

APPENDIX F

Greenfield Runoff Estimates

By Bailey Johnson Hayes (March 24)

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	James Griffiths
Site name:	Unit 13, Catalyst
Site location:	Bicester

Site Details

Latitude: 51.88476° N

Longitude: 1.16968° W

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management Reference: for developments", SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from **Date:**

1127783749 Apr 03 2024 10:43

Runoff estimation approach	-
manori communon approach	

IH124

Edited

Site characteristics

Total site area (ha):

Methodology

Q_{BAR} estimation method:

SPR estimation method: Calculate from SOIL type

Notes

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

(2) Are flow rates < 5.0 l/s?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics	Default	

SOIL type:	1	3
HOST class:	N/A	N/A
SPR/SPRHOST:	0.1	0.37

wil 6

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

Hydrological characteristics

characteristics	Default	Edited
SAAR (mm):	617	619
Hydrological region:	6	6
Growth curve factor 1 year:	0.85	0.85
Growth curve factor 30 years:	2.3	2.3
Growth curve factor 100 years:	3.19	3.19
Growth curve factor 200 years:	3.74	3.74

(3) Is $SPR/SPRHOST \le 0.3$?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.14	2.49
1 in 1 year (l/s):	0.12	2.11
1 in 30 years (l/s):	0.33	5.72
1 in 100 year (l/s):	0.46	7.94
1 in 200 years (l/s):	0.54	9.3

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	James Griffiths
Site name:	Unit 14, Catalyst
Site location:	Bicester

Site Details

Latitude: 51.88476° N

Longitude: 1.16968° W

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management Reference: for developments", SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from **Date:**

1674439407 Apr 03 2024 10:45

Runoff estimation approach

Site characteristics

Total site area (ha): 0.65

Methodology

 Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR

Calculate from SOIL type

Notes

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

CS	Default	Edited
	1	3
	N/A	N/A
	0.1	0.37

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

Hydrological characteristic

SOIL type:

HOST class:

SPR/SPRHOST:

years:

characteristics	Default	Edited
SAAR (mm):	617	619
Hydrological region:	6	6
Growth curve factor 1 year.	0.85	0.85
Growth curve factor 30 years:	2.3	2.3
Growth curve factor 100 years:	3.19	3.19
Growth curve factor 200	3 74	3 74

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.09	1.62
1 in 1 year (l/s):	0.08	1.37
1 in 30 years (l/s):	0.22	3.72
1 in 100 year (l/s):	0.3	5.16
1 in 200 years (l/s):	0.35	6.05

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	James Griffiths
Site name:	Unit 15, Catalyst
Site location:	Bicester

Site Details 51.88476° N Latitude: 1.16968° W Longitude:

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management **Reference:** for developments", SC030219 (2013), the SubS Manual C753 (Ciria, 2015) and the nonstatutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from

2763264215 Apr 03 2024 10:46

Runoff estimation approach

Site characteristics

Total site area (ha): 0.85

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

Notes

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR Calculate from SOIL type

When QBAR is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

31103	Default	Edited
	1	3
	N/A	N/A
	0.1	0.37

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

Hydrological

SOIL type:

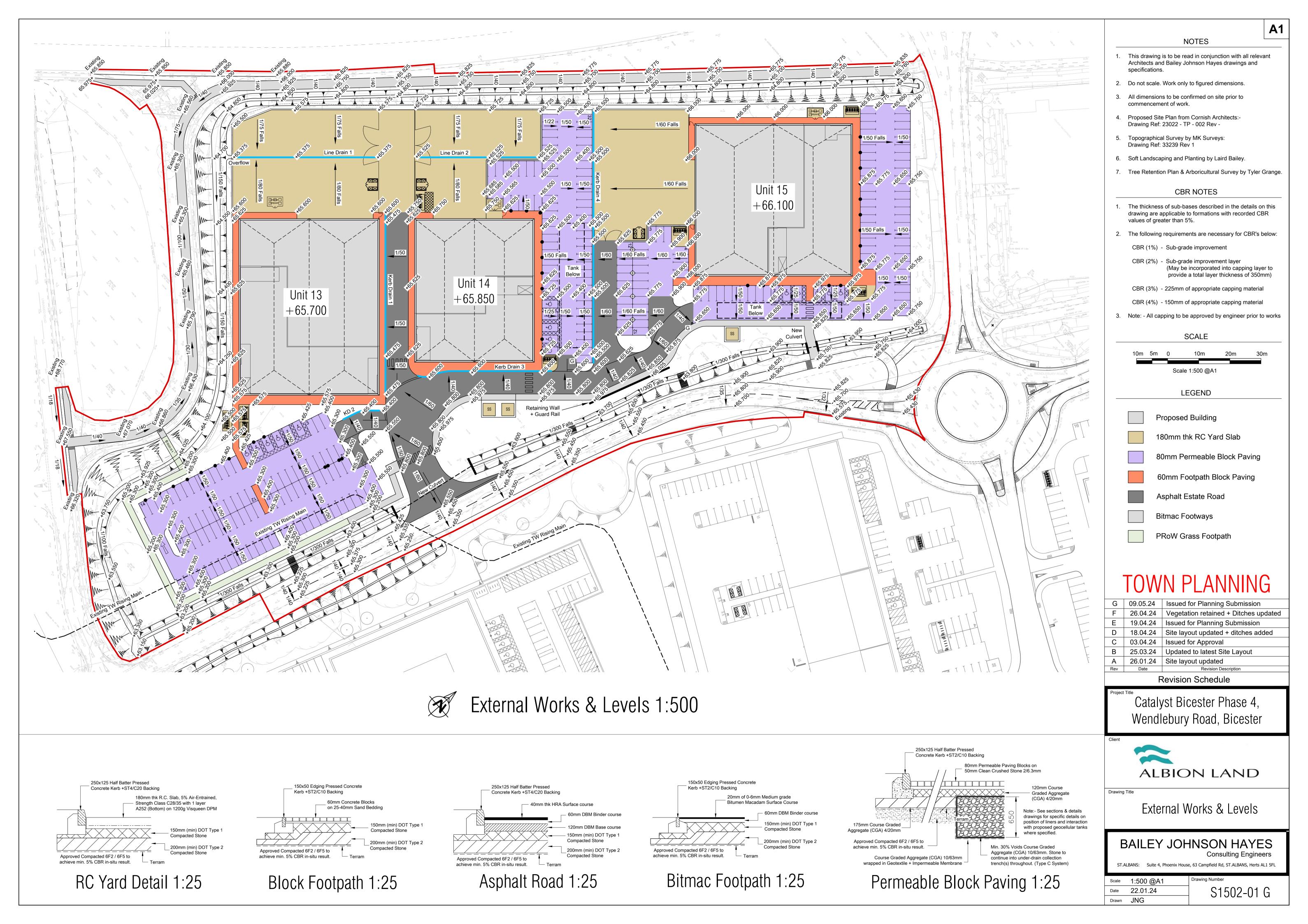
HOST class:

SPR/SPRHOST:

characteristics	Default	Edited	
SAAR (mm):	617	619	
Hydrological region:	6	6	
Growth curve factor 1 year.	0.85	0.85	
Growth curve factor 30 years:	2.3	2.3	
Growth curve factor 100 years:	3.19	3.19	
Growth curve factor 200 years:	3.74	3.74	

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.


Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.12	2.11
1 in 1 year (l/s):	0.1	1.8
1 in 30 years (l/s):	0.28	4.86
1 in 100 year (l/s):	0.39	6.75
1 in 200 years (I/s):	0.46	7.91

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme

APPENDIX G

External Works & Levels / Drainage Plans & Details

By Bailey Johnson Hayes (May 24)

