

KINGSMERE PARCELS KM7 AND KM9

SURFACE WATER DRAINAGE DESIGN STRATEGY JANUARY 2013

KINGSMERE PARCELS KM7 AND KM9 SURFACE WATER DRAINAGE DESIGN STRATEGY

RPS PROJECT No: JKK6647

ISSUE	DATE	REMARKS		
А	08.01.13	First Issue		

Our Ref: JKK6647

RPS Planning & Development

Noble House, Capital Drive, Linford Wood, Milton Keynes, MK14 6QP

Tel: 01908 669898 **Fax:** 01908 669899

Email: rpsmks@rpsgroup.com

QUALITY MANAGEMENT

Qualifications <u>Author</u>

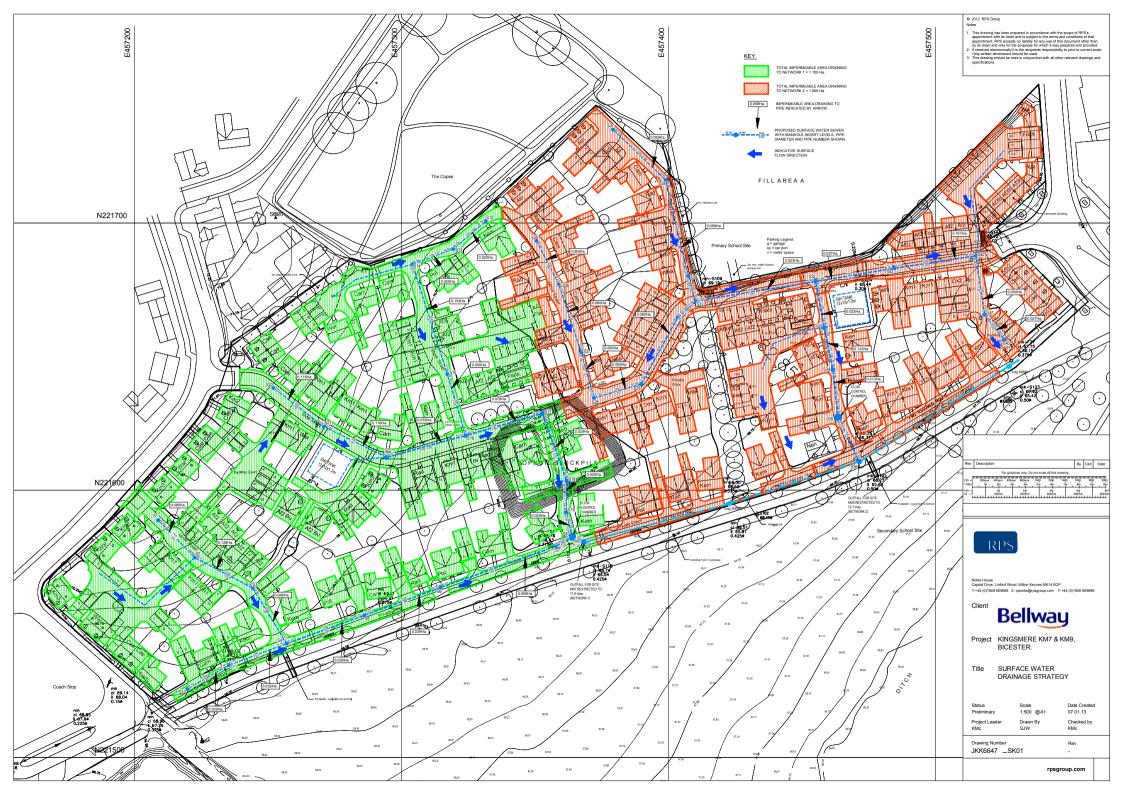
Kevin McEvaddy **BEng** Signature K.M.Evally

DISCLAIMER

The opinions and interpretations presented in this report represent our best technical interpretation of the data made available to us. However, due to the uncertainty inherent in the estimation of all parameters, we cannot, and do not guarantee the accuracy or correctness of any interpretation and we shall not, except in the case of gross or wilful negligence on our part, be liable or responsible for any loss, cost damages or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees.

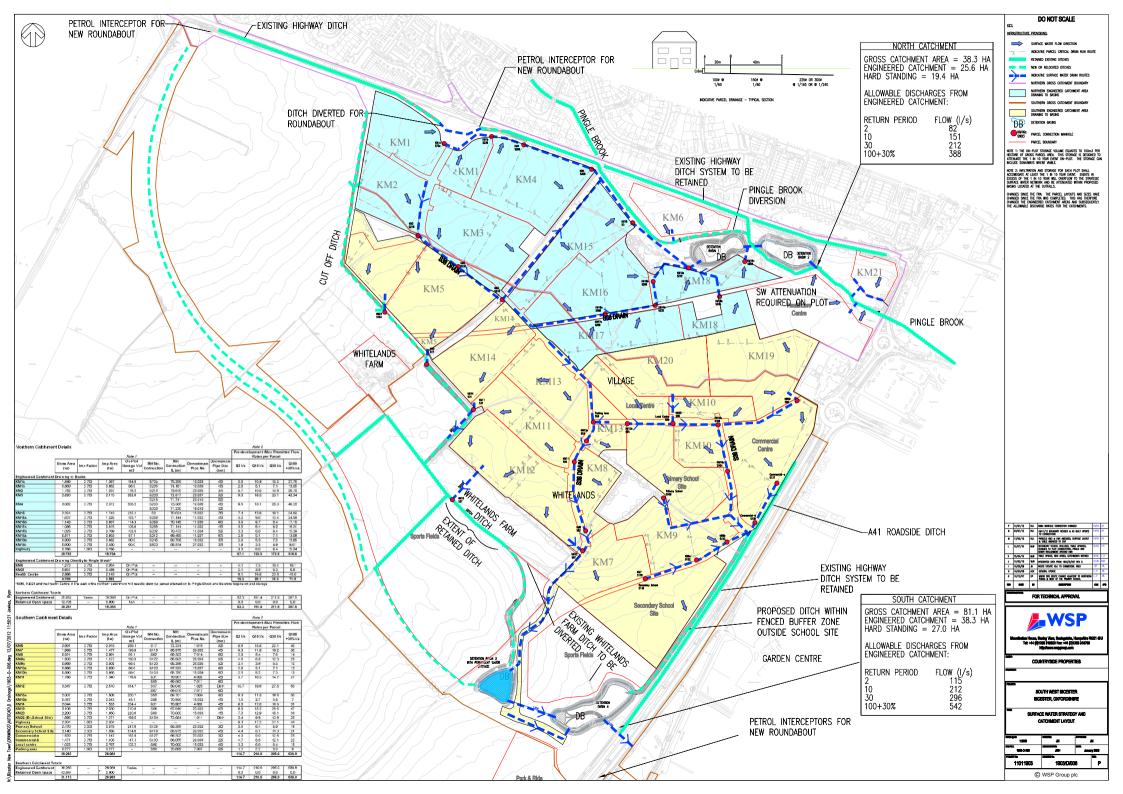
Except for the provision of professional services on a fee basis, RPS does not have a commercial arrangement with any other person or company involved in the interests that are the subject of this report.

