

Civil Engineering Consultants

15-17 Goldington Road Bedford MK40 3NH United Kingdom T. +44 (0) 1234 268862 F. +44 (0) 1234 353034 mail@woodshardwick.com www.woodshardwick.com

17079/CSB/JY

KINGSMERE, PARCELS C & D, BICESTER

SURFACE WATER DRAINAGE REPORT

PREPARED ON BEHALF OF PERSIMMON HOMES

1.0 Introduction

- 1.1 The purpose of this document is to describe the surface water drainage arrangements which are envisaged for land Parcels C & D on the Kingsmere Development Scheme.
- 1.2 The approved design code has been followed in relation to determining the approach to surface water disposal and the proposals also reflect the individual parcel requirements which have been laid down by the overall infrastructure providers in order to follow the drainage strategy for the Kingsmere Scheme as a whole.

2.0 Background and Constraints

- 2.1 The main principle associated with stormwater disposal on the Kingsmere Scheme is to ensure that as much water is directed to the ground as is possible with the release of any discharge into the infrastructure facilities being strictly controlled for all storms up to a 100 year plus climate change rainfall event.
- 2.2 The Design Code describes the expectation that for each parcel, the potential for infiltration will be fully investigated and this will be relied on as much as possible to limit the flows entering the strategic sewer and attenuation facilities.
- 2.3 The Design Code also describes a SuDS philosophy which is to be applied across the scheme with appropriate mechanisms for dealing with storm water run-off for each element of development hard surface.
- 2.4 It is considered that the proposals which are outlined in this document are fully compliant with the Design Code requirements.

3.0 Infiltration Potential

- 3.1 In accordance with the expectations of the Design Code and the guidance on the design of individual parcel drainage systems prepared by WSP, comprehensive infiltration testing has been undertaken to supplement the overall geotechnical information for the Kingsmere area as a whole.
- 3.2 The testing which has been carried out has been undertaken at depths which are suitable for both permeable paving and for soakaways. The results of the testing regime which has been carried out fully in compliance with BRE Digest 365 can be found in Appendix 1 of this document.
- 3.3 It is noted that the results obtained achieve remarkably similar values throughout the site with co-efficients of 1 x10 ⁻⁵ m/s , generally being achieved at the near surface test locations and a slight improvement being achieved for the deeper tests which relate to the potential use of more conventional soakaway techniques.
- 3.4 It is considered reasonable to adopt the blanket value of 1 x10 ⁻⁵ m/s as appropriate for the design criteria which will be utilised throughout the parcel areas.

4.0 Infrastructure Limitations

- 4.1 The strategic drainage facilities which have already been installed in the vicinity of these parcels anticipate restricted discharge being released at rates equivalent to Greenfield run-off for all storms up to the 100 year plus climate change rainfall event. The climate change allowance which is anticipated is a 30% increase in rainfall intensity in accordance with the guidance laid down in the National Planning Policy Framework.
- 4.2 In relation to Parcel C, the drainage strategy anticipates an allowable discharge of 15.5 l/s and this will discharge to a single outfall point on the land's southern boundary.
- 4.3 In relation to Parcel D, the discharge rate which has been determined is 23.1 l/s and this is to be divided between the four connection points which have been provided into the infrastructure system.
- 4.4 The expectation of the Design Code is that with the exception of Secondary Streets which will be constructed in tarmac, all other roads will benefit from porous paving which will have the beneficial effect of utilising the infiltration capabilities of the soil.
- 4.5 The Design Code anticipates that sub-base beneath the porous paving roads will cater for storms up to at least the 10 year return period with any excess flows for larger rainfall events being directed via highway drains or swales to the strategic sewer systems which feed the attenuation basin. In relation to this layout, it is not considered that there is sufficient space to create swales which will be effective and the highway drain option is therefore being pursued.
- 4.6 In relation to private paved areas, extended use of permeable paving is also anticipated and this will be designed to receive connections from roof water from at least the front of any adjacent dwellings. Any rear roof areas which cannot be discharged to the permeable paving sub-base will be directed towards plastic matrix soakaways which will be located within rear gardens, recognizing the normal offset requirements of 5 metres from any building which are laid down in the Building Regulations.

5.0 Design Proposals

- 5.1 The design proposals for the adoptable highway areas involve the use of permeable paving in accordance with the design code with only the estate road which separates the two parcel areas being finished in tarmac.
- 5.2 The principle drainage arrangements which are anticipated for these estate roads are indicated on the catchment plan which can be found in Appendix 2 of this document.
- 5.3 Appendix 3 contains Microdrainage calculations which incorporate the porous paving areas as well as appropriate controls which will be located upstream of the connection points into the infrastructure sewers. The good infiltration capabilities of the underlying soil indicate that a sub-base depth of 400mm is adequate to accommodate the 10 year return period storm but the modelling approach tests the performance of the system for the 100 year plus 30% climate change rainfall event to demonstrate that the discharge rates set in the overall drainage strategy for Kingsmere is not exceeded. The results of this modelling exercise are summarized in the table below.

Network	Peak Flow	Permissible discharge
	15.4 l/s	15.5 l/s
Network 1 (Parcel C)		
	4.8 l/s	-
Network 2 (Parcel D)		
	9.0 l/s	-
Network 3 (Parcel D)		
	5.0 l/s	-
Network 4 (Parcel D)		
	4.0 l/s	-
Network 5 (Parcel D)		
	22.8 l/s	23.1 Total
Parcel D Totals		

- 5.4 It can be concluded therefore that the expectations of the Design Code and indeed the overall drainage strategy has been complied with in relation to these proposals.
- In relation to the private paved areas, it is proposed that the porous paved areas will be designed to reflect the prevailing infiltration rates and to accommodate all storms up to the 10 year rainfall event. Any soakaways will similarly be designed to the same robust standards in compliance with the expectation of the Design Code.

6.0 Conclusions

6.1 It is therefore concluded that the requirements of the Design Code and the drainage strategy can be fulfilled successfully with the proposals which are envisaged for this scheme and preparations are already in hand to submit appropriate details to the relevant adopting authorities on this basis.

APPENDIX 1

INFILTRATION TESTS

DO NOT SCALE Copyright © Rolton Group Ltd 2014

If there should be any doubt or query regarding the interpretation of the information given on this Drawing, please enquire directly to Rolton Group Ltd before executing such part of the works.

The contents of this drawing are strictly confidential and must not in any circumstances be copied, shown, published or otherwise disclosed to anyone, outside the Rolton Group without express consent in writing.

Telephone +44 (0)870 726 0000 Fax +44 (0)870 726 0222 www.rolton.com

ONE MINERVA BUSINESS PARK LYNCH WOOD PETERBOROUGH PEZ 6FT

THE DAVID ROLTON BUILDING
TWELVE QUARTZ POINT
STONEBRIDGE ROAD
BIRMINGHAM B46 3JL

Two soakaway pits were excavated at each location except for at location SW1 where three were excavated due to unexpected stratum being encountered.

Rev. Date Description of Issue Child

Revisions

Issue Purpose:

INFORMATION

PERSIMMON HOMES KINGSMERE BICESTER

SOAKAWAY TESTING LOCATION PLAN

Designer's Risk Assessment Reference: 13-0199 XDRA 001

Specification Reference: N/A

Drawn By: Checked By:
AF JB

Scales: 1:500
1:250 MAY '14

Drawing No. Rev.

13-0199 GEO 001 I 1

Copyright © Rolton Group Ltd 2014

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 14/05/2014
Dimensions	0.45	1.00	0.70	Soakaway No. 1a.1
(m)	0.45	1.00	017 0	20amana) Noi 10.1

From above graph:

rrom above grapm,	
0.185 m	= Depth drop between 75% and 25% of maximum depth to final depth
43 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.08325 m³	
ap50 =	2.0247 m ²	
tp75-25 =	43.0 mins	

eneral Geological Profile :					
0	0				
0	0				
0	0				
0	0				

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.59E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP Contract Name: Kingsmere Contract No: 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 14/05/2014
Dimensions	0.45	1.00	0.70	Soakaway No. 1a.2
(m)	0.43	1.00	0.70	Soukaway No. 1a.Z

From above graph;

rrom above grapm,	
0.175 m	= Depth drop between 75% and 25% of maximum depth to final depth
52 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.07875 m³	
ap50 =	2.1117 m ²	
tp75-25 =	52.0 mins	

	ological Profile :	
0	0	
0	0	
0	0	
0	0	

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.20E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 14/05/2014
Dimensions	0.45	1.00	0.70	Soakaway No. 1a.3
(m)	01.15	1.00	0.7.0	- Tais

From above graph:

Trom above grapn,	
0.185 m	= Depth drop between 75% and 25% of maximum depth to final depth
62 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.08325 m³	
ap50 =	2.0537 m ²	
tp75-25 =	62.0 mins	

	logical Frome .	eneral Geological Profile :				
0	0					
0	0					
0	0					
0	0					

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.09E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.00	1.40	Soakaway No. 1C.1

From above graph:

rrom above grapm,	
0.03 m	= Depth drop between 75% and 25% of maximum depth to final depth
162 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.027m^3	
ap50 =	4.8837 m ²	
tp75-25 =	162.0 mins	

General Ge	ological Profile :	_	
0	0		
0	0		
0	0		
0	0		
Notes :			

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	5.69E-07	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP Contract Name: Kingsmere Contract No: 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 14/05/2014
Dimensions (m)	0.45	1.00	0.65	Soakaway No. 2a.1

From above graph;

Trom above grapm,	
0.175 m	= Depth drop between 75% and 25% of maximum depth to final depth
17 5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.07875 m³	
ap50 =	1.9667 m ²	
tp75-25 =	17.5 mins	

	logical Profile :		
0	0		
0	0		
0	0		
0	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	3.81E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP

ENGINEERING THE FUTURE

Calculation of Infiltration Rate in Broad Accordance with BRE Digest 365.

