	SDG:	171208-120	Client Reference:	70041591	Report Number:	437139	
(ALS)	Location:	Kraft, Banbury	Order Number:	70041591-SO1	Superseded Report:		
(ALS)							

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
16719032	WS202	ES	0.00 - 0.10	05/12/2017
16719037	WS202	ES	0.70 - 1.00	05/12/2017
16719044	WS202	ES	2.10 - 2.30	05/12/2017
16719054	WS202	ES	2.70 - 2.90	05/12/2017
16718906	WS202	ES	3.50 - 3.70	05/12/2017
16718901	WS203	ES	0.00 - 0.20	05/12/2017
16718981	WS203	ES	1.00 - 1.30	05/12/2017
16719014	WS203	ES	2.10 - 2.30	05/12/2017
16719021	WS203	ES	2.50 - 2.80	05/12/2017
16719027	WS203	ES	3.90 - 4.10	05/12/2017
16718915	WS205	ES	0.00 - 0.20	05/12/2017
16718922	WS205	ES	0.70 - 1.00	05/12/2017
16718930	WS205	ES	2.10 - 2.30	05/12/2017
16718937	WS205	ES	3.50 - 3.70	05/12/2017
16718943	WS205	ES	3.70 - 4.00	05/12/2017
16718949	WS207	ES	0.00 - 0.20	05/12/2017
16719003	WS207	ES	0.40 - 0.60	05/12/2017
16718957	WS207	ES	1.10 - 1.30	05/12/2017
16718963	WS207	ES	2.00 - 2.20	05/12/2017
16718971	WS207	ES	2.60 - 2.80	05/12/2017
16718990	WS207	ES	3.00 - 3.20	05/12/2017
16719009	WS207	ES	3.60 - 3.80	05/12/2017
16718997	WS207	ES	4.10 - 4.30	05/12/2017

Maximum Sample/Coolbox Temperature (°C) :

10.2

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of $(5\pm3)^{\circ}$ C for a period of up to 24hrs.

Validated

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG: Location:	171208-120 Kraft, Banbu	у			feren mber)0415)0415		01				ort Nu rsedec					4371	39		
Results Legend X Test No Determination Possible	Lab Sample	No(s)		16719032			16719037			16718981		16719014			16718922			16718930		16718937		16718949
	Custome Sample Refe			WS202			WS202			WS203		WS203			WS205			WS205		WS205		WS207
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce		ES			ES			ES		ES			ES			ES		ES		ES
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage	Depth (m	1)		0.00 - 0.10			0.70 - 1.00			1.00 - 1.30		2.10 - 2.30			0.70 - 1.00			2.10 - 2.30		3.50 - 3.70		0.00 - 0.20
US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas	Containe	r	250g Amber Jar (ALE210)	400g Tub (ALE214)	250g Amber Jar (ALE210)	400g Tub (ALE214)	60g VOC (ALE215)	250g Amber Jar (ALE210)	400g Tub (ALE214)	60g VOC (ALE215)	250g Amber Jar (ALE210)	60g VOC (ALE215)	250g Amber Jar (ALE210)	400g Tub (ALE214)	60g VOC (ALE215)	250g Amber Jar (ALE210)	400g Tub (ALE214)	60g VOC (ALE215)	250g Amber Jar (ALE210)	60g VOC (ALE215)	250g Amber Jar (ALE210)	400g Tub (ALE214)
OTH - Other	Sample Ty	ре	S	S	S	S	ა	S	ა	S	S	ა	ა	S	S	ა	S	S	S	S	S	S
Asbestos ID in Solid Samples	All	NDPs: 0 Tests: 8		X		x			X					X			x					x
Boron Water Soluble	All	NDPs: 0 Tests: 8	x		x			x					X			X					X	
EPH CWG (Aliphatic) GC (S)	All	NDPs: 0 Tests: 8			x			x			X		x			x			X			
EPH CWG (Aromatic) GC (S)	All	NDPs: 0 Tests: 8			x			x			x		x			x			х			
GRO by GC-FID (S)	All	NDPs: 0 Tests: 8					X			x		X			X			X		x		
Hexavalent Chromium (s)	All	NDPs: 0 Tests: 8	x		x			x					X			X					x	
Metals in solid samples by OES	All	NDPs: 0 Tests: 8	x		x			x					X			X					x	
PAH by GCMS	All	NDPs: 0 Tests: 8			x			x			x		X			X			X			
рН	All	NDPs: 0 Tests: 8			x			x			x		x			x			x			
Sample description	All	NDPs: 0 Tests: 10	x		x			x			x		x			x			x		x	
Semi Volatile Organic Compounds	All	NDPs: 0 Tests: 2						x								x						
Total Organic Carbon	All	NDPs: 0 Tests: 10	x		x			x			x		x			x			x		x	
TPH CWG GC (S)	All	NDPs: 0 Tests: 8			x			x			x		x			x			x			
VOC MS (S)	All	NDPs: 0 Tests: 8					X			x		X			X			x		x		

		16719003			16718957	
		WS207			WS207	
		ES			ES	
		0.40 - 0.60			1.10 - 1.30	
250g Amber Jar (ALE210)	400g Tub (ALE214)	60g VOC (ALE215)	250g Amber Jar (ALE210)	400g Tub (ALE214)	60g VOC (ALE215)	
S	S	S	S	S	S	
	x			x		
x			x			
X			х			
X			X			
					v	
		X			x	
X			x			
X			x			
x			x			
x			x			
x			x			
x			x			
x			x			
		X			X	

(ALS)	

Validated

SDG: 171208-120 70041591 Report Number: Superseded Report: 437139 **Client Reference:** Kraft, Banbury Location Order Number: 70041591-SO1

Sample Descriptions

very fine <0.0	63mm fine 0.06	53mm - 0.1mm	medium 0.1mr	n - 2mm coa	rse 2mm - 1	.0mm very coarse	>10n
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2	
16719032	WS202	0.00 - 0.10	Dark Brown	Sandy Clay	Vegetation	Stones	
16719037	WS202	0.70 - 1.00	Dark Brown	Sandy Clay	Fibres	Vegetation	
16718981	WS203	1.00 - 1.30	Dark Brown	Clay	Fibres	N/A	
16719014	WS203	2.10 - 2.30	Dark Brown	Sandy Loam	Stones	None	
16718922	WS205	0.70 - 1.00	Dark Brown	Sandy Clay	Crushed Brick	N/A	
16718930	WS205	2.10 - 2.30	Dark Brown	Sandy Clay	Stones	None	
16718937	WS205	3.50 - 3.70	Dark Brown	Sandy Loam	Vegetation	Stones	
16718949	WS207	0.00 - 0.20	Dark Brown	Sandy Loam	Stones	None	
16718957	WS207	1.10 - 1.30	Light Brown	Sandy Clay	Stones	None	
16719003	WS207	0.40 - 0.60	Light Brown	Loamy Sand	Stones	None	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

SDG: Location:		171208-120 Kraft, Banbury		t Reference: r Number:		41591 41591-SO1	Report Number: Superseded Repor	4371: t:	39
Results Legend # ISO17025 accredited.	c	ustomer Sample Ref.	WS202	WS202		WS203	WS203	WS205	WS205
M mCERTS accredited. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample. tot.unfit Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate stand:		Depth (m) Sample Type Date Sampled Sampled Time	0.00 - 0.10 Soil/Solid (S) 05/12/2017	0.70 - 1.00 Soii/Solid (S) 05/12/2017		1.00 - 1.30 Soil/Solid (S) 05/12/2017	2.10 - 2.30 Soii/Solid (S) 05/12/2017	0.70 - 1.00 Soil/Solid (S) 05/12/2017	2.10 - 2.30 Soil/Solid (S) 05/12/2017
check the efficiency of the method results of individual compounds w samples aren't corrected for the re (F) Trigger breach confirmed 1-5&&§@ Sample deviation (see appendix) Component	rithin	Date Received SDG Ref Lab Sample No.(s) AGS Reference Method	08/12/2017 171208-120 16719032 ES	08/12/2017 171208-120 16719037 ES		08/12/2017 171208-120 16718981 ES	08/12/2017 171208-120 16719014 ES	08/12/2017 171208-120 16718922 ES	08/12/2017 171208-120 16718930 ES
Moisture Content Ratio (% of as received sample)	%	PM024	14	15		19	18	18	15
Soil Organic Matter (SOM)	<0.35 %	TM132	3.62 #	<0.35	#	0.367 #	<0.35	2.38	<0.35
рН	1 pH Units	TM133	#	8.12		7.54	7.18	8.48	9.49
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	<0.6	М	M <0.6	M	M <0.6	M <0.6
Arsenic	<0.6 mg/kg	TM181	# 16.5	52.6	#	# 81.3		# 24.6	18.7
Barium	<0.6 mg/kg	TM181	41.8	83.8	М	M 76.8		M 48.3	<u>M</u> 54.1
Beryllium	<0.01	TM181	# 0.533	2.5	#	# 1.88		# 1.63	1.45
Cadmium	mg/kg <0.02	TM181	0.0373	0.64	M	0.347		M 0.452	M <0.02
Chromium	mg/kg <0.9 mg/kg	TM181	M 26.2	42.1	M	M 86.2		M 34.6	<u>M</u> 23.7
Copper	<1.4 mg/kg	TM181	M 12.1	23.5	М	M 15.7		M 22.5	M 16.5
Lead	<0.7 mg/kg	TM181	M 16.6	29.4	М	M 22.7		M 37.3	M 16.2
Mercury	<0.14	TM181	M <0.14	<1.4	М	M <0.14		M <1.4	0.922
Nickel	mg/kg <0.2 mg/kg	TM181	M 15.7	56.2	М	M 64.3		M 39.4	M 30
Selenium	<1 mg/kg	TM181	M	<10	М	M <10		M <10	M <1
Vanadium	<0.2 mg/kg	TM181	# 32.1	113	#	# 135		# 76.2	#
Zinc	<1.9 mg/kg	TM181	# 143	121	#	#		# 99	#
Boron, water soluble	<1 mg/kg	TM222	<1 M	<1	М	M <1		M <1	M <1
	- mg/kg		M		м	M		M	M
					_				

SDG: Location:		171208-120 Kraft, Banbury			0041591 0041591-SO1	Report Number: Superseded Report:	437139
Results Legend # ISO17025 accredited.		Customer Sample Ref.	WS205	WS207	WS207	WS207	
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Disolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate stands check the efficiency of the method results of individual compounds w samples aren't corrected for the re (F) Trigger breach confirmed 1-5&4\$© Sample deviation (see appendix)	. The ithin	Depth (m) Sample Type Date Sampled Sampled Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	3.50 - 3.70 Soil/Solid (S) 05/12/2017 	0.00 - 0.20 Soil/Solid (S) 05/12/2017 08/12/2017 17/1208-120 16718949 ES	0.40 - 0.60 Soil/Solid (S) 05/12/2017 08/12/2017 171208-120 16719003 ES	1.10 - 1.30 Soil/Solid (S) 05/12/2017 08/12/2017 17/1208-120 16718957 ES	
Component	LOD/Units	Method					
Moisture Content Ratio (% of as	%	PM024	16	8.9	11	15	
received sample) Soil Organic Matter (SOM)	<0.35 %	TM132	0.44	1.26	<0.35	<0.35	
	-0.00 /0	111102	0. 11 #		# #	40.00	
рН	1 pH Units	TM133	7.56 M		8.11 M	8.14 M	
Chromium, Hexavalent	<0.6 mg/kg			<0.6	<0.6	<0.6 #	
Arsenic	<0.6 mg/kg	TM181		9.84	21.9 M M	14.5 M	
Barium	<0.6 mg/kg	TM181		38.5	38 # #	69.1 #	
Beryllium	<0.01 mg/kg	TM181		0.783	1.39 И М	1.31 M	
Cadmium	<0.02 mg/kg	TM181		0.0389	0.538 M M	<0.02 M	
Chromium	<0.9 mg/kg	TM181		2.02	и 16.1 И М	31.2 M	
Copper	<1.4 mg/kg	TM181		21.6	<14 M M	15.8 M	
Lead	<0.7 mg/kg	TM181		12.7	13.6	14.1	
Mercury	<0.14 mg/kg	TM181		0.623	M M <1.4	0.746	
Nickel	<0.2 mg/kg	TM181		9.48	M M 28	M	
Selenium	<1 mg/kg	TM181		<1	M M <10 # #	M <1 #	
Vanadium	<0.2 mg/kg	TM181		45.7	54	# 62.7 #	
Zinc	<1.9 mg/kg	TM181		84.4	# # 66.4	# 81.3	
Boron, water soluble	<1 mg/kg	TM222		<1	<u>и М</u> <1 И М	<1 M	
				<u> </u>			

SDG: Location	:	171208-120 Kraft, Banbury		nt Reference: er Number:	7004 7004	1591 1591-SO1	Report Number: Superseded Repor	4371 t:	39
		,	0.40						
PAH by GCMS Results Legend		Customer Sample Ref.	WS202	WS203		WS203	WS205	WS205	WS205
# ISO17025 accredited. M mCERTS accredited.			110202	110200			110200	110200	110200
aq Aqueous / settled sample.		Depth (m)	0.70 - 1.00	1.00 - 1.30		2.10 - 2.30	0.70 - 1.00	2.10 - 2.30	3.50 - 3.70
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid (S)	Soil/Solid (S)		Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
* Subcontracted test. ** % recovery of the surrogate stan	dard to	Date Sampled Sampled Time	05/12/2017	05/12/2017		05/12/2017	05/12/2017	05/12/2017	05/12/2017
check the efficiency of the metho	d. The	Date Received	08/12/2017	08/12/2017		. 08/12/2017	08/12/2017	08/12/2017	08/12/2017
results of individual compounds samples aren't corrected for the		SDG Ref	171208-120	171208-120		171208-120	171208-120	171208-120	171208-120
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	16719037 ES	16718981 ES		16719014 ES	16718922 ES	16718930 ES	16718937 ES
Component	LOD/Units	Method							
Naphthalene-d8 % recovery**	%	TM218	92.2	100		100	99.2	106	98.8
Acenaphthene-d10 %	%	TM218	86.7	98		93.9	100	101	90.7
recovery**	0/	TN040	00.0	05.0		00.4	04	101	00.7
Phenanthrene-d10 % recovery**	%	TM218	86.2	95.9		92.4	94	101	88.7
Chrysene-d12 % recovery**	%	TM218	84.7	98.7		86.5	91.4	96	80.6
	,,,		•			00.0			00.0
Perylene-d12 % recovery**	%	TM218	84.8	102		90.7	98.7	99.3	80.1
Naphthalene	<0.009	TM218	<0.009	<0.009	T	<0.009	<0.009	<0.009	<0.009
	mg/kg		Μ	I	М		М	М	Ν
Acenaphthylene	<0.012	TM218	<0.012	<0.012	T	<0.012	<0.012	<0.012	<0.012
	mg/kg		Μ		М		M M	М	N
Acenaphthene	<0.008	TM218	<0.008	<0.008		<0.008	<0.008	<0.008	<0.008
	mg/kg		Μ		М		м м	М	Ν
Fluorene	<0.01	TM218	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01
	mg/kg		Μ		М		M M	М	N
Phenanthrene	<0.015	TM218	<0.015	<0.015		<0.015	0.0274	<0.015	<0.015
	mg/kg		M		М		M M	M	N
Anthracene	<0.016	TM218	<0.016	<0.016		<0.016	<0.016	<0.016	<0.016
Fluerenthene	mg/kg	TM218	M <0.017	<0.017	М	<0.017	M M 0.0659	M <0.017	N <0.017
Fluoranthene	<0.017 mg/kg	TIVIZ TO	<0.017 M		м		0.0659 M M	<0.017 M	<0.017 N
Pyrene	<0.015	TM218	<0.015	< 0.015	IVI	<0.015	0.0606	<0.015	<0.015
i yielie	<0.015 mg/kg	111/2 10	<0.013 M		м		M M	<0.013 M	<0.013 N
Benz(a)anthracene	<0.014	TM218	< 0.014	< 0.014	IVI	<0.014	0.0768	<0.014	<0.014
Bonz(a)ananaoono	mg/kg	TIME TO	M		м		M M	M	N
Chrysene	< 0.01	TM218	<0.01	<0.01		<0.01	0.0446	<0.01	<0.01
	mg/kg		M		м		M M	М	N
Benzo(b)fluoranthene	< 0.015	TM218	<0.015	<0.015		<0.015	0.0761	<0.015	<0.015
	mg/kg		Μ		м		м м	м	Ν
Benzo(k)fluoranthene	< 0.014	TM218	<0.014	<0.014		<0.014	0.0409	<0.014	<0.014
	mg/kg		Μ	I	М		м м	м	Ν
Benzo(a)pyrene	<0.015	TM218	<0.015	<0.015		<0.015	0.057	<0.015	<0.015
	mg/kg		Μ	1	М		M M	М	Ν
Indeno(1,2,3-cd)pyrene	<0.018	TM218	<0.018	<0.018		<0.018	0.0451	<0.018	<0.018
	mg/kg		Μ	1	М		M M	М	N
Dibenzo(a,h)anthracene	<0.023	TM218	<0.023	<0.023		<0.023	<0.023	<0.023	<0.023
	mg/kg		Μ		М		М М	М	Ν
Benzo(g,h,i)perylene	<0.024	TM218	<0.024	<0.024		<0.024	0.0635	<0.024	<0.024
	mg/kg		M		М		M M	M	N
PAH, Total Detected USEPA 16	<0.118	TM218	<0.118	<0.118		<0.118	0.558	<0.118	<0.118
	mg/kg	+		+			+ +		
		+		+			+ +		
	1	+ +							
	1	1 1		1					
					T				
					T				
	1								

Results Legend Custor # ISO17025 accredited. aq Aqueous / settled sample. diss.fit Dissolved / fittered sample. diss.fit Dissolved / fittered sample. diss.fit Dissolved / fittered sample. * Subcontracted test. * % recovery of the surrogate standard to chack the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery L 1-584-5@ Sample deviation (see appendix) LOD/Units Component LOD/Units Naphthalene-d10 % recovery** % Phenanthrene-d10 % Phenanthrene-d10 % recovery** % Chrysene-d12 % recovery** Perylene-d12 % recovery** % Recovery** Naphthalene <0.009 mg/kg Acenaphthylene <0.012	Kraft, Banbury tomer Sample Ref. Depth (m) Sample Type Date Sampled SbG Ref Lab Sample No.(s) AGS Reference Method TM218 TM218 TM218 TM218 TM218 TM218 TM218 TM218 TM218	WS207 0.40 - 0.60 Soil/Soild (S) 05/12/2017 17/1208-120 16719003 ES 93.2 89.3 88 87.8 90.1	WS207 1.10 - 1.30 Soll/Solid (S) 05/12/2017 171208-120 16718957 ES 95.4 92.3 89.7 89.6 92.2	70041591-SO1	
Results Legend Cust # ISO17025 accredited.	Depth (m) Sample Type Date Sampled Sampled Time Date Received SDG Ref Lab Sample No.(s) AGS Reference Method TM218 TM218 TM218 TM218 TM218 TM218	0.40 - 0.60 Soil/Solid (S) 05/12/2017 17/1208-120 16719003 ES 93.2 89.3 88 88 87.8	1.10 - 1.30 Soil/Solid (S) 05/12/2017 17/1208-120 167/18957 ES 95.4 92.3 89.7 89.6		
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. . diss.filt Dissolved / filtered sample. . subcontracted test. * % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery (F) Image: Component individual compounds within samples aren't corrected for the recovery (F) LOD/Units Naphthalene-d8 % recovery** % Image: Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples aren't corrected for the recovery (F) Image: Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples aren't corrected for the recovery (F) Component individual compounds within samples a	Sample Type Date Sampled Sampled Time Date Received SD0 Ref Lab Sample No.(s) AGS Reference Method TM218 TM218 TM218 TM218 TM218 TM218	Soil/Solid (S) 05/12/2017 17/1208-120 16719003 ES 93.2 89.3 88 88 87.8	Soll/Solid (S) 05/12/2017 17/1208-120 16719957 ES 95.4 92.3 89.7 89.6		
diss.filt Dissolved / filtered sample. totumfitt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surogate standard to check the efficiency of the method. The results of individual compounds within samples arent corrected for the recovery (F) Trigger breach confirmed Component LOD/Units Naphthalene-d8 % recovery** % Acenaphthene-d10 % recovery** % Phenanthrene-d10 % recovery** % Chrysene-d12 % recovery** % Perylene-d12 % recovery** % Naphthalene <0.009 mg/kg	Sample Type Date Sampled Sampled Time Date Received SD0 Ref Lab Sample No.(s) AGS Reference Method TM218 TM218 TM218 TM218 TM218 TM218	Soil/Solid (S) 05/12/2017 17/1208-120 16719003 ES 93.2 89.3 88 88 87.8	Soll/Solid (S) 05/12/2017 17/1208-120 16719957 ES 95.4 92.3 89.7 89.6		
 Subcontracted test. Trigger breach confirmed Sasy@ Sample deviation (see appendix) Component LOD/Units Component LOD/Units Acenaphthene-d10 % recovery** % Chrysene-d12 % recovery** % Perylene-d12 % recovery** % Naphthalene < 0.009 mg/kg Acenaphthylene < 0.012 	Date Sampled Time Date Received SDG Ref Lab Sample No.(s) AGS Reference Method TM218 TM218 TM218 TM218 TM218	05/12/2017 08/12/2017 17/208-120 16719003 ES 93.2 89.3 88. 88. 87.8	05/12/2017 08/12/2017 17/1208-120 167/19957 ES 95.4 92.3 89.7 89.6		
check the efficiency of the method. The results of individual compounds within samples arent corrected for the recovery Trigger breach confirmed 1.584 \$@: Sample deviation (see appendix) Component LOD/Units Naphthalene-d8 % recovery** % Acenaphthene-d10 % recovery** % Phenanthrene-d10 % recovery** % Chrysene-d12 % recovery** % Perylene-d12 % recovery** % Naphthalene <0.009 mg/kg	Date Received SDG Ref Lab Sample No.(s) AGS Reference Method TM218 TM218 TM218 TM218 TM218 TM218	171208-120 16719003 ES 93.2 89.3 88 88 87.8	171208-120 16718957 ES 95.4 92.3 89.7 89.6		
samples arm t corrected for the recovery L I-5&+§@ Sample deviation (see appendix) I Component LOD/Units I Naphthalene-d8 % recovery** % I Acenaphthene-d10 % % I Phenanthrene-d10 % recovery** % I Chrysene-d12 % recovery** % I Perylene-d12 % recovery** % I Naphthalene <0.009	SDG Ref Lab Sample No.(s) AGS Reference Method TM218 TM218 TM218 TM218 TM218 TM218	171208-120 16719003 ES 93.2 89.3 88 88 87.8	171208-120 16718957 ES 95.4 92.3 89.7 89.6		
(F) Trigger breach confirmed 1.5&*§@ Sample deviation (see appendix) I Component LOD/Units N Naphthalene-d8 % recovery** % I Acenaphthene-d10 % recovery** % I Phenanthrene-d10 % recovery** % I Chrysene-d12 % recovery** % I Perylene-d12 % recovery** % I Naphthalene <0.009 mg/kg Mkg	AGS Reference Method TM218 TM218 TM218 TM218 TM218 TM218	ES 93.2 89.3 88 87.8	ES 95.4 92.3 89.7 89.6		
Component LOD/Units Naphthalene-d8 % recovery** % Acenaphthene-d10 % % Phenanthrene-d10 % recovery** % Chrysene-d12 % recovery** % Perylene-d12 % recovery** % Naphthalene <0.009 mg/kg Acenaphthylene <0.012	MethodTM218TM218TM218TM218TM218TM218TM218	93.2 89.3 88 87.8	95.4 92.3 89.7 89.6		
Naphthalene-d8 % recovery** % Acenaphthene-d10 % % recovery** % Phenanthrene-d10 % recovery** % Chrysene-d12 % recovery** % Perylene-d12 % recovery** % Naphthalene <0.009 mg/kg Acenaphthylene <0.012	TM218 TM218 TM218 TM218 TM218 TM218 TM218	89.3 88 87.8	92.3 89.7 89.6		
recovery**	TM218 TM218 TM218 TM218	88 87.8	89.7		
Phenanthrene-d10 % recovery** % Chrysene-d12 % recovery** % Perylene-d12 % recovery** % Naphthalene <0.009 mg/kg	TM218	87.8	89.6		
Perylene-d12 % recovery** % Naphthalene <0.009 mg/kg Acenaphthylene <0.012	TM218				
Naphthalene <0.009		90.1	00.0		
Acenaphthylene <0.012	TM218		92.2		
Acenaphthylene <0.012		<0.009 M	<0.009	м	
	TM218	<0.012	<0.012	IVI	
mg/kg		М		м	
Acenaphthene <0.008 mg/kg	TM218	<0.008 M	<0.008	М	
Fluorene <0.01	TM218	<0.01	<0.01		
mg/kg Phenanthrene <0.015	TM218	M <0.015	<0.015	M	
mg/kg Anthracene <0.016	TM218	M <0.016	<0.016	м	
mg/kg		М		м	
Fluoranthene <0.017 mg/kg	TM218	<0.017 M	<0.017	М	
Pyrene <0.015 mg/kg	TM218	<0.015 M	<0.015	М	
Benz(a)anthracene <0.014 mg/kg	TM218	<0.014 M	<0.014	м	
Chrysene <0.01 mg/kg	TM218	<0.01 M	<0.01	м	
Benzo(b)fluoranthene <0.015 mg/kg	TM218	<0.015 M	<0.015	м	
Benzo(k)fluoranthene <0.014 mg/kg	TM218	<0.014 M	<0.014	м	
Benzo(a)pyrene <0.015 mg/kg	TM218	<0.015 M	<0.015	м	
Indeno(1,2,3-cd)pyrene <0.018 mg/kg	TM218	<0.018 M	<0.018	м	
Dibenzo(a,h)anthracene <0.023	TM218	<0.023	<0.023		
mg/kg		M		м	
Benzo(g,h,i)perylene <0.024 mg/kg	TM218	<0.024 M	<0.024	М	
PAH, Total Detected USEPA 16 <0.118 mg/kg	TM218	<0.118	<0.118		