RPS cannot accept any liability for the correctness, applicability or validity for the information they have provided, or indeed for any consequential costs or losses in this regard. Our efforts have been made on a "best endeavours" basis and no responsibility or liability is warranted or accepted by RPS.


COPYRIGHT © RPS

The material presented in this report is confidential. This report has been prepared for the exclusive use of the client and shall not be distributed or made available to any other company or person without the knowledge and written consent of the client or RPS.

1 SUMMARY


- 1.1 RPS Group has been commissioned to prepare a surface water drainage strategy for proposed residential parcels KM7 and KM9 of the Kingsmere development at Bicester. The proposed strategy is shown on the appended drawing JKK6647 SK01.
- 1.2 The overall surface water strategy for Kingsmere was prepared by WSP in consultation with Oxfordshire County Council and the Environment Agency. Each land parcel has been allocated a maximum surface water discharge into the infrastructure surface water system. Where the soil conditions allow, each parcel should utilise soakaways and permeable paving. Drawing 1903/D/006P states 'The on-plot storage equates to 100m3 per hectare of gross parcel area. This storage is designed to attenuate the 1 in 10 year event. The storage can include soakaways where viable'.
- 1.3 A ground investigation for KM7 and KM9 and topographical survey has identified that the site has been filled with partly organic material by up to 2.3metres and also that part of the site is underlain clay. The report concludes that these two parcels are not suitable for the use of soakaways
- 1.4 Subsequently, the proposed surface water strategy is to provide a conventional piped surface water system with impermeable roads and paved areas. Attenuation will be provided in the form of below ground attenuation cellular tanks. The tanks have been sized to attenuate the 1 in 10 year rainfall event. Rainfall events in excess of the 1 in 10 event year are allowed to overflow into the infrastructure surface water system, with 100 year plus climate change attenuation provided within Detention Basin 4 in the south-west corner of The Development.
- 1.5 In accordance with the WSP strategy, the surface water discharge from KM7 and KM9 will be restricted to 11.6 and 12.7 litres per second respectively. Micro-drainage calculations appended to this report demonstrate that the system will not flood during a 1 in 10 year event.
- The rate of surface water discharge will be restricted by a flow control device such as a hydrobrake at the proposed points of connection to the infrastructure surface water system. The control chambers will include an overflow that will prevent surface water flooding through the manhole covers. However, if there was to be a blocked pipe, there could be a situation where there will be surface water flows. Drawing SK01 shows indicative routes that surface flow would take demonstrating that there would be no risk of flooding to the proposed dwellings.
- 1.7 The proposed surface water drainage system including the attenuation tanks would be offered for adoption by Oxfordshire County Council or a Management Company.

APPENDIX A PROPOSED SURFACE WATER DESIGN DRAWING JKK6647 SK01

APPENDIX B

WSP DRAINAGE STRATEGY
DRAWING 1903/D/006P

APPENDIX C EXTRACTS FROM HYDROCK GROUND INVESTIGATION REPORT

Unit 2, Hawthorn Park, Holdenby Road Spratton, Northampton, NN6 8LD.

Tel: 01454 619533 Fax: 01454 614125

E-mail: northampton@hydrock.com www.hydrock.com

Desk Study and Ground Investigation at KM7 & KM9, Kingsmere, Bicester

Final Report

Prepared by

G Jenkins

&

C Vincett

for

Bellway (Northern Home Counties) Ltd

Hydrock Ref: R/12460/001/Rev002

November 2012

Soakaways & Drainage

Hydrock do not believe soakaways are suitable on K7 & K9 due to:

- the presence of clay soils;
- the soil infiltration rate testing indicated highly variable infiltration rates;
- there is a significant thickness of Made Ground, part organic and placed by others, across the site: and
- the groundwater at the site is shallow in the Cornbrash Formation.

In addition, anecdotal evidence from the local farmer indicates standing water levels at approximately 0.50m bgl in some land drainage ditches, precludes the use of soakaways.

Hydrock Site Works

The initial Hydrock Ground investigation undertaken in September 2012 comprised:

- 30 trial pits to a maximum depth of 3.90m bgl;
- 2 dynamic percussive sampling/rotary open holed boreholes to 12.00m bgl;
- 24 TRL Dynamic Continuous Probe tests;
- 5 soakaway tests;
- installation of monitoring wells;
- monitoring of ground gas concentrations and groundwater levels;
- chemical testing of soils; and
- geotechnical testing of soils.

Soakaway Potential

The Kellaways Clay Member is not considered suitable for conventional soakaways.

The results of soakaway trials undertaken in the weathered Cornbrash Formation indicate infiltration rates in the order of between 10⁻⁴ and 10⁻⁵. In less weathered Cornbrash Formation strata similar results were achieved although in two of the trials it was not possible to calculate an infiltration rate due to the relatively slow information.