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit Width Length Depth to Base Test Date 14/05/2014

Dimensions (m) 0.45 1.00 0.65 Soakaway No. 2a.2

From above graph;

Troill above grapii,	
0.17 m	= Depth drop between 75% and 25% of maximum depth to final depth
19.9 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.0765 m ³	
ap50 =	1.9377 m ²	
tp75-25 =	19.9 mins	

	ological Profile :	
0	0	
0	0	
0	0	
0	0	

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	3.31E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 14/05/2014
Dimensions (m)	0.45	1.00	0.65	Soakaway No. 2a.3

From above graph;

rroili above grapii,	
0.15 m	= Depth drop between 75% and 25% of maximum depth to final depth
17 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.0675 m ³	
ap50 =	1.9667 m ²	
tp75-25 =	17.0 mins	

eneral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	3.36E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 14/05/2014
Dimensions (m)	0.45	2.00	1.90	Soakaway No. 2b.1

From above graph;

rrom above grapm,	
0.26 m	= Depth drop between 75% and 25% of maximum depth to final depth
41 3 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.234m^3	
ap50 =	3.6587 m ²	
tp75-25 =	41.3 mins	

eral G	eological Profile :	_	
0	0		
0	0		
0	0		
0	0		
0 es :	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	2.58E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 14/05/2014
Dimensions (m)	0.45	2.00	1.90	Soakaway No. 2b.2

From above graph;

0.235 m	= Depth drop between 75% and 25% of maximum depth to final depth
54.8 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.2115 m ³	
ap50 =	3.7077 m ²	
tp75-25 =	54.8 mins	

eneral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.73E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP

ENGINEERING THE FUTURE

Calculation of Infiltration Rate in Broad Accordance with BRE Digest 365.

Contract Name: Kingsmere **Contract No:** 13-0199

Trial Pit Width Length Depth to Base Test Date 14/05/2014

Dimensions (m) 2.00 1.90 Soakaway No. 2b.3

From above graph:

rroili above grapii,	
0.2 m	= Depth drop between 75% and 25% of maximum depth to final depth
27 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.18m^3	
ap50 =	3.9527 m ²	
tp75-25 =	27.0 mins	

eneral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	2.81E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE **Contract Name :** Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 14/05/2014
Dimensions (m)	0.60	1.50	1.00	Soakaway No. 3a.1

From above graph:

Trom above grapn,	
0.09 m	= Depth drop between 75% and 25% of maximum depth to final depth
10 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.081m^3	
ap50 =	3.6006 m ²	
tp75-25 =	10.0 mins	

eral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		
es:			

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	3.75E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 14/05/2014
Dimensions (m)	0.60	1.50	1.00	Soakaway No. 3a.2

From above graph:

tp75-25 =

Trom above grapn,	
0.11 m	= Depth drop between 75% and 25% of maximum depth to final depth
19.75 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

Calculation of Soil Infiltration Rate (f):

19.8 mins

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.099m^3	
ap50 =	3.6426 m ²	

eral G	eological Profile :		
0	0		
0	0		
0	0		
0	0		
es :			

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	2.29E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name: Kingsmere **Contract No:** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 14/05/2014
Dimensions (m)	0.60	1.50	1.00	Soakaway No. 3a.3

From above graph:

rrom above grapm,	
0.145 m	= Depth drop between 75% and 25% of maximum depth to final depth
29 75 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.1305 m ³	
ap50 =	3.3486 m ²	
tp75-25 =	29.8 mins	

)	
)	
)	
כ	

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	2.18E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP
ENGINEERING THE FUTURE

Contract Name: Kingsmere
Contract No: 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions	0.45	3.00	2.30	Soakaway No. 3b.1
(m)	0.15	3.00	2.50	Journal 1101 Juli

From above graph;

Trom above grapm,	
0.07 m	= Depth drop between 75% and 25% of maximum depth to final depth
39 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.0945 m³	
ap50 =	7.9257 m ²	
tp75-25 =	39.0 mins	

eneral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	5.10E-06	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions	0.45	3.00	2.30	Soakaway No. 3b.2
(m)	0.43	3.00	2.50	Soakaway No. 30.2

From above graph;

rroili above grapii,	
0.03 m	= Depth drop between 75% and 25% of maximum depth to final depth
18.5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.0405 m ³	
ap50 =	8.3397 m ²	
tp75-25 =	18.5 mins	

eral G	eological Profile :	_	
0	0		
0	0		
0	0		
0	0		
0 es :	0		

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	4.38E-06	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions	0.45	3.00	2.30	Soakaway No. 3b.3
(m)	0.43	3.00	2.30	Soakaway No. 30,3

From above graph:

rroin above grapii,	
0.2 m	= Depth drop between 75% and 25% of maximum depth to final depth
157 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	$0.27 m^3$	
ap50 =	6.1317 m ²	
tp75-25 =	157.0 mins	

neral Ge	ological Profile	:	
0	0		
0	0		
0	0		
0	0		
es :			

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	4.67E-06	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions (m)	0.60	1.50	1.00	Soakaway No. 4a.1

From above graph:

Trom above grapm,	
0.215 m	= Depth drop between 75% and 25% of maximum depth to final depth
39.9 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.1935 m³	
ap50 =	4.3146 m ²	
tp75-25 =	39.9 mins	

eneral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.87E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP
ENGINEERING THE FUTURE

Contract Name: Kingsmere
Contract No: 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions	0.60	1.50	1.00	Soakaway No. 4a.2
(m)	0.00	1.50	1.00	Soundinal Ho. Ha.Z

From above graph;

0.185 m	= Depth drop between 75% and 25% of maximum depth to final depth
48 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.1665 m ³	
ap50 =	4.4826 m ²	
tp75-25 =	48.0 mins	

General Geological Profile :							
0	0						
0	0						
0	0						
0	0						

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.29E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions (m)	0.60	1.50	1.00	Soakaway No. 4a.3

From above graph:

Trom above grapm,	
0.15 m	= Depth drop between 75% and 25% of maximum depth to final depth
40 25 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.135m^3	
ap50 =	4.8186 m ²	
tp75-25 =	40.3 mins	

	ological Profile :	
0	0	
0	0	
0	0	
0	0	

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.16E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name: Kingsmere **Contract No:** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions (m)	0.45	1.80	0.70	Soakaway No. 5a.1

From above graph:

rroin above grapii,	
0.21 m	= Depth drop between 75% and 25% of maximum depth to final depth
23 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.1701 m ³	
ap50 =	3.0735 m ²	
tp75-25 =	23.0 mins	

Seneral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		
0 lotes :	0		

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	4.01E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP

ENGINEERING THE FUTURE

Calculation of Infiltration Rate in Broad Accordance with BRE Digest 365.

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit Width Length Depth to Base Test Date 15/05/2014

Dimensions (m) 0.45 1.80 0.70 Soakaway No. 5a.2

From above graph:

Trom above grapm,	
0.2 m	= Depth drop between 75% and 25% of maximum depth to final depth
26 5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.162 m^3	
ap50 =	3.1635 m ²	
tp75-25 =	26.5 mins	

eneral Ge	ological Profile :	
0	0	
0	0	
0	0	
0	0	
0 otes :	0	

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	3.22E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions	0.45	1.80	0.70	Soakaway No. 5a.3
(m)	0.43	1.60	0.70	Soakaway No. 20.2

From above graph:

Trom above grapm,	
0.205 m	= Depth drop between 75% and 25% of maximum depth to final depth
22 6 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.16605 m ³	
ap50 =	3.1635 m ²	
tp75-25 =	22.6 mins	

neral G	eological Profile :		
0	0		
0	0		
0	0		
0	0		
tes :			

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	3.87E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions (m)	0.45	3.00	1.50	Soakaway No. 5b.1

From above graph;

rroili above grapii,	
0.085 m	= Depth drop between 75% and 25% of maximum depth to final depth
14.8 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.11475 m³	
ap50 =	5.8557 m ²	
tp75-25 =	14.8 mins	

	ological Profile :	
0	0	
0	0	
0	0	
0	0	

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	2.21E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP

ENGINEERING THE FUTURE

Calculation of Infiltration Rate in Broad Accordance with BRE Digest 365.