SDG: Location:		171208-120 Kraft, Banbu		t Reference: r Number:	70041591 70041591-SO1	Report Number: Superseded Report:	437139
Semi Volatile Organic Co	ompound	s					
Results Legend # ISO17025 accredited.		Customer Sample Ref.	WS203	WS205			
M mCERTs accredited. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate standa check the efficiency of the method.	The	Depth (m) Sample Type Date Sampled Sampled Time Date Received	1.00 - 1.30 Soil/Solid (S) 05/12/2017 08/12/2017	2.10 - 2.30 Soil/Solid (S) 05/12/2017 08/12/2017			
results of individual compounds wi samples aren't corrected for the rec (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	171208-120 16718981	171208-120 16718930			
1-5&+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method	ES	ES			
Phenol	<0.1 mg/kg	TM157	<0.1	<0.1			
Pentachlorophenol	<0.1 mg/kg	TM157	<0.1	<0.1			
n-Nitroso-n-dipropylamine	<0.1 mg/kg	TM157	<0.1	<0.1			
Nitrobenzene	<0.1 mg/kg		<0.1	<0.1			
Isophorone	<0.1 mg/kg	TM157	<0.1	<0.1			
Hexachloroethane	<0.1 mg/kg	TM157	<0.1	<0.1			
Hexachlorocyclopentadiene	<0.1 mg/kg		<0.1	<0.1			
Hexachlorobutadiene	<0.1 mg/kg		<0.1	<0.1			
Hexachlorobenzene	<0.1 mg/kg		<0.1	<0.1		_	
n-Dioctyl phthalate Dimethyl phthalate	<0.1 mg/kg	TM157 TM157	<0.1	<0.1	_		
Diethyl phthalate	<0.1 mg/kg	TM157	<0.1	<0.1			
n-Dibutyl phthalate	<0.1 mg/kg	TM157	<0.1	<0.1			
Dibenzofuran	<0.1 mg/kg	TM157	<0.1	<0.1			
Carbazole	<0.1 mg/kg	TM157	<0.1	<0.1			
Butylbenzyl phthalate	<0.1 mg/kg	TM157	<0.1	<0.1			
bis(2-Ethylhexyl) phthalate	<0.1 mg/kg	TM157	<0.1	<0.1			
bis(2-Chloroethoxy)methane	<0.1 mg/kg	TM157	<0.1	<0.1			
bis(2-Chloroethyl)ether	<0.1 mg/kg	TM157	<0.1	<0.1			
Azobenzene	<0.1 mg/kg		<0.1	<0.1			
4-Nitrophenol	<0.1 mg/kg	TM157	<0.1	<0.1			
4-Nitroaniline	<0.1 mg/kg		<0.1	<0.1			
4-Methylphenol 4-Chlorophenylphenylether	<0.1 mg/kg <0.1 mg/kg		<0.1	<0.1	_		
4-Chloroaniline	<0.1 mg/kg		<0.1	<0.1	_		
4-Chloro-3-methylphenol	<0.1 mg/kg		<0.1	<0.1	_		
4-Bromophenylphenylether	<0.1 mg/kg		<0.1	<0.1			
3-Nitroaniline	<0.1 mg/kg		<0.1	<0.1	_	+	
2-Nitrophenol	<0.1 mg/kg	TM157	<0.1	<0.1			
2-Nitroaniline	<0.1 mg/kg	TM157	<0.1	<0.1			
2-Methylphenol	<0.1 mg/kg	TM157	<0.1	<0.1			
1,2,4-Trichlorobenzene	<0.1 mg/kg	TM157	<0.1	<0.1			

SDG: Location	on:	171208-120 Kraft, Banbury		t Reference: r Number:	70041591 70041591-SO1	Report Number: Superseded Report:	437139
emi Volatile Organic							
Results Legend # ISO17025 accredited. m mCETS accredited. aq Aqueous / settled sample. ilss.filt Dissolved / filtered sample. ot.unfilt Total / unfiltered sample. Subcontracted test. * * % recovery of the surrogate si check the efficiency of the merican of the	tandard to	Customer Sample Ref. Depth (m) Sample Type Date Sampled Sampled Time Date Received	WS203 1.00 - 1.30 Soil/Solid (S) 05/12/2017	WS205 2.10 - 2.30 Soii/Solid (S) 05/12/2017			
results of individual compoun samples aren't corrected for ti (F) Trigger breach confirmed 5&+§@ Sample deviation (see append component	nds within he recovery	Date Received SDG Ref Lab Sample No.(s) AGS Reference Method	08/12/2017 171208-120 16718981 ES	08/12/2017 171208-120 16718930 ES			
2-Chlorophenol	<0.1 mg/kg	TM157	<0.1	<0.1			
2,6-Dinitrotoluene	<0.1 mg/kg	TM157	<0.1	<0.1			
2,4-Dinitrotoluene	<0.1 mg/kg	TM157	<0.1	<0.1			
2,4-Dimethylphenol	<0.1 mg/kg	TM157	<0.1	<0.1			
2,4-Dichlorophenol	<0.1 mg/kg	TM157	<0.1	<0.1			
2,4,6-Trichlorophenol	<0.1 mg/kg	TM157	<0.1	<0.1		+ + + - + - + - + - + - + - + - + - + -	
2,4,5-Trichlorophenol	<0.1 mg/kg	TM157	<0.1	<0.1			<u> </u>
1,4-Dichlorobenzene	<0.1 mg/kg	TM157	<0.1	<0.1			<u> </u>
,3-Dichlorobenzene	<0.1 mg/kg	TM157	<0.1	<0.1			
,2-Dichlorobenzene	<0.1 mg/kg	TM157	<0.1	<0.1			
2-Chloronaphthalene	<0.1 mg/kg	TM157	<0.1	<0.1			
2-Methylnaphthalene	<0.1 mg/kg	TM157	<0.1	<0.1			
Acenaphthylene	<0.1 mg/kg	TM157	<0.1	<0.1			
Acenaphthene	<0.1 mg/kg	TM157	<0.1	<0.1			
Anthracene	<0.1 mg/kg	TM157	<0.1	<0.1			
Benzo(a)anthracene	<0.1 mg/kg	TM157	<0.1	<0.1			
Benzo(b)fluoranthene	<0.1 mg/kg	TM157	<0.1	<0.1			
Benzo(k)fluoranthene	<0.1 mg/kg	TM157	<0.1	<0.1			
Benzo(a)pyrene	<0.1 mg/kg	TM157	<0.1	<0.1			
Benzo(g,h,i)perylene	<0.1 mg/kg	TM157	<0.1	<0.1			
Chrysene	<0.1 mg/kg	TM157	<0.1	<0.1			
Fluoranthene	<0.1 mg/kg	TM157	<0.1	<0.1			
luorene	<0.1 mg/kg	TM157	<0.1	<0.1			
ndeno(1,2,3-cd)pyrene	<0.1 mg/kg	TM157	<0.1	<0.1			
Phenanthrene	<0.1 mg/kg	TM157	<0.1	<0.1			
yrene	<0.1 mg/kg	TM157	<0.1	<0.1			
laphthalene	<0.1 mg/kg	TM157	<0.1	<0.1			
Dibenzo(a,h)anthracene	<0.1 mg/kg	TM157	<0.1	<0.1			
Bis(2-chloroisopropyl) ether	<0.1 mg/kg	TM157	<0.1	<0.1			
						+ +	
	_					+	

SDG: Location:		171208-120 Kraft, Banbury			70041591 70041591-SO1	Report Number: Superseded Report	43713	39
FPH CWG (S)								
Results Legend # ISO17025 accredited. M mCERTS accredited.		Customer Sample Ref.	WS202	WS203	WS203	WS205	WS205	WS205
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate stand.	ard to	Depth (m) Sample Type Date Sampled Sampled Time	0.70 - 1.00 Soil/Solid (S) 05/12/2017	1.00 - 1.30 Soil/Solid (S) 05/12/2017	2.10 - 2.30 Soii/Solid (S) 05/12/2017	0.70 - 1.00 Soii/Solid (S) 05/12/2017	2.10 - 2.30 Soil/Solid (S) 05/12/2017	3.50 - 3.70 Soil/Solid (S) 05/12/2017
check the efficiency of the method results of individual compounds w samples aren't corrected for the re (F) Trigger breach confirmed	l. The /ithin	Date Received SDG Ref Lab Sample No.(s)	08/12/2017 171208-120 16719037	08/12/2017 171208-120 16718981	08/12/2017 171208-120 16719014	08/12/2017 171208-120 16718922	08/12/2017 171208-120 16718930	08/12/2017 171208-120 16718937
1-5&+§@ Sample deviation (see appendix)		AGS Reference	ES	ES	ES	ES	ES	ES
Component	LOD/Units	-	110	107	101	102	119	126
GRO Surrogate % recovery** GRO TOT (Moisture Corrected)	% <0.044	TM089 TM089	119 <0.044	6.47	<0.044	<0.044	<0.044	<0.044
Aliphatics >C5-C6	<0.044 mg/kg <0.01	TM089	<0.044 M <0.01	<0.01	M N <0.01	1 1	<0.044 M <0.01	<0.044 M
	mg/kg							
Aliphatics >C6-C8	<0.01 mg/kg	TM089	<0.01	0.0394	<0.01	<0.01	<0.01	<0.01
Aliphatics >C8-C10	<0.01 mg/kg	TM089	<0.01	0.82	0.0146	<0.01	<0.01	<0.01
Aliphatics >C10-C12	<0.01 mg/kg	TM089	<0.01	3.02	0.0159	<0.01	<0.01	<0.01
Aliphatics >C12-C16	<0.1 mg/kg	g TM173	<0.1	35.9	<0.1	<0.1	2.71	<0.1
Aliphatics >C16-C21	<0.1 mg/kg	g TM173	0.85	48.5	<0.1	<0.1	5.97	<0.1
Aliphatics >C21-C35	<0.1 mg/kg	g TM173	0.977	27.2	<0.1	8.9	4.84	<0.1
Aliphatics >C35-C44	<0.1 mg/kg	g TM173	<0.1	0.925	2.61	1.99	<0.1	<0.1
Total Aliphatics >C12-C44	<0.1 mg/kg	g TM173	1.83	112	2.61	10.9	13.5	<0.1
Aromatics >EC5-EC7	<0.01	TM089	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aromatics >EC7-EC8	mg/kg hatics >EC7-EC8 <0.01 mg/kg		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aromatics >EC8-EC10	<0.01	TM089	<0.01	0.569	<0.01	<0.01	<0.01	<0.01
Aromatics >EC10-EC12	mg/kg <0.01	TM089	<0.01	2.01	0.011	<0.01	<0.01	<0.01
Aromatics >EC12-EC16	mg/kg <0.1 mg/kg	g TM173	<0.1	10.9	<0.1	<0.1	1.34	<0.1
Aromatics >EC16-EC21	<0.1 mg/kg	g TM173	<0.1	18.2	<0.1	<0.1	1.97	<0.1
Aromatics >EC21-EC35	<0.1 mg/kg	g TM173	<0.1	8.24	<0.1	8.3	2.7	0.923
Aromatics >EC35-EC44	<0.1 mg/kg	g TM173	<0.1	<0.1	4.97	5.04	<0.1	<0.1
Aromatics >EC40-EC44	<0.1 mg/kg	g TM173	<0.1	<0.1	3.18	1.85	<0.1	<0.1
Total Aromatics >EC12-EC44	<0.1 mg/kg	g TM173	<0.1	37.4	4.97	13.3	6	0.923
Total Aliphatics & Aromatics	<0.1 mg/kg	g TM173	1.83	156	7.63	24.2	19.5	0.923
>C5-C44 Aromatics >EC16-EC35	<0.1 mg/kg	g TM173	<0.1	26.5	<0.1	8.3	4.67	0.923
		+						
		+						
		+						
		 						

SDG: Location:		171208-120 Kraft, Banbur		Reference: Number:	70041591 70041591-SO1	Report Number: Superseded Report:	437139
		Kraft, Banbur	y Order	Number:	70041591-SO1		
PH CWG (S) Results Legend		Customer Sample Ref.	WS207	WS207			
# ISO17025 accredited. M mCERTS accredited.							
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.40 - 0.60 Soil/Solid (S)	1.10 - 1.30 Soil/Solid (S)			
* Subcontracted test. ** % recovery of the surrogate stand	lard to	Date Sampled Sampled Time	05/12/2017	05/12/2017			
check the efficiency of the method results of individual compounds v	d. The	Date Received	08/12/2017	08/12/2017			
samples aren't corrected for the n (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	171208-120 16719003	171208-120 16718957			
1-5&+§@ Sample deviation (see appendix)		AGS Reference	ES	ES			
Component GRO Surrogate % recovery**	LOD/Units	Method TM089	116	107			
GRO TOT (Moisture Corrected)	<0.044 mg/kg	TM089	<0.044 M	<0.044	м		
Aliphatics >C5-C6	<0.01 mg/kg	TM089	<0.01	<0.01			
Aliphatics >C6-C8	<0.01 mg/kg	TM089	<0.01	<0.01			
Aliphatics >C8-C10	<0.01	TM089	<0.01	<0.01			
Aliphatics >C10-C12	mg/kg <0.01	TM089	<0.01	<0.01		+ +	
Aliphatics >C12-C16	mg/kg <0.1 mg/kg	TM173	1.05	<0.1		+	
Aliphatics >C16-C21	<0.1 mg/kg		1.24	0.729			
Aliphatics >C21-C35	<0.1 mg/kg		4.86	0.872			
Aliphatics >C35-C44	<0.1 mg/kg	1 TM173	0.712	<0.1			
Total Aliphatics >C12-C44	<0.1 mg/kg	1 TM173	7.86	1.6			
Aromatics >EC5-EC7	<0.01 mg/kg	TM089	<0.01	<0.01			
Aromatics >EC7-EC8	<0.01 mg/kg	TM089	<0.01	<0.01			
Aromatics >EC8-EC10	<0.01	TM089	<0.01	<0.01			
Aromatics >EC10-EC12	mg/kg <0.01	TM089	<0.01	<0.01			
Aromatics >EC12-EC16	mg/kg <0.1 mg/kg	TM173	<0.1	0.728			
Aromatics >EC16-EC21	<0.1 mg/kg	TM173	<0.1	0.798			
Aromatics >EC21-EC35	<0.1 mg/kg	1 TM173	17.9	1.86			
Aromatics >EC35-EC44	<0.1 mg/kg	TM173	69.1	<0.1			
Aromatics >EC40-EC44	<0.1 mg/kg		36.7	<0.1			
Total Aromatics >EC12-EC44	<0.1 mg/kg		86.9	3.39			
				4.99			
Total Aliphatics & Aromatics >C5-C44	<0.1 mg/kg		94.8				
Aromatics >EC16-EC35	<0.1 mg/kg	1 TM173	17.9	2.66			
						+ +	
		+				+ +	
		+ +				+	

SDG: Location:		171208-120 Kraft, Banbu		t Reference: Number:		41591 41591-SO1	Report Number Superseded Repo		39
		Trian, Banba	y Order	Number.	700	41391-301			
VOC MS (S) Results Legend		Customer Sample Ref.	WS202	WS203		WS203	WS205	WS205	WS205
# ISO17025 accredited. M mCERTS accredited.									
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.70 - 1.00	1.00 - 1.30		2.10 - 2.30	0.70 - 1.00	2.10 - 2.30	3.50 - 3.70
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Soil/Solid (S) 05/12/2017	Soil/Solid (S) 05/12/2017		Soil/Solid (S) 05/12/2017	Soil/Solid (S) 05/12/2017	Soil/Solid (S) 05/12/2017	Soil/Solid (S) 05/12/2017
** % recovery of the surrogate stand check the efficiency of the method	ard to I. The	Sampled Time							
results of individual compounds w samples aren't corrected for the re	vithin	Date Received SDG Ref	08/12/2017 171208-120	08/12/2017 171208-120		08/12/2017 171208-120	08/12/2017 171208-120	08/12/2017 171208-120	08/12/2017 171208-120
(F) Trigger breach confirmed	covery	Lab Sample No.(s)	16719037 ES	16718981 ES		16719014 ES	16718922 ES	16718930 ES	16718937 ES
1-5&+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method	20	10		ES	23	20	20
Dibromofluoromethane**	%	TM116		104	_			106	
Toluene-d8**	%	TM116		94.2				96.5	
4-Bromofluorobenzene**	%	TM116		94.7				95.7	
Dichlorodifluoromethane	<0.006 mg/kg	TM116		<0.06	м			<0.06 M	
Chloromethane	<0.007	TM116		<0.07	.01			<0.07	
	mg/kg				#			#	
Vinyl Chloride	<0.006	TM116		<0.06				<0.06	
Promomothana	mg/kg	TM116		<0.1	М			M <0.1	
Bromomethane	<0.01 mg/kg	011111		SU. 1	м			<0.1 M	
Chloroethane	<0.01 mg/kg	TM116		<0.1	м			<0.1 M	
Trichlorofluorormethane	<0.006 mg/kg	TM116		<0.06	М			<0.06 M	
1,1-Dichloroethene	<0.01 mg/kg	TM116		<0.1	#			<0.1 #	
Carbon Disulphide	<0.007 mg/kg	TM116		<0.07				<0.07	
Dichloromethane	<0.01 mg/kg	TM116		<0.1	M #			M <0.1 #	
Methyl Tertiary Butyl Ether	<0.01	TM116	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1
trans 4.0 Disklass theme	mg/kg	Think	М	-0.1	М	N	1 M	M	Μ
trans-1,2-Dichloroethene	<0.01 mg/kg	TM116		<0.1	м			<0.1 M	
1,1-Dichloroethane	<0.008 mg/kg	TM116		<0.08				<0.08	
cis-1,2-Dichloroethene	<0.006	TM116		<0.06	M			M <0.06	
2,2-Dichloropropane	mg/kg <0.01	TM116		<0.1	M			M <0.1	
Bromochloromethane	mg/kg <0.01	TM116		<0.1	_			<0.1	
Diomochioromethane	mg/kg	TIWITIO		50.1	м			<0.1 М	
Chloroform	<0.008	TM116		<0.08				<0.08	
1,1,1-Trichloroethane	mg/kg <0.007	TM116		<0.07	М			M <0.07	
	<0.007 mg/kg	. WITTO		-0.01	м			<0.07 M	
1,1-Dichloropropene	<0.01	TM116		<0.1				<0.1	
Carbontetrachloride	mg/kg <0.01	TM116		<0.1	M			M <0.1	
1.2-Dichloroethane	mg/kg <0.005	TM116		<0.05	М			M <0.05	
1,2-Dichloroethane	<0.005 mg/kg	11/1110		<0.05	м			<0.05 M	
Benzene	<0.009	TM116	<0.09	<0.09		<0.09	<0.09	<0.09	<0.09
Trichloroethene	mg/kg <0.009	TM116	М	<0.09	M	Ν	1 M	M <0.09	М
1.2 Diablaranzana	mg/kg	TM116		- n 4	#			# <0.1	
1,2-Dichloropropane	<0.01 mg/kg			<0.1	М			М	
Dibromomethane	<0.009 mg/kg	TM116		<0.09	м			<0.09 M	
Bromodichloromethane	<0.007 mg/kg	TM116		<0.07	м			<0.07 M	
cis-1,3-Dichloropropene	<0.01 mg/kg	TM116		<0.1	M			<0.1 M	
Toluene	<0.007 mg/kg	TM116	<0.07 M	<0.07	M	<0.07	<0.07	<0.07 M	<0.07 M
trans-1,3-Dichloropropene	<0.01 mg/kg	TM116	W	<0.1	IVI	Ň		<0.1	IVI
1,1,2-Trichloroethane	<0.01	TM116		<0.1				<0.1	
	mg/kg				М			М	

Validated

М

			CERTI	FICATE O	FA	NALYSIS			Validated
	DG: ocation:	171208-120 Kraft, Banbury		Reference: Number:)41591)41591-SO1	Report Number: Superseded Repor	4371 t:	39
VOC MS (S)		· ·							
Results Leg	end	Customer Sample Ref.	WS202	WS203		WS203	WS205	WS205	WS205
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled san diss.filt Dissolved / filtered san * Subcontracted test. * % recovery of the sun check the efficiency of results of individual c samples aren't correc (F) Trigger breach confir	mple. ole. rogate standard to f the method. The ompounds within ted for the recovery	Depth (m) Sample Type Date Sampled Sampled Time Date Received SDG Ref Lab Sample No.(s)	0.70 - 1.00 Soii/Solid (S) 05/12/2017 08/12/2017 171208-120 16719037	1.00 - 1.30 Soii/Solid (S) 05/12/2017 08/12/2017 171208-120 16718981		2.10 - 2.30 Soil/Soid (S) 05/12/2017 08/12/2017 171208-120 16719014	0.70 - 1.00 Soli/Solid (S) 05/12/2017 08/12/2017 171208-120 16718922	2.10 - 2.30 Soii/Solid (S) 05/12/2017 08/12/2017 171208-120 16718930	3.50 - 3.70 Soil/Solid (S) 05/12/2017 08/12/2017 171208-120 16718937
1-5&+§@ Sample deviation (see Component		AGS Reference	ES	ES		ES	ES	ES	ES
1,3-Dichloropropane	<0.007	TM116		<0.07	_			<0.07	
	mg/kg				М			M	
Tetrachloroethene	<0.005 mg/kg	TM116		<0.05	М			<0.05 M	
Dibromochloromethane	<0.01 mg/kg	TM116		<0.1	м			<0.1 M	
1,2-Dibromoethane	<0.01 mg/kg	TM116		<0.1	М			<0.1 M	
Chlorobenzene	<0.005 mg/kg	TM116		<0.05	м			<0.05 M	
1,1,1,2-Tetrachloroethane	<0.01 mg/kg	TM116		<0.1	м			<0.1 M	
Ethylbenzene	<0.004 mg/kg	TM116	<0.04	<0.04		<0.04	<0.04	<0.04	<0.04
p/m-Xylene	<0.01	TM116	M <0.1	<0.1	M	M <0.1	M <0.1	<0.1	M <0.1
o-Xylene	mg/kg <0.01	TM116	# <0.1	<0.1	#	# <0.1	# <0.1	# <0.1	# <0.1
Styrene	mg/kg <0.01	TM116	M	<0.1	M	M	M	<0.1	M
Bromoform	mg/kg <0.01	TM116		<0.1	#			4 <0.1	
lsopropylbenzene	mg/kg <0.005	TM116		<0.05	M			M <0.05	
1,1,2,2-Tetrachloroethane	mg/kg <0.01	TM116		<0.1	#			# <0.1	
1,2,3-Trichloropropane	mg/kg <0.016	TM116		<0.16	#			# <0.16	
Bromobenzene	mg/kg <0.01	TM116		<0.1	М			M<\$0.1	
Propylbenzene	mg/kg <0.01	TM116		<0.1	M			M <0.1	
2-Chlorotoluene	mg/kg <0.009	TM116		<0.09	М			M <0.09	
1,3,5-Trimethylbenzene	mg/kg <0.008	TM116		<0.08	М			M	
4-Chlorotoluene	mg/kg <0.01	TM116		<0.1	М			M <0.1	
	mg/kg				М			М	
tert-Butylbenzene	<0.014 mg/kg	TM116		<0.14	М			<0.14 M	
1,2,4-Trimethylbenzene	<0.009 mg/kg	TM116		<0.09	#			<0.09	
sec-Butylbenzene	<0.01 mg/kg	TM116		<0.1				<0.1	
4-Isopropyltoluene	<0.01 mg/kg	TM116		<0.1	М			<0.1 M	
1,3-Dichlorobenzene	<0.008 mg/kg	TM116		<0.08	М			<0.08 M	
1,4-Dichlorobenzene	<0.005 mg/kg	TM116		<0.05	м			<0.05 M	
n-Butylbenzene	<0.011 mg/kg	TM116		<0.11				<0.11	
1,2-Dichlorobenzene	<0.01 mg/kg	TM116		<0.1	м			<0.1	
1,2-Dibromo-3-chloropropa		TM116		<0.14	M			<0.14 M	
Tert-amyl methyl ether	<0.01 mg/kg	TM116	<0.1	<0.1	#	<0.1	<0.1	<0.1	<0.1
1,2,4-Trichlorobenzene	<0.02	TM116	#	<0.2	#	#	#	# <0.2	#
Hexachlorobutadiene	mg/kg <0.02 mg/kg	TM116		<0.2				<0.2	
Naphthalene	<0.013 mg/kg	TM116		<0.13	м			<0.13	

mg/kg

М

				OLINI						
	SDG: Location:		171208-120 Kraft, Banbu	ry Order	Reference: Number:		41591 41591-SO1	Report Number: Superseded Report	4371 ::	39
VOC	MS (S)									
# M	Results Legend ISO17025 accredited. mCERTS accredited.		Customer Sample Ref.	WS202	WS203		WS203	WS205	WS205	WS205
tot.unfilt * **	Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. Subcontracted test. % recovery of the surrogate standa check the efficiency of the method. results of individual compounds wi sample sen't corrected for the rec Trigger breach confirmed Sample deviation (see appendix)	The thin	Depth (m) Sample Type Date Sampled Sampled Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.70 - 1.00 Soil/Solid (S) 05/12/2017 17/208-120 167/19037 ES	1.00 - 1.30 Soil/Solid (S) 05/12/2017 08/12/2017 171208-120 16718981 ES		2.10 - 2.30 Soil/Solid (S) 05/12/2017 08/12/2017 171208-120 16719014 ES	0.70 - 1.00 Soli/Solid (S) 05/12/2017 08/12/2017 171208-120 16718922 ES	2.10 - 2.30 Soll/Solid (S) 05/12/2017 08/12/2017 17/1208-120 167/18930 ES	3.50 - 3.70 Soil/Solid (S) 05/2/2017 08/12/2017 17/208-120 16719937 ES
Compo		LOD/Units	Method							
1,2,3-Tr	richlorobenzene	<0.02 mg/kg	TM116		<0.2	#			<0.2 #	
						\rightarrow				
						+				
						-				
						+				
						+				
						+				
						+				
1						- 1				