DRAINAGE NOTES

- 1. This drawing is to be read in conjunction with all relevant Architects and Bailey Johnson Hayes drawings and specifications.
- 2. Do not scale. Work only to figured dimensions.
- 3. All dimensions and condition of existing drainage to have invert levels confirmed on site prior to commencement of
- 4. Proposed Site & Finishes Plan from Cornish Architects:-Drawing Ref: 23022 - TP - 002 Rev -Topographical Survey by MK Surveys: Drawing Ref: 33239 Rev 1
- 5. All works to Adopted Sewers to be carried out in accordance with the requirements of Sewers for Adoption in the Sewerage Sector Guidance v2.2 (2022) and the Adopting authority requirements.
- 6. All private drainage is to be constructed in accordance with the Building Regulations as current at construction.
- 7. Drains to be 'Hepworth Supersleeve' or similar approved Laid in Class S Bedding to BS 882 1983: Table 4, or to BS 8301 1985: Appendix D. 450mm Diameter Drains and above are to be Hepworth Concrete Pipes Class H or similar approved drains within the site may be different main accordance with Sewerage Sector Guidance v2.2 (2022).
- 8. All trenches within trafficked areas to be backfilled with 75mm down graded stone fill, placed and compacted in 150mm layers. All pipes in Roadways / Parking, less than 900mm deep to pipe crown to be encased in concrete and flexible joints provided at 3000mm centres.
- 9. All drains to have Class S granular bed and surround, except where:
- a) Cover beneath roads or hardstanding is less than 900mm to Pipe Crown or,
- b) Cover beneath landscaping is less than 600mm in which case Class Z (Concrete) bedding / surround is required.
- 10. All Manholes greater than 1.5m to soffit to be constructed in Precast Concrete Rings to BS 5911: Part 1. Rings to be bedded in sealant strips unless otherwise noted in Manhole Schedule.
- 11. Manholes in footpaths or landscaped areas to be backfilled with 40mm down graded stone fill, compacted in layers not exceeding 150mm thick. All manholes beneath roads and parking areas to be cased in minimum 150mm concrete surround.
- 12. All connections to rain water pipes to be provided with Rodding access.
- 13. All road gullies to be Hepworth Road Gullies, Ref 214 RGR4 with 150mm diameter outlets or similar approved. Gullies to be encased in minimum 150mm concrete.
- 14. Drains under buildings and within 300mm of the underside of floor slab to be encased in 150mm concrete. Casing to incorporate flexible fibre board joints at spacing's as recommended by the pipe manufacturer. Drains under buildings
- 15. Architect is to provide final rain water pipe positions for construction.
- 16. All Pipes to enter manhole with Soffits Level unless otherwise stated. See manhole details drawings for further clarity of connections.

SCALE

Scale 1:500 @A1

TOWN PLANNING

D 09.05.24 Issued for Planning Submission 26.04.24 Vegetation retained + Ditches updated 19.04.24 Issued for Planning Submission

Date Revision Description

Revision Schedule

Catalyst Bicester Phase 4, Wendlebury Road, Bicester

Scale 1:500 @A1

Date 03.04.24

Drawn JNG

SW Drainage Layout

BAILEY JOHNSON HAYES

Consulting Engineers

ST.ALBANS: Suite 4, Phoenix House, 63 Campfield Rd, ST.ALBANS, Herts AL1 5FL

Drawing Number S1502-02 D

S17 Stone Tank 2 1450m2*0.65m Deep IL 64.475 TL 65.150 IL 64.500 (2) S25 Stone Tank 3B 1610m2*0.65m Deep +300mm L 65.400 IL 64.750 Catchpit Line Drain 2 CL 65.425 IL 64.925 <150Ø 1:100≪ Unit 15 CL 65.575 CL 65.575 IL 64.550 IL 64.200 IL 64.650 S11 300Ø 1:80 +66.100225Ø 1:150 Stone Tank 3A ≶ 385m2*0.35m Deep ₹ TL 65.375 IL 65.025 L 64.225 Unit 13 +65.700Note: 600mm Dia. Culvert CL 66.000 IL 63.975 +Weir TL 65.400 Kerb Drain 3 G CO KerbDrain HB405 L=45m 300Ø 1:300 CL 65.575