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit Width Length Depth to Base Test Date 15/05/2014

Dimensions (m) 3.00 1.50 Soakaway No. 5b.2

From above graph:

Trom above grapn,	
0.135 m	= Depth drop between 75% and 25% of maximum depth to final depth
3.7 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.18225 m³	
ap50 =	5.1657 m ²	
tp75-25 =	3.7 mins	

	ological Profile :	
0	0	
0	0	
0	0	
0	0	

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.59E-04	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP
ENGINEERING THE FUTURE

Contract Name: Kingsmere
Contract No: 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions	0.45	3.00	1.50	Soakaway No. 5b.3
(m)	0.43	5.00	1.50	Source And The Ship

From above graph;

Troni above grapn,	
0.15 m	= Depth drop between 75% and 25% of maximum depth to final depth
5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.2025 m ³	
ap50 =	4.9587 m ²	
tp75-25 =	5.0 mins	

General	eneral Geological Profile :		
0	0		
0	0		
0	0		
0	0		
Notes :			

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.36E-04	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions (m)	0.45	1.00	1.00	Soakaway No. 6a.1

From above graph:

rroin above grapii,	
0.09 m	= Depth drop between 75% and 25% of maximum depth to final depth
35 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.0405 m ³	
ap50 =	2.6337 m ²	
tp75-25 =	35.0 mins	

	··· · · · · · · · · · · · · · · · · ·	eral Geological Profile :				
0	0					
0	0					
0	0					
0	0					

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	7.32E-06	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions (m)	0.45	1.00	1.00	Soakaway No. 6a.2

From above graph:

rrom above grapm,	
0.045 m	= Depth drop between 75% and 25% of maximum depth to final depth
11 5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.02025 m ³	
ap50 =	2.9527 m ²	
tp75-25 =	11.5 mins	

General Geo	General Geological Profile :				
0	0				
0	0				
0	0				
0	0				
Notes :					

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	9.94E-06	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP

ENGINEERING THE FUTURE

Calculation of Infiltration Rate in Broad Accordance with BRE Digest 365.

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit Width Length Depth to Base Test Date 16/05/2014

Dimensions 0.45 1.00 1.00 Soakaway No. 6a.3

From above graph:

rrom above grapm,	
0.205 m	= Depth drop between 75% and 25% of maximum depth to final depth
103 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.09225 m³	
ap50 =	2.6047 m ²	
tp75-25 =	103.0 mins	

General Geological Profile :				
0	0			
0	0			
0	0			
0	0			

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	5.73E-06	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions (m)	0.45	2.50	1.70	Soakaway No. 6b.1

From above graph:

Trom above grapn,	
0.175 m	= Depth drop between 75% and 25% of maximum depth to final depth
35 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.196875 m³	
ap50 =	4.8007 m ²	
tp75-25 =	35.0 mins	

General Geological Profile :			
0	0		
0	0		
0	0		
0	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.95E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 15/05/2014
Dimensions	0.45	2.50	1.70	Soakaway No. 6ხ.2
(m)	0.43	2.50	1.70	Soakaway No. UD.Z

From above graph:

rrom above grapm,	
0.075 m	= Depth drop between 75% and 25% of maximum depth to final depth
14 25 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.084375 m³	
ap50 =	5.9807 m ²	
tp75-25 =	14.3 mins	

eral Ge	l Geological Profile :						
0	0						
0	0						
0	0						
0	0						
es:							

			Permeability Guideline (m/s)		
Soil Infiltration Rate (f) =	1.65E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.50	1.70	Soakaway No. 6b.3

From above graph:

rroin above grapii,	
0.215 m	= Depth drop between 75% and 25% of maximum depth to final depth
76 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.241875 m³	
ap50 =	4.1517 m ²	
tp75-25 =	76.0 mins	

	ological Profile :	
0	0	
0	0	
0	0	
0	0	

			Permeability Guideline (m/s)		
Soil Infiltration Rate (f) =	1.28E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.00	0.80	Soakaway No. 7a.1

From above graph;

From above grapn,	
0.14 m	= Depth drop between 75% and 25% of maximum depth to final depth
17 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.126 m³	
ap50 =	3.2177 m ²	
tp75-25 =	17.0 mins	

ral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		
s :			

			Permeability Guideline (m/s)			
Soil Infiltration Rate (f) =	3.84E-05	m/s	Good Poor Practically Impervious			
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰	

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.00	0.80	Soakaway No. 7a.2

From above graph:

Trom above grapm,	
0.115 m	= Depth drop between 75% and 25% of maximum depth to final depth
19 5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.1035 m ³	
ap50 =	3.5607 m ²	
tp75-25 =	19.5 mins	

eral G	eological Profile :	_	
0	0		
0	0		
0	0		
0	0		
0 es :	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	2.48E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.00	0.80	Soakaway No. 7a.3

From above graph:

Trom above grapm,	
0.13 m	= Depth drop between 75% and 25% of maximum depth to final depth
29 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.117m^3	
ap50 =	3.5117 m ²	
tp75-25 =	29.0 mins	

General Ge	ological Profile :
0	0
0	0
0	0
0	0
Notes :	

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.91E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP

ENGINEERING THE FUTURE

Calculation of Infiltration Rate in Broad Accordance with BRE Digest 365.

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit Width Length Depth to Base Test Date 16/05/2014

Dimensions 0.45 2.00 1.60 Soakaway No. 7b.1

From above graph;

0.14 m	= Depth drop between 75% and 25% of maximum depth to final depth
3.7 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.126 m³	
ap50 =	3.5607 m ²	
tp75-25 =	3.7 mins	

eneral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.59E-04	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP

ENGINEERING THE FUTURE

0.45

2.00

Calculation of Infiltration Rate in Broad Accordance with BRE Digest 365.

Contract Name: Kingsmere **Contract No:** 13-0199

Length Depth to Base **Test Date** 16/05/2014 **Trial Pit** Width **Dimensions** Soakaway No. 7b.2

1.60

From above graph:

rrom above grapm,	
0.125 m	= Depth drop between 75% and 25% of maximum depth to final depth
7 4 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.1125 m³	
ap50 =	3.7077 m ²	
tp75-25 =	7.4 mins	

General Geological Profile :				
0	0			
0	0			
0	0			
0	0			

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	6.83E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.00	1.60	Soakaway No. 7b.3

From above graph:

rroili above grapii,	
0.2 m	= Depth drop between 75% and 25% of maximum depth to final depth
7 .9 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.18m^3	
ap50 =	3.2177 m ²	
tp75-25 =	7.9 mins	

eneral Geological Profile :			
0	0		
0	0		
0	0		
0	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.18E-04	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	1.00	0.80	Soakaway No. 8a.1

From above graph:

rrom above grapn,	
0.13 m	= Depth drop between 75% and 25% of maximum depth to final depth
40 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.0585 m³	
ap50 =	1.8217 m ²	
tp75-25 =	40.0 mins	

ral Geological Profile :					
0	0				
0	0				
0	0				
0	0				
s :					

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.34E-05	m/s	Good	Poor	Practically Impervious
·	_	_	10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP Contract Name: Kingsmere Contract No: 13-0199

Trial Pit Width Length Depth to Base Test Date 16/05/2014

Dimensions (m) 0.45 1.00 0.80 Soakaway No. 8a.2

From above graph;

rrom above grapm,	
0.125 m	= Depth drop between 75% and 25% of maximum depth to final depth
44 5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.05625 m ³	
ap50 =	1.9667 m ²	
tp75-25 =	44.5 mins	

eneral Geological Profile :					
0	0				
0	0				
0	0				
0	0				

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	1.07E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions	0.45	1.00	0.80	Soakaway No. 8a.3
(m)	0.43	1.00	0.80	Soakaway No. 04.3

From above graph:

rrom above grapn,	
0.12 m	= Depth drop between 75% and 25% of maximum depth to final depth
54 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.054 m^3	
ap50 =	2.1407 m ²	
tp75-25 =	54.0 mins	

General G	eological Profile :		
0	0		
0	0		
0	0		
0	0		
Notes :			

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	7.79E-06	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.00	1.80	Soakaway No. 8b.1

From above graph:

rroin above grapii,	
0.21 m	= Depth drop between 75% and 25% of maximum depth to final depth
37 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.189m^3	
ap50 =	4.0997 m ²	
tp75-25 =	37.0 mins	

eneral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	2.08E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.00	1.80	Soakaway No. 8b.2

From above graph:

rroin above grapii,	
0.125 m	= Depth drop between 75% and 25% of maximum depth to final depth
9.5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.1125 m ³	
ap50 =	4.8837 m ²	
tp75-25 =	9.5 mins	

eral Ge	ological Profile :		
0	0		
0	0		
0	0		
0	0		
s:			

				P	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	4.04E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.00	1.80	Soakaway No. 8b.3

From above graph:

Troili above grapii,	
0.22 m	= Depth drop between 75% and 25% of maximum depth to final depth
37 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.198m^3	
ap50 =	4.2467 m ²	
tp75-25 =	37.0 mins	

General Ge	eneral Geological Profile :					
0	0					
0	0					
0	0					
0	0					
Notes :						

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	2.10E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP

ENGINEERING THE FUTURE

Calculation of Infiltration Rate in Broad Accordance with BRE Digest 365.