SDG: Location:		171208-120 Kraft, Banbu		nt Reference: er Number:		1591 1591-SO1	Report Number: Superseded Report	4371 rt:	39	
VOC MS (S)		, , , , , , , , , , , , , , , , , , , ,	,							
Results Legend # ISO17025 accredited.	(Customer Sample Ref.	WS207	WS207						
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.40 - 0.60	1.10 - 1.30						
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Soil/Solid (S) 05/12/2017	Soil/Solid (S) 05/12/2017						
** % recovery of the surrogate stands check the efficiency of the method	. The	Sampled Time Date Received	08/12/2017	08/12/2017						
results of individual compounds w samples aren't corrected for the re (F) Trigger breach confirmed	covery	SDG Ref Lab Sample No.(s)	171208-120 16719003	171208-120 16718957						
1-5&+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method	ES	ES						
Methyl Tertiary Butyl Ether	<0.01	TM116	<0.1	<0.1						
Benzene	mg/kg <0.009	TM116	<0.09	<0.09	М					
Toluene	mg/kg <0.007	TM116	N <0.07	<0.07	м					
	mg/kg		N	1	м					
Ethylbenzene	<0.004 mg/kg	TM116	<0.04 N	<0.04	м					
p/m-Xylene	<0.01 mg/kg	TM116	<0.1	<0.1	#					
o-Xylene	<0.01	TM116	<0.1	<0.1						
Tert-amyl methyl ether	mg/kg <0.01	TM116	<0.1	<0.1	M					
	mg/kg		#		#					
				+						
					T					
					\rightarrow					

Validated

 SDG:
 171208-120
 Client Reference:
 70041591
 Report Number:
 437139

 Location:
 Kraft, Banbury
 Order Number:
 70041591-S01
 Superseded Report:
 437139

Asbestos Identification - Soil

				003103	iacittii	ication	- 0011				
		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS202 ES 0.00 - 0.10 SOLID 05/12/2017 00:00:00 09/12/2017 09:07:21 171208-120 16719032 TM048	15/12/2017	Barbara Urbanek-Wa Ish	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS202 ES 0.70 - 1.00 SOLID 05/12/2017 00:00:00 09/12/2017 10:23:35 171208-120 16719037 TM048	15/12/2017	Barbara Urbanek-Wa Ish	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS203 ES 1.00 - 1.30 SOLID 05/12/2017 00:00:00 09/12/2017 10:47:55 171208-120 16718981 TM048	15/12/2017	Barbara Urbanek-Wa Ish	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS205 ES 0.70 - 1.00 SOLID 05/12/2017 00:00:00 09/12/2017 10:21:32 171208-120 16718922 TM048	15/12/2017	Barbara Urbanek-Wa Ish	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS205 ES 2.10 - 2.30 SOLID 05/12/2017 00:00:00 09/12/2017 09:08:42 171208-120 16718930 TM048	15/12/2017	Barbara Urbanek-Wa Ish	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

ALS	SDG: Location:)8-120 Banbury	Client R Order N	Reference: lumber:	70041591 70041591-SC	01	Report Numb Superseded Re	er: port:	437139	
		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS207 ES 0.00 - 0.20 SOLID 05/12/2017 00:00:00 09/12/2017 09:25:32 171208-120 16718949 TM048	15/12/2017	Barbara Urbanek-Wa Ish	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS207 ES 0.40 - 0.60 SOLID 05/12/2017 00:00:00 09/12/2017 09:23:57 171208-120 16719003 TM048	15/12/2017	Barbara Urbanek-Wa Ish	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WS207 ES 1.10 - 1.30 SOLID 05/12/2017 00:00:00 09/12/2017 09:26:41 171208-120 16718957 TM048	15/12/2017	Barbara Urbanek-Wa Ish	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

171208-120 Kraft, Banbury	Client Reference: Order Number:	70041591 70041591-SO1	Report Number: Superseded Report:	437139						

70041591-SO1

Validated

Table of Results - Appendix

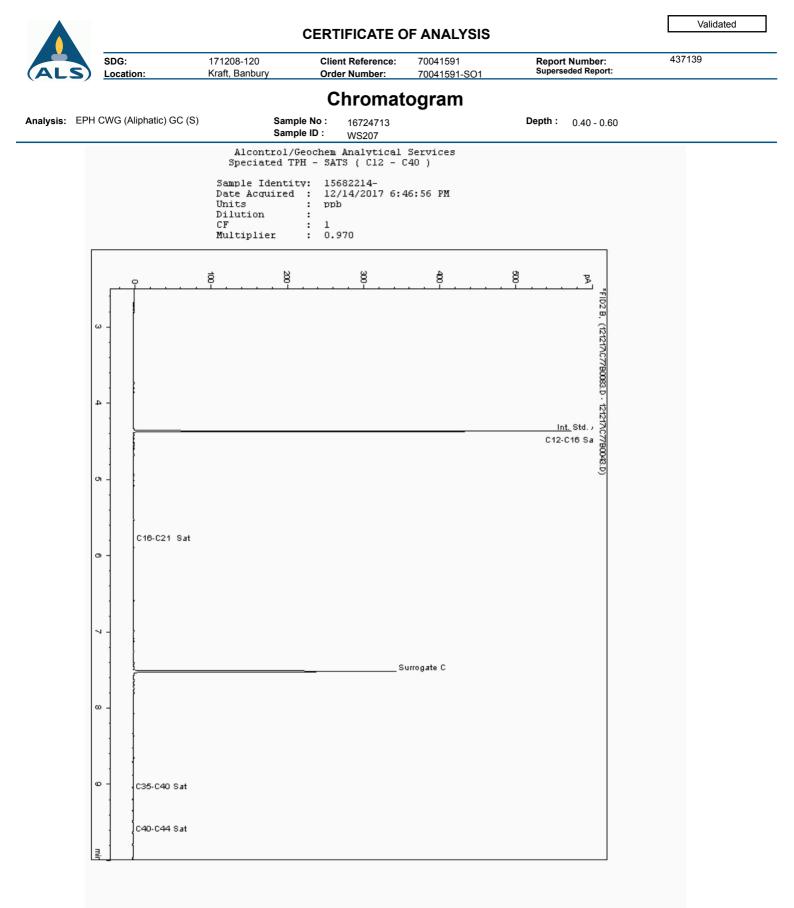
Order Number:

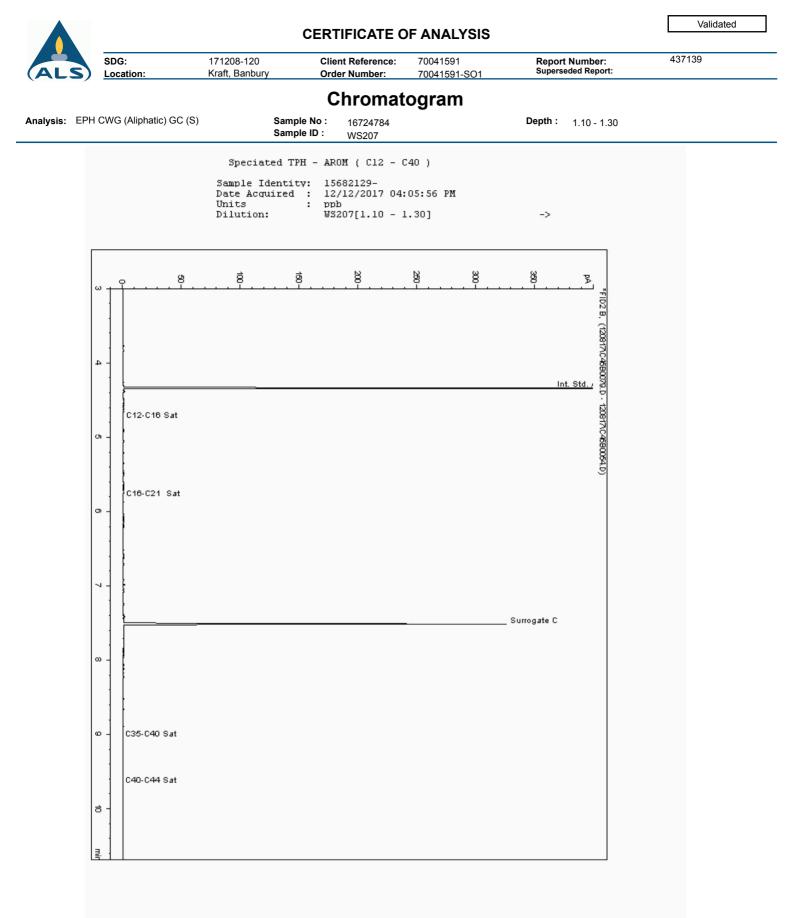
Method No	Reference	Description
PM001		Preparation of Samples for Metals Analysis
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM132	In - house Method	ELTRA CS800 Operators Guide
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM151	Method 3500D, AWWA/APHA, 20th Ed., 1999	Determination of Hexavalent Chromium using Kone analyser
TM157	HP 6890 Gas Chromatograph (GC) system and HP 5973 Mass Selective Detector (MSD).	Determination of SVOC in Soils by GC-MS extracted by sonication in DCM/Acetone
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
TM218	Determination of PAH by GCMS Microwave extraction	The determination of PAH in soil samples by microwave extraction and GC-MS
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer

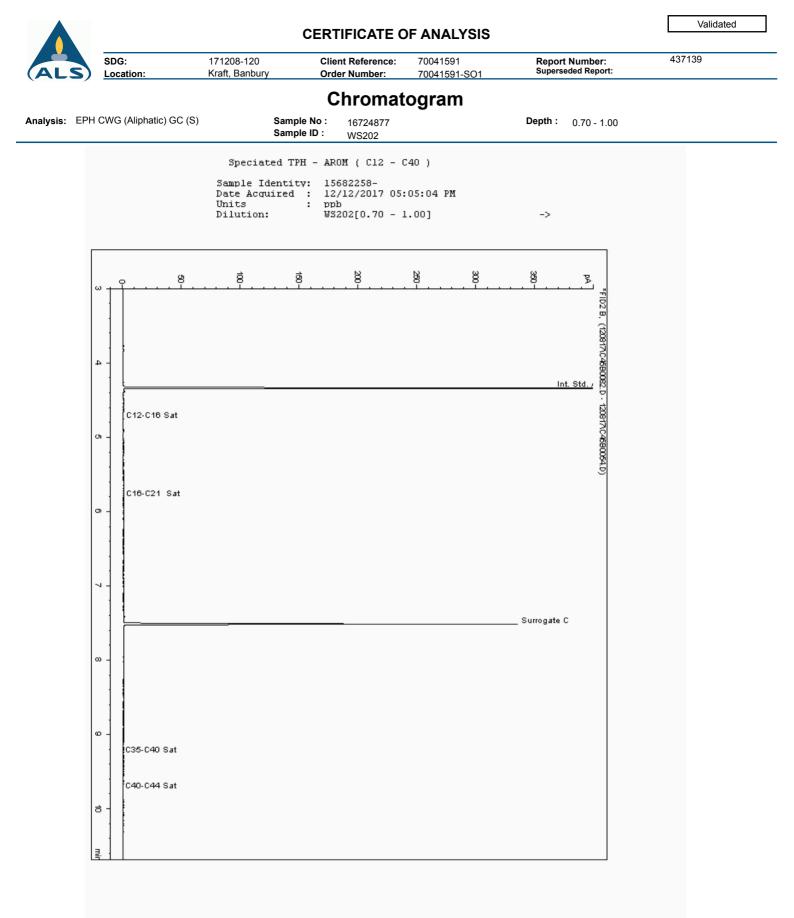
NA = not applicable.

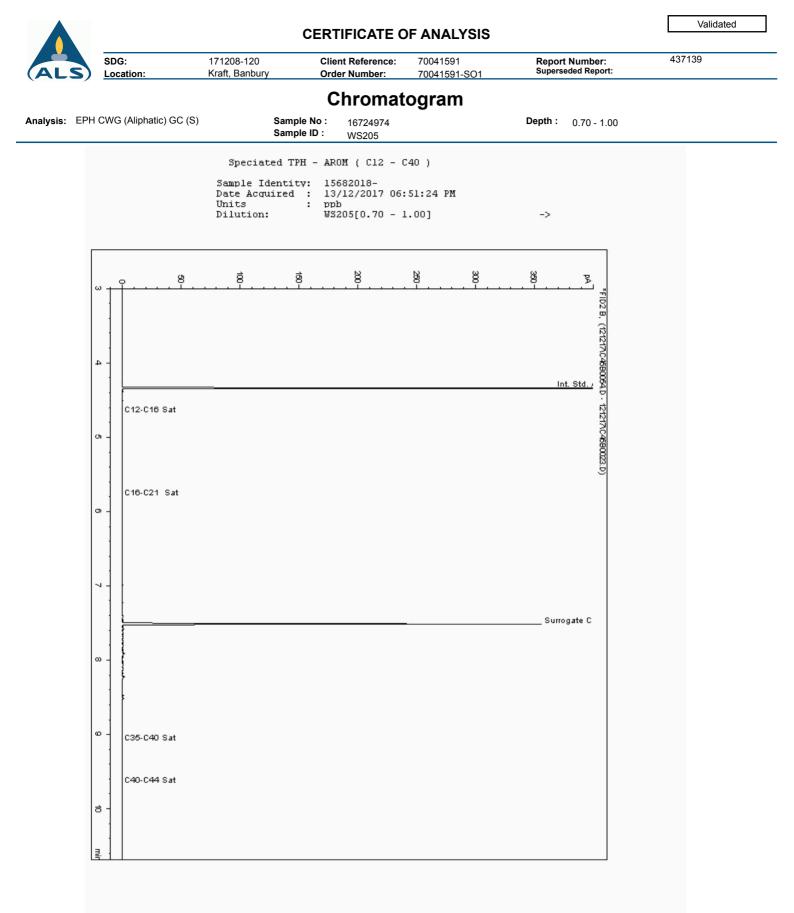
Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

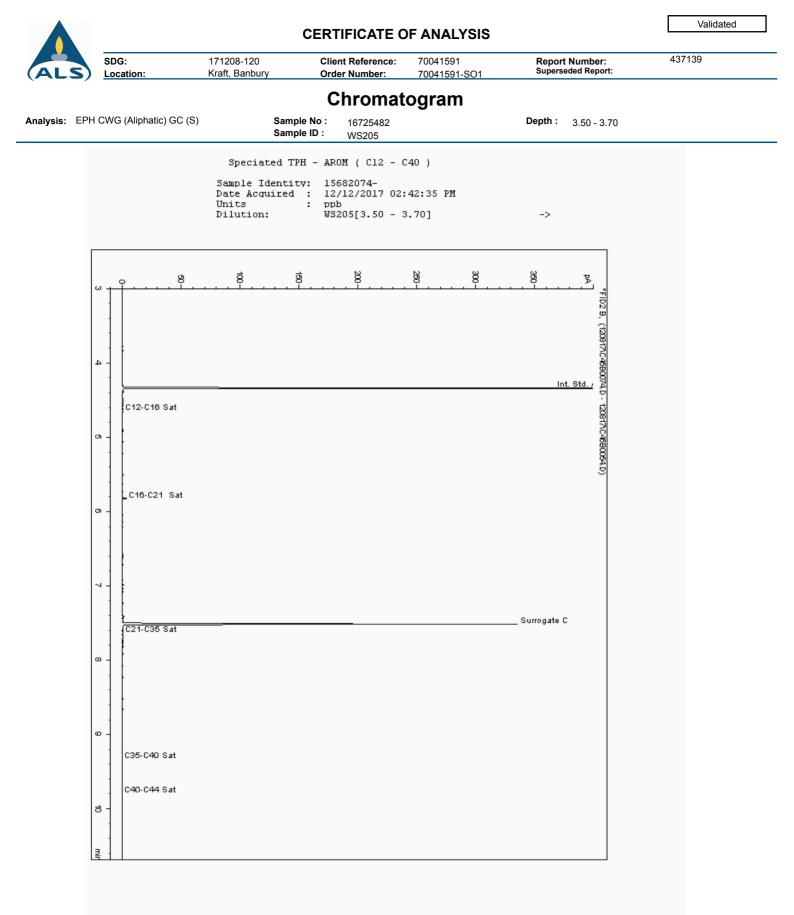
Kraft, Banbury

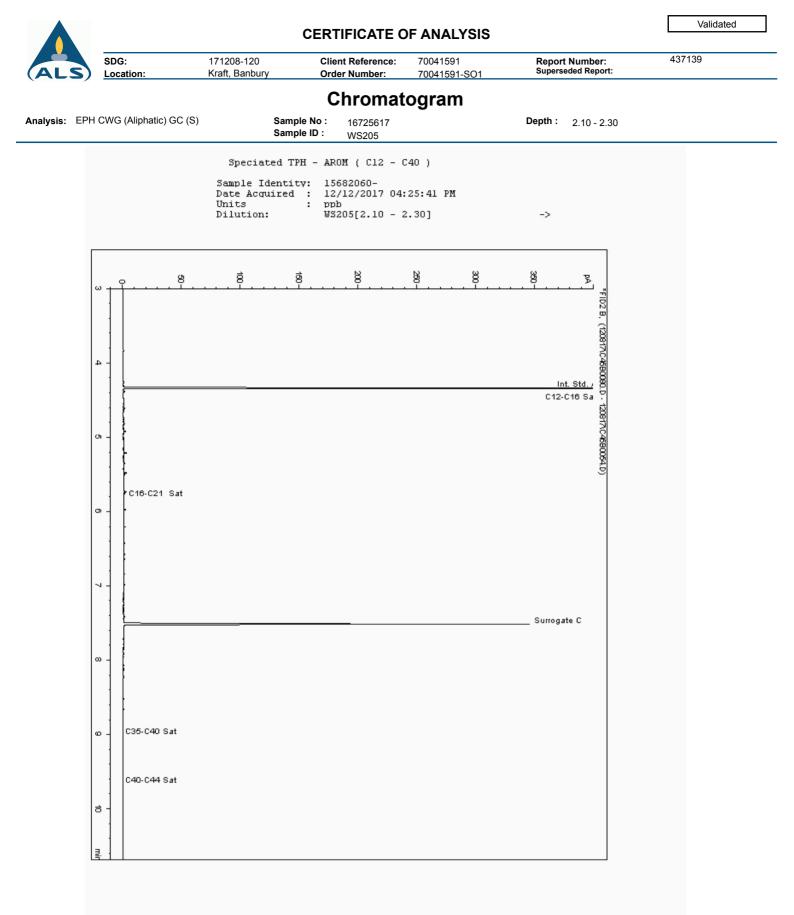

Validated

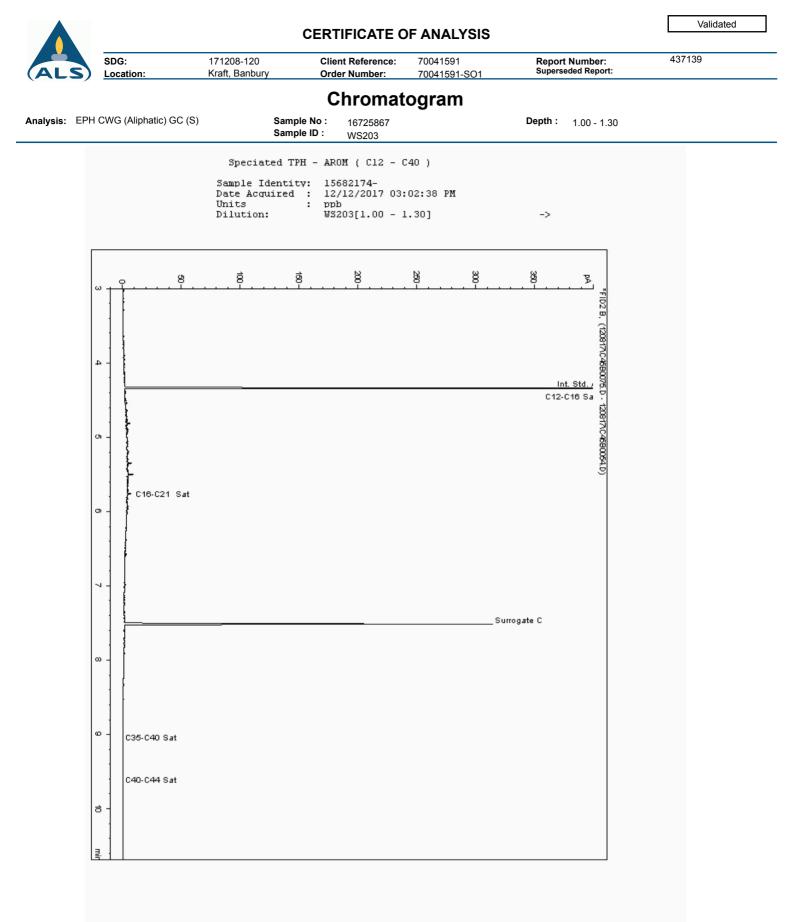

 SDG:
 171208-120
 Client Reference:
 70041591
 Report Number:
 437139

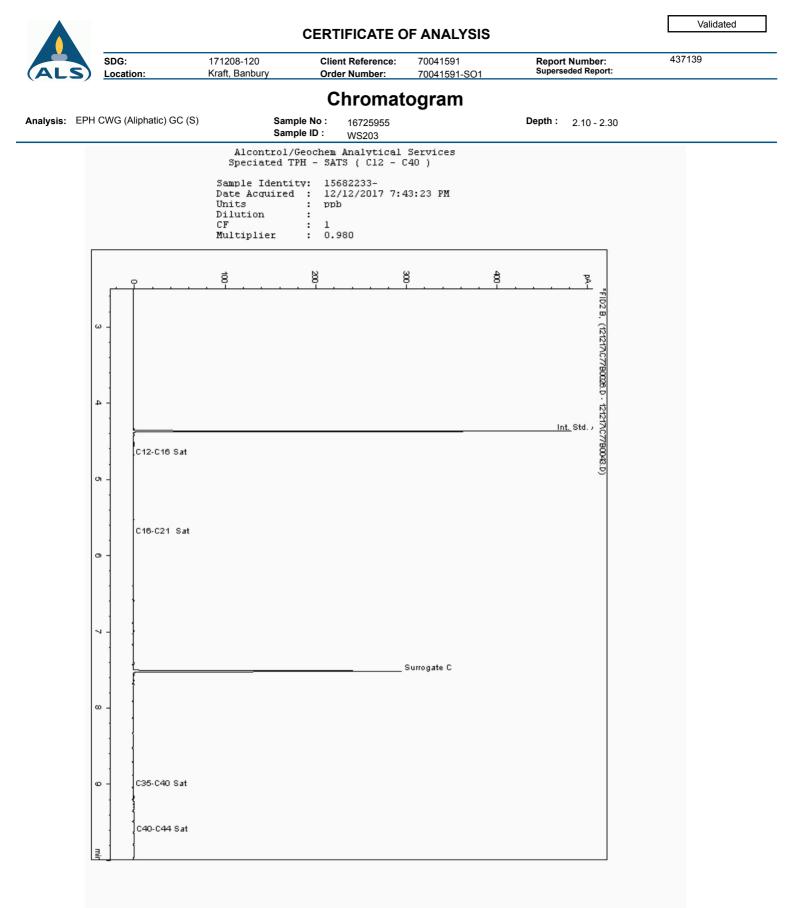

 Location:
 Kraft, Banbury
 Order Number:
 70041591-SO1
 Superseded Report:
 437139

