

Historical Aerial Photography Published 1947 Source map scale - 1:10,560

The Historical Aerial Photos were produced by the Ordnance Survey at a scale of 1:1,250 and 1:10,560 from Air Force photography. They were produced between 1944 and 1951 as an interim measure, pending preparation of conventional mapping, due to post war resource shortages. New security measures in the 1950's meant that every photograph was rechecked for potentially unsafe information with security sites replaced by fake fields or clouds. The original editions were withdrawn and only later made available after a period of fifty years although due to the accuracy of the editing, without viewing both revisions it is not easy to spot the edits. Where available Landmark have included both revisions.

© Landmark Information Group and/or Data Suppliers 2010.

Map Name(s) and Date(s)

Order Details

Order Number:48311749_1_1Customer Ref:Bicester P and RNational Grid Reference:457110, 221150Slice:ASite Area (Ha):2.02Search Buffer (m):1000

Site Details Site at 457100, 221100

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck®

Additional SIMs

Published 1967

Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

48311749_1_1
Bicester P and R
457110, 221150
A
2.02
100

Site Details Site at 457100, 221100

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Supply of Unpublished Survey Information

Published 1974

Source map scale - 1:2,500

SUSI maps (Supply of Unpublished Survey Information) were produced between 1972 and 1977, mainly for internal use at Ordnance Survey. These were more of a `work-in-progress' plan as they showed updates of individual areas on a map. These maps were unpublished, and they do not represent a single moment in time. They were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	48311749_1_1
Customer Ref:	Bicester P and R
National Grid Reference:	457110, 221150
Slice:	A
Site Area (Ha):	2.02
Search Buffer (m):	100

Site Details Site at 457100, 221100

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck®

Ordnance Survey Plan Published 1979 - 1984 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

	· - _I
1	
SP5621 1979 1:2 500	SP5721 1984 1:2 500
1	1.2,000
1	
' <u></u>	

Historical Map - Segment A13

Order Details

Order Number:	48311749_1_1
Customer Ref:	Bicester P and R
National Grid Reference:	457110, 221150
Slice:	A
Site Area (Ha):	2.02
Search Buffer (m):	100

Site Details Site at 457100, 221100

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Ordnance Survey Plan

Published 1984

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

-	-	-	-	-	-	_	L		
· I							L		
ì			SP5	621			L		
ì			1:2,	500			L		
							I.		
							I.		
'	-	-	-	· -		•	-		

Historical Map - Segment A13

Order Details

Order Number:	48311749_1_1
Customer Ref:	Bicester P and R
National Grid Reference:	457110, 221150
Slice:	A
Site Area (Ha):	2.02
Search Buffer (m):	100

Site Details Site at 457100, 221100

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Additional SIMs

Published 1985 - 1992

Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	48311749_1_1
Customer Ref:	Bicester P and R
National Grid Reference:	457110, 221150
Slice:	A
Site Area (Ha):	2.02
Search Buffer (m):	100

Site Details Site at 457100, 221100

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Additional SIMs

Published 1993

Source map scale - 1:2,500

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

48311749_1_1
Bicester P and R
457110, 221150
A
2.02
100

Site Details Site at 457100, 221100

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Large-Scale National Grid Data

Published 1994

Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

48311749_1_1
Bicester P and R
457110, 221150
A
2.02
100

Site Details Site at 457100, 221100

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck®

Large-Scale National Grid Data

Published 1995

Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

48311749_1_1
Bicester P and R
457110, 221150
A
2.02
100

Site Details Site at 457100, 221100

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

APPENDIX C

BICESTER PARK & RIDE

FACTUAL REPORT ON GROUND INVESTIGATION

Prepared for ATKINS

Report Ref: 28429

Geotechnical Engineering Ltd Centurion House, Olympus Park Quedgeley, Gloucester. GL2 4NF

01452 527743 www.geoeng.co.uk

BICESTER PARK & RIDE

FACTUAL REPORT ON GROUND INVESTIGATION

Prepared for ATKINS

Report Ref: 28429

PROJECT: Ground Investigation

CONSULTANT: Atkins

VOLUME - VERSION	STATUS	ORIGINATOR	CHECKER	APPROVED	DATE
1 of 1 – A	DRAFT	JW	СТ	-	4/10/2013
1 of 1 – A	FINAL	JW		СТ	8/10/2013
ORIGINATOR			APPROVER		
ð	wather		8	RIS	3
JUSTINE WALKER			Colin Thomas		
Senior Geoenvironmer	ntal Engineer		Geotechnical Co	nsultant	

The report is not to be used for contractual or engineering purposes unless this sheet is signed and the report designated "Final".

The report has been prepared for the sole use and reliance by Atkins. GEL accepts no liability as a result of the use or reliance of this report by any other parties.

CONTENTS

REPORT

PAGE

1.	INTRODUCTION	.1
2.	SITE LOCATION AND GEOLOGY	.1
3.	GROUND INVESTIGATION	.1
3.1	Fieldwork	.1
3.2	Logging	.3
3.3	Laboratory Testing	.4
4.	REFERENCES	.5

APPENDICES

APPENDIX A	FIELDWORK DATA
APPENDIX B	TRIAL PIT PHOTOGRAPHS
APPENDIX C	LABORATORY TESTING

1. INTRODUCTION

It is proposed to develop a Park & Ride at a site just outside of Bicester, Oxfordshire. Geotechnical Engineering Limited (GEL) was instructed by Atkins to carry out an investigation to determine the ground conditions.

The scope of works and terms and conditions of appointment were specified by the Client and GEL correspondence reference T17604. The investigation was carried out under the direction and supervision of the Client.

This report describes the investigation and presents the findings.

2. SITE LOCATION AND GEOLOGY

The site is situated west of the A41, south-west of the centre of Bicester and may be located by its National Grid co-ordinates SP ⁴56805 ²20905.

British Geological Survey (BGS) England and Wales (Sheet No. 219, 1:50 000) and the BGS online geology (1:50,000) indicate the site is underlain by Alluvium – clay, silt, sand and gravel over the Kellaways Clay Member.

3. GROUND INVESTIGATION

3.1 Fieldwork

The fieldwork was carried out in general accordance with BS5930:1999+A2:2010 on 3rd September 2013 and comprised three boreholes and five trial pits.

The exploratory hole locations were selected by the Client and set out by this Company.

The boreholes, referenced BH01 to BH03 (Appendix A), were formed using a Terrier 2000 rig. Initially, an inspection pit was hand excavated at each borehole location to a maximum depth of 1.20m to check for buried services. Disturbed samples were taken and retained in a combination of plastic tubs, bag and glass jars. Dynamic sampling techniques were then employed to produce a continuous disturbed sample of 97mm and 83mm diameter in BH01 and BH02 respectively. The samples were recovered in semi-rigid plastic liner. BH03 met refusal in the SPT at 1.20m.

The samples were extracted horizontally from the sampler, labelled and taped up at each end to retain moisture.

Standard penetration tests (SPT) were carried out in general accordance with BS EN ISO 22476-3:2005+A1:2011. A split barrel was used and the split barrel samples retained in airtight jars. The SPT N value was taken as the number of blows to penetrate the 300mm test drive following a 150mm seating drive. Where low penetration was recorded the seating drive was terminated at 25 blows and the test drive completed after a further 50 blows. Detailed SPT results, together with the energy ratio (E_r), are presented in Appendix A and summarised as uncorrected N values on the borehole logs.

Boreholes were monitored for groundwater ingress as dynamic sampling proceeded. Water levels were also recorded on completion of the borehole and are presented on the relevant log.

On completion gas/water monitoring standpipes were installed in all boreholes. Each installation consisted of a 50mm ID HDPE slotted tube set in a filter response zone of non-calcareous pea gravel. The installation was sealed above with a bentonite plug and accessed

via a valve assembly. The installations were protected at the surface by a lockable stopcock cover set in concrete. Installation details are given on the relevant borehole log.

The trial pits, referenced TP01 to TP05 (Appendix A), were formed by a wheeled excavator with a 0.60m wide backactor bucket.

Representative disturbed samples were taken and retained in sealed plastic bags and airtight containers to retain moisture content.

Hand vane tests were carried out on suitable samples. The results are presented on the trial pit log in Appendix A.

Photographs of the trial pit profile and spoil heap were taken and are presented in Appendix B.

On completion all trial pits were backfilled with arisings compacted in suitable layers by the excavator bucket. The ground surface was left slightly proud to accommodate the future inevitable settlement of the backfill.

3.2 Logging

The logging of soils and rocks was carried out by an Engineering Geologist in general accordance with BS5930:1999+A2:2010. A key to the exploratory hole logs is presented in Appendix A.

Detailed descriptions of the samples are given in the borehole logs, Appendix A, along with details of sampling, in situ testing, groundwater ingress and relevant comments on drilling techniques.

The trial pits were logged in situ to a depth of approximately 1.20m and thereafter from the surface. Detailed descriptions are given in the trial pit logs, Appendix A, along with details of sampling and in situ testing, groundwater ingress and relevant comments on stability.

3.3 Laboratory Testing

A schedule of laboratory tests was prepared by the Client, the following tests being carried out in accordance with BS1377:1990, unless stated otherwise. The number in brackets refers to the test number given in that standard. The results are presented in Appendix B.

The natural moisture content [Part 2:3.2] was determined on seven selected samples.

Liquid limit, plastic limit and plasticity index tests [Part 2:4.3, 5.3 and 5.4] were carried out on seven selected samples. An Atterberg line plot has also been presented.

Particle size distributions were determined for two samples by wet sieving [Part 2:9.2]. The fine fractions of these samples were further analysed by sedimentation using the pipette method [Part 2:9.4]. The results are presented as grading curves.

The BRE SD1 (2005) suite of tests was carried out on one sample by Chemtest Laboratories using in-house methods.

Samples for contamination testing were taken from the site by the Client.

GEOTECHNICAL ENGINEERING LIMITED

4. **REFERENCES**

British Standards Institution (1999): Code of practice for site investigations. BS 5930 incorporating Amendments No. 1 & 2. Amendment 1 removes text superseded by BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and BS EN ISO 14689-1:2003, and makes reference to the relevant standard for each affected sub clause. Amendment 2 removes text superseded by BS EN 22475-1:2006 and makes reference to the relevant standard for each affected sub clause.

British Standards Institution (1990): Methods of tests for soils for civil engineering purposes. BS 1377 Parts 1-9.

British Standards Institution (2012): Geotechnical investigation and testing. Field testing. Standard penetration test. BS EN ISO 22476-3:2005+A1:2011.

Building Research Establishment (2005): Concrete in aggressive ground. BRE Special Digest 1. Third Edition.

APPENDIX A FIELDWORK DATA

KEY TO EXPLORATORY HOLE LOGS

Sample	type											
D Small	l disturbed	D*	Contamination	B Bulk disturbed	LB	Large bulk	disturbed		Water	Cs C	ore subsam	ple (prepared)
	mic	C	Cole	U Undisturbed	01	Undisturbe	a thin wa		iston			
Test typ	e											
S SPT-	 Split spoon Solid cone 	san follo	npler followed by upcorrect	uncorrected SPT 'N' Va ed SPT 'N' Value	alue							
(*250 - V	Where full te	st dr	ive not completed	l, linearly extrapolated	'N' v	alue reporte	ed, ** - De	notes no e	ffective pe	enetrati	on)	
11	ما			t composed for DC407	7 (40						ŗ	
н нап М Мас	a varie - dire kintosh prot	ect re be - I	eading in kPa - no number of blows t	o achieve 100mm per	/ (19 netrat	tion	notes reit	Isai				
PP Poo	cket penetro	mete	er - direct reading	in kg/sq.cm								
Vo Hea	adspace vap	our	reading, uncorrec	ted peak values in ppr	n, us	sing a PID (c	alibrated	with Isobut	ylene, usi	ng a 1	0.6eV bulb)	
Sample/	core range/l	f										
Dy	namic samp	le										
Un	idisturbed sa	ampl	e - open drive inc	luding thin wall. Symbo	ol ler	ngth reflects	recovery					
		_										
хх	= Total Core	Re	covery (TCR) as p	percentage of core run								
у у	= Solid Core	Re	covery (SCR) as p	percentage of core run	. As	sessment of	core is b	ased on ful	l diameter	r.		
z z	= Rock Qua	lity D	Designation (RQD). The amount of solid	core	e greater tha	n 100mm	expressed	as perce	ntage o	of core run.	
Where S	SPT has bee	n ca	rried out at begin	ning of core run, distur	bed	section of c	ore exclu	ded from S	CR and R	QD as	sessment.	
l _f - fractu average	ire spacing - and maximi	the Im v	average fracture	spacing (mm) over the NI = non-intact core	indi e NA	cated length	of core.	Where spa	cing varie	es signf	icantly, the r	ninimum,
avolugo						not applie						
Instrum	entation											
Poro tip	ous	Perfe stan	dpipe	Granular response zone		Bentonite seal		Cement/ bentonite grout	\bigotimes	Soil Backfi	II / ``	Concrete
Stratum	boundaries											
			Estimate	d boundary					Gra	ding bo	oundary	
Logging	I											
The logg Amendn referenc referenc	ging of soils ment 1 remo te to the rele te to the rele	and oves evan vant	d rocks has been text superceded t standard for each standard for each	carried out in genera by BS ENO ISO 146 ch affected sub clause n affected sub clause.	al ac 388-1 e. An	cordance w I:2002, BS nendment 2	ith BS 59 EN ISO removes	930:1999 ir 14688-2:20 text super	ncorporati 104 and E rceded by	ng Am 3S EN 9BS EN	endments 1 ISO 14689 I ISO 22475	(2006) & 2 (2010). 1:2003, and makes 5-1:2006 and makes
Chalk is accorda	logged in nce with CIF	gen RIA (eral accordance 2574; descriptions	with Lord et al (2002 and gradings should	2) Cl be tr	IRIA C574. eated with c	Where paution give	ossible, dy	namic sa	amples sample	in chalk ha	ave been logged in
For rock	e the term fr	actu	re has been used	to identify a mechanic	cal h	reak within t	he core	Nhere nos	sihle incir	ient an	d drilling inc	luced fractures have

For rocks the term fracture has been used to identify a mechanical break within the core. Where possible incipient and drilling induced fractures have been excluded from the assessment of fracture state. Where doubt exists, a note has been made in the descriptions. All fractures are considered to be continuous unless otherwise reported.