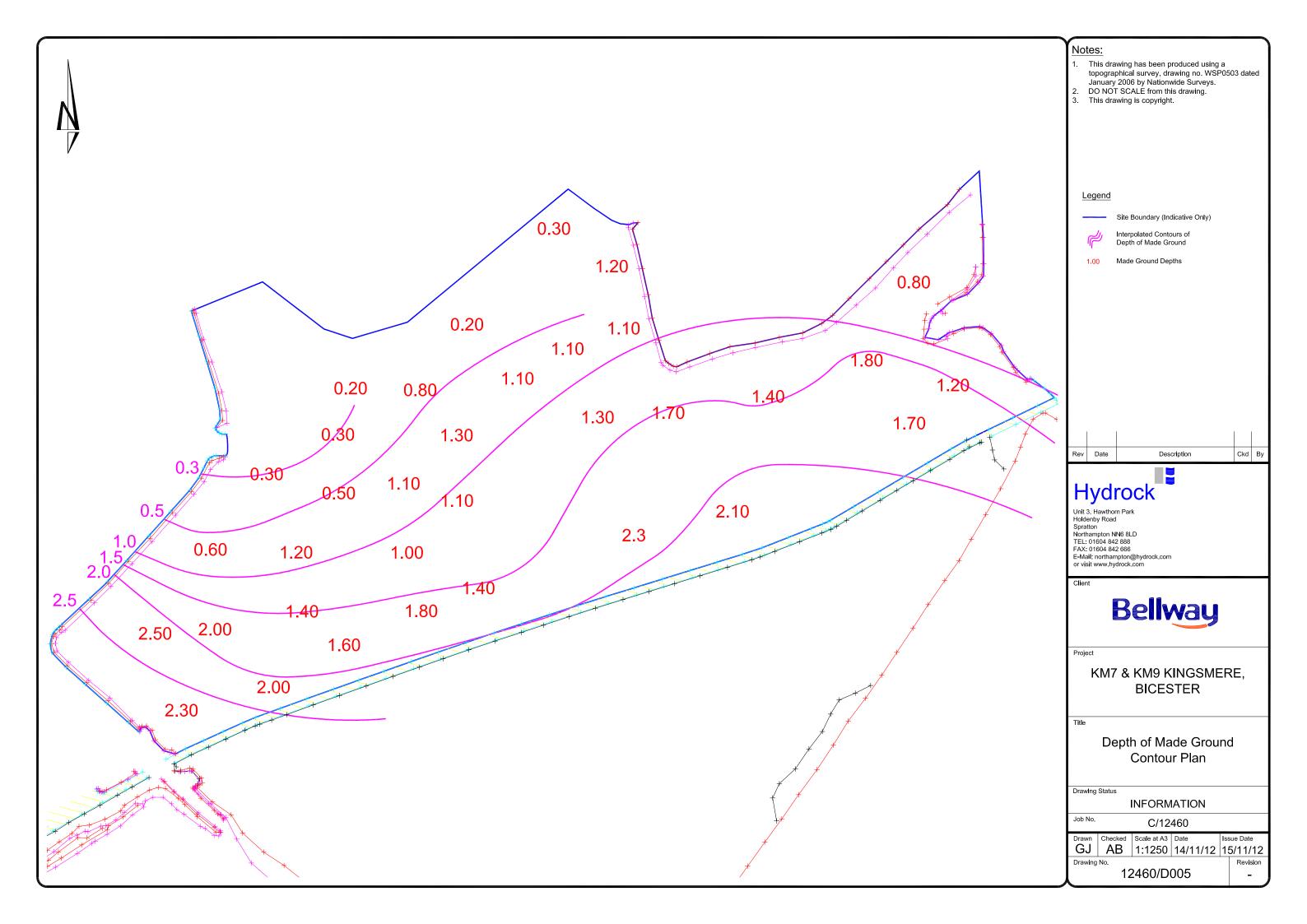
Although the Cornbrash Formation is considered suitable for soakaway design the presence of shallow groundwater (as identified by the WSP 2007 report) may preclude such design. The Pell Frischmann report also indicates anecdotal evidence from the local farmer which indicates standing water levels at approximately 0.50m bgl in some land drainage ditches.

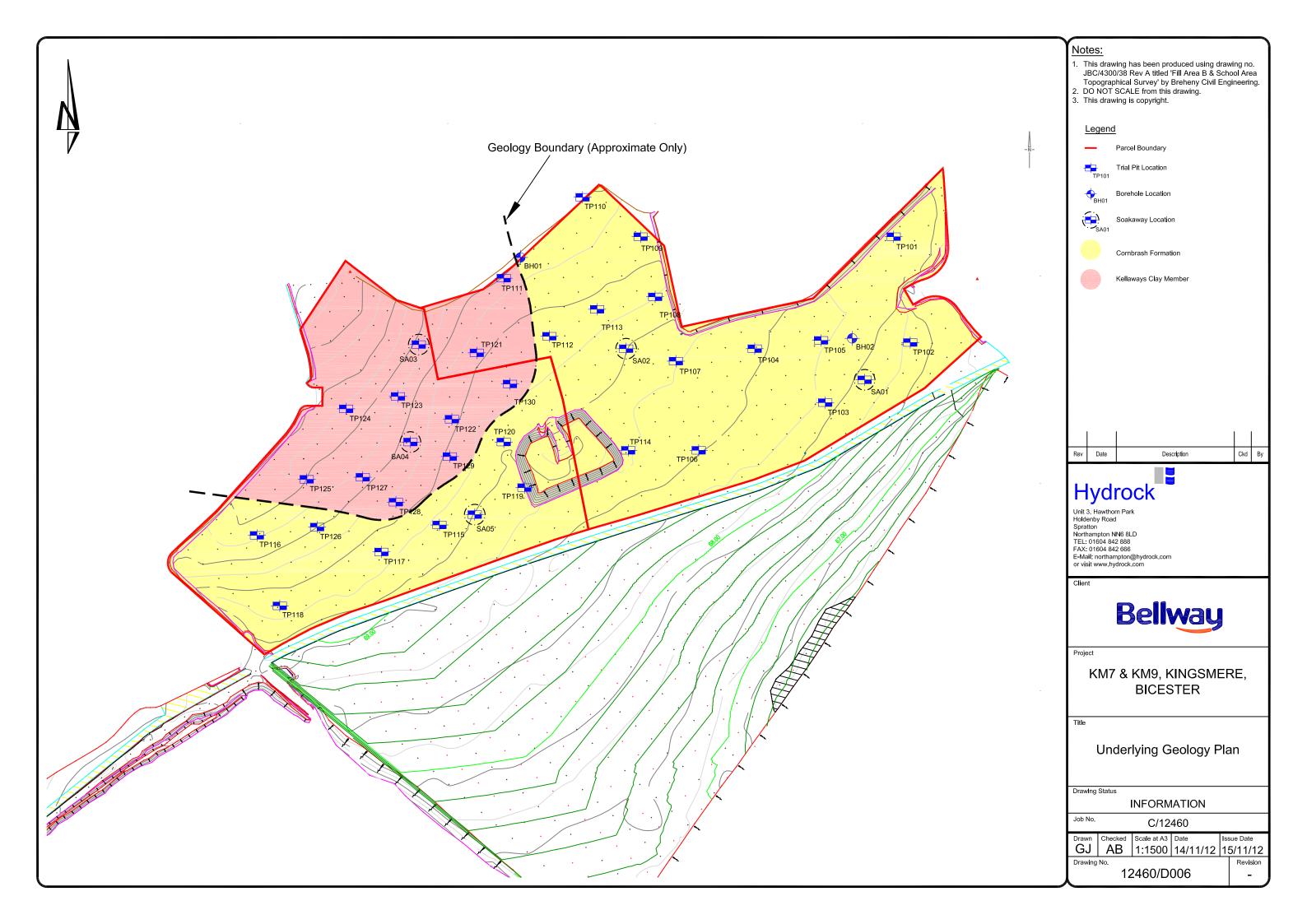
5.5.1 Infiltration Tests

The results of soakaway testing are summarised in Table 5.10. The results sheets are given in Appendix D.