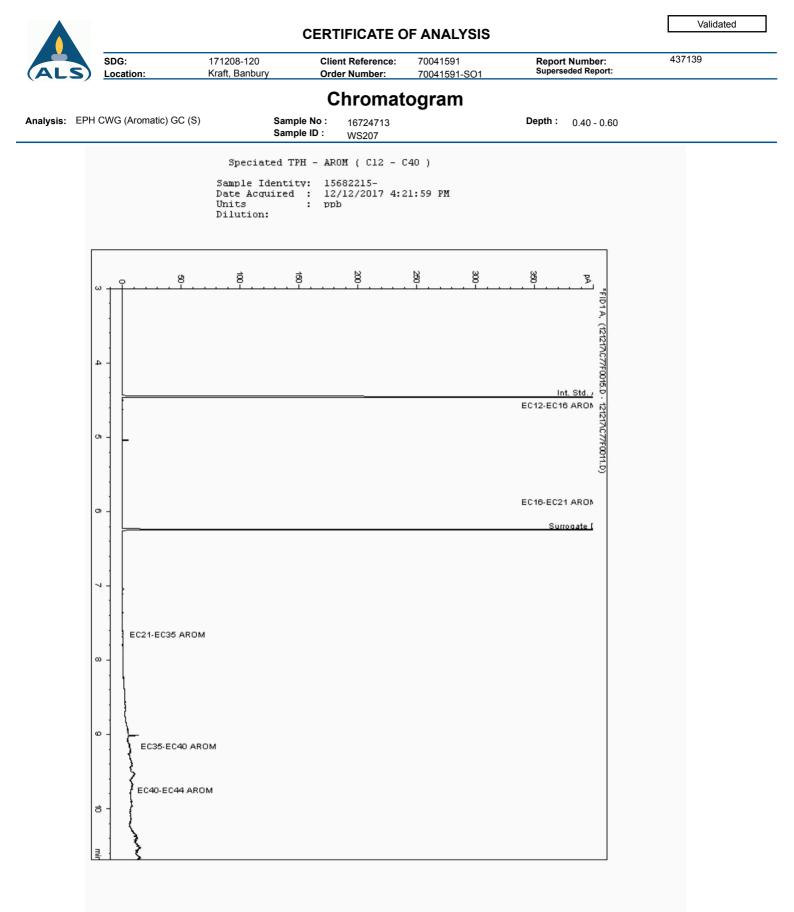

Test Completion Dates

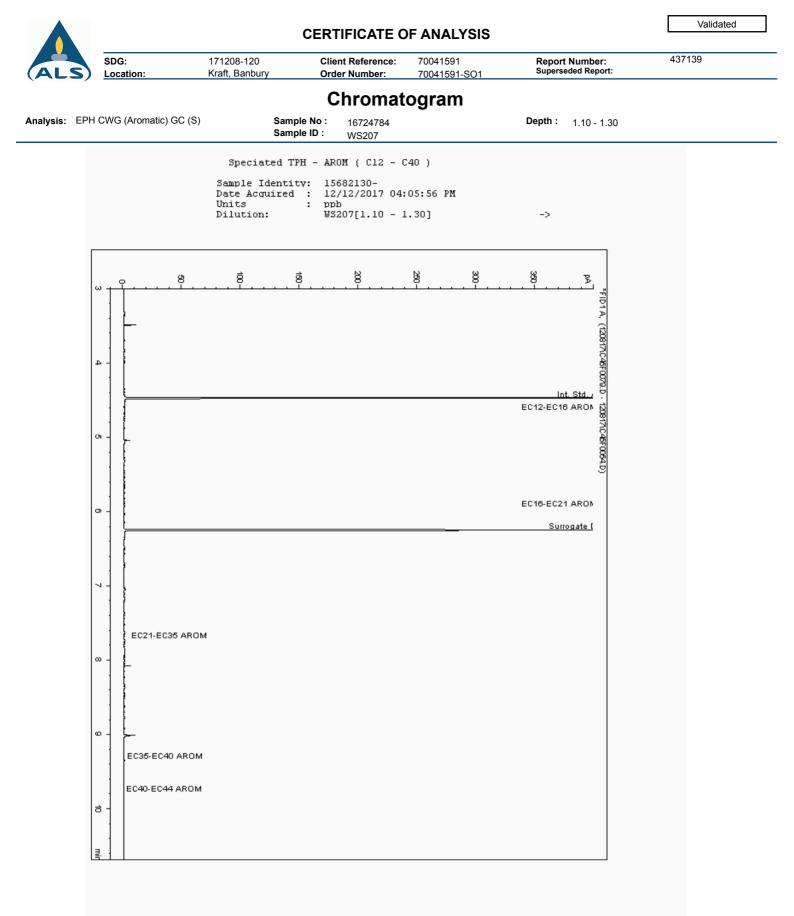

Lab Sample No(s)	16719032	16719037	16718981	16719014	16718922	16718930	16718937	16718949	16718957	16719003
Customer Sample Ref.	WS202	WS202	WS203	WS203	WS205	WS205	WS205	WS207	WS207	W\$207
AGS Ref.	ES									
Depth	0.00 - 0.10	0.70 - 1.00	1.00 - 1.30	2.10 - 2.30	0.70 - 1.00	2.10 - 2.30	3.50 - 3.70	0.00 - 0.20	1.10 - 1.30	0.40 - 0.60
Туре	Soil/Solid (S)									
Asbestos ID in Solid Samples	15-Dec-2017	15-Dec-2017	15-Dec-2017		15-Dec-2017	15-Dec-2017		15-Dec-2017	15-Dec-2017	15-Dec-2017
Boron Water Soluble	18-Dec-2017	14-Dec-2017	18-Dec-2017		18-Dec-2017	14-Dec-2017		14-Dec-2017	14-Dec-2017	14-Dec-2017
EPH CWG (Aliphatic) GC (S)		12-Dec-2017	12-Dec-2017	15-Dec-2017	13-Dec-2017	12-Dec-2017	12-Dec-2017		12-Dec-2017	15-Dec-2017
EPH CWG (Aromatic) GC (S)		12-Dec-2017	12-Dec-2017	15-Dec-2017	13-Dec-2017	12-Dec-2017	12-Dec-2017		12-Dec-2017	15-Dec-2017
GRO by GC-FID (S)		13-Dec-2017	13-Dec-2017	13-Dec-2017	13-Dec-2017	13-Dec-2017	13-Dec-2017		13-Dec-2017	13-Dec-2017
Hexavalent Chromium (s)	15-Dec-2017	15-Dec-2017	14-Dec-2017		15-Dec-2017	14-Dec-2017		15-Dec-2017	14-Dec-2017	14-Dec-2017
Metals in solid samples by OES	15-Dec-2017	15-Dec-2017	15-Dec-2017		15-Dec-2017	15-Dec-2017		15-Dec-2017	15-Dec-2017	15-Dec-2017
PAH by GCMS		14-Dec-2017	14-Dec-2017	14-Dec-2017	15-Dec-2017	15-Dec-2017	14-Dec-2017		14-Dec-2017	14-Dec-2017
pH		13-Dec-2017	14-Dec-2017	12-Dec-2017	14-Dec-2017	14-Dec-2017	12-Dec-2017		14-Dec-2017	14-Dec-2017
Sample description	09-Dec-2017									
Semi Volatile Organic Compounds			13-Dec-2017			13-Dec-2017				
Total Organic Carbon	12-Dec-2017	14-Dec-2017	12-Dec-2017	12-Dec-2017	14-Dec-2017	14-Dec-2017	12-Dec-2017	13-Dec-2017	13-Dec-2017	13-Dec-2017
TPH CWG GC (S)		13-Dec-2017	13-Dec-2017	15-Dec-2017	13-Dec-2017	13-Dec-2017	13-Dec-2017		13-Dec-2017	15-Dec-2017
VOC MS (S)		13-Dec-2017	13-Dec-2017	13-Dec-2017	13-Dec-2017	13-Dec-2017	13-Dec-2017		13-Dec-2017	13-Dec-2017