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit Width Length Depth to Base Test Date 16/05/2014

Dimensions (m) 0.45 2.00 0.80 Soakaway No. 9a.1

From above graph:

Trom above grapm,	
0.15 m	= Depth drop between 75% and 25% of maximum depth to final depth
20 5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	$0.135 m^3$	
ap50 =	3.2177 m ²	
tp75-25 =	20.5 mins	

eral G	eological Profile :		
0	0		
0	0		
0	0		
0	0		
es :			

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	3.41E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.00	0.80	Soakaway No. 9a.2

From above graph;

rrom above grapm,	
0.085 m	= Depth drop between 75% and 25% of maximum depth to final depth
15.5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.0765 m ³	
ap50 =	3.8547 m ²	
tp75-25 =	15.5 mins	

	neral Geological Profile :					
0	0					
0	0					
0	0					
0	0					

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	2.13E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	2.00	0.80	Soakaway No. 9a.3

From above graph:

Trom above grapm,	
0.15 m	= Depth drop between 75% and 25% of maximum depth to final depth
29 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.135 m³	
ap50 =	3.2177 m ²	
tp75-25 =	29.0 mins	

eral G	eological Profile :		
0	0		
0	0		
0	0		
0	0		
es :			

Soil Infiltration Rate (f) =	2.41E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	$10^{-6} - 10^{-7}$	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	3.00	2.00	Soakaway No. 9b.1

From above graph:

Trom above grapn,	
0.125 m	= Depth drop between 75% and 25% of maximum depth to final depth
11.5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.16875 m³	
ap50 =	4.6137 m ²	
tp75-25 =	11.5 mins	

eral G	eological Profile :	_	
0	0		
0	0		
0	0		
0	0		
0 es :	0		

				F	Permeability Guideline (m/s)
Soil Infiltration Rate (f) =	5.30E-05	m/s	Good	Poor	Practically Impervious
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰

ROLTON GROUP

ENGINEERING THE FUTURE

Calculation of Infiltration Rate in Broad Accordance with BRE Digest 365.

Contract Name: Kingsmere Contract No: 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions	0.45	3.00	2.00	Soakaway No. 9b.2
(m)	0.43	3.00	2.00	Soakaway No. 9D.Z

From above graph;

rrom above grapm,	
0.105 m	= Depth drop between 75% and 25% of maximum depth to final depth
12 5 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.14175 m³	
ap50 =	5.2347 m ²	
tp75-25 =	12.5 mins	

General	Geologic	al Profile :
0	0	
0	0	
0	0	
0	0	
Notes :		

			Permeability Guideline (m/s)				
Soil Infiltration Rate (f) =	3.61E-05	m/s	Good Poor Practically Impervious				
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰		

ROLTON GROUP ENGINEERING THE FUTURE

Contract Name : Kingsmere **Contract No :** 13-0199

Trial Pit	Width	Length	Depth to Base	Test Date 16/05/2014
Dimensions (m)	0.45	3.00	2.00	Soakaway No. 9b.3

From above graph:

Trom above grapm,	
0.155 m	= Depth drop between 75% and 25% of maximum depth to final depth
24 25 mins	= Time for outflow between 75% and 25% of maximum depth to final depth

where		using
f =	<u>VP75-25</u>	VP75-25 = Volume outflowing between 75% and 25% of effective depth.
	ap50 x tp75-25	ap50 = Mean surface area through which the outflow occurs.
		tp75-25 = Time for the outflow between 75% and 25% of the effective depth.
VP75-25 =	0.20925 m³	
ap50 =	4.6137 m ²	
tp75-25 =	24.3 mins	

	ological Profile :	
0	0	
0	0	
0	0	
0	0	

			Permeability Guideline (m/s)				
Soil Infiltration Rate (f) =	3.12E-05	m/s	Good Poor Practically Impervious				
			10 ⁻³ - 10 ⁻⁵	10 ⁻⁶ - 10 ⁻⁷	10 ⁻⁸ - 10 ⁻¹⁰		

APPENDIX 2

DRAINAGE PLANS

APPENDIX 3

MICRODRAINAGE CALCULATIONS

Woods Hardwick		Page 0
15-17 Goldington Road		
Bedford		
MK40 3NH		Trucko o
Date 30/06/2014 12:31	Designed by c.brackley	
File Network 1 Revisi	Checked by	
Micro Drainage	Network W.12.6	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for 17079 BICESTER NET 1.SWS

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 2 Add Flow / Climate Change (%) 0 M5-60 (mm) 20.000 Minimum Backdrop Height (m) 0.200 Ratio R 0.400 Maximum Backdrop Height (m) 0.000 Maximum Rainfall (mm/hr) 2 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (1/s/ha) 0.00 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500 PIMP (%) 100

Designed with Level Soffits

Network Design Table for 17079 BICESTER NET 1.SWS

PN	-		-	I.Area			se	k	HYD	DIA
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)
1.000	16.387	0.159	103.1	0.003	4.00		0.0	0.600	0	300
1.001	84.768	0.673	126.0	0.040	0.00		0.0	0.600	0	600
1.002	11.202	0.027	414.9	0.045	0.00		0.0	0.600	0	600
1.003	13.947	0.185	75.4	0.017	0.00		0.0	0.600	0	600
2.000	10.000	0.100	100.0	0.026	4.00		0.0	0.600	0	150
2.001	13.194	0.157	84.0	0.000	0.00		0.0	0.600	0	300
1.004	76.113	0.187	407.0	0.050	0.00		0.0	0.600	0	600
1.005	6.725	0.017	395.6	0.052	0.00		0.0	0.600	0	600

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	2.00		72.887	0.003	0.0	0.0	0.0		109.5	0.0
1.001	2.00	4.83	72.428	0.043	0.0	0.0	0.0	2.17	613.2	0.2
1.002	2.00	4.98	71.755	0.088	0.0	0.0	0.0	1.19	336.2	0.5
1.003	2.00	5.07	71.728	0.105	0.0	0.0	0.0	2.81	793.6	0.6
2.000	2.00	4.17	72.250	0.026	0.0	0.0	0.0	1.00	17.8	0.1
2.001	2.00	4.29	72.000	0.026	0.0	0.0	0.0	1.72	121.3	0.1
1.004	2.00	6.12	71.543	0.181	0.0	0.0	0.0	1.20	339.5	1.0
1.005	2.00	6.22	71.356	0.233	0.0	0.0	0.0	1.22	344.4	1.3

Woods Hardwick		Page 1
15-17 Goldington Road		
Bedford		
MK40 3NH		Tricke of the
Date 30/06/2014 12:31	Designed by c.brackley	
File Network 1 Revisi	Checked by	
Micro Drainage	Network W.12.6	

Network Design Table for 17079 BICESTER NET 1.SWS

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s	k (mm)	HYD SECT	DIA (mm)
3.000	10.000	0.100	100.0	0.037	4.00	0.	0 0.600	0	150
3.001	12.470	0.062	201.1	0.000	0.00	0.	0 0.600	0	300
3.002	9.320	0.039	239.0	0.000	0.00	0.	0 0.600	0	300
3.003	5.902	0.024	245.9	0.000	0.00	0.	0 0.600	0	300
4.000	10.000	0.100	100.0	0.026	4.00	0.	0 0.600	0	150
4.001	52.629	0.263	200.1	0.000	0.00	0.	0 0.600	0	300
3.004	44.413	0.185	240.1	0.000	0.00	0.	0 0.600	0	300
3.005	4.042	0.351	11.5	0.000	0.00	0.	0 0.600	0	300
1.006	6.226	0.060	103.8	0.000	0.00	0.	0 0.600	0	225

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(l/s)	(m/s)	(1/s)	(1/s)
3.000	2.00	4.17	72.250	0.037	0.0	0.0	0.0	1.00	17.8	0.2
3.001	2.00	4.35	72.000	0.037	0.0	0.0	0.0	1.10	78.1	0.2
3.002	2.00	4.51	71.938	0.037	0.0	0.0	0.0	1.01	71.6	0.2
3.003	2.00	4.61	71.899	0.037	0.0	0.0	0.0	1.00	70.6	0.2
4.000	2.00	4.17	72.388	0.026	0.0	0.0	0.0	1.00	17.8	0.1
4.001	2.00	4.96	72.138	0.026	0.0	0.0	0.0	1.11	78.3	0.1