Made Ground is readily identifiable when, within the material make up, man made constituents are evident. Where Made Ground appears to be reworked natural material the differentiation between in situ natural deposits and Made Ground is much more difficult to ascertain. The interpretation of Made Ground within the logs should therefore be treated with caution.

The descriptors "topsoil" and "tarmacadam" are used as generic terms and do not imply conformation to any particular standard or composition.

General Comments

The process of drilling and sampling will inevitably lead to disturbance, mixing or loss of material in some soil and rocks.

Indicated water levels are those recorded during the process of drilling or excavating exploratory holes and may not represent standing water levels.

Legends are drawn in accordance with BS 5930:1999 incorporating Amendment 2.

All depths are measured along the axis of the borehole and are related to ground level at the point of entry.

BOREHOLE LOG

CLIENT ATKINS

RE

Geotechnical Engineering Ltd, Tel. 01452527743 28429.GPJ TRIALJH.GPJ GEOTECH.GLB 08/10/2013 08:50:32 SP

SITE BICESTER PARK AND RIDE

Start Date 3 September 2013

End Date 3 September 2013

progress date/time water depth	sample no & type	depth (m) from to	casing depth (m)	test type & value	samp. /core range	instru -ment	description	dept (m)	n reduced level (m)	l legend
03/09/13 0830hrs 03/09/13 0930hrs Dry	1B D* 2B 3D 4X D* 5D	0.00 - 0.50 0.50 0.50 - 1.00 1.20 - 1.65 1.20 - 2.00 2.00 2.00 - 2.29	- Nii - 1.20	S 26 S* 107			Grass over stiff light brown slightly sandy slight CLAY with frequent rootlets. Gravel is subangu subrounded fine to coarse limestone. Firm orange brown clayey very sandy GRAVE slightly gravelly sandy CLAY. Gravel is angular subrounded fine to coarse limestone. Medium dense orangish brown clayey sandy an subrounded fine to coarse limestone GRAVEL. Very dense bluish grey clayey sandy angular a subrounded fine to coarse weak limestone GR Borehole completed at 2.29m.	ily gravelly ilar and 0.50 iL with rare to 1.20 ngular to 2.00 AVEL. 2.25		
EQUIPMEN METHOD: CASING: 1 BACKFILL: 0.10-0.00m REMARKS	NT: Geoto Hand dug 28mm di : On com n. :: Boreho	echnical Terrier g inspection pit am to 2.00m. pletion, a slotter le refused at 2.2 DGS SHOULD BE F	2000 rig 0.00-1.20 d standpi 29m. READ IN CC) Dm. Dyna pe (50m) DNJUNCTIO	m) was	ampled (113n s installed to H KEY SHEETS	nm) 1.20-2.00m 2.00m, granular response zone 2.29-0.20m, ben	tonite seal 0.20-0.1	0m, stopcc	ick cover
water Strike	(III) Casi	ng (n) rose to	ο (m) τη		; (mn)	Groundwat	er not encountered.	CONTRACT 28429	CHE	CKED

Sheet

Scale

Depth

BH01

1 of 1

1:50

2.29 m

BOREHOLE LOG

CLIENT ATKINS

RE

Geotechnical Engineering Ltd, Tel. 01452527743 28429.GPJ TRIALJH.GPJ GEOTECH.GLB 08/10/2013 08:50:40 SP

SITE BICESTER PARK AND RIDE

Start Date 3 September 2013

End Date 3 September 2013

progress date/time water depth	sample no & type	depth (m) from to	casing depth (m)	test type & value	samp. /core range	instru -ment	description	C	depth (m)	reduced level (m)	legend
03/09/13 0945hrs 03/09/13 1045hrs Dry	1B D* 2B 3D 4X D*	0.00 - 0.50 0.50 0.50 - 1.00 1.20 - 1.65 1.20 - 1.50 1.50	- Nil	S 22			Grass over stiff light brown slightly sandy slightl CLAY with frequent rootlets. Gravel is subangul subrounded fine to coarse limestone. Orangish brown clayey very sandy angular to su- fine to coarse limestone GRAVEL. Firm becoming stiff bluish grey and orangish bro- slightly sandy locally sandy slightly gravelly silty Gravel is subangular and subrounded fine to co- limestone. Very dense bluish grey clayey sandy angular to subrounded fine to coarse weak limestone GRA Borehole completed at 1.55m.	y gravelly ar and Jbrounded Own CLAY. arse	0.40		
EQUIPMEI METHOD: CASING: N BACKFILL 0.10-0.00m REMARKS EXPLORATOR	NT: Geoto Hand dug lot used. : On com 1. :: Boreho RY HOLE Lo (m) casi	echnical Terrie g inspection pit pletion, a slotte le refused at 1. DGS SHOULD BE ing (m) rose	r 2000 rig 0.00-1.20 ed standpi 55m on lii READ IN CO to (m) tir	Dm. Dyna pe (50mi mestone DNJUNCTIO	amic sa m) was gravel ON WITH e (min)	Impled (98mr installed to HKEY SHEETS remarks Groundwat	n) 1.20-1.50m 1.50m, granular response zone 1.55-0.20m, bento er not encountered.	CONTRA	-0.10m .CT 9	, stopcoo CHEC C	ck cover CKED T

Sheet

Scale

Depth

BH02

1 of 1

1:50

1.55 m

BOREHOLE LOG

CLIENT ATKINS

RE

Geotechnical Engineering Ltd, Tel. 01452527743 28429.GPJ TRIALJH.GPJ GEOTECH.GLB 08/10/2013 08:50:41 SP

SITE BICESTER PARK AND RIDE

Start Date 3 September 2013

End Date 3 September 2013

Sheet

Scale

Depth

BH03

1 of 1

1:50

1.39 m

CLIENT ATKINS

SITE BICESTER PARK AND RIDE

borehole	borehole	bottom	casing	water	seating	g drive	test	drive		test		energy
no.	depth	depth	depth (m)	level (m)	blows	pen (mm)	blows	pen (mm)	type	Ν	ratio
	(11)	(11)	(11)	(11)		(((((((((((((((((((((((((((((((((((((((()			(70)
BH01	1.20	1.65	Nil	Dry	45	75 75	6776	75 75	75 75	s	26	64
BH01	2.00	2.29	2.00	Dry	8 17	75 75	19 31	75 65		S	107	64
BH02	1.20	1.65	Nil	Dry	0 0	75 75	2 4 5 11	75 75 7	75 75	S	22	64
BH02	1.50	1.55	Nil	Dry	25	10	50	40		S	375	64
BH03	1.20	1.39	Nil	Dry	14 11	75 20	36 14	75 20		S	158	64
notes:												
 Test car N values 	ried out in g s have not b	eneral acco een subject	rdance with ed to any co	BS EN ISC prrection.) 22476-3:200	05 + A1:2011						
 Test car Where f 	ried out usir ull test drive	ng split spoo	n S, solid c ted, linearly	one C. extrapolate	ed N value re	ported.		[CON	TRACT	СНЕ	
5. <1 Deno 6. ** Denot	otes hamme tes no effect	r self weight ive penetrat	penetration	i (sank unde	er own weigh	t).			28	429		CT

TRIAL PIT LOG

CLIENT ATKINS SITE BICESTER PARK AND RIDE

Start Date 3 September 2013

End Date 3 September 2013

no/type

sample/test

depth (m)

result

water

record

R

Geotechnical Engineering Ltd, Tel. 01452 527743 28429.GPJ TRIALJH.GPJ GEOTECH.GLB 08/10/2013 09:33:39 SP

	D*	0	30	Grass over stiff light brown slightly sandy slightly gravelly CLAY with frequent rootlets. Gravel is subangular and subrounded fine limestone.	_	
	1B	0.	30		0.35 -	
				Firm orangish brown slightly gravelly sandy CLAY. Gravel is subangular to rounded fine to coarse limestone.		
	2B	0.	50	Orangish brown clavey year sandy subangular to rounded fine to coarse	0.60	
				limestone GRAVEL.	-	
	D*	1.	00			0.00
	3B	1.	00		1.10	. 0.0
				Dark bluish grey and brown clayey sandy subangular and subrounded fine to coarse weak limestone GRAVEL with medium cobble content.	-	
1.80m Moderate nflow.	4B	2.	00			
					2 80	
	60		00	Firm and stiff bluish grey silty CLAY with very closely spaced thinly interlaminated		
	30	2.	30	Trial pit completed at 3.00m.	3.00	
Notes				Sketch of Foundation - Not to scale. All dim	ensions i	n metres.
Trial pit exc Groundwate Trial pit side Trial pit dim On complet	avated by er encoun es remain ensions 3 ion, the tr	JCB 3CX me tered at 1.80n ed stable and .50x0.60x3.00 ial pit was bac	echanical e n. vertical. Dm. ckfilled wit	excavator.		

TP01

legend

 Sheet
 1 of 1

 Scale
 1 : 25

 Depth
 3.00 m

level

(m)

depth

(m)

description

CHECKED

CONTRACT

28429

AGS

TRIAL PIT LOG

CLIENT ATKINS

SITE BICESTER PARK AND RIDE

sample/test

Start Date 3 September 2013

End Date 3 September 2013

water

RE

Geotechnical Engineering Ltd, Tel. 01452 527743 28429.GPJ TRIALJH.GPJ GEOTECH.GLB 08/10/2013 09:33:41 SP

record	no/type	result	depth (m)	description	(m)	(m)	legenu
1.80m Slow inflow. Standing water at 2.9m	1B D* 2B 3B D* 4B 5B		0.30 0.50 0.50 1.00 1.50 1.80 2.90	Firm orangish brown and brown slightly gravelly sandy CLAY with rare rootlets. Gravel is subangular and subrounded fine and medium limestone. Orangish brown clayey very sandy subangular to rounded fine to coarse limestone GRAVEL with low cobble content. Dark bluish grey and brown clayey sandy subangular and subrounded fine to coarse weak limestone GRAVEL with medium cobble content. Firm bluish grey silty CLAY with very closely spaced thinly interlaminated very weak fine to coarse siltstone. Trial pit completed at 3.00m.	0.40 0.80 1.30 2.70 3.00		
Notes				Sketch of Foundation - Not to scale. All dim	ensions	in metre	es.
Trial pit exca Groundwate Trial pit side Trial pit dim On complet	avated by er encoun es unstabl ensions 3 ion, the tr	JCB 3CX tered at 1 e below 1 .50x0.60x ial pit was	(mechanical e 80m. .30m. (3.00m. backfilled wit	excavator. h materials arising.	RACT	СНЕС	
				AGS 284	29		: T
					<u> </u>		/ 🔳

description

Sheet

Scale

Depth

depth

level

TP02

1 of 1

1:25

3.00 m

legend

TRIAL PIT LOG

CLIENT ATKINS

SITE BICESTER PARK AND RIDE

Start Date 3 September 2013

End Date 3 September 2013

RE

Geotechnical Engineering Ltd, Tel. 01452527743 28429.GPJ TRIALJH.GPJ GEOTECH.GLB 08/10/2013 09:33:41 SP

water		sample/te	est	description	depth	level	legend
record	no/type	result	depth (m)	description	(m)	(m)	legend
				Grass over stiff light brown slightly sandy slightly gravelly CLAY with frequent			<u></u>
	D*		0.10	rootlets. Gravel is subangular and subrounded fine to coarse limestone.	-	-	<u> </u>
						1	
	18		0.30		0.35 -	1	<u> </u>
	ID		0.50	Firm orangish brown and brown slightly gravelly sandy CLAY with rare rootlets.] -	-	
	00		0.50	Gravel is subangular to rounded fine to coarse limestone.	-	-	
	2B		0.50		-	-	$ \rightarrow \rightarrow \rightarrow \rightarrow $
	D*		0.60				
		H 62	0.70				<u> </u>
					0.95 -	1	
				Grey and orangish brown clayey sandy subangular and subrounded fine to coarse		1	0.0
					-	-	.0.0.0
	3B		1 20		-	-	0 0.00
1.45m	50		1.20		-	-	
1.45m Moderate					1 45 -	-	0.00
inflow				Dark bluish grev very clavey very sandy subangular and subrounded tabular weak	1.10	-	
IIIIOw.				limestone COBBLES.			
				Trial pit completed at 1.50m.			
				· · · · · · · · · · · · · · · · · · ·			
					<u> </u>	I	
Notes				Sketch of Foundation - Not to scale. All dim	ensions	in metre	es.
-	,						
I rial pit exc	avated by	JCB 3CX	mechanical e	excavator.			
Groundwate	er encount	ered at 1.	45m.				
Trial pit side	es remaine	ed stable	and vertical.				
Trial pit dim	ensions 3	.50x0.60x	1.50m.				
On complet	on, the tri	al pit was	backfilled wit	h materials arising.			
Excavator re	efused on	limestone	e at 1.50m.				
						-	
				CONTE	RACT	CHE	
				APR 29A	20	ſ	T I
EXPLORATORY	HOLE LOGS	SHOULD BE	READ IN CONJU	NCTION WITH KEY SHEETS 204	LJ		
·				· · ·		•	