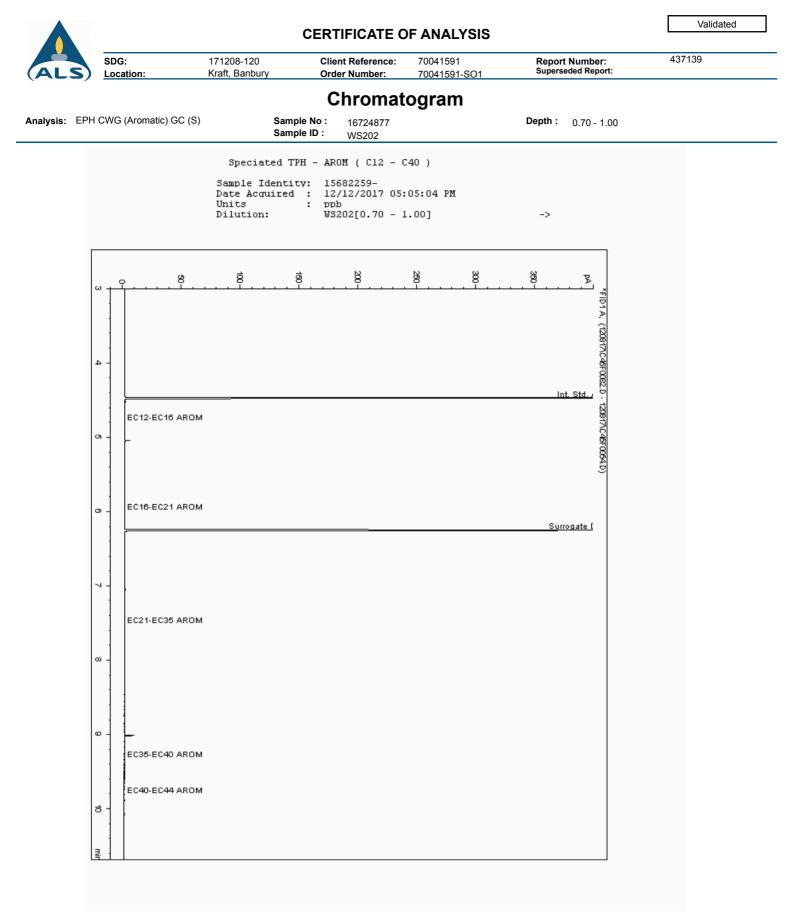


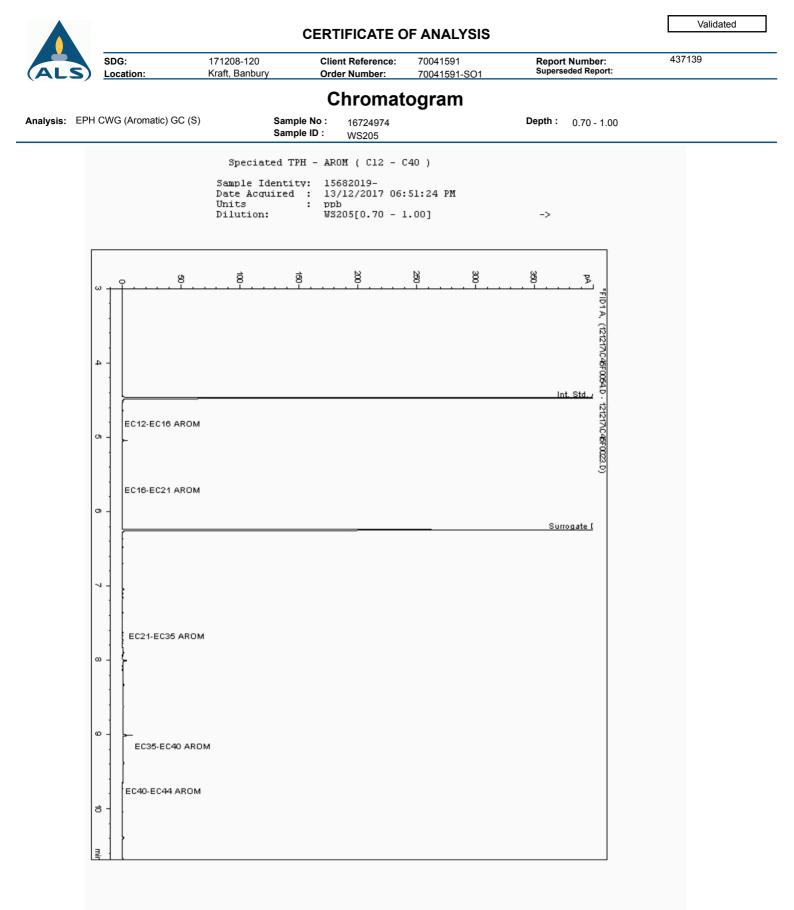


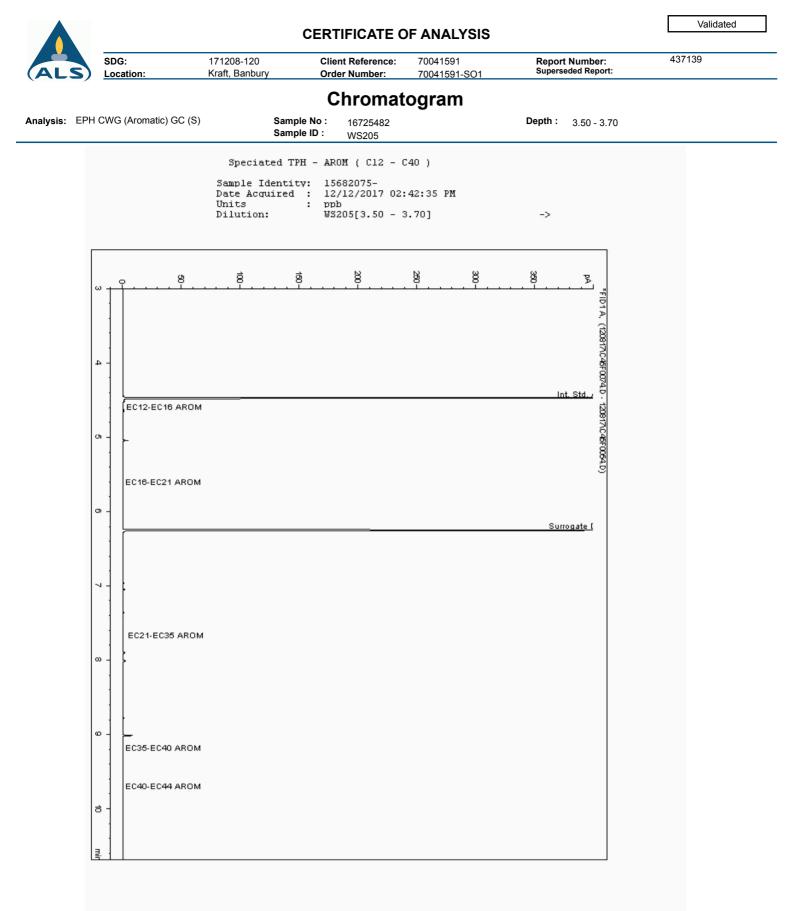


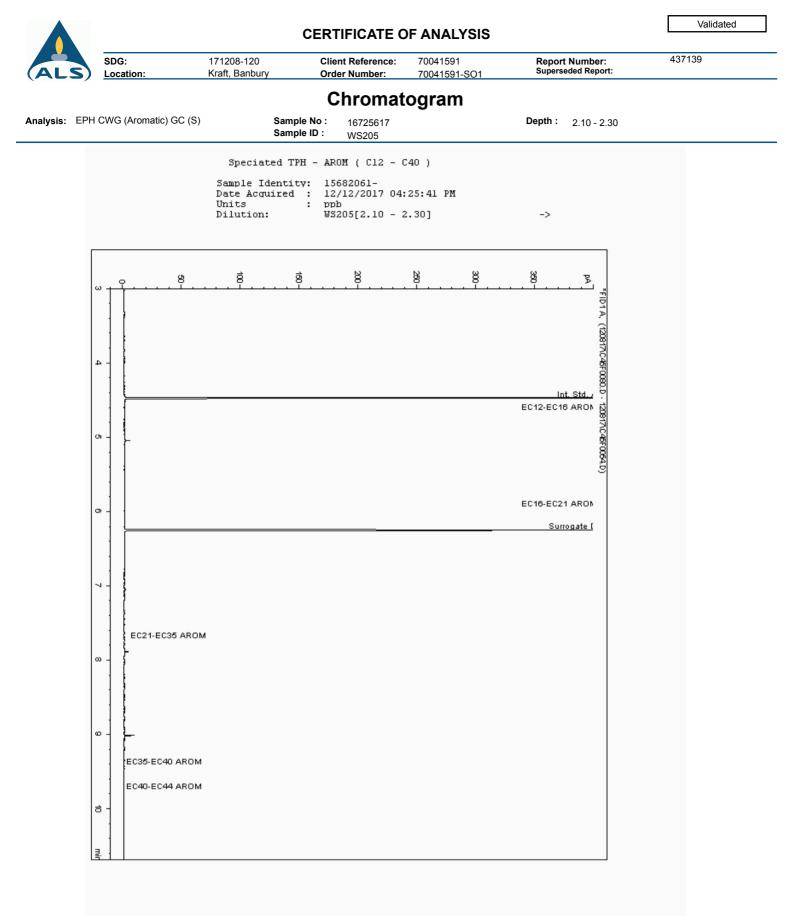


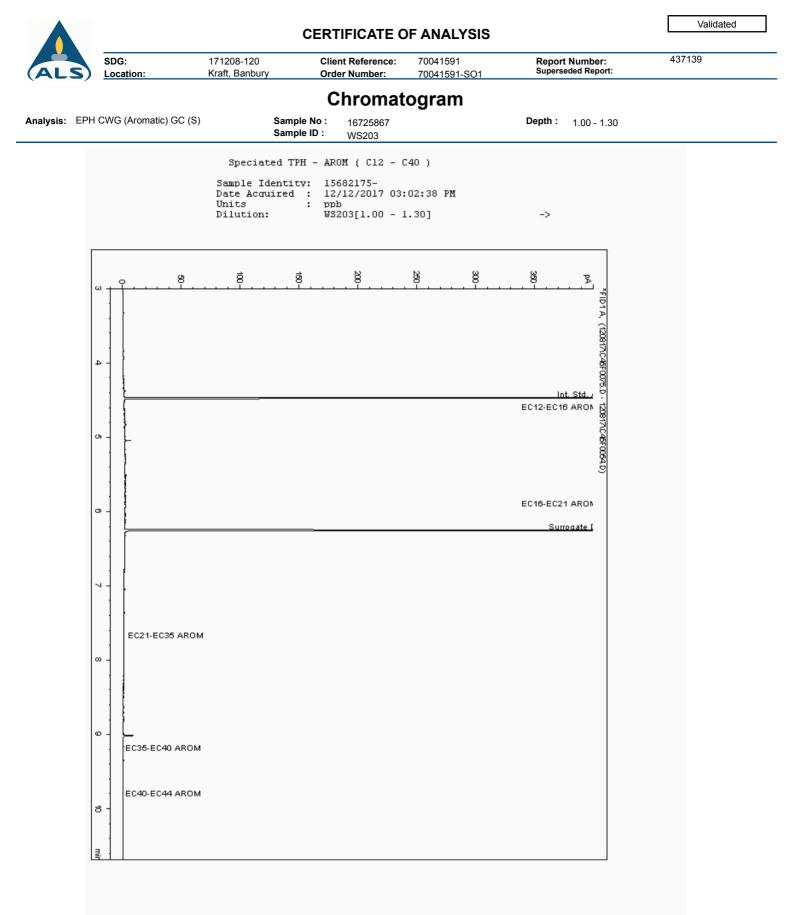


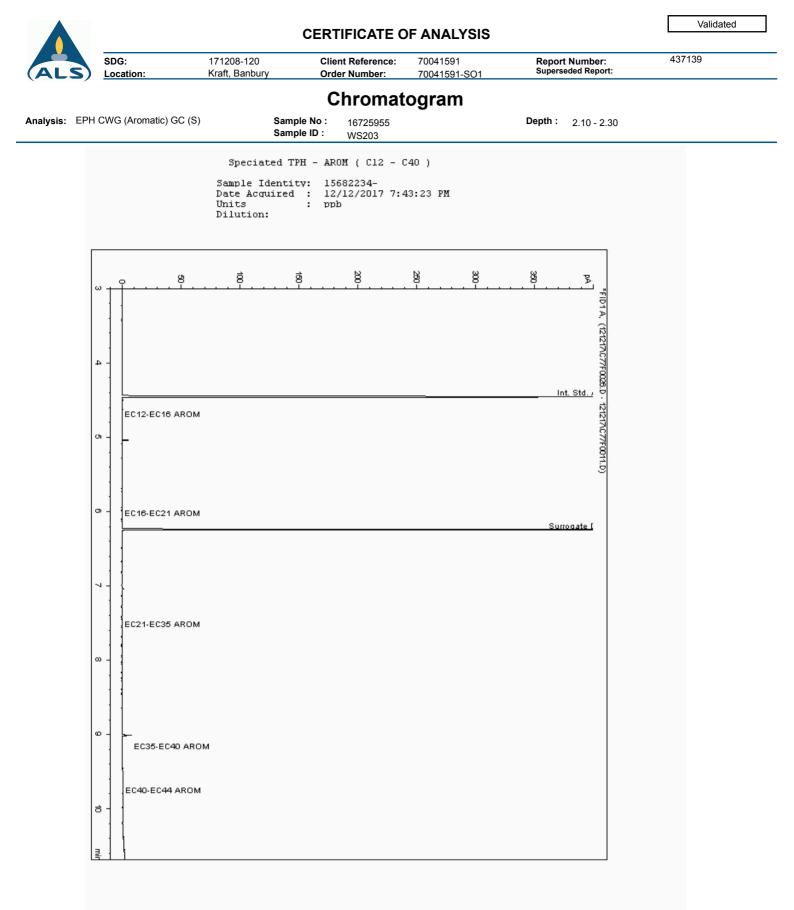


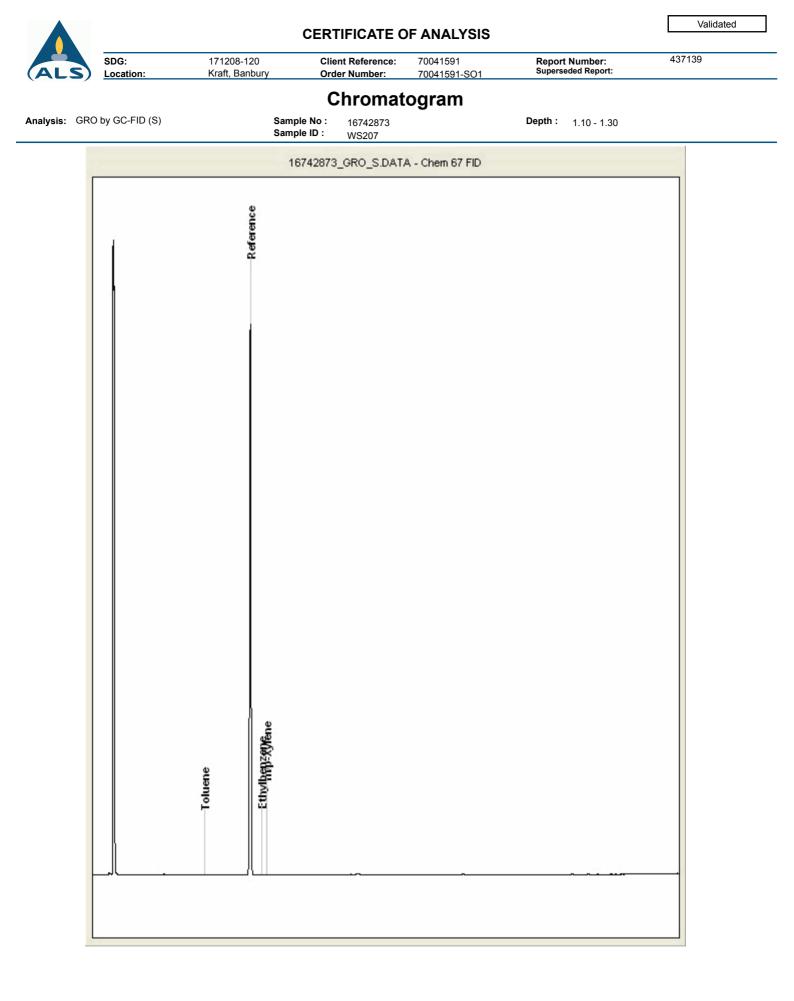


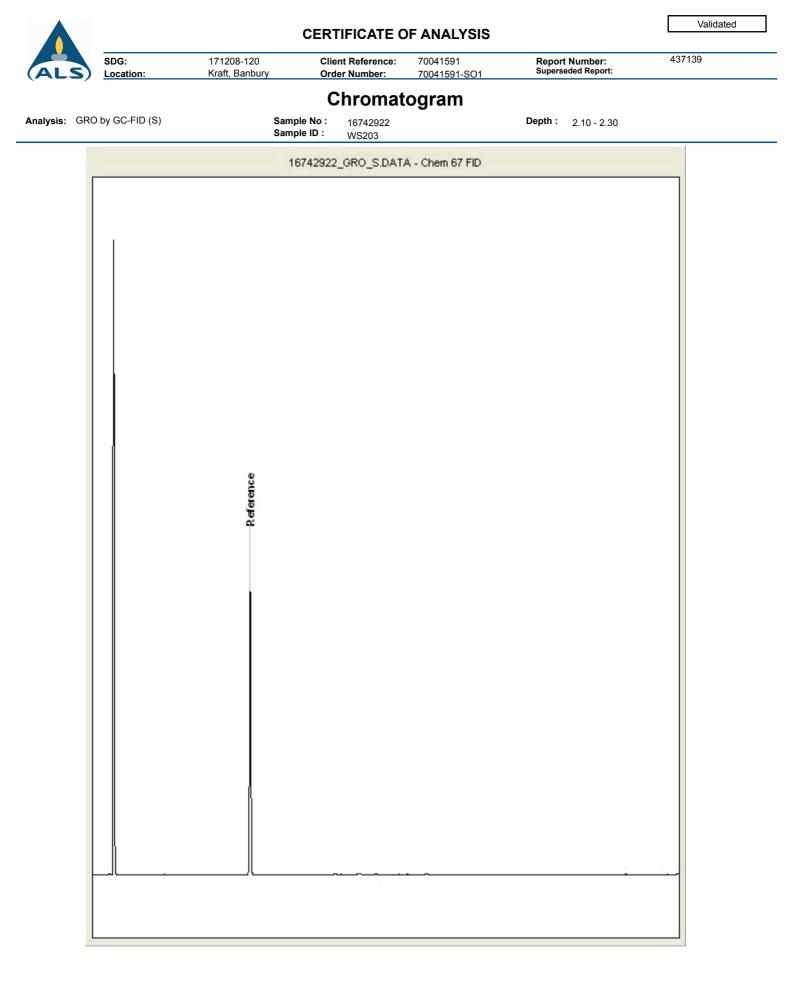


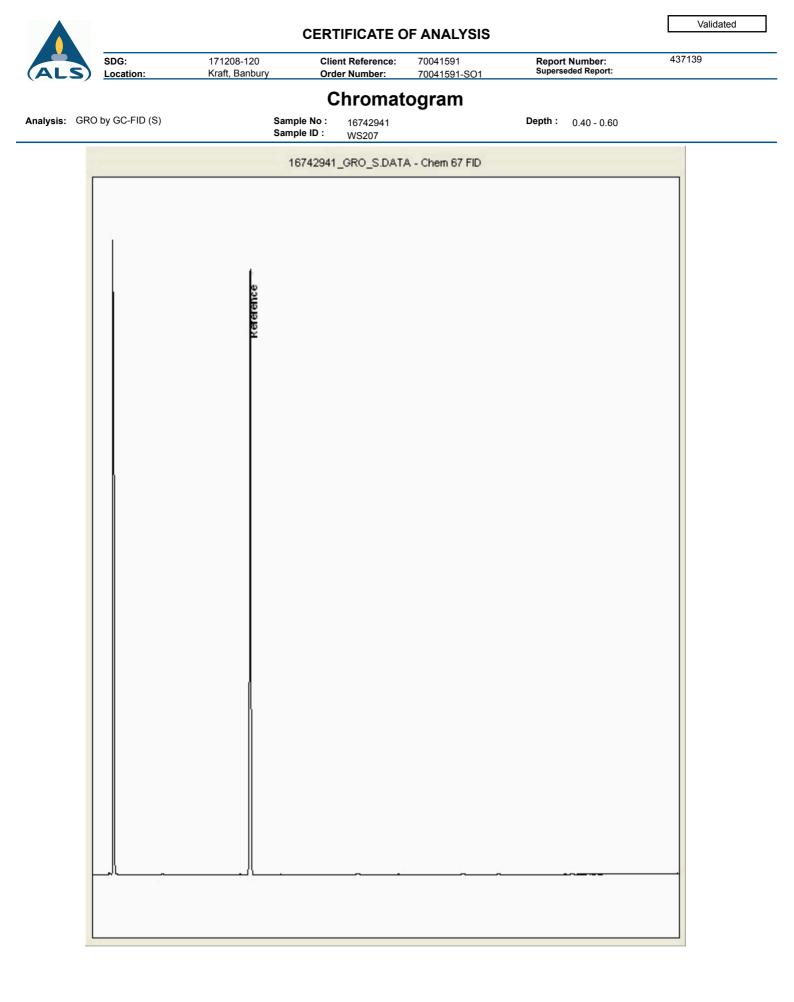


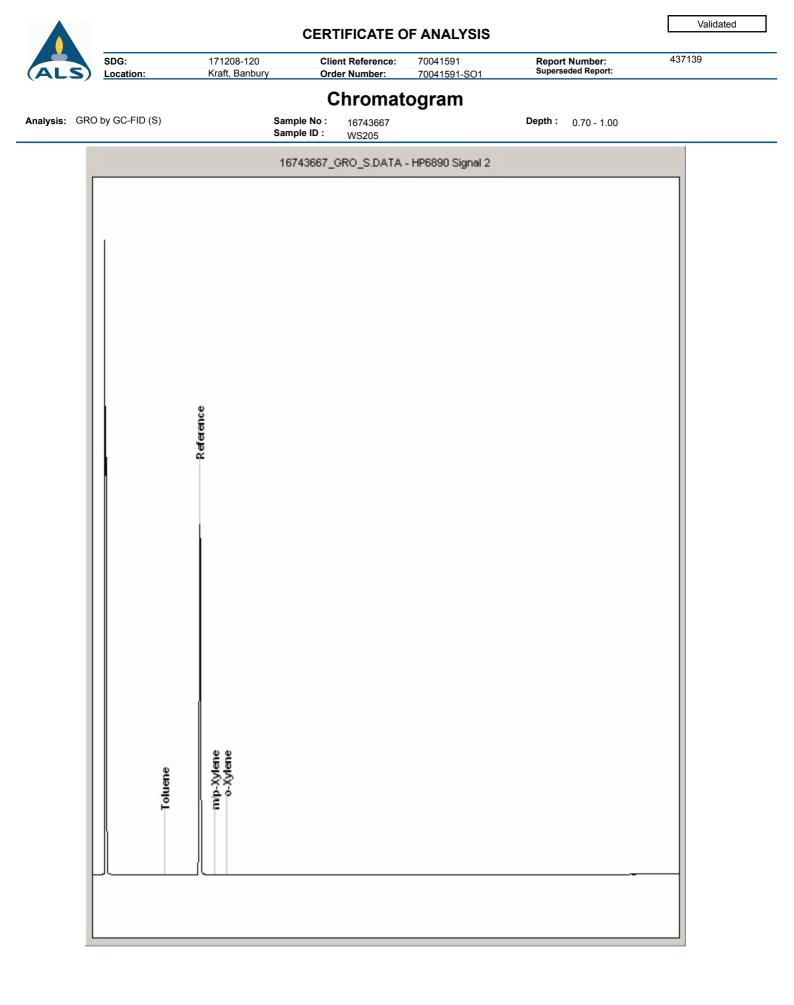


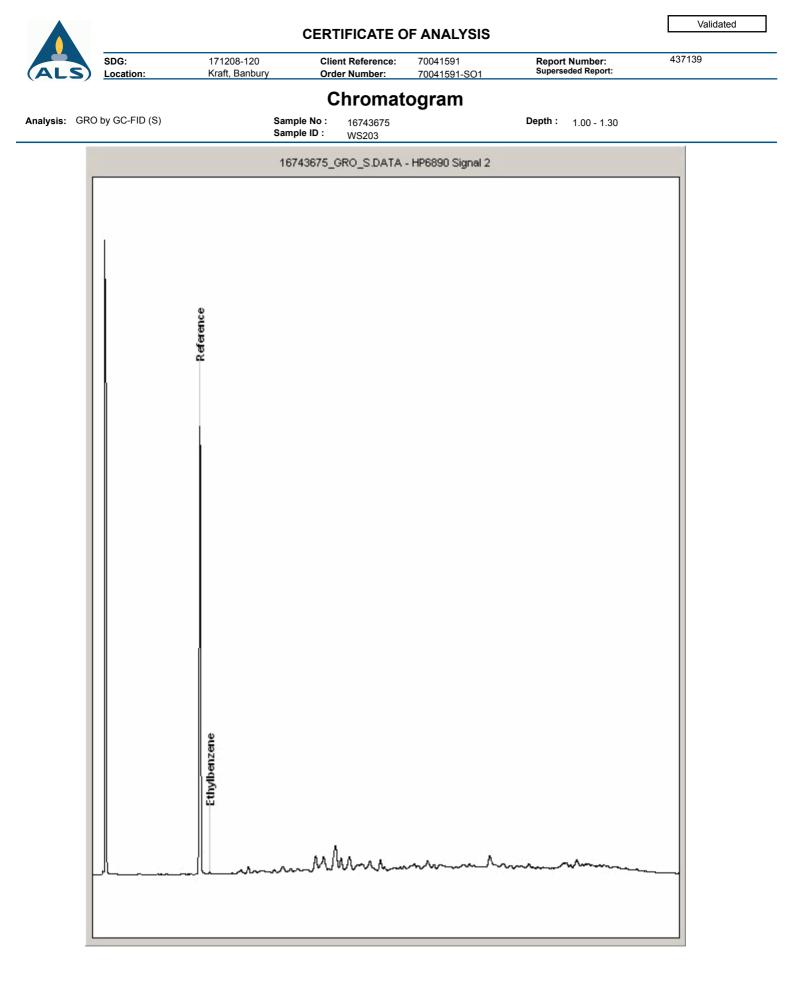


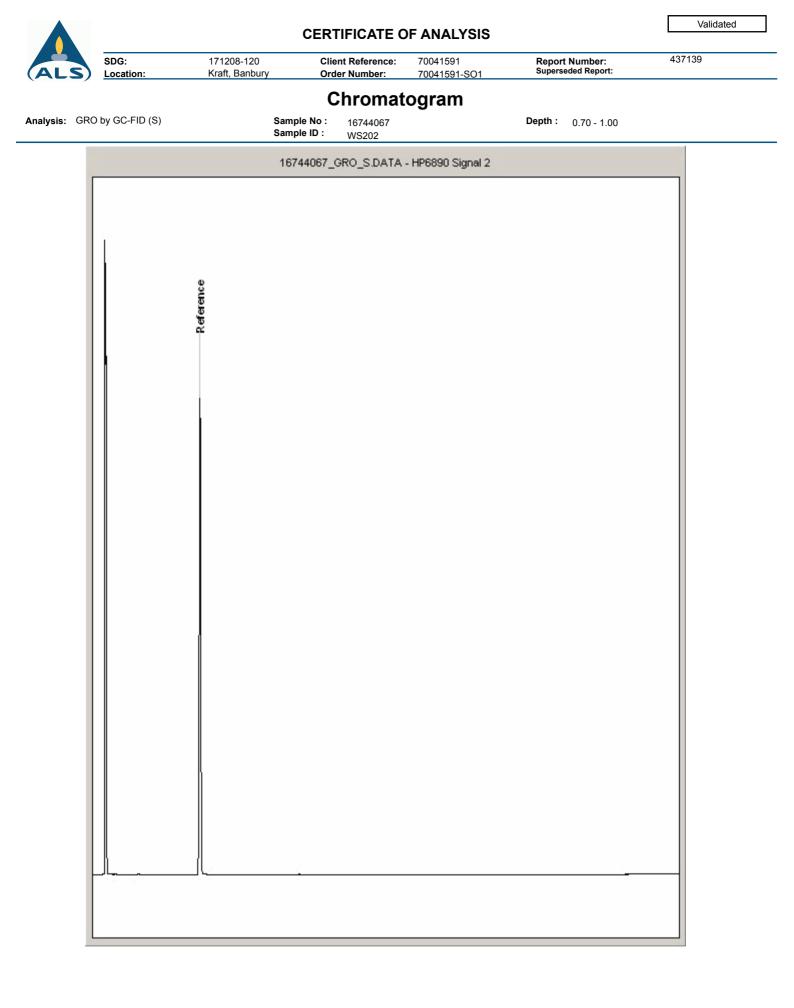












			CERTIFICATE C	OF ANALYSIS		Validated
ALS)	SDG: Location:	171208-120 Kraft, Banbury	Client Reference: Order Number:	70041591 70041591-SO1	Report Number: Superseded Report:	437139
			Chromat			
lysis: GRC	by GC-FID (S)	Samp Samp	ole No : 16744082 ole ID : WS205	-	Depth : 3.50 - 3.70	
1	(167	44082_GRO_S.DATA	- HP6890 Signal 2		
ſ						
	Ì	ee				
		Reference				
		<u> </u>				
ŀ			-			
L						

SDG: Location:	171208-120 Kraft, Banbury	Client Reference: Order Number:	70041591 70041591-SO1	Report Number: Superseded Report:	437139

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All sumples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment . Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

14. **Product analyses** - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-lsopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.
A 1	1

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name		
Chrysof le	White Asbestos		
Amosite	Brow n Asbestos		
Cro ci dolite	Blue Asbe stos		
Fibrous Act nolite	-		
Fib to us Anthop hyll ite	-		
Fibrous Tremol ite	-		

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

WSP PB MLN The Victoria 150-182 The Quays Salford Manchester Lancashire M50 3SP

Attention: Stephen Jones

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 03 January 2018 H_WSP_MAN 171219-19 70041591 Kraft, Banbury 438677

We received 4 samples on Tuesday December 19, 2017 and 3 of these samples were scheduled for analysis which was completed on Wednesday January 03, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager

ALS Environmental is part of ALS Life Sciences Limited. ALS Life Sciences Limited registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

						Validated
			CERTIFICATE O	F ANALI SIS		
	SDG:	171219-19	Client Reference:	70041591	Report Number:	438677
(ALS)	Location:	Kraft, Banbury	Order Number:	6316510	Superseded Report:	

Received Sample Overview

Lab Sample No(s) 16785921	Customer Sample Ref. NO ID	AGS Ref.	Depth (m)	Sampled Date
16785900	WS202	EW	0.00 - 0.00	15/12/2017
16785908	WS205	EW	0.00 - 0.00	15/12/2017
16785914	WS207	EW	0.00 - 0.00	15/12/2017

Maximum Sample/Coolbox Temperature (°C) :

6.4

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of $(5\pm3)^\circ$ C.

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of $(5\pm3)^{\circ}$ C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

Report Number: Superseded Report: 171219-19 Client Reference: 70041591 438677 SDG: Kraft, Banbury Location: Order Number: 6316510 **Results Legend** 16785900 16785908 16785914 Lab Sample No(s) Test Х No Determination N Possible Customer WS202 WS207 WS205 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid Ē Ш Ш GW - Ground Water AGS Reference SW - Surface Water LE - Land Leachate PL - Prepared Leachate 0.00 -0.00 0.00 PR - Process Water SA - Saline Water Depth (m) - 0.00 - 0.00 TE - Trade Effluent - 0.00 TS - Treated Sewage US - Untreated Sewage 1000ml glass bottle (ALE220) Vial (ALE297) 1000ml glass bottle (ALE220) 1000ml glass bottle (ALE220) RE - Recreational Water Vial (ALE297) Vial (ALE297) 1lplastic (ALE221) 1lplastic (ALE221) 1lplastic (ALE221) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid Container SL - Sludge G - Gas OTH - Other GW GW GW Sample Type GW GW GW GW GW GW Dissolved Metals by ICP-MS All NDPs: 0 Tests: 3 Х Х Х EPH CWG (Aliphatic) Aqueous GC All NDPs: 0 (W) Tests: 3 Х Х Х EPH CWG (Aromatic) Aqueous GC All NDPs: 0 (W) Tests: 3 х Х Х GRO by GC-FID (W) All NDPs: 0 Tests: 3 Х Х Х Low Level Hexavalent Chromium All NDPs: 0 (w) Tests: 3 Х Х Х Mercury Dissolved All NDPs: 0 Tests: 3 Х Х Х PAH Spec MS - Aqueous (W) All NDPs: 0 Tests: 3 Х Х Х pH Value All NDPs: 0 Tests: 3 Х Х Х SVOC MS (W) - Aqueous All NDPs: 0 Tests: 2 Х Х TPH CWG (W) All NDPs: 0 Tests: 3 Х Х Х VOC MS (W) All NDPs: 0 Tests: 3 Х Х Х

SDG:		171219-19			0041591	Report Number: Superseded Report:	438677
(ALS) Location:	:	Kraft, Banbur	y Order	Number: 6	316510	Superseded Report.	
Results Legend	C	ustomer Sample Ref.	WS202	WS205	WS207		
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate stand	lard to	Depth (m) Sample Type Date Sampled Sampled Time	0.00 - 0.00 Ground Water (GW) 15/12/2017	0.00 - 0.00 Ground Water (GW) 15/12/2017	0.00 - 0.00 Ground Water (GW) 15/12/2017		
check the efficiency of the method results of individual compounds v samples aren't corrected for the re (F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)	d. The within	Date Received SDG Ref Lab Sample No.(s) AGS Reference	19/12/2017 171219-19 16785900 EW	19/12/2017 171219-19 16785908 EW	19/12/2017 171219-19 16785914 EW		
Component Arsenic (diss.filt)	LOD/Units <0.5 μg/l	Method TM152	1.33	1.19	0.716		
Barium (diss.filt)	<0.2 µg/l	TM152	47.1	# 10.6			
	<0.1 µg/l	TM152	<0.1	<0.1			
Beryllium (diss.filt)			#	#	: #		
Boron (diss.filt)	<5 µg/l	TM152	49.1 #	45.2 #	68.3 #		
Cadmium (diss.filt)	<0.08 µg/l	TM152	<0.08 #	<0.08 #	<0.08 #		
Chromium (diss.filt)	<1 µg/l	TM152	<1 #	<1	<1		
Copper (diss.filt)	<0.3 µg/l	TM152	<0.3	<0.3	<0.3		
Lead (diss.filt)	<0.2 µg/l	TM152	* <0.2	1.28	<0.2		
Nickel (diss.filt)	<0.4 µg/l	TM152	# 5.49	# 0.584	1.62		
Selenium (diss.filt)	<0.5 µg/l	TM152	# 43.1	1.46	# # 11.6		
Vanadium (diss.filt)	<1 µg/l	TM152	# 3.19	<u></u>	# # <1		
Zinc (diss.filt)	<1 µg/l	TM152	# 2.34	/	# # 1.52		
Mercury (diss.filt)	<0.01 µg/l	TM183	# <0.01	<i></i> <0.01			
			@#	@‡	ŧ @#		
pH	<1 pH Units	TM256	7.3 #	7.46			
Low Level Hexavalent Chromium	<3 µg/l	TM331	<3	<3	<3		

SDG: Location		171219-19 Kraft, Banbur		t Reference: r Number:	70041591	Report Number: Superseded Report:	438677
		Mail, DàiiDUl	y Urde	r Number:	6316510		
H Spec MS - Aqueou Results Legend	IS (W)	Customer Sample Ref.	WS202	WS205	WS207	T	
# ISO17025 accredited. M mCERTS accredited.	Ĭ		110202	113203	110207		
aq Aqueous / settled sample. liss.filt Dissolved / filtered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00		
tunfilt Total / unfiltered sample. * Subcontracted test.		Sample Type	Ground Water (GW) 15/12/2017	Ground Water (GW) 15/12/2017	Ground Water (GW) 15/12/2017		
** % recovery of the surrogate stand		Date Sampled Sampled Time	15/12/2017		15/12/2017		
check the efficiency of the methor results of individual compounds		Date Received	19/12/2017	19/12/2017	19/12/2017		
samples aren't corrected for the r		SDG Ref Lab Sample No.(s)	171219-19 16785900	171219-19 16785908	171219-19 16785914		
(F) Trigger breach confirmed -5&+§@ Sample deviation (see appendix)		AGS Reference	EW	EW	EW		
Component	LOD/Units	Method					
laphthalene (aq)	<0.01 µg/l	TM178	<0.01	<0.01	<0.01		
cenaphthene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005		
Acenaphthylene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005		
luoranthene (aq)	<0.005 µg/l	TM178	0.0146	<0.005	<0.005		
Anthracene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005		
Phenanthrene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005		
	<0.005 ····*	TM4170	<0.00E	20.005	-0.005		
Fluorene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005		
Chrysene (aq)	<0.005 µg/l	TM178	0.00953	<0.005	<0.005		
^p yrene (aq)	<0.005 µg/l	TM178	0.0237	<0.005	<0.005		
Benzo(a)anthracene (aq)	<0.005 µg/l	TM178	0.00724	<0.005	<0.005		
Benzo(b)fluoranthene (aq)	<0.005 µg/l	TM178	0.0185	<0.005	<0.005		
Benzo(k)fluoranthene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005		
Benzo(a)pyrene (aq)	<0.002 µg/l	TM178	0.00805	<0.002	<0.002		
Dibenzo(a,h)anthracene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005		
Benzo(g,h,i)perylene (aq)	<0.005 µg/l	TM178	0.0101	<0.005	<0.005		
ndeno(1,2,3-cd)pyrene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	<0.005		
PAH, Total Detected USEPA 16 aq)	<0.082 µg/l	TM178	0.0918	<0.082	<0.082		
	+						

SDB: 71/21 PB Clinit Reference: 70/31 PB Report Number: 200/31 SUB: Clinit Reference: 70/41 PB Reference: 70/41 PB Report Number: 70/41 PB SUB: Clinit Reference: 70/41 PB Reference: 70/41 PB Report Number: 70/41 PB SUB: SUB				CERTI	FICATEO		313	
Image: constraint of the set of								
Image: constraint of the set of	SVOC MS (W) - Aqueous	S						
Image: Normal control with any	Results Legend # ISO17025 accredited.		Customer Sample Ref.	WS202	WS205			
	aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Ground Water (GW)	Ground Water (G	v)		
Image and the second	check the efficiency of the method	. The		19/12/2017				
Compare (a) Doth(b) Market Market <thm< td=""><td>samples aren't corrected for the re</td><td></td><td></td><td>16785900</td><td>16785908</td><td></td><td></td><td></td></thm<>	samples aren't corrected for the re			16785900	16785908			
12.4 Frideboorsame (a) <1 μ <1		LOD/Units		EW	EW			
1.2020blockstesse (a) $< 1 \ (a)$ $< 1 \ (a)$ $< 1 \ (a)$ $< 1 \ (a)$ $< 0 \$			TM176		<1			
13.040000000 (a) -1 (a) 1.076 0.07 <td< td=""><td>1,2-Dichlorobenzene (aq)</td><td><1 µg/l</td><td>TM176</td><td><1</td><td><1</td><td></td><td></td><td></td></td<>	1,2-Dichlorobenzene (aq)	<1 µg/l	TM176	<1	<1			
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	1,3-Dichlorobenzene (aq)	<1 µg/l	TM176	<1	<1			
24.5 molegnand (a) <1 (a)	1,4-Dichlorobenzene (aq)	<1 µg/l	TM176		<1	@#		
24.6 Tachtoophend (ag) </td <td>2,4,5-Trichlorophenol (aq)</td> <td><1 µg/l</td> <td>TM176</td> <td><1</td> <td><1</td> <td></td> <td></td> <td></td>	2,4,5-Trichlorophenol (aq)	<1 µg/l	TM176	<1	<1			
2.4-Bohloophenol (aq) <1 µg1 TM176 <1 α	2,4,6-Trichlorophenol (aq)	<1 µg/l	TM176	<1	<1			
2.4Dmshtyphanol (aq) cf upl (p) TM176 cf (p) cf (p) cf (p) cf cf< cf< cf cf< cf< <thc< td=""><td>2,4-Dichlorophenol (aq)</td><td><1 µg/l</td><td>TM176</td><td><1</td><td><1</td><td></td><td></td><td></td></thc<>	2,4-Dichlorophenol (aq)	<1 µg/l	TM176	<1	<1			
2.4-Dinitocluane (ac)	2,4-Dimethylphenol (aq)	<1 µg/l	TM176	<1	<1			
2.6 Dinitroluane (a) <1 µg1	2,4-Dinitrotoluene (aq)	<1 µg/l	TM176	<1	<1			
2-Choronsphthalane (a)<1 µg1TM176<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1	2,6-Dinitrotoluene (aq)	<1 µg/l	TM176	<1	<1			
2-Chorophenal (aq)<1 µglTM176<1<1 $(a) #$ <th< td=""><td>2-Chloronaphthalene (aq)</td><td><1 µg/l</td><td>TM176</td><td><1</td><td><1</td><td></td><td></td><td></td></th<>	2-Chloronaphthalene (aq)	<1 µg/l	TM176	<1	<1			
2-Metrylnaphfialene (aq)<1 µg1TM176<1<12-Metrylphenol (aq)<1 µg1	2-Chlorophenol (aq)	<1 µg/l	TM176	<1	<1			
2-Methylphenol (aq)<1 µg/lTM176<1<1<1 Q # Q #<	2-Methylnaphthalene (aq)	<1 µg/l	TM176	<1	<1			
2-Ntroaniline (aq)<1 up1TM176<1<1 $Q \#$	2-Methylphenol (aq)	<1 µg/l	TM176	<1	<1			
2-Nitrophenol (aq)<1 µg/lTM176<1<13-Nitrophenol (aq)<1 µg/l	2-Nitroaniline (aq)	<1 µg/l	TM176	<1	<1			
3-Nitroaniline (aq)<1 µg/lTM176<1 $@#$ <1 $@#$ <1 	2-Nitrophenol (aq)	<1 µg/l	TM176	<1	<1			
4-Bromophenylphenylphenylphenylphenol (aq) <1 µg/l	3-Nitroaniline (aq)	<1 µg/l	TM176	<1	<1			
4-Chloro-3-methylphenol (aq) <1 µg/l TM176 <1 $@#$	4-Bromophenylphenylether (aq)	<1 µg/l	TM176	<1	<1			
- $ -$	4-Chloro-3-methylphenol (aq)	<1 µg/l	TM176	<1	<1			
u = 1, 1, 2, 3, 3, 3, 4, 1, 2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	4-Chloroaniline (aq)	<1 µg/l	TM176	<1	<1			
u u				@#		@#		
u u <td>4-Methylphenol (aq)</td> <td><1 µg/l</td> <td></td> <td><1</td> <td></td> <td></td> <td></td> <td></td>	4-Methylphenol (aq)	<1 µg/l		<1				
4-Nitrophenol (aq)<1 µg/lTM176<1<1<1Azobenzene (aq)<1 µg/l	4-Nitroaniline (aq)	<1 µg/l	TM176		<1			
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	4-Nitrophenol (aq)	<1 µg/l	TM176		<1			
$ \begin{array}{ c c c c c c c } Acenaphthylene (aq) & <1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Azobenzene (aq)	<1 µg/l	TM176		<1	@#		
Acenaphthene (aq) <1 µg/l TM176 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Acenaphthylene (aq)	<1 µg/l	TM176	<1	<1			
Anthracene (aq) <1 µg/l TM176 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Acenaphthene (aq)	<1 µg/l		<1	<1			
bis(2-Chloroethyl)ether (aq) <1 µg/l TM176 <1 <1 @# ##	Anthracene (aq)	<1 µg/l	TM176	<1	<1			
bis(2-Chloroethoxy)methane <1 µg/l TM176 <1 <1	bis(2-Chloroethyl)ether (aq)	<1 µg/l	TM176	<1				
(aq) @ # @ #	(aq)		TM176	<1 @#				
bis(2-Ethylhexyl) phthalate (aq) <2 µg/l TM176 <2 <2 @# @# @#				<2 @#				
Butylbenzyl phthalate (aq) <1 μg/l TM176 <1 <1 @# @# @#	Butylbenzyl phthalate (aq)	<1 µg/l	TM176		<1	@#		

				CERTII	FICATE OI	FANALYSIS		Validated
A	SDG: Location:		171219-19 Kraft, Banbury		Reference: Number:	70041591 6316510	Report Number: Superseded Report:	438677
voc	MS (W) - Aqueou							
M aq diss.filt tot.unfilt * **	Results Legend ISO17025 accredited. MCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. Subcontracted test. % recovery of the surrogate standi check the efficiency of the method results of individual compounds w samples aren't corrected for the re	ard to . The ithin	Customer Sample Ref. Depth (m) Sample Type Date Sampled Sampled Time Date Received SDG Ref	WS202 0.00 - 0.00 Ground Water (GW) 15/12/2017 19/12/2017 17/12/9-19	WS205 0.00 - 0.00 Ground Water (GW 15/12/2017 19/12/2017 17/1219-19)		
(F)	Trigger breach confirmed Sample deviation (see appendix)	covery	Lab Sample No.(s) AGS Reference	16785900 EW	16785908 EW			
Compor		LOD/Units						
Benzo(a))anthracene (aq)	<1 µg/l	TM176	<1 @,#	<1	@#		
Benzo(b)	fluoranthene (aq)	<1 µg/l	TM176	<1 @#	<1	@#		
	fluoranthene (aq)	<1 µg/l	TM176	<1 @#		@#		
	pyrene (aq)	<1 µg/l	TM176	<1 @#		@#		
	h,i)perylene (aq)	<1 µg/l	TM176 TM176	<1 @#	<1	@#		
Carbazol Chrysene	· · ·	<1 µg/l <1 µg/l	TM176	<1 @# 		@#		
-	iuran (aq)	<1 µg/l	TM176	@# <1		@#		
	phthalate (aq)	<1 µg/l	TM176	@# <1	<1	@#		
Diethyl p	hthalate (aq)	<1 µg/l	TM176	@ # <1	<1	@#		
Dibenzo((a,h)anthracene (aq)	<1 µg/l	TM176	@# <1	<1	@#		
Dimethyl	phthalate (aq)	<1 µg/l	TM176	@# <1 @#	<1	@# @#		
n-Dioctyl	phthalate (aq)	<5 µg/l	TM176	<5 @#	<5	@#		
Fluoranth	nene (aq)	<1 µg/l	TM176	<1 @#	<1	@#		
Fluorene		<1 µg/l	TM176	<1 @#	<1	@#		
	probenzene (aq)	<1 µg/l	TM176	<1 @#		@#		
	probutadiene (aq)	<1 µg/l	TM176	<1 @ #		@#		
Pentachl Phenol (a	orophenol (aq)	<1 µg/l	TM176 TM176	<1 <1	<1	_		
	aq) -n-dipropylamine (aq)	<1 µg/l <1 µg/l	TM176	<1	<1			
	proethane (aq)	<1 µg/l	TM176	<1 @#		@#		
	zene (aq)	<1 µg/l	TM176	@# <1		@#		
Naphthal		<1 µg/l	TM176	@# <1	<1	@#		
Isophoro	ne (aq)	<1 µg/l	TM176	@ # <1	<1	@#		
Hexachlo	procyclopentadiene (aq)	<1 µg/l	TM176	@# <1	<1	@#		
Phenanti	hrene (aq)	<1 µg/l	TM176	<1	<1	@#		
Indeno(1	,2,3-cd)pyrene (aq)	<1 µg/l	TM176	@# <1 @#	<1	@#		
Pyrene (a	aq)	<1 µg/l	TM176	@# <1 @#	<1	@#		
				ψ π		<u> </u>		