3.004	2.00	5.69	71.875	0.063	0.0	0.0	0.0	1.01	71.4	0.3
3.005	2.00	5.70	71.690	0.063	0.0	0.0	0.0	4.66	329.3	0.3
1.006	2.00	6.30	71.339	0.296	0.0	0.0	0.0	1.28	51.0	1.6

Woods Hardwick	Page 2	
15-17 Goldington Road		
Bedford		
MK40 3NH		Tricke of the
Date 30/06/2014 12:31	Designed by c.brackley	
File Network 1 Revisi	Checked by	
Micro Drainage	Network W.12.6	

Online Controls for 17079 BICESTER NET 1.SWS

Hydro-Brake® Manhole: 14, DS/PN: 1.006, Volume (m³): 5.3

Design Head (m) 1.500 Hydro-Brake® Type Md6 SW Only Invert Level (m) 71.339 Design Flow (1/s) 15.5 Diameter (mm) 148

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100 0.200	4.9 10.9	1.200	13.8 14.8	3.000 3.500	21.6	7.000 7.500	33.1 34.2
0.300	12.7	1.600	15.8	4.000	25.0	8.000	35.3
0.400	12.5	1.800	16.8	4.500	26.5	8.500	36.4
0.500	12.0	2.000	17.7	5.000	27.9	9.000	37.5
0.600	11.7	2.200	18.5	5.500	29.3	9.500	38.5
0.800	11.9	2.400	19.4	6.000	30.6		
1.000	12.8	2.600	20.2	6.500	31.9		

Woods Hardwick	Page 3	
15-17 Goldington Road		
Bedford		
MK40 3NH		The Charles
Date 30/06/2014 12:31	Designed by c.brackley	
File Network 1 Revisi	Checked by	
Micro Drainage	Network W.12.6	

Storage Structures for 17079 BICESTER NET 1.SWS

Porous Car Park Manhole: 6, DS/PN: 2.001

Infiltration Coefficient Base (m/hr)	0.03600	Width (m)	5.0
Membrane Percolation (mm/hr)	1000	Length (m)	53.0
Max Percolation (1/s)	73.6	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	72.800	Cap Volume Depth (m)	0.400

Porous Car Park Manhole: 10, DS/PN: 3.001

Infiltration Coefficient Base (m/hr)	0.03600	Width (m)	5.0
Membrane Percolation (mm/hr)	1000	Length (m)	74.0
Max Percolation (1/s)	102.8	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	72.800	Cap Volume Depth (m)	0.400

Porous Car Park Manhole: 14, DS/PN: 4.001

5.0	Width (m)	0.03600	Infiltration Coefficient Base (m/hr)
62.0	Length (m)	1000	Membrane Percolation (mm/hr)
100.0	Slope (1:X)	86.1	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0.400	Cap Volume Depth (m)	72.850	Invert Level (m)

Woods Hardwick	Page 4	
15-17 Goldington Road		
Bedford		
MK40 3NH		Tricke of the
Date 30/06/2014 12:31	Designed by c.brackley	
File Network 1 Revisi	Checked by	
Micro Drainage	Network W.12.6	

$\frac{\texttt{Summary of Critical Results by Maximum Level (Rank 1) for 17079 BICESTER}}{\texttt{NET 1.SWS}}$

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

ON

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 30

PN	Storm		Climate Change		st X narge	First Z Overflow	O/F Act.	Lvl Exc.
			-		-			
1.000	15 Winter	100	+30%					
1.001	60 Winter	100	+30%					
1.002	60 Winter	100	+30%	100/15	Winter			
1.003	60 Winter	100	+30%	100/15	Summer			
2.000	60 Winter	100	+30%	100/15	Winter			
2.001	60 Winter	100	+30%	100/15	Summer			
1.004	60 Winter	100	+30%	100/15	Summer			
1.005	60 Winter	100	+30%	30/15	Summer			
3.000	60 Winter	100	+30%	100/15	Summer			
3.001	60 Winter	100	+30%	100/15	Summer			
3.002	60 Winter	100	+30%	100/15	Summer			
3.003	60 Winter	100	+30%	100/15	Summer			
4.000	60 Winter	100	+30%	100/30	Summer			
4.001	60 Winter	100	+30%	100/15	Winter			
3.004	60 Winter	100	+30%	100/15	Summer			
3.005	60 Winter	100	+30%	30/15	Winter			
1.006	60 Winter	100	+30%	1/15	Summer			

		Water		Flooded			Pipe	
	US/MH	Level	Surch'ed	Volume	Flow /	O'flow	Flow	
PN	Name	(m)	Depth (m)	(m³)	Cap.	(1/s)	(l/s)	Status
1.000	1	72.915	-0.272	0.000	0.02	0.0	1.8	OK
1.001	2	72.865	-0.163	0.000	0.02	0.0	13.0	OK
1.002	3	72.865	0.510	0.000	0.09	0.0	17.4	SURCHARGED
1.003	4	72.865	0.537	0.000	0.04	0.0	18.5	SURCHARGED
2.000	8	72.869	0.469	0.000	0.50	0.0	7.9	SURCHARGED
2.001	6	72.864	0.564	0.000	0.07	0.0	7.2	SURCHARGED
1.004	5	72.864	0.721	0.000	0.09	0.0	28.1	SURCHARGED
1.005	6	72.861	0.905	0.000	0.11	0.0	22.1	SURCHARGED
3.000	9	72.875	0.475	0.000	0.71	0.0	11.2	SURCHARGED
3.001	10	72.868	0.568	0.000	0.17	0.0	10.8	SURCHARGED
3.002	10	72.867	0.629	0.000	0.18	0.0	10.1	SURCHARGED
3.003	11	72.866	0.667	0.000	0.19	0.0	9.3	SURCHARGED

Woods Hardwick	Page 5	
15-17 Goldington Road		
Bedford		
MK40 3NH		
Date 30/06/2014 12:31	Designed by c.brackley) Pathaco
File Network 1 Revisi	Checked by	
Micro Drainage	Network W.12.6	

$\frac{\texttt{Summary of Critical Results by Maximum Level (Rank 1) for 17079 BICESTER}}{\texttt{NET 1.SWS}}$

		Water		Flooded			Pipe	
	US/MH	Level	Surch'ed	Volume	Flow /	O'flow	Flow	
PN	Name	(m)	Depth (m)	(m³)	Cap.	(1/s)	(1/s)	Status
4.000	13	72.872	0.334	0.000	0.50	0.0	7.9	SURCHARGED
4.001	14	72.867	0.429	0.000	0.10	0.0	7.8	SURCHARGED
3.004	12	72.865	0.690	0.000	0.22	0.0	14.6	SURCHARGED
3.005	13	72.861	0.871	0.000	0.06	0.0	8.4	SURCHARGED
1.006	14	72.860	1.296	0.000	0.45	0.0	15.4	SURCHARGED

Woods Hardwick		Page 0
15-17 Goldington Road		
Bedford		
MK40 3NH		Tricko o
Date 30/06/2014 11:06	Designed by c.brackley	
File Network 2 Permea	Checked by	
Micro Drainage	Network W.12.6	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for 17079 BICESTER NET 2.SWS

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales
Return Period (years) 2 Add Flow / Climate Change (%) 0
M5-60 (mm) 20.000 Minimum Backdrop Height (m) 0.200
Ratio R 0.400 Maximum Backdrop Height (m) 0.000
Maximum Rainfall (mm/hr) 5 Min Design Depth for Optimisation (m) 1.200
Foul Sewage (l/s/ha) 0.00 Min Vel for Auto Design only (m/s) 1.00
Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500
PIMP (%) 100

Designed with Level Soffits

Network Design Table for 17079 BICESTER NET 2.SWS

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)
1.000	10.000	0.100	100.0	0.038	4.00		0.0	0.600	0	150
1.001	33.488	0.440	76.1	0.000	0.00		0.0	0.600	0	300
1.002	15.798	0.066	241.1	0.000	0.00		0.0	0.600	0	300
1.003	68.911	0.300	229.7	0.041	0.00		0.0	0.600	0	300
1.004	28.512	0.350	81.5	0.000	0.00		0.0	0.600	0	300
1.005	8.172	0.364	22.5	0.000	0.00		0.0	0.600	0	225

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(l/s)	(1/s)
1.000	5.00	4.17	72.050	0.038	0.0	0.0	0.0	1.00	17.8	0.5
1.001	5.00	4.48	71.800	0.038	0.0	0.0	0.0	1.80	127.5	0.5
1.002	5.00	4.74	71.360	0.038	0.0	0.0	0.0	1.01	71.3	0.5
1.003	5.00	5.85	71.294	0.079	0.0	0.0	0.0	1.03	73.0	1.1
1.004	5.00	6.12	70.994	0.079	0.0	0.0	0.0	1.74	123.2	1.1
1.005	5.00	6.17	70.644	0.079	0.0	0.0	0.0	2.77	110.3	1.1