Table 5.10: Infiltration Test Results

Stratum	Trial Pit	Donth	Infiltration Rate (m/s)				
Stratum	No.	Depth	Test 1	Test 2	Test 3		
Cornbrash Formation	SA1	2.40	1.62x10 ⁻⁵	n/a	n/a		
Cornbrash Formation	SA2	1.90	1.38x10 ⁻⁴	n/a	n/a		
Kellaways Clay Member/Cornbrash Formation	SA3	3 2.00 Non calculable		n/a	n/a		
Kellaways Clay Member/Cornbrash Formation	SA4	2.20	Non calculable	n/a	n/a		
Cornbrash Formation	SA5	2.60	Non calculable	n/a	n/a		


9.7 **Soakaways and Drainage**


Infiltration rate testing indicates that the Made Ground and Kellaways Clay Member are not suitable for soil infiltration.

With regards to the Cornbrash Formation, Hydrock do not believe soakaways are suitable on K7 & K9 as:

- the soil infiltration rate testing indicated highly variable infiltration rates;
- there is a significant thickness of Made Ground, part organic and placed by others, across the site:
- only 1 run could be undertaken, so test results are not in accordance with BRE 364; and
- the groundwater at the site is shallow in the Cornbrash Formation.

In addition, anecdotal evidence from the local farmer indicates standing water levels at approximately 0.50m bgl in some land drainage ditches, precludes the use of soakaways.

APPENDIX D MICRO DRAINAGE CALCULATIONS

RPS Design		Page 1
Noble House	JKK6647 - KINGSMEAD	
Capital Drive, Linfor	SITE KM7	TV farm
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Tracio
Date 08/01/2013	Designed by TD.	
File NETWORK 1.mdx	Checked by	
Elstree Computing Ltd	Network W 12 6	

Existing Network Details for NETWORK 1.SWS

 $\mbox{\scriptsize \star}$ - Indicates pipe has been modified outside of System 1