			CERTI		ANALISIS		
SDG: Location:		171219-19 Kraft, Banbu		t Reference: Number:	70041591 6316510	Report Number: Superseded Report:	438677
TPH CWG (W)							
Results Legend # ISO17025 accredited.		Customer Sample Ref.	WS202	WS205	WS207		
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Ground Water (GW) 15/12/2017	Ground Water (GW) 15/12/2017	Ground Water (GW) 15/12/2017		
** % recovery of the surrogate stand check the efficiency of the method	i. The	Sampled Time Date Received	19/12/2017	19/12/2017	19/12/2017		
results of individual compounds v samples aren't corrected for the re (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	171219-19 16785900	171219-19 16785908	171219-19 16785914		
1-5&+§@ Sample deviation (see appendix)		AGS Reference	EW	EW	EW		
Component GRO Surrogate % recovery**	LOD/Units %	Method TM245	93	97	97		
GR0 >C5-C12	<50 µg/l	TM245	<50	<50	<50		
Aliphatics >C5-C6	<10 µg/l	TM245	#	<10	# #		
Aliphatics >C6-C8	<10 µg/l	TM245	<10	<10	<10		
Aliphatics >C8-C10	<10 µg/l	TM245	<10	<10	<10		
Aliphatics >C10-C12	<10 µg/l	TM245	<10	<10	<10		
Aliphatics >C12-C16 (aq)	<10 µg/l	TM174	<10	<10	<10		
Aliphatics >C16-C21 (aq)	<10 µg/l	TM174	<10	<10	<10		
Aliphatics >C21-C35 (aq)	<10 µg/l	TM174	<10	<10	<10		
Total Aliphatics >C12-C35 (aq)	<10 µg/l	TM174	<10	<10	<10		
Aromatics >EC5-EC7	<10 µg/l	TM245	<10	<10	<10		
Aromatics >EC7-EC8	<10 µg/l	TM245	<10	<10	<10		
Aromatics >EC8-EC10	<10 µg/l	TM245	<10	<10	<10		
Aromatics >EC10-EC12	<10 µg/l	TM245	<10	<10	<10		
Aromatics >EC12-EC16 (aq)	<10 µg/l	TM174	<10	<10	<10		
Aromatics >EC16-EC21 (aq)	<10 µg/l	TM174	<10	<10	<10		
Aromatics >EC21-EC35 (aq)	<10 µg/l	TM174	<10	<10 <10	<10		
Total Aromatics >EC12-EC35 (aq) Total Aliphatics & Aromatics	<10 μg/l <10 μg/l	TM174 TM174	<10	<10	<10		
>C5-35 (aq) Aliphatics >C16-C35 Aqueous	<10 µg/l	TM174	<10	<10	<10		
Aromatics >EC16-EC35 (aq)	<10 µg/l	TM174	<10	<10	<10		
	tio µg/i	1101174	-10				
	1	1				1 I I	

SDG: Location:		171219-19 Kraft, Banbu		Reference: Number:		41591 6510	Report Number: Superseded Report:	438677	
VOC MS (W)			-						
Results Legend # ISO17025 accredited.		ustomer Sample Ref.	WS202	WS205		WS207			
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test.		Depth (m) Sample Type Date Sampled	0.00 - 0.00 Ground Water (GW) 15/12/2017	0.00 - 0.00 Ground Water (GW 15/12/2017	0	0.00 - 0.00 Ground Water (GW) 15/12/2017			
** % recovery of the surrogate standa check the efficiency of the method.	The	Sampled Time Date Received	19/12/2017	19/12/2017		19/12/2017			
results of individual compounds wi samples aren't corrected for the re-		SDG Ref Lab Sample No.(s)	171219-19 16785900	171219-19 16785908		171219-19 16785914			
(F) Trigger breach confirmed 1-5&+\$@ Sample deviation (see appendix)		AGS Reference	EW	EW		EW			
Component Dibromofluoromethane**	LOD/Units %	Method TM208	104	106					
Toluene-d8**	%	TM208	98.4	98.9					
4-Bromofluorobenzene**	%	TM208	98.5	97.3					
Dichlorodifluoromethane	<1 µg/l	TM208	<1 #	<1	#				
Chloromethane	<1 µg/l	TM208	<1 #	<1	#				
Vinyl chloride	<1 µg/l	TM208	<1 #	<1	#				
Bromomethane	<1 µg/l	TM208	<1 #	<1	#				
Chloroethane	<1 µg/l	TM208	<1 #	<1	#				
Trichlorofluoromethane	<1 µg/l	TM208	<1 #	<1	#				
1,1-Dichloroethene	<1 µg/l	TM208	<1 #	<1	#				
Carbon disulphide Dichloromethane	<1 µg/l <3 µg/l	TM208 TM208	<1 #	<1 <3	#				
Methyl tertiary butyl ether	<3 µg/l	TM208	<5 #	<1	#	<1			
(MTBE)	1 pg/i		#		#	#			
trans-1,2-Dichloroethene	<1 µg/l	TM208	<1 #	<1	#				
1,1-Dichloroethane	<1 µg/l	TM208	<1 #	<1	#				
cis-1,2-Dichloroethene	<1 µg/l	TM208 TM208	<1 #	<1	#				
2,2-Dichloropropane Bromochloromethane	<1 µg/l <1 µg/l	TM208	<1	<1					
Chloroform	<1 µg/l	TM200	<1	<1	#				
1,1,1-Trichloroethane	<1 µg/l	TM208	<1 #	<1	#				
1,1-Dichloropropene	<1 µg/l	TM208	# <1	<1	#				
Carbontetrachloride	<1 µg/l	TM208	# <1	<1	#				
1,2-Dichloroethane	<1 µg/l	TM208	# <1	<1	#				
Benzene	<1 µg/l	TM208	# <1	<1	#	<1			
Trichloroethene	<1 µg/l	TM208	# <1 #	<1	#	#			
1,2-Dichloropropane	<1 µg/l	TM208	# <1 #	<1	#				
Dibromomethane	<1 µg/l	TM208	* <1 #	<1	#				
Bromodichloromethane	<1 µg/l	TM208	<1 #	<1	#				
cis-1,3-Dichloropropene	<1 µg/l	TM208	<1 #	<1	#				
Toluene	<1 µg/l	TM208	<1 #	<1	#	<1 #			
trans-1,3-Dichloropropene	<1 µg/l	TM208	<1 #	<1	#				
1,1,2-Trichloroethane	<1 µg/l	TM208	<1 #	<1	#				

Validated

	SDG:	171219-19	Client Reference:	70041591	Report Number:	438677
(ALS)	Location:	Kraft, Banbury	Order Number:	6316510	Superseded Report:	

VOC MS (W)

VOC MS (W)						-	-	
Results Legend # ISO17025 accredited.		Customer Sample Ref.	WS202	WS205	WS207			
M mCERTS accredited.								
aq Aqueous / settled sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00			
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Ground Water (GW)	Ground Water (GW)	Ground Water (GW)			
* Subcontracted test.		Date Sampled	15/12/2017	15/12/2017	15/12/2017			
** % recovery of the surrogate stands check the efficiency of the method		Sampled Time						
results of individual compounds w		Date Received	19/12/2017	19/12/2017	19/12/2017			
samples aren't corrected for the re	covery	SDG Ref Lab Sample No.(s)	171219-19 16785900	171219-19 16785908	171219-19 16785914			
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		AGS Reference	EW	EW	EW			
Component	LOD/Units							
		+ +	.4	.4				
1,3-Dichloropropane	<1 µg/l	TM208	<1	<1				
			#		#			
Tetrachloroethene	<1 µg/l	TM208	<1	<1				
			#	;	¥			
Dibromochloromethane	<1 µg/l	TM208	<1	<1				
	1.2		#		¥			
1.0 Dibromoothono	<1.1.1%	TM209		i i	<i>τ</i>			
1,2-Dibromoethane	<1 µg/l	TM208	<1	<1				
			#	i	#			
Chlorobenzene	<1 µg/l	TM208	<1	<1				
			#	:	#			
1,1,1,2-Tetrachloroethane	<1 µg/l	TM208	<1	<1				
			#		#			
Ethylbenzene	<1 µg/l	TM208	<1	<1	<1			
	· P9/	111200			# #			
m n Yulana	-1	TMOOD	#					
m,p-Xylene	<1 µg/l	TM208	<1	<1	<1			
	L		#	i i	# #			
o-Xylene	<1 µg/l	TM208	<1	<1	<1			
			#	i	# #			
Styrene	<1 µg/l	TM208	<1	<1				
			#	:	#			
Bromoform	<1 µg/l	TM208	<1	<1				
Diomoloriti	<1 µg/i	1101200						
			#		<u> </u>			
Isopropylbenzene	<1 µg/l	TM208	<1	<1				
			#		#			
1,1,2,2-Tetrachloroethane	<1 µg/l	TM208	<1	<1				
			#		#			
1,2,3-Trichloropropane	<1 µg/l	TM208	<1	<1				
1, <u>2</u> ,0	. µ9,.		. #		¥			
Dramahannan	44.557	TM000		i	+			
Bromobenzene	<1 µg/l	TM208	<1	<1				
			#		#			
Propylbenzene	<1 µg/l	TM208	<1	<1				
			#	;	#			
2-Chlorotoluene	<1 µg/l	TM208	<1	<1				
			#	-	#			
1,3,5-Trimethylbenzene	<1 µg/l	TM208	<1	<1				
1,0,0 111100112010	n µg/i	111200	#		¥			
4 Oblassiakusaa	44.557	TM000		1	+			
4-Chlorotoluene	<1 µg/l	TM208	<1	<1				
			#		#			
tert-Butylbenzene	<1 µg/l	TM208	<1	<1				
			#	:	#			
1,2,4-Trimethylbenzene	<1 µg/l	TM208	<1	<1				
			#	:	#			
sec-Butylbenzene	<1 µg/l	TM208	<1	<1				
			#		¥			
1 iso Propultaluono	~1!!	TM208	<1 **	<1	T			
4-iso-Propyltoluene	<1 µg/l	ι Ινίζυδ						
		-	#		<u> </u>			┥────┤
1,3-Dichlorobenzene	<1 µg/l	TM208	<1	<1				
			#		#			
1,4-Dichlorobenzene	<1 µg/l	TM208	<1	<1				
			#	:	#			
n-Butylbenzene	<1 µg/l	TM208	<1	<1				
	· • • • • • • • • • • • • • • • • • • •	111200	*1		¥			
12 Diphlorohannan	-1	TMOOD		<1	†			
1,2-Dichlorobenzene	<1 µg/l	TM208	<1					
		4	#		¥			
1,2-Dibromo-3-chloropropane	<1 µg/l	TM208	<1	<1				
1,2,4-Trichlorobenzene	<1 µg/l	TM208	<1	<1				
,,,			#		¥			
Hovachlorobutadiono	<1.un/	TM208	<1 **	<1	T			
Hexachlorobutadiene	<1 µg/l	ι Ινίζυδ						
			#		#			
tert-Amyl methyl ether (TAME)	<1 µg/l	TM208	<1	<1	<1			
			#		# #			
Naphthalene	<1 µg/l	TM208	<1	<1				
			#	;	#			
•	-		"	•		•	•	

Validated

	SDG:	171219-19	Client Reference:	70041591	Report Number:	438677
(ALS)	Location:	Kraft, Banbury	Order Number:	6316510	Superseded Report:	

VOC MS (W)

VOC MS (W)							
Results Legend # ISO17025 accredited.		Customer Sample Ref.	WS202	WS205	WS207		
M mCERTS accredited. aq Aqueous / sottled sample. diss.fit Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate standa		Depth (m) Sample Type Date Sampled Sampled Time	0.00 - 0.00 Ground Water (GW) 15/12/2017	0.00 - 0.00 Ground Water (GW) 15/12/2017	0.00 - 0.00 Ground Water (GW) 15/12/2017		
check the efficiency of the method. results of individual compounds wi	ithin	Date Received SDG Ref	19/12/2017 171219-19	19/12/2017 171219-19	19/12/2017 171219-19		
samples aren't corrected for the re (F) Trigger breach confirmed	covery	Lab Sample No.(s)	16785900	16785908	16785914		
1-5&+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method	EW	EW	EW		
1,2,3-Trichlorobenzene	<1 µg/l	TM208	<1	<1			
1,2,0-11101000012010	<1µg/i	TWZOO	<1 #	×1 #			
1,3,5-Trichlorobenzene	<1 µg/l	TM208	<1	<1			
VOC TIC	-	TM208	Not Detected	Not Detected			
Sum of detected Xylenes	<2 µg/l	TM208	<2	<2	<2		
Total VOC TIC	<10 µg/l	TM208	0	0		1	

			CERTIFICATE O	F ANALYSI	S	validated
	SDG:	171219-19	Client Reference:	70041591	Report Number: Superseded Report:	438677
(ALS)	Location:	Kraft, Banbury	Order Number:	6316510	ouperseueu Report.	

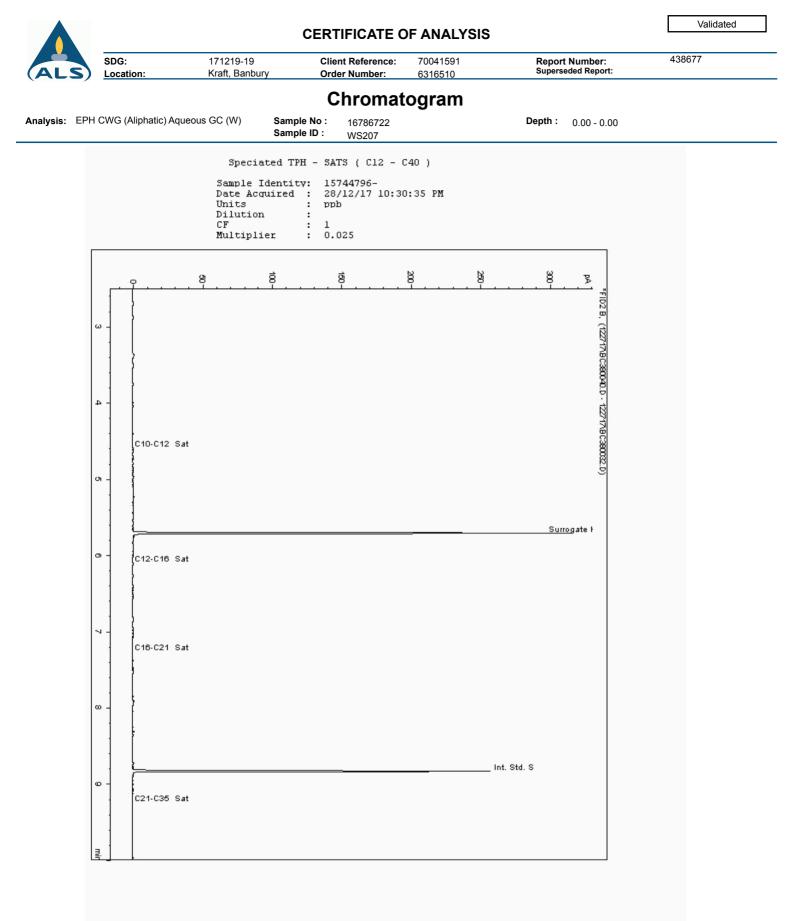
Table of Results - Appendix

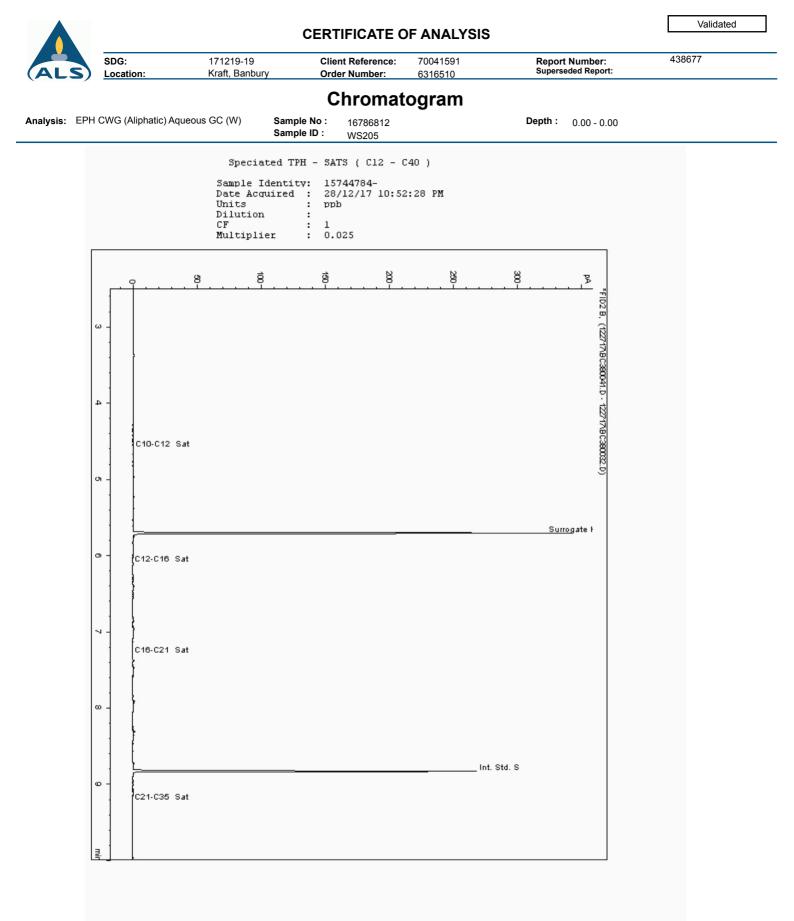
Validated

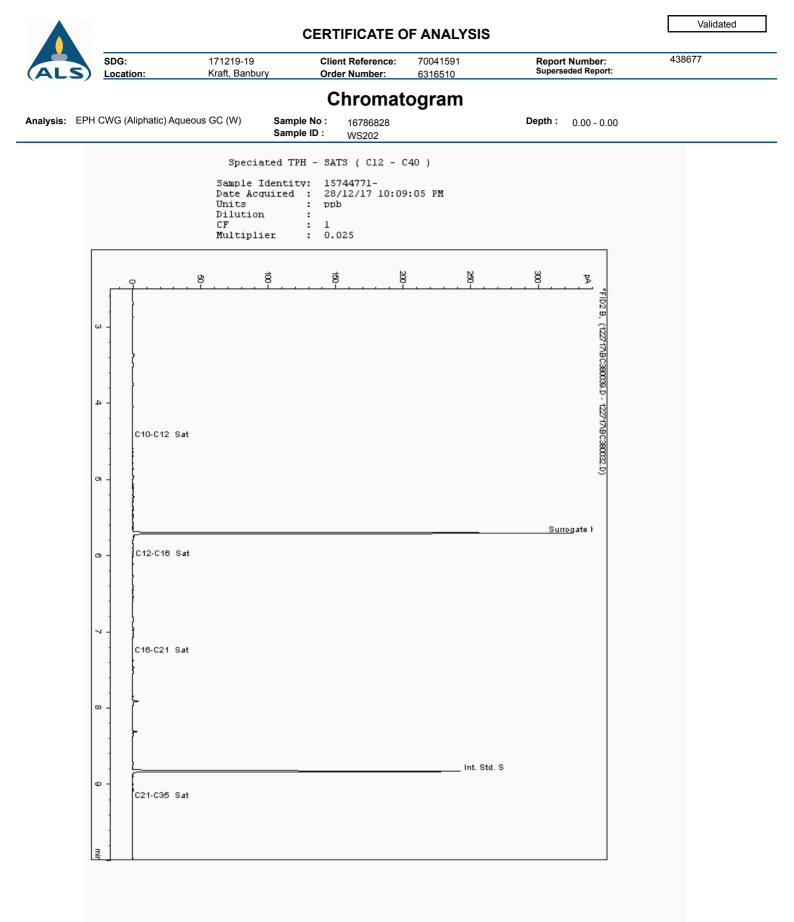
Method No	Reference	Description
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM174	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Waters by GC-FID
TM176	EPA 8270D Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of SVOCs in Water by GCMS
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters
TM245	By GC-FID	Determination of GRO by Headspace in waters
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM331		Low Level Hexavalent Chromium

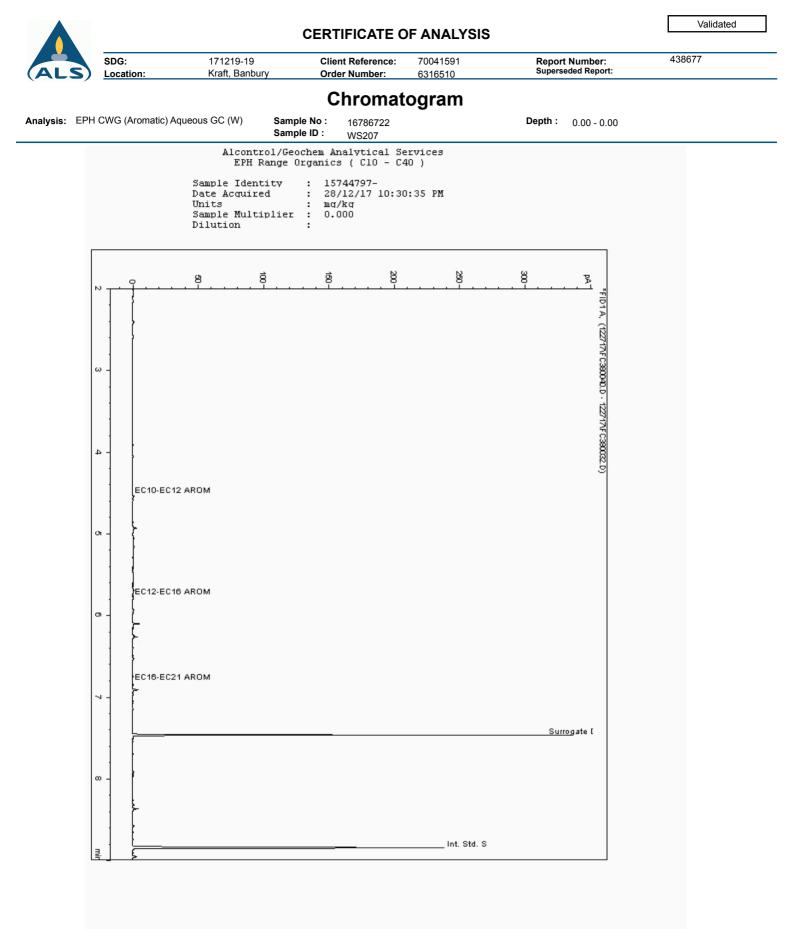
NA = not applicable.

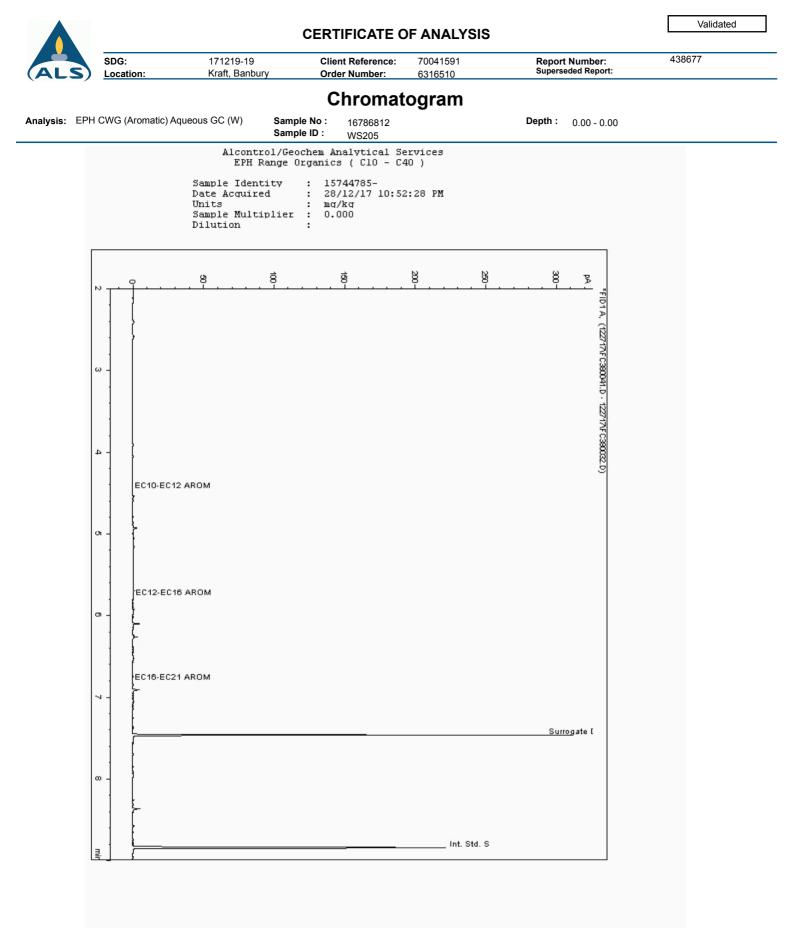
Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

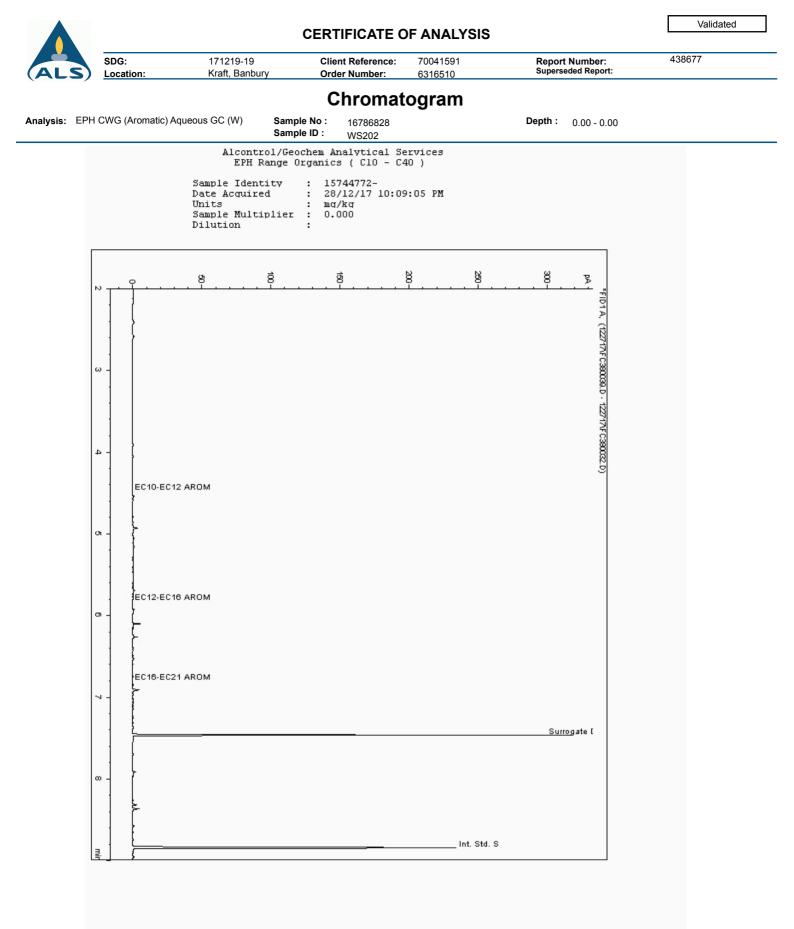



Validated


	SDG:	171219-19	Client Reference:	70041591	Report Number:	438677
(ALS)	Location:	Kraft, Banbury	Order Number:	6316510	Superseded Report:	


Test Completion Dates


Lab Sample No(s)	16785900	16785908	16785914
Customer Sample Ref.	WS202	WS205	WS207
AGS Ref.	EW	EW	EW
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Ground Water	Ground Water	Ground Water
Dissolved Metals by ICP-MS	29-Dec-2017	29-Dec-2017	29-Dec-2017
EPH CWG (Aliphatic) Aqueous GC (W)	28-Dec-2017	28-Dec-2017	28-Dec-2017
EPH CWG (Aromatic) Aqueous GC (W)	28-Dec-2017	28-Dec-2017	28-Dec-2017
GRO by GC-FID (W)	22-Dec-2017	22-Dec-2017	22-Dec-2017
Low Level Hexavalent Chromium (w)	28-Dec-2017	28-Dec-2017	28-Dec-2017
Mercury Dissolved	03-Jan-2018	03-Jan-2018	03-Jan-2018
PAH Spec MS - Aqueous (W)	28-Dec-2017	28-Dec-2017	28-Dec-2017
pH Value	27-Dec-2017	27-Dec-2017	27-Dec-2017
SVOC MS (W) - Aqueous	28-Dec-2017	28-Dec-2017	
TPH CWG (W)	28-Dec-2017	28-Dec-2017	28-Dec-2017
VOC MS (W)	22-Dec-2017	22-Dec-2017	22-Dec-2017



			CERTIFICATE C	F ANALYSIS		Validated
ALS	SDG: Location:	171219-19 Kraft, Banbury	Client Reference: Order Number:	70041591 6316510	Report Number: Superseded Report:	438677
			Chromat			
Analysis: GRO	by GC-FID (W)	Sam Sam	ple No : 16807359 ple ID : WS202		Depth : 0.00 - 0.00	
		1	6807359_GRO_W.DAT	A - Chem 73 FID		
		Ь				
		Reference				
		Ref				
-						

			CERTIFICATE C	F ANALYSIS		Validated
ALS	SDG: Location:	171219-19 Kraft, Banbury	Client Reference: Order Number:	70041591 6316510	Report Number: Superseded Report:	438677
			Chromat			
alysis: GRO	by GC-FID (W)	Sam Sam	ple No : 16807368 ple ID : WS207	-	Depth : 0.00 - 0.00	
		1	6807368_GRO_W.DAT	A - Chem 73 FID		
		Ь				
		Reference				
	1	Ref				

			CERTIFICATE C	F ANALYSIS		Validated
ALS	SDG: Location:	171219-19 Kraft, Banbury	Client Reference: Order Number:	70041591 6316510	Report Number: Superseded Report:	438677
			Chromat			
Analysis: GRO	D by GC-FID (W)	San San	ple No : 16807376 ple ID : WS205	-	Depth : 0.00 - 0.00	
			6807376_GRO_W.DAT	A - Chem 73 FID		
		h				
		a				
	1	Reference				
		s B				
					· · · ·	

	SDG:	171219-19	Client Reference:	70041591	Report Number:	438677
(ALS)	Location:	Kraft, Banbury	Order Number:	6316510	Superseded Report:	

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All sumples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment . Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

14. **Product analyses** - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-lsopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis	
2	Incorrect container received	
3	Deviation from method	
4	Holding time exceeded before sample received	
5	Samples exceeded holding time before presevation was performed	
§	Sampled on date not provided	
•	Sample holding time exceeded in laboratory	
0	Sample holding time exceeded due to sampled on date	
&	Sample Holding Time exceeded - Late arrival of instructions.	