Sheet

Scale

Depth

TP03

1 of 1

1 : 25

1.50 m

TRIAL PIT LOG

CLIENT ATKINS

SITE BICESTER PARK AND RIDE

Start Date 3 September 2013

End Date 3 September 2013

RE

Geotechnical Engineering Ltd, Tel. 01452527743 28429.GPJ TRIALJH.GPJ GEOTECH.GLB 08/10/2013 09:33:42 SP

water		sample/te	est	description	depth	level	logond
record	no/type	result	depth (m)	description	(m)	(m)	legend
				Grass over stiff light brown slightly sandy slightly gravelly CLAY with frequent			
				rootlets. Gravel is subangular and subrounded fine to coarse limestone.	-	1	<u> </u>
						1	
	18		0.30			1	
			0.30		0.40	-	
				Firm orangish brown and brown slightly sandy slightly gravelly CLAY with rare		-	
	2D		0.50	roollets. Graver is subangular to rounded line to coarse linestone.	_		
	D*		0.50		0.70		
				Orangish brown slightly sandy CLAY with a little fine to medium gravel. Gravel is]		
	3B		0.80	subangular to rounded fine to coarse limestone.	-		
					0.95 -	1	
				Orangish brown and bluish grey clayey sandy subangular to rounded fine to		-	
				coarse weak limestone GRAVEL with medium cobble content.		-	ا م ر م
						-	000
					-	-	<u> </u>
					_		2000
1.50m Rapid	4B		1.50		-	1	-00
inflow.					-	1	500
						1	
						{	
						-	ہ م
						-	520
					_		
							600
					-	1	00
Standing					-	-	000
water at 2 3m					-	-	
					-	-	Por
					2.60 _	-	
				Trial pit completed at 2.60m.			
Notes				Sketch of Foundation - Not to scale. All dim	ensions	in metre	es.
Trial pit exca	avated by	JCB 3CX	mechanical e	excavator.			
Groundwate	er encount	tered at 1.	50m.				
Trial pit side	es unstabl	e below 1	.50m.				
Trial pit dim	ensions 3	.20x0.60x	2.60m.				
On complet	ion, the tri	al pit was	backfilled wit	h materials arising.			
				CONTE		СНЕ	
				AGS	20	~	· -
EXPLORATORY	HOLE LOGS	SHOULD BE	READ IN CONJU	NCTION WITH KEY SHEETS 284	23		, 1
L						1	

Sheet

Scale

Depth

TP04

1 of 1

1 : 25

2.60 m

TRIAL PIT LOG

CLIENT ATKINS

SITE BICESTER PARK AND RIDE

Start Date 3 September 2013

End Date 3 September 2013

RE

Geotechnical Engineering Ltd, Tel. 01452527743 28429.GPJ TRIALJH.GPJ GEOTECH.GLB 08/10/2013 09:33:43 SP

water		sample/te	est	description	depth	level	legend
record	no/type	result	depth (m)	description	(m)	(m)	legena
				Grass over stiff light brown slightly sandy slightly gravelly CLAY with frequent			
				rootlets. Gravel is subangular and subrounded fine to coarse limestone.	1		
					0.30		
				Orangish brown clavey very sandy subangular to rounded fine to coarse	0.00 -		,
	D*		0.40	limestone GRAVEL.	-		,
	1B		0.50		-		
			0.00		0.65 -		, °.0° (
	D*		0.70	Firm and stiff grey mottled brown slightly sandy locally sandy slightly gravelly	-		
	U		0.70	CLAY. Gravel is subangular to rounded fine to coarse sandstone and limestone.	-		
					_		,
					_		
	2B	H 38	1.00		_		
					_		
							<u> </u>
					1.35		
1.40m				Dark bluish grey very clayey very sandy subangular and subrounded tabular weak	1.40 -		
Seepage.				Trial ait completed at 1.40m			
-				That pit completed at 1.40m.			
Notes				Sketch of Foundation - Not to scale All dime	ensions	in metre	es.
Trial pit exca	avated hv	JCB 3CX	mechanical e	excavator.			
Trial nit side	s remain	ed stable :	and vertical				
Trial nit dim	ensions 3	40x0 60x	1 40m				
On completi	ion the tri	al nit was	backfilled wit	h materials arising			
Excavator r	efused on	limestone	e at 1 40m				
					ACT		
					ACI		-KED
					20		_
EXPLORATORY	HOLE LOGS	SHOULD RF	READ IN CONJU	NCTION WITH KEY SHEETS 2842	29	C	
						I	

Sheet

Scale

Depth

TP05

1 of 1

1 : 25

1.40 m

APPENDIX B TRIAL PIT PHOTOGRAPHS

Photograph 2: TP01

Report 28429

Photograph 3: TP02

Photograph 4: TP02

Photograph 5: TP03

Photograph 6: TP03

Photograph 8: TP04

Photograph 9: TP05

Photograph 10: TP05

APPENDIX C LABORATORY TESTING

GEOTECHNICAL ENGINEERING LTD

For the attention of	Justine Walker		Date of Issue	23 Se	ptember 2013
				Page I	Number 1 of 7
	TE	ST REPORT			
PROJECT/SITE	Bicester Park and Ride		Sampl	es received	05/09/2013
GEL REPORT NUMBER	28429		Schedu	le received	05/09/2013
Your ref/PO:			Testing c	ommenced	11/09/2013
	SUMMARY O	F RESULTS ATTAC	HED		
TEST METHOD & DESCR	RIPTION			QUANTITY	ACCREDITED
					TEST
BS1377: Part 2: 1990:3.	2, Moisture Content			7	YES
BS1377: Part 2: 1990:4.	.2-4.4&5.2-5.4, Liquid & Plastic Limi	ts		7	YES
BS1377: Part 2: 1990:9.	.2, Particle Size Distribution - Wet Si	eve		2	YES
BS1377: Part 2: 1990:9.	4, Particle Size Distribution - Pipette	e		2	YES
BRE SD1 Suite (Subcont	tracted)			1	YES/NO
Remarks		Approved Signatories:			
The report should not be	reproduced except in full without	R Ewens (Laboratory Business	Manager) R Pratt	(Client Manage	er)
written permission from t	his laboratory.	W Jones (Laboratory Supervi	sor) J Hanson (Dire	ector) C Thoma	s (Consultant)
		Myr-	_		
		N			
Doc TR01 Rev No. 5	Revision date 22/03/13 DC:JH				

Geotechnical Engineering Ltd

Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

Registered number: 00700739 **VAT Number:** 682 5857 89

www.geoeng.co.uk

geotech@geoeng.co.uk TEL: 01452 527743 Fax: 01452 729314

Payments: Geotechnical Engineering Limited Sort code: 30-15-99 Bank account: 00072116

LIQUID AND PLASTIC LIMITS

BS.1377 : Part 2 : 1990 : 4 and 5

CLIENT ATKINS

Geotechnical Engineering Ltd, Centurion House, Olympus Park, Quedgeley, Gloucester. GL2 4NF, Tel. 01452 527743 28429.GPJ 23/09/2013 16:48:26

SITE BICESTER PARK AND RIDE

borehole	san	nple	specimen	natural	specimen	fraction	liquid	plastic	plasticity	
/trial pit		depth	depth	moisture	preparation	>0.425	limit	limit	index	description and remarks
no.	no./type	(m)	(m)	content	and	mm	(%)	(%)	(%)	
				(%)	test method	(%)				
BH01	2B	0.50	0.50	15	BXE	55	34	14	20	Orange-brown clayey very sandy
										GRAVEL with rare cobbles
DUIDO	20	0.50	0.50	40	DVE		70	200	50	Orange-brown mottled grev slightly sandy
	20	0.50	0.50	40	DAE	4	/9	20	55	CLAY with a little fine gravel
TP01	2B	0.50	0.50	16	BXE	29	48	20	28	Orange-brown slightly sandy silty CLAY
										with a little f-m gravel
	10	0.20	0.20	21	DVE	2	54	24	20	Brown slightly sandy silty CLAY with a
1902	В	0.30	0.30	21	DAE	3	54	24	30	little f-m gravel
										_
TP03	2B	0.50	0.50	20	BXE	28	52	22	30	Orange-brown slightly sandy silty CLAY
										with a little f-c gravel
	20	0.00	0.00	10	DVE	50	20	10	22	Orange-brown slightly sandy CLAY with a
1904	38	0.80	0.80	12	BXE	53	39	16	23	little f-m gravel
TP05	2B	1.00	1.00	24	BXE	40	66	24	42	Grey mottled orange-brown slightly sandy
										silty CLAY with a little f-c gravel
general remarks	S:	tornelie	0000000	o with DO to		1000 - 0 0	/	oncelf	d)	
	e content de	etermined in	i accordanc	e with BS1;	bii: Part 2:	1990 : 3.2	(uniess	specifie	u)	
# denotes same	i-piasuc le tested is	smaller the	an that which	h is recomm	nended in acc	ordance w	ith BS1	377		
	aration:	5			toot	method				
A - as received				n dried (60°	C_{1}	one neneti	rometer	(test 4 3	3)	CONTRACT CHECKED
B - washed on ().425mm si	eve	E - over	dried (105	°C) Y-r	ne point co	one pen	etromete	er (test 4 4) 28120 IN/I
C - air dried		-	F - not k	nown	Z-0	asagrande	e appara	atus (tes	t 4.5)	

ATTERBERG LINE PLOT

CLIENT ATKINS

SITE BICESTER PARK AND RIDE

	BH/TP No.	depth (m)	LL	PL	PI	remarks
•	BH01	0.50	34	14	20	
	BH02	0.50	79	26	53	
	TP01	0.50	48	20	28	
*	TP02	0.30	54	24	30	
\odot	TP03	0.50	52	22	30	
•	TP04	0.80	39	16	23	
0	TP05	1.00	66	24	42	

PARTICLE SIZE DISTRIBUTION

BS.1377 : Part 2 : 1990 : 9

CLIENT ATKINS

SITE BICESTER PARK AND RIDE

BH/TP No.BH01SAMPLE No./TYPE2BSAMPLE DEPTH (m)0.50SPECIMEN DEPTH (m)0.50

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	particle size (µm)	% finer
CLAY SILT SILT & CLAY	6 14 20	150		5	53	20	15
SAND	27	75		2	47	6	10
GRAVEL COBBLE & BOULDER	52 1	63	100	1.18	45	2	6
		50	94	0.6	41		
test method(s)	9.2 & 9.4	37.5	83	0.425	39		
test method:		20	71	0.010	26		
9.2 - wet sieving		20	71	0.212	20		
9.3 - dry sieving		10	59	0.15	23		
9.4 - sedimentation by pipette		6.2	54	0.062	20		
9.5 - sedimentation by hydrome	eter	0.3	94	0.065	20		
remarks:					(CONTRACT	CHECKED
# denotes sample tested is sma	aller than that which	is recommended	d in accordance	with BS1377		28429	WJ

PARTICLE SIZE DISTRIBUTION

BS.1377 : Part 2 : 1990 : 9

CLIENT ATKINS

SITE BICESTER PARK AND RIDE

TION Grey mottled orange-brown slightly sandy silty CLAY with a little f-c gravel

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	particle size (µm)	% finer
CLAY SILT	41 20	150		5	78	20	55
SILT & CLAY SAND	61 13	75		2	74	6	50
GRAVEL COBBLE & BOULDER	26 0	63		1.18	73	2	41
test method(s)	92&94	50		0.6	72		
	0.2 0.011	37.5	100	0.425	71		
test method: 9.2 - wet sieving		20	94	0.212	62		
9.3 - dry sieving		10	84	0.15	61		
9.4 - sedimentation by pipette		<u> </u>	70	0.000	64		
9.5 - sedimentation by hydrometer		0.3	79	0.063	01		
remarks:						CONTRACT	CHECKED
# denotes sample tested is sma		28429	WJ				

Depot Road Newmarket CB8 0AL Tel: 01638 606070

Geotechnical Engineering Ltd Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