L 66.000 IL 63.925

+Weir TL 65.200

SURFACE WATER MANHOLE / INSPECTION CHAMBER SCHEDULE

	T 0.		5.55511		0.551.111.0	001/55	
MH REF	CL	IL	DEPTH	DIA	OPENING	COVER	COMMENTS
S1	65.575	64.650	925	1200	600x600	D400	
S2	65.575	64.500	1075	1200	600x600	D400	
S3	65.700	64.425	1275	1350	600x600	B125	
S4	65.575	64.095	1480	1350	600x600	B125	
S5	65.575	64.050	1525	1350	600x600	B125	
S6	65.375	63.975	1700	1350	600x600	D400	300mm Catchpit IL 63.675m
S7	65.375	63.900	1775	1350	600x600	D400	300mm Catchpit IL 63.600m
S8	65.525	63.875	1950	1350	600x600	B125	2.5 l/s Hydrobrake fit to outlet + 300mm Sump
S9	65.575	64.545	1030	1200	600x600	B125	
S10	65.725	64.750	975	1200	600x600	D400	
S11	65.725	64.550	1175	1200	600x600	D400	
S12	65.575	64.200	1375	1350	600x600	D400	
S13	65.425	64.150	1275	1350	600x600	D400	
S14	66.000	63.925	2375	1800	2/600x600	B125	1.6 l/s Hydrobrake fit to weir + 300mm Sump
S15	65.650	64.650	1000	1200	600x600	D400	
S16	65.425	64.200	1525	1350	600x600	D400	300mm Catchpit IL 63.900m
S17	66.000	64.700	1300	1200	600x600	B125	
S18	65.975	64.535	1440	1200	600x600	D400	
S19	65.900	64.040	1860	1350	600x600	D400	
S20	66.000	63.975	2325	1800	2/600x600	B125	2.1 l/s Hydrobrake fit to weir + 300mm Sump
S21	65.850	64.925	925	450	430x430	D400	450mm PPIC with 150mm encasement
S22	65.700	64.175	1825	1350	600x600	D400	300mm Catchpit IL 63.875m
S23	65.675	64.525	1150	1200	600x600	D400	
S24	65.675	64.225	1450	1200	600x600	D400	
S25	65.550	64.475	1075	1200	600x600	D400	
S26	65.550	64.275	1275	1200	600x600	D400	
S27	65.725	64.125	1900	1200	600x600	D400	300mm Catchpit IL 63.825m
IC (1)	65.375	64.550	825	450	430x430	D400	450mm PPIC with 150mm encasement
IC (2)	65.375	64.500	875	450	430x430	D400	450mm PPIC with 150mm encasement
IC (3)	65.375	64.550	825	450	430x430	D400	450mm PPIC with 150mm encasement
IC (4)	65.375	64.550	825	450	430x430	D400	450mm PPIC with 150mm encasement
IC (5)	65.550	64.450	1100	450	430x430	D400	450mm PPIC with 150mm encasement
IC (6)	65.425	64.425	1000	450	430x430	D400	450mm PPIC with 150mm encasement
IC (7)	65.675	64.675	1000	450	430x430	D400	450mm PPIC with 150mm encasement
. ,			l		<u> </u>	L	<u> </u>

CATCHMENT UNIT 13 STONE 1A - 316 m3 STONE 1B - 293 m3

TOTAL = 609 m

QBAR OUTLET = 2.5 l/s

IMP. AREA = 0.750 ha

TOTAL = 1.000 ha

CATCHMENT UNIT 14 STONE 2 - 405 m3 TANK 1 - 122 m3 TOTAL = 527 m3

QBAR OUTLET = 1.6 l/s

IMP. AREA = 0.650 ha

TOTAL = 0.650 ha

CATCHMENT UNIT 15 STONE 3A - 60 m3 STONE 3B - 467 m3 TANK 2 - 76 m3

Note: - See BJH Section 278 Plans & Details for the off-site highway drainage to Wendlebury Road, A41 and associated cycle/footways

TOTAL = 603 m3

TOTAL = 0.850 ha

Note: - Geocellular tanks to be Hewitech Variobox or similar approved. Tank is to be provided with geotextile protection fleece, impermeable geomembrane, air vents, inlets and outlets to specalist providers details. Tank is to be installed in strict accordance with manufactures instructions. Structural integrity to be checked and approved before construction.

SW Drainage Layout 1:500

CL 65.650 IL 64.650

> Note: 600mm Dia. Culvert constructed 100-150mm

partially into the ground

QBAR OUTLET = 2.1 l/s IMP. AREA = 0.750 ha

*Product range from Marsh Industries Hydroil Bypass Separator Range or similar approved

PRODUCT

NSBP006*

NSBP006*

NSBP006*

NSBP006*

LENGTH

2254mm

2254mm

2254mm

2254mm

DIAMETER

1354mm

1354mm

INLET

64.525m

64.510m

64.400m

64.225m

OUTLET

COMMENTS

300mm Concrete Encased + Alarm

PETROL INTERCEPTOR SCHEDULE

2000m2

1400m2

1100m2

1850m2

TANK REF

PI(1)

PI(3)

PI(4)

DRAIN AREA

INDICATES SURFACE WATER PIPE RUNS INDICATES PERFORATED COLLECTION PIPES INDICATES LINEAR DRAINAGE CHANNELS INDICATES ROAD GULLIES / OUTLET GULLIES

LEGEND

INDICATES SURFACE WATER MANHOLES

INDICATES UNBOUND CGA STONE TANK

ALL PIPES CONNECTED DIRECTY INTO GULLIES TO BE 150MM DIAMETER (COLOURED MAGENTA ON PLAN)