Woods Hardwick		Page 1
15-17 Goldington Road		
Bedford		
MK40 3NH		Trucko o
Date 30/06/2014 11:06	Designed by c.brackley	
File Network 2 Permea	Checked by	
Micro Drainage	Network W.12.6	

Online Controls for 17079 BICESTER NET 2.SWS

Hydro-Brake® Manhole: 29, DS/PN: 1.005, Volume (m³): 3.3

Design Head (m) 1.300 Hydro-Brake® Type Md6 SW Only Invert Level (m) 70.644 Design Flow (1/s) 5.0 Diameter (mm) 87

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) I	Flow (1/s)	Depth (m)	Flow (1/s)
0 100	0. 5	1 000	4 7	2 222			11 4
0.100	2.5	1.200	4.7	3.000	7.5	7.000	11.4
0.200	3.4	1.400	5.1	3.500	8.1	7.500	11.8
0.300	3.2	1.600	5.5	4.000	8.6	8.000	12.2
0.400	3.1	1.800	5.8	4.500	9.2	8.500	12.6
0.500	3.2	2.000	6.1	5.000	9.7	9.000	13.0
0.600	3.4	2.200	6.4	5.500	10.1	9.500	13.3
0.800	3.9	2.400	6.7	6.000	10.6		
1.000	4.3	2.600	7.0	6.500	11.0		

Woods Hardwick		Page 2
15-17 Goldington Road		
Bedford		
MK40 3NH		Trucko o
Date 30/06/2014 11:06	Designed by c.brackley	
File Network 2 Permea	Checked by	
Micro Drainage	Network W.12.6	

Storage Structures for 17079 BICESTER NET 2.SWS

Porous Car Park Manhole: 25, DS/PN: 1.001

Infiltration Coefficient Base (m/hr)	0.03600	Width (m)	5.0
Membrane Percolation (mm/hr)	1000	Length (m)	76.0
Max Percolation (1/s)	105.6	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	72.650	Cap Volume Depth (m)	0.400

Porous Car Park Manhole: 28, DS/PN: 1.004

Infiltration Coefficient Base (m/hr)	0.03600	Width (m)	5.0
Membrane Percolation (mm/hr)	1000	Length (m)	82.0
Max Percolation (1/s)	113.9	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	71.800	Cap Volume Depth (m)	0.400

Woods Hardwick	Page 3	
15-17 Goldington Road		
Bedford		
MK40 3NH		Trucko o
Date 30/06/2014 11:06	Designed by c.brackley	
File Network 2 Permea	Checked by	
Micro Drainage	Network W.12.6	

Margin for Flood Risk Warning (mm) 300.0 DVD Status ON
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 30

PN	Storm		Climate Change		st X harge		st Y ood	First Z Overflow	•	Lvl Exc.
1.000	15 Winter	100	+30%	100/15	Summer					
1.001	60 Winter	100	+30%	100/30	Winter					
1.002	60 Winter	100	+30%	100/15	Summer					
1.003	60 Winter	100	+30%	30/30	Winter					
1.004	60 Winter	100	+30%	30/15	Summer					
1.005	60 Summer	100	+30%			100/30	Winter			3

PN	US/MH Name	Water Level (m)	Surch'ed Depth (m)	Flooded Volume (m³)	Flow / Cap.	O'flow (1/s)	Pipe Flow (1/s)	Status
1.000	1	72.313	0.113	0.000	1.47	0.0	23.3	SURCHARGED
1.001	25	72.111	0.011	0.000	0.10	0.0	11.4	SURCHARGED
1.002	26	72.105	0.445	0.000	0.15	0.0	9.2	SURCHARGED
1.003	27	72.102	0.507	0.000	0.25	0.0	17.8	SURCHARGED
1.004	28	72.089	0.794	0.000	0.07	0.0	7.8	SURCHARGED
1.005	29	72.224	1.355	0.233	0.06	0.0	4.8	FLOOD

Woods Hardwick		Page 0
15-17 Goldington Road		
Bedford		
MK40 3NH		Trucko o
Date 30/06/2014 11:05	Designed by c.brackley	
File Network 3 Permea	Checked by	
Micro Drainage	Network W.12.6	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for 17079 BICESTER NET 3.SWS

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales
Return Period (years) 2 Add Flow / Climate Change (%) 0
M5-60 (mm) 20.000 Minimum Backdrop Height (m) 0.000
Ratio R 0.400 Maximum Backdrop Height (m) 0.000
Maximum Rainfall (mm/hr) 5 Min Design Depth for Optimisation (m) 1.200
Foul Sewage (1/s/ha) 0.00 Min Vel for Auto Design only (m/s) 1.00
Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500
PIMP (%) 100

Designed with Level Soffits

Network Design Table for 17079 BICESTER NET 3.SWS

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ise	k	HYD	DIA
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)
1.000	10.940	0.046	237.8	0.000	4.00		0.0	0.600	0	300
1.001	22.118	0.500	44.2	0.060	0.00		0.0	0.600	0	300
1.002	34.495	0.143	241.1	0.000	0.00		0.0	0.600	0	300
1.003	14.727	0.061	241.1	0.000	0.00		0.0	0.600	0	300
1.004	20.222	0.084	240.7	0.120	0.00		0.0	0.600	0	300
1.005	13.963	0.700	19.9	0.000	0.00		0.0	0.600	0	225

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(l/s)	(1/s)
1.000	5.00	4.18	71.650	0.000	0.0	0.0	0.0	1.02	71.8	0.0
1.001	5.00	4.34	71.604	0.060	0.0	0.0	0.0	2.37	167.6	0.8
1.002	5.00	4.91	71.104	0.060	0.0	0.0	0.0	1.01	71.3	0.8
1.003	5.00	5.15	70.961	0.060	0.0	0.0	0.0	1.01	71.3	0.8
1.004	5.00	5.48	70.900	0.180	0.0	0.0	0.0	1.01	71.3	2.4
1.005	5.00	5.56	70.816	0.180	0.0	0.0	0.0	2.94	117.0	2.4

Woods Hardwick		Page 1
15-17 Goldington Road		
Bedford		
MK40 3NH		
Date 30/06/2014 11:05	Designed by c.brackley	D) RATION (OC)
File Network 3 Permea	Checked by	
Micro Drainage	Network W.12.6	

Online Controls for 17079 BICESTER NET 3.SWS

Hydro-Brake® Manhole: 55, DS/PN: 1.005, Volume (m³): 2.7

Design Head (m) 1.200 Hydro-Brake® Type Md6 SW Only Invert Level (m) 70.816 Design Flow (1/s) 8.0 Diameter (mm) 113

Depth (m) H	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	3.6	1.200	8.0	3.000	12.6	7.000	19.3
0.200	6.3	1.400	8.6	3.500	13.6	7.500	20.0
0.300	6.4	1.600	9.2	4.000	14.6	8.000	20.6
0.400	6.1	1.800	9.8	4.500	15.5	8.500	21.2
0.500	5.9	2.000	10.3	5.000	16.3	9.000	21.9
0.600	6.1	2.200	10.8	5.500	17.1	9.500	22.5
0.800	6.6	2.400	11.3	6.000	17.8		
1.000	7.3	2.600	11.7	6.500	18.6		

Woods Hardwick		Page 2
15-17 Goldington Road		
Bedford		
MK40 3NH		Trucko o
Date 30/06/2014 11:05	Designed by c.brackley	
File Network 3 Permea	Checked by	
Micro Drainage	Network W.12.6	

Storage Structures for 17079 BICESTER NET 3.SWS

Porous Car Park Manhole: 52, DS/PN: 1.002

Infiltration Coefficient Base (m/hr)	0.03600	Width (m)	5.0
Membrane Percolation (mm/hr)	1000	Length (m)	120.0
Max Percolation (1/s)	166.7	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	72.200	Cap Volume Depth (m)	0.400

Porous Car Park Manhole: 55, DS/PN: 1.005

Infiltration Coefficient Base (m/hr)	0.03600	Width (m)	5.0
Membrane Percolation (mm/hr)	1000	Length (m)	240.0
Max Percolation (1/s)	333.3	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	71.600	Cap Volume Depth (m)	0.400

Woods Hardwick		Page 3
15-17 Goldington Road		
Bedford		
MK40 3NH		Trucko o
Date 30/06/2014 11:05	Designed by c.brackley	
File Network 3 Permea	Checked by	
Micro Drainage	Network W.12.6	

$\frac{\texttt{Summary of Critical Results by Maximum Level (Rank 1) for 17079 BICESTER}}{\texttt{NET 3.SWS}}$

Margin for Flood Risk Warning (mm) 300.0 DVD Status ON
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 30