FAO Rachel Pratt 12 September 2013

Dear Rachel Pratt

Test Report Number238086Your Project Reference28429 - Bicester Park and Ride

Please find enclosed the results of analysis for the samples received 6 September 2013.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

1001 thes

Keith Jones, Technical Manager

- Notes to accompany report:
 - The sign < means 'less than' Tests marked 'U' hold UKAS accreditation
 - Tests marked U hold UKAS accreditation
- Tests marked 'M' hold MCertS (and UKAS) accreditation Tests marked 'N' do not currently hold UKAS accreditation
- Tests marked 'S' were subcontracted to an approved laboratory
- n/e means 'not evaluated'
- *i/s means 'insufficient sample'*
- u/s means 'unsuitable sample'
- Comments or interpretations are beyond the scope of UKAS accreditation
- The results relate only to the items tested
- All results are expressed on a dry weight basis

• The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, phenols

- For all other tests the samples were dried at < 37°C prior to analysis
- Uncertainties of measurement for the determinands tested are available upon request
- None of the test results included in this report have been recovery corrected

Test Report 238086 Cover Sheet

Geotechnical Engineering Ltd Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

LABORATORY TEST REPORT

Results of analysis of 1 sample received 6 September 2013

FAO Rachel Pratt

28429 - Bicester Park and Ride

Report Date 12 September 2013

Login E	atch No				238086
Chemte	st LIMS ID				AJ13590
Sample	ID				BH01
Sample	No				2B
Samplir	ng Date				5/9/2013
Depth					0.50m
Matrix					SOIL
SOP↓	Determinand↓ CA	AS No↓ U	Inits↓ *		
2010	pН			М	8.3
2175	Sulfur (total TRL report 447)		%	М	0.034
2220	Chloride (extractable)	16887006	g l-1	М	<0.010
	Nitrate (extractable)	14797558	g l-1	Ν	<0.010
2120	Sulfate (2:1 water soluble) as SO4	14808798	g l-1	М	0.08
2420	Magnesium (soluble)	7439954	g l-1	Ν	<0.01
2430	Sulfate (total BS1377 HCI extract)	14808798	%	М	0.02

All tests undertaken between 09/06/2013 and 09/11/2013

* Accreditation status

Column page 1 Report page 1 of 1 LIMS sample ID range AJ13590 to AJ13590

APPENDIX D

Alex Mann Atkins Ltd The Axis 6th Floor West 10 Holliday Street Birmingham B1 1TF

t: 0121 483 5000 f: 0121 473 5858 e: alex.mann@atkinsglobal.com

i2 Analytical Ltd. Building 19, BRE, Garston, Watford, WD25 9XX

t: 01923 67 00 20 f: 01923 67 00 30 e: reception@i2analytical.com

Analytical Report Number : 13-45768

Project / Site name:	Bicester	Samples received on:	04/09/2013
Your job number:		Samples instructed on:	04/09/2013
Your order number:		Analysis completed by:	12/09/2013
Report Issue Number:	1	Report issued on:	12/09/2013
Samples Analysed:	12 soil samples		

title Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

Signed:

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Project / Site name: Bicester

Lab Cample Number				202701	202702	202702	202704	202705		
Lab Sample Number				283791	283/92	203/93	283/94	283795		
Sample Number				None Supplied						
Denth (m)				0.50	0.50	0.50	0.30	1.00		
Date Sampled				03/09/2013	03/09/2013	03/09/2013	03/09/2013	03/09/2013		
Time Taken				None Supplied						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status							
Stone Content	%	0.1	NONE	48	< 0.1	< 0.1	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	10	13	9.9	11	9.7		
Total mass of sample received	kg	0.001	NONE	1.1	1.1	0.93	0.97	1.1		
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	Not-detected	-		
General Inorganics					7.0			7.4		
pH Tatal Crazida	pH Units	N/A	MCERTS	7.1	/.3	6.6	6.5	/.1		
rotar Cydfillde	mg/kg	1	MONE	< 1	< 1	< 1	< 1	< 1		
	mg/kg	1		< 1	< 1	< 1	< 1	< 1		
Water Soluble Sulphate (Soil Equivalent)	ng/kg	0.0025	MCERTS	0.043	0.044	0.024	0.022	0.029		
Water Soluble Sulphate (301 Equivalent)	g/i g/l	0.0025	MCEDTS	0.045	0.011	0.024	0.022	0.025		
Sulphide	g/i ma/ka	1	MCERTS	7.2	< 1.0	< 1.0	< 1.0	<u>0.015</u> ≤ 1.0		
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20		
Ammonium as NH ₄	ma/ka	5	MCERTS	5.0	< 5.0	< 5.0	5.3	< 5.0		
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.2	0.8	3.0	1.1	0.7		
Total Phenols Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		
Speciated PAHS		0.05	MCEDIC	10.05	< 0.0F	< 0.0F	< 0.0F	< 0.0F		
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Acenaphthene	mg/kg	0.2	MCEDIC	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
Eluoropo	mg/kg	0.1	MCEDTC	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
Anthracene	ma/ka	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Eluoranthene	ma/ka	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
Pvrene	ma/ka	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
T-t-1 DAU										
Speciated Total EPA-16 PAHs	ma/ka	1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6		
Heavy Metals / Metalloids	-	-			-		-			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	23	18	16	33		
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	0.6	1.3	1.1	0.4		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	0.2	0.6		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	12	27	30	29	33		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	7.6	8.8	18	18	23		
Lead (aqua regia extractable)	mg/kg	2	MCERTS	8.2	13	24	26	23		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3		
Nicker (aqua regia extractable)	mg/kg	2	MCERTS	< 1.0	<u></u>	<u>25</u>	<u>∠3</u>	>5		
Zinc (aqua regia extractable)	ma/ka	2	MCERTS	30	67	< 1.0 83	< 1.0 79	< 1.0 80		
Ene (aqua regia exclueidore)	iiig/kg	۷ ۲	TIGEN 13	55	57		, ,	50		

Project / Site name: Bicester

Lab Sample Number				283791	283792	283793	283794	283795
Sample Reference				BPRBH1	BPRBH2	BPRBH3	BPRTP1	BPRTP1
Sample Number				None Supplied				
Depth (m)		0.50	0.50	0.50	0.30	1.00		
Date Sampled		03/09/2013	03/09/2013	03/09/2013	03/09/2013	03/09/2013		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

Project / Site name: Bicester

Lab Camula Number		202706	202202	202700	202700	202000					
Lab Sample Number				283/90	283/9/	283/98	283/99	283800			
Sample Reference				BPRTP2	BPRTPZ Nono Supplied	BPRTP3	BPRTP3	BPRTP4			
Sample Number											
Depth (iii) Data Sampled				03/09/2013	03/09/2013	0.10	03/09/2013	03/09/2013			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status								
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Moisture Content	%	N/A	NONE	11	12	15	11	10			
Total mass of sample received	kg	0.001	NONE	1.0	1.3	0.94	1.2	1.2			
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	Not-detected	-	-			
General Inorganics											
pH	pH Units	N/A	MCERTS	7.4	8.1	7.9	8.1	8.2			
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1			
Complex Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1			
Free Cyanide	mg/kg	1	NONE	< 1	< 1	< 1	< 1	< 1			
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.026	0.033	0.030	0.048	0.032			
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.013	0.017	0.015	0.024	0.016			
Sulphide	mg/kg	1	MCERTS	1.4	26	< 1.0	2.9	3.9			
Ammonium as NH	mg/kg	20	NONE	< 20	< 20	< 20	< 20	< 20			
Tatal Organia Carbon (TOC)	iiig/kg	0.1	MCEDTC	< 5.0 0.5	< 3.0	< J.0	< 0.1	< 3.0			
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5	0.2	2.1	< 0.1	0.2			
Total Phenols											
Total Phenols (monohydric)	ma/ka	2	MCERTS	< 20	< 2.0	< 20	< 2.0	< 20			
	mg/kg		HIGERIG	\$ 2.0	\$ 2.0	\$ 2.0	\$ 2.0	\$ 2.0			
Speciated PAHs											
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10			
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10			
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			
Pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10			
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10			
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			
	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			
Benzo(gni)perviene	mg/кg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Total PAH											
Speciated Total EPA-16 PAHs	ma/ka	1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	< 16			
Special du Tolar El X 10 TX15	mg/kg	1.0	HIGERIG	1.0	\$ 1.0	\$ 1.0	\$ 1.0	\$ 1.0			
Heavy Metals / Metalloids											
Arsenic (agua regia extractable)	ma/ka	1	MCERTS	13	9.0	17	36	28			
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	< 0.2	2.2	< 0.2	0.2			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.2	< 0.2	< 0.2			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	11	36	16	15			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	14	6.2	18	9.1	8.7			
Lead (aqua regia extractable)	mg/kg	2	MCERTS	15	5.6	30	10	10			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3			
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	28	13	22	29	26			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	68	18	85	36	39			

Project / Site name: Bicester

Lab Sample Number				283796	283797	283798	283799	283800
Sample Reference				BPRTP2	BPRTP2	BPRTP3	BPRTP3	BPRTP4
Sample Number				None Supplied				
Depth (m)		0.50	1.50	0.10	0.60	0.50		
Date Sampled		03/09/2013	03/09/2013	03/09/2013	03/09/2013	03/09/2013		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics					-			
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10

Project / Site name: Bicester

Lab Sample Number				283801	283802		
Sample Reference				BPRTP5	BPRTP5		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.40	0.70		
Date Sampled				03/09/2013	03/09/2013		
Time Taken		None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	6.5	14		
Total mass of sample received	kg	0.001	NONE	1.1	1.2		
Asbestos in Soil	Туре	N/A	ISO 17025	-	-		
General Inorganics					-	 	-
pH	pH Units	N/A	MCERTS	8.1	8.3		
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1		
Complex Cyanide	mg/kg	1	NONE	< 1	< 1		
Free Cyanide	mg/kg	1	NONE	< 1	< 1		
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.026	0.023		
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.013	0.012		
Sulphide	mg/kg	1	MCERTS	2.7	< 1.0		
Elemental Sulphur	mg/kg	20	NONE	< 20	< 20		
Ammonium as NH ₄	mg/kg	5	MCERTS	< 5.0	< 5.0		
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5	0.3		
Total Phenols		_		2.0			
	malka	. ,		~ / / /			

Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0		

Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20			
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10			
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20			
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20			
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10			
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20			
Pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20			
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20			
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10			
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20			
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10			
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20			
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.6	< 1.6			
Heavy Metals / Metalloids			_	_	-	_	-	_
				22				

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22	18		
Boron (water soluble)	mg/kg	0.2	MCERTS	0.3	0.6		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	17	30		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	10	15		
Lead (aqua regia extractable)	mg/kg	2	MCERTS	13	13		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	26	35		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	52	68		

Project / Site name: Bicester

Lab Causala Neurola en				202001	202002		
Lab Sample Number				283801	283802		
Sample Reference				BPRTP5	BPRTP5		
Sample Number	None Supplied	None Supplied					
Depth (m)	0.40	0.70					
Date Sampled	03/09/2013	03/09/2013					
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics					-	-	
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10		

Project / Site name: Bicester

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

of a sample is calculated as the % weight of the stones not passing a 2 mm sieve. Results are not corrected for stone content.

Stone content

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
283791	BPRBH1	None Supplied	0.50	Light brown sandy clay with stones.
283792	BPRBH2	None Supplied	0.50	Brown topsoil and clay with vegetation.
283793	BPRBH3	None Supplied	0.50	Brown clay and topsoil with vegetation.
283794	BPRTP1	None Supplied	0.30	Brown clay and topsoil with vegetation.
283795	BPRTP1	None Supplied	1.00	Brown clay and topsoil with gravel and vegetation.
283796	BPRTP2	None Supplied	0.50	Brown sandy clay.
283797	BPRTP2	None Supplied	1.50	Light brown clay and gravel.
283798	BPRTP3	None Supplied	0.10	Brown clay and topsoil with vegetation.
283799	BPRTP3	None Supplied	0.60	Light brown gravelly clay.
283800	BPRTP4	None Supplied	0.50	Light brown topsoil and clay with gravel and vegetation.
283801	BPRTP5	None Supplied	0.40	Light brown topsoil and clay with gravel and vegetation.
283802	BPRTP5	None Supplied	0.70	Brown clay and sand with vegetation.

