85.82	
				Very strong dark grey oolitic fine grained shelly (FOREST MARBLE FORMATION) Base of Excavation			3.45	(0.05)	85.77	
							4-			

General Remarks: 1) Trial pit terminated 3.45m bgl. 2) Trial pit sides mostly didn't collapse, spalling from 1.80m to 2.40m. 3) Groundwater encountered at 1.80m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			Trialpit			
Hydro	ock ^{**}						TP1	7		
iy ar c					_	Pa	ge No.	1 of	1	
/lethod: Tria				Date(s): 13/06/2023	Logged By: JN	Л	Check	ed B	y: M	A/S
Client: Cala I General Hon		swolds and Lee	gal &	Co-ords: 456059.59, 223165.97	Stability: Stab	le.	Dimen	sion: 2.50m	s: S	cal
lydrock Proj		141		Ground Level: 87.55m OD	Plant: JCB 14	0X	0.65m	2.5011		1:25
S	amples / Tes		Water-	Stratum Desc	cription			Thickness (m)	- 0	pu
Depth (m)	Туре	Results	Strikes	Brown sandy slightly gravelly CLAY with frequer		anal roots and	Depth mbgl	(m)	Level m OD	Leaend
				insect burrows. Gravel is sub-angular fine to coa (TOPSOIL)			0.30	(0.30)	87.25	
0.40	ES			Orangish brownish slightly sandy gravelly CLAY angular tabular limestone and rare rootlets and fine to coarse of tabular limestone. (HEAD DEPOSITS) Very strong light grey stained orangish brown or LIMESTONE. Vertical fractures are randomly or bedding fractures. Recovered as cobbles and b (CORNBRASH FORMATION)	insect burrows. Grave blitic shelly coarse gra iented with clay infill a	l is sub-angular	0.50	(0.20)	87.05	
1.35	D			Firm cream, orangish brown and grey mottled s angular fine to coarse gravel sized tabular limes content of sub-angular tabular limestone lithorel (CORNBRASH FORMATION)	tone lithorelicts and a	low cobble	b- - 1.40	(0.30)	86.45	
1.35	HSV	110kPa		Stiff thinly laminated orangish brown and grey m sandy CLAY with occasional sub-angular fine to lithorelicts and rare fish scale fossils. Lamination orangish brown oolitic limestone and sand. (FOREST MARBLE FORMATION) From 1.40m to 1.70m: Pocket of cream gra	coarse gravel sized ta ns are extremely close	abular limestone	2 -			
2.30 2.30 2.30	B ES HSV	132kPa		Below 2.60m: Becoming greyish brown mo	ttled orangish brown.			(1.60)		
2.90	D						-			
				Very strong grey oolitic fine grained shelly LIME	STONE.		3 - 3.00 3.10	(0.10)	84.55	
				Base of Excavation	at 3.10m		4-			

1) Trial pit terminated 3.10 bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 3.00m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village		۲ 	Trialpit			
Hydro	ock						TP1	8		
							ge No.			
Aethod: Tria		towoldo ond lar		Date(s): 13/06/2023	Logged By: JN		Check		-	
General Hon		tswolds and Leg	aroc	Co-ords: 455903.45, 223109.53	Stability: Stabl	le.	Dimen	2.50m		Scal
lydrock Pro	ject No: 27	141		Ground Level: 88.96m OD	Plant: JCB 14	0X	0.65m			1:2
S	Samples / Test	*	Vater-	Stratum Descr	iption		£ –	Thickness (m)	≂ 0	200
Depth (m)	Туре	Results	Strikes	Brown sandy slightly gravelly CLAY with frequent		nal roots and	Depth mbgl	μ Πic	Level m OD	Prend
				insect burrows. Gravel is sub-angular fine to coar (TOPSOIL) Orangish brownish slightly sandy gravelly CLAY v angular tabular limestone and rare rootlets and in	se of limestone.	ntent of sub-	0.25	(0.25)	88.71 88.66	
				(fine to coarse of tabular limestone. ((HEAD DEPOSITS) Very strong light grey stained orangish brown ool LIMESTONE. Vertical fractures are randomly orie bedding fractures. Recovered as cobbles and box (CORNBRASH FORMATION)	ented with clay infill a	ined calcarenite nd horizontal		(0.90)		
							1.20		87.76	
1.30 1.30 1.40	D ES HSV	127kPa		Firm cream, orangish brown and grey mottled slig angular fine to coarse gravel sized tabular limesto content of sub-angular tabular limestone and pur (CORNBRASH FORMATION)	one lithorelicts and a		D- - -	(0.50)		
				Cream clayey sub-angular fine to coarse GRAVE	L of micritic limeston	e lithorelicts.	1.70		87.26	
1.80	В			(CORNBRASH FORMATION) Strong grey micritic fine grained LIMESTONE. Re	ecovered as tabular o	gravel.	- 1.90	(0.20)	87.06	
				(CORNBRASH FORMATION)			2 -	(0.60)		
2.55	D			Stiff thinly laminated greyish brown and grey mot	tled slightly sandy CL	AY with frequer	- 2.50	(0.10)	86.46	
2.55 2.70 2.85	HSV HSV B	147kPa 130kPa		sub-angular fine to coarse gravel sized tabular lin extremely closely spaced orangish brown colitic I (FOREST MARBLE FORMATION) Stiff thinly laminated bluish grey silty CLAY with fr and horizontal bedding fissures. (FOREST MARBLE FORMATION)	nestone lithorelicts. L imestone and sand.	aminations are	3 -	(0.60)	86.36	×_ ×_ ×_ ×_
							3.20		85.76	
				Base of Excavation a	t 3.20m					
							-			
							4			
							-			
							-			
							5 -			

1) Trial pit terminated 3.20 bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 1.90m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

			Project: Himley Village						
ock ⁻	-								
				<u> </u>		-			• • • -
	tswolds and I	egal &							
nes		.cgui u		-		Dimen	2.50m		
ect No: 27	141	1	Ground Level: 87.92m OD	Plant: JCB 14	0X	0.65m			1:2:
- -		Water-	Stratum Desc	ription		g pt	ckness	Ja la	prepe
Туре	Results	Ourkes	Brown sandy slightly gravelly CLAY with frequen	t rootlets and occasic	nal roots and	De	ĒÊ	Lev m (
ES			insect burrows. Gravel is sub-angular fine to coa (TOPSOIL)	rse of limestone and	flint.		(0.30)		
20			Very strong light grey stained orangish brown on	litic shelly coarse gra	ined calcarenite	0.30		87.62	Ķ
			LIMESTONE. Vertical fractures are randomly ori bedding fractures. Recovered as cobbles and bo	ented with clay infill a		-			
			(CORNBRASH FORMATION)			-			
						-	(0.69)		
						-			
D						0.99 b-1		86.93	
HSV	120kPa		content of sub-angular tabular limestone lithoreli						
			(CORNBRASH FORMATION)			-	(0.61)		_
						-			
			Croom alovey sub angular fine to seerce CPAV	- I of grov migritic lime	atono lithorolio	1.60		86.32	
В			with a high cobble content of sub-angular tabula			-	(0.20)	00.40	
			Stiff thinly laminated orangish brown and grey m					86.12	
						2 -			
			(FOREST MARBLE FORMATION)			-	(0.00)		_
D						-	(0.80)		
HSV	130kPa					-			
			Dere of Communication	-+ 0.00		2.60		85.32	
			Base of Excavation	at 2.60m		-			
						1			
						3 -			
						-			
						-			
						-			
						-			
						4			
						1			
						-			
						1			
						1			
						-			
						5-			
	nes ject No: 27 Samples / Tes ES ES D HSV	Al Pit Homes Cotswolds and L hes ject No: 27141 Samples / Tests Type Results ES D HSV 120kPa B D	A Pit Homes Cotswolds and Legal & hes ject No: 27141 Samples / Tests Type Results ES ES D HSV 120kPa B	brind Date(s): 12/06/2023 Homes Cotswolds and Legal & Date(s): 12/06/2023 Homes Cotswolds and Legal & Date(s): 15/06/2023 Co-ords: 455988.26, 223101.30 iect No: 27141 Ground Level: 87.92m OD Samples / Tests Water- Strikes ES Brown sandy slightly gravelly CLAY with frequent insect burrows. Gravel is sub-angular fine to coars (TOPSOIL) Very strong light grey stained orangish brown on LIMESTONE. Vertical fractures are randomly or bedding fractures. Recovered as cobbles and be (CORNBRASH FORMATION) B Firm cream, orangish brown and grey mottled sl angular fine to coarse gravel sized tabular linest content of sub-angular tabular linest content of sub-angular fine to coarse GRAVI with a high cobble content of sub-angular tabular linest (CORNBRASH FORMATION) B Cream clayey sub-angular fine to coarse GRAVI with a high cobble content of sub-angular tabular linest coarse first is coarse gravel sized tabular linest coarse of sub-angular tabular linest (CORNBRASH FORMATION) B Cream clayey sub-angular fine to coarse GRAVI with a high cobble content of sub-angular tabular linest (CORNBRASH FORMATION) B Cream clayey sub-angular fine to coarse gravel size first scale fossils. Laminations are extremely coal linestone and and. (FOREST MARBLE FORMATION)	Date (s): 12/06/2023 Logged By: JN Homes Cotswolds and Legal & co-ords: 455988.26, 223101.30 Stability:	Deck Project: Hinney Hindge In Pit Date(\$): 12/06/2023 Logged By: JM Homes Cotswolds and Legal & Co-ords: 455988.26, 223101.30 Stability: Stable. iect No: 27141 Ground Level: 87.92m OD Plant: JCB 140X samples / Tests Water- Strikes Stratum Description Type Results Brown sandy slightly gravelly CLAY with frequent rootles and occasional roots and insect burrows. Gravel is sub-angular fine to coarse of limestone and flint. (TOPSOL) ES Vary strong light gravelage table drangiab frown collic shelly coarse grained calcarenite LIMESTONE. Verical fractures are randomly oriented with clay infili and horizontal bedring fractures. Recovered as cobbles and boulders. (CORNBRASH FORMATION) B Firm cream, orangish brown and gray mottled slightly sandy CLAY with occasional su angular fine to coarse gravel sized tabular limestone lithorelicts and a low cobble content of sub-angular fibral mestone lithorelicts and a low cobble content of sub-angular tabular microtic limestone lithorelicts. (CORNBRASH FORMATION) B Cream clayey sub-angular fine to coarse GRAVEL of gray micritic limestone lithorelicts with a ligh cobble content of sub-angular tabular micritic limestone lithorelicts. (CORNBRASH FORMATION) B Cream clayey sub-angular fine to coarse GRAVEL of gray micritic limestone lithorelicts. (CORNBRASH FORMATION) B Cream clayey sub-angular fine to coarse GRAVEL of gray micritic limestone lithorelicts and priph robele content of sub-angular tabular micritic limestone lithorelicts. (CORNBRASH FORMATION) B	Display Traject mining/ minings Traject mining/ minings In Pit Date(s): 12/06/2023 Logged By: JM Check Homes Cotswolds and Legal & co-ords: 455988.26, 223101.30 Stability: Stable. Dimension iect No: 27141 Ground Level: 87.92m OD Plant: JCB 140X 0.66m asmples / Tests Water-Strikes Stratum Description Image:	Deck The product number y range TP19 Page No. 1 of Deck No: 27141 Date(5): 12/06/2023 Logged By: JM Ohecked B Sec No: 27141 Ground Level: 87.92m OD Plant: JCB 140X Ores Type Revels Wate: Strake Strakum Description Strakum Description Type Revels Wate: Strake Strakum Description Strakum Description B How names Ground Level: 87.92m OD Plant: JCB 140X -00 B How names Strakum Description Strakum Description Strakum Description B How names Ground Level: 87.92m OD Plant: JCB 140X -00 B How names Strakum Description Strakum Description -00 B How names Ground Level: 87.92m OD Plant: JCB 140X -00 B How names Ground Level: 87.92m OD Plant: JCB 140X -00 B How names Ground Level: 87.92m OD Strakum Description -00 B Ground Level: 87.92m OD Firm cream, creaming and plant the coarse of How C	Deck Page No. 1 of 1 II Pit Immess Colswolds and Legal & Co-ords, 455988.28, 223101.30 Stability: Stable. Dimensions: S 2.0m Internet Colswolds and Legal & Co-ords, 455988.28, 223101.30 Stability: Stable. Dimensions: S 2.0m Internet Colswolds and Legal & Co-ords, 455988.28, 223101.30 Stability: Stable. Dimensions: S 2.0m Internet Colswolds and Legal & Co-ords, 455988.28, 223101.30 Stability: Stable. Dimensions: S 2.0m Internet Colswolds and Legal & Colswolds Ground Level: 87.82m OD Plant: JCB 140X Immensions: S 2.0m Internet Colswolds Ground Level: 87.82m OD Plant: JCB 140X Immensions: S 2.0m Immensions: S 2.0m Internet Colswolds Ground Level: 87.82m OD Plant: JCB 140X Immensions: S 2.0m Immensions: S 2.0m Internet Colswolds Ground Level: 87.92m OD Plant: JCB 140X Immensions: S 2.0m Immensions: S 2.0m

				Project: Himley Village			Trialpit			
Hydro	ock ^{••}						TP2	20		
						Pa	ge No.	1 of	1	
Method: Tria			_	Date(s): 12/06/2023	Logged By: JN		Check		-	
Client: Cala I General Hom		tswolds and L	egal &	Co-ords: 455947.61, 223062.47	Stability: Stab	le.	Dimen	sion 2.50m		Scale
Hydrock Proj		'141		Ground Level: 88.09m OD	Plant: JCB 14	0X	0.65m	2.0011		1:25
S	amples / Tes	its	Water-	Stratum Desc	ription		ء	Thickness (m)		pu
Depth (m)	Туре	Results	Strikes	Brown sandy slightly gravelly CLAY with frequen	•		Depth mbgl	Thic (Thic	Level m OD	Legend
0.27	ES			insect burrows. Gravel is sub-angular fine to coa (TOPSOIL) Orangish brownish slightly sandy gravelly CLAY angular tabular limestone and rare rootlets and i fine to coarse of tabular limestone.	with a high cobble co	ontent of sub-	0.25	(0.25)	87.84 87.79	
				(HEAD DEPOSITS) Very strong light grey stained orangish brown oc LIMESTONE. Vertical fractures are randomly ori bedding fractures. Recovered as cobbles and bo (CORNBRASH FORMATION)	ented with clay infill a] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _	(0.90)		
1.20 - 1.40 1.30	B HSV	135kPa		Firm cream, orangish brown and grey mottled sl angular fine to coarse gravel sized tabular limes content of sub-angular tabular limestone lithoreli (CORNBRASH FORMATION)	tone lithorelicts and a	low cobble	- 1.20 b- -	(0.00)	86.89	
			Ţ	Very strong grey oolitic coarse grained shelly LI	MESTONE		- 1.80	(0.60)	86.29	
2.00	В			(CORNBRASH FORMATION) Cream clayey sub-angular fine to coarse GRAVI with a high cobble content of sub-angular tabula (CORNBRASH FORMATION)	EL of grey micritic lime		1.90 S 2 -	(0.10)	86.19	
2.50	HSV	138kPa		Stiff thinly laminated orangish brown and grey m occasional sub-angular fine to coarse gravel size fish scale fossils. Laminations are extremely close limestone and sand. (FOREST MARBLE FORMATION)	ed tabular limestone li	ithorelicts and ra	2.30 are -		85.79	
2.70	D						- - 3 -	(1.10)		
3.30	D						3.40	(0.05)	84.69 84.64	
				Very strong dark grey colitic fine grained shelly I (FOREST MARBLE FORMATION) Base of Excavation			4 - - - - -		04.04	
General Remark										

General Remarks: Trial pit terminated 3.45 bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 1.80m bgl. Groundwater entered the pit at a moderate rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			Trialpit No						
Hydro	ock ["]						TP2	21					
· · · y · · · ·					1	Pag	je No.	1 of	1				
Method: Tria				Date(s): 13/06/2023	Logged By: JN		Check		-				
Client: Cala I General Hon		tswolds and I	Legal &	Co-ords: 456104.00, 223112.07	Stability: Unst	able.	Dimen	1 sion 2.50m		cal			
Hydrock Proj		'141		Ground Level: 86.95m OD	Plant: JCB 14	0X	0.65m	2.5011		1:25			
S	Samples / Tes	its	Water-	Stratum Daga	vintion	I	_	ness		þ			
Depth (m)	Туре	Results	Strikes	Stratum Desc	•		Depth mbgl	Thickness (m)	Level m OD	Legend			
0.20	ES			Brown sandy slightly gravelly CLAY with frequent insect burrows. Gravel is sub-angular fine to coa (TOPSOIL)		onal roots and	-	(0.30)					
0.35	В			Orangish brownish slightly sandy gravelly CLAY angular tabular limestone and rare rootlets and i fine to coarse of tabular limestone. (<u>HEAD DEPOSITS</u>) Very strong light grey stained orangish brown oc LIMESTONE. Vertical fractures are randomly ori bedding fractures. Recovered as cobbles and bo (CORNBRASH FORMATION)	nsect burrows. Grave plitic shelly coarse gra ented with clay infill a pulders.	i is sub-angular ined calcarenite ind horizontal	0.30	(0.10)	86.65 86.55 86.05				
1.00 1.00	D HSV	100kPa		Firm cream, orangish brown and grey mottled sli angular fine to coarse gravel sized tabular limes content of sub-angular tabular limestone lithoreli (CORNBRASH FORMATION)	tone lithorelicts and a	low cobble	1	(0.70)					
1.70	В			Cream clayey sub-angular fine to coarse GRAVE with a high cobble content of sub-angular tabula (CORNBRASH FORMATION)	r micritic limestone lit	horelicts.	1.60	(0.20)	85.35 85.15				
2.00 2.00	D HSV	113kPa		Stiff thinly laminated orangish brown and grey m sandy CLAY with sub-angular fine to coarse grav and rare fish scale fossils. Laminations are extre oolitic limestone and sand. (FOREST MARBLE FORMATION)	vel sized tabular lime: mely closely spaced	stone lithorelicts	2 -	(1.10)					
2.75	D			Below 2.40m: Becoming greyish brown mot				(0.05)	84.05 84.00				
				(FOREST MARBLE FORMATION) Base of Excavation	at 2.95m		3/4 - - - - - - - - - - - - - - - - - - -						

Trial pit terminated 2.95m bgl. 2) Trial pit sides spalling from 0.40m to 1.80m. 3) Groundwater encountered at 2.90m bgl. Groundwater entered the pit at a moderate rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			Trialpit No						
Hydro	ock ["]						TP2	22					
···y ar ·						Paç	ge No.	1 of	1				
Method: Tria				Date(s): 12/06/2023	Logged By: JN	N O	Check	ed B	·				
Client: Cala General Hon		tswolds and	Legal &	Co-ords: 456052.65, 223030.46	Stability: Stab	le.	Dimen	sion: 2.50m	s: S	Scale			
Hydrock Pro		141		Ground Level: 86.83m OD	Plant: JCB 14	0X	0.65m	2.5011		1:25			
S	Samples / Tes	ts	Water-	Stratum Des	arintian	J	_	Thickness (m)		pu			
Depth (m)	Туре	Results	Strikes		•		Depth mbgl	Thick (m)	Level m OD	Legend			
	50			Brown slightly sandy gravelly CLAY with freque insect burrows. Gravel is sub-angular fine to co (TOPSOIL)	arse of limestone.		0.25	(0.25)	86.58				
0.27	ES			Firm orangish brownish slightly sandy gravelly of angular tabular limestone and rare rootlets and fine to coarse of tabular limestone. (HEAD DEPOSITS) Very strong light grey stained orangish brown c LIMESTONE. Vertical fractures are randomly of Recovered as cobbles and boulders. (CORNBRASH FORMATION)	insect burrows. Grave	el is sub-angular		(0.05)	<u>86.53</u> 86.03				
0.90 0.90	D HSV	107kPa		Firm cream, orangish brown and grey mottled s angular fine to coarse gravel sized tabular limes content and low boulder content of sub-angular (CORNBRASH FORMATION)	stone lithorelicts and a	low cobble)- - 1 - - -	(0.70)					
							1.50	(0.05)	85.33				
1.60	В			Very strong light grey stained orangish brown o LIMESTONE. Vertical fractures are randomly of Recovered as cobbles and boulders.			s.	(0.05)	85.28				
2.30	D		•	\[CORNBRASH FORMATION) Firm cream slightly sandy CLAY with frequent s tabular limestone lithorelicts and a low cobble c lithorelicts. (CORNBRASH FORMATION) Stiff thinly laminated orangish brown and grey r frequent sub-angular fine to coarse gravel sized occasional carbonised rootlets. Laminations are brown oolitic limestone and sand. (FOREST MARBLE FORMATION)	ontent of grey oolitic li nottled slightly sandy (I tabular limestone lithe	mestone CLAY with orelicts and		(1.10)					
2.30	D HSV	97kPa		(FOREST MARBLE FORMATION) Stiff thinly laminated bluish grey silty CLAY with and horizontal bedding fissures. (FOREST MARBLE FORMATION) From 2.80m to 2.85m: Band of very strong Base of Excavation Base of Excavation		iestone lithorelic	4 - - - - - - - - - - - - - - - - - - -	(0.20)	<u>84 03</u> 83.83				

Trial pit terminated 3.00 bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 2.00m bgl. Groundwater entered the pit at a moderate rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			ialpit			
Hydro	ock ^{••}						TP2	23		
						Pag	e No.	1 of	1	
Method: Tria				Date(s): 08/06/2023	ogged By: JN		heck			
General Horr		tswolds and I	_egal &	Co-ords: 455579.69, 223109.42	Stability: Stabl	le.)imen	sion: 2.50m		
Hydrock Proj	ect No: 27	141		Ground Level: 90.25m OD F	Plant: JCB 14	0X (.65m			1:25
	amples / Tes		Water- Strikes	Stratum Descrip	otion		Depth mbgl	Thickness (m)	Level m OD	Leaend
Depth (m)	Туре	Results		Brown slightly sandy gravelly CLAY with frequent re			De		Ъ	ē
0.10	ES			insect burrows. Gravel is sub-angular to rounded fi quartzite. (TOPSOIL) Firm orangish brown slightly sandy gravelly CLAY v	with a low cobble co	ontent of sub-	0.20	(0.20)	90.05	
0.50	D			angular tabular limestone and frequent rootlets and angular fine to coarse of tabular limestone. (<u>(HEAD DEPOSITS</u>) Orangish brownish clayey sub-angular COBBLES lithorelicts with occasional boulders of limestone lit	of grey crystalline li	mestone	0.40		89.85	
0.70	В			burrows. (CORNBRASH FORMATION)			-	(0.70)		
1.40	HSV	98kPa		Firm cream, orangish brown and grey mottled sligh angular fine to coarse gravel sized tabular limestor content and low boulder content of sub-angular tab rootlets. (CORNBRASH FORMATION)	ne lithorelicts and a	low cobble	1 - <u>1.10</u>	(0.40)	89.15	
1.40	пзv	SOKPA		Brown clayey sub-angular COBBLES of tabular bro	own oolitic limeston	e lithorelicts with	1.50		88.75	-
				a rare boulders of tabular oolitic limestone lithorelic (CORNBRASH FORMATION)			-	(0.30)		
1.80 - 1.90	В			Cream clayey sub-angular fine to coarse GRAVEL	of micritic limeston	e lithorelicts with	1.80		88.45	<u>م</u>
				a high cobble content of sub-angular micritic limest (CORNBRASH FORMATION) Strong brown oolitic coarse grained calcarenite LIN randomly oriented with horizontal bedding fractures boulders.	IESTONE. Vertical		2 2.00	(0.20)	88.25	
				(CORNBRASH FORMATION) Stiff thinly laminated orangish brown and grey mott	tled slightly sandy C	CLAY with sub-	2.30		87.95	
2.50 2.50	ES HSV	130kPa	-	angular fine to coarse gravel sized tabular limestor extremely closely spaced orangish brown oolitic lim (FOREST MARBLE FORMATION)		nations are	-	(0.50)		
2.90	D			Stiff thinly laminated bluish grey silty CLAY with oca and horizontal bedding fissures.	casional micritic lim	estone lithorelicts	2.80	(0.20)	87.45	
				(FOREST MARBLE FORMATION) Base of Excavation at 3	3.00m		-3 - <u>3.00</u> - - -		87.25	
							-			
							4 -			
							-			
							-			
							5 -			

Trial pit terminated 3.00 bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 2.60m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			Trialpi			
Hydro	ock ["]						TP2	24		
						Pa	ige No	. 1 of	1	
Method: Tria		,		Date(s): 08/06/2023	Logged By: JN	Λ	Check		-	
Client: Cala I <u>General Hon</u>		tswolds and Le	gal &	Co-ords: 455623.78, 223093.64	Stability: Stabl	е.	Dimer	1sion 2.50m		Scal
lydrock Proj		/141		Ground Level: 90.17m OD	Plant: JCB 14	x	0.65m	2.0011		1:2
S	Samples / Tes	its	Water-	Stratum Desci	iption		£_	Thickness (m)		700
Depth (m)	Туре	Results	Strikes	Brown slightly sandy gravelly CLAY with frequent		nal roots and	Depth	, Hi Dit	Level m OD	
0.10	ES			insect burrows. Gravel is sub-angular fine to coal (TOPSOIL) Firm orangish brown slightly sandy gravelly CLA ^N angular tabular limestone and rare rootlets and ir	rse of limestone.	ontent of sub-	- 0.30 0.35	(0.30)	89.87 89.82	
				fine to coarse of tabular limestone. (HEAD DEPOSITS) Strong light grey stained orangish brown crystalli LIMESTONE. Vertical fractures are randomly orie Recovered as cobbles and boulders. (CORNBRASH FORMATION)	ented with horizontal	bedding fractur	0.80	(0.45)	89.37	
1.00 1.00	D HSV	113kPa		Stiff cream, orangish brown and grey mottled slig angular fine to coarse gravel sized tabular limest content of sub-angular tabular limestone lithorelic (CORNBRASH FORMATION)	one lithorelicts and a		b- 1 -			
								(1.05)		
1.80 1.80	B HSV	130kPa		Very strong brown oolitic coarse grained calcarer (CORNBRASH FORMATION)	nite LIMESTONE.		1.85	(0.15)	88.32	2
							3			
General Remark				gging in shallow rock. 2) Trial pit sides didn't c			5 -			

1) Trial pit terminated at 2.00m bgl due to very difficult digging in shallow rock. 2) Trial pit sides didn't collapse. 3) Groundwater not encountered. 4) Trial pit backfilled with arisings on completion.

		2		Project: Himley Village	Trialpi			
Hydro	ock ["]	•			TP2	25		
- y ar v				Pa	ige No	. 1 of	1	
Method: Tria				Date(s): 08/06/2023 Logged By: JM	Check		-	
Client: Cala I General Hon		otswolds and Lega	al &	Co-ords: 455670.17, 223078.40 Stability: Stable.	Dimer	1sion 2.50m		Scal
Hydrock Proj		/141		Ground Level: 90.10m OD Plant: JCB 140X	0.65m	2.0011		1:25
S	Samples / Tes	sts v	Vater-	Stratum Description		Thickness (m)		2
Depth (m)	Туре	Results	trikes		Depth	(Thick	Level m OD	Legend
				Brown slightly sandy gravelly CLAY with frequent rootlets and occasional roots and insect burrows. Gravel is sub-angular fine to coarse of limestone. (TOPSOIL) Firm orangish brownish slightly sandy gravelly CLAY with a low cobble content of su	0.25	(0.25)	89.8	5
0.40	D			angular tabular limestone and rare rootlets and insect burrows. Gravel is sub-angula fine to coarse of tabular limestone.		(0.20)	89.6	
0.40 0.50	ES B			(HEAD DEPOSITS) Orangish brown clayey sub-angular fine to coarse GRAVEL of tabular grey crystalling limestone lithorelicts and a high cobble content limestone lithorelicts.		(0.15)	89.5	
				(CORNBRASH FORMATION) Firm cream, orangish brown and grey mottled slightly sandy CLAY with occasional s	Jb-			
0.80 0.80	D HSV	110kPa		angular fine to coarse gravel sized tabular limestone lithorelicts and a low cobble content of sub-angular tabular limestone lithorelicts and rare rootlets. (CORNBRASH FORMATION)	-			
					1-	(1.00)		
					-			
					1			
					1.60		00 5	
				Very strong brown oolitic coarse grained calcarenite LIMESTONE. (CORNBRASH FORMATION)	1.60	(0.20)	88.5	
				Cream clayey sub-angular fine to coarse GRAVEL of micritic limestone lithorelicts wi	1.80		88.3	
2.00	в			a high cobble content of sub-angular micritic limestone lithorelicts. (CORNBRASH FORMATION)	2 -	(0.30)		
2.00	U			Stiff thinly laminated orangish brown and grey mottled slightly sandy CLAY with	2.10		88.0	
				frequent sub-angular fine to coarse gravel sized tabular limestone lithorelicts. Laminations are extremely closely spaced orangish brown oolitic limestone. (FOREST MARBLE FORMATION)	-			
2.50	D				-	(0.70)		
2.50	HSV	127kPa			-			
					2.80		87.3)
2.90	ES			Stiff thinly laminated bluish grey silty CLAY with occasional micritic limestone lithorel and horizontal bedding fissures. (FOREST MARBLE FORMATION)	cts	(0.30)		×
					3 - 3.10		87.0	,×
				Base of Excavation at 3.10m	-			
					-			
					-			
					1			
					-			
					4 -			
					-			
					1			
]			
					1			
					-			
General Remar					5 -			

				Project: Himley Village			Trialpit No					
Hydro	ock						TP2	26				
- y ar c	JCN					Pag	e No.	1 of	1			
Method: Tria				Date(s): 08/06/2023 Log	ged By: JN		heck					
Client: Cala I General Hon		tswolds and Le	egal &	Co-ords: 455714.56, 223063.05 Stat	oility: Stable	e. [Dimen	sion: 2.50m	s: S	cale		
Hydrock Proj		141		Ground Level: 89.82m OD Plar	nt: JCB 140)X).65m	2.5011		1:25		
	Samples / Tes		Water- Strikes	Stratum Description	l		Depth mbgl	Thickness (m)	Level m OD	Leaend		
Depth (m)	Туре	Results		Brown slightly sandy gravelly CLAY with frequent rootle			2 G	μ Ψ	a c	Ē		
0.20	ES			insect burrows with a low cobble content of sub-angular of brick (1cm) and glass (5cm). Gravel is sub-angular fit (MADE GROUND)	ne to coarse of	limestone.	0.25	(0.25)	<u>89.57</u> 89.52			
				Firm orangish brownish slightly sandy gravelly CLAY wi angular tabular limestone and rare rootlets and insect b fine to coarse of tabular limestone.				(0.20)	05.52			
				(HEAD DEPOSITS) Strong light grey stained orangish brown crystalline coa LIMESTONE. Vertical fractures are randomly oriented v	arse grained cal	carenite	0.50		89.32			
				Recovered as cobbles and boulders. (CORNBRASH FORMATION)		0	/					
				Firm cream, orangish brown and grey mottled slightly sa angular fine to coarse gravel sized tabular limestone lith content of sub-angular tabular limestone lithorelicts and	norelicts and a l							
1.00 1.00	D HSV	103kPa		(CORNBRASH FORMATION)			1 -	/4 ***		 		
							-	(1.20)				
							-					
							-					
1.65	В						1.70		88.12			
1.65	HSV	93kPa	-	Very strong brown oolitic coarse grained calcarenite LIN (CORNBRASH FORMATION)	MESTONE.		-					
							2 -	(0.40)				
				Base of Excavation at 2.10m			2.10		87.72			
							-					
							-					
							-					
							-					
							3 -					
							_					
							-					
							-					
							4 -					
]					
							-					
							-					
							-					
General Remark							5 -					

Trial pit terminated 2.10 bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 1.70m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			rialpit			
Hydro	ock ["]						TP2	27		
					1	Pa	ge No.	1 of	1	
Method: Tria			. <u>-</u>	Date(s): 07/06/2023	Logged By: JN		Check		-	
Client: Cala I General Hom		tswolds and L	egal &	Co-ords: 455759.70, 223049.77	Stability: Stab	le.	Dimen	sion 2.50m	s: S	Scale
- - Hydrock Proj		141		Ground Level: 89.46m OD	Plant: JCB 14	0X	0.65m	2.5011		1:25
S	Samples / Tes	ts	Water-	Stratum Daga	vintion	I	_	ness		2
Depth (m)	Туре	Results	Strikes	Stratum Desc	•		Depth mbgl	Thickness (m)	Level m OD	Legend
				Brown slightly sandy gravelly CLAY with frequen insect burrows with a low cobble content of sub- angular fine to coarse of limestone. (TOPSOIL)	angular limestone. G	ravel is sub-	0.25	(0.25)	<u>89.21</u> 89.16	
0.50	ES			Firm orangish brownish slightly sandy gravelly C angular tabular limestone and rare rootlets and i fine to coarse of tabular limestone. (HEAD DEPOSITS) Firm cream, orangish brown and grey mottled sli angular fine to coarse gravel sized tabular limesi content of sub-angular tabular limestone lithoreli max) of carbonaceous material and rootlets. (CORNBRASH FORMATION)	insect burrows. Grave ightly sandy CLAY wit tone lithorelicts and a	l is sub-angular th occasional su low cobble		(0.03)	09.10	
1.00 1.00	D HSV	113kPa					-	(1.40)		
							1.70		87.76	
				Very strong brown oolitic coarse grained calcare (CORNBRASH FORMATION)	nite LIMESTONE.		-	(0.00)		
							2.00	(0.30)	87.46	
2.30 2.40	B HSV	133kPa		Stiff thinly laminated orangish brown and grey m micritic limestone lithorelicts. Laminations are ex oolitic limestone. (FOREST MARBLE FORMATION)			/n - - - -	(0.80)		
				Stiff thinly laminated bluish grey silty CLAY with			2.80		86.66	
2.90	В			and horizontal bedding fissures. (FOREST MARBLE FORMATION) Base of Excavation			33.00	(0.20)	86.46	×
							4 -			
General Remark				se. 3) Groundwater encountered at 1.70m by			- - - 5 -			

Trial pit terminated 3.00 bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 1.70m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village		Trialpit No				
Hydro	ock						TP			
					1		ge No			
Method: Tria		tewolde and	edol 8	Date(s): 08/06/2023	Logged By: JN		Check		-	
General Hon		tswolds and I	_eyai &	Co-ords: 455590.89, 223071.96	Stability: Stab	le.	Dime	nsion 2.50m		Scal
lydrock Proj			1	Ground Level: 89.79m OD	Plant: JCB 14	0X	0.65m	6		1:2
Depth (m)	Samples / Tes	Results	Water- Strikes	Stratum Desc	ription		Depth	Thickness (m)	Level m OD	papa
0.10	ES			Brown slightly sandy gravelly CLAY with frequen insect burrows with a low cobble content of sub- of brick (1cm) and glass (5cm). Gravel is sub-an- (MADE GROUND)	angular limestone an	d rare fragment		(0.30)		
				Firm orangish brownish slightly sandy gravelly C angular tabular limestone and rare rootlets and in fine to coarse of tabular limestone. (HEAD DEPOSITS)	nsect burrows. Grave	l is sub-angula	b-	(0.10)	89.49	
				Very strong light grey stained orangish brown cry LIMESTONE. Vertical fractures are randomly or Recovered as cobbles and boulders. (CORNBRASH FORMATION)			es.	(0.50)	88.89	
1.00 1.00	D HSV	125kPa		Stiff cream, orangish brown and grey mottled slig sub-angular fine to coarse gravel sized tabular lin content and low boulder content of sub-angular to rootlets. (CORNBRASH FORMATION)	mestone lithorelicts a	nd a low cobble	: 1-		00.03	
1.50	в						-	(0.70)		
1.00				Very strong brown oolitic coarse grained calcare (CORNBRASH FORMATION)	nite LIMESTONE.		1.60		88.19	,
							-	(0.40)		
				Base of Excavation	at 2.00m		22.00		87.79	
							3			
General Remark	(5:							.60m		

Trial pit terminated at 2.00m bgl due to very difficult digging in shallow rock. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 1.60m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

	11			Project: Himley Village			Trialpi Trialpi			
Hydro	ock						TP2			
						Pa	ge No	1 of	1	
Method: Tria				Date(s): 08/06/2023	Logged By: JN	N	Check		-	
Client: Cala I General Horr		tswolds and	Legal &	Co-ords: 455638.50, 223057.78	Stability: Stab	le.	Dimer	1 sion 2.50m	s: S	Scale
Hydrock Proj		'141		Ground Level: 89.69m OD	Plant: JCB 14	0X	0.65m	2.5011		1:25
S	Samples / Tes	sts	Water-	Charture Data				ness	_	p p
Depth (m)	Туре	Results	Strikes	Stratum Deso	•		Depth	Thickness (m)	Level m OD	Legend
0.20	ES			Brown slightly sandy gravelly CLAY with frequer insect burrows with a low cobble content of sub- of brick (1cm) and glass (5cm). Gravel is sub-ar (MADE GROUND)	angular limestone an	d rare fragment	S - - 0.30	(0.30)	89.39	
0.40	В			Firm orangish brownish slightly sandy gravelly 0 angular tabular limestone and rare rootlets and fine to coarse of tabular limestone. (HEAD DEPOSITS)			b- 	(0.30)		
				Firm orangish brownish slightly sandy CLAY wit gravel sized tabular limestone lithorelicts and a tabular limestone lithorelicts and rare rootlets ar (CORNBRASH FORMATION)	high cobble content of		0.60		89.09	
1.00 1.00	D HSV	92kPa					1	(0.80)		
				Very strong brown oolitic coarse grained calcare (CORNBRASH FORMATION)	enite LIMESTONE.		1.40	(0.30)	88.29	
				Base of Excavation	at 1.70m		1.70		87.99	
							-			
							-			
							2 -			
							-			
							-			
]			
]			
							-			
							-			
							3 -			
							-			
							-			
							-			
							-			
							-			
							-			
							4			
							-			
							-			
							-			
							1			
							-			
							-			
							-			
							5 -			
General Remark	(S.						-	1		<u> </u>

Trial pit terminated at 1.70m bgl due to very difficult digging in shallow rock. 2) Trial pit sides didn't collapse. 3) Groundwater not encountered. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			Trialpit			
Hydro	ock ⁻						TP3			
					1		ge No.			
Method: Tria		towolds and	000 0	Date(s): 08/06/2023	Logged By: JN	Л	Check		-	
General Hon		tswolds and I	_egai &	Co-ords: 455687.30, 223042.84	Stability: Stab	le.	Dimen	2.50m		
Hydrock Pro	ject No: 27	141		Ground Level: 89.56m OD	Plant: JCB 14	0X	0.65m			1:2
5	Samples / Tes	ts	Water-	Stratum Desc	ription		£ _	Thickness (m)	- Q	7
Depth (m)	Туре	Results	Strikes	Brown slightly sandy gravelly CLAY with frequen	•	nal roots and	Depth mbgl	Ē	Level m OD	
				insect burrows with a low cobble content of sub- of brick (1cm) and glass (5cm). Gravel is sub-an (MADE GROUND)	angular limestone and gular fine to coarse o	d rare fragment f limestone.	0.30	(0.30)	89.26	
0.35	ES			Firm orangish brownish slightly sandy gravelly C angular tabular limestone and rare rootlets and i fine to coarse of tabular limestone. ((HEAD DEPOSITS) Orangish brown COBBLES of tabular grey cryst occasional boulders and rare rootlets. ((CORNBRASH FORMATION) Firm cream, orangish brown and grey mottled sli angular fine to coarse gravel sized tabular limes	nsect burrows. Grave alline limestone lithore ightly sandy CLAY wit tone lithorelicts and a	l is sub-angular elicts with h occasional su	0.60	(0.10)	89.16 88.96	
0.90 1.00	B HSV	88kPa		content of sub-angular tabular limestone lithoreli (CORNBRASH FORMATION)	cts and rare rootiets.			(0.90)		
				Very strong orangish brown oolitic coarse graine (CORNBRASH FORMATION)	d calcarenite LIMEST	ONE.	1.50	(0.30)	88.06	
1.90	В			Cream clayey sub-angular fine to coarse GRAVE high cobble content of sub-angular micritic limes (CORNBRASH FORMATION) Stiff thinly laminated orangish brown and grey m occasional sub-angular fine to coarse gravel size	tone lithorelicts. ottled slightly sandy (ed tabular limestone li	CLAY with ithorelicts.		(0.20)	87.56	
2.30 2.30	B HSV	125kPa		Laminations are extremely closely spaced orang (FOREST MARBLE FORMATION)	ish drown ooliuc iime	stone.	-	(0.50)		
2.60	D			Stiff thinly laminated bluish grey silty CLAY with and horizontal bedding fissures. (FOREST MARBLE FORMATION) Base of Excavation		estone lithoreli	2.50 cts 2.70	(0.20)	87.06	×
							3 -			
							-			
							4 -			
							-			
General Remar							5 -			

				Project: Himley Village			rialpit			
Hydro	ock ⁼						TP3	81		
iyar	JCK					Pa	ge No.	1 of	1	
lethod: Tria				Date(s): 07/06/2023	Logged By: JN	Л	Checke	ed B	y: M	A/S
Client: Cala General Hor		tswolds and L	egal &	Co-ords: 455732.69, 223026.00	Stability: Stabl	le.	Dimen		s: S	cal
lydrock Pro		141		Ground Level: 89.29m OD	Plant: JCB 14	0X	0.65m	2.50m		1:2
ę	Samples / Tes	ts	Water-	Otratura Dava				ness		7
Depth (m)	Туре	Results	Strikes	Stratum Desc	•		Depth mbgl	Thickness (m)	Level m OD	Prend
0.27	В			Brown slightly sandy gravelly CLAY with frequer insect burrows with a low cobble content of sub- angular fine to coarse of limestone. (TOPSOIL) Orangish brownish slightly sandy gravelly CLAY	angular limestone. Gr	avel is sub-	0.25	(0.25)	<u>89.04</u> 88.99	
				angular tabular limestone and rare rootlets and in fine to coarse of tabular limestone. ((HEAD DEPOSITS) Stiff cream, orangish brown and grey mottled sli sub-angular fine to coarse gravel sized tabular l content of sub-angular tabular limestone lithorel fragments of shell fossils and rootlets. (CORNBRASH FORMATION)	ghtly sandy slightly Cl imestone lithorelicts a	_AY with frequer nd a low cobble		(1.30)		
1.20 1.20 1.20	D ES HSV	130kPa								
				Very strong brown oolitic coarse grained calcare (CORNBRASH FORMATION)	enite LIMESTONE.		1.60	(0.10)	87.69	T
1.75	В			Cream clayey sub-angular fine to coarse GRAV a high cobble content of sub-angular micritic lim (CORNBRASH FORMATION) Stiff thinly laminated orangish brown and grey m occasional sub-angular fine to coarse gravel siz Laminations are extremely closely spaced orang (FOREST MARBLE FORMATION)	estone lithorelicts. nottled slightly sandy C ed tabular limestone li	CLAY with ithorelicts.	1 <u>1.80</u>	(0.10)	87.49	
2.40 2.50	D HSV	132kPa		Base of Excavation	at 2 60m		- 2.60		86.69	
							3			

Trial pit terminated 2.60m bgl. 2) Trial pit sides didn't collapse. 3) Groundwater encountered at 2.60m bgl. Groundwater entered the pit at a slow rate. 4) Trial pit backfilled with arisings on completion.