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cro ci dolite	Blue Asbe stos
Fibrous Actinolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

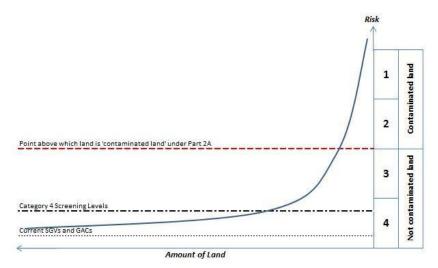
Appendix D

HUMAN HEALTH GAC DERIVATION

11

)

vsp


METHODOLOGY FOR THE DERIVATION OF GENERIC QUANTITATIVE ASSESSMENT CRITERIA TO EVALUATE RISKS TO HUMAN HEALTH FROM SOIL & GROUNDWATER CONTAMINATION

UK APPROACH

In the UK, the potential risks to human health from contamination in the ground are usually evaluated through a generic quantitative risk assessment (GQRA) approach. This allows generic and conservative exposure assumptions to be readily applied to risk assessments and can be a useful tool for rapidly screening data and to identify those contaminants or scenarios that could benefit from further investigation and/or site-specific detailed quantitative risk assessment (DQRA). Current industry good practice is to use the approach presented in the Environment Agency (EA) publications SR2¹ and SR3². This approach allows the derivation of Generic Assessment Criteria (GACs), primarily for chronic exposure.

In April 2012, the Department of Environment, Food and Rural Affairs (Defra) published updated statutory guidance³ which introduced a four category approach to determining whether land <u>in</u> <u>England and Wales</u> is contaminated or not on the grounds of significant possibility of significant harm (SPOSH). **Figure 1** presents a graphical representation of the categories.

Cases classified as Category 1 are considered to be SPOSH based on actual evidence or an unacceptably high probability of harm existing. Category 4 cases are those where there is no risk, or a low risk of SPOSH.

¹ Environment Agency '*Human Health Toxicological Assessment of Contaminants in Soil*', Report SC050021/SR2. January 2009.

² Environment Agency 'Updated Technical Background to the CLEA Model,' Report SC050021/SR3. January 2009.

³ Defra 'Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance'. April 2012.

GACs represent a minimal risk level, well within Category 4. A 2014 publication by Contaminated Land: Applicatons in Real Environments (CL:AIRE),SP1010⁴ and endorsed by Defra⁵ provided an approach to determine Category 4 Screening Levels (C4SLs) which are higher than the GACs whilst being "more pragmatic but still strongly precautionary". It also provided C4SLs for six contaminants of concern. Although the C4SLs were designed to support Part 2A assessments to determine 'contaminated land' they are specifically mentioned, along with reference to the Part 2A statutory guidance, by the Department for Communities and Local Government (DCLG) for use in a planning context⁶.

An updated version the Contaminated Land Exposure Assessment (CLEA) Workbook (v1.071) was released by the EA in September 2015 to take into account the publication of SP1010. The updates comprised: additional toxicity data for the six chemicals for which C4SLs were derived; two new public open space land use scenarios; updated exposure parameters; options to run the model using C4SL exposure assumptions; and increased functionality. There were no changes to algorithms, so it is still possible to replicate the withdrawn SGVs using the input parameters held within v1.071.

It should be noted that the four category approach has not been adopted in Scotland under Part 2A or the planning regime. The Part 2A statutory guidance applicable in Scotland (Paper SE/2006/44 dated May 2006) does not reflect the changes introduced by Defra in April 2012 which allow for the use of C4SLs within Part 2A risk assessments. Additionally, it is considered that the principal of 'minimal risk' should still apply under planning in Scotland, based on current guidance.

WSP APPROACH

Following the withdrawal of the SGVs, and in the absence of an industry-wide, accepted set of GACs it is down to individual practitioners to derive their own soil assessment criteria. WSP has used the approach provided within SR2, SR3, SP1010, CLEA Workbook v1.071and SR4⁷ to produce a set of minimal risk GACs. The chemical-specific data within two key publications were considered during their production: CL:AIRE 2010⁸ and LQM 2015⁹. Both documents provide comprehensive sets of GACs for different contaminants of concern.

The LQM Suitable For Use Levels (S4ULs) have selected exposure parameters someway between those of the SR3 land uses and the C4SL exposure scenarios. This approach was rejected by WSP as not representing minimal risk, however, the LQM S4UL document was critically reviewed and the approach and chemical input parameters were utilised where considered to be appropriate.

An industry-led C4SL Working Group is in the process of deriving a larger set of C4SLs in the near future, for approximately 20 contaminants. This will include a critical review of the chemical input data for all selected substances, and may therefore lead to further amendments to the chemical input data used in the WSP in-house screening values. It is considered likely that the contaminant list will

⁴ CL:AIRE 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination' SP1010, Final Project Report (Revision 2). September 2014.

⁵ Defra 'SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document'. December 2014.

⁶ DCLG Planning Practice Guidance 'Land Affected by Contamination', particularly Paragraphs 001 and 007. Ref IDs: 33-001-20140306 & 33-007-20140612.

⁷ Environment Agency 'CLEA Software (Version 1.05) Handbook (and Software)', Report SC050021/SR4. September 2009.

⁸ CL:AIRE 'The EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment'. ISBN 978-1-05046-20-1. January 2010.

⁹ Nathanail et al '*The LQM/CIEH S4ULs for Human Health Risk Assessment*', Land Quality Press, ISBN 978-0-9931084-0-2. 2015.

crossover with the current CL:AIRE GACs. As such, this document was not critically reviewed by WSP.

WSP's current approach to the assessment of risks to human health is to continue to evaluate minimal risk through the use of in-house derived GACs, and to use the published C4SLs as a secondary tier of assessment until such time as additional C4SLs are published and/or in-house values are derived.

EXPOSURE MODELS

LAND USES

WSP has largely adopted the exposure assumptions of the generic land use scenarios included within SR3, with two additional public open space scenarios included from within SP1010:

- à Residential with homegrown produce consumption;
- à Residential without homegrown produce consumption;
- à Allotments;
- à Commercial;
- à Public open space near residential housing (POS_{resi}); and
- à Public park (POS_{park}).

Exceptions are described in the following Sections.

SOIL PROPERTIES

SR3 assumes a sandy loam soil with a pH of 7 and a Soil Organic Matter (SOM) content of 6% for its generic land uses, based on the geographical spread of topsoils in the UK. WSP has adopted these default values. In addition, GACs based on an SOM of 1% and 2.5% have been derived, based on common experience of the nature of Made Ground and lack of topsoil on many brownfield sites.

RECEPTOR CHARACTERISTICS AND BEHAVIOURS

SP1010 provides some updated exposure parameters for long-term inhalation rates¹⁰ and the consumption rates for homegrown produce¹¹ compared to those provided in SR3. This data was used to derived WSP's GACs.

The changes in inhalation rates do not apply to the allotment generic land use scenario, as these are based on the breathing rates for short-term exposure of light to moderate intensity activity which were derived from a study that was not updated in USEPA 2011, so the SR3 rates were retained.

¹⁰ USEPA, National Centre for Environmental Assessment '*Exposure Factors Handbook: 2011 Edition*' EPA/600/R-09/052F. September 2011.

¹¹ National Diet and Nutrition Survey 2008/2009 to 2010/2011.

CHEMICAL DATA

PHYSICO-CHEMICAL PARAMETERS

Physico-chemical properties for the contaminants for which GACs have been derived have been obtained following critical review of the following hierarchy of data sources:

- 1. Environment Agency/Defra SGV reports where available.
- 2. Environment Agency 'Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values', Report SC050021/SR7, November 2008.
- **3.** Published fate and transport reviews within Nathanail et. al 2015 and CL:AIRE 2010.

Where appropriate, and where sufficient data is available, values were adjusted to reflect a UK soil temperature of $10^{\circ}C$ (e.g. K_{aw}).

TOXICOLOGICAL DATA

Toxicological data for the derivation of minimal risk Health Criteria Values (HCV) for each contaminant was selected with due regard to the approach presented in SR2. Where appropriate, the following hierarchy of data sources was used:

- **1.** UK toxicity reviews published by authoritative bodies including:
 - < EA;
 - < Public Health England (PHE);
 - < Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT); and
 - < Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment (COC).
- 2. Authoritative European sources such as European Food Standards Agency (EFSA)
- **3.** International organisations including:
 - < World Health Organisation (WHO); and
 - Joint FAO/WHO Expert Committee on Food Additives (JECFA).
- 4. Authoritative country-specific sources including:
 - United States Environmental Protection Agency (USEPA);
 - US Agency for Toxic Substances and Disease Registry (ATSDR);
 - < US Integrated Risk Information System (IRIS); and
 - < Netherlands National Institute for Public Health and the Environment (RIVM).

Factors such as the applicability of the data to human health (e.g. epidemiological vs. animal studies), the quality of the data, the level of uncertainty in the results and the age of the data were also taken into account in the final selection. Details for specific substances are available on request.

MEAN DAILY INTAKES

Estimations of background exposure for each threshold substance have been updated. In line with the SR2 approach, the exposure from non-threshold substances in the soil does not take into account exposure from other sources, and as such GACs were derived without consideration of the Mean Daily Intake (MDI) for those substances.

The data published by the EA in its series of TOX reports between 2002 and 2009 was evaluated to determine whether the values were considered to remain valid today. Values from these current UK published sources were not amended unless they were considered to be significantly different so that the GACs remained as comparable as possible with the revoked SGVs.

ORAL MEAN DAILY INTAKES

Oral MDI were generally estimated as the sum of exposure via the ingestion of food and drinking water using the default adult physiological parameters presented in Table 3.3 of SR2.

Data on the exposure of substances from food ingestion was generally obtained from UK Total Diet Studies (TDS) published by the Food Standards Agency (FSA) and its predecessor the Ministry of Agriculture, Fisheries and Food (MAFF) and from studies commissioned by COT. Where no UK-specific data was available, MDI were derived from the European Food Safety Authority (EFSA), Health Canada and US sources. This was a rare occurrence, and in these instances, the data was evaluated to determine its applicability to the UK.

Data on the concentrations of substances in tap water was obtained from a variety of sources. UK data was used where available, with preference given to Drinking Water Inspectorate (DWI) 2014 data from water company tap water testing (LOD, 1st and 99th percentile data is available). Where the substance was not included in tap water testing, other UK sources of information were considered including:

- à DWI data from water company tap water testing from previous years;
- à COT; and
- à FSA.

Where UK data was not available, a number of other data sources were considered, largely WHO International Programme on Chemical Safety (IPCS) Concise International Chemical Assessment Documents (CICADs) and background documents for the development of Guidelines for Drinking Water Quality, using professional judgement on the relevance of the data to the UK. The final decision on the MDI from drinking water was made using professional judgement on the balance of relevance and probability, taking into account the detection limit where not detected, Koc and solubility, reduction in use of the substance, banned substances, tight controls (e.g. on explosives) and with due consideration to the SR2 instruction that "if no data or information in background exposure are available, background exposure should be assumed to be negligible and the MDI set to zero....".

Data from other countries was generally not used because it was considered that the hydrogeology of these countries along with industrial practices were unlikely to be reflective of the UK.

INHALATION MEAN DAILY INTAKES

Inhalation MDIs were based on estimates of average daily exposure by the inhalation pathway and calculated using the default adult physiological parameters presented in Table 3.3 of SR2.

The inhalation MDIs were generally estimated using background exposure data from the UK, derived from Defra's UK-AIR: Air Information Resource¹², which provides ambient air quality data from a number of sites forming a UK-wide monitoring network. The MDIs for heavy metals were based on rolling annual average metal mass concentration data from Defra's UK Heavy Metals Monitoring Network from the period October 2009 to September 2010¹³.

Information for some substances was obtained from UK sources including Environment Agency TOX reports and data from the UK Expert Panel on Air Quality Standards (EPAQS). Where recent UK data was not available, data was sourced from the International Programme on Chemical Safety (IPCS), the World Health Organisation (WHO), the Agency for Toxic Substances and Diseases Registry (ATSDR), Health Canada, and various other peer-reviewed sources summarised by LQM/CIEH¹⁴.

For other substances, where no data or information on background exposure was available, background exposure was assumed to be negligible and the MDI set at 0.5*TDI in accordance with guidance in SR2.

PLANT UPTAKE

Soil to plant concentration factors are available in CLEA v1.071 for arsenic, cadmium, hexavalent chromium, lead, mercury, nickel and selenium. For all remaining inorganic chemicals, concentration factors were obtained using the PRISM model. Substance-specific correction factors have been selected in accordance with the guidance established within SR3. This is consistent to the approach utilised in the derivation of the LQM S4UL values and the EIC/AGS/CL:AIRE GAC.

Where there is a lack of appropriate data to enable the derivation of specific soil to plant concentrations factors for organic chemicals, plant uptake was modelled within CLEA v1.071 using the generic equations recommended within SR3, as follows:

- à Green Vegetables Ryan et al. (1988);
- à Root Vegetables Trapp (2002);
- à Tuber Vegetables Trapp et al. (2007); and
- à Tree Fruit Trapp et al. (2003).

There are no suitable models available for modelling uptake for herbaceous fruit or shrub fruit. Exposure is considered negligible.

¹² Crown 2016 copyright Defra via uk-air.defra.gov.uk, licenced under the Open Government Licence (OGL).

¹³ Defra, 2013 Spreadsheet of historic data for multiple years for the Metals network. Available online at: <u>http://uk-air.defra.gov.uk/data/metals-data</u>. [Accessed 13/03/2016].

¹⁴ LQM/CIEH, 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment.

SOIL SATURATION LIMITS

GACs are not limited to their theoretical soil saturation within CLEA, although where either the aqueous or the vapour-based saturation is exceeded, this is highlighted within the Workbook (compared with the lower of the two values). This affects pathways which depend on partitioning calculations so in reality this only affects the vapour pathways and is relevant to organic substances and other substances, such as elemental mercury, that have a significant volatile component. However, the Workbook highlights saturation for direct contact pathways to indicate to the user where further qualitative consideration of free phase contamination at surface may be required.

Where the lower of the two saturation limits is exceeded and the vapour pathway is the only exposure route being considered, the chronic risks to human health are likely to be negligible. Further evaluation could be undertaken using an alternative model suitable for evaluating non-aqueous phase liquids (NAPLs), such as the Johnson & Ettinger (J&E) approach described in USEPA 2003. However, WSP considers that if NAPLs are suspected, given the known limitations and oversimplifications of J&E, soil vapour monitoring is a more accurate way of assessing potential risks.

Where the lower saturation limit is exceeded for the vapour pathway and a number of exposure routes are being considered, then the contribution from the NAPL via vapour inhalation to the overall exposure can be evaluated using the procedure provided in SR4. WSP would evaluate this as part of a DQRA process or through soil vapour monitoring on-site to determine site-specific soil vapour concentrations.

CHEMICAL SPECIFIC ASSUMPTIONS

CYANIDES

Cyanide has high acute toxicity, and short term exposure is an important consideration when assessing the risks from soils contaminated with cyanide. The primary risk to human receptors from free cyanide in soils is an acute risk.

There is no current UK guidance available for calculating acute risks from free cyanide. Consequently, GAC for acute exposure were derived using the algorithms presented in MADEP 1992¹⁵ and assuming a one-off ingestion of 10g of soil (this conservative value has been taken as an upper bound estimate for a one-off soil ingestion rate amongst children). Receptor body weights have been selected according to the critical receptor for each exposure scenario. The lowest of the chronic and acute GAC for each land use scenario were adopted by WSP. Brinckerhoff.

LEAD

The SGV for lead was withdrawn by the EA in 2009, and in 2011 the EA withdrew their published TOX report in light of new scientific evidence. The C4SL for lead was derived using the latest scientific evidence from a large human dataset. As such, no chemical-specific margin was applied in the derivation of the C4SL for lead. It may be possible for WSP to derive a GAC for lead using the same dataset and applying a chemical-specific margin, but the value is likely to be lower than UK natural background concentrations. Therefore, WSP has adopted the toxicological data used to derive the C4SLs in deriving the GAC for lead until such time as alternative GACs are published by an authoritative body. The relative bioavailability was set at 100% in line with the approach taken for other GACs, whereas the C4SL assumes 60% for soil and 64% for airborne dust. Thus, the WSP GAC are lower than the C4SLs.

¹⁵ MADEP 'Background Documentation for the Development of an "Available Cyanide" Benchmark Concentration' 1992. <u>http://www.mass.gov/dep/toxics/cn_soil.htm</u>

POLYCYCLIC AROMATIC HYDROCARBONS

WSP's approach to the assessment of polycyclic aromatic hydrocarbons (PAHs) uses the surrogate marker approach. BaP was used as a surrogate marker for all genotoxic PAHs in line with the Health Protection Agency 2010¹⁶ recommendations and SP1010. This assumes that the PAH profile of the data is similar to that of the coal tars used in the Culp *et al* oral carcinogenicity study from which the toxicity data for BaP was produced. In reality, this profile has been shown by HPA to be applicable on the majority of contaminated sites based on assessment of sites across the country.

The alternative is the Toxic Equivalency Factor (TEF) approach which uses a reference compound and assigns TEFs for other compounds based on estimates of potency. Key uncertainties with this approach include the assumption that all compounds have the same toxic mechanism of action within the body and that no compounds with a greater potency than the reference compound are present. It is considered by the HPA that the TEF approach is likely to under predict the true carcinogenicity of PAHs and therefore favours the surrogate marker approach.

For these reasons, WSP considers that the adoption of BaP as a surrogate marker for genotoxic PAHs as opposed to the TEF approach is reasonable, even in cases where the PAH profile may differ from that of the Culp *et al* study. In addition, WSP has derived a GAC for naphthalene, which is commonly a risk driver due to its high volatility, relative to other PAH compounds, as an indicator compound for threshold PAHs.

CHEMICAL GROUPS

For a number of chemical groups, the available toxicity data is for combinations of chemicals. Given that the physico-chemical parameters may differ between the chemicals, the GACs for the chemicals within the groups have been calculated and then the lowest GAC selected to represent the entire group. This was the approach taken by the EA for m-, o- and p-xylenes, and has also been adopted by WSP for:

- à 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and 2,3,4,6-tetrachlorophenol;
- à 2-, 3- and 4-methylphenol (total cresols);
- à aldrin and dieldrin;
- à α and β -endosulphan; and
- à trimethylbenzenes.

EXPOSURE TO VAPOURS

INHALATION OF MEASURED VAPOURS

WSP has derived a set of soil vapour GACs (GAC_{sv}) that allow for the assessment of measured site soil vapour concentrations, using J&E, in order to establish potential risks via indoor inhalation of vapours. This methodology enables a more robust assessment of exposure via the inhalation of soil vapours indoors than using CLEA-derived soil GAC, as it is based upon measured soil vapour concentrations beneath the site. It also allows for the assessment of vapours from all source terms (i.e. groundwater, soil or NAPL). Outdoor inhalation was not included. WSP considers that the indoor inhalation pathway is the significantly dominant risk-driver.

¹⁶ HPA Contaminated Land Information Sheet 'Risk Assessment Approaches for Polycyclic Aromatic Hydrocarbons (PAHs) 2010

The generic land use scenarios within CLEA (residential and commercial) that were used to derive the soil GAC were used to define the receptor and building characteristics for the soil vapour GAC. Only residential and commercial generic land use scenarios include the indoor inhalation of vapours pathway.

The GAC_{sv} were derived for three different soil types; sand, sandy loam and clay, reflecting the importance of this parameter within the J&E model. A depth to contamination of 0.85 m below the base of the building foundation was assumed (i.e. 1 m below ground level). This differs from the depth assumed for the soil GAC (0.5 m bgl), but was selected by WSP as a reasonable worst case scenario.

It is acknowledged that the J&E commonly over-predicts indoor vapour concentrations. In particular, it will significantly over-predict vapour concentrations for suspended floor slabs, which many new builds are constructed with, it does not take into account lateral migration and assumes an infinite source of contamination at steady state conditions. In addition, it is common for soil gas/vapour wells to be installed with at least 1 m of plain riser at the surface and this equates to a total depth of 0.85 m below the building foundation plus a 0.15 m thick foundation, and so is more representative of the depth that samples will be taken from.

The TDSIs and IDs for each substance were converted from μ gkg⁻¹_{bw}day⁻¹ to μ gm⁻³ using the standard conversions quoted in Table 3.3 of SR2, thereby replacing the need to model C_{air} in the equation:

$$C_{air} = \alpha. C_{vap}$$
. **1,000,000** $cm^3 m^{-3}$

Where:

 C_{air} is the concentration of vapours within the building, mg⁻³ α is the steady state attenuation coefficient between soil and indoor air, dimensionless C_{vap} is the soil vapour concentration, mgcm⁻³

The target concentrations within indoor air for each substance (C_{air}) are a function of receptor inhalation rates and occupancy periods, as defined by the site conceptual exposure model (assuming standard CLEA occupancy periods and receptors).

The attenuation factor was calculated using J&E (Equation 10.4 in SR3) and the resulting C_{vap} is equivalent to the GAC_{sv} for the modelled exposure scenario.

Where the calculated GAC_{sv} for a substance exceeds the vapour saturation limit, no GAC_{sv} has been proposed.

INHALATION OF GROUNDWATER-DERIVED VAPOURS

The CLEA model does not have the capacity to derive GACs to assess vapours derived from dissolved phase contamination. WSP has derived a set of groundwater GACs (GAC_{gw}) to evaluate the potential risks through the indoor inhalation of groundwater-derived vapours by first applying the approach described above for the derivation of the WSP GAC_{sv} to determine the acceptable concentration in soil vapour directly above the water table.

The depth to groundwater was assumed to be 1 m bgl (i.e. 0.85 m below the base of the building foundation). This depth was considered to be more representative of commonly encountered groundwater conditions than the 0.5 m below the base of the building foundation (i.e. 0.65 m bgl) that is used by CLEA for an unsaturated source present in the overlying soil.

The GAC_{gw} was then back-calculated from the GAC_{sv} using the air-water partition coefficient (K_{aw}) for each substance.

Where the calculated GAC_{gw} for a substance exceeds the solubility limit, no GAC_{gw} has been proposed.