Project / Site name: Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in soil	Determination of ammonium in soil by extraction with potassium chloride followed by addition of buffer solution followed by ion selective electrode.	In-house method	L035-PL	W	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-UK	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Complex cyanide in soil	Determination of complex cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in dichloromethane followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by extraction with water followed by ICP-OES. Results reported corrected for extraction ratio (soil equivalent) as g/l and mg/kg; and upon the 2:1	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Alex Mann Atkins Ltd The Axis 6th Floor West 10 Holliday Street Birmingham B1 1TF

t: 0121 483 5000 f: 0121 473 5858 e: gpss@atkinsglobal.com

Analytical Report Number : 13-46063

Project / Site name:	Bicester	Samples received on:	12/09/2013
Your job number:		Samples instructed on:	12/09/2013
Your order number:		Analysis completed by:	20/09/2013
Report Issue Number:	1	Report issued on:	20/09/2013

Samples Analysed:

Signed:

2 water samples

	Rehmen .
Signed:	

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Watford, Herts, WD18 8YS t: 01923 225404

f: 01923 237404 e: reception@i2analytical.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park,

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Page 1 of 4

Thurstan Plummer Organics Technical Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Bicester

I ab Sample Number		285395	285396						
Sample Reference	BDDBH1	BDDBH2							
Sample Number	None Supplied	None Supplied							
Depth (m)				None Supplied	None Supplied				
Date Sampled	11/09/2013	11/09/2013							
Time Taken				None Supplied	None Supplied				
			<u>,</u>	Home Supplied	Home Dupphed				
		유드							
Analytical Parameter	Uni	itec	edi						
(Water Analysis)	s	tio	tat						
		3 "	i Si						
General Inorganics									
pH	pH Units	N/A	ISO 17025	7.5	7.4				
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10				
Complex Cyanide	µg/l	10	NONE	< 10	< 10				
Free Cyanide	µg/l	10	ISO 17025	< 10	< 10				
Sulphate as SO ₄	ug/l	45	ISO 17025	105000	107000				
Sulphide	µg/l	5	NONE	< 5.0	< 5.0				
Ammonium as NH ₄	µg/l	15	ISO 17025	< 15	< 15				
Total Organic Carbon (TOC)	mg/l	0.1	ISO 17025	4.4	8.6				
Total Phenois				10	10				
Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	< 10				
Speciated PAHe									
Nanhthalana		0.01	100 17025	< 0.01	< 0.01				
	µg/1	0.01	150 17025	< 0.01	< 0.01				
Acenaphthana	µg/1	0.01	150 17025	< 0.01	< 0.01				
Eluoropo	µg/1	0.01	150 17025	< 0.01	< 0.01				
Dhenanthrene	µg/1	0.01	ISO 17025	< 0.01	< 0.01				
Anthracene	µg/1	0.01	ISO 17025	< 0.01	< 0.01				
Fluoranthene	µg/1	0.01	ISO 17025	< 0.01	< 0.01				
Pyrene	μg/1 μα/Ι	0.01	ISO 17025	< 0.01	< 0.01				
Benzo(a)anthracene	ug/l	0.01	ISO 17025	< 0.01	< 0.01				
Chrysene	ug/l	0.01	ISO 17025	< 0.01	< 0.01				
Benzo(b)fluoranthene	ua/l	0.01	ISO 17025	< 0.01	< 0.01				
Benzo(k)fluoranthene	µg/!	0.01	ISO 17025	< 0.01	< 0.01				
Benzo(a)pyrene	ua/l	0.01	ISO 17025	< 0.01	< 0.01				
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01				
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01				
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01				
Total PAH					1			·	
Total EPA-16 PAHs	µg/l	0.2	ISO 17025	< 0.20	< 0.20				
Harris Martala / Martalla Mar									
neavy Metals / Metallolds		1	100 17025	F C	16			r	
Arsenic (dissolved)	µg/I	10	150 17025	5.0	140			l	
Codmium (dissolved)	µg/1	10	150 17025	100	140			l	
Caumium (UISSOIVEU) Chromium (beyayalent)	µg/1	U.1	150 17025	< 0.10	< 0.10				
Chromium (dissolved)	µg/1	0.4	150 17025	< 5.0	< 5.0				
Conner (dissolved)	µg/I	0.4	150 17025	17	< 0.4				
Lead (dissolved)	μg/1 μα/Ι	1	ISO 17025	<u>,,</u> ∠10	< 1.0				
Mercury (dissolved)	µg/1	0.5	ISO 17025	< 0.5	< 0.5				
Nickel (dissolved)	µg/1	03	ISO 17025	13	50				
Selenium (dissolved)	U0/I	4	ISO 17025	< 4.0	< 4.0				
Zinc (dissolved)	ua/l	0.4	ISO 17025	< 0.4	4.7				

Project / Site name: Bicester

Lab Sample Number				285395	285396		
Sample Reference				BPRBH1	BPRBH2		
Sample Number				None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied		
Date Sampled	11/09/2013	11/09/2013					
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0		
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0		
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0		
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C6 - C8	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C8 - C10	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C5 - C7	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C7 - C8	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C8 - C10	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10		

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Bicester

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of ammonium in water by addition of buffer solution followed by ion selective electrode. Results for ammonia species are calculated from raw ammoniacal nitrogen data,	In-house method	L035-PL	W	ISO 17025
Boron in water	Determination of boron by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073S-PL	W	ISO 17025
Complex cyanide in water	Determination of complex cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	NONE
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L070-UK	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L010-PL	W	NONE
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total organic carbon in water	Determination of total organic carbon in water by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	ISO 17025
TPH7 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-UK	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX E

Author	Atkins
Revision	3
Date	31/03/2011

Title

SSVs derived using CLEA for 1% SOM and sand soil type, Commercial land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Compound	SSV mg/kg	Notes
1,1,1-Trichloroethane	325	
1,1,1,2-Tetrachloroethane	52.4	
1,1,2,2-Tetrachloroethane	131	
1,1,2-Trichloroethane	42.5	
1,1-Dichloroethane	122	
1,1-Dichloroethene	12.6	
1,2-Dichloroethane	0.294	
1,2,4-Trimethylbenzene	175	!
1,2-Dichloropropane	1.43	
2,4-Dichloro-o-cresol	55000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 861 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
2,4-Dimethylphenol	35600	The dermal approach published by EIC has been followed. In the phenol SGV report, additional consideration was given to localised dermal effects. This may be applicable to phenol derivatives but has not been considered. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based esturation limits is 1330 m//ka and should confirm that free product is not observed where measured
2,4-Dinitrotoluene	3740	Concentrations exceed this value. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 132 mg/kg and should confirm that free phase product is not observed where
2,6-bis(1,1-dimethyl)-4-(1-methylpropyl)-phenol	2170	measured concentrations exceed this value. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 18.7 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
2,6-Dinitrotoluene	1850	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 271 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
2-Chioronaphthalene	60200	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 113 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
2-Methylphenol	187000	The dermal approach published by EIC has been followed. In the phenol SGV report, additional consideration was given to localised dermal effects. This may be applicable to phenol derivatives but has not been considered. Users must consider total exposure from all methylphenol isomers and not consider them in isolation. In line with the approach published by EIC when assessing total cresols, the lowest SSV of each methylphenol isomer may be chosen to compare to the total methylphenol concentration. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 14200 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
3-Methylphenol	187000	The dermal approach published by EIC has been followed. In the phenol SGV report, additional consideration was given to localised dermal effects. This may be applicable to phenol derivatives but has not been considered. Users must consider total exposure from all methylphenol isomers and not consider them in isolation. In line with the approach published by EIC when assessing total cresols, the lowest SSV of each methylphenol isomer may be chosen to compare to the total methylphenol concentration. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 25300 mg/kg and should confirm that free phase product is not observed where measured concentrations.

Atkins

3

31/03/2011

Title

SSVs derived using CLEA for 1% SOM and sand soil type, Commercial land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Compound	SSV mg/kg	Notes
	185000	The dermal approach published by EIC has been followed. In the phenol SGV report, additional consideration was given to localised dermal effects. This may be applicable to phenol derivatives but has not been considered.
4-Methylphenol		Users must consider total exposure from all methylphenol isomers and not consider them in isolation. In line with the approach published by EIC when assessing total cresols, the lowest SSV of each methylphenol isomer may be chosen to compare to the total methylphenol concentration.
		The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 25800 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Acenaphthene	109000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 157 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Anthracene	536000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 3.48 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Antimony	4830	
Arsenic	640	Value presented is the Environment Agency Arsenic SGV published in May 2009. The commercial assessment criterion will not change with soil type or SOM. The SGV is the lower of the oral or inhalation assessment criteria.
Barium	22100	
Benzo(a)anthracene	13.1	Based on information within the Environment Agency Benzene SGV report published in March 2009. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 1.71 mg/kg and should confirm that free phase product is not observed where means the approximation areas of the undus.
Benzo(a)pyrene	14.3	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.911 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Benzo(b)fluoranthene	142	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 1.22 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Benzo(g,h,i)perylene	1440	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.0187 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Benzo(k)fluoranthene	1430	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.686 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Beryllium	1010	
Biphenyl	71900	I he lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 34.1 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Bis (2-ethylhexyl) phthalate	85200	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 8.66 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Development		should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided in the Environment Agency for England and Wales SR2 document.
Bromodenzene Bromodichloromethane	44.7 0.907	
Bromoform	347	
CLEA v1.04 - v1.06		Confidentia

March 2011

Commercial

Author	Atkins
Revision	3
Date	31/03/2011

Title

SSVs derived using CLEA for 1% SOM and sand soil type, Commercial land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Compound	SSV mg/kg	Notes
Butyl benzyl phthalate	941000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 26.1 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided
Cadmium	230	In the Environment Agency for England and Wales SR2 document. Value presented is the Environment Agency Cadmium SGV published in July 2009. The commercial
	230	assessment criterion will not change with soil type or SOM.
Carbon disulphide	11.6	
Chlorobenzene	533	
Chloroethane	463	
Chloroform / Trichloromethane	48.0	
Chloromethane	0.480	
Chromium III	213000	
Chromium VI Chrysene	14000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.44 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed the value
Cis-1,2-dichloroethene	6.37	
Copper	109000	
Cyanide	34.0	Based on acute exposure for a 0-6 year old child, using 5th percentile bodyweight from CLR10. Information is not available in SR3 and supporting documents regarding the 5th percentile bodyweight of SR3 bodyweight data. It is not considered likely that new data would significantly affect the SSV.
ססס	984	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 49.9 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Dibenz(a,h)anthracene	14.3	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.00393 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Dibromochloromethane	9.83	
Dichloromethane	377000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 12.8 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided in the Environment Agency for England and Wales SR2 document.
Di-n-butyl phthalate	15400	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 4.62 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. In line with the approach published by the EIC, the lower of the oral and inhalation assessment criteria has been selected. In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided in the Environment Agency for England and Wales SR2 document.
Di-n-octyl phthalate	89100	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 32.6 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided in the Environment Agency for England and Wales SR2 document
Dinoseb	7.53	
		•

CLEA v1.04 - v1.06 March 2011

Commercial

Author	Atkins
Revision	3
Date	31/03/2011

Title

SSVs derived using CLEA for 1% SOM and sand soil type, Commercial land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Compound	SSV mg/kg	Notes
		Based on information within the Environment Agency Ethylbenzene SGV report published in March 2000. The
Ethylbenzene	180000	lower of the aqueous or vapour based saturation initis has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 508 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Fluoranthene	72300	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 18.9 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Fluorene	66800	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 125 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Formaldehyde	463	
Hexachloroethane	510	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 8.13 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Indeno(1,2,3-c,d)pyrene	142	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.0614 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
lso-propylbenzene	180000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 388 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Lead	6490	
Mercury (elemental)	4.30	Based on information in the Environment Agency Mercury SGV report published in March 2009. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the lower of the aqueous and the vapour saturation based limit as calculations are based on inhalation exposure only.
Mercury (inorganic)	3600	Value presented is the Environment Agency inorganic mercury SGV published in March 2009. The commercial assessment criterion will not change with soil type or SOM.
Mercury (methyl)	414	Based on information in the Environment Agency Mercury SGV report published in March 2009. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 66.4 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Methyl tert-butyl ether	3340	
Molybdenum	17700	Based on information within the Environment Agency Xylene SGV report published in March 2009. Users must consider total exposure from all xylene isomers and not consider them in isolation. The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration.
m-Xylene	276000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 613 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Naphthalene	8180	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 75 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Nickel	1800	Value presented is the Environment Agency Nickel SGV published in May 2009. The commercial assessment criterion will not change with soil type or SOM. The oral and inhalation assessment criteria are derived independently and the SGV is the lower value of the two.
Nicotine	857	
o-Xvlene	296000	Based on information within the Environment Agency Xylene SGV report published in March 2009. Users must consider total exposure from all xylene isomers and not consider them in isolation. The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration.
	230000	presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 467 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.