				Project: Himley Village			ialpit			
Hydro	ock ["]					-	TP3	82		
				1			e No.			
Method: Tria		towolds and		Date(s): 07/06/2023	ged By: JN		heck			
General Hon		tswolds and Le	gai &	Co-ords: 455780.73, 223009.18 Stat	bility: Stabl	le.)imen	sion : 2.50m		
Hydrock Proj	ect No: 27	141		Ground Level: 88.87m OD Plar	nt: JCB 140	0X 0	.65m			1:25
	Samples / Tes		Water- Strikes	Stratum Description	ı		Depth mbgl	Thickness (m)	Level m OD	Leaend
Depth (m)	Туре	Results		Brown slightly sandy gravelly CLAY with frequent rootle			ă Ĕ	μĘ	зĘ	و ****
0.20	ES			insect burrows with a low cobble content of sub-angular sized fragments of brick. Gravel is sub-angular fine to c (MADE GROUND)	coarse of limest	tone.	0.30	(0.30)	88.57	
				Strong light grey stained orangish brown crystalline coa LIMESTONE. Vertical fractures are randomly oriented v Recovered as cobbles and boulders. (CORNBRASH FORMATION)				(0.50)		
				Firm cream, orangish brown and grey mottled slightly s occasional sub-angular fine to coarse gravel sized tabu	ilar limestone li	thorelicts and a	0.80		88.07	
1.00 1.00	B HSV	88kPa		low cobble content of sub-angular tabular limestone lith x 10cm max) of carbonaceous material and rootlets. (CORNBRASH FORMATION)	orelicts and ra	re pockets (10cm	1 -			
							-	(1.60)		
2.00 2.00	D HSV	108kPa					2 -			
				Firm thinly laminated orangish brown and grey mottled frequent micritic limestone lithorelicts. Laminations are orangish brown oolitic limestone. (FOREST MARBLE FORMATION)			2.40		86.47	
3.00 3.00	B HSV	103kPa	Ţ				3 -	(1.00)		
				Base of Excavation at 3.40m			3.40		85.47	
							-			
							4 -			
							-			
							-			
							- 5 -			

1) Trial pit terminated 3.40m bgl. 2) 1) Trial pit sides didn't collapse. 3) Groundwater encountered at 3.00m bgl. Groundwater entered the pit at a slow rate. 4) 1) Trial pit backfilled with arisings on completion.

ock						TP3	33		
					Pa	ge No.	1 of	1	
al Pit			Date(s): 09/06/2023	Logged By: JN					
	tswolds and I	_egal &	Co-ords: 455877.32, 223032.55	Stability: Stabl	e.	Dimen		s: S	cale
	141		Ground Level: 88.48m OD	Plant: JCB 14	XC	0.65m			1:25
Samples / Tes	ts	Water-	Stratum Desc	cription		÷-	kness	- Q	Leaend
Туре	Results	Strikes	Brown slightly sandy gravelly CLAY with frequer	t rootlets and occasio	nal roots and	Dep	μ Έ	л С С	Lea
ES						-	(0.30)		
В			angular tabular limestone and rare rootiets and fine to coarse of tabular limestone. (HEAD DEPOSITS) Very strong light grey stained orangish brown ci	insect burrows. Grave	l is sub-angular		(0.05)	88.18 88.13	
B HSV	98kPa		to coarse gravel sized tabular limestone lithoreli	cts and a low cobble o	ontent and low	1.00 ne	(0.70)	87.48	
в			a high cobble content of sub-angular micritic lim limestone lithorelicts.			1.70	(0.40)	86.78	
			(CORNBRASH FORMATION)			2 -	(0.40)		مہ
D			frequent sub-angular fine to coarse gravel sized	tabular limestone lithe	orelicts.	-	(0.50)	86.38	
			Doos of Evenuation	at 2.60m		2.60		85.88	
						3			
	I Pit Homes Connes Ject No: 27 Samples / Tes ES B B HSV	I Pit Homes Cotswolds and I hes lect No: 27141 Samples / Tests ES B B B HSV 98kPa B	A Pit Homes Cotswolds and Legal & hes lect No: 27141 Samples / Tests Utater- Strikes ES B B B B B B B B B B B B B	B Date(s): 09/06/2023 Hornes Cotswolds and Legal & Date(s): 09/06/2023 Co-ords: 455877.32, 223032.55 ect No: 27141 Ground Level: 88.48m OD Samples / Tests Water-Strikes Type Results B Water-Strikes B Brown slightly sandy gravelly CLAY with frequer insect burrows. Gravel is sub-angular fine to control tabular limestone. (TOPSOIL) B Firm orangish brownish slightly sandy gravelly CLAY with frequer insect burrows. Gravel is sub-angular fine to control tabular limestone. (HEAD DEPOSITS) Very strong light grey stained orangish brown or LLMESTONE. Vertical fractures are randomly or Recovered as cobbles and boulders. (CORNBRASH FORMATION) B Firm cream, orangish brown and grey mottled s to coarse gravel sized tabular limestone (tORNBRASH FORMATION) B Cream clayey sub-angular fine to coarse GRAV a high cobble content of sub-angular micritic limestone (CORNBRASH FORMATION) B Cream clayey sub-angular fine to coarse GRAV a high cobble content of sub-angular micritic limestone (CORNBRASH FORMATION) Stiff thinly laminated orangish brown and grey not frequent sub-angular fine to coarse gravel sized Laminations are extremely closely spaced orang (FOREST MARBLE FORMATION)	B Date(s): 09/06/2023 Logged By: JM Homes Cotswolds and Legal & Base Co-ords: 455877.32, 223032.55 Stability: Stabili	B Project. Hinney vintage Promes Cotswolds and Legal & Co-ords: 455877.32, 223032.55 Stability: Stable. Performed Cotswolds and Legal & Co-ords: 455877.32, 223032.55 Stability: Stable. Performed Cotswolds and Legal & Co-ords: 455877.32, 223032.55 Stability: Stable. Performed Cotswolds and Legal & Co-ords: 455877.32, 223032.55 Stability: Stable. Performed Cotswolds and Legal & Co-ords: 455877.32, 223032.55 Stability: Stable. Performed Cotswolds and Legal & Co-ords: 455877.32, 223032.55 Stability: Stable. Performed Cotswolds and Legal & Co-ords: 455877.32, 223032.55 Stability: Stable. Performed Cotswolds and Legal & Co-ords: 455877.32, 223032.55 Stability: Stable. Performed Cotswolds and Legal & Co-ords: 455877.32, 223032.55 Stability: Stable. Performed Cotswolds and Legal & Water-Strikes Stratum Description Es Brown slightly sandy gravely CLAY with requent rootes and insect burrows. Gravel is sub-angular fire to coarse of limestone. (Her Strong Kirg registrate and rare rootes and insect burrows. Gravel is sub-angular fire to coarse of limestone with horizontal bedding fracture are ranoomy oriented with horizontal bedding fracture Records as company oriented with horizontal bedding fracture are rootets. (CORNBRASH FORMATION) Firm cream carge sub-angular fire to coarse GRAVEL of micritic limestone lithorelicts. B <	B Bit is used by a set of the set of	Stress TP33 Page No. 1 of Date(s): 09/06/2023 Logged By: JM Checked Bit IPIL Co-ords: 455877.32, 223032.55 Stability: Stable. Dimensions: Dimensions: 220m eet No: 27141 Ground Level: 88.48m OD Plant: JCB 140X ores imples / Tests Water: Stifts Strong alighty sendy gravely CLV with frequent notes and occasional nots and increasing and provide a sub-angular fine to cames of timestore. image association and grave models and sociational nots and increasing and provide a sub-angular fine to cames of timestore. image association: 8 Tree models and need content of sub- ing and stability sandy gravely CLV with frequent notes and insolute. image association: image association: 8 Tree and stability sandy gravely CLV with frequent notes and need content of sub- ing and stability graving dravely CLV with frequent and angular increasing bioximical stability sandy gravely CLV with frequent and angular increasing bioximical stability sandy gravely CLV with frequent and angular increasing bioximical stability sandy gravely CLV with frequent and angular increasing bioximical stability sandy CLV with sub-angular fine to caster gravel stability annotes and model angular fine to caster gravel stability increasing and the caster gravel stability increasing and the caster increasing bioximical stability and y CLV with frequent stability and y CLY with frequent stability and y CLY with frequent stability sandy CLY with frequent stability and y curvel angular fine to caster gravel stability sandy CLY with frequent stability and y stability and y curvel	IP Product Transport Transport In Pitt Somese Collswolds and Legal & Co-ords: 456877.32, 220302.65 Istability: Stable. Dimensions: Stable Stability: Stable. In Pitt Somese Collswolds and Legal & Co-ords: 456877.32, 220302.65 Istability: Stable. Dimensions: Stable Stable In Pitt Somese Collswolds and Legal & Co-ords: 456877.32, 220302.65 Istability: Stable. Dimensions: Stable Stable In Pitt Somese Collswolds and Legal & Co-ords: 456877.32, 220302.65 Stable Stable Stable Stable The mean Stitles Form any provide CLAY with request robust and costsenin toots and meet collswolds and part tool and meet collswolds and part tool and meet robust and costsenin toots and meet collswold and part tool and meet robust and part tool and meet robust and the stable formed tools. B The mean The mean stable formation and part tool and meet robust and the stable formation and meet robust and the stable formation. B The mean stable formation and part tool and the stable formation and meet robust and the stable formation and part tool and the stable formation

1) Trial pit terminated 2.60m bgl. 2) 1) Trial pit sides mostly stable sides spalling from 1.70m to 2.10m. 3) Groundwater encountered at 1.80m bgl. Groundwater entered the pit at a slow rate. 4) 1) Trial pit backfilled with arisings on completion.

				Project: Himley Village		rialpit			
Hydro	ock ["]					TP3			
.,					Paç	ge No.	1 of	1	
Method: Tria				Date(s): 09/06/2023 Logged By: JN		Check			
General Hor		tswolds and L	egal &	Co-ords: 455923.35, 223022.57 Stability: Stabl	e.	Dimen	sions 2.50m		Scale
Hydrock Pro	ject No: 27	141		Ground Level: 88.03m OD Plant: JCB 140)X	0.65m			1:25
S	Samples / Tes	ts	Water-	Stratum Description		- 1	Thickness (m)	⊸ 0	pue
Depth (m)	Туре	Results	Strikes	Brown slightly sandy gravelly CLAY with frequent rootlets and occasio	nal roots and	Depth mbgl	(Thic	Level m OD	Legend
0.20	ES			insect burrows. Gravel is sub-angular fine to coarse of limestone. (TOPSOIL)		-	(0.30)	87.73	
				Very strong light grey stained orangish brown crystalline coarse graine LIMESTONE. Vertical fractures are randomly oriented with clay infill a bedding fractures. Recovered as cobbles and boulders. (CORNBRASH FORMATION)		-	(0.60)	01.10	
1.00 1.00	B HSV	95kPa		Firm cream, orangish brown and grey mottled slightly sandy CLAY with angular fine to coarse gravel sized tabular limestone lithorelicts and a content and low boulder content of sub-angular tabular limestone litho rootlets. (CORNBRASH FORMATION)	low cobble	0.90 - 1 - - - -	(0.90)	87.13	
1.60	В			Firm cream slightly sandy CLAY with frequent sub-angular fine to coar	se aravel sized	- 1.80		86.23	
				tabular limestone lithorelicts. (CORNBRASH FORMATION)	30 graver 31200	2.00	(0.20)	86.03	
2.50 2.50	D HSV	105kPa		Stiff thinly laminated orangish brown and grey mottled slightly sandy C frequent sub-angular fine to coarse gravel sized tabular limestone litho Laminations are extremely closely spaced orangish brown oolitic limes (FOREST MARBLE FORMATION)	orelicts.		(1.25)		
						2.05		04 70	
				Very strong light grey micritic fine grained LIMESTONE. (FOREST MARBLE FORMATION) Base of Excavation at 3.30m		3.25	(0.05)	84.78 84.73	
						4 -			
						- 5 -			

1) Trial pit terminated 3.30m bgl. 2) 1) Trial pit sides mostly stable sides spalling from 1.70m to 2.10m. 3) Groundwater encountered at 1.80m bgl. Groundwater encountered at 1.80m bgl

				Project: Himley Village			rialpit			
Hydro	ock ["]						TP3			
						1	ge No.			
Method: Tria		tswolds and Le		Date(s): 09/06/2023	Logged By: JN		Check			
General Hon		ISWOIDS and Le	egal &	Co-ords: 455976.54, 223008.22	Stability: Stabl	le.	Dimen	2.50m		Scal
Hydrock Pro	ject No: 27	'141		Ground Level: 87.40m OD	Plant: JCB 14	0X	0.65m			1:25
	Samples / Tes		Water- Strikes	Stratum Desc	ription		Depth mbgl	Thickness (m)	Level m OD	edend
Depth (m)	Туре	Results		Brown slightly sandy gravelly CLAY with frequent		nal roots and	a a	μ. Έ	a c	ě
				insect burrows. Gravel is sub-angular fine to coa (TOPSOIL)	rse of limestone.			(0.30)		
				Very strong light grey stained orangish brown cry LIMESTONE. Vertical fractures are randomly orig bedding fractures. Recovered as cobbles and bo (CORNBRASH FORMATION)	ented with clay infill a		0.30	(0.60)	87.10	
							0.90		86.50	Ē
1.00 1.00 1.00	D ES HSV	93kPa		Firm cream, orangish brown and grey mottled sli angular fine to coarse gravel sized tabular limest content and low boulder content of sub-angular t rootlets. (CORNBRASH FORMATION)	one lithorelicts and a	low cobble)- 1 - - - -	(0.70)		
							1.60		85.80	
1.70	В		T	Firm cream slightly sandy CLAY with frequent su tabular limestone lithorelicts. (CORNBRASH FORMATION)	b-angular fine to coa	rse gravel sized	-	(0.30)		
				Stiff thinly laminated orangish brown and grey me	ottled slightly sandy (1.90		85.50	
2.00	HSV	140kPa		Frequent sub-angular fine to coarse gravel sized Laminations are extremely closely spaced orang (FOREST MARBLE FORMATION)	tabular limestone lithe	orelicts.	2 -	(0.70)		
2.40	ES									
				Very strong light grey micritic fine grained LIMES (FOREST MARBLE FORMATION)	TONE.		2.60	(0.20)	84.80	
2.85	D			Stiff thinly laminated bluish grey silty CLAY with o and horizontal bedding fissures.	occasional micritic lim	estone lithorelic	2.80 ts	(0.10)	84.60	<u> </u>
				(FOREST MARBLE FORMATION) Base of Excavation a	at 2.90m		4 -			
General Remar				lly stable sides spalling from 0.30m to 0.90m.						

1) Trial pit terminated 2.90m bgl. 2) 1) Trial pit sides mostly stable sides spalling from 0.30m to 0.90m. 3) Groundwater encountered at 1.70m bgl. Groundwater entered the pit at a slow rate. 4) 1) Trial pit backfilled with arisings on completion.

			Project: Himley Village							
Hydro	ock [_]						TP3			
						· · · · · · · · · · · · · · · · · · ·	ge No.			
Method: Tria		tswolds and	600 9	Date(s): 12/06/2023	Logged By: JN		Check		-	
General Hon			_ c yai α	Co-ords: 456029.51, 222994.80	Stability: Stab	ic.	Dimen	sion 2.50m		
Hydrock Pro			1	Ground Level: 86.76m OD	Plant: JCB 14	0X	0.65m			1:2
Depth (m)	Samples / Tes	Results	Water- Strikes	Stratum Desc	cription		Depth mbgl	Thickness (m)	Level m OD	prend
0.20	ES			Brown slightly sandy gravelly CLAY with frequer insect burrows and rare fine to coarse gravel siz angular fine to coarse of limestone. (MADE GROUND)			-	(0.30)		
				Very strong light grey stained orangish brown cr LIMESTONE. Vertical fractures are randomly or bedding fractures. Recovered as cobbles and be (CORNBRASH FORMATION)	iented with clay infill a			(0.50)	86.46	
1.00 1.00	B HSV	84kPa		Firm cream, orangish brown and grey mottled sl angular fine to coarse gravel sized tabular limes content of sub-angular tabular limestone lithorel (CORNBRASH FORMATION)	tone lithorelicts and a	low cobble	b- 1 - -	(0.50)		
1.45	В			Firm cream slightly sandy CLAY with frequent so tabular limestone lithorelicts and a low cobble co lithorelicts. (CORNBRASH FORMATION)	1.30 - - 1.60	(0.30)	85.46			
2.30	HSV	93kPa		Stiff thinly laminated orangish brown and grey m occasional sub-angular fine to coarse gravel siz purple rootlets and rare fish scale fossils. Lamin orangish brown oolitic limestone and sand. (FOREST MARBLE FORMATION)	ed tabular limestone li	ithorelicts and	2 -	(1.25)		
2.40	D			Below 2.40m: Becoming greyish brown mo	ttled orangish brown.		-			
				Very strong brown oolitic fine grained shelly LIM (FOREST MARBLE FORMATION) Base of Excavation			2.85 2.90 	(0.05)	<u>83.91</u> 83.86	
General Remar							4			

1) Trial pit terminated 2.90m bgl due to very difficult digging in shallow rock. 2) 1) Trial pit sides didn't collapse. 3) Groundwater encountered at 2.40m bgl. Groundwater entered the pit at a slow rate. 4) 1) Trial pit backfilled with arisings on completion.

		Project: Himley Village								
Hydro	ock						TP3	87		
							ge No.	1 of	1	
Method: Tria				Date(s): 12/06/2023	Logged By: JN		Check		-	
Client: Cala General Hon		swolds and	Legal &	Co-ords: 456090.60, 222977.95	Stability: Stab	le.	Dimen	sion 2.50m	s: S	cal
Hydrock Pro		141		Ground Level: 86.18m OD	Plant: JCB 14	0X	0.65m	2.5011	_ `	1:2
5	Samples / Test	ts	Water-	Otractium Data		1	_	ness		र
Depth (m)	Туре	Results	Strikes	Stratum Des	•		Depth mbgl	Thickness (m)	Level m OD	Leaend
0.20	ES			Brown sandy slightly gravelly CLAY with frequent insect burrows. Gravel is sub-angular fine to co (TOPSOIL)	arse of limestone.		0.25	(0.25)	85.93	
0.50	D			Orangish brownish slightly sandy gravelly CLAY angular tabular limestone and rare rootlets and fine to coarse of tabular limestone. (HEAD DEPOSITS) Firm light yellowish brown, orangish brown and CLAY with occasional sub-angular fine to coars lithorelicts and a high cobble content of sub-ang (CORNBRASH FORMATION)	insect burrows. Grave grey mottled slightly s e gravel sized tabular	l is sub-angular andy slightly limestone	0.30	(0.05)	85.88	
1.00	в						- 1 - -			
1.45	HSV	100kPa		Firm cream, orangish brown and grey mottled s sub-angular fine to coarse gravel sized tabular l content of sub-angular tabular limestone lithore (CORNBRASH FORMATION)	imestone lithorelicts a	nd a low cobble	nt - 1.50	(0.30)	84.98 84.68	
1.55	D			Firm cream slightly sandy CLAY with occasiona tabular limestone lithorelicts and a low cobble c				(0.10)	84.58	
2.00	HSV	120kPa		Stiff thinly laminated orangish brown and grey m frequent sub-angular fine to coarse gravel sized occasional purple rootlets and rare fish scale fo spaced orangish brown oolitic limestone and sa (FOREST MARBLE FORMATION)	l tabular limestone lithe ssils. Laminations are	orelicts and	2	(1.10)		
2.75	в		_	Firm brown slightly sandy CLAY with occasiona			2.70 ed 2.80	(0.10)	83.48 83.38	
2.85	D			tabular limestone lithorelicts and a medium cob lithorelicts.	ble content of grey mic	critic limestone	2.90	(0.10)	83.28	
				(FOREST MARBLE FORMATION) Stiff thinly laminated bluish grey silty CLAY with and horizontal bedding fissures.	occasional micritic lim	estone lithorelic	ts ₃	(0.10)	83.18	
				(FOREST MARBLE FORMATION)	LIMESTONE.					
				(FOREST MARBLE FORMATION) Base of Excavation			!			
							4 -			
							- - -			

1) Trial pit terminated 3.00m bgl due to very difficult digging in shallow rock. 2) 1) Trial pit sides didn't collapse. 3) Groundwater encountered at 2.80m bgl. Groundwater entered the pit at a moderate rate. 4) 1) Trial pit backfilled with arisings on completion.

				Project: Himley Village			rialpit			
Hydro	ock ["]						TP3	88		
.,						Paç	je No.	1 of	1	
lethod: Tria				Date(s): 09/06/2023	Logged By: JN		Checke		-	
General Hon		tswolds and	Legal &	Co-ords: 455897.64, 222994.23	Stability: Stab	le.	Dimen	2.50m	s: S	cal
lydrock Pro	ject No: 27	141	_	Ground Level: 88.00m OD	Plant: JCB 14	0X	0.65m			1:2
5	Samples / Tes	its	Water-	Stratum Desc	cription		÷-	Thickness (m)		10000
Depth (m)	Туре	Results	Strikes	Brown slightly sandy gravelly CLAY with frequer		nal roots and	Depth mbgl	(m)	Level m OD	-
				insect burrows and rare medium gravel sized fra fine to coarse of limestone. (MADE GROUND) Firm orangish brownish slightly sandy gravelly (angular tabular limestone and rare rootlets and fine to coarse of tabular limestone. (HEAD DEPOSITS) Very strong light grey stained orangish brown or LIMESTONE. Vertical fractures are randomly or Recovered as cobbles and boulders.	CLAY with a high cobb insect burrows. Grave ystalline coarse graine	le content of sub I is sub-angular ed calcarenite	0.25 0.30	(0.25) (0.05) (0.40)	87.75 87.70	
0.80 0.80 0.80	B ES HSV	87kPa		(CORNBRASH FORMATION) Firm cream, orangish brown and grey mottled si angular fine to coarse gravel sized tabular limes content and low boulder content of sub-angular rootlets. (CORNBRASH FORMATION)	stone lithorelicts and a	low cobble	0.70 	(0.80)	87.30	
1.40 1.40	D HSV	110kPa					1.50		86.50	
				Cream clayey sub-angular fine to coarse GRAV a high cobble content of sub-angular micritic lim			1.60	(0.10)	86.40	
1.75	в			Imestone lithorelicts. (CORNBRASH FORMATION) Very strong brown oolitic coarse grained calcare			1.70	(0.10)	86.30	•_•
2.00	D			\ <u>(CORNBRASH FORMATION)</u> Cream clayey sub-angular fine to coarse GRAV a high cobble content of sub-angular micritic lim <u>(CORNBRASH FORMATION)</u> Stiff thinly laminated orangish brown and grey n frequent sub-angular fine to coarse gravel sized Laminations are extremely closely spaced orang (FOREST MARBLE FORMATION)	nestone lithorelicts. nottled slightly sandy C I tabular limestone litho	CLAY with orelicts.		(1.20)		
				Very strong light grey micritic fine grained LIME	STONE.		3 3.00	(0.05)	85.00 84.95	
				Base of Excavation	at 3.05m		4 -			
							-			
							5 -			

1) Trial pit terminated 3.05m bgl due to very difficult digging in shallow rock. 2) 1) Trial pit sides mostly stable sides spalling from 0.30m to 0.70m. 3) Groundwater encountered at 1.60m bgl. Groundwater entered the pit at a slow rate. 4) 1) Trial pit backfilled with arisings on completion.

			Project: Himley Village		-	•			
ock									
						-			
	towoldo and l	000 8		Logged By: JN	Л				
		Leyal &	Co-ords: 455980.40, 222969.40	Stability: Stab	e.	Dimen	2.50m		
ject No: 27	'141		Ground Level: 86.89m OD	Plant: JCB 14	0X	0.65m			1:25
		Water- Strikes	Stratum Desc	cription		epth bgl	hickness n)	evel OD	Leaend
.,,,					nal roots and		FS	35	
ES			(TOPSOIL) Very strong light grey stained orangish brown cr LIMESTONE. Vertical fractures are randomly or	ystalline coarse graine iented with clay infill a		- 0.30	(0.30)	86.59	
						-			
B HSV	100kPa		angular fine to coarse gravel sized tabular limes	tone lithorelicts and a	low cobble	1	(0.60)	85.99	
								85.39	
в			(CORNBRASH FORMATION)			-	(0.30)		
			occasional sub-angular fine to coarse gravel siz	ed tabular limestone li	thorelicts.	- 2	(1.10)		
HSV D	140kPa		Very strong light grey migritic fine grained LIME	STONE			(0.05)	83.99	
			Base of Excavation	at 2.95m					
	nes ject No: 27 Samples / Tes ES ES B HSV B	Al Pit Homes Cotswolds and I hes ject No: 27141 Samples / Tests ES ES B HSV 100kPa B HSV 140kPa	A Pit Homes Cotswolds and Legal & hes ject No: 27141 Samples / Tests Water- Strikes ES B HSV 100kPa B HSV 140kPa	B Date(s): 09/06/2023 Homes Cotswolds and Legal & co-ords: 455980.40, 222969.40 lect No: 27141 Ground Level: 86.89m OD amples / Tests Water- Strikes Type Results Brown slightly sandy gravelly CLAY with frequer insect burrows. Gravel is sub-angular fine to cor (TOPSOL). ES Brown slightly sandy gravelly CLAY with frequer insect burrows. Gravel is sub-angular fine to cor (TOPSOL). B 100kPa B Firm cream, orangish brown and grey mottled s angular fine to coarse gravel sized tabular limes content and low boulder content of sub-angular rottles. B 100kPa B Stift thinly laminated orangish brown and grey mottled s angular fine to coarse gravel sized tabular limes content and low boulder content of sub-angular rottles. B 100kPa B Stift thinly laminated orangish brown and grey mottled s angular limestone a low oubble content of brown (CORNBRASH FORMATION) B Stift thinly laminated orangish brown and grey mot cocasional sub-angular fine to coarse gravel siz Laminations are extremely closely spaced orang (FOREST MARBLE FORMATION)	A Pit Date(s): 09/06/2023 Logged By: JN Homes Cotswolds and Legal & Co-ords: 455980.40, 222969.40 Stability: S	B Interpret integer Pa In Pit Date(s): 09/06/2023 Logged By: JM Homes Cotswolds and Legal & Co-ords: 455980.40, 222969.40 Stability: Stable. Integer Ground Level: 86.89m OD Plant: JCB 140X Samples / Tests Water- Strikes Stratum Description Type Results Brown slightly sandy gravelly CLAY with frequent rootlets and occasional roots and insect burrows. Gravel is sub-angular fine to coarse grained calcarentle LIMESTONE. Vertical fractures are randomly oriented with day infil and horizontal bedring fractures. Recevered as cobles and boulders. (CORNBRASH FORMATION) B 100kPa Firm cream, orangish brown and grey mottled slightly sandy CLAY with noccasional as angular fine to coarse gravel sized tabular limestone lithorelicts and a low coble coolets. (CORNBRASH FORMATION) B 100kPa Firm cream slightly sandy CLAY with frequent sub-angular tabular limestone lithorelicts. (CORNBRASH FORMATION) B Stiff thely laminated compile hrown and grey mottled slightly active CLAY with norelicts. (CORNBRASH FORMATION) B Stiff thely laminated compile hrown and grey mottled slightly active CLAY with norelicts. (CORNBRASH FORMATION) B Stiff thely laminated compile hrown and grey mottled slightly active CLAY with cocasional sub- angular fibe to coarse gravel sized tabular limestone lithorelicts. (CORNBRASH FORMATION) B Stiff thely laminated compile h	B If bjeck. Hinney vininge TP3 N Pit Date(s): 09/06/2023 Logged By: JM Check Homes Cotswolds and Legal & Co-ords: 455980.40, 222969.40 Stability: Stable. Dimen ject No: 27141 Ground Level: 86.89m OD Plant: JCB 140X 0.86m jamples / Tests Water-Strikes Stratum Description Image Provide Strikes Type Results Brown sliphty sandy gravely CLAY with frequent rootets and occasional roots and incestore. 0.00 ES Uver strong lipht grey stained orangish brown and grey mottled slightly sandy CLAY with occasional roots and incestore. 0.00 B Firm cream, orangish brown and grey mottled slightly sandy CLAY with occasional sub-angular fine to ccarse gravel sized tabular linestone linorelicts and a low obbie orbits. 0.00 Firm cream sightly sandy CLAY with frequent sub-angular fine to ccarse gravel sized tabular linestone linorelicts and a low obbie orbits. 0.00 B Slift thinly laminated orangish brown and grey mottled slightly sandy CLAY with occasional sub-angular fine to ccarse gravel sized tabular linestone linorelicts. 0.00 B Slift thinly laminated orangish brown and grey mottled slightly sandy CLAY with occasional sub-angular fine to ccarse gravel sized tabular linestone linorelicts. 0.00 Firm cream slightly sandy CLAY with frequent sub-angular fine to ccarse gravel sized tabular linestone linorelicts. 1.00 B Slift thinly laminated oran	B Howes Stratum Description g <thg< th=""> g <thg< th=""> <thg< th=""></thg<></thg<></thg<>	Bit Frequencies Image of the second

1) Trial pit terminated 2.95m bgl due to very difficult digging in shallow rock. 2) 1) Trial pit sides mostly stable sides spalling from 0.30m to 0.90m. 3) Groundwater encountered at 1.80m bgl. Groundwater entered the pit at a moderate rate. 4) 1) Trial pit backfilled with arisings on completion.

				Project: Himley Village		1	rialpit			
Hydro	ock						TP4	0		
-y «						Pag	ge No.	1 of	1	
lethod: Tria		· · · · · · · · · · · · · · · · · · ·		Date(s): 12/06/2023	Logged By: JN		Check			
General Hon		tswolds and L	egal &	Co-ords: 456057.73, 222944.48	Stability: Stab	e.	Dimen	sion: 2.50m	s: S	cal
lydrock Pro		'141		Ground Level: 86.04m OD	Plant: JCB 14	0X	0.65m			1:2
5	Samples / Tes	sts	Water-	Stratum Desc	rintion		£_	Thickness (m)	- 0	, Pu
Depth (m)	Туре	Results	Strikes	Brown sandy slightly gravelly CLAY with frequer	•	nal rooto and	Depth mbgl	(m)	Level m OD	
				insect burrows. Gravel is sub-angular fine to co. (TOPSOIL)			-	(0.30)	85.74	
0.35	D			Orangish brownish slightly sandy gravelly CLAY angular tabular limestone and rare rootlets and		0.30	(0.10)	85.74		
				∫ fine to coarse of tabular limestone. ((HEAD DEPOSITS)) Very strong light grey stained orangish brown ci LIMESTONE. Vertical fractures are randomly or Recovered as cobbles and boulders.	ystalline coarse graine	ed calcarenite	s.	(0.35)	85.29	
1.00 1.00	B ES			(CORNBRASH FORMATION) Firm cream, orangish brown and grey mottled s angular fine to coarse gravel sized tabular limes content of sub-angular tabular limestone lithorel (CORNBRASH FORMATION)	tone lithorelicts and a	low cobble				
1.00	HSV	113kPa						(0.85)		
				Cream clayey sub-angular fine to coarse GRAV			- 1.60		84.44	
1.80	В			a high cobble content of sub-angular micritic lim limestone lithorelicts. (CORNBRASH FORMATION)	estone and brown she	elly oolitic	2.00	(0.40)	84.04	
2.30	D			Stiff thinly laminated orangish brown and grey n frequent sub-angular fine to coarse gravel sized purple rootlets. Laminations are extremely close limestone and sand. (FOREST MARBLE FORMATION)	tabular limestone lithe	orelicts and rare	th	(0.35)	83.69	
2.30 2.40	HSV D	118kPa	_	Firm brown slightly sandy CLAY with occasiona tabular limestone lithorelicts and a low cobble c				(0.10)	83.59	
2.60	D		_	Vithorelicts. VERST MARBLE FORMATION) Stiff thinly laminated bluish grey silty CLAY with and horizontal bedding fissures. (FOREST MARBLE FORMATION)	occasional micritic lim	estone lithorelic	-	(0.45)		
				Very strong dark grey oolitic fine grained shelly (FOREST MARBLE FORMATION) Base of Excavation			2.90	(0.10)	83.14 83.04	Ť
							-			
							4 -			
							5 -			

1) Trial pit terminated 3.00m bgl. 2) 1) Trial pit sides mostly stable sides spalling from 0.40m to 1.00m. 3) Groundwater encountered at 2.50m bgl. Groundwater encountered at 2.50m bgl

			Project: Himley Village						
ock ["]									
			 		1				
	towolds and I	0.000	Date(s): 09/06/2023	Logged By: JN					
	iswoids and L	eyai &	Co-ords: 455859.56, 222970.35	Stability: Stabl	e.	Jimen	sion : 2.50m		scal
ect No: 27	141	I	Ground Level: 87.97m OD	Plant: JCB 14	DX).65m			1:2
		Water- Strikes	Stratum Descri	ption		ogl bth	ickness)	oD	prepe
	Results					8 <u> </u>	££	a E	
ES			angular fine to coarse of limestone. (MADE GROUND) Firm orangish brownish slightly sandy gravelly CL angular tabular limestone and rare rootlets and ins fine to coarse of tabular limestone. (HEAD DEPOSITS) Very strong light grey stained orangish brown crys	AY with a high cobb sect burrows. Grave stalline coarse graine	e content of sub is sub-angular ed calcarenite	0.40	(0.25) (0.15) (0.50)	87.72 87.57	
B HSV	140kPa		angular fine to coarse gravel sized tabular limesto	ne lithorelicts and a	low cobble	0.90	(0.90)	87.07	
D						-		I	
				ite LIMESTONE.		1.80	(0.10)	86.17	
В			Cream clayey sub-angular fine to coarse GRAVEL		e lithorelicts with	2 -	(0.20)		
			(CORNBRASH FORMATION)		LAY with	2.10		85.87	
D HSV	120kPa						(1.20)		
			Base of Excavation at	3.30m		3.30		84.67	17.
						4 -			
						_			
	nes ject No: 27 Samples / Tes ES ES B HSV D B	Al Pit Homes Cotswolds and L hes ject No: 27141 Samples / Tests ES B HSV 140kPa D B D	Al Pit Homes Cotswolds and Legal & hes ject No: 27141 Samples / Tests UVater- Strikes ES B B D	A Pit Date(s): 09/06/2023 Homes Cotswolds and Legal & Co-ords: 455859.56, 222970.35 Jes. Ground Level: 87.97m OD Samples / Tests Water- Strikes Type Results ES Brown slightly sandy gravely CLAY with frequent insect burrows and rare fragments of block (tron): angular fine to coarse of limestone. (MADE GROUND) Film orangish brownish slightly sandy gravely CLAY with frequent insect burrows and rare rootlets and ins fine to coarse of limestone. (MADE GROUND) Film orangish brownish slightly sandy gravely CLAY with frequent insect burrows and rare tootlets and ins fine to coarse of limestone. (MADE GROUND) B B B HSV 140kPa Stiff cream, orangish brown and grey mottled slight songlar tabular limeston content. (CORNBRASH FORMATION) B HSV B Very strong brown collic coarse gravel sized tabular limesto content of sub-angular file to coarse of sub-angular file to coarse of sub-angular file to coarse of RAVEL a high coble content of sub-angular file to coarse GRAVEL a high coble content of sub-angular file to coarse GRAVEL a high coble content of sub-angular file to coarse gravel sized Laminations are extremely closely spaced orangish (FOREST MARBLE FORMATION)	B Pit Date(s): 09/06/2023 Logged By: JN Homes Cotswolds and Legal & co-ords: 455859.56, 222970.35 Stability: Stabilit	Dick Page In Pit Date(s): 09/06/2023 Logged By: JM Homes Cotswolds and Legal & Co-ords: 455859.56, 222970.35 Stability: Stable. Co-ords: 455859.56, 222970.35 iest No: 27141 Ground Level: 87.97m OD Plant: JCB 140X Co-ords: 455859.56, 222970.35 amples / Tests Water-Strikes Stratum Description Type Results Brown slightly sandy gravely CLAY with frequent rootets and occasional roots and angular fine to coarse of limestone. ES Brown slightly sandy gravely CLAY with requent rootets and occasional roots and angular fine to coarse of limestone. In Dock CROUND Firm orangish brown shi slightly sandy gravely CLAY with a high cobble content of sub-angular fine to coarse of tabular limestone. In Brown Strike Stiff cream, orangish brown and grey mottled slightly sandy CLAY with occasional sub-angular fine to coarse of tabular limestone. In Brown Strike Stiff cream, orangish brown and grey mottled slightly sandy CLAY with occasional sub-angular fine to coarse grave sized labular limestone lithorelicts and a low cobble content of sub-angular lime to coarse GRAVEL of micritic limestone lithorelicts with a high cobble content of sub-angular limestone lithorelicts with a high cobble content of sub-angular limestone lithorelicts. B Very strong brown collic coarse gravel sized labular limestone lithorelicts with a high cobble content of sub-angular limestone lithorelicts with a high cobble content of sub-angular limestone lithorelicts. B Very strong brown collic coarse GRAVEL of micr	Bit Troposition Statum Bit Date(s): 09/06/2023 Logged By: JM Checked Homes Co-ords: 455859.56, 222970.35 Stability: Stable. Dimen Hes Ground Level: 87.97m OD Plant: JCB 140X 0.6m Samples / Tests Water- Stratum Description 5 are Type Results Water- Stratum Description 5 are Samples / Tests Water- Stratum Description 5 are Type Results Water- Stratum Description 5 are Samples / Tests Water- Stratum Description 5 are Bittom rangigh brown sightly sandy gravelly CLAY with a high cobble content of sub- angular tabular limestone. 9 are Image to unrow and rare fright and range targethere of othick (rem) and gisse (Som). Gravel is sub-angular 9 are Image to unrow and rare fright and range targethere of othick (rem) and gisse (Som). Gravel is sub-angular 9 are Image to unrow and rare or colets and insect burrows. Gravel is sub-angular 9 are Image to unrow and grave sub-angular tabular limestone ithorelicts and a low cobble content of sub- angular tabular limestone. 9 are Image to unrow and grave sub-angular fine to coarse GRAVEL of micritic limestone lithorelicts with a commentary sub-angular fine to coarse GRAVEL of micritic limestone lithorelicts. 9 are <tr< td=""><td>TP41 Page No. 1 of Market Science Scienc</td><td>In Picture The picture The picture In Picture Date(s): 09/06/2023 Logged By: JM Checked By: M Promess Colswolds and Legal & Co-ords: 456869.66.222970.35 Stability: Stable. Dimension: Stable Jate Ground Level: 87.97m OD Pat: JOB 140X Ref The Result Strikes Ground Level: 87.97m OD Pat: JOB 140X Ref The Result Strikes Brown sliphty sandy greeky CLAV with hequent rootes and occasional root and meet regulation and rate fragments of brick (ror) and galas (Scn). Greevil is sub-apace for brick and a first sub-apace for brick (ror) and galas (Scn). Greevil is sub-apace for brick (ror) and galas (ror) and galas (ror) and galas (ror</td></tr<>	TP41 Page No. 1 of Market Science Scienc	In Picture The picture The picture In Picture Date(s): 09/06/2023 Logged By: JM Checked By: M Promess Colswolds and Legal & Co-ords: 456869.66.222970.35 Stability: Stable. Dimension: Stable Jate Ground Level: 87.97m OD Pat: JOB 140X Ref The Result Strikes Ground Level: 87.97m OD Pat: JOB 140X Ref The Result Strikes Brown sliphty sandy greeky CLAV with hequent rootes and occasional root and meet regulation and rate fragments of brick (ror) and galas (Scn). Greevil is sub-apace for brick and a first sub-apace for brick (ror) and galas (Scn). Greevil is sub-apace for brick (ror) and galas (ror) and galas (ror) and galas (ror

1) Trial pit terminated 3.30m bgl. 2) 1) Trial pit sides mostly stable sides spalling from 1.70m to 2.10m. 3) Groundwater encountered at 1.80m bgl. Groundwater entered the pit at a slow rate. 4) 1) Trial pit backfilled with arisings on completion.

				Project: Himley Village			Trialpit			
Hydro	ock						TP4	2		
, ar c						Pa	ge No.	1 of	1	
Method: Tria				Date(s): 09/06/2023	Logged By: JN	Л	Check	ed B	/: M	A/S
Client: Cala I General Horr		tswolds and	Legal &	Co-ords: 455911.65, 222955.76	Stability: Stab	le.	Dimen		s: S	cale
Hydrock Proj		'141		Ground Level: 87.33m OD	Plant: JCB 14	0X	0.65m	2.50m	י ר	1:25
S	Samples / Tes	its	Water-		·			ress		q
Depth (m)	Туре	Results	Strikes	Stratum Desc	•		Depth mbgl	Thickness (m)	Level m OD	Legend
0.20	ES			Brown slightly sandy gravelly CLAY with frequent insect burrows and rare medium gravel sized fra- fine to coarse of limestone. (MADE GROUND)			ar - -	(0.40)		
0.40 - 0.45	В			Firm orangish brownish slightly sandy gravelly C angular tabular limestone and rare rootlets and in fine to coarse of tabular limestone. ((HEAD DEPOSITS)	nsect burrows. Grave	l is sub-angular	0.50	(0.10)	86.93 86.83	
0.80 0.80	D HSV	68kPa		Firm cream, orangish brown and grey mottled sli angular fine to coarse gravel sized tabular limest content and low boulder content of sub-angular t rootlets. (CORNBRASH FORMATION)	one lithorelicts and a	low cobble		(1.10)		
							-			
1.60 - 1.70	В			Cream clayey sub-angular fine to coarse GRAVE a high cobble content of sub-angular micritic line linestone lithorelicts.			1.60 h 1.80	(0.20)	85.73 85.53	
				(CORNBRASH FORMATION) Stiff thinly laminated orangish brown and grey m frequent sub-angular fine to coarse gravel sized Laminations are extremely closely spaced orang (FOREST MARBLE FORMATION)	tabular limestone lith	orelicts.	. 2 -			
2.20	D						-	(1.10)		
2.80	D		_	Very strong light grey micritic fine grained LIMES	TONE		- 2.90 2.95	(0.05)	84.43 84.38	
				(FOREST MARBLE FORMATION) Base of Excavation a						
							-			
							4 -			
							-			
							-			
							- - 5 -			

1) Trial pit terminated 2.95m bgl. 2) 1) Trial pit sides mostly stable sides spalling from 1.70m to 2.10m. 3) Groundwater encountered at 2.90m bgl. Groundwater entered the pit at a slow rate. 4) 1) Trial pit backfilled with arisings on completion.

			Project: Himley Village			Trialpit			
ock ["]									
					1	-			
	bwoldo and Lag		Date(s): 09/06/2023	Logged By: JN			-		
nes Co	ISWOIDS AND LEG		Co-ords: 455962.41, 222939.09	Stability: Stab	e.	Dimen	2.50m		
ject No: 27	141		Ground Level: 86.69m OD	Plant: JCB 14	0X	0.65m] (1:25
Samples / Tes			Stratum Desc	ription		Depth nbgl	Thickness (m)	-evel n OD	Legend
ES					nal roots and	-	(0.30)		Ī
			LIMESTONE. Vertical fractures are randomly or	ented with clay infill a	ed calcarenite nd horizontal	0.30	(0.40)	86.39	
D HSV	40kPa		angular fine to coarse gravel sized tabular limes	tone lithorelicts and a	low cobble	0.70 - - 1 -	(0.70)	85.99	
						-		85.29	
						e -	(0.30)	84.99	
B HSV	108kPa		Gravel is sub-angular fine to coarse gravel sized	tabular limestone. La		2 -			
						-	(1.20)		
D						-		83.79	
			(FOREST MARBLE FORMATION)			2.33 	(0.03)	03.74	
						-			
	nes ject No: 27 Samples / Tes ES ES D HSV	Al Pit Homes Cotswolds and Leg nes ject No: 27141 Samples / Tests 1 ES B HSV 40kPa B HSV 108kPa	Al Pit Homes Cotswolds and Legal & nes ject No: 27141 Samples / Tests Type Results ES ES D HSV 40kPa B HSV 108kPa	B Pit Date(s): 09/06/2023 Homes Cotswolds and Legal & nes Co-ords: 455962.41, 222939.09 ject No: 27141 Ground Level: 86.69m OD amples / Tests Water- Strikes Type Results Brown slightly sandy gravelly CLAY with frequer insect burrows. Gravel is sub-angular fine to coart (TOPSOL) Brown slightly sandy gravelly CLAY with frequer insect burrows. Gravel is sub-angular fine to coart (TOPSOL) Brown slightly sandy gravelly CLAY with frequer insect burrows. Gravel is sub-angular fine to coart (CORNBRASH FORMATION) Brown slightly sandy CLAY with occasional tabular limestone lithorelicts and a moderate col (CORNBRASH FORMATION) Firm cream slightly sandy CLAY with occasional tabular limestone lithorelicts and a moderate col (CORNBRASH FORMATION) Brim cream slightly sandy CLAY with occasional tabular limestone lithorelicts and a moderate col (CORNBRASH FORMATION) Brim cream slightly sandy CLAY with occasional tabular limestone lithorelicts and a moderate col (CORNBRASH FORMATION) Brim cream slightly sandy CLAY with occasional tabular limestone lithorelicts and a moderate col (CORNBRASH FORMATION) Brim cream slightly sandy CLAY with occasional tabular limestone lithorelicts and a moderate col (CORNBRASH FORMATION) Brim cream slightly sandy CLAY with occasional tabular limestone lithorelicts and a moderate col (CORNBRASH FORMATION) Brim cream slightly sandy CLAY with occasional tabular limestone lithorelicts and a moderate	B Pit Date(s): 09/06/2023 Logged By: Jh Homes Cotswolds and Legal & Co-ords: 455962.41, 222939.09 Stability: Stabilit	Display Project: Initiality Vintege In Pit Date(s): 09/06/2023 Logged By: JM Homes Co-ords: 455962.41, 222939.09 Stability: Stable. In Pit Ground Level: 86.69m OD Plant: JCB 140X Samples / Tests Water- Strikes Stratum Description Type Results Brown slightly sandy gravelly CLAY with frequent rootlets and occasional roots and insect burrows. Gravel is sub-angular fine to coarse grained calcarentie LIMESTONE. Vertical fractures are randomly oriented with day infil and horizontal bedding fractures. Recovered as cobles and boulders. (CORNBRASH FORMATION) D HSV 40kPa Soft cream, orangish brown and grey mottled slightly sandy CLAY with occasional sub- angular fine to coarse gravel sized tabular limestone lithorelicts and a low cobble content and low boulder content of sub-angular tabular limestone lithorelicts and a low cobble content and low boulder content of sub-angular tabular limestone lithorelicts and a low cobble content and low boulder content of sub-angular fine to coarse gravel sized tabular limestone lithorelicts and a low cobble content and low boulder complet of sub-angular fine to coarse gravel sized tabular limestone. Laminations are contents. (CORNBRASH FORMATION) B HSV 106kPa D Very strong light grey micritic fine grained LIMESTONE. (FOREST MARBLE FORMATION)	Dick TP3/DCC. Timing Yinlage TP4 Page No. Ai Pit Date(s): 09/06/2023 Logged By: JM Check Homes Cotswolds and Legal & co-ords: 455962.41, 222939.09 Stability: Stable. Dimension ject No: 27141 Ground Level: 86.69m OD Plant: JCB 140X 0.86m amples / Tests Water-Strikes Stratum Description 5 mg Type Results Brown slightly sandy gravelly CLAY with frequent rootlets and occasional roots and income to coarse of limestone. 0.80m ES Uver strong light grey stained orangiab frown crystalline coarse of limestone. 0.80m UVery strong light grey stained orangiab trown crystalline coarse of limestone. 0.80m UVery strong light grey stained orangiab trown crystalline coarse of limestone. 0.80m UVery strong light grey stained orangiab trown and grey mottled slightly sandy CLAY with occasional sub-angular fine to coarse of limestone linorelicts and a low obbile content of sub-angular fine to coarse of limestone. 0.70 B HSV 40kPa Stift finity laminated orangiab trown and grey mottled slightly sandy gravelly CLAY. 1.40 B 108kPa Stift finity laminated orangiab trown and grey mottled slightly sandy gravelly CLAY. 1.40 CONNBRASH FORMATION) 1.40 1.40 1.40 CONNBRASH FORMATION) 1.40 1.40 B 10	Bit Instruction TP43 NPI Date(s): 09/06/2023 Logged By: JM Checked By Nomes Coloreds: 455962.41, 222939.09 Stability: Stable. Dimension Isomes Coloreds: 455962.41, 222939.09 Stability: Stable. Dimension Isomes Coloreds: 455962.41, 222939.09 Stability: Stable. Dimension Isomes Ground Level: 86.69m OD Plant: JCB 140X Isomes Isomes Stratum Description Isomes Isomes Isomes Isomes Stratum Description Isomes Isomes Isomes Stratum Description Isomes Isomes Isomes Stratum Description Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isomes Isom	Direct Triplet. Trining vising TP43 Page No. 1 of 1 N Pit Homes Colswolds and Legal & co-ords: 455962.41, 222939.09 Stability: Stable. Dimension: S and co-ords: 455962.41, 222939.09 asmpter / Tests Water Strikke Ground Level: 86.69m OD Pan: JCB 140X Ref isoperating in the strikke Brown sightly cardy gravity (CAV with frequent rules and coccustoral rotes and near three dimensions) Immensions: S and coccustoral rotes and coccustoral rotes and near three dimensions Immensions: S and coccustoral rotes and near three dimensions Iby ABPs Brown sightly cardy gravity gravity cardy gravity (CAV with frequent rules and coccustoral rotes and near three dimensions) Immensions: S and rote dimensions Immensions: S and rote dimensions Iby ABPs Brown sightly cardy gravity gravity cardy gravity cardy or sightly cardy gravity and honorocital near three dimensions Immensions: S and mensions Iby ABPs Soft cream, caraging throen and grav motiod sightly samy CLAY with cocasional three material fine to cortex grave data display and of a motion and and motions Immensions: Immensions and and rotes and and rotes and and rote cortex of a data display and of a motion and rote cocreating and back display and of a motion and and rote cortex of a data display and of a motion and and rotes and and rote cortex of a data display and of a motion and and rotes and and and rotes and and rote cortex of a data display and of a motion and and rotes and and rote cortex of a data display and of a motion and and rotes and and rote cortex of a data display and of a motion and and rotes and a data display

Groundwater encountered at 1.70m bgl. Groundwater entered the pit at a moderate rate. 4) 1) Trial pit sides mostly stable sides spalling from 0.30m to 0.70m. 3 Groundwater encountered at 1.70m bgl. Groundwater entered the pit at a moderate rate. 4) 1) Trial pit backfilled with arisings on completion.