		Return	Climate	Fir	st X	Firs	t Y	First Z	O/F	Lvl	
PN	Storm	Period	Change	Surc	harge	Flo	od	Overflow	Act.	Exc.	
1.000	60 Winter	100	+30%	30/15	Winter						
1.001	60 Winter	100	+30%	30/15	Summer						
1.002	60 Winter	100	+30%	30/15	Summer						
1.003	60 Winter	100	+30%	1/15	Winter	100/960	Summer				
1.004	60 Winter	100	+30%								
1.005	60 Winter	100	+30%			100/60	Winter			1	

		Water		Flooded			Pipe	
	US/MH	Level	Surch'ed	Volume	Flow /	O'flow	Flow	
PN	Name	(m)	Depth (m)	(m³)	Cap.	(1/s)	(1/s)	Status
1.000	50	72.383	0.433	0.000	0.00	0.0	0.1	SURCHARGED
1.001	51	72.383	0.479	0.000	0.11	0.0	16.3	SURCHARGED
1.002	52	72.374	0.970	0.000	0.24	0.0	15.5	SURCHARGED
1.003	53	72.369	1.108	0.000	0.25	0.0	14.8	FLOOD RISK
1.004	54	72.364	1.164	0.000	0.79	0.0	49.0	FLOOD RISK
1.005	5.5	72.342	1.301	0.089	0.09	0.0	9.0	FLOOD

Woods Hardwick		Page 0
15-17 Goldington Road		
Bedford		
MK40 3NH		Tricke of the
Date 30/06/2014 12:52	Designed by c.brackley	
File Network 4 Permea	Checked by	
Micro Drainage	Network W.12.6	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for 17079 BICESTER NET 4.SWS

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales
Return Period (years) 2 Add Flow / Climate Change (%) 0
M5-60 (mm) 20.000 Minimum Backdrop Height (m) 0.000
Ratio R 0.400 Maximum Backdrop Height (m) 0.000
Maximum Rainfall (mm/hr) 5 Min Design Depth for Optimisation (m) 1.200
Foul Sewage (1/s/ha) 0.00 Min Vel for Auto Design only (m/s) 1.00
Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500
PIMP (%) 100

Designed with Level Soffits

Woods Hardwick		Page 1
15-17 Goldington Road		
Bedford		
MK40 3NH		Trucko o
Date 30/06/2014 12:52	Designed by c.brackley	
File Network 4 Permea	Checked by	
Micro Drainage	Network W.12.6	

Online Controls for 17079 BICESTER NET 4.SWS

Hydro-Brake® Manhole: 76, DS/PN: 1.001, Volume (m³): 4.3

Design Head (m) 1.200 Hydro-Brake® Type Md6 SW Only Invert Level (m) 69.834 Design Flow (1/s) 5.0 Diameter (mm) 89

Depth (m)	Flow (1/s)						
0 100	2 6	1 000	F 0	2 000	7 0	7 000	10.0
0.100	2.6	1.200	5.0	3.000	7.8	7.000	12.0
0.200	3.6	1.400	5.3	3.500	8.5	7.500	12.4
0.300	3.4	1.600	5.7	4.000	9.0	8.000	12.8
0.400	3.3	1.800	6.1	4.500	9.6	8.500	13.2
0.500	3.4	2.000	6.4	5.000	10.1	9.000	13.6
0.600	3.6	2.200	6.7	5.500	10.6	9.500	13.9
0.800	4.1	2.400	7.0	6.000	11.1		
1.000	4.5	2.600	7.3	6.500	11.5		

Woods Hardwick		Page 2
15-17 Goldington Road		
Bedford		
MK40 3NH		Trucko o
Date 30/06/2014 12:52	Designed by c.brackley	
File Network 4 Permea	Checked by	
Micro Drainage	Network W.12.6	

Storage Structures for 17079 BICESTER NET 4.SWS

Porous Car Park Manhole: 76, DS/PN: 1.001

nfiltration Coefficient Base (m/hr)	0.03600	Width (m)	5.0
Membrane Percolation (mm/hr)	1000	Length (m)	160.0
Max Percolation (1/s)	222.2	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	70.900	Cap Volume Depth (m)	0.400

Woods Hardwick	Page 3	
15-17 Goldington Road		
Bedford		
MK40 3NH		
Date 30/06/2014 12:52	Designed by c.brackley	D) RATION (OC)
File Network 4 Permea	Checked by	
Micro Drainage	Network W.12.6	

$\frac{\texttt{Summary of Critical Results by Maximum Level (Rank 1) for 17079 BICESTER}}{\texttt{NET 4.SWS}}$

Margin for Flood Risk Warning (mm) 300.0 DVD Status ON Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 30

Return Climate First X First Y First Z O/F Lvl
PN Storm Period Change Surcharge Flood Overflow Act. Exc.

1.000 30 Winter 100 +30% 30/15 Summer 1.001 30 Winter 100 +30% 30/15 Summer

Water

 US/MH
 Level
 Surch'ed (m)
 Volume (m³)
 Flow / Cap.
 O'flow Flow (1/s)
 Status

 1.000
 75
 71.079
 0.779
 0.000
 0.21
 0.0
 14.9
 SURCHARGED

 1.001
 76
 71.072
 1.013
 0.000
 0.07
 0.0
 5.0
 SURCHARGED

Flooded

Pipe

Woods Hardwick		Page 1
15-17 Goldington Road		
Bedford		
MK40 3NH		
Date 30/06/2014 14:02	Designed by c.brackley	D) RATIONAL OF THE PROPERTY OF
File Porous Paving 10	Checked by	
Micro Drainage	Source Control W.12.6	

Summary of Results for 100 year Return Period (+30%)

Half Drain Time : 41 minutes.