		PN	Length (m)		<pre>Slope (1:X)</pre>	I.Area (ha)			HYD SECT	DIA (mm)	
	*	1.000	19.534	0.512	38.2	0.080	5.00	0.600	0	150	
	*	1.001	24.578	0.529	46.5	0.128	0.00	0.600	0	225	
	*	1.002	24.333	0.707	34.4	0.048	0.00	0.600	0	225	
	*	2.000	17.775	0.173	102.7	0.032	5.00	0.600	0	150	
	*	2.001	23.184	0.225	103.0	0.032	0.00	0.600	0	150	
	*	1.003	30.868	0.581	53.1	0.029	0.00	0.600	0	300	
		1.004	30.550	0.297	102.9			0.600			
			45.636					0.600			
		1.006	7.216	0.048	150.3	0.000	0.00	0.600	0	300	
	*	3.000	15.990	0.155	103.2	0.025	5.00	0.600	0	150	
	*	3.001	16.468	0.160	102.9	0.025	0.00	0.600	0	150	
		3.002	43.038	0.418	103.0	0.152	0.00	0.600	0	225	
		3.003	24.065	1.051	22.9	0.050	0.00	0.600	0	225	
	*	4.000	23.771	0.567	41.9	0.116	5.00	0.600	0	150	
	*	4.001	26.133	1.928	13.6	0.116	0.00	0.600	0	150	
	*	4.002	30.782	0.150	205.2	0.078	0.00	0.600	0	375	
	*	3.004	29.890	0.149	200.6	0.078	0.00	0.600	0	375	
	PN		US/CL	US/IL				/IL	DS	Ctrl	US/MH
		Name	(m)	(m)	C.Der		n) (m) C	Depth		(mm.)
					(m)	`			(m)		
					(111)	,			()		
*	1.000	1	70.850	69.500		, 200 70.	338 68	.988	1.200		1200
*	1.001	2	70.338	68.913	0 1.2 3 1.2	200 70. 200 69.	809 68	.384	1.200		1200
*		2		68.913	0 1.2 3 1.2	200 70.	809 68	.384	1.200		
*	1.001	2	70.338	68.913 68.384	0 1.2 3 1.2 4 1.2	200 70. 200 69.	809 68 312 67	. 384 . 677	1.200		1200
*	1.001 1.002	2 3 10	70.338 69.809	68.913 68.384 68.150	0 1.2 3 1.2 4 1.2	200 70. 200 69. 200 69.	809 68 312 67 346 67	. 384 . 677 . 977	1.200 1.200 1.410		1200 1200
* * *	1.001 1.002 2.000	2 3 10 11	70.338 69.809 69.500	68.913 68.384 68.150 67.973	0 1.2 3 1.2 4 1.2 7 1.2	200 70. 200 69. 200 69.	809 68 312 67 346 67 312 67	. 384 . 677 . 977 . 752	1.200 1.200 1.410		1200 1200 1200
* * *	1.001 1.002 2.000 2.001	2 3 10 11 4	70.338 69.809 69.500 69.346	68.913 68.384 68.150 67.973	0 1.2 3 1.2 4 1.2 7 1.2 2 1.4	200 70. 200 69. 200 69. 200 69. 219 69.	809 68 312 67 346 67 312 67	. 384 . 677 . 977 . 752	1.200 1.200 1.410 1.219 1.410		1200 1200 1200 1200
* * *	1.001 1.002 2.000 2.001 1.003	2 3 10 11 4 5	70.338 69.809 69.500 69.346 69.312	68.913 68.384 68.150 67.973 67.602	1.2 3 1.2 4 1.2 7 1.2 2 1.4 1 1.8	200 70. 200 69. 200 69. 200 69. 219 69. 410 69.	809 68 312 67 346 67 312 67 158 67 048 66	. 384 . 677 . 977 . 752 . 021 . 724	1.200 1.200 1.410 1.219 1.410		1200 1200 1200 1200 1200
* * *	1.001 1.002 2.000 2.001 1.003 1.004	2 3 10 11 4 5 6	70.338 69.809 69.500 69.346 69.312 69.158	68.913 68.384 68.150 67.973 67.602 67.023 66.724	1.2 3 1.2 1.2 7 1.2 2 1.4 1 1.8 4 2.0	200 70. 200 69. 200 69. 200 69. 219 69. 410 69. 837 69.	809 68 312 67 346 67 312 67 158 67 048 66 813 66	. 384 . 677 . 977 . 752 . 021 . 724 . 485	1.200 1.200 1.410 1.219 1.410 1.837 2.024		1200 1200 1200 1200 1200 1200
* * * *	1.001 1.002 2.000 2.001 1.003 1.004 1.005	2 3 10 11 4 5 6 7	70.338 69.809 69.500 69.346 69.312 69.158 69.048	68.913 68.384 68.150 67.973 67.602 67.023 66.724 66.485	1.2 3 1.2 4 1.2 7 1.2 1 1.8 4 2.0 2 2.0	200 70. 200 69. 200 69. 200 69. 219 69. 410 69. 837 69. 024 68.	809 68 312 67 346 67 312 67 158 67 048 66 813 66 802 66	. 384 . 677 . 977 . 752 . 021 . 724 . 485 . 437	1.200 1.200 1.410 1.219 1.410 1.837 2.024 2.028		1200 1200 1200 1200 1200 1200 1200
* * * * *	1.001 1.002 2.000 2.001 1.003 1.004 1.005 1.006	2 3 10 11 4 5 6 7	70.338 69.809 69.500 69.346 69.312 69.158 69.048 68.813	68.913 68.384 68.150 67.977 67.602 67.021 66.724 66.485	1.2 3 1.2 4 1.2 7 1.2 1.4 1.8 4 2.0 2.0 1.2	200 70. 200 69. 200 69. 200 69. 219 69. 410 69. 837 69. 024 68. 028 68.	809 68 312 67 346 67 312 67 158 67 048 66 813 66 802 66	. 384 . 677 . 977 . 752 . 021 . 724 . 485 . 437	1.200 1.200 1.410 1.219 1.410 1.837 2.024 2.028 2.065		1200 1200 1200 1200 1200 1200 1200
* * * * *	1.001 1.002 2.000 2.001 1.003 1.004 1.005 1.006	2 3 10 11 4 5 6 7	70.338 69.809 69.500 69.346 69.312 69.158 69.048 68.813 70.119	68.913 68.384 68.150 67.977 67.602 66.724 66.485 68.760 68.605	1.2 3 1.2 4 1.2 7 1.2 1.4 1.8 4 2.0 2.0 1.2 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	200 70. 200 69. 200 69. 200 69. 219 69. 410 69. 837 69. 024 68. 028 68.	809 68 312 67 346 67 312 67 158 67 048 66 813 66 802 66 102 68 354 68	. 384 . 677 . 977 . 752 . 021 . 724 . 485 . 437 . 605 . 445	1.200 1.200 1.410 1.219 1.410 1.837 2.024 2.028 2.065		1200 1200 1200 1200 1200 1200 1200 1200
* * * * *	1.001 1.002 2.000 2.001 1.003 1.004 1.005 1.006 3.000 3.001	2 3 10 11 4 5 6 7 12 13 14	70.338 69.809 69.500 69.346 69.312 69.158 69.048 68.813 70.119 70.102	68.913 68.384 68.150 67.97 67.602 66.724 66.485 68.760 68.605 68.370	1.2 3 1.2 4 1.2 7 1.2 1.4 1.2 1.2 1.4 2.0 1.2 1.4 4 2.0 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	200 70. 200 69. 200 69. 200 69. 410 69. 410 69. 837 69. 024 68. 028 68. 209 70. 347 70.	809 68 312 67 346 67 312 67 158 67 048 66 813 66 802 66 102 68 354 68 678 67	. 384 . 677 . 977 . 752 . 021 . 724 . 485 . 437 . 605 . 445 . 952	1.200 1.200 1.410 1.219 1.410 1.837 2.024 2.028 2.065 1.347 1.759		1200 1200 1200 1200 1200 1200 1200 1200
* * * * *	1.001 1.002 2.000 2.001 1.003 1.004 1.005 1.006 3.000 3.001 3.002	2 3 10 11 4 5 6 7 12 13 14 15	70.338 69.809 69.500 69.346 69.312 69.158 69.048 68.813 70.119 70.102 70.354	68.913 68.384 68.150 67.977 67.602 66.724 66.485 68.760 68.605 68.370 67.952	1.2 3 1.2 4 1.2 7 1.2 1.4 1.8 4 2.0 2 1.4 4 2.0 1.5 1.5 1.5	200 70. 200 69. 200 69. 200 69. 410 69. 410 69. 837 69. 024 68. 028 68. 209 70. 347 70. 759 69.	809 68 312 67 346 67 312 67 158 67 048 66 813 66 802 66 102 68 354 68 678 67 393 66	. 384 . 677 . 977 . 752 . 021 . 724 . 485 . 437 . 605 . 445 . 952 . 901	1.200 1.200 1.410 1.219 1.410 1.837 2.024 2.028 2.065 1.347 1.759 1.501		1200 1200 1200 1200 1200 1200 1200 1200
* * * * *	1.001 1.002 2.000 2.001 1.003 1.004 1.005 1.006 3.000 3.001 3.002 3.003	2 3 3 10 11 4 5 6 7 12 13 14 15 20	70.338 69.809 69.500 69.346 69.312 69.158 69.048 68.813 70.119 70.102 70.354 69.678	68.913 68.384 68.150 67.977 67.602 66.724 66.485 68.760 68.605 68.370 67.952	1.2 3.3 1.2 4.1.2 7.1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	200 70. 200 69. 200 69. 200 69. 410 69. 837 69. 024 68. 028 68. 209 70. 347 70. 759 69. 501 69.	809 68 312 67 346 67 312 67 158 67 048 66 813 66 802 66 102 68 354 68 678 67 393 66	. 384 . 677 . 977 . 752 . 021 . 724 . 485 . 437 . 605 . 445 . 952 . 901	1.200 1.200 1.410 1.219 1.410 1.837 2.024 2.028 2.065 1.347 1.759 1.501 2.267		1200 1200 1200 1200 1200 1200 1200 1200
* * * * * * *	1.001 1.002 2.000 2.001 1.003 1.004 1.005 1.006 3.000 3.001 3.002 3.003	2 3 3 10 11 4 5 6 7 12 13 14 15 20 21	70.338 69.809 69.500 69.346 69.312 69.158 69.048 68.813 70.119 70.102 70.354 69.678 70.971	68.913 68.384 68.150 67.977 67.602 66.724 66.485 68.760 68.605 68.370 67.952 69.623 69.054	1.2 3.3 1.2 4.4 1.2 7.7 1.2 1.4 1.8 1.4 1.2 1.4 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	200 70. 200 69. 200 69. 219 69. 410 69. 837 69. 024 68. 028 68. 209 70. 347 70. 759 69. 501 69.	809 68 312 67 346 67 312 67 158 67 048 66 813 66 802 66 102 68 354 68 678 67 393 66 404 69 827 67	. 384 . 677 . 977 . 752 . 021 . 724 . 485 . 437 . 605 . 445 . 952 . 901	1.200 1.200 1.410 1.219 1.410 1.837 2.024 2.028 2.065 1.347 1.759 1.501 2.267		1200 1200 1200 1200 1200 1200 1200 1200