Commercial

Atkins 3

31/03/2011

Author Revision Date		

Title

SSVs derived using CLEA for 1% SOM and sand soil type, Commercial land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall proceed and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Compound	SSV mg/kg	Notes
Phenol	686	Based on information within the Environment Agency Phenol SGV report published in July 2009. The SSV presented assumes 1% soil organic matter and uses the linear media partitioning model within the CLEA software which estimates the corresponding soil water concentration for phenol to be 1% by weight. The value presented is based on a threshold protective of direct skin contact with phenol. A long term exposure value of 28900 mg/kg was derived by the CLEA v.1.04 model and is provided for illustration only. Derived by comparing oral exposure to the oral HCV, and dermal and inhalation exposure to the inhalation HCV.
Prochloraz	12500	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.116 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Propylbenzene	187000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 399 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
p-Xylene	279000	Based on information within the Environment Agency Xylene SGV report published in March 2009. Users must consider total exposure from all xylene isomers and not consider them in isolation. The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 564 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Pyrene	54200	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 2.20 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Selenium	13000	Value presented is the Environment Agency selenium SGV published in March 2009. The commercial assessment criterion will not change with soil type or SOM.
Styrene	22200	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 607 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Sum of PCDDs, PCDFs and dioxin-like PCBs	No SSV. Due t Asked Questic	to publication of the Dioxins, Furans and Dioxin-like PCB SGVs in September 2009, please see the Frequently ons for more information.
Tetrachloroethene	75.8	
Toluene	414000	Based on information within the Environment Agency Toluene SGV report published in March 2009. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 835 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aliphatic C10-C12	171000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 49.9 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aliphatic C12-C16	171000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 21.0 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aliphatic C16-C35	≤ 1 kg/kg	This fraction is not considered volatile and the inhalation of vapour pathways have not been considered (TPHCWG, 1997). Modelling indicates that a chronic long term risk would not be present at concentrations above this. However at >1 kg/kg free product would be anticipated and further assessment may be required (e.g. this value is unlikely to be protective of dermal contact). Please see the Frequently Asked Questions for more information on free product.
TPH aliphatic C5-C6	≤ 1 kg/kg	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Modelling indicates that a chronic long term risk would not be present at concentrations above this. However at >1 kg/kg free product would be anticipated and further assessment may be required (e.g. this value is unlikely to be protective of dermal contact). Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 327 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aliphatic C6-C8	≤ 1 kg/kg	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Modelling indicates that a chronic long term risk would not be present at concentrations above this. However at >1 kg/kg free product would be anticipated and further assessment may be required (e.g. this value is unlikely to be protective of dermal contact). Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 158 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
CLEA v1.04 - v1.06		Confidentia

March 2011

Author	
Revision	
Date	

Title

SSVs derived using CLEA for 1% SOM and sand soil type, Commercial land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Atkins 3 31/03/2011

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Compound	SSV mg/kg	Notes
TPH aliphatic C8-C10	167000	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based
		saturation limits is 82.5 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aromatic C10-C12	68300	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 370 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aromatic C12-C16	68400	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 155 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aromatic C16-C21	28400	This fraction is not considered volatile and the inhalation of vapour pathways have not been considered (TPHCWG, 1997).
TPH aromatic C21-C35	28400	This fraction is not considered volatile and the inhalation of vapour pathways have not been considered (TPHCWG, 1997).
TPH aromatic C5-C7	13.1	Benzene is the only consituent of this fraction (TPHCWG 1997). Based on information within the Environment Agency Benzene SGV report published in March 2009.
TPH aromatic C7-C8	414000	Toluene is the only consituent of this fraction (TPHCWG 1997). Based on information in the Environment Agency Toluene SGV report published in March 2009. The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 835 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aromatic C8-C10	58600	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 614 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Trans-1,2-dichloroethene	10.1	
Tributyl tin oxide	123	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 40.9 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Trichloroethene	5.48	
Trichloromethylbenzene	0.0266	
Vanadium	7530	
Vinyl chloride	0.0329	
ZINC	≤1 kg/kg	

Note:

All values provided are rounded to 3 significant figures. It is noted for some compounds that the SSV is sufficiently high that free product is likely to be encountered. Please see the Frequently Asked Questions for more advice. In some instances the risk based value may be lower than the laboratory detection limit. Please see the Frequently Asked Questions for more advice.

Title

31/03/2011

Atkins

1

WSVs derived using CLEA for a Commercial land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

	Commercial		
	WSV		Notes
Name	(mg/L)		
1,1,2 Trichloroethane	208	d	
1,1 Dichloroethane	1110	С	
1,1 Dichloroethene	65.6	d	
1,2,4 Trimethylbenzene	9.83	d	
1,2 Dichloropropane	11.1	b	
2,4 Dimethylphenol	30900	а	
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
2,4 Dinitrotoluene	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
2,6 Dinitrotoluene	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
2 Chloronaphthalene	62.7	а	
			The value presented is the lowest risk based number for the three methylphenol isomers. Users must consider total exposure
			from all methylphenol isomers and not consider them in isolation. In line with the approach published by EIC when assessing
			total cresols, the lowest WSV of each methylphenol isomer may be chosen to compare to the total methylphenol
Total Methylphenols	1620000	а	concentration.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Biphenyl	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
			and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be
			considered by assessors when using the WSV for these substances. Guidance on additivity is provided in the Environment
Bis (2 ethylhexyl) phthalate	No WSV	е	Agency for England and Wales SR2 document.
Bromobenzene	87.7	С	
Bromodichloromethane	6.82	b	
Bromoform	1770	С	
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
			and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be
			considered by assessors when using the WSV for these substances. Guidance on additivity is provided in the Environment
Butyl benzyl obthalate	No WSV		Agency for England and Wales SR2 document
Chloroethane	4180	6	
Chloromethane	5.50	h	
	5.50	b	
Dishlaramathana	1500	d	
Dichloromethane	1500	a	The entrustion limit has been exceeded in the entrulation. At the equation could littly limit the beneral surface for both indeer
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
			and outdoor painways was less than 0.01 and therefore no fisk based number is considered appropriate.
			In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be
			considered by assessors when using the WSV for these substances. Guidance on additivity is provided in the Environment
Diethyl Phthalate	No WSV	е	Agency for England and Wales SR2 document.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
			and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be
			considered by assessors when using the WSV for these substances. Guidance on additivity is provided in the Environment
Di n butyl phthalate	No WSV	е	Agency for England and Wales SR2 document.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
			and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
		1	In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be
			considered by assessors when using the WSV for these substances. Guidance on additivity is provided in the Environment
Di n octyl phthalate	No WSV	е	Agency for England and Wales SR2 document.
Hexachloroethane	>50	f	The saturation limit has been exceeded in the calculation. The WSV presented is the aqueous solubility limit.
Iso propylbenzene	389	а	
Methyl tert butyl ether	33800	С	
Propylbenzene	1100	а	
Styrene	3530	а	
Trans 1,2 Dichloroethene	65.7	b	
Tributyl tin oxide	54.5	а	
-			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Acenaphthene	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
		Ť	The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Anthracene	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
		Ť	The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Benzo(a)anthracene	No WSV	P	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
		Ĕ	The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the bazard quotient for both indoor
Benzo(a)pyrene	No WSV		and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate
		6	The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the bazard quotient for both indeer
Benzo(b)fluoranthono	No MOV	_	and outdoor pathways was less than 0.01 and therefore no rick based number is considered appropriate.
	110 1131	е	and outdoor partways was less than o.o.t and therefore no fisk based number is considered appropriate.
Ponzo(a h i)nondora	No MOV	_	and outdoor pathwaya was loss than 0.01 and therefore no risk based number is considered annearists.
Denzo(g,n,i)peryiene	100 00 50	e	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
		_	and subdeer pethysics use less then 0.04 and therefore no risk based solubility limit the nazard quotient for both indoor
Denzo(k)iluorantnene		e	and outdoor partways was less than 0.01 and therefore no fisk based number is considered appropriate.

Atkins 1 31/03/2011

Title

WSVs derived using CLEA for a Commercial land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

	Commercial		
	WSV		Notes
Name	(mg/L)		
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Chrysene	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Dibenz(ah)anthracene	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Fluoranthene	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Fluorene	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Indeno(1,2,3 cd)pyrene	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Pyrene	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
Benzene	8.46	b	
Toluene	9090	а	
Ethylbenzene	1250	а	
			Based on information in the Environment Agency Xylene SGV report published in March 2009. Users must consider exposure
			from all xylene isomers and not consider them in isolation. The lowest xylene WSV could be chosen to compare to the sum of
o xylene	503	а	xylene concentrations.
			Based on information in the Environment Agency Xylene SGV report published in March 2009. Users must consider exposure
			from all xylene isomers and not consider them in isolation. The lowest xylene WSV could be chosen to compare to the sum of
m xvlene	413	а	xvlene concentrations.
		<u>.</u>	Based on information in the Environment Agency Xylene SGV report published in March 2009. Users must consider exposure
			from all vylene isomers and not consider them in isolation. The lowest vylene WSV could be chosen to compare to the sum of
n xvlene	132	2	vidence concentrations
Phonol	260000	2	
Maraury (mathyl)	209000	a	
Mercury (methyl)	0.400	a	
Mercury (elemental)	0.428	а	Descense is the exploremention of this fraction (TDUO)(O 4007). Desced on information within the Equipment Area of
	0.40		Benzene is the only constituent of this fraction (TPHCWG 1997). Based on information within the Environment Agency
TPH aromatic C5-C7	8.46	b	Benzene SGV report published in March 2009
			Toluene is the only constituent of this fraction (TPHCWG 1997). Based on information within the Environment Agency
TPH aromatic C7-C8	9090	а	Toluene SGV report published in March 2009.
TPH aromatic C8-C10	96.5	а	
TPH aromatic C10-C12	380	а	
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
TPH aromatic C12-C16	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
TPH aliphatic C5-C6	198	а	
TPH aliphatic C6-C8	144	а	
TPH aliphatic C8-C10	2.90	а	
TPH aliphatic C10-C12	2.23	а	
•			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
TPH aliphatic C12-C16	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
1.2 dichloroethane	3.54	b	
1 1 1 Trichloroethane	1270	Č.	
1 1 1 2 Tetrachloroethane	96.7	d	
1 1 2 2 Tetrachloroethane	650	C C	
Carbon tetrachloride	2 21	h	
Chlorobenzene (mono)	1300	0	
Tetrachloreethene	1300	a	
Trichlereethere	174	6	
	20.7	D L	
Vinyi chioride	0.249	D	
Naphthalene	99.8	a	
Chloroform/Irichloromethane	369	d	
Dinoseb	>52	t	The saturation limit has been exceeded in the calculation. The WSV presented is the aqueous solubility limit.
Trichloromethylbenzene	0.0609	b	
Nicotine	58900	b	
Formaldehyde	2360	b	
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
Prochloraz	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
2,6-bis(1,1-dimethyl)-4-(1-methyl)	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
			The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
2,4-Dichloro-o-cresol	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.
Dibromochloromethane	38.7	b	
		Ĺ	The saturation limit has been exceeded in the calculation. At the aqueous solubility limit the hazard quotient for both indoor
DDD	No WSV	е	and outdoor pathways was less than 0.01 and therefore no risk based number is considered appropriate.

Notes:

Where both indoor and outdoor values derived by RBCA were greater than the saturation limit, the hazard quotient for the indoor pathway was considered. If the hazard quotient was greater than 0.01, the hazard quotients were used to calculate a risk based value (not limited by the saturation limit). The calculated indoor and calculated outdoor values have been integrated in line with SNIFFER (2003).

b Where indoor and outdoor values were presented by RBCA, these have been integrated in line with SNIFFER (2003).

Where indoor values were presented by RBCA, and the outdoor values were greater than the saturation limit, the hazard quotient for the outdoor pathway was considered. If the hazard quotient for the outdoor pathway was less than 0.1, the indoor values have been presented as the WSV.

1

Title

WSVs derived using CLEA for a Commercial land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Nam	e	Commercial WSV (mg/L)	Notes
d	Where indoor values were the hazard quotient for the limit). The indoor and cal	e presented by RBCA e outdoor pathway wa culated outdoor value	, and the outdoor values were greater than the saturation limit, the hazard quotient for the outdoor pathway was considered. If s greater than 0.1 but less than 1, the hazard quotient was used to calculate a risk based value (not limited by the saturation s were integrated in line with SNIFFER (2003).
е	Where the indoor and out quotient was less than 0.0	tdoor values derived b 01 and no risk based i	y RBCA were greater than the saturation limit, the hazard quotient for the indoor pathway was considered. The hazard number is considered appropriate. In this case 'no WSV' is presented.
f	Due to the limitations in the Further assessment is read	ne RBCA software, a l commended should th	nazard quotient could not be calculated for the inhalation of indoor air. The WSV presented is the aqueous solubility limit. e aqueous solubility limit be exceeded.

Only inhalation exposure pathways are considered as presented within the input parameters.

The potential presence of free product should be assessed to ensure no further risk assessment is required.

TPH >C16 are not considered to be volatile according to TPHCWG. Consequently no WSV have been derived.

All values provided are rounded to 3 significant figures.

In some instances the risk based value may be lower than the laboratory detection limit or the drinking water standard. Please see the Frequently Asked Questions for more advice.

