

East West Rail Phase 2

Technical Note: Runoff Coefficients for Temporary Compound A1

Discipline/Grip Stage: Temporary Compounds/GRIP5

Document Number: 133735_RW-EWR-XX-A1-RP-DH-001102 Rev B01

Notice

This Technical Note was produced by the Alliance for the specific purpose of the Alliance

This Technical Note may not be used by any person other than the Alliance without the Alliance's express permission. In any event, Alliance accepts no liability for any costs, liabilities or losses arising as a result of the use of or reliance upon the contents of this report by any person other than the Alliance.

Document History

Project Number: 133735		DOCUMENT REF: 133735_RW-EWR-XX-A1-RP-DH- 001102				
Revision	Purpose and description	Originated	Checked	Reviewed	Authorised	Date
B01	For Consent	M. Stevens	P. Lawrence	A. Rose	J. Baldock	09/06/2020

Project:	East West Rail Phase 2	То:	Richard Bennett
Discipline:	Drainage	From:	Mark Stevens
Grip Stage:	GRIP 5 – Detailed design	cc:	Adrian Rose, Paul Lawrence & Jeremy Baldock
Title:	Runoff Coefficients for Temporary Compound A1		

1. Introduction

The purpose of this technical note is to set out the rationale for determining greenfield runoff rates and runoff coefficients for the drainage design to serve temporary compound A1.

2. Greenfield runoff calculations

Greenfield runoff rates for the A1 compound have been calculated using the <u>Wallingford greenfield runoff</u> estimation tool. In the calculation Soil Type 4 (with SPR value of 0.47) has been adopted as being most representative of on-site soil conditions.

Site excavation has classified subsoil across the site as dry firm clay. Insitu infiltration tests undertaken early in 2020 have also confirmed infiltration rates to be very low and representative of soils with poor drainage characteristics. This factual information in conjunction with Table 1 below supports the selection of Soil Type 4 in our greenfield runoff calculations. A summary of the infiltration testing results at A1 compound is provided in technical note 133735_RW-EWR-XX-A1-RP-DH-001101.

General Soil Description	Runoff potential	Soil Class
Well drained sandy, loamy or earthy peat soils Less permeable loamy soils over clayey soils on plateaux adiacent to very permeable soils in	Very low	S1
valleys		
Very permeable soils (e.g. gravel, sand) with shallow groundwater		
Permeable soil over rocks	Low	S2
Moderately permeable soils some with slowly		
Very fine sands, silts and sedimentary clays		
Permeable soils (e.g. gravel, sand) with		
shallow groundwater in low lying areas		
Mixed areas of permeable and impermeable	Moderate	S3
soils in similar proportions		
Clayey or loamy soils	High	S4
Soils of wet uplands:		
Bare rocks or cliffs		
Shallow, permeable rock soils on steep slopes	Very High	S5
Peat with impermeable layers at shallow depth		

Table 1: Institute of Hydrology method of assessment for soil classification

The greenfield runoff rates for compound A1 are shown in table 2 below. Peak discharges from the attenuation basins will be limited to these rates:

Northern catchment		Southern catchment		
1 in 1 yr	4.22 l/s	1 in 1 yr	8.00 l/s	
1 in 30 yr	11.41 l/s	1 in 30 yr	21.65 l/s	
1 in 100 yr	15.82 l/s	1 in 100 yr	30.02 l/s	

Table 2: Summary of greenfield runoff rates for A1 compound

3. Runoff coefficients for hydraulic modelling

The following runoff coefficients have been modelled for the A1 compound drainage design as set out in Drainage Strategy (document ref: 133735_2A-EWR-OXD-CC_A1-RP-DH-000001):