RPS Design	Page 2	
Noble House	JKK6647 - KINGSMEAD	
Capital Drive, Linfor	SITE KM7	Micro
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Traces of
Date 08/01/2013	Designed by TD.	
File NETWORK 1.mdx	Checked by	
Elstree Computing Ltd	Network W.12.6	

Existing Network Details for NETWORK 1.SWS

			I	PN		ngth m)			Slor (1:)	•	I.Area				HYD SECT	DIA (mm)	
		*	3.	0 05	26	.813	0.	134	200.	. 1	0.029	0.0	0 0	0.600	0	375	
		*	3.	006	11	.732	0.	059	198.	. 8	0.020	0.0	0 (0.600	0	375	
		*	3.	007	9	.449	0.	047	201.	. 0	0.020	0.0	0 0	0.600	0	375	
		*	1.	007	4	.798	0.	047	102.	. 1	0.000	0.0	0 (0.600	0	150	
	PN	US/1	Ή	US/	CL	US/	IL		US		DS/CL	DS/IL		DS		Ctrl	US/MH
		Nam	ıe	(m	ι)	(n	ι)	C.	Depth	ı	(m)	(m)		C.Depth			(mm)
									(m)					(m)			
*	3.005	1	17	69.3	329	66.	602		2.352	2	69.007	66.468	3	2.164			1500
*	3.006	1	18	69.0	007	66.	468		2.164	1	68.892	66.409	9	2.108			1500
*	3.007	1	19	68.8	392	66.	409		2.108	3	68.802	66.362	2	2.065			1500
*	1.007		8	68.8	302	66.	362		2.290)	68.739	66.315	5	2.274	Hydi	ro-Brake®	2700

Free Flowing Outfall Details for NETWORK 1.SWS

Out	fall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe	Number	Name	(m)	(m)	I. Level	(mm)	(mm)
					(m)		
	1.007	9	68.739	66.315	66.040	1800	0

Simulation Criteria for NETWORK 1.SWS

0.000	of Total Flow	Additional Flow - % o:	0.750	Volumetric Runoff Coeff
1.000	m³/ha Storage	MADD Factor * 10m	1.000	Areal Reduction Factor
0.800	Coeffiecient	Inlet	0	Hot Start (mins)
0.000	y (1/per/day)	Flow per Person per Day	0	Hot Start Level (mm)
60	n Time (mins)	Run	0.500	Manhole Headloss Coeff (Global)
1	terval (mins)	Output Into	0.000	Foul Sewage per hectare (1/s)

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FSR	Profile T	Type Summer
Return Period (years)		2	Cv (Summ	ner) 0.750
Region	England	and Wales	Cv (Wint	er) 0.840
M5-60 (mm)		20.000	Storm Duration (mi	ins) 30
Ratio R		0.400		

RPS Design	Page 3	
Noble House	JKK6647 - KINGSMEAD	
Capital Drive, Linfor	SITE KM7	TV-frame
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Tracko cal
Date 08/01/2013	Designed by TD.	
File NETWORK 1.mdx	Checked by	پ چين
Elstree Computing Ltd	Network W.12.6	

Online Controls for NETWORK 1.SWS

Hydro-Brake® Manhole: 8, DS/PN: 1.007, Volume (m³): 15.2

Design Head (m) 1.800 Hydro-Brake@ Type Md4 Invert Level (m) 66.362 Design Flow (l/s) 11.6 Diameter (mm) 105

Depth (m)	Flow (1/s)						
0.100	3.1	1.200	9.4	3.000	14.9	7.000	22.7
0.200	7.0	1.400	10.2	3.500	16.1	7.500	23.5
0.300	6.4	1.600	10.9	4.000	17.2	8.000	24.3
0.400	5.9	1.800	11.5	4.500	18.2	8.500	25.0
0.500	6.2	2.000	12.2	5.000	19.2	9.000	25.8
0.600	6.7	2.200	12.7	5.500	20.1	9.500	26.5
0.800	7.7	2.400	13.3	6.000	21.0		
1.000	8.6	2.600	13.9	6.500	21.9		

RPS Design	Page 4	
Noble House	JKK6647 - KINGSMEAD	
Capital Drive, Linfor	SITE KM7	TV. Gerra
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Trace of the state
Date 08/01/2013	Designed by TD.	
File NETWORK 1.mdx	Checked by	بالراج المالية
Elstree Computing Ltd	Network W.12.6	

Storage Structures for NETWORK 1.SWS

Cellular Storage Manhole: 22, DS/PN: 4.002

Invert Level (m) 67.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf.	Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)
0.000	144.0		144.0	1.300	0.0	201.6
1.200	144.0		201.6			

RPS Design		Page 5
Noble House	JKK6647 - KINGSMEAD	
Capital Drive, Linfor	SITE KM7	TV-form
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Tracio Cal
Date 08/01/2013	Designed by TD.	
File NETWORK 1.mdx	Checked by	
Elstree Computing Ltd	Network W.12.6	

Summary of Critical Results by Maximum Level (Rank 1) for NETWORK 1.SWS

Margin for Flood Risk Warning (mm) 300.0
Analysis Timestep 2.5 Second Increment (Extended)
DTS Status
ON
DVD Status
Inertia Status
OFF

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 10
Climate Change (%) 0

			Return	Climate	Firs	st X	First Y	First Z	O/F	Lvl
PN	S	torm	Period	Change	Surch	narge	Flood	Overflow	Act.	Exc.
1.000	15	Winter	10	0%						
1.001	15	Winter	10	0%						
1.002	15	Winter	10	0%						
2.000	15	Winter	10	0%						
2.001	15	Winter	10	0%						
1.003	15	Winter	10	0%						
1.004	15	Winter	10	0%						
1.005	15	Winter	10	0%						
1.006	120	Winter	10	0%						
3.000	15	Winter	10	0%						
3.001	15	Winter	10	0%						
3.002	15	Winter	10	0%						
3.003	120	Winter	10	0%	10/120	Winter				
4.000	15	Winter	10	0%						
4.001	15	Winter	10	0%						
4.002	120	Winter	10	0%						
3.004	120	Winter	10	0%						
3.005	120	Winter	10	0%						
3.006	120	Winter	10	0%						
3.007	120	Winter	10	0%						
1.007	120	Winter	10	0%						