	Units	UK DWS	EQS AA	EQS Max	Freshwater EQS Class 1	Freshwater EQS Class 2	Freshwater EQS Class 3	Freshwater EQS Class 4	EQS Class 5	EQS	Saltwater EQS	WHO Drinking Water Guideline
Hydrocarbons (TPH or EPH fractions)	µg/l	10										
Acenaphthene Acenaphthylene	µg/l µg/l	0.1 0.1										
Anthracene Benzo(a)anthracene Benzo(a)pyrene	µg/l µg/l µg/l	0.1 0.1 0.01	0.1	0.4						0.1	0.4	0.7
Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	μg/l μg/l	0.1 0.1 0.1	Σ 0.03							Σ 0.03		
Dibenzo(a,h)anthracene Fluoranthene	μg/l μg/l	0.1	0.1	1						0.1	1	
Benzo(g,h,i)perylene Indeno(1,2,3-cd)pyrene	µg/l µg/l	0.1	Σ 0.002							Σ 0.002		
Naphthalene Phenanthrene Pyrene	µg/l µg/l µg/l	0.1 0.1 0.1	2.4							1.2		
BTEX Benzene Toluene	µg/l µg/l	1	10 50	50 380						8	50 370	10
Ethylbenzene Xylenes VOCs and SVOCs	µg/l µg/l		20 30	200						20 30	200	300 500
1,1,1-Trichloroethane 1,1,2-Trichloroethane	μg/l μg/l		100 400							100 300		20
Tetrachloroethene (PCE) 1,1-Dichloroethene	μg/l μg/l μg/l	Σ 10	10							10		40 30
1,2-Dichloropropene Dichloromethane	μg/I μg/I μg/I		20							20		20 20
Trichlorobenzene 1,2-Dibromoethane Dichlorobenzene	µg/l µg/l µg/l		0.4	200						0.4	200	0.4
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	µg/l µg/l µg/l	3	10							10		1000 30 40
Bromodichloromethane Bromoform Carbon tetrachloride	µg/l µg/l											60 100
(Tetrachloromethane) Chloroform (Trichloromethane)	µg/l	3	12							12		300
Trihalomethanes (Trichloromethane,	145 ^{/1}	Σ 100	2.0							2.0		
Chlorodibromomethane +) Dibromochloromethane	hð\I											100
Hexachlorobutadiene Styrene Vinyl chloride	μg/l μg/l μg/l	0.5	0.1	0.6						0.1 50	0.6 500	0.6 20 0.3
Phenol 2-Chlorophenol 3-Chlorophenol	μg/l μg/l		7.7 50 50	4.6						7.7 50 50	4.6	
4-Chlorophenol Methyl phenols 2.4.6-Trichlorophenol	μg/l μg/l		50 100	250 300						50 100	250 300	200
2,4-Dichlorophenol Chloronitrotoluenes	µg/l µg/l		20 10							20 10		200
Bis (2-ethylhexyl)phthalate Butyl benzylphthalate	µg/l µg/l		1.3 20	100						1.3 20	100	8
Diethyl phthalate Dimethyl phthalate Di-n-butylphthalate	μg/l μg/l μg/l		200 800 8	1000 4000 40						200 800 8	1000 4000 40	
Di-n-octylphthalate Hexachlorobenzene Pentachlorophenol	μg/l μg/l μg/l		20 0.01 0.4	40 0.05 1						20 0.01 0.4	40 0.05 1	9
Pesticides, Herbicides ar	d other Hy	drooarbon										
Acrylamide Epichlorohydrin	μg/l μg/l	0.1 0.1	S									
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin	μg/l μg/l μg/l μg/l μg/l	0.1 0.1 0.5 0.01 0.03	S 									0.03
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin,	μg/l μg/l μg/l μg/l μg/l μg/l	0.1 0.1 0.5 0.01 0.03 0.03	s 							Σ 0.005		0.03
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide	μg/I μg/I μg/I μg/I μg/I μg/I μg/I μg/I	0.1 0.1 0.5 0.01 0.03 0.03 0.03 0.03	s Σ 0.01							Σ 0.005		0.03 0.03
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT	μg/I μg/I μg/I μg/I μg/I μg/I μg/I μg/I	0.1 0.1 0.5 0.01 0.03 0.03 0.03	s Σ 0.01 18 12^ 0.025	187 120^						Σ 0.005 18 80 0.025	187 800	0.03 0.03 0.03 10 2 1
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine	рд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I µд/I	0.1 0.1 0.5 0.01 0.03 0.03 0.03	s Σ 0.01 18 12^ 0.025 0.01 500 1	187 120^ 4						Σ 0.005 18 80 0.025 0.01 500 1	187 800	0.03 0.03 0.03 10 2 1
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2.4-D	у µg/l	0.1 0.1 0.5 0.01 0.03 0.03 0.03	s Σ 0.01 18 12^ 0.025 0.01 500 1 0.03 0.6 0.3	187 120^ 4 2 1 3						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3	187 800 4 2 1 3	0.03 0.03 0.03 10 2 1 1 2 2 20 20 2 30
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-D 2,4,5-T Darmethrin	μg/l	0.1 0.1 0.5 0.01 0.03 0.03 0.03	s Σ 0.01 18 12^ 0.025 0.01 500 1 0.03 0.6 0.3	187 120^ 4 2 1.3						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3	187 800 4 2 1.3	0.03 0.03 0.03 10 2 1 1 2 2 2 2 2 2 2 2 30 90 90 9 9
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-DB 2,4,5-T Permethrin Linuron Dimethoate Diazinan	μg/l	0.1 0.1 0.5 0.01 0.03 0.03 0.03 0.03	s Σ 0.01 18 12^ 0.025 0.01 500 1 0.03 0.6 0.3 0.01 0.5 0.48	187 120^ 4 2 1.3 0.9 4						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.01 0.5 0.48 0.01	187 800 4 2 1.3 0.9 4	0.03 0.03 0.03 10 2 1 1 2 2 1 1 2 2 20 2 2 30 90 9 9 9 300
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-DB 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene	μg/l	0.1 0.1 0.5 0.01 0.03 0.03 0.03 0.03	s Σ 0.01 18 12^ 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.5 0.48 0.01 0.1 0.1 0.007	187 120^ 4 2 1.3 0.9 4 0.02 0.4						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.01 0.5 0.48 0.01 0.1 0.1 0.0007	187 800 4 2 1.3 0.9 4 0.1 0.4	0.03 0.03 0.03 10 2 1 1 2 2 20 2 2 30 90 90 9 9 300
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-DB 2,4-DB 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Isoproturon	μg/l	0.1 0.1 0.5 0.01 0.03 0.03 0.03 0.03	s Σ 0.01 Σ 0.01 18 12^ 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.1 0.01 0.5 0.48 0.01 0.1 0.007 0.1 0.3 0.3	187 120^ 4 2 1.3 0.9 4 0.02 0.4 2 1.3						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.01 0.5 0.48 0.01 0.1 0.0007 0.01 0.3 0.3	187 800 4 2 1.3 0.9 4 0.1 0.4 2 1.3	0.03 0.03 0.03 10 2 1 1 2 2 1 1 2 2 0 2 2 30 90 9 9 300 9 9 300
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-DB 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Isoproturon C10-C13 Chloroalkanes Chloropyrifos-ethyl)	μg/l		s Σ 0.01 18 12^ 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.4 8 0.01 0.01 0.1 0.007 0.1 0.03 0.4 8 0.03	187 120^ 120^ 4 2 1.3 0.9 4 0.02 0.4 2 1.3 2 1.3						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.04 0.03	187 800 4 4 2 1.3 0.9 4 0.1 0.4 2 1.3 2 1.3	0.03 0.03 0.03 10 2 1 1 2 2 20 2 2 30 90 90 9 9 300
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-DB 2,4-DB 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Isoproturon C10-C13 Chloroalkanes Chloropyrifos (Chloropyrifos-ethyl) Alachlor Brominated diphenylether Chlorfenvinphos	у µg/l µg/l </td <td>0.1 0.1 0.5 0.01 0.03 0.03 0.03 0.03</td> <td>s Σ 0.01 Σ 0.01</td> <td>187 120^ 4 2 1.3 0.9 4 0.02 0.4 2 1.3 2 1.3 1.4 0.02 0.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.01 0.03 0.01 0.1 0.0007 0.01 0.1 0.0007 0.01 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0002 0.1</td> <td>187 800 4 2 1.3 0.9 4 0.1 0.4 2 1.3 1.3 2 1.3 0.1 0.4 1 1.4 0.1 0.7 0.3</td> <td>0.03 0.03 0.03 10 2 1 1 2 2 20 2 2 20 2 2 30 90 9 9 300 9 9 300</td>	0.1 0.1 0.5 0.01 0.03 0.03 0.03 0.03	s Σ 0.01 Σ 0.01	187 120^ 4 2 1.3 0.9 4 0.02 0.4 2 1.3 2 1.3 1.4 0.02 0.4						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.01 0.03 0.01 0.1 0.0007 0.01 0.1 0.0007 0.01 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0002 0.1	187 800 4 2 1.3 0.9 4 0.1 0.4 2 1.3 1.3 2 1.3 0.1 0.4 1 1.4 0.1 0.7 0.3	0.03 0.03 0.03 10 2 1 1 2 2 20 2 2 20 2 2 30 90 9 9 300 9 9 300
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-D 2,4-DB 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Nonylphenol Isoproturon C10-C13 Chloroalkanes Chloropyrifos (Chloropyrifos (Chloropyrifos (Chloropyrifos Chloropyrifos (Chloropyrifos Chloropyrifos Tribuytl tin compounds Diuron Endosulfan	μg/l		s Σ 0.01 Σ 0.01 Σ 0.01 Σ 0.01 Σ 0.01 Σ 0.01 Σ 0.01 Σ 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.1 0.007 0.1 0.3 0.3 0.4 0.03 0.3 0.4 0.03 0.3 0.4 0.03 0.3 0.4 0.03 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.0 0.1 0.03 0.2 0.2 0.2 0.0 0.1 0.005 0.4 0.3 0.4 0.3 0.4 0.03 0.4 0.3 0.4 0.03 0.4 0.03 0.4 0.03 0.4 0.03 0.2 0.1 0.03 0.2 0.1 0.03 0.2 0.2 0.1 0.005 0.1 0.03 0.2 0.1 0.005 0.1 0.03 0.2 0.1 0.005 0.1 0.2 0.2 0.005	187 120^ 187 120^ 4 2 1.3 0.9 4 0.9 4 0.02 0.4 0.4 0.02 0.4 0.4 0.02 0.4 0.1 0.7 0.3 0.0015 1.8 0.01						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.01 0.03 0.6 0.3 0.01 0.03 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.025 0.01 0.03 0.01 0.01 0.03 0.01 0.01 0.025 0.01 0.03 0.025 0.01 0.03 0.01 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.025 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.00 0.02 0.02 0.00 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.00 0.02 0.2 0.	187 800 187 800 4 2 1.3 0.9 4 0.1 0.9 4 0.1 0.4 0.1 0.4 1 1.4 0.1 0.4 1 0.1 0.4 1 0.1 0.4 1 0.1 0.4 1 0.1 0.2 1 1.3 1.3	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-D 2,4-DB 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Isoproturon C10-C13 Chloroalkanes Chloropyrifos (Chloropyrifos-ethyl) Alachlor Brominated diphenylether Chlorfenvinphos Tribuytl tin compounds Diuron Endosulfan Metals and anions Antimony Arsenic	μg/l		s Σ 0.01 Σ 0.01	187 187 120^ 4 2 1.3 0.9 4 0.2 0.4 2 1.3 0.02 0.4 2 1.3 0.02 0.4 0.02 0.4 0.3 0.0015 1.8 0.01						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.01 0.03 0.01 0.3 0.01 0.3 0.01 0.3 0.01 0.3 0.01 0.3 0.01 0.3 0.03 0.3 0.03 0.3 0.0002 0.1 0.0002 0.1 0.0005 0.2	187 800 187 800 4 2 1.3 0.9 4 0.1 0.1 0.4 0.1 0.1 0.4 0.1 0.1 0.4 0.1 0.1 0.4 0.1 0.1 0.4 0.1 0.1 0.4 0.1 0.1 0.4 0.1 0.4 0.1 0.1 0.4 0.1 0.1 0.4 0.1 0.1 0.1 0.1 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.03 0.03 0.03 10 2 1 1 2 2 1 1 2 2 2 0 2 2 2 3 0 9 0 9 9 9 3 00 9 9 9 3 00 9 9 9 9 3 00 9 9 9 9