				Project: Himley Village			rialpit			
Hydro	ock ["]						TP4	4		
					1	Pa	ge No.	1 of	1	
Method: Tria				Date(s): 12/06/2023	Logged By: J		Check		-	
Client: Cala General Hor		tswolds and	Legal &	Co-ords: 456018.53, 222922.60	Stability: Stab	le.	Dimen	sion 2.50m	s: S	cal
Hydrock Pro		141		Ground Level: 86.17m OD	Plant: JCB 14	0X	0.65m	2.0011		1:2
Ś	Samples / Tes	ts	Water-	Stratum Desc	rintion	·	£_	Thickness (m)	- 0	Pu
Depth (m)	Туре	Results	Strikes	Brown slightly sandy gravelly CLAY with frequer			Dept	(m) Thick	Level m OD	eqend
0.20	ES			insect burrows. Gravel is sub-angular fine to coa (TOPSOIL)			-	(0.40)	05.77	
				Very strong light grey stained orangish brown or LIMESTONE. Vertical fractures are randomly or bedding fractures. Recovered as cobbles and bo (CORNBRASH FORMATION) Firm cream, orangish brown and grey mottled sl angular fine to coarse gravel sized tabular limes orabet and low builder control for on angular	ented with clay infill a bulders. ightly sandy CLAY wi tone lithorelicts and a	ind horizontal th occasional sub low cobble	0.40 - - - - - - - - - - - -	(0.35)	85.77	
1.00 1.00	B HSV	77kPa		content and low boulder content of sub-angular rootlets. (CORNBRASH FORMATION)	ladular limestone lith	orelicus and rare	1 -	(0.65)		
				Firm cream slightly sandy CLAY with frequent su			1.40		84.77	
1.50 1.70 1.70	D D HSV	130kPa		tabular limestone lithorelicts a low cobble conter (CORNBRASH FORMATION) Stiff thinly laminated orangish brown and grey m frequent sub-angular fine to coarse gravel sized extremely closely spaced orangish brown collitic (FOREST MARBLE FORMATION)	ottled slightly sandy (tabular limestone. La	CLAY with	1.60	(0.20)	84.57	
				Below 2.50m: Becoming grey.			-	(1.20)		
				Bolow 2.0011. Becoming grey.			-			
2.75 2.75	B HSV	132kPa		Vary strong light group migritis find grouped LIMES			2.80		83.37	
2.15	1130	IJZKI A		Very strong light grey micritic fine grained LIMES (FOREST MARBLE FORMATION) Base of Excavation			2.90	(0.10)	83.27	
							4			

1) Trial pit terminated 2.90m bgl. 2) 1) Trial pit sides mostly stable sides spalling from 1.40m to 1.60m. 3) Groundwater encountered at 2.80m bgl. Groundwater entered the pit at a moderate rate. 4) 1) Trial pit backfilled with arisings on completion.

				Project: Himley Village			rialpit			
Hydro	ock ["]						TP2	15		
- y ar v						Pag	e No.	1 of	1	
Method: Tria				Date(s): 12/06/2023	Logged By: JN	/ C	heck	ed B	y: M	A/S
Client: Cala General Hon		tswolds and I	₋egal &	Co-ords: 456075.81, 222901.91	Stability: Stabl	e. [Dimen	1 sion 2.50m	s: S	cale
Hydrock Pro		141		Ground Level: 85.81m OD	Plant: JCB 14)XC).65m	2.50m		1:25
S	Samples / Tes	ts	Water-	Stratum Door	ription			Thickness (m)	_ 0	pu
Depth (m)	Туре	Results	Strikes	Stratum Desc	•		Depth mbgl	Ű Hick	Level m OD	Legend
0.20	ES			Brown sandy slightly gravelly CLAY with frequer insect burrows. Gravel is sub-angular fine to coa (TOPSOIL)		nal roots and	0.25	(0.25)	85.56	
				Firm orangish brownish slightly sandy gravelly C angular tabular limestone and rare rootlets and fine to coarse of tabular limestone. (<u>HEAD DEPOSITS</u>) Very strong light grey stained orangish brown cr LIMESTONE. Vertical fractures are randomly or Recovered as cobbles and boulders.	insect burrows. Grave ystalline coarse graine	l is sub-angular ed calcarenite	0.40	(0.15)	85.41	
0.90 0.90	B HSV	48kPa		CORNBRASH FORMATION) Soft cream, orangish brown and grey mottled sli occasional sub-angular fine to coarse gravel siz low cobble content of sub-angular tabular limest (CORNBRASH FORMATION)	ed tabular limestone li	thorelicts and a	0.75 - 1 -		85.06	
1.40	HSV	125kPa		Below 1.40m: Becoming firm.			-	(1.05)		
1.83	D			Firm cream slightly sandy CLAY with occasional tabular limestone a low cobble content of grey o			1.80 d <u>1.85</u>	(0.05)	84.01 83.96	
2.00	HSV	93kPa		(CORNBRASH FORMATION) Firm thinly laminated orangish brown and grey r frequent sub-angular fine to coarse gravel sized occasional purple rootlets. Laminations are extra oolitic limestone and sand. (FOREST MARBLE FORMATION)	nottled slightly sandy (tabular limestone lithe	CLAY with prelicts and	-2-	(0.55)		
2.30 2.30	D HSV	97kPa		Very strong dark grey fine grained shelly LIMES	TONE.		2.40	(0.10)	83.41	
				Base of Excavation	at 2.50m					

1) Trial pit terminated 2.50m bgl due to very difficult digging in shallow rock. 2) 1) Trial pit sides stable. 3) Groundwater encountered at 2.50m bgl. Groundwater entered the pit at a slow rate. 4) 1) Trial pit backfilled with arisings on completion.

				Project: Himley Village	Э		Trialpi			
Hydro	ock [®]						HP(
							age No			
Method: Har		t otswolds and L	& lene	Date(s): 24/05/2023	Logged By: C		Check			
General Hom	nes		eya u	Co-ords: 442265.52, 213919.3	3 Stability: Stab		Dimer	0.30m		Scale:
Hydrock Proj				Ground Level: 98.32m OD	tools		0.30m			1:10
	Samples / Te	Results	Water- Strikes	Stratum	Description		pth bal	Thickness (m)	Level m OD	Legend
Depth (m)	Туре	Results		Grey slightly sandy GRAVEL. Gravel is an	gular to sub angular fine to	coarse of		<u></u>	шĘ	۹ ۲
0.05 - 0.15 0.05 - 0.15	D ES			limestone and flint with rare gravel sized fr (MADE GROUND)	agments of brick glass and	l asphalt.	-			
								(0.39)		
							0.39		97.93	
				Greyish brown LIMESTONE. (CORNBRASH FORMATION)				(0.11)	97.93	
				Base of Exc	avation at 0.50m		0.50		97.82	
							1			
							1 -			
							-			
							-			
							-			
							-			
							-			
General Remark	ks:						2 -			
1) Hand pit term	ninated at 0.	50m bgl. 2) Hand ı	oit sides did	In't collapse. 3) Groundwater not encou	ntered. 4) Backfilled wi	h lightly comp	pacted ar	isings	•	

				Project: Himley Village			Trialpit			
Hydro	ock					_	HP(
							age No.			
Aethod: Han		tswolds and L	enal &	Date(s): 24/05/2023	Logged By: C		Check			
General Hom			.cyai a	Co-ords: 442253.09, 213858.71	Stability: Stab		Dimen	0.30m		
lydrock Proje	ect No: 27	7141		Ground Level: 98.93m OD	tools	a nana	0.30m			1:1
Sa	amples / Tes	sts	Water-	Stratum Desc	ription		£ –	Thickness (m)	- O	1
Depth (m)	Туре	Results	Strikes			lar fine to coa	Dep	(Thic	Level m OD	×
0.20 - 0.30 0.25 - 0.35	D			Greyish brown slightly sandy GRAVEL. Gravel is of limestone and flint with rare gravel sized fragm (MADE GROUND) Greyish brown LIMESTONE. (CORNBRASH FORMATION) Base of Excavation	nents of brick and as	lar fine to coa	- - -	(0.39)	09.54	

	. Ji			Project: Himley Village			Trialp HP				
Hydro	ock					_					
						1	age N				
/lethod: Han		otswolds and L	enal &	Date(s): 09/06/2023	Logged By: C		Chec		-		
General Hom	es		logal a	Co-ords: 455849.84, 223138.61	Stability: Stat		Dime				
Hydrock Proje	ect No: 27	7141	1	Ground Level: 89.85m OD	tools		0.30m			1	:1
	amples / Tes		Water- Strikes	Stratum Des	scription		Ę	mbgl Thickness	<u>a</u>	g	
Depth (m)	Туре	Results	Surkes	Greyish brown GRAVEL. Gravel is angular to s	sub angular fine to coa	rse of flint and	Der	Thickn	Le (j)	G E	
				limestone with rare gravel sized fragments of b (MADE GROUND)	prick and frequent root	ets.	0.0	(0.0		9.76	*
0.10 - 0.20 0.10 - 0.20	D ES			Greyish brown slightly sandy GRAVEL. Gravel of limestone and flint with rare gravel sized frag (MADE GROUND)	is angular to sub ang gments of brick and as	ular fine to coa phalt.	rse -	(0.3		9.70	
				Greyish brown LIMESTONE. (CORNBRASH FORMATION) Base of Excavation	n at 0.45m		0.4	5 6 (01	8)1) 8	9.40 9.39	
							1-				
							-				

				Project: Himley Village			Trialpi			
Hydro	ock	-					HP(
							age No.			
/lethod: Han		otswolds and L	enal &		ogged By: C		Check			
<u> General Hom</u>	es		.cgui u		Stability: Stab Plant: Insulate		Dimer	0.30m		
lydrock Proje	ect No: 27	7141	1		ools	unanu	0.30m		1:	:1
Sa	amples / Tes	sts	Water-	Stratum Descrip	otion		Ę –	Thickness (m)		00000
Depth (m)	Туре	Results	Strikes	Greyish brown slightly sandy GRAVEL. Gravel is a		lar fine to coa		Ē	Level m OD	-
0.20 - 0.30 0.30 - 0.40	ES			of limestone and flint with rare gravel sized fragmer (MADE GROUND)	nts of glass and as	phalt.	-	(0.39)		
0.00 - 0.40	D									*
				Greyish brown LIMESTONE.			0.39	(0.01)	89.83 89.82	<u>×</u>
				(CORNBRASH FORMATION) Base of Excavation at 0	0.40m		/			
							-			
							-			
							-			
							1 -			
							-			
							-			
							-			
							-			
							_			
							-			
							-			
							-			
Conorel Dama 1							2 -			
General Remarks) Hand pit termi	s. nated at 0.4	0m bgl. 2) Hand	pit sides die	dn't collapse. 3) Groundwater not encountered.	4) Backfilled with	h lightly com	pacted ar	isings		

امى ال				Project: Himley Village			Trialpi HP(
Hydro	OCK					Pa	ige No		1	
Method: Han	d-dua Pit			Date(s): 09/06/2023	_ogged By: Cl		Check			A/S
Client: Cala F	lomes Co	tswolds and L	egal &		Stability: Stabi		Dimer		-	
General Hom		4 4 4		r	Plant: Insulate		-	0.30m		1:1(
Hydrock Proje					ools		0.30m	s		
Depth (m)	amples / Tes _{Type}	Results	Water- Strikes	Stratum Descrip	otion		pth	Thickness (m)	Level m OD	paceo
0.03 - 0.05	ES	Results		Greyish brown GRAVEL. Gravel is angular to sub a	angular fine to coar	se of flint and		(0.06)	зс	<u>-</u>
0.00 0.00	LU			Imestone with rare gravel sized fragments of brick (MADE GROUND) Greyish brown GRAVEL. Gravel is angular to sub a limestone with rare gravel sized fragments of asph (MADE GROUND)	angular fine to coar		0.06	(0.43)	90.39	
0.30 - 0.40	ES						-	(0.43)		
0.40 - 0.45	D									
				Greyish brown LIMESTONE.			0.49	(0.01)	89.96 89.95	×
				(CORNBRASH FORMATION) Base of Excavation at (0.50m		/			
							-			
							-			
							-			
							_			
							1 -			
							-			
							-			
							-			
							1			
							1			
							2 -			

Exploratory hole photographs

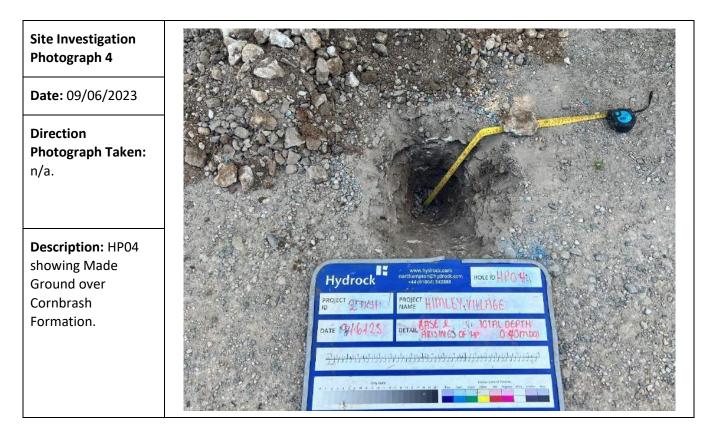
Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

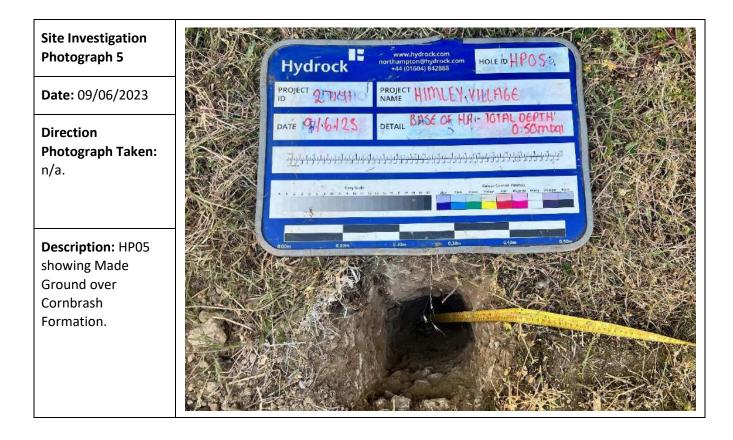
Site Investigation Photograph 1

Date: 09/06/2023

Direction Photograph Taken: N/A.

Description: HP01 showing Made Ground over Cornbrash Formation.


Site Investigation Photograph 3


Date: 09/06/2023

Direction Photograph Taken: n/a.

Description: HP03 showing Made Ground over Cornbrash Formation.



Date: 05/06/2023

Direction Photograph Taken: N/A.

Description: RC01 1.20m to 1.80m showing Cornbrash Formation.

Date: 05/06/2023

Direction Photograph Taken: N/A.

Description: RC01 3.00m to 4.00m showing Cornbrash Formation and Forest Marble Formation.

Date: 05/06/2023		
ale. 03/00/2023		
Direction Photograph Taken: N/A.	Hydrock Market M	
Description: RC01 1.00m to 5.50m howing Forest Marble Formation.		

hotograph Taken: /A.
hotograph Taken: /A.
Allo Line Line Die Die Die Line Line Line Die Die Die Die Die Die Die Die Die Di
Description: RC01 5.50m to 7.00m showing Forest Marble Formation.

e Investigation otograph 12	
ate: 15/06/2023	
Direction Photograph Taken: N/A.	Hydrock Standard Barbard Barba
Description: RC01 8.50m to 10.00m howing Forest Marble Formation.	

Date: 06/06/2023

Direction Photograph Taken: North.

Description: TP01 showing Topsoil over Cornbrash Formation.

Site Investigation Photograph 14

Date: 06/06/2023

Direction Photograph Taken: North.

Description: Spoil from TP01 showing Topsoil and Cornbrash Formation.

Site Investigation Photograph 15

Date: 06/06/2023

Direction Photograph Taken: North.

Description: Spoil from TP01 showing Cornbrash Formation.

Site Investigation Photograph 16

Date: 06/06/2023

Direction Photograph Taken: North.

Description: TP02 showing Made Ground over Head Deposits over Cornbrash Formation over Forest Marble Formation.

Date: 06/06/2023

Direction Photograph Taken: East.

Description: Spoil from TP02 showing Made Ground, Head Deposits and Cornbrash Formation.

Site Investigation Photograph 18

Date: 06/06/2023

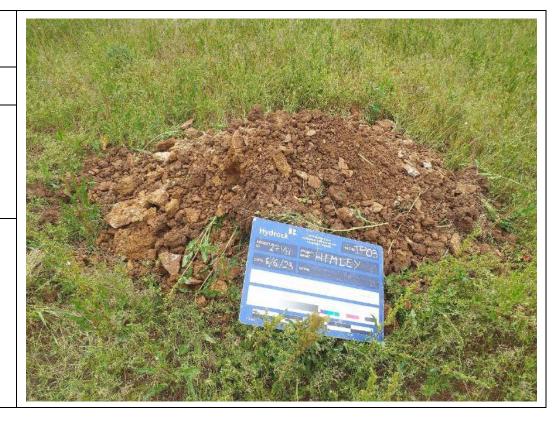
Direction Photograph Taken: West.

Description: Spoil from TP02 showing Cornbrash Formation and Forest Marble Formation.

Date: 06/06/2023

Direction Photograph Taken: North.

Description: TP03 showing Topsoil over Head Deposits over Cornbrash Formation.



Site Investigation Photograph 20

Date: 06/06/2023

Direction Photograph Taken: East.

Description: Spoil from TPO3 showing Topsoil, Head Deposits and Cornbrash Formation.

Date: 06/06/2023

Direction Photograph Taken: West.

Description: Spoil from TP03 showing Topsoil, Head Deposits and Cornbrash Formation.

Site Investigation Photograph 22

Date: 07/06/2023

Direction Photograph Taken: North.

Description: TP04 showing Made Ground over Head Deposits over Cornbrash Formation over Forest Marble Formation.

Site Investigation Photograph 23

Date: 07/06/2023

Direction Photograph Taken: East.

Description: Spoil from TP04 showing Topsoil, Head Deposits and Cornbrash Formation.

Site Investigation Photograph 24

Date: 07/06/2023

Direction Photograph Taken: West.

Description: Spoil from TP04 showing Cornbrash Formation and Forest Marble Formation.

Date: 06/06/2023

Direction Photograph Taken: North.

Description: TP05 showing Topsoil over Cornbrash Formation.

Site Investigation Photograph 26

Date: 06/06/2023

Direction Photograph Taken: East.

Description: Spoil from TP05 showing Topsoil and Cornbrash Formation.

Site Investigation Photograph 27

Date: 06/06/2023

Direction Photograph Taken: West.

Description: Spoil from TP05 showing Cornbrash Formation.

Site Investigation Photograph 28

Date: 06/06/2023

Direction Photograph Taken: North.

Description: TP06 showing Made Ground over Cornbrash Formation over Forest Marble Formation.

Date: 06/06/2023

Direction Photograph Taken: East.

Description: Spoil from TP06 showing Made Ground and Cornbrash Formation.

Site Investigation Photograph 30

Date: 06/06/2023

Direction Photograph Taken: West.

Description: Spoil from TP06 showing Made Ground and Cornbrash Formation.

Site Investigation Photograph 31 Date: 06/06/2023 Direction Photograph Taken: North. Description: TP07 showing Made Ground over Head Deposits over Cornbrash Formation over Forest Marble Formation.

Site Investigation Photograph 32

Date: 06/06/2023

Direction Photograph Taken: East.

Description: Spoil from TP07 showing Made Ground, Head Deposits, Cornbrash Formation and Forest Marble Formation.

Date: 06/06/2023

Direction Photograph Taken: West.

Description: Spoil from TP07 showing Made Ground, Head Deposits, Cornbrash Formation and Forest Marble Formation.

Site Investigation Photograph 34

Date: 07/06/2023

Direction Photograph Taken: North.

Description: TP08 showing Made Ground over Head Deposits over Cornbrash Formation over Forest Marble Formation.

Hydrock

Site Investigation Photograph 35

Date: 07/06/2023

Direction Photograph Taken: East.

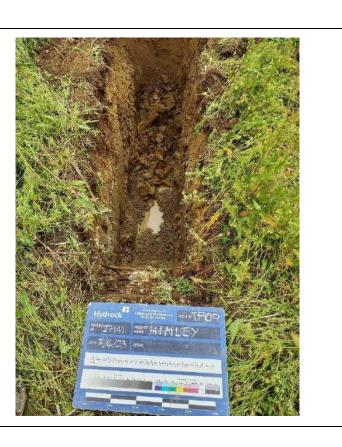
Description: Spoil from TP08 showing Made Ground, Head Deposits and Cornbrash Formation.

Site Investigation Photograph 36

Date: 07/06/2023

Direction Photograph Taken: West.

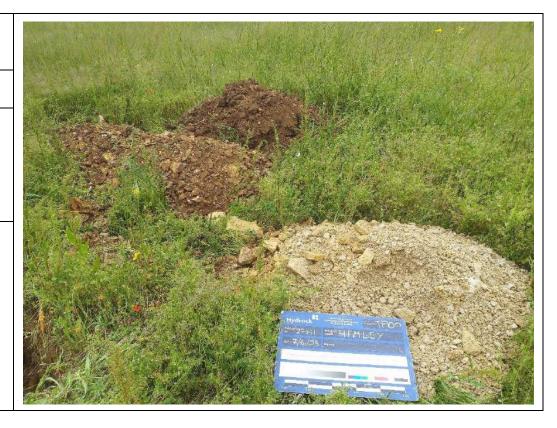
Description: Spoil from TP08 showing Cornbrash Formation and Forest Marble Formation.



Date: 07/06/2023

Direction Photograph Taken: North.

Description: TP09 showing Topsoil over Head Deposits over Cornbrash Formation.



Site Investigation Photograph 38

Date: 07/06/2023

Direction Photograph Taken: East.

Description: Spoil from TP09 showing Topsoil, Head Deposits, Cornbrash Formation and Forest Marble Formation.

Date: 07/06/2023

Direction Photograph Taken: West.

Description: Spoil from TP09 showing Cornbrash Formation.

Site Investigation Photograph 40

Date: 07/06/2023

Direction Photograph Taken: North.

Description: TP10 showing Made Ground over Head Deposits over Cornbrash Formation.

Date: 07/06/2023

Direction Photograph Taken: West.

Description: Spoil from TP10 showing Made Ground, Head Deposits and Cornbrash Formation.

Site Investigation Photograph 42

Date: 07/06/2023

Direction Photograph Taken: East.

Description: Spoil from TP10 showing Cornbrash Formation.

Date: 07/06/2023

Direction Photograph Taken: North.

Description: TP11 showing Made Ground over Head Deposits over Cornbrash Formation.

Site Investigation Photograph 44

Date: 07/06/2023

Direction Photograph Taken: East.

Description: Spoil from TP11 showing Made Ground, Head Deposits and Cornbrash Formation.

Hydrock

Site Investigation Photograph 45

Date: 07/06/2023

Direction Photograph Taken: West.

Description: Spoil from TP11 showing Cornbrash Formation.

Site Investigation Photograph 46

Date: 07/06/2023

Direction Photograph Taken: North.

Description: TP12 showing Topsoil over Head Deposits over Cornbrash Formation.

Date: 07/06/2023

Direction Photograph Taken: East.

Description: Spoil from TP12 showing Topsoil, Head Deposits, Cornbrash Formation.

Site Investigation Photograph 48

Date: 07/06/2023

Direction Photograph Taken: West.

Description: Spoil from TP12 showing Cornbrash Formation.

Date: 07/06/2023

Direction Photograph Taken: North.

Description: TP13 showing Topsoil over Head Deposits over Cornbrash Formation.

Site Investigation Photograph 50

Date: XX/XX/XX

Direction Photograph Taken: XXXXX.

Description: XXXXX.

Date: XX/XX/XX

Direction Photograph Taken: XXXXX.

Description: XXXXX.

Site Investigation Photograph 52
Date: XX/XX/XX
Direction Photograph Taken: XXXXX.
Description: XXXXX.

Appendix C

Geotechnical test results and geotechnical plots

Geotechnical laboratory test results

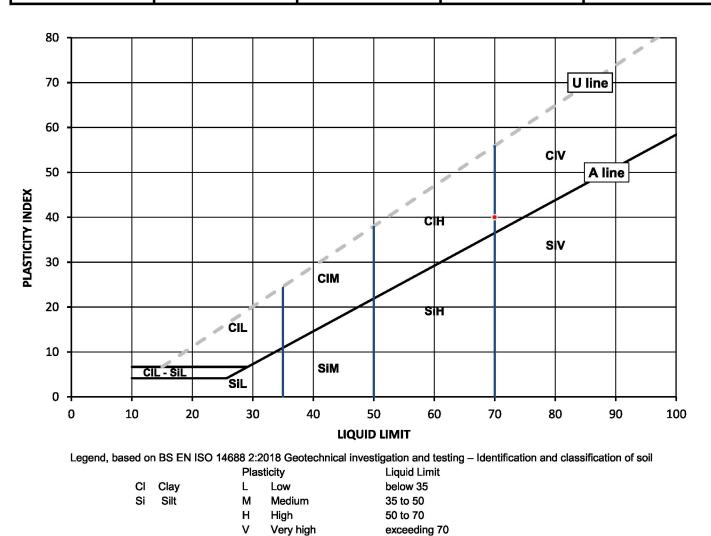
Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:Hydrock Consultants LtdClient ReferentClient Address:2-4 Hawthorne Park, Holdenby Road,
Spratton, Northamptonshire,
NN6 8LDJob Num
Date Samp
Date ReceivContact:Jamie MooreDate TessSite Address:Himley Village Main SiteSampledTesting carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, PolandDepth Top
Depth TopHole No.:TP07Depth Base


Sample Reference:D1Sample Description:Brown slightly gravelly CLAY

Sample Preparation: Tested after washing to remove >425 µm

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 06/06/2023 Date Received: 21/06/2023 Date Tested: 29/06/2023 Sampled By: Not Given

Depth Top [m]: 0.50 Depth Base [m]: Not Given Sample Type: D

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
27	70	30	40	91

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

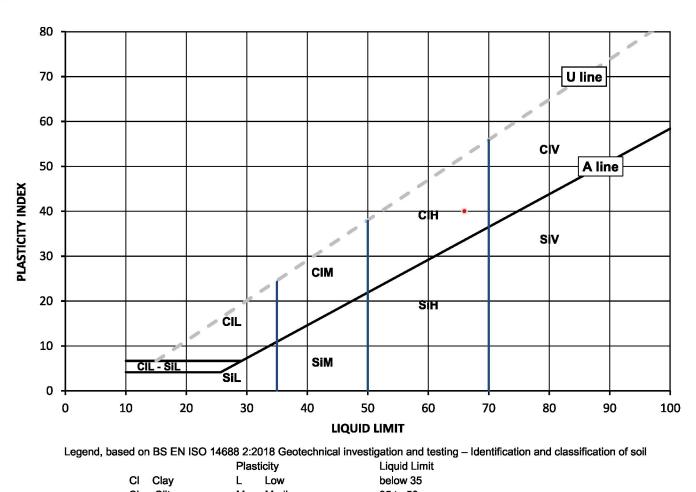
Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

0

Organic

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 21/07/2023



DETERMINATION OF LIQUID AND PLASTIC LIMITS Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client Reference: 27141 Client: **Client Address:** Job Number: 23-40788-2 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, Date Sampled: 13/06/2023 NN6 8LD Date Received: 21/06/2023 Contact: Jamie Moore Date Tested: 29/06/2023 Site Address: Himley Village Main Site Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2723077 Depth Top [m]: 1.00 **TP14** Depth Base [m]: Not Given Hole No .: Sample Reference: D1 Sample Type: D Sample Description: Brownish grey CLAY Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
23	66	26	40	100

Si Silt M Medium 35 to 50 H High 50 to 70 V Very high exceeding 70 O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

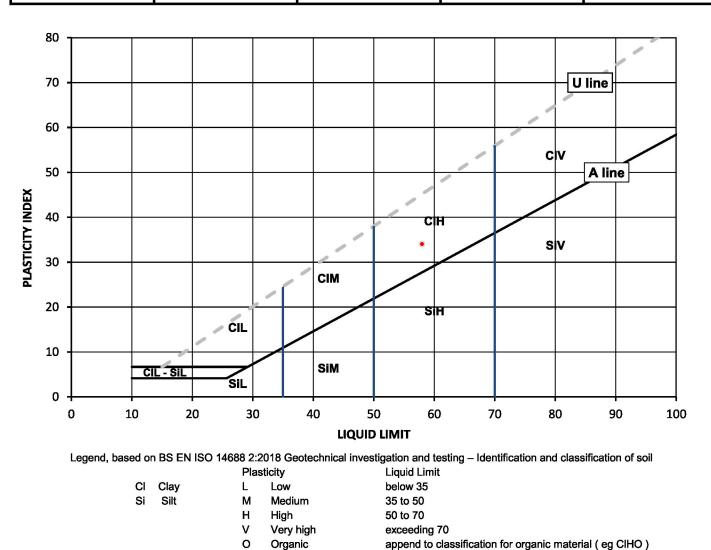
TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: **Client Address:** 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Contact: Jamie Moore Site Address: Himley Village Main Site Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2723069 **TP01** Hole No .: Sample Reference: LB1


Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 06/06/2023 Date Received: 21/06/2023 Date Tested: 01/07/2023 Sampled By: Not Given

Depth Top [m]: 1.50 Depth Base [m]: Not Given Sample Type: LB

Sample Preparation: Tested after >425um removed by hand

Yellowish brown slightly gravelly CLAY

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
18	58	24	34	85

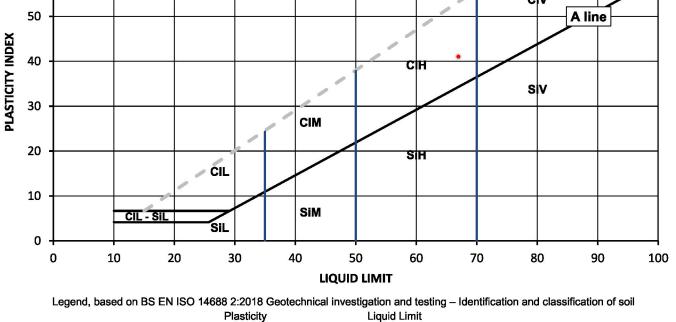
Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 21/07/2023


DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client Reference: 27141 Client: **Client Address:** Job Number: 23-40788-2 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, Date Sampled: 06/06/2023 NN6 8LD Date Received: 21/06/2023 Contact: Jamie Moore Date Tested: 29/06/2023 Site Address: Himley Village Main Site Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2723070 Depth Top [m]: 1.00 TP03 Depth Base [m]: Not Given Hole No .: Sample Reference: D1 Sample Type: D Light brown CLAY Sample Description: Sample Preparation: Tested in natural condition **Plasticity Index** As Received Water Liquid Limit **Plastic Limit** % Passing 425µm Content [W] % **BS Test Sieve** [WL]% [Wp]% [lp]% 20 67 26 41 100 80 70 **U** line 60 C V 50 A line

Clay Silt

Low Medium High Very high

Organic

L

М

н

۷

0

Liquid Limit below 35 35 to 50 50 to 70 exceeding 70

append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

CI

Si

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 21/07/2023

S Accreditation. This

olgilou.

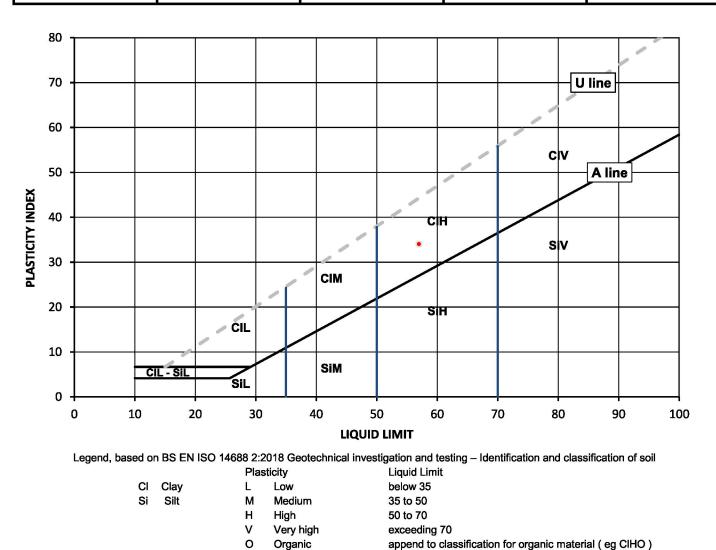
6

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Hydrock Consultants Ltd Client Reference: 27141 Client: **Client Address:** Job Number: 23-40788-2 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, Date Sampled: 07/06/2023 NN6 8LD Date Received: 21/06/2023 Contact: Jamie Moore Date Tested: 05/07/2023 Site Address: Himley Village Main Site Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2723071 Depth Top [m]: 1.00 **TP04** Depth Base [m]: Not Given Hole No .: Sample Reference: B1 Sample Type: B

Yellowish brown to grey slightly gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
21	57	23	34	

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

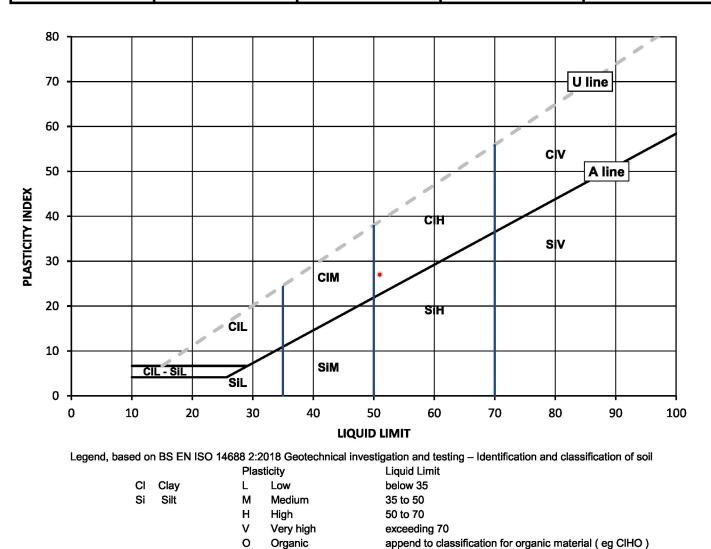
Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Client:	Hydrock Consultants Ltd	Client Reference: 27141
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number: 23-40788-2
	Spratton, Northamptonshire,	Date Sampled: 07/06/2023
	NN6 8LD	Date Received: 21/06/2023
Contact:	Jamie Moore	Date Tested: 05/07/2023
Site Address:	Himley Village Main Site	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	2723075	Depth Top [m]: 1.00
Hole No.:	TP11	Depth Base [m]: Not Given
Sample Reference:	B1	Sample Type: B

Sample Description: Brownish grey slightly gravelly slightly sandy CLAY with fragments of chalk

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
18	51	24	27	

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

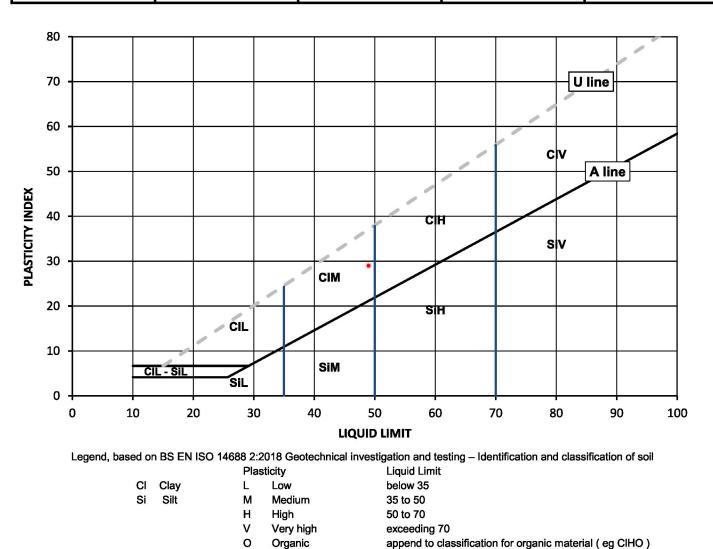
Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: **Client Address:** 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Contact: Jamie Moore Site Address: Himley Village Main Site Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2723076 **TP12** Hole No .: Sample Reference: D1


Sample Description: Light brown slightly gravelly slightly sandy CLAY

Sample Preparation: Tested after >425um removed by hand

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 07/06/2023 Date Received: 21/06/2023 Date Tested: 29/06/2023 Sampled By: Not Given

Depth Top [m]: 1.30 Depth Base [m]: Not Given Sample Type: D

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
20	49	20	29	98

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

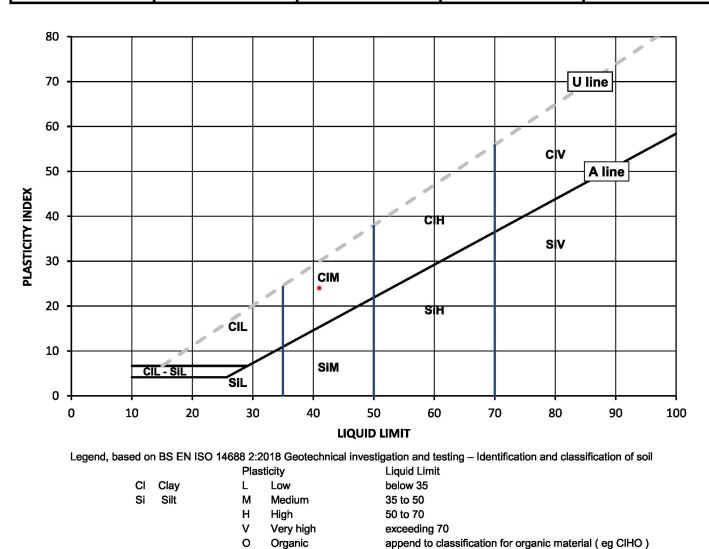
TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: **Client Address:** 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Contact: Jamie Moore Site Address: Himley Village Main Site Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2723079 **TP17** Hole No .: Sample Reference: D1


Light brown slightly gravelly sandy CLAY

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 13/06/2023 Date Received: 21/06/2023 Date Tested: 29/06/2023 Sampled By: Not Given

Depth Top [m]: 1.35 Depth Base [m]: Not Given Sample Type: D

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL]%	[Wp] %	[lp] %	BS Test Sieve
15	41	17	24	84

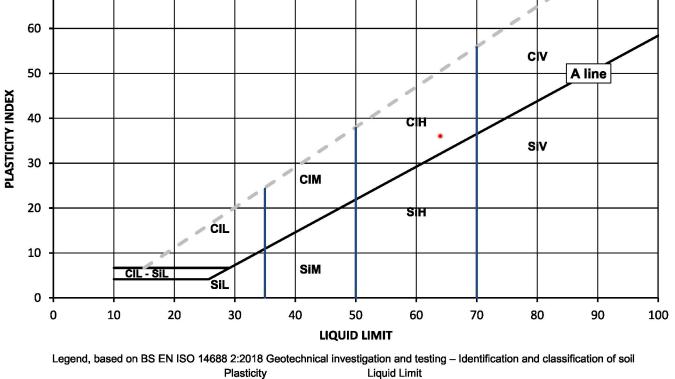
Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

. . .


DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road **Brackmills Industrial Estate** Northampton NN4 7EB

Hydrock Consultants Ltd Client Reference: 27141 Client: **Client Address:** Job Number: 23-40788-2 2-4 Hawthorne Park, Holdenby Road, Date Sampled: 13/06/2023 Spratton, Northamptonshire, NN6 8LD Date Received: 21/06/2023 Contact: Jamie Moore Date Tested: 05/07/2023 Site Address: Himley Village Main Site Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2723080 Depth Top [m]: 2.30 TP17 and TP18 Depth Base [m]: 2.85 Hole No .: B1+B2 Sample Reference: Sample Type: B Sample Description: Greyish brown CLAY Sample Preparation: Tested in natural condition As Received Water Liquid Limit **Plastic Limit Plasticity Index** Content [W] % **BS Test Sieve** [WL]% [Wp]% [lp]% 27 64 28 36 100 80 70 **U** line 60 C V 50 A line

% Passing 425µm

0 Organic

Clay

Silt

Note: Water Content by BS 1377-2: 1990: Clause 3.2

CI

Si

Replaces Analytical Report Number 23-40788, issue no. 1; Hole No amended **Remarks:**

L

М

н

v

low

High

Medium

Very high

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:	

below 35

35 to 50

50 to 70

exceeding 70

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

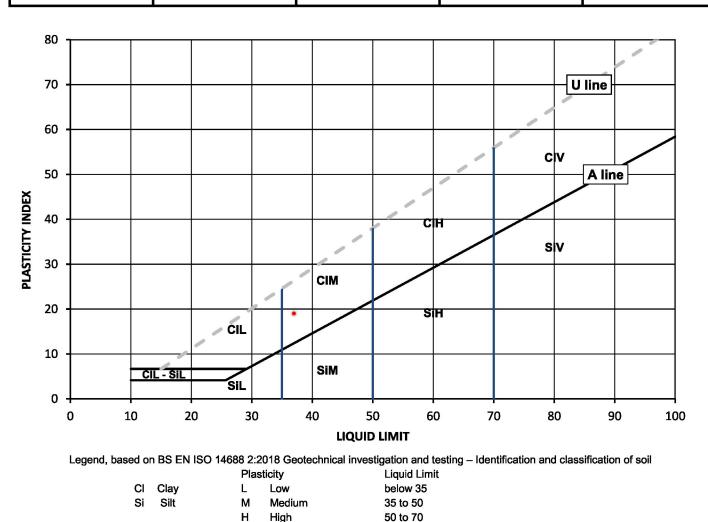
Date Reported: 21/07/2023

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Hydrock Consultants Ltd Client Reference: 27141 Client: **Client Address:** Job Number: 23-40788-2 2-4 Hawthorne Park, Holdenby Road, Date Sampled: 12/06/2023 Spratton, Northamptonshire, NN6 8LD Date Received: 21/06/2023 Contact: Jamie Moore Date Tested: 29/06/2023 Site Address: Himley Village Main Site Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2723081 Depth Top [m]: 2.30 **TP19** Depth Base [m]: Not Given Hole No .: Sample Reference: D2 Sample Type: D

Sample Preparation: Tested after >425um removed by hand

Light brown slightly gravelly sandy CLAY

As Received Water
Content [W]%Liquid Limit
[WL]%Plastic Limit
[Wp]%Plasticity Index
[Ip]%% Passing 425μm
BS Test Sieve1837181995

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

۷

0

Very high

Organic

exceeding 70

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Sample Reference:

Sample Description:

TEST CERTIFICATE

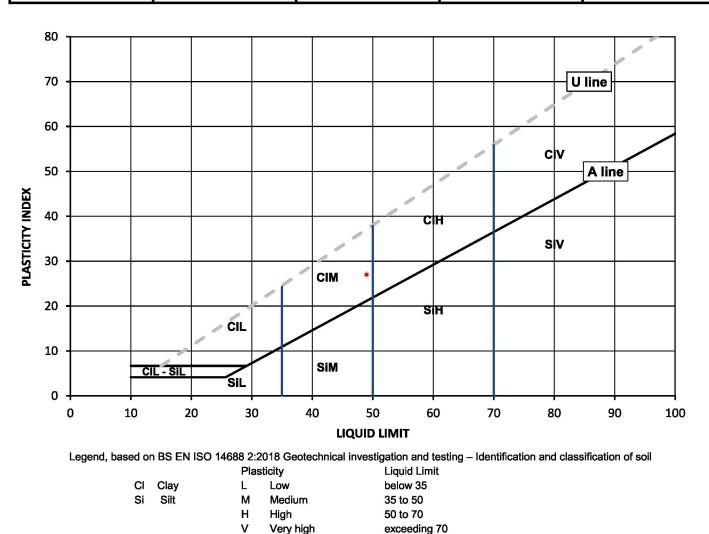
DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:Hydrock Consultants LtdClient ReferenceClient Address:2-4 Hawthorne Park, Holdenby Road,
Spratton, Northamptonshire,
NN6 8LDJob NumbContact:Jamie MooreDate Sample
Date ReceiveContact:Jamie MooreDate TesteSite Address:Himley Village Main SiteSampled ITesting carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, PolandDepth Top [nHole No.:TP20Depth Base [n

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 12/06/2023 Date Received: 21/06/2023 Date Tested: 05/07/2023 Sampled By: Not Given


Depth Top [m]: 1.20 Depth Base [m]: Not Given Sample Type: LB

Sample Preparation: Tested after washing to remove >425um

Yellowish brown sandy gravelly CLAY

LB1

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
18	49	22	27	88

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

0

Organic

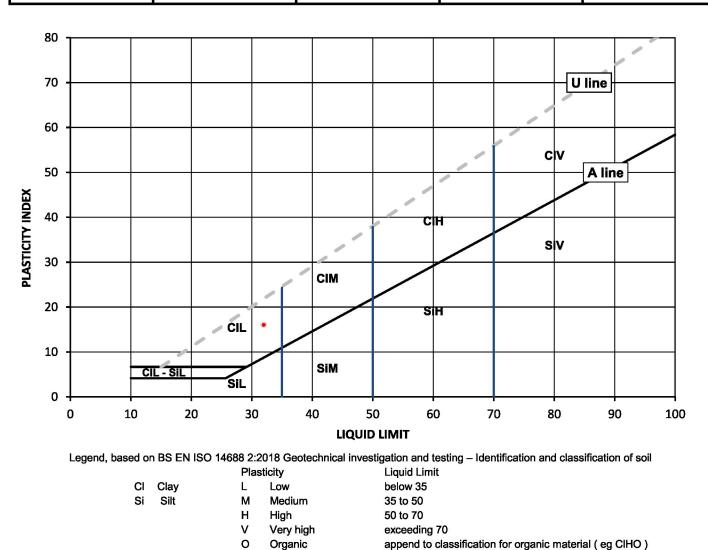
Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Client:	Hydrock Consultants Ltd	Client Reference: 27141
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number: 23-40788-2
	Spratton, Northamptonshire,	Date Sampled: 12/06/2023
	NN6 8LD	Date Received: 21/06/2023
Contact:	Jamie Moore	Date Tested: 29/06/2023
Site Address:	Himley Village Main Site	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	2723083	Depth Top [m]: 0.90
Hole No.:	TP22	Depth Base [m]: Not Given
Sample Reference:	D1	Sample Type: D

Yellowish brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
16	32	16	16	

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

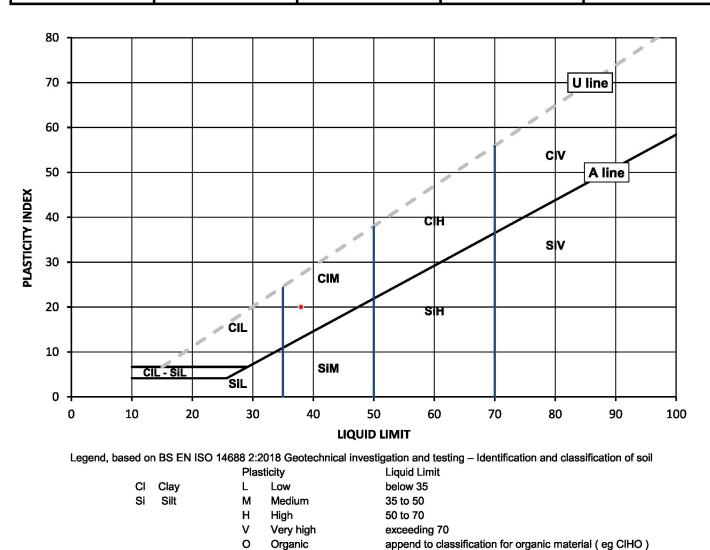
Date Reported: 21/07/2023

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Hydrock Consultants Ltd Client Reference: 27141 Client: **Client Address:** Job Number: 23-40788-2 2-4 Hawthorne Park, Holdenby Road, Date Sampled: 05/06/2023 Spratton, Northamptonshire, NN6 8LD Date Received: 21/06/2023 Contact: Jamie Moore Date Tested: 04/07/2023 Site Address: Himley Village Main Site Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2724103 Depth Top [m]: 0.50 **RC01** Depth Base [m]: 0.80 Hole No .: Sample Reference: B2 Sample Type: B

Sample Preparation: Tested after washing to remove >425um

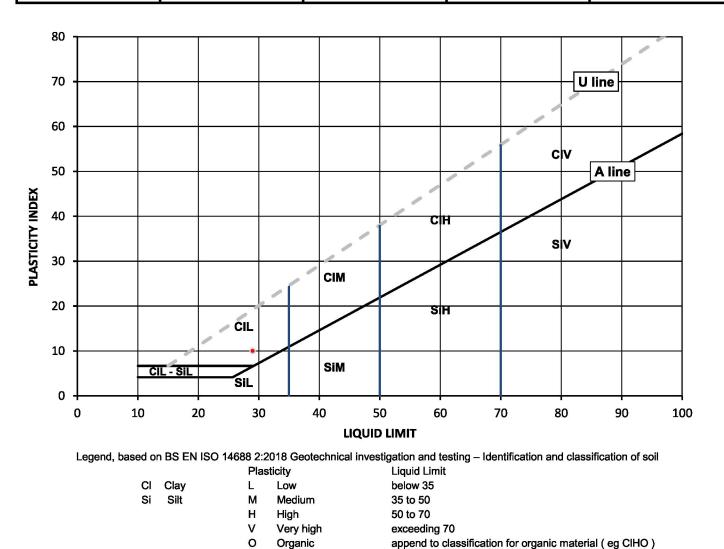
Light brown slightly gravelly sandy CLAY

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
10	38	18	20	67

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.


DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041					
Client:	Hydrock Consul	tants Ltd		Client Refer	ence: 27141
Client Address:	2-4 Hawthorne F	Park, Holdenby Roa	id,	Job Nu	mber: 23-40788-2
	Spratton, Northa	amptonshire,		Date San	npled: 13/06/2023
	NN6 8LD			Date Rec	eived: 21/06/2023
Contact:	Jamie Moore			Date Te	ested: 04/07/2023
Site Address:	Himley Village N	lain Site		Sample	ed By: Not Given
Testing carried out at i2	Analytical Limite	d, ul. Pionierow, 41	I-711 Ruda Slaska, Poland		0
Test Results:					
Laboratory Reference:	2724104			Depth To	p [m]: 2.10
Hole No.:	TP15			Depth Bas	e [m]: Not Given
Sample Reference:	В			Sample	Туре: В
Sample Description:	Brown very sand	JY CLAY			
Sample Preparation:	Tested in natura	l condition			
As Received Wate	r Li	quid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %		[WL]%	[Wp]%	[lp]%	BS Test Sieve
14		29	19	10	100

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Client:

Contact:

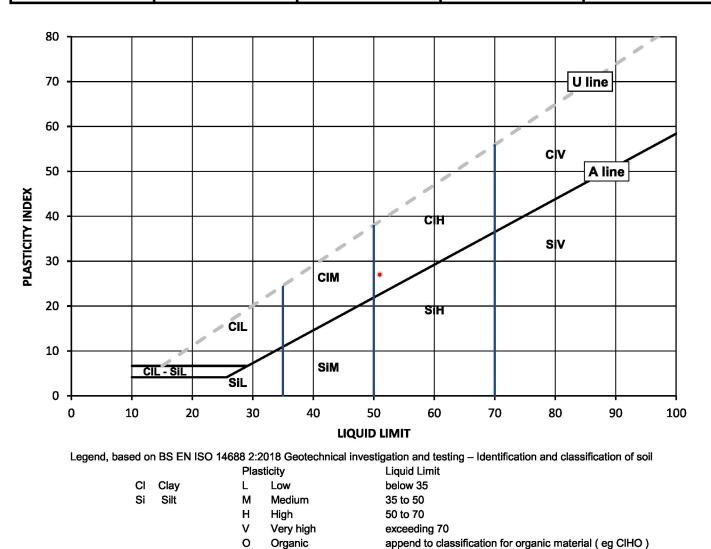
TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd **Client Address:** 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Jamie Moore Site Address: Himley Village Main Site Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2726321 TP25 Hole No .:


Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: Not Given Date Received: 21/06/2023 Date Tested: 04/07/2023 Sampled By: Not Given

Depth Top [m]: 0.60 Depth Base [m]: Not Given Sample Type: D

Sample Reference: D1 Brown slightly gravelly slightly sandy CLAY Sample Description:

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
19	51	24	27	78

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

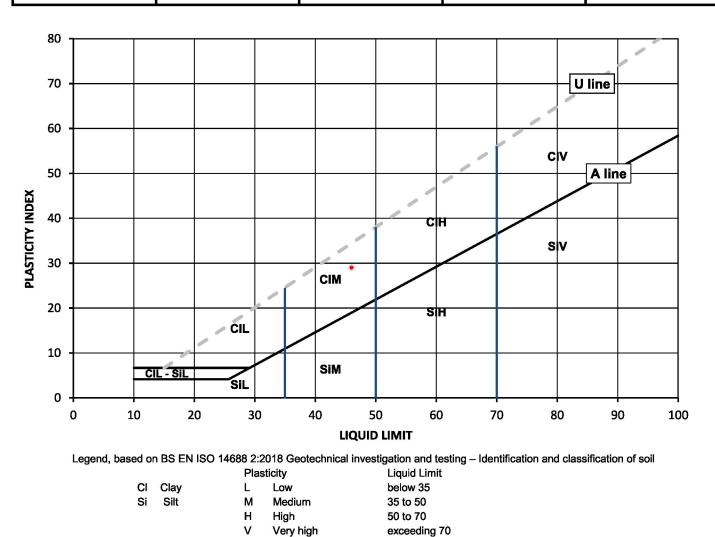
Date Reported: 21/07/2023

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Client:	Hydrock Consultants Ltd	Client Reference: 27141
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number: 23-40788-2
	Spratton, Northamptonshire,	Date Sampled: Not Given
	NN6 8LD	Date Received: 21/06/2023
Contact:	Jamie Moore	Date Tested: 04/07/2023
Site Address:	Himley Village Main Site	Sampled By: Not Given
Testing carried out at i	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	2726322	Depth Top [m]: 0.80
Hole No.:	TP25	Depth Base [m]: Not Given
Sample Reference:	D2	Sample Type: D

Sample Preparation:

[m]: Not Given Type: D ampie Light brown slightly gravelly slightly sandy CLAY with chalk Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL]%	[Wp] %	[lp] %	BS Test Sieve
22	46	17	29	83

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Organic

0

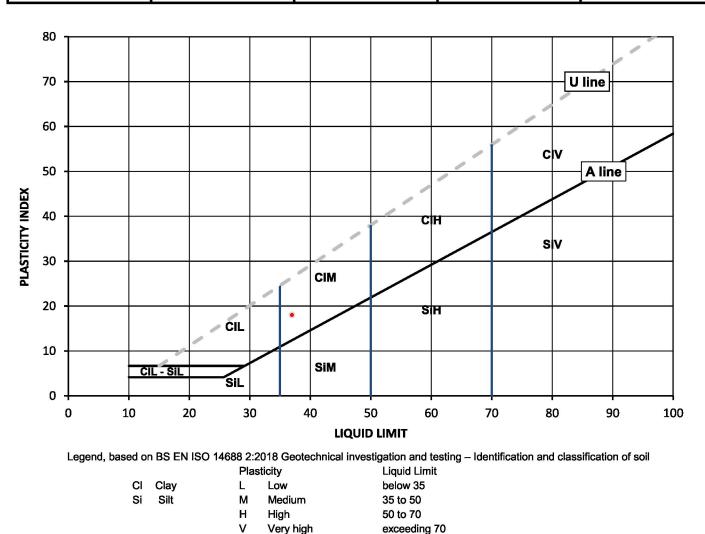
Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Hydrock Consultants Ltd Client Reference: 27141 Client: **Client Address:** Job Number: 23-40788-2 2-4 Hawthorne Park, Holdenby Road, Date Sampled: Not Given Spratton, Northamptonshire, NN6 8LD Date Received: 21/06/2023 Contact: Jamie Moore Date Tested: 04/07/2023 Site Address: Himley Village Main Site Sampled By: Not Given Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2726324 Depth Top [m]: 1.00 **TP28** Depth Base [m]: Not Given Hole No .: Sample Reference: D1 Sample Type: D

Light brown slightly gravelly sandy CLAY with chalk

Sample Preparation: Tested after >425um removed by hand

As Received Water
Content [W] %Liquid Limit
[WL] %Plastic Limit
[Wp] %Plasticity Index
[Ip] %% Passing 425µm
BS Test Sieve1937191875

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

0

Organic

3	'y'	lie	u.	
	1.17			

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

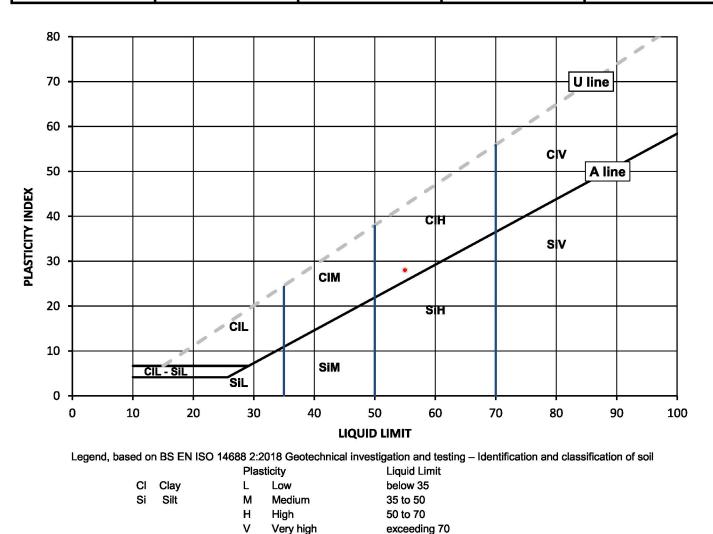
Date Reported: 21/07/2023

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: **Client Address:** 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Contact: Jamie Moore Site Address: Himley Village Main Site Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2726325 **TP29** Hole No .: Sample Reference: B1


Sample Description: Orangish brown gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: Not Given Date Received: 21/06/2023 Date Tested: 04/07/2023 Sampled By: Not Given

Depth Top [m]: 0.40 Depth Base [m]: Not Given Sample Type: B

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp]%	BS Test Sieve
7.8	55	27	28	55

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

0

Organic

Page 1 of 1

Date Reported: 21/07/2023

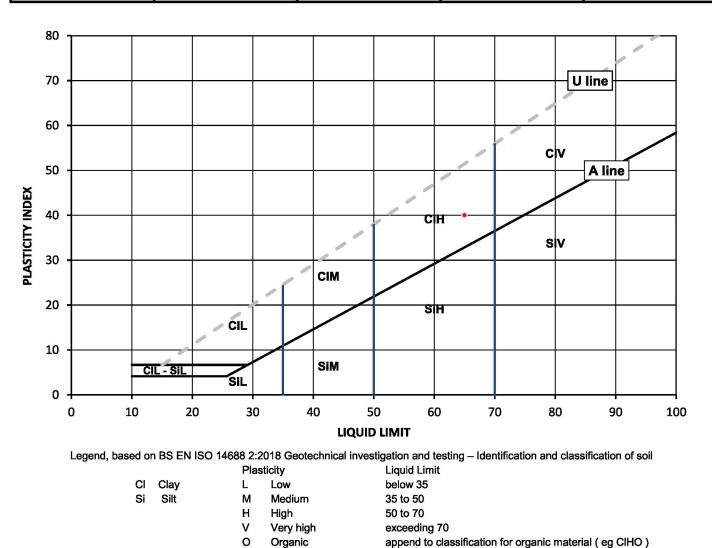
TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:	Hydrock Consultants Ltd	Client Reference:
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number:
	Spratton, Northamptonshire,	Date Sampled:
	NN6 8LD	Date Received:
Contact:	Jamie Moore	Date Tested:
Site Address:	Himley Village Main Site	Sampled By:
Testing carried out at it	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	2726326	Depth Top [m]:
Hole No.:	TP30	Depth Base [m]:
Sample Reference:	LB1	Sample Type:


Sample Description: Brownish grey CLAY with fragments of chalk

Tested after >425um removed by hand Sample Preparation:

27141 23-40788-2 Not Given 21/06/2023 04/07/2023 Not Given

0.90 Not Given Sample Type: B

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
21	65	25	40	98

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

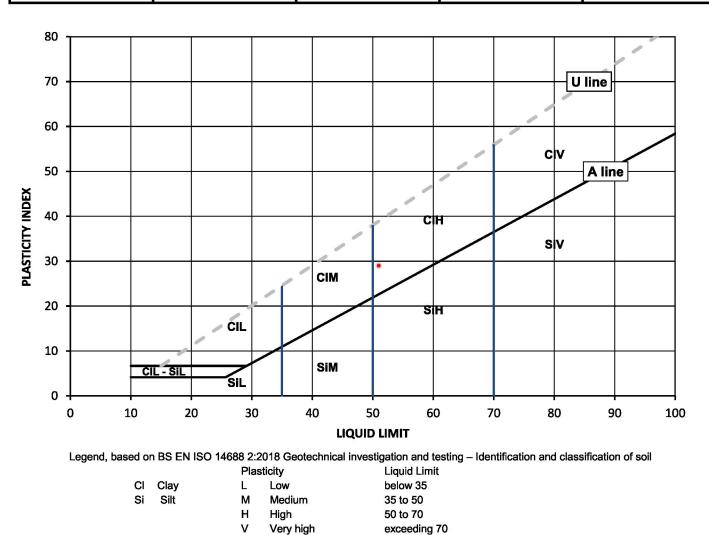
TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client Reference: 27141 Client: **Client Address:** Job Number: 23-40788-2 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Contact: Jamie Moore Site Address: Himley Village Main Site Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2726327 TP32 Hole No .: Sample Reference: B1


Date Sampled: Not Given Date Received: 21/06/2023 Date Tested: 06/07/2023 Sampled By: Not Given

Depth Top [m]: 1.00 Depth Base [m]: Not Given Sample Type: B

Sample Preparation: Tested after washing to remove >425um

Brown slightly gravelly slightly sandy CLAY

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp]%	BS Test Sieve
19	51	22	29	86

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

0

Organic

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

Page 1 of 1

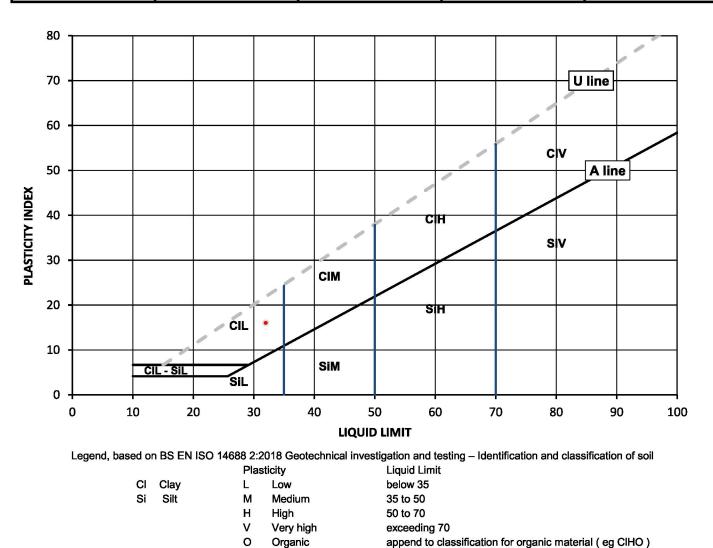
Date Reported: 21/07/2023

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: **Client Address:** 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Contact: Jamie Moore Site Address: Himley Village Main Site Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2726331 TP43 Hole No .: Sample Reference: D1


Sample Description: Yellowish brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: Not Given Date Received: 21/06/2023 Date Tested: 04/07/2023 Sampled By: Not Given

Depth Top [m]: 0.75 Depth Base [m]: Not Given Sample Type: D

As Received	 Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [[WL] %	[Wp] %	[lp] %	BS Test Sieve
13	32	16	16	67

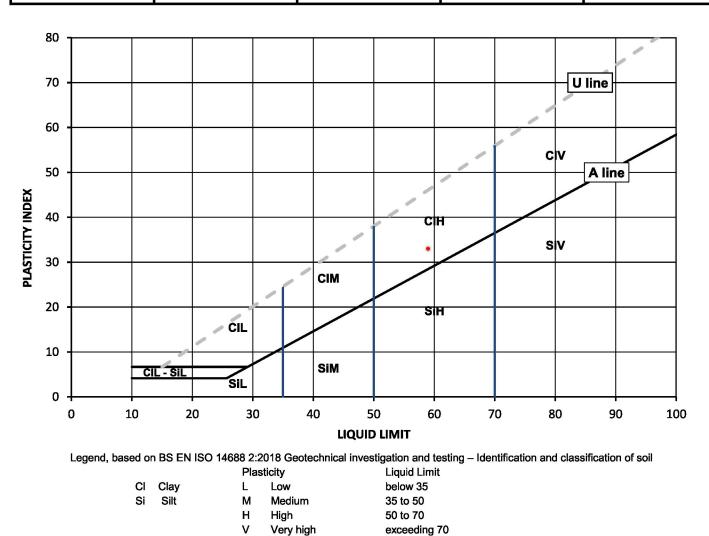
Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF LIQUID AND PLASTIC LIMITS


Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:	Hydrock Consultants Ltd	Client Reference: 27141
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number: 23-40788-2
	Spratton, Northamptonshire,	Date Sampled: Not Given
	NN6 8LD	Date Received: 21/06/2023
Contact:	Jamie Moore	Date Tested: 04/07/2023
Site Address:	Himley Village Main Site	Sampled By: Not Given
Testing carried out at i2	Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	2726332	Depth Top [m]: 2.00
Hole No.:	TP43	Depth Base [m]: Not Given
Sample Reference:	B1	Sample Type: B
Sample Reference: Sample Description:	B1 Brown slightly sandy CLAY	Sample Type: B

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
24	59	26	33	100

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

0

Organic

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

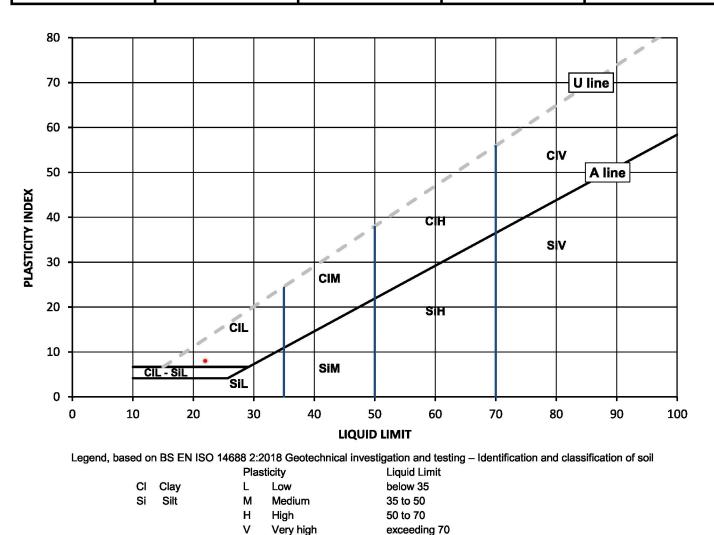
Sample Description:

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Client:	Hydrock Consultants Ltd	Client Reference: 27141
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number: 23-40788-2
	Spratton, Northamptonshire,	Date Sampled: Not Given
	NN6 8LD	Date Received: 21/06/2023
Contact:	Jamie Moore	Date Tested: 04/07/2023
Site Address:	Himley Village Main Site	Sampled By: Not Given
Testing carried out at i	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	2726333	Depth Top [m]: 1.83
Hole No.:	TP45	Depth Base [m]: Not Given
Sample Reference:	D1	Sample Type: D

Light brown slightly gravelly very sandy CLAY with chalk

Sample Preparation: Tested after >425um removed by hand

As Received Water
Content [W]%Liquid Limit
[WL]%Plastic Limit
Plastic Limit
[Wp]%Plasticity Index
[Ip]%% Passing 425µm
BS Test Sieve132214889

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

0

Organic

Date Reported: 21/07/2023

append to classification for organic material (eg CIHO)

Sample Description:

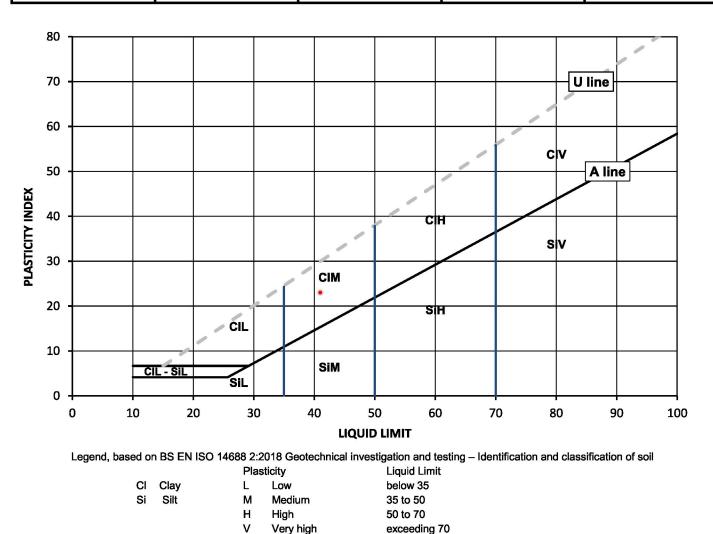
TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client Reference: 27141 Client: **Client Address:** 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Contact: Jamie Moore Site Address: Himley Village Main Site Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2728173 **TP04** Hole No .: Sample Reference: D1


Job Number: 23-40788-2 Date Sampled: Not Given Date Received: 21/06/2023 Date Tested: 04/07/2023 Sampled By: Not Given

Depth Top [m]: 0.65 Depth Base [m]: Not Given Sample Type: D

Sample Preparation: Tested after >425um removed by hand

Yellowish brown gravelly sandy CLAY

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
13	41	18	23	64

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

0

Organic

Signed:

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

Date Reported: 21/07/2023

append to classification for organic material (eg CIHO)

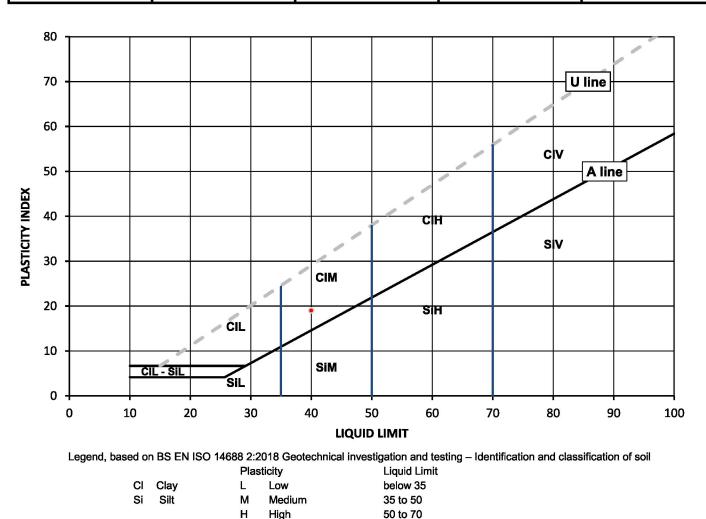
DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client: **Client Address:** 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Contact: Jamie Moore Site Address: Himley Village Main Site Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:** Laboratory Reference: 2728174 **TP08** Hole No .: B2

 Sample Reference:
 B2


 Sample Description:
 Brownish grey slightly gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: Not Given Date Received: 21/06/2023 Date Tested: 04/07/2023 Sampled By: Not Given

Depth Top [m]: 1.80 Depth Base [m]: Not Given Sample Type: B

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
18	40	21	19	88

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

۷

0

Very high

Organic

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

exceeding 70

Date Reported: 21/07/2023

append to classification for organic material (eg CIHO)

Tested in Accordance with:

Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990:

Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2:

1990: Clause 8.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 06/06 - 13/06/2023 Date Received: 21/06/2023 Date Tested: 29/06 - 05/07/2023 Sampled By: Not Given

 4041

 Client:
 Hydrock Consultants Ltd

 Client Address:
 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD

 Contact:
 Jamie Moore

Site Address: Himley Village Main Site

ac

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

TESTING

			Sample)				Content 7-2 [W]	tent '892-2		Atte	rberg		Density			#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks		Water Con BS EN ISO 17 I W I	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2723069	TP01	LB1	1.50	Not Given	LB	Yellowish brown slightly gravelly CLAY	Atterberg 4 Point	18		85	58	24	34			2.65		
2723070	TP03	D1	1.00	Not Given	D	Light brown CLAY	Atterberg 4 Point	20		100	67	26	41					
2723071	TP04	B1	1.00	Not Given	в	Yellowish brown to grey slightly gravelly slightly sandy CLAY	Atterberg 4 Point	21		91	57	23	34					
2723073	TP07	D1	0.50	Not Given	D	Brown slightly gravelly CLAY	Atterberg 1 Point	27		91	70	30	40					
2723075	TP11	B1	1.00	Not Given	в	Brownish grey slightly gravelly slightly sandy CLAY with fragments of chalk	Atterberg 4 Point	18		91	51	24	27					
2723076	TP12	D1	1.30	Not Given	D	Light brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	20		98	49	20	29					
2723077	TP14	D1	1.00	Not Given	D	Brownish grey CLAY	Atterberg 1 Point	23		100	66	26	40					
2723079	TP17	D1	1.35	Not Given	D	Light brown slightly gravelly sandy CLAY	Atterberg 4 Point	15		84	41	17	24					
2723080	TP17 and TP18	B1+B2	2.30	2.85	В	Greyish brown CLAY	Atterberg 4 Point	27		100	64	28	36					
2723081	TP19	D2	2.30	Not Given	D	Light brown slightly gravelly sandy CLAY	Atterberg 4 Point	18		95	37	18	19					

Note: # Non accredited; NP - Non plastic

Comments: Replaces Analytical Report Number 23-40788, issue no. 1; Hole No amended

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Tested in Accordance with:

Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990:

Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2:

1990: Clause 8.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 05/06 - 13/06/2023 Date Received: 21/06/2023 Date Tested: 29/06 - 05/07/2023 Sampled By: Not Given

 4041

 Client:
 Hydrock Consultants Ltd

 Client Address:
 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD

 Contact:
 Jamie Moore

Site Address: Himley Village Main Site

ac

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

TESTING

			Sample	•				Content 7-2 [W]	tent '892-2		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description Remarks b L ST		Water BS 137 Water BS EN IS		% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2723082	TP20	LB1	1.20	Not Given	LB	Yellowish brown sandy gravelly CLAY	Atterberg 4 Point	18		88	49	22	27			2.72		
2723083	TP22	D1	0.90	Not Given	D	Yellowish brown slightly gravelly very sandy CLAY	Atterberg 4 Point	16		90	32	16	16					
2724103	RC01	B2	0.50	0.80	В	Light brown slightly gravelly sandy CLAY	Atterberg 4 Point	10		67	38	18	20					
2724104	TP15	в	2.10	Not Given	в	Brown very sandy CLAY	Atterberg 4 Point	14		100	29	19	10					
2726321	TP25	D1	0.60	Not Given	D	Brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	19		78	51	24	27					
2726322	TP25	D2	0.80	Not Given	D	Light brown slightly gravelly slightly sandy CLAY with chalk	Atterberg 4 Point	22		83	46	17	29					
2726323	TP26	B1	1.65	Not Given	В	Brownish grey CLAY with fragments of chalk		20										
2726324	TP28	D1	1.00	Not Given	D	Light brown slightly gravelly sandy CLAY with chalk	Atterberg 4 Point	19		75	37	19	18					
2726325	TP29	B1	0.40	Not Given	В	Orangish brown gravelly slightly sandy CLAY	Atterberg 4 Point	7.8		55	55	27	28					
2726326	TP30	LB1	0.90	Not Given	В	Brownish grey CLAY with fragments of chalk	Atterberg 4 Point	21		98	65	25	40			2.62		

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: Not Given Date Received: 21/06/2023 Date Tested: 04/07 - 06/07/2023 Sampled By: Not Given

 4041

 Client:
 Hydrock Consultants Ltd
 Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

 Client Address:
 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD
 Vater Content by BS 1377-2: 1990: Clause 4.4 (1 Point Test) and 5

 Contact:
 Jamie Moore
 Jamie Moore

 Site Address:
 Himley Village Main Site

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

TESTING

ac-M

			Sample	•				Content 7-2 [W]	tent 892-2		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Con BS 1377-2 [Water Conten BS EN ISO 17892 [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2726327	TP32	B1	1.00	Not Given	В	Brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	19		86	51	22	29					
2726328	TP37	B1	1.00	Not Given	В	Brownish grey clayey SILT		14										
2726329	TP40	B1	1.00	Not Given	В	Light brown CLAY		23										
2726330	TP41	B1	1.00	Not Given	В	Yellowish brown silty CLAY		14										
2726331	TP43	D1	0.75	Not Given	D	Yellowish brown slightly gravelly very sandy CLAY	Atterberg 4 Point	13		67	32	16	16					
2726332	TP43	B1	2.00	Not Given	В	Brown slightly sandy CLAY	Atterberg 4 Point	24		100	59	26	33					
2726333	TP45	D1	1.83	Not Given	D	Light brown slightly gravelly very sandy CLAY with chalk	Atterberg 4 Point	13		89	22	14	8					
2728173	TP04	D1	0.65	Not Given	D	Yellowish brown gravelly sandy CLAY	Atterberg 4 Point	13		64	41	18	23					
2728174	TP08	B2	1.80	Not Given	В	Brownish grey slightly gravelly sandy CLAY	Atterberg 4 Point	18		88	40	21	19					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 06/06 - 13/06/2023 Date Received: 21/06/2023 Date Tested: 29/06 - 05/07/2023 Sampled By: Not Given

 Client Address:
 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD

 Contact:
 Jamie Moore

 Site Address:
 Himley Village Main Site

Hydrock Consultants Ltd

ac

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

TESTING

4041 Client:

			Sample	1							
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2723069	TP01	LB1	1.50	Not Given	LB	Yellowish brown slightly gravelly CLAY		18	Sample was quartered, oven dried at 109 °C		
2723070	TP03	D1	1.00	Not Given	D	Light brown CLAY		20	Sample was quartered, oven dried at 108.9 °C		
2723071	TP04	B1	1.00	Not Given	в	Yellowish brown to grey slightly gravelly slightly sandy CLAY		21	Sample was quartered, oven dried at 106.7 °C		
2723073	TP07	D1	0.50	Not Given	D	Brown slightly gravelly CLAY		27	Sample was quartered, oven dried at 108.9 °C		
2723075	TP11	B1	1.00	Not Given	в	Brownish grey slightly gravelly slightly sandy CLAY with fragments of chalk		18	Sample was quartered, oven dried at 106 °C		
2723076	TP12	D1	1.30	Not Given	D	Light brown slightly gravelly slightly sandy CLAY		20	Sample was quartered, oven dried at 108.9 °C		
2723077	TP14	D1	1.00	Not Given	D	Brownish grey CLAY		23	Sample was quartered, oven dried at 108.9 °C		
2723079	TP17	D1	1.35	Not Given	D	Light brown slightly gravelly sandy CLAY		15	Sample was quartered, oven dried at 108.9 °C		
2723080	TP17 and TP18	B1+B2	2.30	2.85	В	Greyish brown CLAY		27	7 Sample was quartered, oven dried at 106 °C		
2723081	TP19	D2	2.30	Not Given	D	Light brown slightly gravelly sandy CLAY		18	Sample was quartered, oven dried at 108.9 °C		

Comments:

Replaces Analytical Report Number 23-40788, issue no. 1; Hole no amended (sample 2723080)

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 05/06 - 13/06/2023 Date Received: 21/06/2023 Date Tested: 29/06 - 10/07/2023 Sampled By: Not Given

Client Address:2-4 Hawthorne Park, Holdenby Road,
Spratton, Northamptonshire,
NN6 8LDContact:Jamie MooreSite Address:Himley Village Main Site

Hydrock Consultants Ltd

ac-M

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

TESTING

4041 Client:

			Sample	9							
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2723082	TP20	LB1	1.20	Not Given	LB	Yellowish brown gravelly sandy CLAY		18	Sample was quartered, oven dried at 106 °C		
2723083	TP22	D1	0.90	Not Given	D	Yellowish brown slightly gravelly very sandy CLAY		16	Sample was quartered, oven dried at 108.9 °C		
2724103	RC01	B2	0.50	0.80	в	Light brown slightly gravelly sandy CLAY		10	Sample was quartered, oven dried at 106.7 °C		
2724104	TP15	В	2.10	Not Given	в	Brown very sandy CLAY		14	Sample was quartered, oven dried at 106 °C		
2726321	TP25	D1	0.60	Not Given	D	Brown slightly gravelly slightly sandy CLAY		19	Sample was quartered, oven dried at 108.9 °C		
2726322	TP25	D2	0.80	Not Given	D	Light brown slightly gravelly slightly sandy CLAY with chalk		22	Sample was quartered, oven dried at 108.9 °C		
2726323	TP26	B1	1.65	Not Given	В	Brownish grey CLAY with fragments of chalk		20	Sample was quartered, oven dried at 108.9 °C		
2726324	TP28	D1	1.00	Not Given	D	Light brown slightly gravelly sandy CLAY with chalk		19	Sample was quartered, oven dried at 108.9 °C		
2726325	TP29	B1	0.40	Not Given	В	Orangish brown gravelly slightly sandy CLAY		7.8	Sample was quartered, oven dried at 106 °C		
2726326	TP30	LB1	0.90	Not Given	В	Brownish grey CLAY with fragments of chalk		21	Sample was quartered, oven dried at 108.2 °C		

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: Not Given Date Received: 21/06/2023 Date Tested: 04/07/2023 Sampled By: Not Given

Client:Hydrock Consultants LtdClient Address:2-4 Hawthorne Park, Holdenby Road,
Spratton, Northamptonshire,
NN6 8LDContact:Jamie MooreSite Address:Himley Village Main Site

ac-M

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

TESTING

4041

			Sample	9							
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing		
2726327	TP32	B1	1.00	Not Given	В	Brown slightly gravelly slightly sandy CLAY		19	Sample was quartered, oven dried at 108.2 °C		
2726328	TP37	B1	1.00	Not Given	в	Brownish grey clayey SILT		14	Sample was quartered, oven dried at 108.2 °C		
2726329	TP40	B1	1.00	Not Given	В	Light brown CLAY		23	Sample was quartered, oven dried at 109 °C		
2726330	TP41	B1	1.00	Not Given	в	Yellowish brown silty CLAY		14	Sample was quartered, oven dried at 106 °C		
2726331	TP43	D1	0.75	Not Given	D	Yellowish brown slightly gravelly very sandy CLAY		13	Sample was quartered, oven dried at 108.9 °C		
2726332	TP43	B1	2.00	Not Given	В	Brown slightly sandy CLAY		24	Sample was quartered, oven dried at 107.4 °C		
2726333	TP45	D1	1.83	Not Given	D	Light brown slightly gravelly very sandy CLAY with chalk		13	Sample was quartered, oven dried at 108.9 °C		
2728173	TP04	D1	0.65	Not Given	D	Yellowish brown gravelly sandy CLAY		13	Sample was quartered, oven dried at 108.9 °C		
2728174	TP08	B2	1.80	Not Given	В	Brownish grey slightly gravelly sandy CLAY		18	Sample was quartered, oven dried at 106 °C		

Comments:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

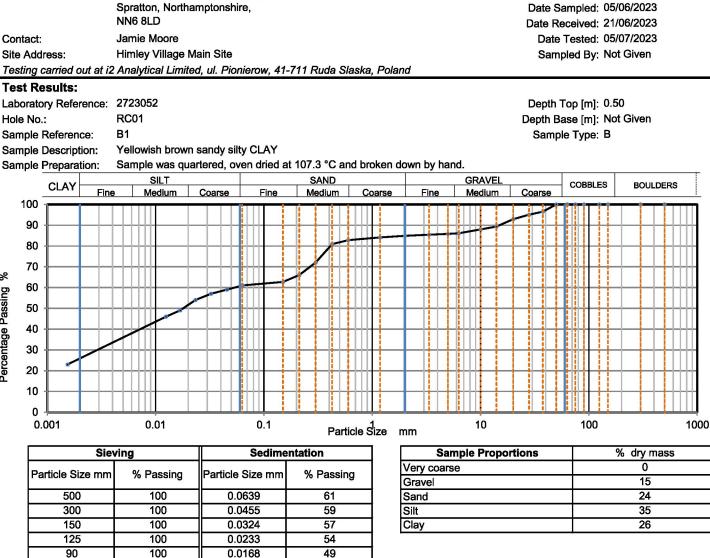
Signed:

%

Percentage Passing

Hydrock Consultants Ltd

2-4 Hawthorne Park, Holdenby Road,


TEST CERTIFICATE

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 05/06/2023 Date Received: 21/06/2023 Date Tested: 05/07/2023 Sampled By: Not Given

46

23

(assumed)

Mg/m3

Grading Analysi	S	
D100	mm	50
D60	mm	0.0564
D30	mm	0.00293
D10	mm	
Uniformity Coefficient		> 37
Curvature Coefficient		

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

100

100

100

97 95

93

89

88

86

86

85

85

84

83

81

72

66

63

61

75 63

50

37.5

28 20

14

10

6.3

5

3.35

2

1.18

0.6

0.425

0.3

0.212

0.15

0.063

0.0125

0.0015

Particle density

2.65

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

Page 1 of 1

Contact:

TEST CERTIFICATE

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 06/06/2023 Date Received: 21/06/2023 Date Tested: 01/07/2023 Sampled By: Not Given

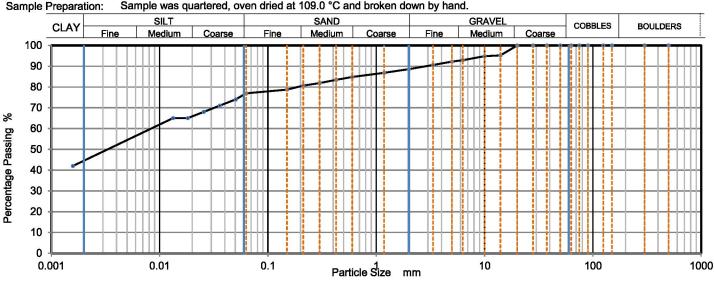
> Depth Top [m]: 1.50 Depth Base [m]: Not Given Sample Type: LB

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:**

Site Address:

i oot i toountoi	
Laboratory Reference:	2723069
Hole No.:	TP01
Sample Reference:	LB1
Sample Description:	Yellowish brow
Sample Proparation:	Sample was a

Hydrock Consultants Ltd


Himley Village Main Site

NN6 8LD

Jamie Moore

2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire,

tion: Yellowish brown slightly gravelly CLAY tion: Sample was quartered, oven dried at 109.0 °C and broken down by hand.

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	77
300	100	0.0505	74
150	100	0.0359	71
125	100	0.0256	68
90	100	0.0182	65
75	100	0.0133	65
63	100	0.0016	42
50	100		
37.5	100		
28	100		
20	100		
14	95		
10	95		
6.3	93		
5	92		
3.35	91	Particle density	(measured)
2	89	2.65	Mg/m3
1.18	87		
0.6	85		
0.425	83		
0.3	82		
0.212	81		
0.15	79		
0.063	77		
Tested in Accorda	nce with BS1377	7:Part 2:1990, claus	es 9.2 and 9.5

Sample Proportions% dry massVery coarse0Gravel11Sand11Silt34Clay44

Grading Analysi	S	
D100	mm	20
D60	mm	0.00819
D30	mm	
D10	mm	
Uniformity Coefficient		> 5.2
Curvature Coefficient		

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Contact:

TEST CERTIFICATE

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 06/06/2023 Date Received: 21/06/2023 Date Tested: 05/07/2023 Sampled By: Not Given

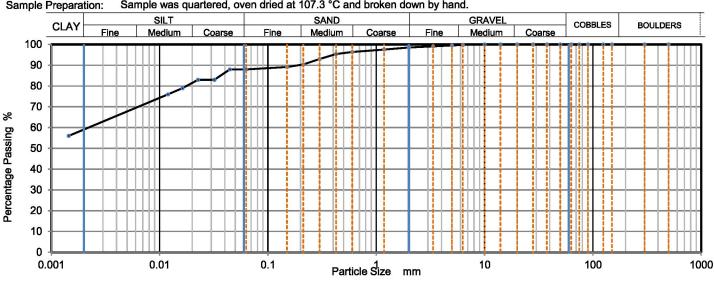
Depth Top [m]: 0.50 Depth Base [m]: Not Given Sample Type: B

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:**

Site Address:

Laboratory Reference:	2723072
Hole No.:	TP06
Sample Reference:	B1
Sample Description:	Brownish
Sample Draparation	Sample

Hydrock Consultants Ltd


Himley Village Main Site

NN6 8LD

Jamie Moore

2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire,

ish grey CLAY Sample was quartered, oven dried at 107.3 °C and broken down by hand.

Siev	ving	Sedimentation						
Particle Size mm	% Passing	Particle Size mm	% Passing					
500	100	0.0629	88					
300	100	0.0445	88					
150	100	0.0320	83					
125	100	0.0226	83					
90	100	0.0162	79					
75	100	0.0119	76					
63	100	0.0014	56					
50	100							
37.5	100							
28	100							
20	100							
14	100							
10	100							
6.3	100							
5	100							
3.35	99	Particle density	(assumed)					
2	99	2.65	Mg/m3					
1.18	98							
0.6	96]						
0.425	95]						
0.3	93							
0.212	90							
0.15	89							
0.063	88							
Tested in Accorda	nce with BS1377	Part 2:1990, claus	es 9.2 and 9.5					

Sample Proportions % dry mass 0 Very coarse 2 Gravel Sand 11 Silt 28 59 Clay

Grading Analysi	S	
D100	mm	10
D60	mm	0.00215
D30	mm	
D10	mm	
Uniformity Coefficient		> 1.5
Curvature Coefficient		

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Contact:

TEST CERTIFICATE

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 12/06/2023 Date Received: 21/06/2023 Date Tested: 05/07/2023 Sampled By: Not Given

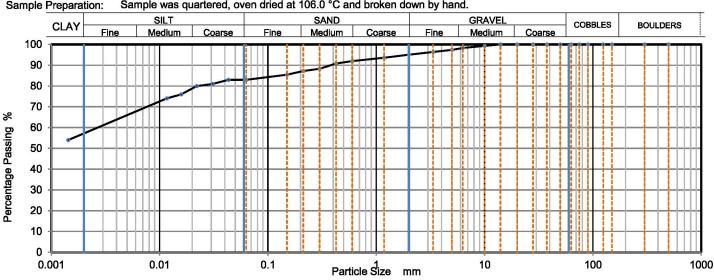
Depth Top [m]: 1.20 Depth Base [m]: Not Given Sample Type: LB

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:**

Site Address:

rootricountor	
Laboratory Reference:	2723082
Hole No.:	TP20
Sample Reference:	LB1
Sample Description:	Yellowish b
Sample Draparation	Sample wa

Hydrock Consultants Ltd


Himley Village Main Site

NN6 8LD

Jamie Moore

2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire,

tion: Yellowish brown sandy gravelly CLAY ation: Sample was quartered, oven dried at 106.0 °C and broken down by hand.