		Water		${\tt Flooded}$			Pipe	
	US/MH	Level	Surch'ed	Volume	Flow /	O'flow	Flow	
PN	Name	(m)	Depth (m)	(m³)	Cap.	(1/s)	(1/s)	Status
1.000	1	69.602	-0.048	0.000	0.79	0.0	21.5	OK
1.001	2	69.130	-0.008	0.000	0.82	0.0	58.1	OK
1.002	3	68.896	0.287	0.000	0.81	0.0	65.9	SURCHARGED
2.000	10	68.720	0.420	0.000	0.46	0.0	7.6	SURCHARGED
2.001	11	68.694	0.567	0.000	0.90	0.0	14.9	SURCHARGED
1.003	4	68.606	0.704	0.000	0.55	0.0	75.9	SURCHARGED
1.004	5	68.470	1.149	0.000	0.73	0.0	72.9	SURCHARGED
1.005	6	68.316	1.292	0.000	1.08	0.0	80.9	SURCHARGED
1.006	7	68.181	1.396	0.000	0.54	0.0	33.2	SURCHARGED
3.000	12	68.828	-0.082	0.000	0.41	0.0	6.6	OK
3.001	13	68.769	0.014	0.000	0.84	0.0	13.7	SURCHARGED
3.002	14	68.681	0.086	0.000	1.09	0.0	53.0	SURCHARGED

RPS Design		Page 6
Noble House	JKK6647 - KINGSMEAD	
Capital Drive, Linfor	SITE KM7	Micro
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Tracio
Date 08/01/2013	Designed by TD.	
File NETWORK 1.mdx	Checked by	
Elstree Computing Ltd	Network W.12.6	

Summary of Critical Results by Maximum Level (Rank 1) for NETWORK 1.SWS

		Water		Flooded			Pipe	
	US/MH	Level	Surch'ed	Volume	Flow /	O'flow	Flow	
PN	Name	(m)	Depth (m)	(m³)	Cap.	(l/s)	(1/s)	Status
3.003	15	68.196	0.019	0.000	0.21	0.0	21.4	SURCHARGED
4.000	20	70.199	0.428	0.000	1.00	0.0	26.1	SURCHARGED
4.001	21	69.641	0.437	0.000	1.09	0.0	50.7	SURCHARGED
4.002	22	68.190	0.914	0.000	0.10	0.0	11.8	SURCHARGED
3.004	16	68.189	1.063	0.000	0.09	0.0	11.4	SURCHARGED
3.005	17	68.186	1.209	0.000	0.09	0.0	11.3	SURCHARGED
3.006	18	68.183	1.340	0.000	0.10	0.0	11.1	SURCHARGED
3.007	19	68.180	1.396	0.000	0.11	0.0	10.9	SURCHARGED
1.007	8	68.178	1.666	0.000	0.85	0.0	11.6	SURCHARGED

RPS Design		Page 1
Noble House	JKK6647 - KINGSMERE	
Capital Drive, Linfor	SITE KM9	Difference
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Trace
Date 08/01/2013	Designed by TD.	
File NETWORK 2.mdx	Checked by	
Elstree Computing Ltd	Network W.12.6	

Existing Network Details for NETWORK 2.SWS

 $\mbox{\scriptsize \star}$ - Indicates pipe has been modified outside of System 1

			PN	Lengt:	h Fal (m		e I.Area		k (mm)	HYD SECT	DIA (mm)	
		*	1 000			95 93.			0.600		150	
						95 93. 00 89.9			0.600	0	225	
						77 99.1			0.600	0		
						36 135.2			0.600	0		
						67 425.I			0.600	0		
						21 432.0			0.600	0		
		*	2.000	27.38	6 0.2	83 96.8	0.059	5.00	0.600	0	150	
		*	2.001	36.75	4 0.1	24 296.4	1 0.059	0.00	0.600	0	225	
		*	2.002	9.84	9 0.7	20 13.	7 0.000	0.00	0.600	0	225	
			1 0.06	45.56	7 0 9	80 46.5	5 0.023	0.00	0.600	0	300	
										Ü		
						65 181.4			0.600	0		
						75 296.5			0.600	0		
						73 426.5			0.600	0		
		* .	5.003	29.64	/ U.U.	59 502.5	0.027	0.00	0.600	0	300	
		*	1.007	17.61	7 0.0	35 503.3	0.023	0.00	0.600	0	450	
		*	1.008	16.00	6 0.0	32 500.2	0.123	0.00	0.600	0	450	
		*	1.009	17.94	4 0.0	36 498.4	1 0.213	0.00	0.600	0	450	
		*	1.010	18.33	0 0.2	60 70.5	0.000	0.00	0.600	0	150	
	PN	US/MI	us,	/CL US	3/IL	US	DS/CL	DS/IL	DS		Ctrl	US
		Name	: (1	m) (m)	C.Depth	(m)	(m)	C.Depth	ı		(1
						(m)			(m)			
ŀ	1.000	21	5 69	859 68	. 509	1,200	69.664	68.314	1.200			1
	1.001			664 68			69.364					1
	1.002			364 67			69.187					1
k	1.003			187 67			69.051					1
	1.004			051 67			69.142					1
*	1.005	30	0 69.	142 67	. 484	1.358	69.328	67.463	1.565			1
k	2.000	3'	7 70.	090 68	.740	1.200	69.807	68.457	1.200			1
	2.001			807 68			69.720		1.237			1
	2.002			720 68			69.328		1.565			1
	1.006	3:	1 69.	328 67	. 463	1.565	68.897	66.483	2.114			1
*	3.000	1	1 67	829 66	830	0 774	68.003	66 765	1.013			1
	3.000			003 66			68.416		1.501			1
	3.001			416 66			68.416		1.708			1
*	3.002			550 66			68.897		2.114			1
	5.005	-1.		220 00		1.700	30.077	00.403	2.114			1
*	1.007	3	2 68.	897 66	.333	2.114	68.690	66.298	1.942			1
*	1.008	3	3 68.	690 66	. 298	1.942	68.637	66.266	1.921			1
	1.009			637 66			68.533		1.853			1
*	1.010	3!	5 68.	533 66	. 230	2.153	68.202	65.970	2.082	Hyd	ro-Brake®	2