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-D 2,4-DB 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Isoproturon C10-C13 Chloroalkanes Chloropyrifos (Chloropyrifos-ethyl) Alachlor Brominated diphenylether Chlorfenvinphos Tribuytl tin compounds Diuron Endosulfan Metals and anions Antimony Arsenic Boron Bromate Codmire	μg/l	0.1 0.5 0.01 0.03	s Σ 0.01 Σ 0.01 18 12^ 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.01 0.03 0.6 0.3 0.01 0.03 0.48 0.01 0.1 0.007 0.1 0.007 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.03 0.3 0.3 0.4 0.03 0.3 0.4 0.03 0.3 0.4 0.03 0.5 0.1 0.007 0.1 0.03 0.2 0.01 0.5 0.1 0.007 0.1 0.007 0.1 0.03 0.3 0.3 0.4 0.03 0.3 0.4 0.03 0.3 0.4 0.03 0.5 0.1 0.03 0.5 0.1 0.007 0.1 0.03 0.2 0.01 0.5 0.01 0.5 0.01 0.5 0.01 0.5 0.01 0.5 0.01 0.5 0.01 0.5 0.48 0.007 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.005 0.1 0.03 0.5 0.1 0.03 0.5 0.1 0.5 0.48 0.025 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	187 187 120^ 4 2 1.3 0.9 4 0.2 0.4 0.02 0.4 0.02 0.4 0.1 0.7 0.3 0.0015 1.8 0.01						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.1 0.01 0.3 0.01 0.3 0.01 0.3 0.03 0.3 0.01 0.3 0.03 0.3 0.04 0.03 0.3 0.3 0.0002 0.2 0.1 0.0002 0.2 0.0005	187 800 187 800 4 2 1.3 0.9 4 0.1 0.9 4 0.1 0.4 0.1 0.4 1 1.4 0.1 0.4 1 0.1 0.4 1 1.4 0.1 0.1 0.4 1 0.1 0.3 0.0015 1.8 0.004	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-D 2,4-D 2,4-D 2,4-D 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Isoproturon C10-C13 Chloroalkanes Chloropyrifos (Chloropyrifos-ethyl) Alachlor Brominated diphenylether Chlorfenvinphos Tribuytl tin compounds Diuron Endosulfan Metals and anions Antimony Arsenic Boron Bromate Cadmium Chromium	μg/l	0.1 0.5 0.01 0.03	s 5 0.01 2 0.01 18 12^ 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.03 0.6 0.3 0.01 0.03 0.48 0.01 0.1 0.07 0.1 0.3 0.3 0.48 0.01 0.1 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.03 0.5 0.1 0.005 0.1 0.2 0.1 0.005 0.1 0.2 0.2 0.005 0.1 0.2 0.2 0.005 0.1 0.2 0.2 0.2 0.005 0.1 0.2 0.2 0.2 0.005 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	187 187 120^ 4 2 1.3 0.9 4 0.2 0.4 2 1.3 0.9 4 0.1 0.7 0.3 0.0015 1.8 0.01 32						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.01 0.5 0.48 0.01 0.01 0.3 0.01 0.3 0.03 0.3 0.03 0.3 0.3 0.3 0.03 0.3 0.03 0.3 0.002 0.1 0.0002 0.1 0.0005 25 0.2 0.2	187 800 187 800 1 1 1 1 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.3 0.0015 1.8 0.004	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-D 2,4-DB 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Isoproturon C10-C13 Chloroalkanes Chloropyrifos (Chloropyrifos-ethyl) Alachlor Brominated diphenylether Chlorfenvinphos Tribuytl tin compounds Diuron Endosulfan Metals and anions Antimony Arsenic Boron Bromate Cadmium Chromium III Chromium VI Copperie Cyanide	μg/l	0.1 0.5 0.01 0.03	s Σ 0.01	187 187 120^ 4 2 1.3 0.9 4 0.1 0.7 0.3 0.0015 1.8 0.01 32 5			0.09 (0.6)					0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
AcrylamideEpichlorohydrinPesticides totalOther pesticidesDieldrinAldrinCyclodiene pesticides(Aldrin, Dieldrin, Endrin,Isodrin)HeptachlorHelptachlor epoxideMecopropMCPADDTpara-para-DDTBentazoneSimazineTrifluralinAtrazine2,4-D2,4-D2,4-D2,4-D2,4-D2,4-D2,4-DDimethoateDiazinonCypermethrinPentachlorobenzeneOctylphenolNonylphenolIsoproturonC10-C13 ChloroalkanesChloropyrifos(Chloropyrifos-ethyl)AlachlorBrominated diphenyletherChlorfenvinphosTribuytl tin compoundsDiuronEndosulfanMetals and anionsAntimonyArsenicBoronBromateCadmiumChromium IIIChromium IIIChromium VICopperCyanideFlourideLeadMercury	μg/l	0.1 0.1 0.5 0.01 0.03	s Σ 0.01	187 187 120^ 4 2 1.3 0.9 4 0.2 0.4 0.2 0.4 0.1 0.7 0.3 0.0015 1.8 0.01 32 5 0.07						Σ 0.005 18 80 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.48 0.01 0.3 0.01 0.3 0.03 0.3 0.01 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.0005 5 1 5 0.2 0.2 0.6 5 1 5 0.2 0.05		0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
AcrylamideEpichlorohydrinPesticides totalOther pesticidesDieldrinAldrinCyclodiene pesticides(Aldrin, Dieldrin, Endrin,Isodrin)HeptachlorHelptachlor epoxideMecopropMCPADDTpara-para-DDTBentazoneSimazineTrifluralinAtrazine2,4-D2,4-D2,4-D2,4,5-TPermethrinLinuronDimethoateDiazinonCypermethrinPentachlorobenzeneOctylphenolIsoproturonC10-C13 ChloroalkanesChloropyrifos(Chloropyrifos-ethyl)AlachlorBrominated diphenyletherChloropyrifosChloropurifosTribuytl tin compoundsDiuronEndosulfanMetals and anionsAntimonyArsenicBoronBromateCadmiumChromium IIIChromium IIIChromium VICopperCyanideFlourideLourideLeadMetcelNitrite	μg/l	0.1 0.1 0.5 0.01 0.03	s 5 0.01 2 0.01 3 18 12^ 0.025 0.01 500 1 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.01 0.03 0.01 0.1 0.007 0.1 0.01 0.1 0.007 0.1 0.007 0.1 0.03 0.3 0.3 0.48 0.01 0.1 0.007 0.1 0.3 0.3 0.3 0.48 0.01 0.1 0.007 0.1 0.3 0.3 0.3 0.4 0.03 0.3 0.3 0.4 0.03 0.3 0.4 0.03 0.3 0.4 0.03 0.2 0.005 0.1 0.005 0.2 0.005 0.1 0.005 0.1 0.005 0.1 0.005 0.1 0.005 0.1 0.005 0.1 0.005 0.1 0.005 0.2 0.05 0.5 0.	187 187 120^ 4 2 1.3 0.9 4 0.1 0.7 0.3 0.0015 1.8 0.01 32 5 0.07			0.09 (0.6)					0.03 0.03 0.03 0.03 0.03 0.03 0.03 10 2 10 2 20 2 30 90 9 300 9 300 9 300 9 20 20 20 20 70 1.5 10 20 700 10 0 700 10 0 700 10 0 700 10 0 10 0 0.2 (3)
AcrylamideEpichlorohydrinPesticides totalOther pesticidesDieldrinAldrinCyclodiene pesticides(Aldrin, Dieldrin, Endrin,Isodrin)HeptachlorHelptachlor epoxideMecopropMCPADDTpara-para-DDTBentazoneSimazineTrifluralinAtrazine2,4-D2,4-D2,4-DB2,4,5-TPermethrinLinuronDimethoateDiazinonCypermethrinPentachlorobenzeneOctylphenolNonylphenolIsoproturonC10-C13 ChloroalkanesChloropyrifos(Chloropyrifos-ethyl)AlachlorBrominated diphenyletherChlorfenvinphosTribuytl tin compoundsDiuronEndosulfanMetals and anionsAntimonyArsenicBoronBromateCadmiumChromium IIIChromium IIIChromium VICopperCyanideFlourideLeadMercuryNickelNitrateNitrateNitrateNitrateNitrateNitrateNitrateNitrateNitrateNitrateNitrateNitrateNanganese	μg/l	0.1 0.5 0.01 0.03 0.10 10 200 10	s 5 2 5 0.01 5 0.01 1 0.025 0.01 500 1 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.03 0.6 0.3 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.1 0.	187 187 120^ 4 2 1.3 0.9 4 0.1 0.7 0.3 0.0015 1.8 0.01 32 5 0.07								0.03 0.03 0.03 0.03 0.03 0.03 10 2 10 2 10 2 30 90 9 300 90 9 300 9 300 9 20 70 1.5 10 6 70 10 6 70 10 400
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-D 2,4-DB 2,4-DB 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Isoproturon C10-C13 Chloroalkanes Chloropyrifos-ethyl) Alachlor Brominated diphenylether Chlorfenvinphos Tribuytl tin compounds Diuron Endosulfan Metals and anions Antimony Arsenic Boron Bromate Cadmium Chromium III Chromium VI Copper Cyanide Flouride Lead Mercury Nickel Nitrate Nitrite Selenium Iron Manganese Sodium Ammonia	μg/l	0.1 0.5 0.01 0.03	s 5 2 5 0.01 5 0.01 5 0.01 5 0.01 5 0.01 5 0.01 5 0.01 0.03 0.3 0.3 0.48 0.01 0.1 0.03 0.48 0.01 0.1 0.007 0.1 0.3 0.3 0.48 0.01 0.1 0.007 0.1 0.3 0.3 0.3 0.4 0.03 0.3 0.3 0.4 0.03 0.3 0.3 0.4 0.03 0.3 0.3 0.4 0.03 0.3 0.4 0.03 0.3 0.005 0.1 0.005 0.0 0.0 0.0 0.0 0.0 0.0 0	187 187 120^ 4 2 1.3 0.9 4 0.9 4 0.1 0.7 0.3 0.0015 1.8 0.01 32 32 5 0.07			0.09 (0.6)	0.15 (0.9) 0.15 (0.9) 0.15 (0.9)				0.03 0.03 0.03 0.03 0.03 0.03 0.03 10 2 10 2 10 2 10 2 30 90 9 300 9 300 9 300 9 300 20 700 10 20 700 10 400
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor Helptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-D 2,4-D 2,4-D 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Nonylphenol Isoproturon C10-C13 Chloroalkanes Chloropyrifos (Chloropyrifos-ethyl) Alachlor Brominated diphenylether Chlorfenvinphos Tribuytl tin compounds Diuron Endosulfan Metals and anions Antimony Arsenic Boron Bromate Cadmium Chromium III Chromium VI Copper Cyanide Flouride Lead Mercury Nickel Nitrate Nitrite Selenium Iron Manganese Sodium Ammoniacal nitrogen	μg/l	0.1 0.5 0.01 0.03 0.33 0.34 0.35 0.39 250 0.5 0.39 250	s 5 0.01 2 0.01 3 18 12^ 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.03 0.6 0.3 0.01 0.03 0.01 0.01 0.01 0.01 0.1 0.01 0.1 0.	187 187 120^ 4 2 1.3 0.9 4 0.9 4 0.1 0.7 0.3 0.0015 1.8 0.01 0.3 0.0015 1.8 0.01 0.7 0.3 0.0015 1.8 0.01 0.01 0.01								0.03 0.03 0.03 0.03 0.03 0.03 0 0 2 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Acrylamide Epichlorohydrin Pesticides total Other pesticides Dieldrin Aldrin Cyclodiene pesticides (Aldrin, Dieldrin, Endrin, Isodrin) Heptachlor epoxide Mecoprop MCPA DDT para-para-DDT Bentazone Simazine Trifluralin Atrazine 2,4-D 2,4-D 2,4-D 2,4-D 2,4-D 2,4,5-T Permethrin Linuron Dimethoate Diazinon Cypermethrin Pentachlorobenzene Octylphenol Nonylphenol Isoproturon C10-C13 Chloroalkanes Chloropyrifos (Chloropyrifos-ethyl) Alachlor Brominated diphenylether Chlorfenvinphos Tribuytl tin compounds Diuron Endosulfan Metals and anions Antimony Arsenic Boron Bromate Cadmium Chromium III Chromium VI Copper Cyanide Flouride Lead Mercury Nickel Nitrate Nitrite Selenium Iron Manganese Sodium Ammonia	μg/l	0.1 0.5 0.01 0.03 0.10 0.10 0.10 0.10 10 200 0.5 0.39 250 250 250 250 250 250 250 250 250 25	s 5 2 5 0.01 5 0.01 5 0.025 0.01 500 1 0.025 0.01 500 1 0.03 0.6 0.3 0.6 0.3 0.6 0.3 0.01 0.01 0.01 0.1 0.007 0.1 0.007 0.1 0.007 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.03 0.3 0.3 0.3 0.005 0.1 0.002 0.2 0.005 0.1 0.002 0.2 0.005 0.1 0.005 0.1 0.002 0.2 0.005 0.1 0.005 0.1 0.002 0.2 0.005 0.1 0.005 0.2 0.005 0.1 0.005 0.2 0.005 0.2 0.005 0.2 0.05 0.0 0.2 0.05 0.0 0.2 0.05 0.0 0.2 0.05 0.0 0.0 0.0 0.0 0.0 0.2 0.005 0.1 0.0 0.2 0.005 0.1 0.005 0.1 0.005 0.1 0.005 0.2 0.005 0.1 0.2 0.005 0.2 0.005 0.5 0.0 0.2 0.2 0.05 0.0 0.2 0.05 0.0 0.2 0.05 0.0 0.2 0.05 0.0 0.0 0.0 0.2 0.05 0.0 0.2 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.	187 187 120^ 4 2 1.3 0.9 4 0.9 4 0.1 0.7 0.3 0.0015 1.8 0.01 32 32 5 0.07 0.07								0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 10 2 20 2 30 90 9 300 9 300 9 300 9 20 70 10 20 700 10 6 700 10 400 400

^ pH dependents values in brackets are max values for hardness bands.

Contact name: Alex Mann

Atkins Limited

The Axis, 10 Holliday Street, Birmingham, B1 1TF

Email: alex.mann@atkinsglobal.com Telephone: 0121 483500 / 07834 507811

© Atkins Ltd except where stated otherwise.

The Atkins logo, 'Carbon Critical Design' and the strapline 'Plan Design Enable' are trademarks of Atkins Ltd.