Siev	/ing	Sedimentation						
Particle Size mm	% Passing	Particle Size mm	% Passing					
500	100	0.0611	83					
300	100	0.0432	83					
150	100	0.0308	81					
125	100	0.0220	80					
90	100	0.0158	76					
75	100	0.0116	74					
63	100	0.0014	54					
50	100							
37.5	100							
28	100							
20	100							
14	100							
10	99							
6.3	98							
5	97							
3.35	96	Particle density	(measured)					
2	95	2.72	Mg/m3					
1.18	94							
0.6	92							
0.425	91	1						
0.3	88	1						
0.212	87							
0.15	85							
0.063	83							
Tested in Accorda	nce with BS1377	Part 2:1990, claus	es 9.2 and 9.5					

Sample Proportions% dry massVery coarse0Gravel5Sand12Silt26Clay57

Grading Analysi	S	
D100	mm	14
D60	mm	0.0026
D30	mm	
D10	mm	
Uniformity Coefficient		> 1.8
Curvature Coefficient		

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Contact:

TEST CERTIFICATE

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 12/06/2023 Date Received: 21/06/2023 Date Tested: 04/07/2023 Sampled By: Not Given

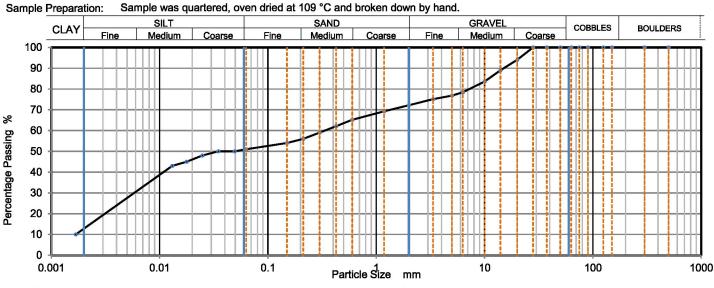
Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:**

Site Address:

Laboratory Reference:	2724105
Hole No.:	TP22
Sample Reference:	В
Sample Description:	Light brown
Sample Preparation:	Sample was

sandy gravelly clayey SILT

Hydrock Consultants Ltd


Himley Village Main Site

NN6 8LD

Jamie Moore

2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire,

> Depth Top [m]: 1.60 Depth Base [m]: Not Given Sample Type: B

Siev	/ing	Sedimentation							
Particle Size mm	% Passing	Particle Size mm	% Passing						
500	100	0.0630	51						
300	100	0.0493	50						
150	100	0.0348	50						
125	100	0.0248	48						
90	100	0.0178	45						
75	100	0.0131	43						
63	100	0.0017	10						
50	100								
37.5	100								
28	100								
20	94								
14	89								
10	84								
6.3	78								
5	77								
3.35	75	Particle density	(assumed)						
2	72	2.65	Mg/m3						
1.18	69								
0.6	65								
0.425	62								
0.3	59								
0.212	56								
0.15	54]							
0.063	51]							
Tested in Accorda	nce with BS1377		es 9.2 and 9.5						

Sample Proportions % dry mass 0 Very coarse 28 Gravel Sand 21 Silt 38 Clay 13

Grading Analysi	S	
D100	mm	28
D60	mm	0.335
D30	mm	0.00582
D10	mm	
Uniformity Coefficient		> 200
Curvature Coefficient		

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404	L																																Env	iron	mer	ntal S	Sci
Cli	ent:			Hydro	ock Consu	ultant	s Ltd																		Clie	ent	Re	fere	enc	:e: 2	2714	41					
Cli	ent Ad	ldress:			awthorne			lenh		ad																	0.000					078	8-2				
•		u oooi			ton, North				<i>y</i> 100	 ,															Т							6/20					
				NN6		amp																										6/20					
C 0	ntact:				Moore																						-					7/20					
	e Addı				y Village	Main	Sito																														
										4 74	4 0				-		لممد									э	am	pied		y: r	NOL	Give	511				
			out at 12	: Anaiy	tical Limi	tea, L	II. PIO	nier	OW, 4	1-71	TR	uda	1 518	ask	a, 1	2018	ana																	—			
		sults:																																			
		ry Refer	rence:																											n]: (
	le No.			TP09																												Give	en				
		Referen		B1								_														Sa	mp	le T	yp	e: E	3						
		Descript			wish brow																																
Sa	mple F	Prepara	tion:	Samp	ole was qu	uarter	ed, o	ven	dried	at 1				bro	kei	n do	own	by	har	nd.																	
		CLAY			SILT	0.			Elec						2		_						VEL	_	0.			C	OBI	BLES	1	BC	DULD	ER	5		
	100		Fine		Medium		arse		Fine	_	Nie	diur	n i		Coa	rse		FI	ne		IV	ledi	um			ars	e				_	_	_				
	90																																				
														Π						П	П	Τ								1				П	Π	T	
	80													tt							T	Ť	t						T					t			
. 0	70										-	-i		⊹		-	╈		+-	H	-	╉	+	+	-	H	H		H		-	_	-	+	++-	+	
%	60													Щ	1				_	Ц	Щ	4		4			4		1							4	
sinç																													Λ								
Percentage Passing	50	1												T							П													T		Ť.	
ge	40													tt	T.					T		Ħ	Ť	1		T	Ħ	1	T			_	-	Ħ	tt	t I	
ente	30									H		-		╈		-	╈			Н	++	╉	+	+			H		H		Η	_		╋		-	
erce.	20																		4			4	_	-	-							_		1		4	
ď.									+				++	╈	Ħ	_	-1-		T	П	Π																
	10							П						Π							П													Π			
	0 0.0	001			0.01				0.1		-	D	arti		1 -		mm	•				10	(i				10	00		_			1)
													aru				-																	_			_
			Sie	ving				S	Sedim	enta	atio	n										₽	rop	ort	ion	S					%	dr		355			_
	Pa	rticle Si	ze mm	%	Passing	P	article	e Siz	ze mm		%	Pas	sing	g				эгу (rse)							\rightarrow					<u>89</u>	_			_
		500			400			000	4						4		-	rave										_					4				_
		500 300			100 100			062		┝		13			4		Sa	and										+					4 8				_
		150			100	_		031		-		12			-			ay										+					o 5				-
		125			100			022		┢		11			+			ay										_					5				
		90			59			016		┢		11																									
		75			49			012		+		10					Γ		1	Gra	adi	na	An	alv	sis												٦
		63			31			001		\mathbf{T}		5					D	100						,			mn	n				1	25				-
		50			24												De										mn	n				9	0.7				-
		37.5	5		24												D										mn	n				6	1.6				
		28			24												D										mn	n				0.0	103	1			
		20			22																	<u> </u>	ien										300				
		14			21																		ient										100				
		10			19																							ent	са	lcul	ate	d in	acco	ord	anc	æ	
		6.3	0		18												wi	th E	BS I	ΞN	IS	01	468	38-2	2:20	018	3										
		5			18	┛╟╴				Ļ			N																								
	-	3.35)		17	_ '			ensity		ssur)																								
		2			17		2	2.65		IVIG	j/m3	2			4																						

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3 **Remarks:**

1.18

0.6

0.425

0.3

0.212

0.15

0.063

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

16

16

15

15

14

14

13 Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Contact:

TEST CERTIFICATE

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: Not Given Date Received: 21/06/2023 Date Tested: 03/07/2023 Sampled By: Not Given

Depth Top [m]: 1.65

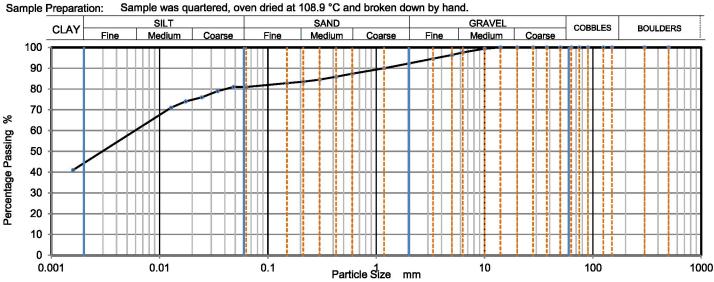
Sample Type: B

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:**

Site Address:

i oot i toouitoi	
Laboratory Reference:	2726323
Hole No.:	TP26
Sample Reference:	B1
Sample Description:	Brownish grey CLAY with fragments of chalk
Sample Preparation:	Sample was guartered, oven dried at 108.9 °C

Hydrock Consultants Ltd


Himley Village Main Site

NN6 8LD

Jamie Moore

2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire,

Depth Base [m]: Not Given

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	81
300	100	0.0481	81
150	100	0.0343	79
125	100	0.0244	76
90	100	0.0174	74
75	100	0.0128	71
63	100	0.0016	41
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	98		
5	96		
3.35	95	Particle density	(assumed)
2	92	2.65	Mg/m3
1.18	90		
0.6	87		
0.425	86	ור	
0.3	85		
0.212	84		
0.15	83]	
0.063	81]	
Tested in Accordar	nce with BS1377	7:Part 2:1990, claus	es 9.2 and 9.5

Sample Proportions	% dry mass
Very coarse	0
Gravel	8
Sand	11
Silt Clay	37
Clay	44

Grading Analysi	S	
D100	mm	14
D60	mm	0.00599
D30	mm	
D10	mm	
Uniformity Coefficient		> 3.8
Curvature Coefficient		

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Contact:

TEST CERTIFICATE

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

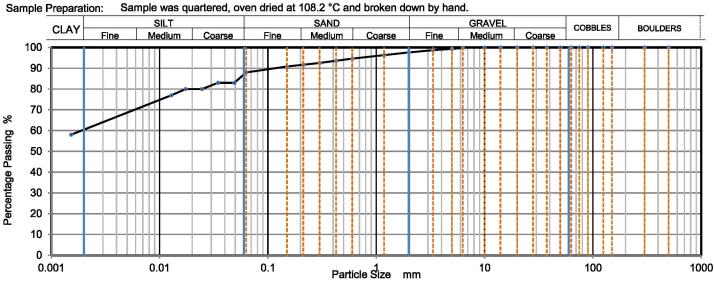
Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: Not Given Date Received: 21/06/2023 Date Tested: 03/07/2023 Sampled By: Not Given

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland **Test Results:**

Site Address:

l'out i toouitoi	
Laboratory Reference:	2726326
Hole No.:	TP30
Sample Reference:	LB1
Sample Description:	Brownish grey CLAY with fragments of chalk
Sample Preparation:	Sample was quartered, oven dried at 108.2 °C

Hydrock Consultants Ltd


Himley Village Main Site

NN6 8LD

Jamie Moore

2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire,

Depth Top [m]: 0.90 Depth Base [m]: Not Given Sample Type: B

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	88
300	100	0.0489	83
150	100	0.0346	83
125	100	0.0246	80
90	100	0.0174	80
75	100	0.0128	77
63	100	0.0015	58
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	99		
3.35	99	Particle density	(measured)
2	98	2.62	Mg/m3
1.18	96		
0.6	95	1	
0.425	94		
0.3	93		
0.212	92		
0.15	91]	
0.063	88]	
Tested in Accordar	nce with BS1377	Part 2:1990, claus	es 9.2 and 9.5

Sample Proportions% dry massVery coarse0Gravel2Sand10Silt28Clay60

Grading Analysi	S	
D100	mm	14
D60	mm	0.00195
D30	mm	
D10	mm	
Uniformity Coefficient		> 1.3
Curvature Coefficient		

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

DETERMINATION OF PARTICLE SIZE DISTRIBUTION Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:	Hydrock Consultants	s Ltd				Client Refe	rence: 271	41
Client Address:	2-4 Hawthorne Park, Spratton, Northampt NN6 8LD					Date San	mber: 23-4 npled: Not eived: 21/0	Given
Contact:	Jamie Moore					Date To	ested: 03/0	7/2023
Site Address:	Himley Village Main	Site				Sample	ed By: Not	Given
Testing carried out at is	2 Analytical Limited, u	I. Pionierow, 41-711	Ruda Slaska,	Pola	nd			
Test Results:								
Laboratory Reference:						Depth To	op [m]: 1.00)
Hole No.:	TP41					-	e [m]: Not	Given
Sample Reference:	B1					Sample	Type: B	
Sample Description:	Yellowish brown silty							
Sample Preparation:	Sample was quarter	ed, oven dried at 10		en do	-			
CLAY	SILT e Medium Coa	arse Fine	SAND Medium Coa	arse	GRAVEL Fine Medium	Coarse	COBBLES	BOULDERS
100				1				
90								
80				-				
70								
8								
<u>B</u> 60								
ន្ត 50 				-				
o 40				_				
бат 30								
8								
E 20								
10				-				
0								
0.001	0.01	0.1	Particle Si	ze	mm 10		100	1000
Sie	ving	Sedimenta	tion		Sample Propo	rtions	%	dry mass

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	78
300	100	0.0479	76
150	100	0.0341	73
125	100	0.0241	73
90	100	0.0172	71
75	100	0.0126	68
63	100	0.0017	16
50	100		
37.5	100		
28	100		
20	99		
14	99		
10	98		
6.3	97		
5	96		
3.35	95	Particle density	(assumed)
2	93	2.65	Mg/m3
1.18	91		
0.6	89		
0.425	87		
0.3	84		
0.212	83		
0.15	81		
0.063	78		
Tested in Accorda	ance with BS1377		es 9.2 and 9.5

Sample Proportions	% dry mass
Very coarse	0
Gravel	7
Sand	15
Silt	57
Clay	21

Grading Analysis	5	
D100	mm	28
D60	mm	0.00928
D30	mm	0.00289
D10	mm	
Uniformity Coefficient		> 5.6
Curvature Coefficient		

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

DETERMINATION OF DRY DENSITY/MOISTURE CONTENT RELATIONSHIP METHOD USING 2.5 KG RAMMER

Tested in Accordance with: BS 1377-4: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:	Hydrock Consultants Ltd	Client Reference: 27141
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number: 23-40788-2
	Spratton, Northamptonshire,	Date Sampled: 06/06/2023
	NN6 8LD	Date Received: 21/06/2023
Contact:	Jamie Moore	Date Tested: 14/07/2023
Site Address:	Himley Village Main Site	Sampled By: Not Given
Testing carried out at i	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:		Depth Top [m]: 1.50
Hole No.:	TP01	Depth Base [m]: Not Given
Sample Reference:	LB1	Sample Type: LB
Sample Description:	Yellowish brown CLAY	
Sample Preparation:	Sample was quartered and broken down by hand. Material used w	vas natural.
0.40		
2.10		0 % Air Voids
·		— — — 5 % Air Voids
i i		10 % Air Voids
2.05		
t i		
ლ 2.00 <mark>-</mark>		
E 2.00		
∫6 .		
≩		
2.00	X	
ĕ į		
E .		
1.90		
1.90		
ŀ		
i i		
1.85		
4.00		
1.80 	6 8 10	12 14 16 18
т	Moisture Content	
	Molsture Content	, /0

Compaction Point No.	1	2	3	4	5
Moisture Content %	6.5	8.4	10	12	15
Dry Density Mg/m ²	1.89	1.94	2.01	1.95	1.85

Mould Type		CBR
Samples Used		Single sample tested
Dry Mass Retained on 37.5 mm Sieve	%	0
Dry Mass Retained on 20.0 mm Sieve	%	0
Particle Density - Measured using gas jar	Mg/m³	2.65
As received Moisture Content	%	10
Maximum Dry Density	Mg/m³	2.01
Optimum Moisture Content	%	11

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.4 using 2.5kg [light] Rammer

Remarks:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

DETERMINATION OF DRY DENSITY/MOISTURE CONTENT RELATIONSHIP METHOD USING 2.5 KG RAMMER

Tested in Accordance with: BS 1377-4: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Client Address: Contact: Site Address:	Hydrock Consultants Ltd 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Jamie Moore Himley Village Main Site	Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 12/06/2023 Date Received: 21/06/2023 Date Tested: 14/07/2023 Sampled By: Not Given
Testing carried out at Test Results:	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Laboratory Reference:	2723082	Depth Top [m]: 1.20
Hole No.:	TP20	Depth Base [m]: Not Given
Sample Reference:	LB1	Sample Type: LB
Sample Description:	Yellowish brown slightly gravelly CLAY	
Sample Preparation:	Sample was quartered and broken down by hand. Material used was na	atural.
1.95		0 % Air Voids
l l		— — – 5 % Air Voids
		10 % Air Voids
1.90		
· • •		
1.85		
бщ 1.80 Mg 1.80 Сп 1.75		
≥ 1.80		
i nsit		
<u>></u> 1.75		
1.70		
1.70		
l l		
1.65	◆ 7	
1.05		
1.60		
6	9 12 15	18 21 24
	Moisture Content, %	

Compaction Point No.	1	2	3	4	5
Moisture Content %	9.4	12	14	16	19
Dry Density Mg/m ³	1.66	1.74	1.87	1.81	1.74

Mould Type		CBR
Samples Used		Single sample tested
Dry Mass Retained on 37.5 mm Sieve	%	0
Dry Mass Retained on 20.0 mm Sieve	%	0
Particle Density - Measured using gas jar	Mg/m³	2.72
As received Moisture Content	%	16
Maximum Dry Density	Mg/m³	1.87
Optimum Moisture Content	%	15

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.4 using 2.5kg [light] Rammer

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

DETERMINATION OF DRY DENSITY/MOISTURE CONTENT RELATIONSHIP METHOD USING 2.5 KG RAMMER

Tested in Accordance with: BS 1377-4: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Client A	Address:	Hydrock Consultants Ltd 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD	Client Reference Job Number Date Sampled Date Received	: 23-40788-2 : Not Given
Contact	t:	Jamie Moore	Date Tested	: 14/07/2023
Site Ad	dress:	Himley Village Main Site	Sampled By	Not Given
Testing	carried out at i	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, I	Poland	
	lesults:			
	tory Reference:		Depth Top [m]	
Hole No		TP30	Depth Base [m]	
	Reference:	LB1	Sample Type	; В
	Description:	Brownish grey CLAY with fragments of chalk	fel	
Sample	Preparation:	Sample was quartered and broken down by hand. Mate	nai used was natural.	
	1.75			
				— 0 % Air Voids
	·			– 5 % Air Voids
	·	N N		10 % Air Voids
	1.70			
	1.65			
y Density, N	1.60			
	1.55			
	1.50		18 22	26

Moisture Content, %

Compaction Point No.	1	2	3	4	5
Moisture Content %	14	16	19	20	23
Dry Density Mg/m ³	1.55	1.63	1.69	1.65	1.62

Mould Type		CBR
Samples Used		Single sample tested
Dry Mass Retained on 37.5 mm Sieve	%	0
Dry Mass Retained on 20.0 mm Sieve	%	16
Particle Density - Measured using gas jar	Mg/m³	2.62
As received Moisture Content	%	20
Maximum Dry Density	Mg/m³	1.69
Optimum Moisture Content	%	19

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.4 using 2.5kg [light] Rammer

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd 26

Hydrock Consultants Ltd

Moisture content

2-4 Hawthorne Park, Holdenby Road,

Client:

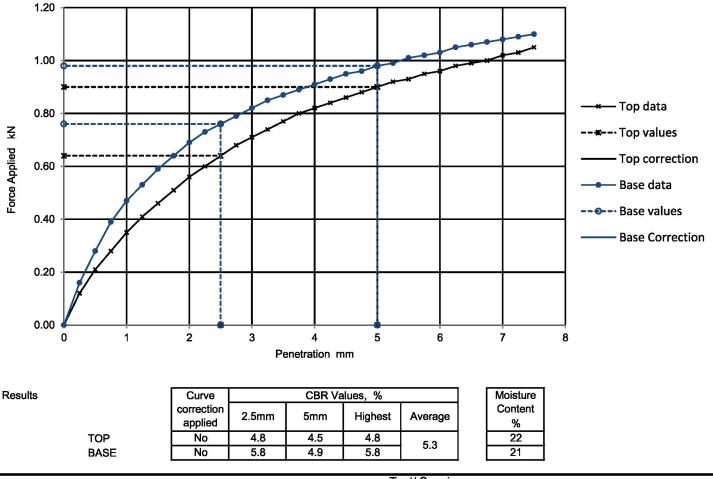
TEST CERTIFICATE

RATIO (CBR)

i2 Analytical Ltd Unit 8 Harrowden Road **DETERMINATION OF THE CALIFORNIA BEARING** Brackmills Industrial Estate Northampton NN4 7EB Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client Reference: 27141

Job Number: 23-40788-2



	2 4 Hawmonie Faik, Holdenby	rtodu,				_
	Spratton, Northamptonshire,			Date Sampled	07/06/2023	3
	NN6 8LD			Date Received	21/06/2023	3
Contact:	Jamie Moore			Date Tested	15/07/2023	3
Site Address:	Himley Village Main Site			Sampled By	Not Given	
Testing carried out at it	2 Analytical Limited, ul. Pionierov	w, 41-711	Ruda Slaska, Poland			
Test Results:						
Laboratory Reference:	2723071			Depth Top [m]	1.00	
Hole No.:	TP04			Depth Base [m]	Not Given	
Sample Reference:	B1			Sample Type	в	
Sample Description:	Yellowish brown to grey slightly	gravelly	slightly sandy CLAY			
Specimen Preparation	n:					
Condition	Remoulded			Soaking details	Not soaked	4
Details				Period of soaking	NOL SOURCE	days
Details	Recompacted with specified sta	andard ef	fort using 2.5kg rammer	Time to surface		days
				Amount of swell recorded		mm
Material retained on 20	mm sieve removed	9	%	Dry density after soaking		Mg/m3
Initial Specimen details	Bulk density	2.02	Mg/m3	Surcharge applied	8	kg
	Dry density	1.66	Mg/m3		4.8	kPa

Force v Penetration Plots

%

22

Remarks:

Test/ Specimen specific remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

Signed:

Hydrock Consultants Ltd

2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire,

Client:

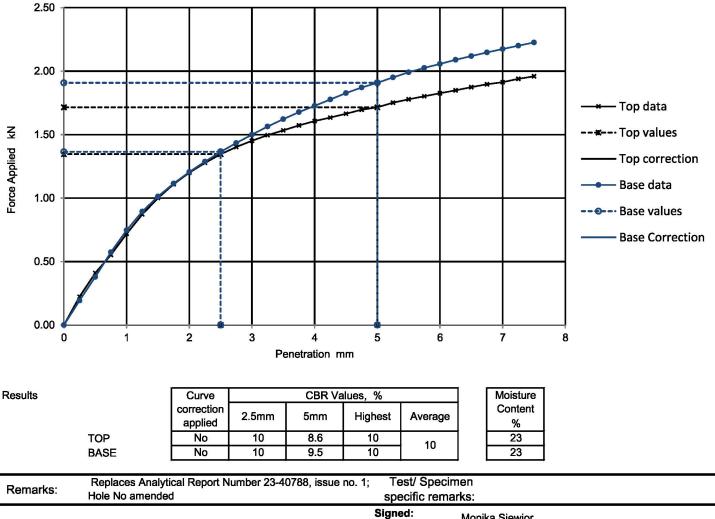
TEST CERTIFICATE DETERMINATION OF THE CALIFORNIA BEARING

RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141


Job Number: 23-40788-2

Date Sampled: 13/06/2023

	-F,			Euro europieur		
	NN6 8LD			Date Received:	21/06/2023	
Contact:	Jamie Moore			Date Tested:	15/07/2023	
Site Address:	Himley Village Main Site			Sampled By:	Not Given	
Testing carried out at i2	Analytical Limited, ul. Pionierow,	41-711	Ruda Slaska, Poland			
Test Results:						
Laboratory Reference:	2723080			Depth Top [m]:	2.30	
Hole No.:	TP17 and TP18			Depth Base [m]:	2.85	
Sample Reference:	B1+B2			Sample Type:	В	
Sample Description:	Greyish brown CLAY					
	-					
Specimen Preparation	1:					
Condition	Remoulded			Soaking details	Not soaked	
Details	Recompacted with specified star	ndard eff	ort using 2.5kg rammer	Period of soaking		days
			0 0	Time to surface		days
M. (•	0/	Amount of swell recorded		mm
Material retained on 20	mm sieve removed	0	%	Dry density after soaking		Mg/m3
Initial Specimen details	Bulk density	1.96	Mg/m3	Surcharge applied	8	kg
initial opeoimen detailo	Dry density	1.58	Mg/m3	Caroliarge applied	4.9	kPa
	Moisture content	24	%			

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Hydrock Consultants Ltd

Moisture content

2-4 Hawthorne Park, Holdenby Road,

Client:

TEST CERTIFICATE

RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

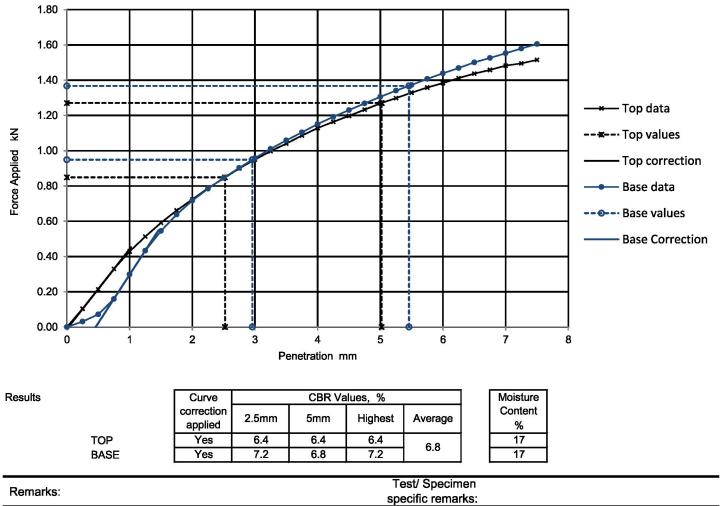
i2 Analytical Ltd Unit 8 Harrowden Road **DETERMINATION OF THE CALIFORNIA BEARING** Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141

Job Number: 23-40788-2

days days mm Mg/m3

kg


kPa

		ing i todad,					
	Spratton, Northamptonshire,			Date Sampleo	1: 12/06/2023		
	NN6 8LD			Date Received	1: 21/06/2023		
Contact:	Jamie Moore			Date Tested: 14/07/20			
Site Address:	Himley Village Main Site			Sampled B	/: Not Given		
Testing carried out at it	2 Analytical Limited, ul. Pionie	row, 41-711	Ruda Slaska, Poland				
Test Results:							
Laboratory Reference:	2723082	Depth Top [m]: 1.20				
Hole No.:	TP20		Depth Base [m]: Not Given				
Sample Reference:	LB1		Sample Type	e: LB			
Sample Description:	Yellowish brown sandy grave	elly CLAY					
Specimen Preparation	n:						
Condition	Remoulded			Soaking details	Not soaked		
Details	Recompacted with specified	standard of	Period of soaking	c			
	Necompacted with specified	stanuaru en	Time to surface	c			
		500		Amount of swell recorded	r		
Material retained on 20mm sieve removed 0 %			%	Dry density after soaking	Ν		
Initial Specimen details	Bulk density	2.09	Mg/m3	Surcharge applied	8 4		
anna a farainn a	Dry density	1.76	Mg/m3		4.9		

Force v Penetration Plots

%

19

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

Hydrock Consultants Ltd

Moisture content

2-4 Hawthorne Park, Holdenby Road,

Client:

TEST CERTIFICATE **DETERMINATION OF THE CALIFORNIA BEARING**

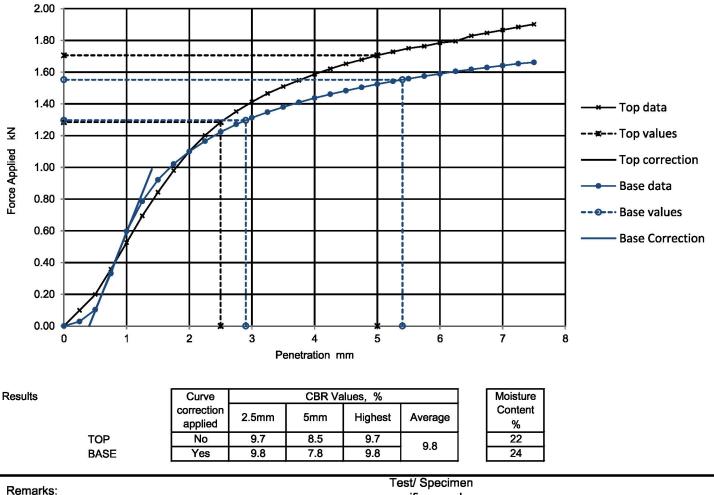
RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141

Job Number: 23-40788-2



	Spratton, Northamptonshire, NN6 8LD	•		Date Sampled:			
Contact:	Jamie Moore			Date Received: Date Tested:			
Site Address:	Himley Village Main Site			Sampled By:			
Testing carried out at it	2 Analytical Limited, ul. Pionier	ow, 41-711	Ruda Slaska, Poland		a marana portanterentes		
Test Results:							
Laboratory Reference:	2726326			Depth Top [m]:	0.90		
Hole No.:	TP30			Depth Base [m]:	Not Given		
Sample Reference:	LB1			Sample Type: B			
Sample Description:	Brownish grey CLAY with frag	gments of c	halk				
Specimen Preparation	n:						
Condition	Remoulded			Soaking details	Not soaked		
Details	Recompacted with specified	standard ef	fort using 2.5kg rammer	Period of soaking Time to surface Amount of swell recorded		days days mm	
Material retained on 20	mm sieve removed	0	%	Dry density after soaking		Mg/m3	
Initial Specimen details	Bulk density Dry density	1.97 1.60	Mg/m3 Mg/m3	Surcharge applied	8 4.8	kg kPa	

Force v Penetration Plots

%

23

specific remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

Page 1 of 1

Signed:

Hydrock Consultants Ltd

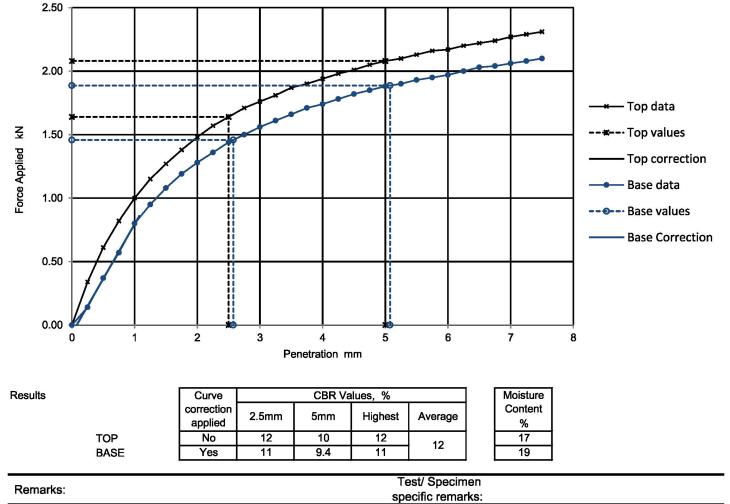
Client:

TEST CERTIFICATE

RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road **DETERMINATION OF THE CALIFORNIA BEARING** Brackmills Industrial Estate Northampton NN4 7EB


Client Reference: 27141

		Lab Newsbarr 00 40700 0
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number: 23-40788-2
	Spratton, Northamptonshire,	Date Sampled: Not Given
	NN6 8LD	Date Received: 21/06/2023
Contact:	Jamie Moore	Date Tested: 15/07/2023
Site Address:	Himley Village Main Site	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	2726329	Depth Top [m]: 1.00
Hole No.:	TP40	Depth Base [m]: Not Given
Sample Reference:	B1	Sample Type: B
Sample Description:	Light brown CLAY	
Specimen Preparation	n:	

Condition	Remoulded			Soaking details	Not soaked	I
Details	Recompacted with specified star	ndard ef	fort using 2.5kg rammer	Period of soaking Time to surface Amount of swell recorded		days days mm
Material retained on 20	mm sieve removed	0	%	Dry density after soaking		Mg/m3
Initial Specimen details	Bulk density Dry density Moisture content	2.06 1.75 18	Mg/m3 Mg/m3 %	Surcharge applied	8 4.8	kg kPa

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

Page 1 of 1

Signed:

DETERMINATION OF UNDRAINED SHEAR STRENGTH AT EACH COMPACTION POINT **USING HAND VANE APPARATUS**

Tested in Accordance with: Guideline for Hand Shear Vane Test*

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:	Hydrock Consultants Ltd	Client Reference: 2714
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number: 23-4
	Spratton, Northamptonshire,	Date Sampled: 06/0
	NN6 8LD	Date Received: 21/0
Contact:	Jamie Moore	Date Tested: 14/0
Site Address:	Himley Village Main Site	Sampled By: Not
Testing carried out	at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Besults		

Test Results:

Laboratory Reference:	2723069
Hole No.:	TP01
Sample Reference:	LB1
Soil Description:	Yellowish brown slightly gravelly CLAY

41 40788-2 06/2023 06/2023 07/2023 Given

Depth Top [m]: 1.50 Depth Base [m]: Not Given Sample Type: LB

Moisture Content			Shear Van	ne Reading		
%	1 kPa	2 kPa	3 kPa	4 kPa	Average kPa	Tv kPa
6.5	UTP	UTP	UTP	UTP	UTP	
8.4	UTP	UTP	UTP	UTP	UTP	
10	UTP	UTP	UTP	UTP	UTP	
12	24	26	22	24	24	
15	8	12	6	8	9	

Note: UTP - Unable To Penetrate; * - Guideline for Hand Held Shear Vane Test, New Zealand Geotechnical Society INC, August 2001

Compacted by: Light Compaction 2.5kg (BS1377:Part 4:1990). **Remarks:**

Signed:

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

DETERMINATION OF UNDRAINED SHEAR STRENGTH AT EACH COMPACTION POINT **USING HAND VANE APPARATUS**

Tested in Accordance with: Guideline for Hand Shear Vane Test*

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:	Hydrock Consultants Ltd	Client Reference: 27141
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number: 23-40788-2
	Spratton, Northamptonshire,	Date Sampled: 12/06/2023
	NN6 8LD	Date Received: 21/06/2023
Contact:	Jamie Moore	Date Tested: 14/07/2023
Site Address:	Himley Village Main Site	Sampled By: Not Given
Testing carried out	at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Results:		

st Results:

Laboratory Reference:	2723082
Hole No.:	TP20
Sample Reference:	LB1
Soil Description:	Yellowish brown gravelly sandy CLAY

Depth Top [m]: 1.20 Depth Base [m]: Not Given Sample Type: LB

Moisture Content													
%	1	37-31	200	200		120000							
9.4	UTP	UTP	UTP	UTP	UTP								
12	UTP	UTP	UTP	UTP	UTP								
14	UTP	UTP	UTP	UTP	UTP								
16	UTP	UTP	UTP	UTP	UTP								
19	54	52	46	54	52								

Note: UTP - Unable To Penetrate; * - Guideline for Hand Held Shear Vane Test, New Zealand Geotechnical Society INC, August 2001

Compacted by: Light Compaction 2.5kg (BS1377:Part 4:1990). **Remarks:**

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

Date Reported: 21/07/2023

DETERMINATION OF UNDRAINED SHEAR STRENGTH AT EACH COMPACTION POINT **USING HAND VANE APPARATUS**

Tested in Accordance with: Guideline for Hand Shear Vane Test*

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:	Hydrock Consultants Ltd	Client Reference: 27141
Client Address:	2-4 Hawthorne Park, Holdenby Road,	Job Number: 23-40788-2
	Spratton, Northamptonshire,	Date Sampled: 12/06/2023
	NN6 8LD	Date Received: 21/06/2023
Contact:	Jamie Moore	Date Tested: 14/07/2023
Site Address:	Himley Village Main Site	Sampled By: Not Given
Testing carried out	at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Toet Poculte:		

Test Results:

Laboratory Reference:	2726326
Hole No.:	TP30
Sample Reference:	LB1
Soil Description:	Brownish grey CLAY with fragments of chalk

Depth Top [m]: 0.90 Depth Base [m]: Not Given

Sample Type: B

Moisture Content	Shear Vane Reading 1 2 3 4 Average Tv kPa kPa kPa kPa kPa UTP UTP UTP UTP UTP UTP UTP UTP UTP UTP										
%	1	257-121	100	222		100,000					
14	UTP	UTP	UTP	UTP	UTP						
16	UTP	UTP	UTP	UTP	UTP						
19	UTP	UTP	UTP	UTP	UTP						
20	UTP	UTP	UTP	UTP	UTP						
23	70	52	46	54	56						

Note: UTP - Unable To Penetrate; * - Guideline for Hand Held Shear Vane Test, New Zealand Geotechnical Society INC, August 2001

Compacted by: Light Compaction 2.5kg (BS1377:Part 4:1990). **Remarks:**

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Monika Siewior **Reporting Specialist** for and on behalf of i2 Analytical Ltd

Page 1 of 1

DETERMINATION OF POINT LOAD STRENGTH

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 15/06/2023 Date Received: 21/06/2023 Date Tested: 03/07/2023 Sampled By: Not Given

Client Address: 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD Contact: Jamie Moore Site Address: Himley Village Main Site

Hydrock Consultants Ltd

ac-M

Inhala

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

TESTING

4041 Client:

		Sample						ence		Type ISRM		Dimensions					a B		t Load th Index
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	A Description (including water content if measured) و نوب نوب نوب نوب نوب نوب نوب نوب نوب نو	Type (D, A, I, B)	i ype (D, A, I, B) Direction (L, P or U)	Failure Valid (Y/N)	Valid Lne	w	Dps mm	Dps' mm	Force P kN	 Equivalent diameter, De 	ls MPa	ls(50) MPa		
2723054	RC01	C1	2.08	Not Given	с	Yellowish brown LIMESTONE	WC = 4.1%	1	А	U	YES	-	89.0	30.0	25.0	2.2	53.2	0.76	0.78
2723055	RC01	C2	2.30	Not Given	с	Yellowish brown LIMESTONE	WC = 3.2%	1	А	U	YES	-	90.7	43.0	35.0	8.9	63.6	2.20	2.45
2723056	RC01	C3	2.58	Not Given	с	Yellowish brown LIMESTONE	WC = 1.6%	1	I	U	YES	44.4	70.7	58.0	51.0	7.3	67.7	1.58	1.81
2723057	RC01	C4	2.92	Not Given	С	Yellowish brown LIMESTONE	WC = 2.5%	1	I	U	YES	48.5	88.9	66.0	65.0	1.1	85.8	0.14	0.18
2723058	RC01	C5	3.21	Not Given	С	Light brown LIMESTONE	WC = 1.6%	1	A	U	YES	·	88.9	60.0	40.0	11.6	67.3	2.55	2.92
2723059	RC01	C6	3.30	Not Given	с	Light brown LIMESTONE	WC = 2.4%	1	D	U	YES	56.8	89.5	90.0	77.0	6.9	83.0	0.99	1.25
2723060	RC01	C7	3.71	Not Given	С	Light grey LIMESTONE	WC = 4.6%	1	D	U	YES	85.9	89.0	90.0	83.0	9.0	85.9	1.21	1.55
2723061	RC01	C8	3.98	Not Given	с	Light grey LIMESTONE	WC = 1.3%	1	D	U	YES	78.8	89.0	90.0	83.0	13.6	85.9	1.84	2.35
2723062	RC01	C9	4.10	Not Given	с	Light grey LIMESTONE	WC = 1.1%	1	D	U	YES	73.5	89.1	90.0	88.0	11.0	88.6	1.40	1.81
2723063	RC01	C10	8.35	Not Given	С	Light grey LIMESTONE	WC = 0.5%	1	D	U	YES	64.9	89.1	90.0	85.0	4.3	87.0	0.56	0.72
Dimensions: Dps - Distance be	Note: # non accredited; Test Type: D - Diametral, A - Axial, I - Imegular Lump, B - Block; Direction: L - parallel to planes of weakness, P - perpendicular to planes of weakness, U - unknown or random; Jimenatons: Dpa - Distance between platens (platen separation), Dpa' - at failure (see ISRM note 6), Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (De/SO)0.45 for all tests						E	Equipme	ent No.:	i2 4	341	Ca	alibratio	n Date:	14/0	3/2023	- 14/03/	/2024	

Comments:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed:

for and on behalf of i2 Analytical Ltd

Date Reported: 21/07/2023

Monika Siewior Reporting Specialist

DETERMINATION OF POINT LOAD STRENGTH

Tested in Accordance with: ISRM: 2007, pages 125-132

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 15/06/2023 Date Received: 21/06/2023 Date Tested: 03/07/2023 Sampled By: Not Given

 4041

 Client:
 Hydrock Consultants Ltd

 Client Address:
 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD

 Contact:
 Jamie Moore

 Site Address:
 Himley Village Main Site

ac-M

Inhala

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

TESTING

			Sample	•				ence		Type ISRM			Dime	nsions			nt De	Point Strengt	
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # Description (including water content if measured) E	Specimen Reference	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne mm	w	Dps mm	Dps' mm	Force P kN	 Equivalent diameter, De 	ls MPa	ls(50) MPa
2723064	RC01	C11	8.60	Not Given	с	Light grey LIMESTONE	WC = 0.3%	1	D	U	YES	81.5	89.0	61.0	56.0	11.0	70.6	2.21	2.58
2723065	RC01	C12	8.60	Not Given	с	Light grey LIMESTONE	WC = 0.9%	1	D	U	YES	81.9	88.8	90.0	85.0	9.4	86.9	1.25	1.60
2723066	RC01	C13	9.00	Not Given	С	Light grey LIMESTONE	WC = 1.0%	1	D	U	YES	90.0	89.0	90.0	79.0	14.4	83.9	2.05	2.58
2723067	RC01	C14	9.22	Not Given	С	Light grey LIMESTONE	WC = 2.7%	1	D	U	YES	177.3	89.0	90.0	72.0	7.5	80.0	1.17	1.45
Dimensions: Dps - Distance b	ote: # non accredited; Test Type: D - Diametral, A - Axial, I - Irregular Lump, B - Block; Direction: L - parallel to planes of weakness, P - perpendicular to planes of weakness, U - unknown or random; Imensions: Dpa - Distance between platena (platen separation), Dps' - at failure (see ISRM note 6), Lne - Length from platens to nearest free and W - Width of shortset dimension perpendicular to load, P; etailed legend for test and dimensions; based on ISRM, is shown above; Size factor, F = (DwG0)045 for all tests							i2 4	341	Ca	alibratio	n Date:	14/0	3/2023	- 14/03/	2024			

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

DETERMINATION OF UNIAXIAL COMPRESSIVE STRENGTH OF ROCK MATERIALS

Tested in Accordance with: ISRM, 2007, p153, part 1

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 27141 Job Number: 23-40788-2 Date Sampled: 15/06/2023 Date Received: 21/06/2023 Date Tested: 03/07/2023 Sampled By: Not Given

 Client:
 Hydrock Consultants Ltd

 Client Address:
 2-4 Hawthorne Park, Holdenby Road, Spratton, Northamptonshire, NN6 8LD

 Contact:
 Jamie Moore

 Site Address:
 Himley Village Main Site

 Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

TESTING

4041

	Hole No.	Sample						Specimen Dimensions (2)					Uniaxia	I Compre	ssion (3)		
Laboratory Reference		Reference	Depth Top	Depth Base	Туре	Description	Remarks	Diameter	Length	H/D	Orientation of sample	Bulk density (2)	Water Content (1)	Condition	Stress Rate	Mode of failure	UCS
			m	m				mm	mm			Mg/m3	%		Mpa/s		Mpa
2723068	RC01	C15	9.72	Not Given	С	Grey to light grey LIMESTONE		88.4	230.0	2.6	Vertical	2.44	1.8	as received	0.0814	S + AC	25.8
1 - ISRM	1 - ISRM p87 test 1, water content at 105 ± 3 °C - not accredited, specimen as tested for UCS, 2 - ISRM p86 clause (vii), Caliper method used for determination of bulk volume and derivation of bulk density, 3 - ISRM p153 part 1, determination of Uniaxial Compressive Strength (UCS) of Rock																

Note: Materials, above notes apply unless annotated otherwise in the remarks. Compaction machine: VJ Tech AUTOCON - VJT 51-3011; Mode of failure legend: S - Single shear, MS - multiple shear, AC - Axial cleavage, F - Fragmented

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Geotechnical plots

Himley Village, Bicester | Cala Homes (Cotswolds) Limited and Legal & General Homes | Ground Investigation Report | 27141-HYD-XX-XX-RP-GE-1002-S0-P01 | 21 July 2023

a Homes		Lload Damas't				
oject nley Village, Bicester		Head Deposits				
o number		-				
l 41						
	aggressive	around	After BRE Special Digest 1, 2005			
		<u>J </u>				
Soil data						
			Water			
	(Adjusted) water	Total potential	soluble			
	soluble sulfate	sulfate	magnesium			
	(mg/l)	(%)	(mg/l)			
Number of tests	5	5	0			
No. tests in 20% data set	1	1				
No. tests with suspected pyrite		0				
Maximum value	6.6	0.2				
Mean of highest two values	6	0				
Mean of highest 20%						
Characteristic Value	6	0				
	[no pyrite]	[pyrite suspected]				
DS Class	DS-1	DS-1				
If pyrite suspected, D		DS-1 Adopted DS Class	=			
			= DS-1			
Is pyrite assumed to	be present? No	Adopted DS Class				
Is pyrite assumed to	be present? No	Adopted DS Class				
Is pyrite assumed to	be present? No (Adjusted) soluble sulfate	Adopted DS Class Soluble magnesium				
Is pyrite assumed to	be present? No	Adopted DS Class	= DS-1			
Is pyrite assumed to	be present? No (Adjusted) soluble sulfate (mg/l)	Adopted DS Class Soluble magnesium	<u>= DS-1</u>			
Is pyrite assumed to Water data Characteristic Value (Maximum Level)	be present? No (Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	<u>= DS-1</u>			
Is pyrite assumed to Water data Characteristic Value (Maximum Level) DS Class	be present? No (Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	<u>= DS-1</u>			
Is pyrite assumed to <u>Water data</u> Characteristic Value (Maximum Level)	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0	<u>= DS-1</u>			
Is pyrite assumed to Water data Characteristic Value (Maximum Level) DS Class pH data	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0 Water	<u>= DS-1</u>			
Is pyrite assumed to <u>Water data</u> Characteristic Value (Maximum Level) <u>DS Class</u> <u>pH data</u> Number of tests	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0	= <u>DS-1</u>			
Is pyrite assumed to <u>Water data</u> Characteristic Value (Maximum Level) <u>DS Class</u> <u>pH data</u> Number of tests No. tests in 20% data set	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 5 1	Soluble magnesium (mg/l) 0 Water	= <u>DS-1</u>			
Is pyrite assumed to <u>Water data</u> Characteristic Value (Maximum Level) <u>DS Class</u> <u>pH data</u> Number of tests No. tests in 20% data set Lowest pH	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 7.9	Soluble magnesium (mg/l) 0 Water	<u>= DS-1</u>			
Is pyrite assumed to <u>Water data</u> Characteristic Value (Maximum Level) <u>DS Class</u> <u>pH data</u> Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 7.9 7.9 7.9	Soluble magnesium (mg/l) 0 Water	<u>= DS-1</u>			
Is pyrite assumed to <u>Water data</u> Characteristic Value (Maximum Level) <u>DS Class</u> <u>pH data</u> Number of tests No. tests in 20% data set Lowest pH	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 7.9	Soluble magnesium (mg/l) 0 Water	<u>= DS-1</u>			
Is pyrite assumed to <u>Water data</u> Characteristic Value (Maximum Level) <u>DS Class</u> <u>pH data</u> Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 7.9 7.9 7.9	Soluble magnesium (mg/l) 0 Water	<u>= DS-1</u>			
Is pyrite assumed to <u>Water data</u> <u>Characteristic Value</u> (Maximum Level) <u>DS Class</u> <u>pH data</u> Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% <u>Characteristic value</u>	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 7.9 7.9 7.9 7.9 7.9	Soluble magnesium (mg/l) 0 Water	<u>= DS-1</u>			
Is pyrite assumed to <u>Water data</u> <u>Characteristic Value</u> (Maximum Level) <u>DS Class</u> <u>pH data</u> Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 5 1 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	Soluble magnesium (mg/l) 0 Water	<u>s = DS-1</u>			

Client						
Cala Homes						
Project		Made Ground				
Himley Village, Bicester						
Job number						
27141						
Concrete in	aggressive	ground	After BRE Special Digest 1, 2005			
		•				
Sail data						
Soil data						
			Water			
	(Adjusted) water	Total potential	soluble			
	soluble sulfate	sulfate	magnesium			
	(mg/l)	(%)	(mg/l)			
Number of tests	1	0	0			
No. tests in 20% data set	0	-	-			
No. tests with suspected pyrite	Ŭ	0				
Maximum value	76	0				
	7.6					
Mean of highest two values	8					
Mean of highest 20%						
Characteristic Value	7.6					
	[no pyrite]	[pyrite suspected]				
DS Class	DS-1					
			=			
If pyrite suspected, D	S Class limited to		_			
ii pyrite suspected, E			=			
Is pyrite assumed to	be present? No	Adopted DS Class	<u>= DS-1</u>			
Water data						
Water data						
	(Adjusted) soluble	Soluble				
	sulfate	magnesium				
	(mg/l)	(mg/l)				
Characteristic Value	0	0				
	U	U				
(Maximum Level)						
DS Class						
pH data						
	Soil	Water				
Number of tests	1	0				
No. tests in 20% data set	0					
Lowest pH	8.7					
Mean of lowest 20%						
Characteristic value	8.7					
Design value	8.7					
	0.7					
Number of soil pH results less than 5.5	0					
DS Class desig	in value		ACEC Class design value			
			Natural ground			
Record on higher of a	oil and water data	DS-1				
Based on higher of s	on and water data					
-		* increase to AC	C-2z in flowing water (pure or with >15mg/l carbon dioxide)			