RPS Design		Page 2
Noble House	JKK6647 - KINGSMERE	
Capital Drive, Linfor	SITE KM9	TV. Barra
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Traces of
Date 08/01/2013	Designed by TD.	
File NETWORK 2.mdx	Checked by	
Elstree Computing Ltd	Network W.12.6	

Free Flowing Outfall Details for NETWORK 2.SWS

Outfall Outfall C. Level I. Level Min D,L W
Pipe Number Name (m) (m) I. Level (mm) (mm)

1.010 36 68.202 65.970 65.620 1800 0

Simulation Criteria for NETWORK 2.SWS

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 1.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	2	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Storm Duration (mins)	30
Ratio R	0.400		

RPS Design		Page 3
Noble House	JKK6647 - KINGSMERE	
Capital Drive, Linfor	SITE KM9	TV-frame
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Trace
Date 08/01/2013	Designed by TD.	
File NETWORK 2.mdx	Checked by	
Elstree Computing Ltd	Network W.12.6	

Online Controls for NETWORK 2.SWS

Hydro-Brake® Manhole: 35, DS/PN: 1.010, Volume (m³): 15.7

Design Head (m) 1.800 Hydro-Brake® Type Md4 Invert Level (m) 66.230 Design Flow (l/s) 12.7 Diameter (mm) 110

Depth (m)	Flow (1/s)						
0.100	3.2	1.200	10.3	3.000	16.3	7.000	24.9
0.200	7.7	1.400	11.2	3.500	17.6	7.500	25.8
0.300	7.3	1.600	11.9	4.000	18.9	8.000	26.7
0.400	6.6	1.800	12.7	4.500	20.0	8.500	27.5
0.500	6.8	2.000	13.3	5.000	21.1	9.000	28.3
0.600	7.3	2.200	14.0	5.500	22.1	9.500	29.1
0.800	8.4	2.400	14.6	6.000	23.1		
1.000	9.4	2.600	15.2	6.500	24.0		

RPS Design	Page 4	
Noble House	JKK6647 - KINGSMERE	
Capital Drive, Linfor	SITE KM9	TV-frame
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Trace
Date 08/01/2013	Designed by TD.	
File NETWORK 2.mdx	Checked by	٥٥٠
Elstree Computing Ltd	Network W.12.6	

Storage Structures for NETWORK 2.SWS

Cellular Storage Manhole: 33, DS/PN: 1.008

Invert Level (m) 66.400 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 144.0 144.0 1.300 0.0 201.6

RPS Design	Page 5	
Noble House	JKK6647 - KINGSMERE	
Capital Drive, Linfor	SITE KM9	TV-frame
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Trace
Date 08/01/2013	Designed by TD.	
File NETWORK 2.mdx	Checked by	
Elstree Computing Ltd	Network W.12.6	

Summary of Critical Results by Maximum Level (Rank 1) for NETWORK 2.SWS

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

OFF

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 10
Climate Change (%) 0

			Return	Climate	First X		First Y	First Z	O/F	Lvl
PN	st	orm	Period	Change	Surcharge		Flood	Overflow	Act.	Exc.
1.000	15	Winter	10	0%						
1.001	15	Winter	10	0%	10/15	Winter				
1.002	15	Winter	10	0%	10/15	Summer				
1.003	15	Winter	10	0%	10/15	Summer				
1.004	15	Winter	10	0%	10/15	Summer				
1.005	15	Winter	10	0%	10/15	Summer				
2.000	15	Winter	10	0%						
2.001	15	Winter	10	0%	10/15	Summer				
2.002	15	Winter	10	0%						
1.006	15	Winter	10	0%						
3.000	120	Winter	10	0%	10/15	Summer				
3.001	120	Winter	10	0%	10/15	Summer				
3.002	120	Winter	10	0%	10/15	Summer				
3.003	120	Winter	10	0%	10/15	Summer				
1.007	120	Winter	10	0%	10/15	Summer				
1.008	120	Winter	10	0%	10/15	Summer				
1.009	120	Winter	10	0%	10/15	Summer				
1.010	120	Winter	10	0%	10/15	Summer				

		Water		Flooded			Pipe	
	US/MH	Level	Surch'ed	Volume	Flow /	O'flow	Flow	
PN	Name	(m)	Depth (m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.000	25	68.629	-0.030	0.000	0.93	0.0	15.9	OK
1.001	26	68.483	0.019	0.000	0.60	0.0	30.3	SURCHARGED
1.002	27	68.387	0.223	0.000	0.91	0.0	42.7	SURCHARGED
1.003	28	68.240	0.253	0.000	1.39	0.0	55.7	SURCHARGED
1.004	29	67.969	0.118	0.000	1.42	0.0	68.7	SURCHARGED
1.005	30	67.825	0.041	0.000	2.03	0.0	69.0	SURCHARGED
2.000	37	68.863	-0.027	0.000	0.91	0.0	15.6	OK
2.001	38	68.630	0.023	0.000	1.07	0.0	30.5	SURCHARGED
2.002	39	68.336	-0.147	0.000	0.26	0.0	30.2	OK
1.006	31	67.646	-0.117	0.000	0.68	0.0	103.7	OK
3.000	40	67.594	0.539	0.000	0.06	0.0	1.9	FLOOD RISK
3.001	41	67.593	0.603	0.000	0.20	0.0	5.5	SURCHARGED
3.002	42	67.591	0.676	0.000	0.35	0.0	17.2	SURCHARGED
3.003	43	67.588	0.746	0.000	0.42	0.0	18.7	SURCHARGED
1.007	32	67.586	0.803	0.000	0.59	0.0	56.3	SURCHARGED

RPS Design	Page 6	
Noble House	JKK6647 - KINGSMERE	
Capital Drive, Linfor	SITE KM9	TV-frame
Milton Keynes MK14 6QP	10 YEAR SIMULATION	Trace
Date 08/01/2013	Designed by TD.	
File NETWORK 2.mdx	Checked by	
Elstree Computing Ltd	Network W.12.6	

Summary of Critical Results by Maximum Level (Rank 1) for NETWORK 2.SWS

	Water			Flooded			Pipe	
	US/MH	Level	Surch'ed	Volume	Flow /	O'flow	Flow	
PN	Name	(m)	Depth (m)	(m³)	Cap.	(1/s)	(1/s)	Status
1.008	33	67.583	0.835	0.000	0.44	0.0	38.9	SURCHARGED
1.009	34	67.597	0.881	0.000	0.33	0.0	32.2	SURCHARGED
1.010	35	67.599	1.219	0.000	0.55	0.0	11.0	SURCHARGED