Surface Characteristic	Runoff Coefficient	Comments
Compound Infrastructure		
Paved areas – asphalt or concrete	1.00	N/A
Buildings – site cabins and shelters	1.00	
Granular Paved Areas – car park and welfare areas	0.50	N/A
Grassed Areas – verges and vegetated areas	0.15 (Gradient <15%)	N/A
Stockpile & Laydown Areas		
Granular Stockpiles – ballast, aggregates & crushed materials	0.50	It has been assumed that granular stockpile areas will have similar characteristics to ballasted track bed. Voids between aggregates and texture of aggregates will cause runoff reduction.
Topsoil Storage – placed on native soil	0.40	The stockpiled material will have voids resulting in runoff reduction. Topsoil mounds will be constructed with 1:1 side slopes and level tops. They are to be seeded to encourage water retention.
Laydown Areas – granular material (not paved)	0.50	N/A

Table 3: Summary of runoff coefficients applied in the drainage design.

Areas of the site allocated for material stockpiling and parking will be constructed using a 200mm thick layer of Class 6F5 material (recycled equivalent of Class 6F2. Refer to Table 6/5 of <u>Series 600 Earthworks</u> - <u>Specification for Highway Works</u>). This material is commonly used for capping and is comprised predominantly of aggregate sized between 10mm and 80mm; when placed the material is compacted but due to its composition the layer will have a voided structure. This will have the effect of reducing peak runoff rates (holding back some water within the voids) and volumes at outfalls. As such, a runoff coefficient of 0.5 is considered appropriate and has been adopted for these areas.

Excavated topsoil (for re-use) will be stockpiled in mounds with a level top and battered sides; all mounds will be grass-seeded to support sediment management, reduce runoff rates and encourage infiltration into the mound. For these reasons a runoff coefficient of 0.4 is considered appropriate and has been adopted for the topsoil storage area.

Haul roads and buildings have been represented within the hydraulic model as surfaces that are 100% impermeable to recognise the compacting effect that heavy construction plant will have, resulting in high rates of runoff.

The runoff coefficients adopted for this design have been determined with reference to published guidance and criteria applied to other civil engineering projects. For example, DMRB CD 521 (Table 4) recommends that runoff coefficients for cuttings should be 0.26 for low permeability soils; design standards for Crossrail (Table 5) suggest where ballast is used on clay formation (as per the proposals for A1 compound), that a runoff coefficient

of 0.60 is suitable. Given that compound A1, topographically, is relatively flat (<2% gradient), we consider that coefficients of 0.50 for stockpile/car parking areas and 0.40 for topsoil storage areas are appropriate for application to this design.

5.6.2

Values of the run-off coefficient coefficient α may be estimated from:

Table 5.6.2 Run-off coefficients for cuttings

Soil type	Antecedent wetness	α
High permeability	low medium high	0.07 0.11 0.13
Medium permeability	low medium high	0.11 0.16 0.20
Low permeability	low medium high	0.14 0.21 0.26

Table 4: Extract from DRMB standard CD 521 for recommended runoff rates

Area	Run-off coefficient	Comment
Roofed buildings	0.95	
Road/ Pavements	0.75 - 0.95	Use 0.95 if discharge is to soakaway
Ballast on Clay Formation	0.6	
Ash on clay formation	0.4	
Ballast on sand/gravel formation	0.1	
Grassed banks	0.6	Cuttings and embankments
Grasslands/ verges – sandy soil	0.05 - 0.10	Flat, gradient 2% or less
Grasslands/ verges - sandy soil	0.10 - 0.15	Average, gradient 2 – 7%
Grasslands/ verges – sandy soil	0.15 - 0.2	Steep, gradient 7 – 15%
Grasslands/ verges – heavy soil	0.13 –0.17	Flat, gradient 2% or less
Grasslands/ verges – heavy soil	0.18 – 0.25	Average, gradient 2 – 7%
Grasslands/ verges – heavy soil	0.25 -0.35	Steep, gradient 7 – 15%

Table 5: Recommended runoff coefficients within Crossrail drainage design standard CR-STD-303-6

East West Rail Alliance Technical Note 133735_RW-EWR-XX-A1-RP-DH-001102

EWR Alliance 2nd Floor Phoenix House Elder Gate Milton Keynes MK9 1AW