		Ī				
Client						
Cala Homes						
Project		Cornbrash Formation				
Himley Village, Bicester		_				
Job number						
27141						
Concrete in	andressive	around	After BRE Special Digest 1, 2005			
	aggiessive	ground	Anel BRE Special Digest 1, 2005			
Soil data						
			Water			
	(Adjusted) water	Total potential	soluble			
	soluble sulfate	sulfate	magnesium			
	(mg/l)	(%)	(mg/l)			
Number of tests	10	٥́	0			
No. tests in 20% data set	2	-	-			
No. tests with suspected pyrite	_	0				
Maximum value	44	Ū				
Mean of highest two values	29					
Mean of highest 20%	29					
Characteristic Value	29 29					
Characteristic value	29					
	For a second all	Furrent a success a stard				
	[no pyrite]	[pyrite suspected]	_			
DS Class	DS-1		=			
			_			
If pyrite suspected, D	S Class limited to					
Is pyrite assumed to	be present? No	Adopted DS Class	= DS-1			
Water data						
water data						
	(Adjusted) soluble	Soluble				
	sulfate	magnesium				
	(mg/l)	(mg/l)				
Characteristic Value	0	0				
(Maximum Level)						
DS Class						
pH data						
	Soil	Water				
Number of tests	9	0				
No. tests in 20% data set	2					
Lowest pH	8.2					
Mean of lowest 20%	8.3					
Characteristic value	8.3					
	0.0					
	0.2					
Design value	8.3					
Number of soil pH results less than 5.5	0					
	U					
DS Class desig	n value		ACEC Class design value			
			Natural ground			
Based on higher of se	oil and water data	DS-1	Mobile groundwater AC-1 *			
	and mater data		C-2z in flowing water (pure or with >15mg/l carbon dioxide)			
		increase to AC	-22 m nowing water (pure or with > 10mg/1 carbon dloxide)			

Client		I	
Cala Homes			
Project		Forest Marble Formati	on
Himley Village, Bicester]	
Job number]	
27141			
Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
		J	
Soil data			
			Water
	(Adjusted) water	Total potential	soluble
	soluble sulfate	sulfate	magnesium
	(mg/l)	(%)	(mg/l)
Number of tests	(mg/i) 3	(%)	(mg/) 0
No. tests in 20% data set	3	3	v
	I	1	
No. tests with suspected pyrite	A7 7	•	
Maximum value	47.7	0.4	
Mean of highest two values	42	0	
Mean of highest 20%		_ ·	
Characteristic Value	47.7	0.4	
	[no pyrite]	[pyrite suspected]	
DS Class	DS-1	DS-2	-
			=
If pyrite suspected, D	S Class limited to	DS-2	=
	. -		
Is pyrite assumed to	be present? No	Adopted DS Class =	= <u>DS-1</u>
		_	
Water data			
	(Adjusted) selection	Colubia	
	(Adjusted) soluble	Soluble	
	sulfate	magnesium	
	(mg/l)	(mg/l)	
Characteristic Value (Maximum Level)	0	0	
DS Class			
pH data			
	Soil	Water	
Number of tests	3	0	
No. tests in 20% data set	1		
Lowest pH	7.6		
Mean of lowest 20%	7.6		
Characteristic value	7.6		
Design value	7.6		
Number of soil pH results less than 5.5	0		
DS Class desig	in value		ACEC Class design value
			Natural ground
Based on higher of s	oil and water data	DS-1	Mobile groundwater AC-1 *
		* increase to AC-	2z in flowing water (pure or with >15mg/l carbon dioxide)

Appendix D

Site monitoring data and ground gas risk assessment

Site monitoring data

Gas Monitoring Record

	Site:	Himley	Villa	ge Bice	ster		Notes	on dene	eral site c	ondition	s durin	a time	ofmor	nitorina													<i>,</i>
Job r	number:								d a gentl			96		ntoring													
			omes	Cotswo	lds and	Legal &			neadow.			2000	ss fullv ≏	wailahle	2												
						al No: G50		veeueu I	neadow.	Sugnity	uneu -	acces	s rully c	waildDle	•												
Eauin						libration 2																					
	Service		-																								
Calib			-			ion 24/01	/20																				
				,																							
	Name of	· ·																									
	moi	nitoring	Davi	d Webs	ter																						
Monitorin	g round		E	Borehole	e details	;			Pressu	ure and f	low							Со	ncentra	tions					G	isv	Local conditions
	<u> </u>			_				Þ				N.														T T	
Date	Time	Borehole	Single or dual gas tap	Depth to water base of well	Depth to base of r (m)	(litres) "D" denotes dry hole	Atmospheric pressure (hPa)	Atm pressure fallin steady	Relative BH pr	Gas flo	w (l∕hr)	(" denotes flow	Gas flow* (absol (l./hr)		H ₄ //v)		H₄ _EL)		0 ₂ //v)		0 ₂ v/v)	Other	gases	voc	Gas Screening V (L/hr)	Gas Screening V (L/hr)	Notes on condition of borehole (including any leak test) condition of surrounding ground, and operation of
6	10	nole		(or NAPL) (or if dry) (m)	zone	4 C 4	•	g ∕ rising ∕	pressure (hPa)	Initial	Steady	less than LOD	(absolute value) (l∕hr)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	CO (ppm)	H _z S (ppm)	PID (ppm)	y Value (CH₄) nr)	y Value (CO ₂) nr)	monitoring instrument (as applicable)
			F	-		om top of			al values:				0.1		0.0		0.0		3.6		19.8				0	0.0027	Summary statistics for this monitoring period*.
					tandpipe			in. individu	ual values				0.0		0.0		0.0		0.4		18.1				0	0	[* Not applicable if wells are screened in different strata or
		1	He	eight of S	tandpipe	e in row Al			Worst-o	ase GSV	s based (on ma	x. indivic	1	and ma	x. indivio	dual con	nc. over t	he durati	ion of th	is table:				0	0.0036	zones]
Start adding o								-						0		-											
28/06/23	12:33	R01 R02	S	2.03 2.04	5.71 5.55	0.000			0.07	0.0	0.0		0.0	0	0	0	0	0.6	0.6	19.8	19.8 18.1	0.0	0.0		0	0	SILT ANTS
28/06/23 28/06/23	12:13 12:04	R02	S S	2.04	4.59	0.000		-	0.30	0.0	0.0		0.0	0	0	0	0	1.7 1.6	1.7 1.6	18.1 19.7	18.1	0.0	0.0		0	0	SILT SILT
28/06/23	12:04	R03	S S	1.79	4.59 3.94	0.000		-	0.04	0.0	0.0		0.0	0	0	0	0	1.0	1.0	19.7	19.5	0.0	0.0		0	0	OK
28/06/23	11:28	R04	S	2.31	5.31	0.000			-0.19	0.0	0.0		0.0	0	0	0	0	3.6	3.6	18.4	18.3	0.0	0.0		0	0	SILT
28/06/23	13:21	R06	S	1.86	5.55	0.000			0.04	0.0	0.0		0.0	0	0	0	0	0.3	0.4	20.4	19.8	1.0	0.0		0		SILT
28/06/23	13:13	R07	S	2.29	5.26	0.000			0.02	0.1	0.1		0.1	0	0	0	0	2.7	2.7	18.4	18.4	1.0	0.0		0	0.0027	OK
28/06/23	12:57	R08	S	1.47	3.47	0.000			0.00	0.0	0.0		0.0	0	0	0	0	3.4	3.4	18.3	18.3	0.0	0.0		0	0	ОК
28/06/23	00:00	R001	S	1.84	2.73																						ОК
28/06/23	00:00	R002	S	1.23	1.5																						ОК
28/06/23	00:00	R003	S	1.83	2.24																						ОК
28/06/23	00:00	R004	S	1.54	1.99																						ОК
28/06/23	00:00	RC01	S	2.06	4.05																						ОК
																0	0										
																0	0										
					$ \downarrow \downarrow$							\mid		L		0	0				 						
					\mid									<u> </u>		0	0				 	<u> </u>					
							_	_				+		 		0	0	_									
					┝──┤									ļ		0	0				 						
					┝───┤				+			+		<u> </u>		0	0				┨────					-	l
			$\left - \right $						+			+				0	0										l
					┝──┤				+			+				0	0				<u> </u>						
								+	+			+				0	0										
									+							0	0		-		+						
												1				0	0										

Hydrock

Gas Monitoring Record

	Site:	Himley	v Villa	ge Bice	ster			Notes o	on dener	al site c	ondition	s durin	n time	of mor	nitorina													
Job	number:			-					otes on general site conditions during time of monitoring: ot & Sunny 25C igh weeded meadow. Slightly rutted - access fully available																			
	Client:	Cala H	omes	Cotswa	olds and	d Leo					Sliahtly r	rutted -	acces	s fullv a	vailable	<u>,</u>												
							lo: G5071;	5			5			, •														
Equi	pment ch	neck OK	OK (Field Ch	neck/Ca	alibra	ation 16/0																					
	Service	in date	24/0	07/2023																								
Calik	pration ch	neck OK	OK (Factory	Calibra	ation	24/01/20																					
		finaraar																										
	Name of																											
	mo	nitoring	Dav	id Webs	ster																							
Monitorin	ng round			Borehol	e detai	ls			1	Pressu	re and f	low							Col	ncentra	tions		-		1	G	sv	Local conditions
Date	Time	Borehole	Single or dual gas tap	Depth to water base of well	Depth to base of r (m)	"D" denotes dry hole	Volume of heads (litres)	Atmospheric p	Atm pressure fallin steady	Relative BH p	Gas flo	w(l∕hr)	"<" denotes flow	Gas flow* (absol (l∕hr)		H ₄ //v)		H₄ ₋EL)		0 ₂ //v)		0 ₂ v/v)	Other	gases	VOC	Gas Screening V (L/hr)	Gas Screening V (L/hr)	Notes on condition of borehole (including any leak test) condition of surrounding ground, and operation of
te	le	hole		(or NAPL) (or if dry) (m)	esponse zone		pace in well)	pressure (hPa)	g / rising /	pressure (hPa)	Initial	Steady	/less than LOD	(absolute value) (l∕hr)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	CO (ppm)	H _z S (ppm)	PID (ppm)	y Value (CH₄) nr) r	y Value (CO ₂) nr)	monitoring instrument (as applicable)
			F	Readings			top of		individua					0.8		0.0		0.0		3.6		19.2				o	0.0016	
					itandpip			Min	ı. individua					0.0		0.0		0.0		0.2		16.9				0	0	[* Not applicable if wells are screened in different strata or
		1	He	e <mark>ight of S</mark>	Standpip	pe in I	row AF			Worst-c	ase GSVs	s based (on max	x. individ	1	and ma	x. indivio	dual con	ic. over tl	he durati	ion of th	is table:	1	1	1	0	0.0288	zones]
Start adding		201		1.00		-	0.00000			0.00					0						105	10.0						
16/06/23	12:43	R01 R02	S S	1.93	5.68		0.00000	1011 1011		-0.02	0.1	0.0	+	0.0	0	0	0	0	0.6	0.6 2.3	19.5 16.9	19.0 16.9	0.0	1.0		0	0	SILT 7CM
16/06/23 16/06/23	12:31 12:18	R02 R03	S S	1.99 2.03	5.57 4.52	+	0.00000	1011		0.04	0.0	0.0	+	0.0	0	0	0	0	1.6	1.6	18.7	18.7	0.0	1.0 1.0		0	0	SILT 7CM SILT 8CM
16/06/23	13:10	R03	S	1.72	3.85	+	0.00000	1011		-29.67	-10.6	-0.8	+	0.8	0	0	0	0	0.2	0.2	19.2	19.2	1.0	1.0		0	0.0016	
16/06/23	13:25	R05	s	2.22	5.38		0.00000	1011		-0.09	0.0	0.0		0.0	0	0	0	0	3.0	3.0	17.2	17.0	2.0	1.0		0	0.0010	SILT 8CM
16/06/23	13:58	R06	S	1.78	5.55		0.00000	1011		0.05	0.0	0.0		0.0	0	0	0	0	0.5	0.6	20.3	19.2	2.0	0.0		0	0	SILT 6CM
16/06/23	13:47	R07	S	2.17	5.4		0.00000	1012		0.04	0.1	0.0		0.0	0	0	0	0	3.6	3.6	17.1	17.1	2.0	0.0		0	0	ок
16/06/23	13:36	R08	S	1.43	3.44		0.00000	1012		0.04	0.0	0.0		0.0	0	0	0	0	3.4	3.4	17.8	17.8	2.0	0.0		0	0	OK - BAGGED COVER
16/06/23	00:00	R001	S	1.79	2.72																							PIEZO
16/06/23	00:00	R002	S		1.5																							PIEZO
16/06/23	00:00	R003	S		2.44																							PIEZO
16/06/23	00:00	R004	S	1.59	1.99	-																						PIEZO
16/06/23	00:00	RC01	S	1.59	1.99												0	0										PIEZO
	<u> </u>												╞╴┤				0	0	-									
						-							┥┥				0	0										
	<u> </u>					+			<u> </u>				┥┥				0	0										
						+											0	0										
																	0	0	1			1						
									1								0	0	1									
																	0	0										
																	0	0										
																	0	0										
	ļ																0	0	<u> </u>			<u> </u>						
																	0	0										

Hydrock

Gas Monitoring Record

	Site:	Himley	Villa	ge Bice	ster			Notes o	on gener	al site c	ondition	s during	a time	of mor	nitorina													,
Job	number:								light rain																			
	Client:		omes	Cotswo	olds an	d Leg	yal &		eeded m		-				vailable	•												
							o: G5071;	i ligit we	bououm	iouuo m.	oughuy	accou	40000	o rully o	vallable													
Equip	oment ch	eck OK	OK (Field Cł	neck/C	alibra	tion 22/0																					
	Service		_					1																				
Calib	pration ch		-			ation 2	24/01/20																					
				,			-	1																				
	Name of	· ·																										
	mor	nitoring	Davi	d Webs	ster																							
Monitorin	g round		E	Borehol	e detai	ls				Pressu	re and f	low							Cor	centrat	tions					G	SV	Local conditions
					De		<	7	Atm	_			<u>^</u>															
			s	Depth bas	Depth to		Volume	Atmospheric pressure (hPa)	E E	Relative BH			de	Gas	с –	H₄		H₄		0₂		0 ₂				Gas Scre	Gas	
			Single or dual gas tap	:h to ase c	to to	D.	ne	dso	pres	ativ	Gas flo	w(l/hr)	denotes	flow*		''₄ ∕∕v)		LEL)		0₂ /√)		∪₂ v/v)	Other	gases	Voc	Scr	Scr	
		B	e or	of w	base	lend	ofh	heri	sure st	۳ ۳						, ,,		/		, ,,		•, •,				ŏ	een	Notes on condition of borehole (including any leak test),
Date	Time	Borehole	du	ter /ell	(m) ^s of r	denotes dry hole	headspa (litres)	cpr	ıre fallin steady			•	flow	(absolute (l.∕hr)		-										ning Value (CH ₄) (L⁄hr)	ning V (L/hr)	condition of surrounding ground, and operation of
Ø	Φ	ole	al g	ter (or NAPL) (or ell if dry) (m)	of response (m)	dr J	spa s)	ess	falling eady	pressure			less	r) olut										т	-	r) Val	ı Value ır)	monitoring instrument (as applicable)
			as t	NAF ry) (pon	ho	Ce i	ure		Ire	<u>n</u>	Ste	15	e <a< td=""><td><u> </u></td><td>Ste</td><td><u>n</u></td><td>Ste</td><td>n,</td><td>Ste</td><td>n,</td><td>Ste</td><td>ö</td><td>l₂S (</td><td>Đ</td><td>ue (</td><td>ue (</td><td></td></a<>	<u> </u>	Ste	<u>n</u>	Ste	n,	Ste	n,	Ste	ö	l₂S (Đ	ue (ue (
			ap	m) (se z	e	in ¥	(hP	rising	(hPa)	Initial	Steady	than LOD	value)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	CO (ppm)	H _z S (ppm)	PID (ppm)	Ê	(Co₂)	
				ę	one		eL	a)	/ g	L E			9	Ű									2	Ð	5	*	~	
			F	Readings	taken f	from t	op of	Max. i	individua	l values:	1			0.2		0.0		0.0	1	3.3		19.0				0	0.0018	Summary statistics for this monitoring period*.
				s	Standpip	oe.		Min	. individua	al values:				0.0		0.0		0.0		0.6		16.7				0	0	[* Not applicable if wells are screened in different strata or
			He	eight of S	Standpi	pe in r	row AF			Worst-c	ase GSV:	s based o	on max	k. individ	lual flow	and ma	x. indivio	dual con	ic. over tl	ne durati	ion of th	is table:				0	0.0066	zones
Start adding															0													
22/06/23	12:34	R01	S	1.95	5.7			1010		0.23	0.0	0.0	$ \downarrow \downarrow$	0.0	0	0	0	0	0.6	0.6	19.2	18.9	1.0	1.0		0	0	SILT
22/06/23	12:24	R02	S	1.97	5.53			1010		-1.20	0.0	0.0		0.0	0	0	0	0	1.9	1.9	17.3	17.3	1.0	1.0		0	0	SILT
22/06/23	12:03	R03	S	2.01	4.54			1010		-0.07	0.1	0.1	$ \vdash $	0.1	0	0	0	0	1.7	1.7	18.6	18.4	0.0	1.0		0	-	SILT AND ROOTS-
22/06/23	12:47	R04	S	1.73	3.88	_		1011		2.10	0.2	0.2	$\left \right $	0.2	0	0	0	0	0.9	0.9	16.7	16.7	1.0	1.0		0	0.0018	
22/06/23	11:53	R05	S	2.15	5.28	_		1010		-0.02	0.0	0.0		0.0	0	0	0	0	3.3	3.3	16.7	16.7	0.0	0.0		0	0	SILT
22/06/23	13:49	R06	S	1.78	5.55			1011		0.04	0.0	0.0		0.0	0	0	0	0	0.2	1.1	20.8	19.0	1.0	0.0		0	0	SILT
22/06/23	13:36	R07	S	2.16	5.37 3.46	-		1011		0.02	0.0	0.0		0.0	0	0	0	0	3.0	3.0	17.0	17.0	1.0	0.0		0	0	OK
22/06/23 22/06/23	13:19 00:00	R08 R001	S S	1.4 1.75	2.73	+		1012		0.04	0.0	0.0		0.0	U	0	0	0	2.9	2.9	17.4	17.2	1.0	0.0		0	0	OK OK - PIEZO
22/06/23	00:00	R001	S	1.75	1.5	+																						OK - PIEZO
22/06/23	00:00	R002	S	1.15	2.44	-																						OK - PIEZO
22/06/23	00:00	R004	S	1.54	1.99	1																						OK - PIEZO
22/06/23	00:00	RC01	S	2.01	4.05																							OK - PIEZO
					1												0	0										
																	0	0										
		_															0	0	L			L						
																	0	0										
																	0	0										
																	0	0										
																	0	0										
																	0	0										
													\square				0	0										
																	0	0	<u> </u>			 						
													\square				0	0				 						
			1														0	0										

Hydrock

Ground gas risk assessment

Appendix E Contamination test results and GQRA

Job Number 27141

Data All Data

Job Name Himley Village

Client Cala Homes

Max CH4	Max Co2	Worst Case Flow	Worst Case GSV Methane	Worst Case GSV CO₂
0.0	3.6	0.2	0.0000	0.0072

Number of Readings	3
Number of Monitoring Rounds	3
Number of Readings with Flow Rate	24


NHBC Assessment												
	Meth	Methane Carbon Dioxide										
	Max Value	GSV	Max Value	GSV								
Green	24	24	24	24								
Amber 1	0	0	0	0								
Amber 2	0	0	0	0								
Red	0	0	0	0								

	CIRIA C665 Assessment									
	Meth	nane	Carbon	Dioxide						
	Max Value	GSV	Max Value	GSV						
CS1	24	24	24	24						
CS2	0	0	0	0						
CS3	N/A	0	N/A	0						
CS4	N/A	0	N/A	0						
CS5	N/A	0	N/A	0						
CS6	N/A	0	N/A	0						

	Pressure		Relative	Flow Rate	Atmos.	CH ₄ (% vol)	(%1	.EL)	CO ₂ (% vol)	O ₂ (%	6 vol)		
Location	Trend	Date	Pressure (mb)	(L/hr)	Pressure (m.bar)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	GSV – CH4	GSV – CO ₂
R01	Falling	16/06/23	-0.02	0.0	1019.1	0.0	0.0	0.0	0.0	0.6	0.6	19.5	19.0	0.0000	0.0000
R01	Falling	22/06/23	0.23	0.0	1018.5	0.0	0.0	0.0	0.0	0.6	0.6	19.2	18.9	0.0000	0.0000
R01	Falling	28/06/23	0.07	0.0	1016.8	0.0	0.0	0.0	0.0	0.6	0.6	19.8	19.8	0.0000	0.0000
Ro2	Falling	16/06/23	0.04	0.0	1019.1	0.0	0.0	0.0	0.0	2.3	2.3	16.9	16.9	0.0000	0.0000
Ro2	Falling	22/06/23	-1.20	0.0	1018.5	0.0	0.0	0.0	0.0	1.9	1.9	17.3	17.3	0.0000	0.0000
Ro2	Falling	28/06/23	0.30	0.0	1016.8	0.0	0.0	0.0	0.0	1.7	1.7	18.1	18.1	0.0000	0.0000
Ro3	Falling	16/06/23	0.04	0.0	1019.1	0.0	0.0	0.0	0.0	1.6	1.6	18.7	18.7	0.0000	0.0000
Ro3	Falling	22/06/23	-0.07	0.1	1018.5	0.0	0.0	0.0	0.0	1.7	1.7	18.6	18.4	0.0000	0.0017
Ro3	Falling	28/06/23	0.04	0.0	1016.8	0.0	0.0	0.0	0.0	1.6	1.6	19.7	19.5	0.0000	0.0000
Ro4	Falling	16/06/23	-29.67	-0.8	1019.1	0.0	0.0	0.0	0.0	0.2	0.2	19.2	19.2	0.0000	-0.0016
Ro4	Falling	22/06/23	2.10	0.2	1018.5	0.0	0.0	0.0	0.0	0.9	0.9	16.7	16.7	0.0000	0.0018
Ro4	Falling	28/06/23	0.09	0.0	1016.8	0.0	0.0	0.0	0.0	1.5	1.5	18.2	18.2	0.0000	0.0000
Ro5	Falling	16/06/23	-0.09	0.0	1019.1	0.0	0.0	0.0	0.0	3.0	3.0	17.2	17.0	0.0000	0.0000
Ro5	Falling	22/06/23	-0.02	0.0	1018.5	0.0	0.0	0.0	0.0	3.3	3.3	16.7	16.7	0.0000	0.0000
Ro5	Falling	28/06/23	-0.19	0.0	1016.8	0.0	0.0	0.0	0.0	3.6	3.6	18.4	18.3	0.0000	0.0000
Ro6	Falling	16/06/23	0.05	0.0	1019.1	0.0	0.0	0.0	0.0	0.5	0.6	20.3	19.2	0.0000	0.0000
Ro6	Falling	22/06/23	0.04	0.0	1018.5	0.0	0.0	0.0	0.0	0.2	1.1	20.8	19.0	0.0000	0.0000
Ro6	Falling	28/06/23	0.04	0.0	1016.8	0.0	0.0	0.0	0.0	0.3	0.4	20.4	19.8	0.0000	0.0000
Ro7	Falling	16/06/23	0.04	0.0	1019.1	0.0	0.0	0.0	0.0	3.6	3.6	17.1	17.1	0.0000	0.0000
Ro7	Falling	22/06/23	0.02	0.0	1018.5	0.0	0.0	0.0	0.0	3.0	3.0	17.0	17.0	0.0000	0.0000
Ro7	Falling	28/06/23	0.02	0.1	1016.8	0.0	0.0	0.0	0.0	2.7	2.7	18.4	18.4	0.0000	0.0027
Ro8	Falling	16/06/23	0.04	0.0	1019.1	0.0	0.0	0.0	0.0	3.4	3.4	17.8	17.8	0.0000	0.0000
Ro8	Falling	22/06/23	0.04	0.0	1018.5	0.0	0.0	0.0	0.0	2.9	2.9	17.4	17.2	0.0000	0.0000
Ro8	Falling	28/06/23	0.00	0.0	1016.8	0.0	0.0	0.0	0.0	3.4	3.4	18.3	18.3	0.0000	0.0000

Hydrock Bulk Gases Ternary Plot Analysis

Version: 1

	Кеу:
	Indicative of landfill gas migration (assuming source composition 60% methane / 40% carbon dioxide) as it displaces air from the ground. Assumes no chemical changes. Below 20% methane and 13% carbon dioxide relationship for landfill gas migration unclear. Arrow shows direction of dilution with fresh air
	Microbial respiration of organic material in soil. Zero methane and low flow. (Direct consumption of oxygen to produce carbon dioxide)
. >	Potentially indicative of methane outgassing from groundwater to borehole headspace (Hydrock dataset).
	Potentially indicative of microbial degradation of LNAPL vapours in unsaturated zone. (Hydrock dataset)
	Indicative of a landfill gas source (e.g 60% $\rm CH_4$ / 40% $\rm CO_2)$
	Indicative of geogenic gas (e.g mine-workings)
	Fresh air
	Additional Notes
ion d D	elationship between CO_2 and O_2 indicates depletion of lioxide via microbial respiration using the following equation: In this scenerio CO_2 + O_2 should be around 21% (i.e. the O_2 ohere)
anae conc	ounts of methane up to about 3% caused by anaerobic erobic hotspots or the reduction of carbon dioxide by entrations may be depleted but in this scenario oxygen se emitted quickly from the ground and it does not pose a

Contamination test results

Jamie Moore Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888

f: 01604842666

e: jamiemoore@hydrock.com

Analytical Report Number : 23-44921

Project / Site name:	Himley Village	Samples received on:	13/07/2023
Your job number:	27141	Samples instructed on/ Analysis started on:	13/07/2023
Your order number:	PO27316	Analysis completed by:	20/07/2023
Report Issue Number:	1	Report issued on:	20/07/2023
Samples Analysed:	5 water samples		

Joanna Szwagrzak Junior Reporting Specialist For & on behalf of i2 Analytical Ltd.

i2 Analytical Ltd.

Business Park,

Watford,

t: 01923 225404

f: 01923 237404

Herts, WD18 8YS

7 Woodshots Meadow, Croxley Green

e: reception@i2analytical.com

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-44921 Project / Site name: Himley Village

Your Order No: PO27316

Your Order No: PO27316								
Lab Sample Number				2747824	2747825	2747826	2747827	2747828
Sample Reference			R02	R01	R05	R06	R07	
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)			4.00	3.00	4.50	4.00	3.50	
Date Sampled			12/07/2023	12/07/2023	12/07/2023	12/07/2023	12/07/2023	
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

General Inorganics

Ceneral Inorganies								
pH (L099)	pH Units	N/A	ISO 17025	7.4	7.4	7.1	7.5	7.4
Electrical Conductivity at 20 °C (L031B)	µS/cm	10	ISO 17025	550	520	610	480	550
Total Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Free Cyanide (Low Level 1 µg/l)	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate as SO4	µg/l	45	ISO 17025	20500	70700	34200	31000	29500
Chloride	mg/l	0.15	ISO 17025	10	6.6	3.7	6.8	6.7
Fluoride	µg/l	50	ISO 17025	160	200	630	320	160
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	52	110	49	62	40
Ammoniacal Nitrogen as NH3	µg/l	15	ISO 17025	63	140	60	75	49
Ammoniacal Nitrogen as NH4	µg/l	15	ISO 17025	67	150	63	79	52
Dissolved Organic Carbon (DOC)	mg/l	0.1	ISO 17025	2.48	2.73	2.95	2.07	96.1
Nitrate as N	mg/l	0.01	ISO 17025	18.1	12.4	1.01	0.33	4.73
Nitrate as NO3	mg/l	0.05	ISO 17025	80.2	55.1	4.47	1.46	21
Nitrite as N	µg/l	1	ISO 17025	5.6	12	10	< 1.0	5.8
Nitrite as NO2	µg/l	5	ISO 17025	18	40	33	< 5.0	19
	mqcaco						1	-
Hardness - Total	3/I	1	ISO 17025	354	365	355	308	318
Bromate by IC	mg/l	0.002	ISO 17025	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Total Phenols

Total Flienois								
Total Phenols (monohydric)	µg/l	1	ISO 17025	9.3	1.7	< 1.0	3.4	< 1.0

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Analytical Report Number: 23-44921 Project / Site name: Himley Village

Your Order No: PO27316

Your Order No: PO27316								
Lab Sample Number				2747824	2747825	2747826	2747827	2747828
Sample Reference				R02	R01	R05	R06	R07
Sample Number				None Supplied				
Depth (m)				4.00	3.00	4.50	4.00	3.50
Date Sampled				12/07/2023	12/07/2023	12/07/2023	12/07/2023	12/07/2023
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
PAH Sums								
Sum of Benzo(b)fluoranthene & Benzo(k)fluoranthene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.02	NONE	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(ghi)perylene & Indeno(1,2,3-cd)pyrene	µg/l	0.04	NONE	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16
Heavy Metals / Metalloids Boron (dissolved)	µg/l	10	ISO 17025	37	30	45	28	39
Calcium (dissolved)	mg/l	0.012	ISO 17025	140	140	140	120	120
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.029	0.024	0.023	0.009	0.017
Iron (dissolved)	µg/l	4	ISO 17025	29	24	23	8.8	17
Magnesium (dissolved)	mg/l	0.005	ISO 17025	2.8	4.4	3.6	2.5	2.4
Sodium (dissolved)	mg/l	0.01	ISO 17025	6.5	5.4	5.5	5	5.4
Aluminium (dissolved)	µg/l	1	ISO 17025	4.8	3.3	3.3	720	4.1
Antimony (dissolved)	µg/l	0.4	ISO 17025	0.6	< 0.4	0.7	0.5	0.4
Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.47	< 0.15	0.24	0.22	< 0.15
Barium (dissolved)	µg/l	0.06	ISO 17025	28	9	19	15	9
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	0.02	< 0.02	< 0.02	< 0.02
Chromium (dissolved)	µg/l	0.2	ISO 17025	0.6	< 0.2	< 0.2	0.9	0.3
Cobalt (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Copper (dissolved)	µg/l	0.5	ISO 17025	2.7	1.2	1.1	1.1	0.7
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Manganese (dissolved)	µg/l	0.05	ISO 17025	0.85	1.1	8.3	1.5	2
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	µg/l	0.5	ISO 17025	2.3	1.3	2.3	1.3	0.7
Selenium (dissolved)	µg/l	0.6	ISO 17025	1	< 0.6	< 0.6	< 0.6	0.6
Silver (dissolved)	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tin (dissolved)	µg/l	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	0.55	0.32
Vanadium (dissolved)	µg/l	0.2	ISO 17025 ISO 17025	0.8	< 0.2	< 0.2	1.1	< 0.2
Zinc (dissolved)	µg/l	0.5	150 17025	5.1	4.3	1.5	1.8	2.5

 $\label{eq:US} U/S = Unsuitable \ Sample \quad I/S = \ Insufficient \ Sample \quad ND = Not \ detected$

Analytical Report Number : 23-44921 Project / Site name: Himley Village

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	w	ISO 17025
Electrical conductivity at 20oC of water	Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW	In-house method	L031-PL	w	ISO 17025
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	w	ISO 17025
Monohydric phenols in water - LOW LEVEL 1 ug/l	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry).Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	w	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water after filtration by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	ISO 17025
Ammonia as NH3 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW, FSE, LL.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW, FSE, LL.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Nitrite as N in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by discrete analyser (colorimetry). Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025

Analytical Report Number : 23-44921 Project / Site name: Himley Village

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08,	L078-PL	W	ISO 17025
Cr (III) in water	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Low level total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In house method.	L099-PL	W	ISO 17025
Free cyanide (low level) in water	Determination of free cyanide by distillation followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Bromate in Water	Determination of bromate in waters based on ion chromatography. Accredited matrices GW, PW, SW.	In house method based on Standard Methods for the Analysis of Water and Waste Water, method 4500	L008-PL	w	ISO 17025
Specific PAH sums in water	Determination of PAH compounds in water by extraction in hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L070-PL	W	NONE
Chloride in water	Determination of Chioride (diissolved) colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture Correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Jamie Moore Hydrock 22 Long Acre London WC2E 9LY

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 23-08116

Site Reference:	Himlev Village Main Site
Proiect / Job Ref:	27141
Order No:	PO26807
Sample Receipt Date:	22/06/2023
Sample Scheduled Date:	22/06/2023
Report Issue Number:	1
Reporting Date:	30/06/2023

Authorised by:

Kevin Old Operations Director

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope or 150 1/025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Vanadium (V)

Zinc (Zn)

DETS Ltd Unit 1, Rose Lane Industrial Estate **Rose Lane** Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate								
DETS Report No: 23-08116			Date Sampled	09/06/23	09/06/23	09/06/23	09/06/23	09/06/23
Hydrock			Time Sampled	None Supplied				
Site Reference: Himley Village Mai	in Site		TP / BH No	HP01	HP02	HP03	HP04	HP05
Project / Job Ref: 27141		Additional Refs	ES1	ES1	ES1	ES1	ES1	
Order No: PO26807			Depth (m)	0.05	0.25		0.20	0.03
Reporting Date: 30/06/2023		D	ETS Sample No	659164	659165		659167	659168
				000101	000100	007100	00010/	000100
Determinand	Unit	RL	Accreditation	(n)	(n)	(n)	(n)	
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected				
pH	pH Units	N/a	MCERTS	8.2	8.3	8.2	8.3	7.7
Free Cyanide	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.033	0.034	0.014	0.012	0.038
Arsenic (As)	mg/kg	< 2	MCERTS	11	6	2	2	7
Beryllium (Be)	mg/kg	< 0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (III)		< 2	NONE	7	5	< 2	< 2	8
Chromium (hexavalent)	5, 5	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)		< 4	MCERTS	13	11	< 4	< 4	11
Lead (Pb)	5, 5	< 3	MCERTS	8	9	3	< 3	8
Mercury (Hg)	5, 5		MCERTS	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	5, 5		MCERTS	5	4	< 3	< 3	6
Selenium (Se)		< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Vanadium (V/)	ma///a	- 1	MCEDIC	20	10	6	1	21

29 27

< 2

19 14

< 2

6

6

< 2

< 2

21 34

Total Phenols (monohydric) NONE mg/kg Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

MCERTS

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

mg/kg

mg/kg

< 1

< 3

< 2

Soil Analysis Certificate						
DETS Report No: 23-08116	Date Sampled	09/06/23	05/06/23	06/06/23	07/06/23	06/06/23
Hydrock	Time Sampled	None Supplied				
Site Reference: Himley Village Main Site	TP / BH No	HP05	RC01	TP02	TP05	TP06
Project / Job Ref: 27141	Additional Refs	ES1	ES1	ES1	ES1	ES1
Order No: PO26807	Depth (m)	0.30	0.10	0.10	0.10	0.10
Reporting Date: 30/06/2023	DETS Sample No	659169	659170	659171	659172	659173
Determinend	Unit DI Accuration	(n)				

Determinand	Unit	RL	Accreditation	(n)			
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	Not Detected
pH	pH Units	N/a	MCERTS	8.3	7.9	8.0	
Free Cyanide	mg/kg	< 1	NONE	< 1	< 1	< 1	
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.059	0.027	0.027	
Arsenic (As)		< 2	MCERTS	7	16	15	
Beryllium (Be)	mg/kg	< 0.5	MCERTS	< 0.5	1.2	1	
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	
Chromium (III)		< 2	NONE	5	23	19	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	9	15	15	
Lead (Pb)	mg/kg	< 3	MCERTS	7	17	15	
Mercury (Hg)		< 1	MCERTS	< 1	< 1	< 1	
Nickel (Ni)		< 3	MCERTS	4	19	16	
Selenium (Se)		< 2	MCERTS	< 2	< 2	< 2	
Vanadium (V)		< 1	MCERTS	19	49	43	
Zinc (Zn)	mg/kg	< 3	MCERTS	14	55	41	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate						
DETS Report No: 23-08116	Date Sampled	06/06/23	07/06/23	07/06/23	07/06/23	07/06/23
Hydrock	Time Sampled	None Supplied				
Site Reference: Himley Village Main Site	TP / BH No	TP07	TP08	TP09	TP10	TP12
Project / Job Ref: 27141	Additional Refs	ES1	ES1	ES1	ES1	ES1
Order No: PO26807	Depth (m)	0.50	0.10	0.10	0.10	0.10
Reporting Date: 30/06/2023	DETS Sample No	659174	659175	659176	659177	659178

Determinend	11!4		A				
Determinand			Accreditation		 		
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	
pH	pH Units	N/a	MCERTS	8.1	8.0	8.0	
Free Cyanide	mg/kg	< 1	NONE	< 1	< 1	< 1	
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.011	0.027	0.027	
Arsenic (As)	mg/kg	< 2	MCERTS	9	16	15	
Beryllium (Be)	mg/kg	< 0.5	MCERTS	1.3	1.2	1.1	
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	
Chromium (III)	mg/kg	< 2	NONE	21	26	24	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	14	16	19	
Lead (Pb)	mg/kg	< 3	MCERTS	7	17	16	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	16	20	18	
Selenium (Se)	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Vanadium (V)	mg/kg	< 1	MCERTS	35	55	51	
Zinc (Zn)	mg/kg	< 3	MCERTS	27	60	63	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	2.2	2.4	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate						
DETS Report No: 23-08116	Date Sampled	07/06/23	13/06/23	12/06/23	13/06/23	
Hydrock	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Himley Village Main Site	TP / BH No	TP13	TP17	TP19	TP21	
Project / Job Ref: 27141	Additional Refs	ES1	ES2	ES1	ES1	
Order No: PO26807	Depth (m)	0.20	2.30	0.20	0.20	
Reporting Date: 30/06/2023	DETS Sample No	659179	659180	659181	659182	

Determinand	Unit	RL	Accreditation					
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	Not Detected	
pH	pH Units	N/a	MCERTS	7.4	8.1	7.8	7.8	
Free Cyanide	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	
Fraction Organic Carbon (FOC)	Units	< 0.001	MCERTS	0.021	0.010	0.028	0.025	
Arsenic (As)		< 2	MCERTS	9	15	15	14	
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.6	0.7	1.1	0.9	
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	
Chromium (III)	mg/kg	< 2	NONE	13	15	22	18	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	13	14	13	11	
Lead (Pb)	mg/kg	< 3	MCERTS	12	10	25	19	
Mercury (Hg)		< 1	MCERTS	< 1	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	9	19	16	14	
Selenium (Se)	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Vanadium (V)	mg/kg	< 1	MCERTS	27	20	49	41	
Zinc (Zn)	mg/kg	< 3	MCERTS	45	20	46	37	
Total Phenols (monohydric)	mg/kg	< 2	NONE	3	< 2	< 2	< 2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 23-0811	L6		Date Sampled	09/06/23	09/06/23	09/06/23	09/06/23	09/06/23
Hydrock			Time Sampled	None Supplied				
Site Reference: Himley Vi	illage Main Site		TP / BH No	HP01	HP02	HP03	HP04	HP05
Project / Job Ref: 27141		1	Additional Refs	ES1	ES1	ES1	ES1	ES1
Order No: PO26807			Depth (m)	0.05	0.25	0.10	0.20	0.03
Reporting Date: 30/06/2	023	DI	ETS Sample No	659164	659165	659166	659167	659168
Determinand	Unit	RL	Accreditation	(n)	(n)	(n)	(n)	
Naphthalene	mg/kg	< 0.1	MCERTS	1.97	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	0.42	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	17.90	< 0.1	0.13	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	13.20	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	104	0.63	0.93	0.40	0.68
Anthracene	mg/kg	< 0.1	MCERTS	19.30	0.20	0.41	0.11	0.19
Fluoranthene	mg/kg	< 0.1	MCERTS	102	4.45	5.53	1.35	3.50
Pyrene	mg/kg	< 0.1	MCERTS	81.40	5.03	5.53	1.29	3.70
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	34	3.49	3.22	0.80	2.38
Chrysene	mg/kg	< 0.1	MCERTS	33.70	2.94	2.72	0.77	2.24
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	32.60	5.82	4.67	1.05	4.45
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	13.30	1.70	1.31	0.40	1.28
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	28.90	5.02	3.93	0.94	3.53
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	16.50	3.34	2.59	0.72	2.67
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	3.45	0.54	0.38	0.12	0.41
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	13.40	3.02	2.26	0.65	2.39
Total EPA-16 PAHs		< 1.6	MCERTS	516	36.2	33.6	8.6	27.4

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 23-081	16		Date Sampled	09/06/23	06/06/23	07/06/23	06/06/23	07/06/23
Hydrock			Time Sampled	None Supplied				
Site Reference: Himley V	illage Main Site		TP / BH No	HP05	TP02	TP05	TP07	TP09
Project / Job Ref: 27141 Order No: PO26807		/	Additional Refs	ES1	ES1	ES1	ES1	ES1
	000	D	Depth (m)	0.30	0.10	0.10	0.50	0.10
Reporting Date: 30/06/2	023	D	ETS Sample No	659169	659171	659172	659174	659176
Determinand	Unit	RL	Accreditation	(n)				
Naphthalene		< 0.1	MCERTS	1.05	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	2, 2	< 0.1	MCERTS	0.66	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene		< 0.1	MCERTS	4.53	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene		< 0.1	MCERTS	4.39	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene		< 0.1	MCERTS	51.50	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	12.50	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	65.60	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	54.30	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	27.60	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	5, 5	< 0.1	MCERTS	22.40	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg		MCERTS	26.20	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	2, 2	< 0.1	MCERTS	6.83	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene		< 0.1	MCERTS	21.90	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene		< 0.1	MCERTS	12.80	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene			MCERTS	2.29	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene		< 0.1	MCERTS	10.40	< 0.1	< 0.1	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	325	< 1.6	< 1.6	< 1.6	< 1.6

Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 23-081	16		Date Sampled	07/06/23	07/06/23	13/06/23	12/06/23	13/06/23
Hydrock			Time Sampled	None Supplied				
Site Reference: Himley V	illage Main Site		TP / BH No	TP10	TP13	TP17	TP19	TP21
Project / Job Ref: 27141 Order No: PO26807		/	Additional Refs	ES1	ES1	ES2	ES1	ES1
	000	D	Depth (m) ETS Sample No	0.10	0.20	2.30	0.20	0.20
Reporting Date: 30/06/2	023	U	ETS Sample No	659177	659179	659180	659181	659182
Determinand	Unit	RL	Accreditation					
Naphthalene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	5 5	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Pyrene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	2, 2	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene			MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	2, 2	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene			MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(qhi)perylene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6

DETS Report No: 23-081	16		Date Sampled	09/06/23	09/06/23	09/06/23	09/06/23	09/06/23
Hydrock			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplier
Site Reference: Himley V	illage Main Site		TP / BH No	HP01	HP02	HP03	HP04	HP0
Project / Job Ref: 27141			Additional Refs	ES1	ES1	ES1	ES1	ES
Order No: PO26807			Depth (m)	0.05	0.25	0.10	0.20	0.3
Reporting Date: 30/06/2	023	D	ETS Sample No	659164	659165	659166	659167	659169
Determinand				(n)	(n)	(n)	(n)	(n
Aliphatic >C5 - C6		< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
Aliphatic >C6 - C8		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12	mg/kg		MCERTS	3	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	66	5	4	< 3	42
Aliphatic >C16 - C35	5, 5	< 10		782	189	145	33	70
Aliphatic >C35 - C44	mg/kg		NONE	56	< 10	< 10	< 10	3
Aliphatic (C5 - C44)	mg/kg			906	194	149	33	78
Aromatic >C5 - C7		< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
Aromatic >C7 - C8	5 5	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
Aromatic >C8 - C10			MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12	mg/kg		MCERTS	< 2	< 2	< 2	< 2	< .
Aromatic >C12 - C16	mg/kg		MCERTS	29	< 2	< 2	< 2	
Aromatic >C16 - C21	mg/kg		MCERTS	171	< 3	6	< 3	2
Aromatic >C21 - C35	mg/kg			270	15	43	< 10	5
Aromatic >C35 - C44	5/ 5		-	39	< 10	< 10	< 10	< 1
Aromatic (>C5 - C44)				508	< 30	49	< 30	8
Total >C5 - C44				1414	209	197	< 60	870

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

DETS Report No: 23-08116			Date Sampled	09/06/23	09/06/23	09/06/23	09/06/23	09/06/23
Hydrock			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Himley Village Ma	ain Site		TP / BH No	HP01	HP02	HP03	HP04	HP0
Project / Job Ref: 27141			Additional Refs	ES1	ES1	ES1	ES1	ES
Order No: PO26807			Depth (m)	0.05	0.25	0.10	0.20	0.3
Reporting Date: 30/06/2023		D	ETS Sample No	659164	659165	659166	659167	65916
Determinand	Unit	RL	Accreditation	(n)	(n)	(n)	(n)	(r
Determinand Benzene	Unit ug/kg	RL < 2		(n) < 2	(n) < 2	(n) < 2	(n) < 2	(r <)
			MCERTS	(n) < 2 < 5	(n) < 2 < 5	(n) < 2 < 5	(n) < 2 < 5	(r <) <)
Benzene	ug/kg	< 2	MCERTS	< 2	(n) < 2 < 5 < 2	(n) < 2 < 5 < 2	(n) < 2 < 5 < 2	(r < : < :
Benzene Toluene	ug/kg ug/kg	< 2 < 5	MCERTS MCERTS MCERTS	< 2	(n) < 2 < 5 < 2 < 2 < 2	(n) < 2 < 5 < 2 < 2 < 2	(n) < 2 < 5 < 2 < 2 < 2	(r <) <) <)
Benzene Toluene Ethylbenzene	ug/kg ug/kg ug/kg	< 2 < 5 < 2	MCERTS MCERTS MCERTS MCERTS	< 2	(n) < 2 < 5 < 2 < 2 < 2 < 2 < 2	(n) < 2 < 5 < 2 < 2 < 2 < 2 < 2	(n) < 2 < 5 < 2 < 2 < 2 < 2 < 2	(r <) <) <)

Soil Analysis Certificate	- Organochlorine F	esticio	les					
DETS Report No: 23-0811	L6		Date Sampled	05/06/23	07/06/23	07/06/23	12/06/23	13/06/23
Hydrock			Time Sampled	None Supplied				
Site Reference: Himley Vi	llage Main Site		TP / BH No	RC01	TP08	TP12	TP19	TP21
Project / Job Ref: 27141		,	Additional Refs	ES1	ES1	ES1	ES1	FC1
Order No: P026807		,	Depth (m)	0.10	0.10	ES1 0.10	0.20	ES1 0.20
Reporting Date: 30/06/2	023	DI	ETS Sample No	659170	659175	659178	659181	659182
	020			055170	055175	055170	055101	055102
Determinand	Unit	RL	Accreditation					
Aldrin	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
alpha-HCH	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
beta-HCH	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
cis-chlordane	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
delta-HCH	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Dieldrin	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Endosulfan A	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Endosulfan B	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Endrin	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
gamma-HCH (Lindane)	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Heptachlor	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Heptachlor epoxide	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Hexachlorobenzene (HCB)		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Isodrin	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Methoxychlor	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
o,p' - DDD		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
o,p' - DDE	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
o,p' - DDT	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
p,p' - DDD	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
p,p' - DDE		< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
p,p' - DDT	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
trans-chlordane	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Trifluralin	mg/kg	< 0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02

Soil Analysis Certificate		us Pes						
DETS Report No: 23-0811	L6		Date Sampled	05/06/23	07/06/23	07/06/23	12/06/23	13/06/23
Hydrock			Time Sampled	None Supplied				
Site Reference: Himley Vi	illage Main Site		TP / BH No	RC01	TP08	TP12	TP19	TP21
Project / Job Ref: 27141		4	Additional Refs	ES1	ES1	ES1	ES1	ES1
Order No: PO26807			Depth (m)	0.10	0.10	0.10	0.20	0.20
Reporting Date: 30/06/2	023	D	ETS Sample No	659170	659175	659178	659181	659182
Determinand	Unit	RL	Accreditation					
Azinphos-methyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chlorfenvinphos, alpha	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chlorfenvinphos, beta	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chlorpyriphos-methyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diazinon	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dichlorvos	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethoate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fenitrothion	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fenthion	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Malathion	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Mevinphos, (E)	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Mevinphos, (Z)	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Parathion-ethyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Parathion-methyl	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phorate	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Soil Analysis Certificate - Sample Descriptions DETS Report No: 23-08116 Hydrock Site Reference: Himley Village Main Site Project / Job Ref: 27141 Order No: PO26807 Reporting Date: 30/06/2023

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Content (%)	Sample Matrix Description
\$ 659164	HP01	ES1	0.05	0.5	Brown sandy gravel with stones and tar
\$ 659165	HP02	ES1	0.25		Brown sandy gravel with stones
\$ 659166	HP03	ES1	0.10	1	Brown sandy gravel with stones and concrete
\$ 659167	HP04	ES1	0.20		Brown concrete
&\$ 659168	HP05	ES1	0.03		Brown loamy sand with stones and vegetation
\$ 659169	HP05	ES1	0.30		Brown sandy gravel with stones and concrete
&\$ 659170	RC01	ES1	0.10		Brown sandy clay with stones and vegetation
&\$ 659171	TP02	ES1	0.10	11.7	Brown sandy clay with stones
&\$ 659172	TP05	ES1	0.10	11.2	Brown sandy clay with stones and vegetation
&\$ 659174	TP07	ES1	0.50	15.1	Brown sandy clay with stones
&\$ 659175	TP08	ES1	0.10	9	Brown sandy clay with stones
&\$ 659176	TP09	ES1	0.10	11.1	Brown sandy clay with stones
&\$ 659177	TP10	ES1	0.10	10.8	Brown sandy clay with stones
&\$ 659178	TP12	ES1	0.10	10.6	Brown sandy clay with stones and vegetation
&\$ 659179	TP13	ES1	0.20	7.8	Brown sandy clay with stones and vegetation
& 659180	TP17	ES2	2.30	17.1	Brown sandy clay
& 659181	TP19	ES1	0.20	6.7	Brown sandy clay with stones and vegetation
& 659182	TP21	ES1	0.20	7.7	Brown sandy clay with stones and vegetation

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample^{1/5} & samples received in inappropriate containers for hydrocarbon analysis

\$ samples exceeded recommended holding times

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 23-08116
Hydrock
Site Reference: Himley Village Main Site
Project / Job Ref: 27141
Order No: PO26807
Reporting Date: 30/06/2023

Matrix	Analysed On	Determinand	Brief Method Description								
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	No E012							
Soil	AR		Determination of BTEX by headspace GC-MS	E001							
Soil	D		Determination of cations in soil by agua-regia digestion followed by ICP-OES	E002							
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009							
Call	4.0		Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	F01C							
Soil	AR	Chromium - Hexavalent	1.5 diphenvlcarbazide followed by colorimetry	E016							
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015							
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015							
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015							
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011							
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004							
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022							
Soil	AR		Determination of electrical conductivity by addition of water followed by electrometric measurement	E023							
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020							
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004							
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004							
Soil	AR	C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004							
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009							
Soil	D		Determination of TOC by combustion analyser.	E027							
Soil	D		Determination of TOC by combustion analyser.	E027							
Soil	D		Determination of TOC by combustion analyser.	E027							
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029							
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010							
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019							
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025							
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002							
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004							
Soil	AR		Moisture content; determined gravimetrically	E003							
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009							
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010							
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005							
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008							
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011							
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007							
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021							
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009							
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013							
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009							
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014							
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018							
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024							
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006							
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017							
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011							
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010							
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004							
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004							
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001							
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001							
D	Dried										

D Dried AR As Received

GAC derivation

Background

Initially, the Hydrock GAC were derived following the publishing of soil guideline values (SGV), toxicological (TOX) reports and associated publications by the Environment Agency (EA) in 2009 referenced under Science Report SC050021 (EA, 2009a, b, c, d). The Hydrock GAC have then been periodically updated following publication of new information on toxicological, physico-chemical, land use or receptor parameters, namely:

- » LQM/CIEH, 2009. LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment, second edition. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D.
- » CL:AIRE, 2010. 'The EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment'. Environmental Industries Commission, The Association of Geotechnical and Geoenvironmental Specialists and Contaminated Land: Applications in Real Environment.
- » CL:AIRE, 2014. 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010. Contaminated Land: Applications in Real Environment.
- » LQM/CIEH, 2015. 'The LQM/CIEH S4ULs for Human Health Risk Assessment'. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F.
- » CL:AIRE, 2021. 'C4SL Phase 2 Technical Reports'. Contaminated Land: Applications in Real Environment.