	Stor	m	Max	Max	Ma		Max	Max	Max	Status
	Even	t	Level	_	Infilt	ration	Control	Σ Outflo	w Volume	1
			(m)	(m)	(1/	s)	(1/s)	(1/s)	(m³)	
15	min	Summer	72.970	0.170		4.2	3.9	8.	1 21.6	O K
30	min	Summer	72.992	0.192		4.8	3.9	8.	7 27.5	O K
60	min	Summer	73.001	0.201		5.0	3.9	9.	0 30.3	O K
120	min	Summer	72.999	0.199		5.0	3.9	8.	9 29.6	O K
180	min	Summer	72.989	0.189		4.7	3.9	8.	6 26.7	O K
240	min	Summer	72.977	0.177		4.4	3.9	8.	3 23.6	O K
360	min	Summer	72.956	0.156		3.9	3.8	7.	8 18.4	O K
			72.938			3.5	3.8	7.		O K
			72.922			3.0	3.8	6.		
			72.907			2.7	3.7	6.	4 8.6	O K
			72.883			2.1	3.7	5.		
			72.849			1.2	3.6	4.	8 1.8	O K
			72.812			0.1	3.5	3.		
			72.800			0.0	2.9	2.		
			72.800			0.0	2.0	2.	0.0	O K
			72.800			0.0	1.6	1.		O K
			72.800			0.0	1.3	1.		
			72.800			0.0	1.1	1.		
			72.800			0.0	1.0	1.		
			72.984			4.6	3.9	8.		
30	min	Winter	73.007	0.207		5.2	3.9	9.	1 32.2	OK
				Stor		Rain	Time-I			
				Stor Ever		Rain (mm/hr				
				Eve r	Summer	(mm/hr	c) (min	17		
			;	Ever 15 min 30 min	Summer Summer	(mm/hr 128.28 84.22	(min	ıs)		
				Even 15 min 30 min 60 min	Summer Summer Summer	(mm/hr 128.28 84.22 52.66	(min 35 36 32	17 30 46		
			1:	Even 15 min 30 min 60 min 20 min	Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80	(min	17 30 46 80		
			1: 1:	Even 15 min 30 min 60 min 20 min 80 min	Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35	(min 15 16 16 12 10 13	17 30 46 80 114		
			1: 1: 2:	Even 15 min 30 min 60 min 20 min 80 min 40 min	Summer Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35 18.64	(min 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	17 30 46 80 114 146		
			1: 1: 2: 3:	Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min	Summer Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35 18.64 13.54	(min min min min min min min min min min	17 30 46 80 114 146 210		
			1: 1: 2: 3: 4:	Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 80 min	Summer Summer Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35 18.64 13.54	(min 155 166 162 160 160 160 160 160 160 160 160 160 160	17 30 46 80 114 146 210 272		
			1: 1: 2: 3: 4:	Ever. 15 min 30 min 60 min 20 min 80 min 40 min 60 min 80 min min min	Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35 18.64 13.54 10.79 9.04	(min 155 166 122 130 133 144 133 122 133 134 135 135 135 135 135 135 135 135 135 135	17 30 46 80 114 146 210 272 332		
			1: 1: 2: 3: 4: 6:	Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 80 min 00 min 20 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35 18.64 13.54 10.79 9.04 7.82	(min 155)	17 30 46 80 114 146 210 272 332 390		
			1: 1: 2: 3: 4: 6: 7:	Ever. 15 min 30 min 60 min 20 min 80 min 40 min 60 min 80 min 20 min 60 min 60 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35 18.64 13.54 10.79 9.04 7.82 6.21	(min 155	17 30 46 80 114 146 210 272 332 390 510		
			1: 1: 2: 30 4: 6: 7: 9:	Ever. 15 min 30 min 60 min 20 min 80 min 40 min 60 min 80 min 60 min 60 min 40 min 40 min 60 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35 18.64 13.54 10.79 9.04 7.82 6.21 4.49	(min min min min min min min min min min	17 30 46 80 114 146 210 272 332 390 510 736		
			1: 1: 2: 30 4: 6: 7: 9: 14	Ever. 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 60 min 40 min 60 min 60 min 60 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35 18.64 13.54 10.79 9.04 7.82 6.21 4.49 3.24	(min 155)	17 30 46 80 114 146 210 272 332 390 510 736		
			1: 1: 2: 3: 4: 6: 7: 9: 14 21: 28:	Ever. 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 60 min 60 min 60 min 60 min 60 min 60 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35 18.64 13.54 10.79 9.04 7.82 6.21 4.49 3.24 2.56	(min 155)	17 30 46 80 114 146 210 272 332 390 510 736 1100 0		
			1: 1: 2: 3: 4: 6: 7: 9: 14: 21: 28: 43:	Ever. 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 60 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr 128.28 84.22 52.66 31.80 23.35 18.64 13.54 10.79 9.04 7.82 6.21 4.49 3.24 2.56	(min 125) (min 1	17 30 46 80 114 146 210 272 332 390 510 736 1100 0		
			1: 1: 2: 3: 4: 6: 7: 9: 14: 21: 28: 43: 57:	Ever. 15 min 30 min 60 min 20 min 80 min 40 min 60 min 80 min 60 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	128.28 84.22 52.66 31.80 23.35 18.64 10.79 9.04 7.82 6.21 4.49 3.24 2.56 1.84	(min 155 166 12 100 133 14 133 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	17 30 46 80 114 146 210 272 332 3390 510 736 1100 0		
			11 12 30 41 60 72 90 14 21 28 43 570	Ever 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 40 min 60 min 40 min 60 min 40 min 60 min 60 min 60 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	128.28 84.22 52.66 31.80 23.35 18.64 10.79 9.04 7.82 6.21 4.49 3.24 2.56 1.84 1.46	(min 155)	17 30 46 80 114 146 210 272 332 3390 510 736 1100 0 0		
			11 12 30 41 60 72 90 14 210 288 433 570 720 86	Ever 15 min 30 min 60 min 20 min 80 min 40 min 60 min 80 min 40 min 60 min 40 min 60 min 60 min 60 min 40 min 60 min 40 min 60 min 60 min 40 min 60 m	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	128.28 84.22 52.66 31.80 23.35 18.64 10.79 9.04 7.82 6.21 4.49 3.24 2.56 1.84 1.46	(min 155)	17 30 46 80 114 146 210 272 332 390 510 736 1100 0 0 0		
			1: 1: 2: 3: 4: 6: 7: 9: 14 21: 28: 43: 57: 72: 86:	### Ever 15 min 30 min 60 min 20 min 60 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	128.28 84.22 52.66 31.80 23.35 18.64 10.79 9.04 7.82 6.21 4.49 3.24 2.56 1.84 1.46 1.21	(min 155)	17 30 46 80 114 146 210 272 332 390 510 736 1100 0 0 0 0		
			1: 1: 2: 3: 4: 6: 7: 9: 14: 21: 28: 43: 57: 72: 86: 100:	### Ever 15 min 30 min 60 min 20 min 60 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	128.28 84.22 52.66 31.80 23.35 18.64 10.79 9.04 7.82 6.21 4.49 3.24 2.56 1.84 1.46 1.21	(min 155)	17 30 46 80 114 146 210 272 332 390 510 736 1100 0 0 0		

Woods Hardwick		Page 2
15-17 Goldington Road		
Bedford		
MK40 3NH		Tricke of
Date 30/06/2014 14:02	Designed by c.brackley	
File Porous Paving 10	Checked by	
Micro Drainage	Source Control W.12.6	

Summary of Results for 100 year Return Period (+30%)

	Storm	Ma		Max	Max		Max	Max Σ Outflo	Max	Status
	Event			-						
		(1	n)	(m)	(1/s	5)	(1/s)	(1/s)	(m³)	
	60 min Win	ter 73.	016 0	.216		5.4	4.0	9.	4 34.9	O K
	120 min Win	iter 73.	010 0	.210		5.3	4.0	9.	2 33.1	O K
	180 min Win	iter 72.	996 0	.196		4.9	3.9	8.	8 28.7	O K
	240 min Win	iter 72.	979 0	.179		4.5	3.9	8.	4 24.2	O K
	360 min Win	iter 72.	950 0	.150		3.7	3.8	7.	6 16.8	O K
	480 min Win	iter 72.	924 0	.124		3.1	3.8	6.	9 11.5	O K
	600 min Win	iter 72.	901 0	.101		2.5	3.7	6.	3 7.7	O K
	720 min Win	iter 72.	882 0	.082		2.0	3.7	5.	7 5.0	O K
	960 min Win	iter 72.	851 0	.051		1.3	3.6	4.	9 2.0	O K
1	440 min Win	iter 72.	812 0	.012		0.1	3.5	3.	6 0.1	O K
2	160 min Win	iter 72.	800 0	.000		0.0	2.6	2.	6 0.0	O K
2	880 min Win	iter 72.	800 0	.000		0.0	2.1	2.	1 0.0	O K
4.	320 min Win	iter 72.	800 0	.000		0.0	1.5	1.	5 0.0	O K
5	760 min Win	iter 72.	800 0	.000		0.0	1.2	1.	2 0.0	O K
7:	200 min Win	iter 72.	800 0	.000		0.0	0.9	0.	9 0.0	O K
8	640 min Win	iter 72.	800 0	.000		0.0	0.8	0.	0.0	O K
10	080 min Win	iter 72.	800 0	.000		0.0	0.7	0.	7 0.0	O K
				Stor	m	Rain	Time-	Peak		
				Even	t	(mm/hr) (mir	ns)		
			60	min	Winter	52.66	2	48		
					Winter	31.80		86		
					Winter	23.35		122		
					Winter	18.64		156		
					Winter	13.54		222		
					Winter	10.79		282		
					Winter	9.04		342		
					Winter	7.82		398		
					Winter	6.21		502		
					Winter	4.49		736		
					Winter	3.24		0		
					Winter	2.56		0		
			4320	min	Winter	1.84		0		
			5760	min	Winter	1.46		0		
					Winter	1.21		0		
			8640	min	Winter	1.04		0		
			10080	min	Winter	0.92		0		

Woods Hardwick	Page 3	
15-17 Goldington Road		
Bedford		
MK40 3NH		Trucko o
Date 30/06/2014 14:02	Designed by c.brackley	
File Porous Paving 10	Checked by	
Micro Drainage	Source Control W.12.6	

Rainfall Details

 Rainfall Model
 FSR
 Winter Storms
 Yes

 Return Period (years)
 100
 Cv (Summer)
 0.750

 Region England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.400
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +30

Time / Area Diagram

Total Area (ha) 0.139

Time Area (mins) (ha)

0-4 0.139

Woods Hardwick		Page 4
15-17 Goldington Road		
Bedford		
MK40 3NH		Trick of
Date 30/06/2014 14:02	Designed by c.brackley	
File Porous Paving 10	Checked by	
Micro Drainage	Source Control W.12.6	

Model Details

Storage is Online Cover Level (m) 73.500

Porous Car Park Structure

5.0	Width (m)	0.03600	Infiltration Coefficient Base (m/hr)
278.0	Length (m)	1000	Membrane Percolation (mm/hr)
1000.0	Slope (1:X)	386.1	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0.500	Cap Volume Depth (m)	72.800	Invert Level (m)

Hydro-Brake® Outflow Control

Design Head (m) 1.000 Hydro-Brake® Type Md6 SW Only Invert Level (m) 72.000 Design Flow (1/s) 4.0 Diameter (mm) 83

Depth (m)	Flow (1/s)	Depth (m) I	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	2.3	1.200	4.3	3.000	6.8	7.000	10.4
0.200	3.0	1.400	4.7	3.500	7.4	7.500	10.8
0.300	2.8	1.600	5.0	4.000	7.9	8.000	11.1
0.400	2.8	1.800	5.3	4.500	8.3	8.500	11.5
0.500	2.9	2.000	5.6	5.000	8.8	9.000	11.8
0.600	3.1	2.200	5.8	5.500	9.2	9.500	12.1
0.800	3.5	2.400	6.1	6.000	9.6		
1.000	3.9	2.600	6.3	6.500	10.0		