Land use scenarios

Hydrock has derived generic assessment criteria (GAC) for human health based on the six exposure scenarios defined in CL:AIRE (2014) using generic default assumptions from published guidance. GAC for each exposure scenario have been derived for three soil organic matter (SOM) contents, 1%, 2.5% and 6%.

All GAC have been rounded to two significant figures.

Exposure parameters

The exposure parameters used for the Hydrock GAC are the default parameters stated in SR3, unless updated in CL:AIRE (2014) where the CL:AIRE (2014) values have been adopted.

Approach to consumption rates

Hydrock have adopted the 90th percentile consumption rates from Table 3.4 of CL:AIRE (2014) for all produce types. This is noted to be more conservative than the "top two" approach taken in the derivation of C4SLs.

Approach to plant uptake for GAC omitted in CL:AIRE (2010)

Plant uptake factors were not identified in CL:AIRE (2010) for antimony, barium and molybdenum. Hydrock has sourced the required parameter values from ORNL (1984) in order to derive GAC that are inclusive of the homegrown produce exposure pathway.

Chemical and toxicity parameters

The chemical and toxicity parameters have been adopted based on the following documents:

- » IRIS, 2016. 'Toxicological Review of Trimethylbenzenes'. Integrated Risk Information System, National Centre for Environmental Assessment, office of Research and Development, U.S. Environmental Protection Agency.
- » LQM/CIEH, 2015.

» ORNL, 1984. 'ORNL-5786. A Review and Analysis of Parameters for Assessing Transport of Environmentally released Radionuclides through Agriculture'. Oak Ridge National Laboratory.

Hydrock

- » CL:AIRE, 2010.
- » RIVM, 2001. RIVM Report 711701 025 'HCV Re-evaluation of human-toxicological maximumpermissible risk levels'. National Institute of Public Health and the Environment.
- » LQM/CIEH, 2009.
- » EA, 2009a.

Approach to Cyanide GAC

The Hydrock GAC for free cyanide have been derived based on ingestion of a bolus of contaminated soil. The GAC are derived for acute exposure of a child (0-6 years old) for all land uses except commercial, where the GAC are derived for acute exposure of an adult (16-65 years old). For the purpose of GQRA, the child value may be adopted for all land use scenarios.

For complex cyanide, the GAC have been derived based on chronic exposure, using the default exposure scenarios but excluding the consumption of homegrown produce, soil attached to homegrown produce, indoor vapour and outdoor vapour pathways. The chronic health criteria value (HCV) for complex cyanide is based on the EA (2009a) HCV for free cyanide and the ratio of toxicity between free and complex cyanide proposed by RIVM (2001).

Approach to Phenol GAC

In accordance with the EA Science Report SC050021 / Phenol SGV, a GAC_{ing/inh} has been derived for ingested and inhaled phenol using the CLEA model, with a GAC_{derm} derived for dermal contact using Equation 5.7 within SR3. The lower of the GAC_{ing/inh} and GAC_{derm} has been adopted as the final GAC.

Approach to PCB GAC

GAC for assessing the non-dioxin-like risk from PCBs have been based on the "Dutch 7". As the TDI used by the authors of the Dutch guidance is for the sum of the 7 individual congeners, the TDI has been divided by 7 to create a TDI for each congener. The non-dioxin-like risk from PCBs is therefore assessed using a Hazard Index approach as for total petroleum hydrocarbons (TPH).

Sub-surface soil to indoor air correction factors

Reflecting the approach taken by the Environment Agency in the development of revised SGV in 2009 for BTEX, a sub-surface soil to indoor air correction factor of 10 has been applied for petroleum hydrocarbons in order to account for over-prediction of vapour intrusion into building using the Johnson and Ettinger approach.

The correction factor of 10 has been applied to the following petroleum hydrocarbons (it makes negligible difference to less volatile TPH and PAH compounds):

- » TPHCWG fractions, namely aliphatic EC>5-44 and aromatic EC>6-44;
- » PAHs (acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene), benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h,)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene, pyrene);
- » BTEX;
- » Isopropylbenzene;
- » Propylbenzene;
- » 1,2,4- and 1,3,5-trimethylbenzene; and
- » Styrene.

Hydrock

Approach to saturation limits

The CLEA model includes a traffic light colour system to highlight when saturated soil conditions have potentially been exceeded for the vapour pathways during calculation of assessment criteria. The colours represent:

- » Green: the assessment criteria do not exceed the saturated soil concentration.
- » Amber: the assessment criteria exceed the saturated soil concentration but the contribution of the indoor and outdoor vapour pathway to total exposure is less than 10% and will not significantly affect the assessment criteria.
- » Red: the assessment criteria exceed the saturated soil concentration and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10% and will significantly affect the assessment criteria.

Hydrock have not applied any further calculations or assessment in relation to saturation limits during GAC derivation, with the CLEA-modelled GAC being presented as the GAC. Consideration of saturation limits is undertaken during the data assessment stage.

References

CL:AIRE, 2010. 'The EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment'. Environmental Industries Commission, The Association of Geotechnical and Geoenvironmental Specialists and Contaminated Land: Applications in Real Environment.

CL:AIRE, 2014. 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010. Contaminated Land: Applications in Real Environment

CL:AIRE, 2021. C4SL Phase 2 Technical Reports for tetrachloroethene, trichloroethene and vinyl chloride. Contaminated Land: Applications in Real Environment.

EA, 2009a. 'Science Reports SC050021 – SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, arsenic, nickel, mercury, selenium, cadmium, inorganic cyanide, phenol, dioxins, furans and dioxinlike PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, arsenic, nickel, mercury, selenium, cadmium, inorganic cyanide, phenol, dioxins, furans and dioxinlike PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, arsenic, nickel, mercury, selenium, cadmium, inorganic cyanide, phenol, dioxins, furans and dioxinlike PCBs'.

EA, 2009b. 'Science Report – SC050021/SR2. Human health toxicological assessment of contaminants in soil'. Environment Agency.

EA, 2009c. 'Science Report – SC050021/SR3. Updated technical background to the CLEA model'. Environment Agency.

EA, 2009d. 'Science Report – SC050021/SR4. CLEA Software (version 1.05) Handbook'. Environment Agency.

IRIS, 2016. 'Toxicological Review of Trimethylbenzenes'. Integrated Risk Information System, National Centre for Environmental Assessment, office of Research and Development, U.S. Environmental Protection Agency.

LQM/CIEH, 2009. LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment, second edition. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D.

LQM/CIEH, 2015. 'The LQM/CIEH S4ULs for Human Health Risk Assessment'. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F.

ORNL, 1984. 'ORNL-5786. A Review and Analysis of Parameters for Assessing Transport of Environmentally released Radionuclides through Agriculture'. Oak Ridge National Laboratory.

RIVM, 2001. RIVM Report 711701 025 'HCV Re-evaluation of human-toxicological maximum-permissible risk levels'. National Institute of Public Health and the Environment.

Human health GQRA

Assessment of Chemicals of Potential Concern to Human Health

		Risk parameter:	Default - Human Health - residential with home-grown produce (2.5%SOM)													HP01 @ 0.05	HP02 @ 0.25	HP03 @ 0.1	HP04 @ 0.2	HP05 @ 0.03	HP05 @ 0.3	RC01 @ 0.1	TP02 @ 0.1	TP05 @ 0.1	TP06 @ 0.1	TP07 @ 0.5	TP08 @ 0.1	TP09 @ 0.1	TP10 @ 0.1
<		Client:	Cala Homes												-														
		Site:							Zone All																				
		Job no.:	27141						Strata ALL					drock															
<		Lab. report no(s).:	23-08116.1				Depth Min (m bgl) 0.03					· · / ·																	
								Depth Max (m bgl) 2.3							09/06/23	09/06/23	09/06/23	09/06/23	09/06/23	09/06/23	05/06/23	06/06/23	07/06/23	06/06/23	06/06/23	07/06/23	07/06/23	07/06/23	
															Zone														
																													TP10
Scale <td>All values in m</td> <td>ng/kg unless otherwise stated</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Scenario SOM%</td> <td></td> <td></td> <td></td> <td></td> <td>Depth (m bgl)</td> <td>0.05</td> <td>0.25</td> <td>0.1</td> <td>0.2</td> <td>0.03</td> <td>0.3</td> <td>0.1</td> <td>0.1</td> <td>0.1</td> <td>0.1</td> <td>0.5</td> <td>0.1</td> <td>0.1</td> <td>0.1</td>	All values in m	ng/kg unless otherwise stated								Scenario SOM%					Depth (m bgl)	0.05	0.25	0.1	0.2	0.03	0.3	0.1	0.1	0.1	0.1	0.5	0.1	0.1	0.1
b b b b b <	CAS No / P				No.	Min.	Max.			Standard																			
imate imate <th< td=""><td></td><td>Chemical of Potential Concern</td><td>Units</td><td>LoD</td><td>Samples</td><td>s Value</td><td>Value</td><td>Mean</td><td>Median</td><td>Deviation</td><td></td><td></td><td>GAC</td><td>GAC Source</td><td>Strata</td><td>MG</td><td>MG</td><td>MG</td><td>MG</td><td>MG</td><td>MG</td><td>TS</td><td>MG</td><td>TS</td><td>MG</td><td>HD</td><td>MG</td><td>TS</td><td>MG</td></th<>		Chemical of Potential Concern	Units	LoD	Samples	s Value	Value	Mean	Median	Deviation			GAC	GAC Source	Strata	MG	MG	MG	MG	MG	MG	TS	MG	TS	MG	HD	MG	TS	MG
b <td< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>LoD</td><td>SOM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						_					LoD	SOM																	
b b b b b b b b b b b b	-			Mai																									
New Ne	P1020			Y/N	10	-	-	-	-	No. of detects:	0	-	-	-		N	N	N	N	N	N		N	N	N	N		N	N
Sold Sold Sold Sold	P1085	-		0.001	15	0.010	0.059	0.026	0.027	0.01			-	-		0.033	0.034	0.014	0.012	0.038	0.059		0.027	0.027		0.011		0.027	0.027
name	-		%					<u> </u>				-	-	-		5.6892	5.8616	2.4136	2.0688	6.5512	10.1716		4.6548	4.6548		1.8964		4.6548	4.6548
bas <td>P1334</td> <td>pH (su)</td> <td>pH Units</td> <td>0.1</td> <td>15</td> <td>7.40</td> <td>8.30</td> <td>8.01</td> <td>8.00</td> <td>0.25</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>8.2</td> <td>8.3</td> <td>8.2</td> <td>8.3</td> <td>7.7</td> <td>8.3</td> <td></td> <td>7.9</td> <td>8</td> <td></td> <td>8.1</td> <td></td> <td>8</td> <td>8</td>	P1334	pH (su)	pH Units	0.1	15	7.40	8.30	8.01	8.00	0.25		-	-	-		8.2	8.3	8.2	8.3	7.7	8.3		7.9	8		8.1		8	8
basis basis <td>-</td> <td>Hydrock Default Suite - Metals & PAH</td> <td>4</td> <td></td>	-	Hydrock Default Suite - Metals & PAH	4																										
math math <td>7440-38-2</td> <td>Arsenic</td> <td>mg/kg</td> <td>< 2</td> <td>15</td> <td>2.00</td> <td>16.00</td> <td>10.60</td> <td>11.00</td> <td>4.98</td> <td>0</td> <td>NR</td> <td>37</td> <td>C4SL - CL:AIRE 2014</td> <td></td> <td>11</td> <td>6</td> <td>2</td> <td><2</td> <td>7</td> <td>7</td> <td></td> <td>16</td> <td>15</td> <td></td> <td>9</td> <td></td> <td>16</td> <td>15</td>	7440-38-2	Arsenic	mg/kg	< 2	15	2.00	16.00	10.60	11.00	4.98	0	NR	37	C4SL - CL:AIRE 2014		11	6	2	<2	7	7		16	15		9		16	15
base base <t< td=""><td>7440-41-7</td><td>Beryllium</td><td>mg/kg</td><td>< 0.5</td><td>15</td><td>0.50</td><td>1.30</td><td>0.81</td><td>0.70</td><td>0.32</td><td>0</td><td>NR</td><td>1.7</td><td>Hydrock Derived</td><td></td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td></td><td>1.2</td><td>1</td><td></td><td>1.3</td><td></td><td>1.2</td><td>1.1</td></t<>	7440-41-7	Beryllium	mg/kg	< 0.5	15	0.50	1.30	0.81	0.70	0.32	0	NR	1.7	Hydrock Derived		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		1.2	1		1.3		1.2	1.1
Name	7440-42-8	Boron	mg/kg	< 1	15	1.00		+			0	NR	300	Hydrock Derived										<1					<1
bord bord <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u>├</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.2</td></t<>								<u>├</u>																					<0.2
both both <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																													
Norme Norm Norme Norme <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>├</u></td> <td></td> <td></td> <td> </td> <td></td>								<u>├</u>																					
magnedic								<u>├</u>						-															16
bit bit< bit< bit<								<u>├</u>								<1	<1		<1	<1	<1					<1			<1
basis basis <th< td=""><td></td><td></td><td></td><td></td><td>15</td><td>3.00</td><td>20.00</td><td><u> </u></td><td>14.00</td><td>6.71</td><td>0</td><td>NR</td><td>130</td><td>Hydrock Derived</td><td></td><td>5</td><td>4</td><td><3</td><td><3</td><td>6</td><td>4</td><td></td><td>19</td><td>16</td><td></td><td>16</td><td></td><td>20</td><td>18</td></th<>					15	3.00	20.00	<u> </u>	14.00	6.71	0	NR	130	Hydrock Derived		5	4	<3	<3	6	4		19	16		16		20	18
b b <	7782-49-2	Selenium	mg/kg	< 2	15	2.00	2.00	2.00	2.00	0.00	0	NR	260	Hydrock Derived		<2	<2	<2	<2	<2	<2		<2	<2		<2		<2	<2
math math <t< td=""><td>7440-62-2</td><td>Vanadium</td><td>mg/kg</td><td>< 1</td><td>15</td><td>4.00</td><td>55.00</td><td>31.20</td><td>29.00</td><td>16.40</td><td>0</td><td>NR</td><td>410</td><td>Hydrock Derived</td><td></td><td>29</td><td>19</td><td>6</td><td>4</td><td>21</td><td>19</td><td></td><td>49</td><td>43</td><td></td><td>35</td><td></td><td>55</td><td>51</td></t<>	7440-62-2	Vanadium	mg/kg	< 1	15	4.00	55.00	31.20	29.00	16.40	0	NR	410	Hydrock Derived		29	19	6	4	21	19		49	43		35		55	51
bit bit< bit bit< bit< <td>7440-66-6</td> <td>Zinc</td> <td>mg/kg</td> <td>< 3</td> <td>15</td> <td>4.00</td> <td>63.00</td> <td>32.87</td> <td>34.00</td> <td>18.97</td> <td>0</td> <td>NR</td> <td>3900</td> <td>Hydrock Derived</td> <td></td> <td>27</td> <td>14</td> <td>6</td> <td>4</td> <td>34</td> <td>14</td> <td></td> <td>55</td> <td>41</td> <td></td> <td>27</td> <td></td> <td>60</td> <td>63</td>	7440-66-6	Zinc	mg/kg	< 3	15	4.00	63.00	32.87	34.00	18.97	0	NR	3900	Hydrock Derived		27	14	6	4	34	14		55	41		27		60	63
between between <t< td=""><td></td><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td>NR</td><td></td><td>Acute Risk - SoBRA 2020</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1</td></t<>		· ·										NR		Acute Risk - SoBRA 2020															<1
Norma Norma <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u>├</u></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								<u>├</u>																					
matrix matrix<								<u> </u>						-															
M M								<u>├</u>						-															<0.1
bit bit< bit bit bit< </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>34</td> <td>3.49</td> <td>3.22</td> <td>0.8</td> <td>2.38</td> <td>27.6</td> <td></td> <td><0.1</td> <td><0.1</td> <td></td> <td><0.1</td> <td></td> <td><0.1</td> <td><0.1</td>								<u> </u>						-		34	3.49	3.22	0.8	2.38	27.6		<0.1	<0.1		<0.1		<0.1	<0.1
And <td></td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td></td> <td><u>├</u></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td>-</td> <td></td> <td>28.9</td> <td>5.02</td> <td>3.93</td> <td>0.94</td> <td>3.53</td> <td>21.9</td> <td></td> <td><0.1</td> <td><0.1</td> <td></td> <td><0.1</td> <td></td> <td><0.1</td> <td><0.1</td>					15			<u>├</u>						-		28.9	5.02	3.93	0.94	3.53	21.9		<0.1	<0.1		<0.1		<0.1	<0.1
And Besch And And </td <td></td> <td></td> <td>mg/kg</td> <td>< 0.1</td> <td>15</td> <td>0.10</td> <td>32.60</td> <td>5.05</td> <td>0.10</td> <td>10.16</td> <td>5</td> <td>3.04</td> <td>3.3</td> <td>Hydrock Derived</td> <td></td> <td>32.6</td> <td>5.82</td> <td>4.67</td> <td>1.05</td> <td>4.45</td> <td>26.2</td> <td></td> <td><0.1</td> <td><0.1</td> <td></td> <td><0.1</td> <td></td> <td><0.1</td> <td><0.1</td>			mg/kg	< 0.1	15	0.10	32.60	5.05	0.10	10.16	5	3.04	3.3	Hydrock Derived		32.6	5.82	4.67	1.05	4.45	26.2		<0.1	<0.1		<0.1		<0.1	<0.1
And And <td>191-24-2</td> <td>Benzo(ghi)perylene</td> <td>mg/kg</td> <td>< 0.1</td> <td>15</td> <td>0.10</td> <td>13.40</td> <td>2.20</td> <td>0.10</td> <td>4.10</td> <td>0</td> <td>0.04</td> <td>340</td> <td>Hydrock Derived</td> <td></td> <td>13.4</td> <td>3.02</td> <td>2.26</td> <td>0.65</td> <td>2.39</td> <td>10.4</td> <td></td> <td><0.1</td> <td><0.1</td> <td></td> <td><0.1</td> <td></td> <td><0.1</td> <td><0.1</td>	191-24-2	Benzo(ghi)perylene	mg/kg	< 0.1	15	0.10	13.40	2.20	0.10	4.10	0	0.04	340	Hydrock Derived		13.4	3.02	2.26	0.65	2.39	10.4		<0.1	<0.1		<0.1		<0.1	<0.1
bit bit< bit bit bit <td>207-08-9</td> <td>Benzo(k)fluoranthene</td> <td>mg/kg</td> <td>< 0.1</td> <td>15</td> <td>0.10</td> <td>13.30</td> <td>1.71</td> <td>0.10</td> <td>3.64</td> <td>0</td> <td>1.72</td> <td>93</td> <td>Hydrock Derived</td> <td></td> <td>13.3</td> <td>1.7</td> <td>1.31</td> <td>0.4</td> <td>1.28</td> <td>6.83</td> <td></td> <td><0.1</td> <td><0.1</td> <td></td> <td><0.1</td> <td></td> <td><0.1</td> <td><0.1</td>	207-08-9	Benzo(k)fluoranthene	mg/kg	< 0.1	15	0.10	13.30	1.71	0.10	3.64	0	1.72	93	Hydrock Derived		13.3	1.7	1.31	0.4	1.28	6.83		<0.1	<0.1		<0.1		<0.1	<0.1
Normal No No No No N	218-01-9	Chrysene	mg/kg	< 0.1	15	0.10	33.70	4.38	0.10	9.90	2	1.10	22	Hydrock Derived															<0.1
bit bit <td></td> <td><0.1</td>																													<0.1
Norm Norm <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u>├</u></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.1</td></th<>								<u>├</u>																					<0.1
Normal Normal<								<u>├</u>																					<0.1
bit of the state bit of the state<																													<0.1
ngnd ngnd val val <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u>├</u></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.1</td></th<>								<u>├</u>																					<0.1
And or other A					15		81.40	<u>├</u>		24.06	0	5.5				81.4	5.03	5.53	1.29	3.7	54.3		<0.1	<0.1		<0.1		<0.1	<0.1
ParterParte	P1310	PAH 16 Total	mg/kg	< 1.6	15	1.60	516.00	64.08	1.60	149.66			-			516	36.2	33.6	8.6	27.4	325		<1.6	<1.6		<1.6		<1.6	<1.6
Normal Normal<	0	TPH fractions																											
Name Name <th< td=""><td>P1407</td><td>TPH ali EC05-EC06</td><td>mg/kg</td><td>< 0.01</td><td>5</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.000</td><td>0</td><td>558</td><td>78</td><td>Hydrock Derived</td><td></td><td></td><td></td><td><0.01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	P1407	TPH ali EC05-EC06	mg/kg	< 0.01	5	0.01	0.01	0.01	0.01	0.000	0	558	78	Hydrock Derived				<0.01											
National of a brain of a	P1408													Hydrock Derived															
Number large Normalize					-	-							-																
Normal condition Normal condition<			-																										
Name Name <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u>├</u></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								<u>├</u>																					
And of the state of t																													
Pi441 Pi440 No. Sol <								<u>├</u>																					
P1356 TPH aro 2607-EC08 mg/kg < 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.					5						0	2265	150	Hydrock Derived		<0.01	<0.01	<0.01	<0.01		<0.01		1						
P135 TH aro \$EC06-EC10 mg/kg <2 5 2.00 2.00 2.00 2.00 0.00 0 1503 84 Hydrock Derived <2 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4				< 0.05	5	0.05	0.05	0.05	0.05	0.00	0	1916	300	Hydrock Derived		<0.05	<0.05	<0.05	<0.05		<0.05		1	İ					
	P1356	TPH aro >EC08-EC10	mg/kg	< 2	5	2.00	2.00	2.00	2.00	0.00	0	1503	84	Hydrock Derived		<2	<2	<2	<2		<2								

	Risk parameter:	Defaul	t - Human	Health ·	- resident	ial with h	iome-gro	own prod	uce (2.5%SO	M)					HP01 @ 0.05	HP02 @ 0.25	HP03 @ 0.1	HP04 @ 0.2	HP05 @ 0.03	HP05 @ 0.3	RC01 @ 0.1	TP02 @ 0.1	TP05 @ 0.1	TP06 @ 0.1	TP07 @ 0.5	TP08 @ 0.1	TP09 @ 0.1	TP10 @ 0.1
	Client:	Cala Ho							Data Filters																			
	Site:		Village M	ain Site					Zone			L I. ,	drock															
	Job no.:	27141	64						Strata	ALL		пγ	агоск															
	Lab. report no(s).:	23-081:	10.1						epth Min (m bgl) epth Max (m bgl)					Date	09/06/23	09/06/23	09/06/23	09/06/23	09/06/23	09/06/23	05/06/23	06/06/23	07/06/23	06/06/23	06/06/23	07/06/23	07/06/23	07/06/23
									punnax (m bgb	2.5	J			Zone	09/00/23	09/00/23	09/00/23	09/00/23	09/00/23	09/00/23	05/00/23	00/00/23	07700723	00/00/23	00/00/23	07/00/23	0// 00/ 23	07700723
								Data	set mean SOM%	4.52				Location	HP01	HP02	HP03	HP04	HP05	HP05	RC01	TP02	TP05	TP06	TP07	TP08	TP09	TP10
All values in n	ng/kg unless otherwise stated								Scenario SOM%	2.5				Depth (m bgl)	0.05	0.25	0.1	0.2	0.03	0.3	0.1	0.1	0.1	0.1	0.5	0.1	0.1	0.1
										No.	Soil																	
CAS No / P	Chemical of Potential Concern	Units	LoD	No.	Min.	Max.	Mean	Median	Standard	Samples	Saturation	GAC	GAC Source	Strata	MG	MG	MG	MG	MG	MG	TS	MG	TS	MG	HD	MG	TS	MG
Code				Samples	s Value	Value			Deviation	>= GAC & > LoD	Limit @2.5% SOM																	
P1357	TPH aro >EC10-EC12	mg/kg	< 2	5	2.00	2.00	2.00	2.00	0.00	0	899	180	Hydrock Derived		<2	<2	<2	<2		<2								
P1358	TPH aro >EC12-EC16	mg/kg	< 2	5	2.00	29.00	7.40	2.00	12.07	0	419	330	Hydrock Derived		29	<2	<2	<2		<2								
P1359	TPH aro >EC16-EC21	mg/kg	< 3	5	3.00	171.00	42.20	6.00	72.76	0	134	540	, Hydrock Derived		171	<3	6	<3		28								
P1360	TPH aro >EC21-EC35	mg/kg	< 10	5	10.00	270.00	79.40	43.00	108.44	0	12	1500	Hydrock Derived		270	15	43	<10		59								
P1362	TPH aro >EC35-EC44	mg/kg	< 10	5	10.00	39.00	15.80	10.00	12.97	0	12	1500	Hydrock Derived		39	<10	<10	<10		<10								
P1941	TPH aro >EC5-EC44	mg/kg	< 30	5	30.00	508.00	141.20	49.00	206.46	1		-			508	30	49	30		89								
P1373	Total TPH >EC5-EC44	mg/kg	< 60	5	60.00	1414.00	550.00	209.00	576.60	1		-			1414	209	197	60	1	870								
0	VOCs - BTEX & MTBE																											
71-43-2	Benzene	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	2265	0.41	C4SL - CL:AIRE 2014		<0.002	<0.002	<0.002	<0.002		<0.002								
108-88-3	Toluene	mg/kg	< 5	5	0.01	0.01	0.01	0.01	0.00	0	1916	300	Hydrock Derived		<0.005	<0.005	<0.005	<0.005		<0.005								
100-41-4	Ethylbenzene	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	1216	110	Hydrock Derived		<0.002	<0.002	<0.002	<0.002		<0.002								
95-47-6	Xylene, o-	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	1120	140	Hydrock Derived		<0.002	<0.002	<0.002	<0.002		<0.002								
1330-20-7	Xylene, p- (or combined m & p)	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	1353	130	Hydrock Derived		<0.002	<0.002	<0.002	<0.002		<0.002								
1634-04-4	МТВЕ	mg/kg	< 5	5	0.01	0.01	0.01	0.01	0.00	0	33075	110	Hydrock Derived		<0.005	<0.005	<0.005	<0.005		<0.005								
o	Pesticides																											
309-00-2	Aldrin DDD	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	63	6.6 1100	Hydrock Derived								<0.02					<0.02		
72-54-8 75-55-9	DDE	mg/kg mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	19.8 88	1100	Hydrock Derived Hydrock Derived								<0.02					<0.02		
50-29-3	DDT	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	9.3	1000	Hydrock Derived								<0.02					<0.02		
62-73-7	Dichlorvos	mg/kg	< 0.1	5	0.10	0.10	0.10	0.10	0.00	0	20049	0.068	Hydrock Derived								<0.1					<0.1		
60-57-1	Dieldrin	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	0.37	2	Hydrock Derived								<0.02					<0.02		
959-98-8 33213-65-9	Endosulfan - alpha Endosulfan - beta	mg/kg mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	0.007	18 17	Hydrock Derived Hydrock Derived								<0.02					<0.02		
	Hexachlorocyclohexanes - alpha (inc.												,								10102					10102		
319-84-6	Lindane)	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	42	0.56	Hydrock Derived								<0.02					<0.02		
319-85-7	Hexachlorocyclohexanes - beta (inc. Lindane)	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	5.0	0.21	Hydrock Derived								<0.02					<0.02		
	Hexachlorocyclohexanes - gamma																				×0.02					<0.02		
58-89-9	(inc. Lindane)	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	126	0.15	Hydrock Derived								<0.02					<0.02		
	TPH Additivity Check			HAZARD	QUOTIENTS	FOR EACH	FRACTION																					
													Alip	hatics >EC5-EC6	0.000128205	0.000128205	0.000128205	0.000128205		0.000128205								
													Alip	hatics >EC6-EC8	0.000217391	0.000217391	0.000217391	0.000217391		0.000217391								
													Aliph	atics >EC8-EC10	0.030769231	0.030769231	0.030769231	0.030769231		0.030769231								
									Conside	ered additive			-	atics >EC10-EC12		0.006060606	0.006060606	0.006060606		0.006060606								
														atics >EC12-EC16		0.002083333	0.001666667	0.00125		0.0175								
														tics >EC16-EC35		0.002054348	0.001576087	0.000358696		0.007630435								
														tics >EC35-EC44		0.000108696	0.000108696	0.000108696		0.000402174								
														matics EC5-EC7		6.66667E-05	6.66667E-05	6.66667E-05		6.66667E-05								
														natics >EC7-EC8		0.000166667	0.000166667	0.000166667		0.000166667								
									Consid	ered additive				atics >EC8-EC10		0.023809524	0.023809524	0.023809524		0.023809524								
									Conside	o, ca audiuve				atics >EC10-EC12		0.011111111	0.011111111	0.011111111		0.011111111								
													-	atics >EC12-EC16 atics >EC16-EC21		0.006060606	0.006060606	0.006060606		0.006060606								
									Conside	ered additive				atics >EC16-EC21 atics >EC21-EC35		0.005555556	0.011111111	0.005555556		0.051851852								
													1	tics >EC21-EC35		0.0066666667	0.028666667	0.0066666667		0.039333333								
														x for ali>C8-C16		0.03891317	0.038496503	0.038079837		0.054329837								
							Hazard	ndex table	- HI or HQ greate	er than 1 high	lighted with orar	nge shadino		for aro>C8-C16		0.040981241	0.040981241	0.040981241		0.040981241								
									5	5				for aro>C16-C35				0.012222222		0.091185185								
							L						1						1		1	1	1	1	1	1	1	1
	Legend:	MG	Made Grour	nd		<0.02			tory reporting limi			the detectior	1															
		тs	Topsoil				limit for th	e purposes o	f statistical analysi	is, as a conserv	ative estimate.																	
			Head Depos			0.02			equal to, the gener	ic assessment	criterion (GAC).																	
		FM	Forest Marb	le		'<10 V	Value exc Text resul		tatistical analysis																			
		1				11	. Jac roadil						1															

Risk parameter:			I Health - I	resider	ntial with	home-	-grown p)				TP12 @ 0.1	TP13 @ 0.2	TP17 @ 23	TP19 @ 0.2	TP21 @ 0.2	Ø	٥	٩	٥	۵	e e	a a	e ê
Client: Site: Job no.:	Cala Ho Himley 27141	Village M	ain Site					Dat	ta Filters Zone Strata	All ALL	ſ	Hvc	lrock													
Lab. report no(s).:	23-0811	16.1						Depth Mi	in (m bgl)	0.03		i i y C														
								Depth Ma	ix (m bgl)	2.3				07/06/23	07/06/23	13/06/23	12/06/23	13/06/23								
								Dataset mea	an SOM%	4.52				TP12	TP13	TP17	TP19	TP21								
/kg unless otherwise stated								Scenar	rio SOM%	2.5				0.1	0.2	2.3	0.2	0.2								
										No.	Soil															
Chemical of Potential Concern	Units	LoD	No.	Min.		Me	an Med	lian		Samples	Saturation	GAC	GAC Source	TS	MG	FM	TS	TS								
			Samples	Value	e Value			Dev	viation >	= GAC & > LoD	Limit @2.5% SOM															
Asbestos																										
Asbestos Identified	text	Y/N	16	-	-			- No. of	f detects:	0	-	-	-		N	N	N	N								
Hydrock Default Suite - FOC / SO	M / pH										-															
FOC (dimensionless)	0	0.001	15	0.010	0.059	0.0	026 0.0	27 (0.01		-	-	-		0.021	0.01	0.028	0.025								
SOM (calculated)	%	0.1724	15	1.72	10.17	4.5	52 4.6	65 2	2.16		-	-	-		3.6204	1.724	4.8272	4.31		1						
pH (su)	pH Units	0.1	15	7.40	8.30	8.0	01 8.0	00 0	0.25		-	-	-		7.4	8.1	7.8	7.8								
Hydrock Default Suite - Metals & P	РАН																									
Arsenic	mg/kg	< 2	15	2.00	16.00	10.	.60 11.	.00 4	4.98	0	NR	37	C4SL - CL:AIRE 2014		9	15	15	14								
Beryllium	mg/kg	< 0.5	15	0.50	1.30	0.8	81 0.7	70 0	0.32	0	NR	1.7	Hydrock Derived		0.6	0.7	1.1	0.9								
Boron	mg/kg	< 1	15	1.00	1.00	1.0	00 1.0	00 0	0.00	0	NR	300	Hydrock Derived		<1	<1	<1	<1								
Cadmium	mg/kg	< 0.2	15	0.20	0.20	0.2	20 0.2	20 0	0.00	0	NR	22	C4SL - CL:AIRE 2014		<0.2	<0.2	<0.2	<0.2							ļ	
Chromium (III)	mg/kg	< 2	15	2.00	26.00	14.	.00 15.	.00 8	8.52	0	NR	890	Hydrock Derived		13	15	22	18							ļ	
Chromium (VI)	mg/kg	< 2	15	2.00	2.00	2.0	00 2.0	00 0	0.00	0	NR	21	C4SL - CL:AIRE 2014		<2	<2	<2	<2								
Copper	mg/kg	< 4	15	4.00	19.00	12.	.13 13.	.00 4	4.09	0	NR	2500	Hydrock Derived		13	14	13	11								
Lead	mg/kg	< 3	13	3.00	25.00	12.	.23 12.	.00 €	6.61	0	NR	200	C4SL - CL:AIRE 2014		12	10	25	19								
Mercury, inorganic	mg/kg	< 1	15	1.00	_	1.0	00 1.0	00 0	0.00	0	NR	40	Hydrock Derived		<1	<1	<1	<1								
Nickel	mg/kg	< 3	15	3.00					6.71	0	NR	130	Hydrock Derived		9	19	16	14								
Selenium	mg/kg	< 2	15	2.00		2.0	00 2.0		0.00	0	NR	260	Hydrock Derived		<2	<2	<2	<2								
Vanadium	mg/kg	< 1	15	4.00			.20 29.		16.40	0	NR	410	Hydrock Derived		27	20	49	41								
Zinc	mg/kg	< 3	15	4.00	-		_		.8.97	0	NR	3900	Hydrock Derived		45	20	46	37								
Cyanide (free)	mg/kg	< 1	15	1.00			00 1.0		0.00	0	NR	24	Acute Risk - SoBRA 2020		<1	<1	<1	4								
Total Phenols (Monohydric)	mg/kg	< 2	15	2.00	_				0.27	0	38058	210	Hydrock Derived		3	<2 <0.1	<2 <0.1	<2 <0.1								
Acenaphthene	mg/kg	< 0.1	15	0.10	_	_	58 0.:		4.66	0	141	540	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Acenaphthylene	mg/kg	< 0.1	15	0.10					5.69	0	212	440 5500	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Benz(a)anthracene	mg/kg mg/kg	< 0.1	15	0.10	_	_			0.68	2	4.28	12	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Benzo(a)pyrene	mg/kg	< 0.1	15	0.10					8.81	3	2.28	5	C4SL - CL:AIRE 2014		<0.1	<0.1	<0.1	<0.1								
Benzo(b)fluoranthene	mg/kg	< 0.1	15	0.10	_	_			0.16	5	3.04	3.3	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Benzo(ghi)perylene	mg/kg	< 0.1	15	0.10					4.10	0	0.04	340	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Benzo(k)fluoranthene	mg/kg	< 0.1	15	0.10					3.64	0	1.72	93	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Chrysene	mg/kg	< 0.1	15	0.10					9.90	2	1.10	22	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Dibenz(ah)anthracene	mg/kg	< 0.1	15	0.10					0.98	5	0.010	0.29	, Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Fluoranthene	mg/kg	< 0.1	15	0.10			.22 0.:		9.92	0	47	560	Hydrock Derived	1	<0.1	<0.1	<0.1	<0.1								
Fluorene	mg/kg	< 0.1	15	0.10			26 0.:	10 3	3.48	0	77	420	Hydrock Derived	1	<0.1	<0.1	<0.1	<0.1								
Indeno(123cd)pyrene	mg/kg	< 0.1	15	0.10	16.50	2.6	63 0.:	10 5	5.05	0	0.15	36	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Naphthalene	mg/kg	< 0.1	15	0.10	1.97	0.2	29 0.:	10 0	0.53	0	183	30	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Phenanthrene	mg/kg	< 0.1	15	0.10	104.00	10.	.60 0.:	10 2	9.01	0	90	220	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
Pyrene	mg/kg	< 0.1	15	0.10	81.40	10.	.14 0.3	10 2	4.06	0	5.5	1200	Hydrock Derived		<0.1	<0.1	<0.1	<0.1								
PAH 16 Total	mg/kg	< 1.6	15	1.60	516.00	64.	.08 1.6	50 14	49.66			-			<1.6	<1.6	<1.6	<1.6								
TPH fractions																										
TPH ali EC05-EC06	mg/kg	< 0.01	5	0.01	0.01	0.0	01 0.0	01 0	0.000	0	558	78	Hydrock Derived													
TPH ali >ECo6-ECo8	mg/kg	< 0.05	5	0.05	0.05	0.0	05 0.0	05 0	0.000	0	322	230	Hydrock Derived													
TPH ali >EC08-EC10	mg/kg	< 2	5	2.00	2.00	2.0	00 2.0	0 00	0.000	0	190	65	Hydrock Derived												ļ	
TPH ali >EC10-EC12	mg/kg	< 2	5	2.00	_	2.2	20 2.0	00 0	0.45	0	118	330	Hydrock Derived												ļ	
TPH ali >EC12-EC16	mg/kg	< 3	5	3.00	66.00	24.	.00 5.0	00 2	8.68	0	59	2400	Hydrock Derived													
TPH ali >EC16-EC35	mg/kg	< 10	5	33.00	_	_		.00 34	45.30	0	21	92000	Hydrock Derived													
TPH ali >EC35-EC44	mg/kg	< 10	5	10.00			.60 10.		21.09	0	21	92000	Hydrock Derived													
TPH ali >EC5-EC44	mg/kg	< 30	5	33.00	_	_	2.60 194		00.17			-														
TPH aro EC05-EC07	mg/kg	< 0.01	5	0.01					0.00	0	2265	150	Hydrock Derived													
TPH aro >EC07-EC08	mg/kg	< 0.05	5	0.05	_				0.00	0	1916	300	Hydrock Derived	-												
TPH aro >EC08-EC10	mg/kg	< 2	5	2.00	2.00	2.0	00 2.0	00 0	0.00	0	1503	84	Hydrock Derived													

	_																							
Risk parameter:			n Health -	resident	tial with h	iome-gro	own produ	uce (2.5%SO																0 0
Client:	Cala Ho		lain Cita					Data Filters				lrock												
Site: Job no.:	27141	Village №	iain Site					Zone Strata			Hvo	Irock												
Lab. report no(s).:	23-0811	61					Πa	pth Min (m bgl)			iiyu	IIUCK												
	25 0011							oth Max (m bgl)					07/06/23	07/06/23	13/06/23	12/06/23	13/06/23							
							Datas	et mean SOM%	4.52				TP12	TP13	TP17	TP19	TP21							
/kg unless otherwise stated							5	Scenario SOM%	2.5				0.1	0.2	2.3	0.2	0.2							
									No.	Soil														
Chemical of Potential Concern	Units	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	Samples	Saturation Limit @2.5%	GAC	GAC Source	TS	MG	FM	TS	TS							
									LoD	SOM														
TPH aro >EC10-EC12	mg/kg	< 2	5	2.00	2.00	2.00	2.00	0.00	0	899	180	Hydrock Derived												
TPH aro >EC12-EC16	mg/kg	< 2	5	2.00	29.00	7.40	2.00	12.07	0	419	330	Hydrock Derived												
TPH aro >EC16-EC21	mg/kg	< 3	5	3.00	171.00	42.20	6.00	72.76	0	134	540	Hydrock Derived												
TPH aro >EC21-EC35	mg/kg	< 10	5	10.00		79.40	43.00	108.44	0	12	1500	Hydrock Derived												
TPH aro >EC35-EC44	mg/kg	< 10	5	10.00	39.00	15.80	10.00	12.97	0	12	1500	Hydrock Derived												
TPH aro >EC5-EC44 Total TPH >EC5-EC44	mg/kg mg/kg	< 30	5	30.00 60.00	508.00 1414.00	141.20 550.00	49.00 209.00	206.46 576.60			-								 					
VOCs - BTEX & MTBE				00.00		555.00	205.00	5.0.00																
Benzene	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	2265	0.41	C4SL - CL:AIRE 2014												
Toluene	mg/kg	< 5	5	0.01	0.01	0.01	0.01	0.00	0	1916	300	Hydrock Derived		1										
Ethylbenzene	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	1216	110	Hydrock Derived			1									
Xylene, o-	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	1120	140	Hydrock Derived												
Xylene, p- (or combined m & p)	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	1353	130	Hydrock Derived												
MTBE	mg/kg	< 5	5	0.01	0.01	0.01	0.01	0.00	0	33075	110	Hydrock Derived												
Pesticides Aldrin	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	63	6.6	Hydrock Derived	<0.02			<0.02	<0.02							
DDD	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	19.8	1100	Hydrock Derived	<0.02			<0.02	<0.02							
DDE	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	88	1100	Hydrock Derived	<0.02			<0.02	<0.02							
DDT	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	9.3	1000	Hydrock Derived	<0.02			<0.02	<0.02							
Dichlorvos Dieldrin	mg/kg mg/kg	< 0.1	5	0.10	0.10	0.10	0.10 0.02	0.00	0	20049 0.37	0.068	Hydrock Derived Hydrock Derived	<0.1			<0.1	<0.1							
Endosulfan - alpha	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	0.007	18	Hydrock Derived	<0.02			<0.02	<0.02							
Endosulfan - beta	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	0.00016	17	Hydrock Derived	<0.02			<0.02	<0.02							
Hexachlorocyclohexanes - alpha (inc. Lindane)	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	42	0.56	Hydrock Derived	<0.02			<0.02	<0.02							
Hexachlorocyclohexanes - beta (inc.	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	5.0	0.21	Hydrock Derived												
Lindane) Hexachlorocyclohexanes - gamma			-						-			,	<0.02			<0.02	<0.02							
(inc. Lindane)	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	126	0.15	Hydrock Derived	<0.02			<0.02	<0.02							
TPH Additivity Check			HAZARD Q	UOTIENTS	FOR EACH	FRACTION	ı																	
												Ali	pł											
												Ali	pł											
												Alip												
								Conside	ered additive	•		Aliph												
												Aliph												
												Aliph												
													roi											
												Arc		1										
												Aror												
								Conside	ered additive	•		Aron	na											
												Aron	na											
								Conside	ered additive	è		Aron	na											
												Aron												
												Arom							 					
						Hazard	ndex table	HI or HO great	er than 1 high	lighted with ora	nge shading	Hazard Ind Hazard Inde												
								or morgreate	andri i nign	agnicou witri Ofe	. go snaunny.	Hazard Inde												
						L						Trazara inde		1	1	1	1		1	1	I	<u> </u>		1
Legend:	MG	Made Grou	nd		<0.02					idered as being at	the detection													
	тs	Topsoil				-		statistical analysi																
		Head Depo			0.02			qual to, the gener	ic assessment	criterion (GAC).														
	FM	Forest Mar	ue		'<10 Y	Value exc Text result		atistical analysis																
	1				1.																			

Risk parameter:	Defaul	t - Human	Health - r	esidenti	al with ho	ome-gro	wn prod	uce (2.5%SOI	M)				â
Client:	Cala Ho	omes						Data Filters					
Site:	Himley	Village M	ain Site					Zone	All			lrock	
Job no.:	27141							Strata	ALL		Ηνα	rock	
Lab. report no(s).:	23-0811	16.1					De	epth Min (m bgl)	0.03		- y C		
	-5							pth Max (m bgl)	2.3				
							20	partition and bigo				-	
							Datas	et mean SOM%	4.52			-	
/kg unless otherwise stated								Scenario SOM%	4.5 ² 2.5			-	
ng unitess of her wise stated										0.1			
			No.	Min.	Max.			Standard	No. Samples	Soil Saturation			
Chemical of Potential Concern	Units	LoD	Samples	Value	Value	Mean	Median	Deviation	>= GAC & >	Limit @2.5%	GAC	GAC Source	
									LoD	SOM			
Asbestos													
Asbestos Identified	text	Y/N	16	-	-	-	-	No. of detects:	0	-	-	-	
Hydrock Default Suite - FOC / SOM	∕pH									-			
FOC (dimensionless)	0	0.001	15	0.010	0.059	0.026	0.027	0.01		-	-	-	
SOM (calculated)	%	0.1724	15	1.72	10.17	4.52	4.65	2.16		-	-	-	
pH (su)	pH Units	0.1	15	7.40	8.30	8.01	8.00	0.25		-	-	-	
Hydrock Default Suite - Metals & PA	H												
Arsenic	mg/kg	< 2	15	2.00	16.00	10.60	11.00	4.98	0	NR	37	C4SL - CL:AIRE 2014	
Beryllium	mg/kg	< 0.5	15	0.50	1.30	0.81	0.70	0.32	0	NR	1.7	Hydrock Derived	
Boron	mg/kg	< 1	15	1.00	1.00	1.00	1.00	0.00	0	NR	300	Hydrock Derived	
Cadmium	mg/kg	< 0.2	15	0.20	0.20	0.20	0.20	0.00	0	NR	22	C4SL - CL:AIRE 2014	
Chromium (III)	mg/kg	< 2	15	2.00	26.00	14.00	15.00	8.52	0	NR	890	Hydrock Derived	
Chromium (VI)		< 2	15	2.00	20.00	2.00	2.00	0.00	0	NR	21	C4SL - CL:AIRE 2014	
	mg/kg	< 2	15	4.00	19.00	12.13	13.00	4.09	0		21		
Copper	mg/kg									NR		Hydrock Derived	
Lead	mg/kg	< 3	13	3.00	25.00	12.23	12.00	6.61	0	NR	200	C4SL - CL:AIRE 2014	
Mercury, inorganic	mg/kg	< 1	15	1.00	1.00	1.00	1.00	0.00	0	NR	40	Hydrock Derived	
Nickel	mg/kg	< 3	15	3.00	20.00	11.47	14.00	6.71	0	NR	130	Hydrock Derived	
Selenium	mg/kg	< 2	15	2.00	2.00	2.00	2.00	0.00	0	NR	260	Hydrock Derived	
Vanadium	mg/kg	< 1	15	4.00	55.00	31.20	29.00	16.40	0	NR	410	Hydrock Derived	
Zinc	mg/kg	< 3	15	4.00	63.00	32.87	34.00	18.97	0	NR	3900	Hydrock Derived	
Cyanide (free)	mg/kg	< 1	15	1.00	1.00	1.00	1.00	0.00	0	NR	24	Acute Risk - SoBRA 2020	
Total Phenols (Monohydric)	mg/kg	< 2	15	2.00	3.00	2.11	2.00	0.27	0	38058	210	Hydrock Derived	
Acenaphthene	mg/kg	< 0.1	15	0.10	17.90	1.58	0.10	4.66	0	141	540	Hydrock Derived	
Acenaphthylene	mg/kg	< 0.1	15	0.10	0.66	0.16	0.10	0.16	0	212	440	Hydrock Derived	
Anthracene	mg/kg	< 0.1	15	0.10	19.30	2.24	0.10	5.69	0	2.91	5500	Hydrock Derived	
Benz(a)anthracene	mg/kg	< 0.1	15	0.10	34.00	4.83	0.10	10.68	2	4.28	12	Hydrock Derived	
Benzo(a)pyrene	mg/kg	< 0.1	15	0.10	28.90	4.34	0.10	8.81	3	2.28	5	C4SL - CL:AIRE 2014	
Benzo(b)fluoranthene	mg/kg	< 0.1	15	0.10	32.60	5.05	0.10	10.16	5	3.04	3.3	Hydrock Derived	
Benzo(ghi)perylene	mg/kg	< 0.1	15	0.10	13.40	2.20	0.10	4.10	0	0.04	340	Hydrock Derived	
Benzo(k)fluoranthene	mg/kg	< 0.1	15	0.10	13.30	1.71	0.10	3.64	0	1.72	93	Hydrock Derived	
Chrysene	mg/kg	< 0.1	15	0.10	33.70	4.38	0.10	9.90	2	1.10	22	Hydrock Derived	
Dibenz(ah)anthracene	mg/kg	< 0.1	15	0.10	3.45	0.54	0.10	0.98	5	0.010	0.29	Hydrock Derived	
Fluoranthene	mg/kg	< 0.1	15	0.10	102.00	12.22	0.10	29.92	0	47	560	Hydrock Derived	
Fluorene	-	< 0.1	15	0.10	13.20	12.22	0.10	3.48	0	77	420	Hydrock Derived	
	mg/kg	< 0.1	15	0.10	16.50	2.63	0.10	5.05	0	0.15	36	Hydrock Derived	
Indeno(123cd)pyrene	mg/kg	< 0.1	15	0.10	1.97	0.29	0.10	0.53	0	183	30		
Naphthalene	mg/kg			<u> </u>								Hydrock Derived	
Phenanthrene	mg/kg	< 0.1	15	0.10	104.00	10.60	0.10	29.01	0	90	220	Hydrock Derived	
Pyrene	mg/kg	< 0.1	15	0.10	81.40	10.14	0.10	24.06	0	5.5	1200	Hydrock Derived	
PAH 16 Total	mg/kg	< 1.6	15	1.60	516.00	64.08	1.60	149.66			-		
TPH fractions													
TPH ali EC05-EC06	mg/kg	< 0.01	5	0.01	0.01	0.01	0.01	0.000	0	558	78	Hydrock Derived	
TPH ali >ECo6-ECo8	mg/kg	< 0.05	5	0.05	0.05	0.05	0.05	0.000	0	322	230	Hydrock Derived	
TPH ali >ECo8-EC10	mg/kg	< 2	5	2.00	2.00	2.00	2.00	0.000	0	190	65	Hydrock Derived	
TPH ali >EC10-EC12	mg/kg	< 2	5	2.00	3.00	2.20	2.00	0.45	0	118	330	Hydrock Derived	
TPH ali >EC12-EC16	mg/kg	< 3	5	3.00	66.00	24.00	5.00	28.68	0	59	2400	Hydrock Derived	
TPH ali >EC16-EC35	mg/kg	< 10	5	33.00	782.00	370.20	189.00	345.30	0	21	92000	Hydrock Derived	
TPH ali >EC35-EC44	mg/kg	< 10	5	10.00	56.00	24.60	10.00	21.09	0	21	92000	Hydrock Derived	
TPH ali >EC5-EC44	mg/kg	< 30	5	33.00	906.00	412.60	194.00	400.17			-		
TPH aro EC05-EC07	mg/kg	< 0.01	5	0.01	0.01	0.01	0.01	0.00	0	2265	150	Hydrock Derived	
TPH aro >EC07-EC08	mg/kg	< 0.05	5	0.05	0.05	0.05	0.05	0.00	0	1916	300	Hydrock Derived	
TPH aro >EC08-EC10	mg/kg	< 2	5	2.00	2.00	2.00	2.00	0.00	0	1503	84	Hydrock Derived	

Risk parameter:	Default	t - Human	Health - r	esident	ial with ho	ome-gro	wn prod	uce (2.5%SOI	M)				@
Client:	Cala Ho	omes						Data Filters					
Site:	Himley	Village M	lain Site					Zone	All			lrock	
Job no.:	27141							Strata	ALL		Ηνο	Irock	
Lab. report no(s).:	23-0811	16.1					De	pth Min (m bgl)	0.03		l y c		
							De	oth Max (m bgl)	2.3				
							Datas	et mean SOM%	4.52				
/kg unless otherwise stated					1			Scenario SOM%	2.5				
Chemical of Potential Concern	Units	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	No. Samples >= GAC & > LoD	Soil Saturation Limit @2.5% SOM	GAC	GAC Source	
TPH aro >EC10-EC12	mg/kg	< 2	5	2.00	2.00	2.00	2.00	0.00	0	899	180	Hydrock Derived	
TPH aro >EC12-EC16	mg/kg	< 2	5	2.00	29.00	7.40	2.00	12.07	0	419	330	Hydrock Derived	
TPH aro >EC16-EC21	mg/kg	< 3	5	3.00	171.00	42.20	6.00	72.76	0	134	540	Hydrock Derived	
TPH aro >EC21-EC35	mg/kg	< 10	5	10.00	270.00	79.40	43.00	108.44	0	12	1500	Hydrock Derived	
TPH aro >EC35-EC44	mg/kg	< 10	5	10.00	39.00	15.80	10.00	12.97	0	12	1500	Hydrock Derived	
TPH aro >EC5-EC44	mg/kg	< 30	5	30.00	508.00	141.20	49.00	206.46			-		
Total TPH >EC5-EC44	mg/kg	< 60	5	60.00	1414.00	550.00	209.00	576.60			-		
VOCs - BTEX & MTBE													
Benzene	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	2265	0.41	C4SL - CL:AIRE 2014	
Toluene	mg/kg	< 5	5	0.01	0.01	0.01	0.01	0.00	0	1916	300	Hydrock Derived	
Ethylbenzene	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	1216	110	Hydrock Derived	
Xylene, o-	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	1120	140	Hydrock Derived	
Xylene, p- (or combined m & p)	mg/kg	< 2	5	0.00	0.00	0.00	0.00	0.00	0	1353	130	Hydrock Derived	
мтве	mg/kg	< 5	5	0.01	0.01	0.01	0.01	0.00	0	33075	110	, Hydrock Derived	
Pesticides	5.5											·	
Aldrin	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	63	6.6	Hydrock Derived	
DDD	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	19.8	1100	Hydrock Derived	
DDE	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	88	1100	Hydrock Derived	
DDT	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	9.3	1000	Hydrock Derived	
Dichlorvos	mg/kg mg/kg	< 0.1	5	0.10	0.10	0.10	0.10	0.00	0	20049 0.37	0.068	Hydrock Derived Hydrock Derived	
Endosulfan - alpha	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	0.007	18	Hydrock Derived	
Endosulfan - beta	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	0.00016	17	Hydrock Derived	
Hexachlorocyclohexanes - alpha (inc. Lindane)	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	42	0.56	Hydrock Derived	
Hexachlorocyclohexanes - beta (inc. Lindane)	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	5.0	0.21	Hydrock Derived	
Hexachlorocyclohexanes - gamma (inc. Lindane)	mg/kg	< 0.02	5	0.02	0.02	0.02	0.02	0.00	0	126	0.15	Hydrock Derived	
TPH Additivity Check			HAZARD QU		FOR FACH F	RACTION							
			THALAND GO		TOREAGIN							Alipł	
												Aliph	
												Alipha	
								Conside	ered additive			Alipha	
												Alipha	
												Aliphat	
												Aliphat	
												Aroi	
												Aron	
												Aroma	
								Conside	ered additive			Aroma	
												Aroma	
								A	and a later			Aroma	
								Conside	ered additive			Aromai	
						·						Aromat	
												Hazard Inde»	
						Hazard Ir	ndex table -	HI or HQ greate	er than 1 highl	ighted with orar	nge shading.	Hazard Index	
								-	-		-	Hazard Index f	
						L						a mast r	
Legend:	MG	Made Grou	nd		<0.02	Value belo	w the laborat	ory reporting limit	and are consid	lered as being at	the detection		
	TS	Topsoil						statistical analysis					
	HD	Head Depo	sits		0.02	Value grea	ter than, or e	qual to, the generi	c assessment o	criterion (GAC).			
	FM	Forest Mark	ole		[*] <10			atistical analysis					
					Y	Text result							

Phytotoxic GQRA

Assessment of Chemicals of Potential Concern to Plant Life

	Risk paramete	er:	Phytoto	xic pH >7										HP01 @ 0.0	5HP02 @ 0.2	ξ HPo3 @ 0:	1 HP04 @ 0.2	2HP05 @ 0.0	o; HPo5 @ 0.;	3 RC01 @ 0.1	TP02 @ 0.1	. TPo5 @ 0.1	. TPo6 @ 0.1	1 TP07 @ 0.8	5 TPo8 @ 0.1	. TPog @ 0.1	1 TP10 @ 0.1	1 TP12 @ 0.1	. TP13 @ 0.2	TP17 @ 2.3	TP19 @ 0.1	TP21 @ 0.2	0
	Clier	nt:	Cala Ho	mes					Data Filter	s																							
	Sit	te:	Himley '	Village Ma	in Site				Zone	All																							
	Job n	o.:	27141						Strat	All	H)	ydrock																					
	Lab. report no(s	s).:	23-0811	6.1				D	epth Min (m bgl	0.03	'																						
								De	epth Max (m bgl	2.3			Date	09/06/23	09/06/23	09/06/23	09/06/23	09/06/23	09/06/23	05/06/23	06/06/23	07/06/23	06/06/23	06/06/23	07/06/23	07/06/23	07/06/23	07/06/23	07/06/23	13/06/23	12/06/23	13/06/23	
													Zone																				
								C)ataset mean pŀ	8.01			Location	HP01	HP02	HPo3	HP04	HPo5	HPo5	RC01	TP02	TPo5	TPo6	TP07	TPo8	TP09	TP10	TP12	TP13	TP17	TP19	TP21	
All values in	mg/kg unless otherwise stated								Scenario pł	+ > 7			Depth (m bgl)	0.05	0.25	0.1	0.2	0.03	0.3	0.1	0.1	0.1	0.1	0.5	0.1	0.1	0.1	0.1	0.2	2.3	0.2	0.2	
CAS No / P Code	Chemical of Potential Concern	Units	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	No. Samples >= GAC & > LoD	GAC	GAC Source	Strata	MG	MG	MG	MG	MG	MG	TS	MG	TS	MG	HD	MG	TS	MG	TS	MG	FM	TS	TS	
	Hydrock Default Suite - FOC / SO	м∕рн																															
P1334	pH (su)	pH Unit	ts 0.1	15	7.40	8.30	8.01	8.00	0.25		-	-		8.2	8.3	8.2	8.3	7.7	8.3		7.9	8		8.1		8	8		7.4	8.1	7.8	7.8	
-	Hydrock Default Suite - Metals & P	АН																															
7440-38-2	Arsenic	mg/kg	< 2	15	2.00	16.00	10.60	11.00	4.98	0	250	MAFF 1998		11	6	2	<2	7	7		16	15		9		16	15		9	15	15	14	
7440-42-8	Boron	mg/kg	< 1	15	1.00	1.00	1.00	1.00	0.00	0	5	Nable, et al. 1997		<1	<1	<1	<1	<1	<1		<1	<1		<1		<1	<1		<1	<1	<1	<1	
16065-83-1	Chromium (III)	mg/kg	< 2	15	2.00	26.00	14.00	15.00	8.52	0	400	MAFF 1998 (Cr(T))		7	5	2	2	8	5		23	19		21		26	24		13	15	22	18	<u> </u>
18540-29-9	Chromium (VI)	mg/kg	< 2	15	2.00	2.00	2.00	2.00	0.00	0	25	ICRCL 70/90 1990		<2	<2	<2	<2	<2	<2		<2	<2		<2		<2	<2		<2	<2	<2	<2	<u> </u>
7440-50-8	Copper	mg/kg	< 4	15	4.00	19.00	12.13	13.00	4.09	0	200	BS3882 2015		13	11	4	4	11	9		15	15		14		16	19		13	14	13	11	<u> </u>
7440-02-0	Nickel	mg/kg	< 3	15	3.00	20.00	11.47	14.00	6.71	0	110	BS3882 2015		5	4	<3	<3	6	4		19	16		16		20	18		9	19	16	14	<u> </u>
7440-66-6	Zinc	mg/kg	< 3	15	4.00	63.00	32.87	34.00	18.97	0	300	BS3882 2015		27	14	6	4	34	14		55	41		27		60	63		45	20	46	37	<u> </u>
	Legend:	MG	Made Gro	und		<0.02				and are considered a	-]																					
		TS	Topsoil				detection estimate.	limit for the p	urposes of statisti	cal analysis, as a cons	ervative																						
		HD	Head Dep	osits		0.02	-			ic assessment criterio																							
						64.00	tomporti	100		nce is liquid or solid at	ambient																						
		FM	Forest Ma	rble		*<10	Value exc Text resul		atistical analysis																								
Template V	ersion:					-			nd that was not te	ested.																							
1.05: 11/04/3						•				d in the current filter s	settings																						

Assessment of Chemicals of Potential Concern to Plant Life

	Risk parameter		Dhutata	de al la T										TD o	- TD- 0		- T D 0	- TD		. 70-0 0	TOWNER	- T D		~	~		~	
	Risk parameter Client		Cala Hor	kic pH >7					Data Filters																			(a) (a)
	Site			ries /illage Ado	ditional N	Vertice																						
				nilage Aut	ullional w	/OFKS			Zone		H	ydrock																
	Job no.		27141						Strata			yarock																
	Lab. report no(s).		23-08115	,1					epth Min (m bgl. epth Max (m bgl.				Data	-0.(-0.(12/06/23								
								De	eptri Max (m bgt	2.4	l			08/06/23	08/06/23	08/06/23	0//06/23	09/06/23	09/06/23	12/06/23	09/06/23	09/06/23	12/06/23		 		 	
								-					Zone												 		 	
AU								L	Dataset mean pH				Location	TP23	TP26	TP29	TP32	TP34	TP35	TP36	TP39	TP41	TP45	 	 	 	 	
	mg/kg unless otherwise stated								Scenario pH				Depth (m bgl)	0.1	0.2	0.2	0.2	0.2	2.4	0.2	0.2	0.1	0.2		 		 	
CAS No / P Code	Chemical of Potential Concern	Units	LoD	No. Samples	Min. Value	Max. Value	Mean	Median	Standard Deviation	No. Samples >= GAC & > LoD	GAC	GAC Source	Strata	TS	MG	MG	MG	TS	СВ	MG	TS	MG	TS					
	Hydrock Default Suite - FOC / SOM	∕ pH																										
P1334	pH (su)	pH Unit	s 0.1	10	7.70	8.20	7.94	7.95	0.13		-	-		7.8	7.7	7.9	7.9	8.2	8	8	7.9	8	8					
-	Hydrock Default Suite - Metals & PAH	4																										
7440-38-2	Arsenic	mg/kg	< 2	10	7.00	16.00	13.00	15.00	3.46	0	250	MAFF 1998		16	16	16	15	7	9	15	15	9	12					
7440-42-8	Boron	mg/kg	<1	10	1.00	1.10	1.01	1.00	0.03	0	5	Nable, et al. 1997		<1	1.1	<1	<1	<1	<1	<1	<1	<1	<1					
16065-83-1	Chromium (III)	mg/kg	< 2	10	10.00	23.00	18.10	20.00	4.82	0	400	MAFF 1998 (Cr(T))		23	21	20	20	10	12	23	22	13	17					
18540-29-9	Chromium (VI)	mg/kg	< 2	10	2.00	2.00	2.00	2.00	0.00	0	25	ICRCL 70/90 1990		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2					
7440-50-8	Copper	mg/kg	< 4	10	8.00	29.00	18.90	19.00	7.40	0	200	BS3882 2015		22	27	22	26	8	15	15	16	9	29					
7440-02-0	Nickel	mg/kg	< 3	10	7.00	19.00	14.20	15.50	3.74	0	110	BS3882 2015		19	16	16	15	7	15	17	16	9	12					
7440-66-6	Zinc	mg/kg	< 3	10	19.00	88.00	55.30	54.00	25.19	0	300	BS3882 2015		82	88	76	79	25	19	55	53	31	45					
												_																
	Legend:	MG	Made Grou	nd		<0.02				and are considered a	-																	
		TS	Topsoil				detection estimate.	limit for the p	urposes of statistic	al analysis, as a cons	ervative																	
		СВ	Cornbrash	Formation		0.02		ater than, or e	qual to, the generi	c assessment criterio	n (GAC).																	
						64.00	Value exc	eed saturatior	n limit and substan	ce is liquid or solid at	ambient																	
						·<10	Value exc		atistical analysis																			
						Y	Text resul		naty 515																			
Template V	ersion:					-	Represent	ts a determina	nd that was not te	sted.																		
1.05: 11/04/2	3					·	represents	s a data point	that is not include	d in the current filter s	ettings																	

Controlled waters GQRA

	Hydrock Scenario:	Scenario	D - DWS 8	EQS (inla	and)																	1
	RTM Level:	RTM Level 2	- Groundwate	er Beneath Sc	ource Asse	ssment - arc	oundwate	r samples														
	Water body receptor(s):												123*	Exceeds solub	ulity value							
	Secondary receptor(s):									PNEC calcul	ated (inland	1		Grey text and		lue <= LoD						
		Groundwater								EQS)			999	Red text if value	ue > DWS							
		Cala Homes	Discotor											Red fill if value	e > Inland W	aters EQS						
	Site: Job no:	Himley Village, 27141									Sur	face Water R	onrocontativo	Hardness as r	na/I CoCO.	10						
	Test Certificates(s):										00.		oprocontativo		ing/i ouoo3	10						
	Dataset	ALL ZONES						Strata / Zone	CBF	FMF	FMF	FMF	FMF									
			Hazardous			-		Date sampled:	11/07/2023	11/07/2023	11/07/2023	11/07/2023	11/07/2023									
CAS / AGS Number	Chemical of Potential Concern (µg/I)	WFD Designation	Substance	Solubility Limit (µg/l)	No. of samples	Limit of Detection	DWS	Inland Waters EQS	R02	R01	R05	R06	R07									
7440-22-4	Silver (Ag) (dissolved)		Status	(+-37	5	0.05	n/r	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05					_				
7429-90-5	Aluminium (Al) (dissolved)				0		200		<0.0J	<0.03	<0.05	<0.05	<0.03									
7440-38-2	Arsenic (As) (dissolved)	SP	Н		5		10	50	0.47	<0.15	0.24	0.22	<0.15									
7440-42-8	Boron (B) (dissolved)		NP		5		1000		37	30	45	28	39									
7440-39-3	Barium (Ba) (dissolved)	DU	ND		5	0.06	1300		28	9	19	15	9							l	I	
7440-43-9 7440-48-4	Cadmium (Cd) (dissolved) Cobalt (Co) (dissolved)	PH	NP NP		5		n/c	0.08	<0.02	<0.02	<0.02	<0.02	<0.02					1	+	+		
18540-29-9		SP	H		5		n/a	3.4	<0.2	<0.2	<0.2	<0.2	<0.2									
16065-83-1		SP			5	5	n/a	4.7	<5	<5	<5	<5	<5									
7440-47-3	Chromium (Cr) (total) (dissolved)	0.0	NP		5	0.2	50		0.6	<0.2	<0.2	0.9	0.3					-				
7440-50-8 7439-89-6	Copper (Cu) (dissolved) Iron (Fe) (dissolved)	SP SP	NP		5		2000		2.7 0.029	1.2 0.024	1.1 0.023	1.1 0.009	0.7									
7439-97-6		PH	н		0		200	0.07	0.029	0.024	0.023	0.009	0.017									
P1286		SP			5		50		0.85	1.1	8.3	1.5	2									
7440-23-5	Sodium (Na) (dissolved)				0		200000	n/a														
7440-02-0	Nickel (Ni) (dissolved)	P	NP		5		20		6.5	5.4	5.5	5	5.4									
7439-92-1	Lead (Pb) (dissolved)	Р	H NP		5	0.0	10		2.3 <0.2	1.3	2.3	1.3 <0.2	0.7									
7440-36-0 7782-49-2	Antimony (Sb) (dissolved) Selenium (Se) (dissolved)		NP		5	÷	10		<0.2	<0.2	<0.2	<0.2	<0.2									
7440-31-5	Tin (Sn) (dissolved)				5		n/a	25	0.0	<0.4	<0.6	<0.6	<0.4									
7440-62-2	Vanadium (V) (dissolved)				4		n/a	20		< 0.02	< 0.02	0.55	0.32									
7440-66-6	Zinc (Zn) (dissolved)	SP	NP		5	0.2	n/a	12.3	0.8	<0.2	<0.2	1.1	<0.2									
D4005	Cyanide (free) (hydrogen	SP	NP			0.5																
P1095 57-12-5	cyanide) Cvanide (total)	5P	NP		5	0.0	50	1	5.1	4.3	1.5	1.8	2.5									
P1140	Ammonium (NH4*)		NP		0		500															
P1238	Ammnoniacal Nitrogen (as N)		NP		0		n/a	300														
	Ammonia (unionised) (NH ₃ as N)																					
P1720	{free ammonia}	SP	NP		5	15	n/a	n/a	67	150	63	79	52									
15541-45-4 16887-00-6	Bromate (BrO ₃) Chloride (Cl ⁻)				5		25000		<0.002	<0.002	<0.002	<0.002	<0.002									
16984-48-8	Fluoride (F ⁻)				5		250000		10	200	3.7 630	320	160					-	1	1		
P1348	Nitrate (NO ₃ ⁻)				5	0.05	50000		80.2	55.1	4.47	1.46	21									
P1349	Nitrite (NO ₂ ⁻)				5		500		18	40	33	<5	19									
	Sulfate (SO ₄ ²⁻)				5		250000		20500	70700	34200	31000	29500									
P1134 P1134	pH (min.) (su) pH (max.) (su)				5	0	6.5 9.5		7.4	7.4	7.1	7.5	7.4									
P1134 P1287	Electrical conductivity (µS/cm)				5	10	2500		7.4	7.4	610	480	7.4									
120-12-7	Anthracene	PH	н	56	Ŷ		n/a	0.1	< 0.01	< 0.01	< 0.01	<0.01	< 0.01				1				1	
50-32-8	Benzo(a)pyrene	PH	Н	3.8			0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01									
206-44-0	Fluoranthene	P	Н	230			n/a	0.0063														
91-20-3	Naphulaiche	P	NP	19000	0	1	n/a	2											<u> </u>	l	I	
	PAHs = sum of benzo(b)fluoranthene,																					
	benzo(b)fluoranthene,																					
	benzo(ghi)perylene, indeno(1,2,3-	-			1																1	
GRP01	cd)pyrene	Р	Н		5	0	0.1		0.01	0.01	0.01	0.01	0.01									
P1877	Phenol	SP	NP	84100000	5	0	n/a	7.7	0.01	0.01	0.01	0.01	0.01									

1 of 1

Appendix F Preliminary geotechnical risk register

Geotechnical Hazard Identification – Following Ground Investigation

The preliminary Geotechnical Risk Register following Ground Investigation is set out in Table J.3.

The probability and impact of a hazard have been judged on a qualitative scale as set out in Table J.2. The degree of risk (R) is determined by combining tan assessment of the probability (P) of the hazard occurring with an assessment of the impact (I) of the hazard and associated mitigation it will require if it occurs (R = P x I).

P = Probab	ility		I = Impact		R = Risk Ra	ting (P x I)
1	Very unlikely	(VU)	1	Very Low	1 - 4	None / negligible
2	Unlikely	(U)	2	Low	5 – 9	Minor
3	Plausible	(P)	3	Medium	10 - 14	Moderate
4	Likely (Lk)		4	High	15 – 19	Substantial
5	Very Likely (\	/Lk)	5	Very High	20 - 25	Severe

Table J.2: Qualitative assessment of hazards and risks

Table J.3: Preliminary geotechnical risk register

Lineard	Common to		<u></u>	Risk	Before Mitig	gation	A stiens De mine d
Hazard	Comments	Who is at Risk	Consequence	Р		R	Actions Required
		Residential Dwellings.	Foundation bearing capacity failure, settlement (total and differential).	3	4	12	Design foundations to found below any loose relative density gravel or soft clay.
			Floor slab failure.	3	4	12	Design floor slab as suspended.
Soft / loose compressible ground (low strength and high settlement potential).	The shallow soils of the Head Deposits and Cornbrash Formation are typically firm (or better) clays, gravels and limestone (Cornbrash Formation). Therefore widespread	Roads and Pavements.	Settlement (total and differential), of roads and pavements.	3	3	9	Design roads and pavements using suitable geotechnical parameters and increase the sub-base and use geo-grids as appropriate. If anticipated settlements are significant, and cannot be mitigated by design, over-excavate and replace soft soils.
	compressible ground is not anticipated, however local	Services.	Settlement (differential), causing damage to services.	2	3	6	Ground levels are remaining at approximately current levels. Settlements
	softened areas were recorded.	Gardens.	Settlement (differential), in gardens.	1	3	1	are not anticipated to be significant. No additional design requirements envisaged.
		Construction staff, vehicles and plant operators.	Trafficking of the site in temporary conditions. Overturning of plant during construction.	3	3	9	Where soft spots encountered, over- excavate and replace with suitable fill. Design working platform to suit the ground conditions.

	Commente)V/he is st Disk		Risk	Before Mitiç	gation	A atiense De su incel
Hazard	Comments	Who is at Risk	Consequence	Р	I	R	Actions Required
							Outline design of working platform to include geo- grid if necessary. Site inspection and watching brief by Contractor to review working platform frequently and regularly.
	The clays of the	Foundations.	Shrinkage or heave of soils and associated damage to foundations.	4	3	12	Design foundations in accordance with NHBC standards. Deepen foundations due to trees as appropriate. Consider use of piles where foundation depths are >2.50m
Shrinkage / swelling of the clay fraction of soils under the influence of vegetation.	Cornbrash Formation and Forest Marble Formation are medium heave potential.	Floor slabs.	Floor slab failure.	4	4	16	Design floor slabs in accordance with NHBC standards. Design floor slab as suspended with a void, unless the warranty provider is satisfied the soil is not desiccated, or slabs are constructed when soils are not seasonally desiccated (i.e. during winter and spring).
Variable lateral and vertical changes in ground conditions.	Head Deposits have been recorded sporadically across the site and varying	Residential Dwellings.	Foundation bearing capacity failure, settlement (total and differential).	4	4	16	Design foundations to found below any loose relative density gravel or

Hazard	Commente	Who is at Risk		Risk	Before Mitig	gation	Actions Deguined
Hazard	Comments	who is at Risk	Consequence	Р	I	R	 Actions Required
	bands of clay and limestone were						soft clay, and to take into account tree influence.
	recorded in both the Cornbrash Formation and Forest Marble		Floor slab failure.	4	4	16	Design floor slab as suspended.
	Formation.	Roads and Pavements.	Settlement (total and differential), of roads and pavements.	3	3	9	Design roads and pavements using suitable geotechnical parameters and increase the sub-base and use geo-grids as appropriate. If anticipated settlements are significant, and cannot be mitigated by design, over-excavate and replace unsuitable soils.
		Services.	Settlement (differential), causing damage to services.	2	3	6	Settlements are not anticipated to be significant with regard to services. No additional design requirements envisaged.
		Gardens.	Settlement (differential), in gardens.	1	3	3	It is unlikely that settlements will be significant with respect to gardens.
		Construction staff, vehicles and plant operators.	Trafficking of the site in temporary conditions. Overturning of plant during construction.	3	3	9	Where soft spots encountered, over- excavate and replace with suitable fill. Design working platform to suit the ground conditions.

Hazard	Comments	Who is at Risk	Concortiones	Risk	Before Mitig	gation	Actions Described	
Hazard	Comments	who is at Risk	Consequence	Р	I	R	Actions Required	
							Outline design of working platform to include geo- grid if necessary. Site inspection and watching brief by Contractor to review working platform frequently and regularly.	
Sulfates present in the soils.	The ground investigation has proven that there is the potential for expansive sulfate bearing soils to be present in the Forest Marble Formation	Attack of buried concrete.	Damage to concrete and reduction in strength.	4	4	16	Classify concrete in accordance with BRE SD1 and design concrete accordingly.	
		Construction staff, vehicles and plant operators.	Risk of collapse of excavation as obstructions are pulled out.	4	3	12		
Obstructions.	Shallow limestone beds have been proven during the	Roads and Pavements.	Hard spots in externals and roads / pavements.	4	2	8	Allow for a breaker to be present during construction to allow excavation through the	
	investigation.	Residential Dwellings.	Impact on piling, resulting in additional piles / columns and re-design of foundations.	4	3	12	limestone beds.	
Cont			piles / columns and re-design of	4	3		12	

Hazard	Comments	Who is at Risk		Risk	Before Mitig	gation	Actions Deputies d
Hazard	Comments	who is at Risk	Consequence	Р	I	R	Actions Required
	I	1				Γ	
Shallow groundwater.	roundwater. has proven a shallow		Difficulty with excavation. Limit state failure, excessive deformation, trafficking of site plant, inability to place and compact fill.	5	2	10	Contractor to appoint competent Temporary Works Designer to design temporary works, in accordance with BS 5975:2008+A1:2011. Temporary Works Designer to consider in their analysis the impact of, and requirements for, de- watering of excavations. Any water that collects at the base of excavations to be removed as soon as
	groundwater table	Slopes and Retaining.	Serviceability issues.	4	2	8	practicable. Contractor to appoint competent Temporary Works Designer to design temporary works, as required in accordance with BS 5975:2008+A1:2011. The shallow groundwater is to be taken into account during geotechnical design of the permanent works.
Changing groundwater conditions.	Groundwater has been monitored at shallow depths but has the potential to vary seasonally.	Construction staff, vehicles and plant operators.	Difficulty with excavation. Limit state failure, excessive deformation,	4	2	8	Contractor to appoint competent Temporary Works Designer to design temporary works as required, in accordance

	Commonto	Who is at Risk		Risk	Before Mitig	gation	Actions Required
Hazard	Comments	W NO IS AL RISK	Consequence	Р	I	R	Actions Required
			trafficking of site plant, inability to place and compact fill.				with BS 5975:2008+A1:2011. Temporary Works Designer to consider in their analysis the impact of a variable water table.
		Slopes and Retaining.	Serviceability issues.	4	2	8	Contractor to appoint competent Temporary Works Designer to design temporary works, as required in accordance with BS 5975:2008+A1:2011. Design drainage for retaining walls to account for fluctuating groundwater levels. The shallow groundwater is to be taken into account during geotechnical design of the permanent works.
the limestone in the lime	Unlikely but possible	Residential Dwellings	Reduction of lateral support potentially affecting stability of the structure.	1	4	8	Watching brief during construction by contractor Treatment of loose and
	in the limestone. Not encountered during		Floor slab failure.	1	4	4	voided ground if encountered.
	investigations.	Roads andServiceabilityPavementsaffected.		1	3	3	If treatment (compaction grouting) is required, this
		Services.	Damage to services. Leaking drainage	1	3	3	will need to be designed

Hazard	Commente	Who is at Risk		Risk	Before Miti	gation	Actions Required
Hazard	Comments	who is at Risk	Consequence	Р		R	Actions Required
			causing inundation and further collapse.				and undertaken by a specialist.
		Gardens.	Depression or void forming at the surface.	1	3	3	
		Construction staff, vehicles and plant operators.	Trafficking of the site in temporary conditions. Overturning of plant during construction.	1	3	3	
Cavities in the	Unlikely but possible	Residential Dwellings.	Reduction of lateral support potentially affecting stability of the structure.	1	5	5	Watching brief during construction by contractor Treatment of loose and
Superficial Deposits, due to solution	in the limestone. Not		Floor slab failure.	1	5	5	voided ground if
features.	encountered during investigations.	Roads and Pavements.	Serviceability affected.	1	3	3	encountered. If treatment (compaction grouting) is required, this
		Services.	Damage to services.	1	3	3	will need to be designed

	Commente	W/hatia at Dial/		Risk	Before Mitiq	gation	Actions Dominad
Hazard	Comments	Who is at Risk	Consequence	Р		R	Actions Required
			causing inundation and further collapse.				and undertaken by a specialist.
		Gardens.	Depression or void forming at the surface.	1	3	3	
		Construction staff, vehicles and plant operators.	Trafficking of the site in temporary conditions. Overturning of plant during construction.	1	3	3	
Unforeseen ground conditions - risk associated with limited data.	Ground investigation has been undertaken. However, additional information will be obtained during construction. Ground conditions are only defined at exploratory hole locations.	All aspects of the development		3	4	12	Designers to be contacted if conditions encountered are different to those identified during investigation. Regular inspections of excavations and earthworks for evidence of stability. Adequate investigation required to characterise the site and understand the potential risks.

Whilst the probability and impact of the hazard occurring can be reduced to a minimum by geotechnical design, the impact cannot be reduced below very low. The risk register will need to be up-dated, as necessary, to reflect design, additional information, data and experience as it is gained through the construction process.

Impacts of the design with regard to health and Safety considerations will need to be included by the designer at design stage.

Appendix G Plausible source-pathway-receptor contaminant linkages

Summary of potential contaminant linkages

Table K.2 lists the plausible contaminant linkages which have been identified. These are considered as potentially unacceptable risks in line with guidelines published in LCRM (2019) and additional risk assessment is required.

Source – Pathway – Receptor Linkages have been assessed in general accordance with guidance in CIRIA Report C552 (Rudland *et al* 2001) but modified to add a 'no linkage' category and to remove low/moderate risk (See Table K.1).

It should be noted that whilst the risk assessment process undertaken in this report may identify potential risks to site demolition and redevelopment workers, consideration of occupational health and safety issues is beyond the scope of this report and need to be considered separately in the Construction Phase Health and Safety Plan.

		Consequence			
		Severe	Medium	Mild	Minor
	High Likelihood	Very high risk	High risk	Moderate risk	Low risk
	Likely	High risk	Moderate risk	Low risk	Very low risk
>.	Low Likelihood	Moderate risk	Low risk	Low risk	Very low risk
abilit	Unlikely	Low risk	Very low risk	Very low risk	Very low risk
Probability	No Linkage	No risk			

Table K.1: Consequence versus probability assessment.

Table K.2: Exposure model – final source-pathway-receptor contaminant linkages

Sources	Possible Pathways	Receptors	Probability	Consequence	Risk Level	Comments
Pesticides and herbicides from	Ingestion or direct contact	Site users.	Low likelihood	Medium	Low	
agricultural practices both on and off-site (S1 &	Inhalation of fugitive dust.	Site users, Neighbours.	Low likelihood	Medium	Low	
S7).	Leaching through unsaturated zone.	Groundwater and possible abstractors.	Low likelihood	Medium	Low	Pesticides and herbicides were not recorded at concentrations above their GAC's during any of the laboratory testing.
	Surface run-off.	Aquatic ecosystems.	Low likelihood	Medium	Low	
	Base flow from contaminated groundwater.		Low likelihood	Medium	Low	
Hydrocarbon vapours from	Ingestion or direct contact.	Site users.	Low likelihood	Medium	Low	
potential VOC and petroleum hydrocarbon	Inhalation of fugitive dust	Site users, Neighbours.	Low likelihood	Medium	Low	No visual or olfactory evidence of petroleum hydrocarbon leakages were
spillages/leaks associated with farm machinery on	Inhalation of vapours.	Site users, Neighbours.	Low likelihood	Medium	Low	identified during investigations. Petroleum hydrocarbons were not recorded in exceedance of their GAC
site and off-site (S2 & S8)	Leaching through unsaturated zone.	Groundwater and possible abstractors.	Low likelihood	Medium	Low	during any of the laboratory testing.

Sources	Possible Pathways	Receptors	Probability	Consequence	Risk Level	Comments
	Surface run-off	Aquatic ecosystems,	Low likelihood	Medium	Low	
	Base flow from contaminated groundwater.	surface water and possible abstractions	Low likelihood	Medium	Low	
PAH from on-site and off-site burning	Ingestion or direct contact.	Site users.	Likely	Medium	Moderate	There is Made Ground associated with the track in the centre of the site, and there
(identified as an activity undertaken very close to the site, and is likely to have occurred on site) (S3 &S9).	Inhalation of fugitive dust	Site users, Neighbours.	Low likelihood	Medium	Low	are PAH at levels in excess of the GAC. Mitigation measures will be required to break the SPR linkage. Apart from the Made Ground material associated with the track,
51(0) (30 (30)).	Inhalation of vapours.	Site users, Neighbours.	Unlikely	Medium	Very low	However, this material may be suitable for use underneath hard standing.
	Leaching through unsaturated zone.	Groundwater and possible abstractors.	Low likelihood	Medium	Low	Testing indicates low leachability of contaminants.
	Surface run-off	Aquatic ecosystems,	Low likelihood	Medium	Low	
Base flow from contaminated groundwater.	contaminated	surface water and possible abstractions	Low likelihood	Medium	Low	No elevated concentrations of metals, metalloids and PAH in groundwater samples, when compared to the WQT.
	Root uptake.	Landscape planting	Unlikely	Mild	Very Low	Screening of results against GAC for plant life did not indicate any exceedances.

Sources	Possible Pathways	Receptors	Probability	Consequence	Risk Level	Comments		
						Made Ground is unlikely to be a suitable growing material.		
	Direct Contact	Water Supply Pipes	Likely	Minor	Very Low	There are elevated concentrations of contaminants with regard to potable water supply pipes, within this Made Ground material. Therefore, barrier pipes are required for water pipelines installed in this material, subject to agreement with the water supply company.		
Spreading waste on agricultural land	Ingestion or direct contact.	Site users.	Low likelihood	Medium	Low			
(identified as an activity undertaken very close to the	Inhalation of fugitive dust	Site users, Neighbours.	Low likelihood	Medium	Low			
site and is likely to have occurred on site) (S4 & S10)	Inhalation of vapours.	Site users, Neighbours.	Low likelihood	Medium	Low			
	Leaching through unsaturated zone.	Groundwater and possible abstractors.	Low likelihood	Medium	Low	- No CoPC's were in exceedance of their GAC's in the agricultural land across the site.		
	Surface run-off	Aquatic ecosystems,	Low likelihood	Medium	Low			
	Base flow from contaminated groundwater.	surface water and possible abstractions	Low likelihood	Medium	Low	1		
Use of waste in	Inhalation of	Site users.	Unlikely	Severe	Low	Asbestos was not identified in the		
construction: asbestos waste was	fibres.	Neighbours.	Unlikely	Severe	Low	laboratory testing of soil samples.		

Sources	Possible Pathways	Receptors	Probability	Consequence	Risk Level	Comments
historically commonly used to reinforce/repair site entrances (identified as an activity undertaken close to the site, and likely to have occurred on site) (S6 & S11)						
Made Ground associated with the track in the centre	Ingestion, inhalation or direct contact.	Site users.	Likely	Medium	Moderate	There is Made Ground associated with the track in the centre of the site, and there are PAH at levels in excess of the GAC.
of the site (S12)	Inhalation of fugitive dust.	Neighbours.	Low likelihood	Medium	Low	Mitigation measures will be required to break the SPR linkage. However, this material may be suitable for use underneath hard standing.
	Leaching through unsaturated zone.	Groundwater and possible abstractors.	Low likelihood	Medium	Low	Testing indicates low leachability of contaminants. No elevated concentrations of metals, metalloids and PAH in groundwater samples, when compared to the WQT.
	Surface run-off.	Aquatic ecosystems.	Low likelihood	Medium	Low	

Sources	Possible Pathways	Receptors	Probability	Consequence	Risk Level	Comments
	Base flow from contaminated groundwater.	Surface water and possible abstractors.	Low likelihood	Medium	Low	No elevated concentrations of metals, metalloids and PAH in groundwater samples, when compared to the WQT.
	Root uptake.	Landscape planting	Likely	Minor	Very Low	Concentrations of metals are not significantly elevated with regard to plant growth in this material.
	Direct Contact	Water Supply Pipes	High likelihood	Mild	Moderate	There are elevated concentrations of contaminants with regard to potable water supply pipes, within this Made Ground material. Therefore, barrier pipes are required for water pipelines installed in this material, subject to agreement with the water supply company.
General Made Ground across the main site and additional works areas (S8)	Ingestion, inhalation or direct contact.	Site users.	Low likelihood	Medium	Low	No CoPC's were in exceedance of their GAC's in the 'general' Made Ground across the site.
	Inhalation of fugitive dust.	Neighbours.	Low likelihood	Medium	Low	

Sources	Possible Pathways	Receptors	Probability	Consequence	Risk Level	Comments
	Leaching through unsaturated zone.	Groundwater and possible abstractors.	Low likelihood	Medium	Low	
	Surface run-off.	Aquatic ecosystems.	Low likelihood	Medium	Low	
	Base flow from contaminated groundwater.	Surface water and possible abstractors.	Low likelihood	Medium	Low	
	Root uptake.	Landscape planting	Unlikely	Medium	Very low	Concentrations of metals are not significantly elevated with regard to plant growth in this material.
	Direct Contact	Water Supply Pipes	Unlikely	Medium	Very low	No CoPC's in relation to water supply pipes were in exceedance of the UKWIR limits.

Sources	Possible Pathways	Receptors	Probability	Consequence	Risk Level	Comments
Ground gases (carbon dioxide and methane) across the site	Migration, build up and asphyxiation.	Site users. Neighbours.	Low likelihood	Medium to Severe Medium	Low risk Moderate	Ground gas monitoring has indicated no concentrations of methane above the detection limits of the analytical apparatus. CS1 conditions and no mitigation required for methane.
Radon	Inhalation.	Site users.	Unlikely	Severe	Low	BR211 indicates the site is in a low radon area and no radon protection is required.