Appendix E

11

SCREENING TABLES

Aliphatics and Aromatics

Result > A	Assessment Criteria		PointID	WS202	W	S203		WS205		WS207	
Limit of de Criteria	etection > Assessmer	nt		0.7 - 1	1 - 1.3	2.1 - 2.3	0.7 - 1	2.1 - 2.3	3.5 - 3.7	0.4 - 0.6	1.1 - 1.3
			Depth (m bgl)	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17
			Sample Date								
			Geology (at top depth of sample)	Made Ground Cohesive	Made Ground Cohesive	River Terrace Deposits	Made Ground Cohesive	Made Ground Cohesive	River Terrace Deposits	Made Ground Granular	Made Ground Cohesive
Analyte	Units	LOD	GAC								
Aliphatic C05-C06	mg/kg	0.010	3,190	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aliphatic C06-C08	mg/kg	0.010	7,780	<0.01	0.0394	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aliphatic C08-C10	mg/kg	0.010	2,000	<0.01	0.82	0.0146	<0.01	<0.01	<0.01	<0.01	<0.01
Aliphatic C10-C12	mg/kg	0.010	9,690	<0.01	3.02	0.0159	<0.01	<0.01	<0.01	<0.01	<0.01
Aliphatic C12-C16	mg/kg	0.10	58,800	<0.1	35.9	<0.1	<0.1	2.71	<0.1	1.05	<0.1
Aliphatic C35-C44	mg/kg	0.10	1,910,0 00	<0.1	0.925	2.61	1.99	<0.1	<0.1	0.712	<0.1
Aromatic C07-C08	mg/kg	0.010	56,100	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aromatic C08-C10	mg/kg	0.010	3,460	<0.01	0.569	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aromatic C10-C12	mg/kg	0.010	16,200	<0.01	2.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01
Aromatic C12-C16	mg/kg	0.10	36,200	<0.1	10.9	<0.1	<0.1	1.34	<0.1	<0.1	0.728
Aromatic C16-C21	mg/kg	0.10	28,600	<0.1	18.2	<0.1	<0.1	1.97	<0.1	<0.1	0.798
Aromatic C21-C35	mg/kg	0.10	28,600	<0.1	8.24	<0.1	8.3	2.7	0.923	17.9	1.86
Aromatic C35-C44	mg/kg	0.10	28,600	<0.1	<0.1	4.97	5.04	<0.1	<0.1	69.1	<0.1

Site Area(s): Whole site Phase(s): All phases

Alkali and Alkaline Earth Metals

	Result > Assessm	Result > Assessment Criteria Point		PointID	W	WS202 WS203 WS205		6205	WS207			
	Limit of detection > Assessment Criteria				0 - 0.1	0.7 - 1	1 - 1.3	0.7 - 1	2.1 - 2.3	0 - 0.1	0.4 - 0.6	1.1 - 1.3
				Depth (m bgl) Sample Date Geology (at top depth of sample)	05/12/17	05/12/17 Wade Ground Cohesive Conce	05/12/17 Obyee Oby	05/12/17 Obyee Oby	05/12/17 Objective Objecti	05/12/17 Made Granular Ganular	05/12/17 Made Granular Ganular	05/12/17 Made Ground Cohesive C
Analyte		Units	LOD	GAC								
Barium		mg/kg	0.60	22,100	41.8	83.8	76.8	48.3	54.1	38.5	38	69.1
Beryllium		mg/kg	0.010	12.0	0.533	2.5	1.88	1.63	1.45	0.783	1.39	1.31

Site Area(s): Whole site Phase(s): All phases

BTEX and Fuel Additives

Result > Assess	sment Criteria	I	PointID	WS202	Ws	\$203		WS205		WS207	
Limit of detectio	n > Assessm	ent		0.7 - 1	1 - 1.3	2.1 - 2.3	0.7 - 1	2.1 - 2.3	3.5 - 3.7	0.4 - 0.6	1.1 - 1.3
			Depth (m bgl)	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17
			Sample Date								
			Geology (at top depth of sample)	Made Ground Cohesive	Made Ground Cohesive	River Terrace Deposits	Made Ground Cohesive	Made Ground Cohesive	River Terrace Deposits	Made Ground Granular	Made Ground Cohesive
Analyte	Units	LOD	GAC								
1,2,4-Trimethylbenzene	mg/kg	0.009	611		<0.09			<0.09			
Benzene	mg/kg	0.009	27.0	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
Ethylbenzene	mg/kg	0.004	5,710	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Methyl t-butylether (MTBE)	mg/kg	0.010	7,480	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.007	56,300	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
Xylene - Total (Summed)	mg/kg	-999	5,920	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Xylene-m & p	mg/kg	0.010	5,920	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylene-o	mg/kg	0.010	5,920	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Site Area(s): Whole site Phase(s): All phases

Chlorinated Aliphatics

	Result > Assess	PointID	WS203	WS205		
	Limit of detection Criteria	n > Assessm	nent		1 - 1.3	2.1 - 2.3
	ontena			Depth (m bgl)	05/12/17	05/12/17
				Sample Date		
				Geology (at top depth of sample)	Made Ground Cohesive	Made Ground Cohesive
Analyte		Units	LOD	GAC		
1,1,1,2-Tetrachlo	proethane	mg/kg	0.010	108	<0.1	<0.1
1,1,1-Trichloroe	thane	mg/kg	0.007	1,580	<0.07	<0.07
1,1,2,2-Tetrachic	proethane	mg/kg	0.010	274	<0.1	<0.1
1,1,2-Trichloroet	thane	mg/kg	0.010	89.0	<0.1	<0.1
1,1-Dichloroetha	ane	mg/kg	0.008	263	<0.08	<0.08
1,1-Dichloroethe	ene	mg/kg	0.010	24.0	<0.1	<0.1
1,2-Dichloroetha	ane	mg/kg	0.005	0.67	<0.05	<0.05
1,2-Dichloropro	pane	mg/kg	0.010	3.10	<0.1	<0.1
Carbon tetrachle	oride	mg/kg	0.010	31.0	<0.1	<0.1
Chloroethane		mg/kg	0.010	904	<0.1	<0.1
Chloroform		mg/kg	0.008	99.0	<0.08	<0.08
Chloromethane		mg/kg	0.007	0.96	<0.07	<0.07
Cis 1,2-Dichloro	ethene	mg/kg	0.006	14.0	<0.06	<0.06
Dichloromethan	Dichloromethane		0.010	257	<0.1	<0.1
Hexachlorobutadiene		mg/kg	0.10	31.0	<0.1	<0.1
Hexachloroetha	ne	mg/kg	0.10	21.0	<0.1	<0.1

Gint Database: Kraft, Banbury 2.gpj

Data range: All data selected

Site Area(s): Whole site Phase(s): All phases

Chlorinated Aliphatics

	Result > Assess	ment Criteria	a	PointID	WS203	WS205
	Limit of detectior Criteria	n > Assessm	ient		1 - 1.3	2.1 - 2.3
				Depth (m bgl)	05/12/17	05/12/17
				Sample Date		
			Made Ground Cohesive	Made Ground Cohesive		
Analyte		Units	LOD	GAC		
Tetrachloroethe	ne (PCE)	mg/kg	0.005	19.0	<0.05	<0.05
Trans-1,2-Dichlo	proethene	mg/kg	0.010	21.0	<0.1	<0.1
Trichloroethene	(TCE)	mg/kg	0.009	1.20	<0.09	<0.09
Vinyl chloride		mg/kg	0.006	0.059	<0.06	<0.06

Site Area(s): Whole site Phase(s): All phases

Chlorinated Aromatics

	Result > Assess	ment Criteria	a	PointID	WS203	WS205
	Limit of detectior Criteria	n > Assessm	nent		1 - 1.3	2.1 - 2.3
	ontona			Depth (m bgl)	05/12/17	05/12/17
				Made Ground Cohesive	Made Ground Cohesive	
Analyte		Units	GAC			
1,2,3-Trichlorob	enzene	mg/kg	0.020	102	<0.2	<0.2
1,2,4-Trichlorob	enzene	mg/kg	0.10	265	<0.1	<0.1
1,2-Dichloroben	zene	mg/kg	0.10	2,020	<0.1	<0.1
1,3-Dichloroben	zene	mg/kg	0.008	30.0	<0.08	<0.08
1,4-Dichloroben	zene	mg/kg	0.005	584	<0.05	<0.05
Chlorobenzene		mg/kg	0.005	58.0	<0.05	<0.05
Hexachlorobenz	zene	mg/kg	0.10	105	<0.1	<0.1

Site Area(s): Whole site Phase(s): All phases

Chlorinated Phenols

	Result > Assess	ment Criteria	a	PointID	WS203	WS205
	Limit of detectior Criteria	n > Assessm	ient		1 - 1.3	2.1 - 2.3
	ontona			Depth (m bgl)	05/12/17	05/12/17
				Sample Date		
				Made Ground Cohesive	Made Ground Cohesive	
Analyte		Units	LOD	GAC		
2,4,6-Trichlorop	henol	mg/kg	0.10	2,700	<0.1	<0.1
2,4-Dichlorophe	nol	mg/kg	0.10	2,700	<0.1	<0.1
2-Chlorophenol		mg/kg	0.10	2,700	<0.1	<0.1
Chlorophenols - (Summed Isome		mg/kg	-999	2,700	0.1	0.1

Site Area(s): Whole site Phase(s): All phases

Kraft, Southam Road Tank Investigation

Commercial, SOM=1%

Explosives

Re	esult > Assessm	ient Criteria	1	PointID	WS203	WS205
	nit of detection	> Assessm	ent		1 - 1.3	2.1 - 2.3
				Depth (m bgl)	05/12/17	05/12/17
				Sample Date Geology (at top depth of sample)	Made Ground Cohesive	Made Ground Cohesive
Analyte		Units	LOD	GAC		
2,4-Dinitrotoluene		mg/kg	0.10	3,720	<0.1	<0.1
2,6-Dinitrotoluene		mg/kg	0.10	1,850	<0.1	<0.1

Site Area(s): Whole site Phase(s): All phases

Halogonated Hydrocarbons

	Result > Assess	ment Criteria	à	PointID	WS203	WS205
	Limit of detectio	n > Assessm	ent		1 - 1.3	2.1 - 2.3
				Depth (m bgl)	05/12/17	05/12/17
				Sample Date		
				Geology (at top depth of sample)	Made Ground Cohesive	Made Ground Cohesive
Analyte		Units	LOD	GAC		
Bromobenzene		mg/kg	0.010	91.0	<0.1	<0.1
Bromodichloron	nethane	mg/kg	0.007	2.00	<0.07	<0.07
Bromoform		mg/kg	0.010	714	<0.1	<0.1

Site Area(s): Whole site Phase(s): All phases

Metals

Result > Assess	sment Criteria		PointID	w	S202	WS203	W	S205		WS207	
Limit of detection	n > Assessme	ent		0 - 0.1	0.7 - 1	1 - 1.3	0.7 - 1	2.1 - 2.3	0 - 0.1	0.4 - 0.6	1.1 - 1.3
Cinteria			Depth (m bgl)	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17
			Sample Date Geology (at top depth	_	Made Ground Cohesive	Made Ground Cohesive	Made Ground Cohesive	Made Ground Cohesive	Made Ground Granular	Made Ground Granular	Made Ground Cohesive
			of sample)	Topsoil	Made	Made	Made	Made	Granu	Granul	Made
Analyte	Units	LOD	GAC								
Arsenic	mg/kg	0.60	635	16.5	52.6	81.3	24.6	18.7	9.84	21.9	14.5
Boron	mg/kg	1.00	207,000	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	mg/kg	0.020	223	0.0373	0.64	0.347	0.452	< 0.02	0.0389	0.538	<0.02
Copper	mg/kg	1.40	69,800	12.1	23.5	15.7	22.5	16.5	21.6	<14	15.8
Hexavalent Chromium	mg/kg	0.60	24.0	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Lead	mg/kg	0.70	1,390	16.6	29.4	22.7	37.3	16.2	12.7	13.6	14.1
Mercury	mg/kg	0.14	1,110	<0.14	<1.4	<0.14	<1.4	0.922	0.623	<1.4	0.746
Nickel	mg/kg	0.20	1,710	15.7	56.2	64.3	39.4	30	9.48	28	35.5
Selenium	mg/kg	1.00	12,300	<1	<10	<10	<10	<1	<1	<10	<1
Vanadium	mg/kg	0.20	9,220	32.1	113	135	76.2	67.7	45.7	54	62.7
Zinc	mg/kg	1.90	1,050,0 00	143	121	117	99	84.6	84.4	66.4	81.3

Site Area(s): Whole site Phase(s): All phases

Other

	Result > Assess	ment Criteria	a	PointID	WS203	WS205	
	Limit of detection Criteria	n > Assessm	ient		1 - 1.3	2.1 - 2.3	
				Depth (m bgl)	05/12/17	05/12/17	
				Sample Date			
			Geology (at top depth of sample)	Made Ground Cohesive	Made Ground Cohesive		
Analyte		Units	LOD	GAC			
2-Chloronaphth	alene	mg/kg	0.10	370	<0.1	<0.1	
Carbon Disulph	ide	mg/kg	0.007	11.0	<0.07	<0.07	
Styrene		mg/kg	0.010	3,170	<0.1	<0.1	

Site Area(s): Whole site Phase(s): All phases

PAHs

	Result > Assessr	Result > Assessment Criteria		PointID	WS202	W	5203		WS205		WS207	
	Limit of detection > Assessment Criteria			0.7 - 1	1 - 1.3	2.1 - 2.3	0.7 - 1	2.1 - 2.3	3.5 - 3.7	0.4 - 0.6	1.1 - 1.3	
	Uniteria		Depth (m bgl)	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	05/12/17	
	(al		Sample Date Geology (at top depth of sample)	pun	Made Ground Cohesive	River Terrace Deposits	Made Ground Cohesive	Made Ground Cohesive	River Terrace Deposits	Made Ground Granular	Made Ground Cohesive	
Analyte		Units	LOD	GAC								
Benzo (a) pyrer	ie	mg/kg	0.015	38.0	<0.015	<0.015	<0.015	0.057	<0.015	<0.015	<0.015	<0.015
Naphthalene		mg/kg	0.009	193	<0.009	<0.009	< 0.009	< 0.009	<0.009	< 0.009	<0.009	<0.009

Site Area(s): Whole site Phase(s): All phases

Pesticides, Herbicides and Insecticides

	Result > Assess	ment Criteria	a	PointID	WS203	WS205
	Limit of detection > Assessment Criteria			1 - 1.3	2.1 - 2.3	
				Depth (m bgl)	05/12/17	05/12/17
				Sample Date		
				Geology (at top depth of sample)	Made Ground Cohesive	Made Ground Cohesive
Analyte		Units	LOD	GAC		
Pentachlorophe	nol	mg/kg	0.10	406	<0.1	<0.1

Site Area(s): Whole site Phase(s): All phases

Phenols

	Result > Assessment Criteria			PointID	WS203	WS205
	Limit of detectior Criteria	n > Assessm	ient		1 - 1.3	2.1 - 2.3
	entena		I	Depth (m bgl)	05/12/17	05/12/17
				Sample Date		
				Geology (at top depth of sample)	Made Ground Cohesive	Made Ground Cohesive
Analyte		Units	LOD	GAC		
2,4-Dimethylphen	ol	mg/kg	0.10	15,700	<0.1	<0.1
2-Methylphenol (o-Cresol)	mg/kg	0.10	160,000	<0.1	<0.1
4-Methylphenol		mg/kg	0.10	160,000	<0.1	<0.1
Methylphenols To (Summed)	otal	mg/kg	-999	160,000	0.1	0.1
Phenol		mg/kg	0.10	760	<0.1	<0.1

Site Area(s): Whole site Phase(s): All phases

Phthalates

Result > Assessment Criteria			PointID	WS203	WS205
Limit of dete Criteria	ction > Assessm	ient		1 - 1.3	2.1 - 2.3
			Depth (m bgl)	05/12/17	05/12/17
			Sample Date		
			Geology (at top depth of sample)	Made Ground Cohesive	Made Ground Cohesive
Analyte	Units	LOD	GAC		
Bis (2-ethylhexyl) phthalate	mg/kg	0.10	85,200	<0.1	<0.1
Butyl benzyl phthalate	mg/kg	0.10	940,000	<0.1	<0.1
Diethyl phthalate	mg/kg	0.10	144,000	<0.1	<0.1
Di-n-butyl phthalate	mg/kg	0.10	15,400	<0.1	<0.1
Di-n-octyl phthalate	mg/kg	0.10	89,100	<0.1	<0.1

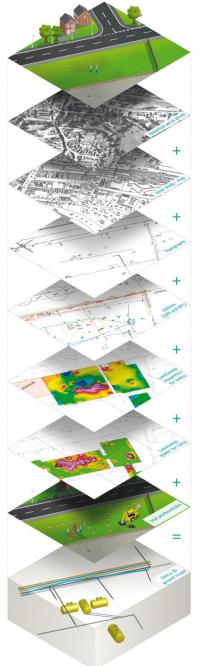
Site Area(s): Whole site Phase(s): All phases

VOCs

	Result > Assess	ment Criteria	a	PointID	WS203	WS205
	Limit of detection > Assessment Criteria				1 - 1.3	2.1 - 2.3
				Depth (m bgl)	05/12/17	05/12/17
				Sample Date Geology (at top depth of sample)	Made Ground Cohesive	Made Ground Cohesive
Analyte		Units	LOD	GAC		
iso-Propylbenz	ene	mg/kg	0.005	1,300	<0.05	<0.05
n-Propylbenzer	10	mg/kg	0.010	3,860	<0.1	<0.1

Site Area(s): Whole site Phase(s): All phases

Appendix F


)

110

ZETICA REPORTS

zeticauxo

Pre-Desk Study Asses	ssment		
Site:	Ruscote Avenue, Banbury, Oxfordshire		
Client:	WSP		
Contact:	Martin Lucass		
Date:	24 th November 2017		
Pre-WWI Military Activity on or Affecting the Site	None identified.		
WWI Military Activity on or Affecting the Site	None identified.		
WWI Strategic Targets (within 5km of Site)	 The following strategic targets were located in the vicinity of the Site: Banbury National Filling Factory (NFF). Industries important to the war effort, including iron foundries and engineering works. Military barracks. Transport infrastructure and public utilities. Anti-Aircraft (AA) guns. 		
WWI Bombing	None identified on the Site.		
Interwar Military Activity on or Affecting the Site	None identified.		
WWII Military Activity on or Affecting the Site	None identified.		
WWII Strategic Targets (within 5km of Site)	 The following strategic targets were located in the vicinity of the Site: Industries important to the war effort, including aluminium works. Military barracks. Transport infrastructure and public utilities. AA and anti-invasion defences. 		
WWII Bombing Decoys (within 5km of Site)	1No. located approximately 4.7km north of the Site.		
WWII Bombing	During WWII the Site was located in the Municipal Borough (MB) of Banbury, which officially recorded 21No. High Explosive (HE) bombs with a very low bombing density of 4.1 bombs per 405 hectares (ha).		
	No readily available records have been found indicating that the Site was bombed.		
Post-WWII Military Activity on or Affecting the Site	None identified.		
Recommendation	No readily available records of bombing or other significant military activity on the Site have been found. It is considered that the Site is likely to have a low Unexploded Ordnance (UXO) hazard level.		
	A detailed desk study, whilst always prudent, is likely to do no more than confirm a low UXO hazard level for the Site.		
	review of readily available records. Caution is advised if you plan to action work based on this summary. It is shange the level of identified hazard.		
study and risk assessment has been o	entially significant source of UXO hazard has been identified on the Site, the requirement for a detailed desk confirmed and no further research will be undertaken at this stage. It is possible that further in-depth research y and risk assessment may identify other potential sources of UXO hazard on the Site.		

Location:	KRAFT Site, Ruscote Avenue, Banbury
Client:	WSP
Ref:	P7380-17-R1-A
Date:	12 th January 2018

Zetica Limited Units 15 / 16 Hanborough Business Park Long Hanborough, OX29 8LH United Kingdom Tel: 01993-886682 Fax: 01993-886683 Email: <u>GroundCheck@zetica.com</u> WebSite: www.zetica.com

SUMMARY REPORT

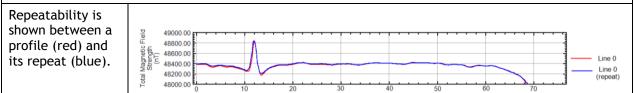
Location:Kraft Factory, Ruscote Avenue, BanburyClient:WSPReference:P7380-17-R1-A

1. INTRODUCTION WSP (the Client) commissioned Zetica Ltd to undertake a GroundCheck® Scope geophysical survey across an area of the KRAFT factory site on Ruscote Avenue, Banbury (the Site). The survey was undertaken to verify the existence of an underground storage tank (UST). The results are intended to assist the Client in determining whether the Site is suitable for development. The survey was undertaken on 8th January 2018. The Site The Site is a ~0.1ha area within the grounds of the Kraft factory in Banbury as shown in Figure1 below. Information provided by the Client indicated that a UST could be located within the highlighted in orange in Figure 1. North Site \frown Historic location of UST Source: Google Maps Figure 1: Site Location.

2. METHODO	LOGY					
Summary of	The Ground	Check [®] survey utilised a	combination o	of techniques comprising:		
techniques	 Magnetometer profiling (magnetics): to map ferrous metallic targets such as USTs, reinforced structures, and utility services to 4-5m.bgl depending on size of targets and burial setting. 					
		• Time-domain electromagnetic (TDEM) profiling: to map metallic targets such as USTs, reinforced structures, pipes and other scrap metal materials.				
		es and utility services to		o characterise the depth of h of 1-2m depending on ground		
	• Tracing	utility services using rac	lio frequency l	ocation (RFL) system.		
Useful Link	http://www	zetica.com/methods/i	ndex.htm			
Summary of survey design	Technique	Configuration	Line Spacing	Station interval		
	Magnetics	Dual sensor, vertical gradient mode.	1m	10Hz sampling rate, nominal 0.25m sampling interval		
	TDEM	Differential mode.	1m	10Hz sampling rate, nominal 0.25m sampling interval		
	GPR	250 MHz and 700MHz antennas	1m	2.5cm 1m x 1m orthogonal grid		
	RFL Active and passive N/A N/A					
Limitations	 The following clarifies some of the limitations relevant to the survey:- Surface metal objects such as vehicles, fences, reinforced concrete, walls and above ground pipework can mask the subsurface response using magnetics and TDEM profiling methods. Factors such as multiple utility services or conductive sub-surface conditions (such as water retentive soils) can reduce the detectability of utility services or structures. GPR depth of detection is strongly dependent on the material properties of the ground. GPR signal can be attenuated by conductive soils and scattered by in ground targets (clutter) resulting in reduced detection depths. Depths of interpreted features were indicated where possible and were measured relative to the ground surface. These are based on data modelling and may not necessarily indicate the exact depth. The detectability depth for potential features depends on target size and Sitespecific signal to noise ratios. Large diameter features will be detectable at greater burial depth than small diameter features in the same environment. RFL depths are derived from an induced signal that is centred on the utility service. The diameter of the utility service has not been considered. 					

3. DATA

Data Presentation


The GroundCheck[®] survey results are presented as an interpretative CAD drawing and figures providing plots of the geophysical data. These are referenced below.

Zetica drawings P7380-17-DWG02-A (Map of Residual Magnetic Field Strength - Bottom Sensor (magnetics)), P7380-17-DWG03-A (Map of 3D Analytic Signal Amplitude - Bottom Sensor (magnetics)) and P7380-17-DWG04-A (Map of Secondary Decay Voltage (TDEM)) comprise colour-coded grids of the geophysical data with the colours representing the amplitude of the measured property. Cool colours (blue and cyan) represent relatively low values whilst warm colours (red and magenta) correspond to relatively high values.

Figure Reference	Title
Figure 1	Site Location
Figure 2	Data repeatability (magnetics - Total Magnetic Field Strength)
Figure 3	Data repeatability (TDEM - Secondary Decay Voltage)
Figure 4	Example radargram (utility service)
Drawing Reference	Title
P7380-17-DWG01-A	Summary Interpretation Plan
P7380-17-DWG02-A	Map of Residual Magnetic Field Strength - Bottom Sensor (magnetics)
P7380-17-DWG03-A	Map of 3D Analytic Signal Amplitude - Bottom Sensor (magnetics)
P7380-17-DWG04-A	Map of Secondary Decay Voltage (TDEM)

Data Quality

The quality of the magnetics and TDEM data across the Site was good. Figures 2 and 3 show an example of a repeat profile line for the magnetics and TDEM datasets respectively. Both figures show good repeatability and relatively low levels of background noise. Above ground fencing and reinforced concrete in some areas of the Site has resulted in elevated levels of background noise.

Figure 2: Data repeatability (magnetics - Total Magnetic Field Strength)

Repeatability is shown between a profile (red) and its repeat (blue).

The quality of the GPR data across the Site was typically good. The GPR survey achieved an estimated maximum detection depth of ~1.2m across the Site. This is derived from the average two-way travel time (TWTT) to the 'noise floor' (the time-depth at which the amplitude of noise exceeds that of the signal) of approximately 24ns, and a modelled signal velocity through the near-surface materials of ~100mm/ns. The signal velocity was determined using the hyperbolic curve-fitting method applied to selected anomalies observed within the datasets. The maximum detection depth is based on a utility service. Smaller features would have a lower maximum depth of detection.

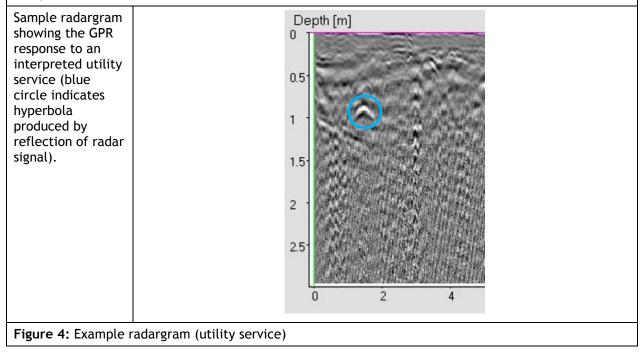

Figure 3: Data repeatability (TDEM - Secondary Decay Voltage)

Figure 4 comprises a grey-scale plot (termed a 'radargram') of the GPR. The colours of the radargram represent the measured GPR signal amplitude within the slice. Mid-tones (grey) represents low amplitude, white represents high positive amplitudes and black represents high negative amplitudes.

Where linear features have been detected by GPR it is not always possible to determine whether they are related to utility services or to establish the type of utility service. Detected linear features are presented with an appropriate line type in Zetica drawing P7380-17-DWG01-A (Summary Interpretation Plan).

4. RESULTS

The table below provides a summary of identified features detected on the Site. This table should be read in conjunction with Zetica Drawing P7380-17-DWG01-A (Summary Interpretation Plan). Reference should also be made to drawings P7380-17-DWG02-A (Map of Residual Magnetic Field Strength - Bottom Sensor (magnetics)), P7380-17-DWG03-A (Map of 3D Analytic Signal Amplitude - Bottom Sensor (magnetics)) and P7380-17-DWG04-A (Map of Secondary Decay Voltage (TDEM)).

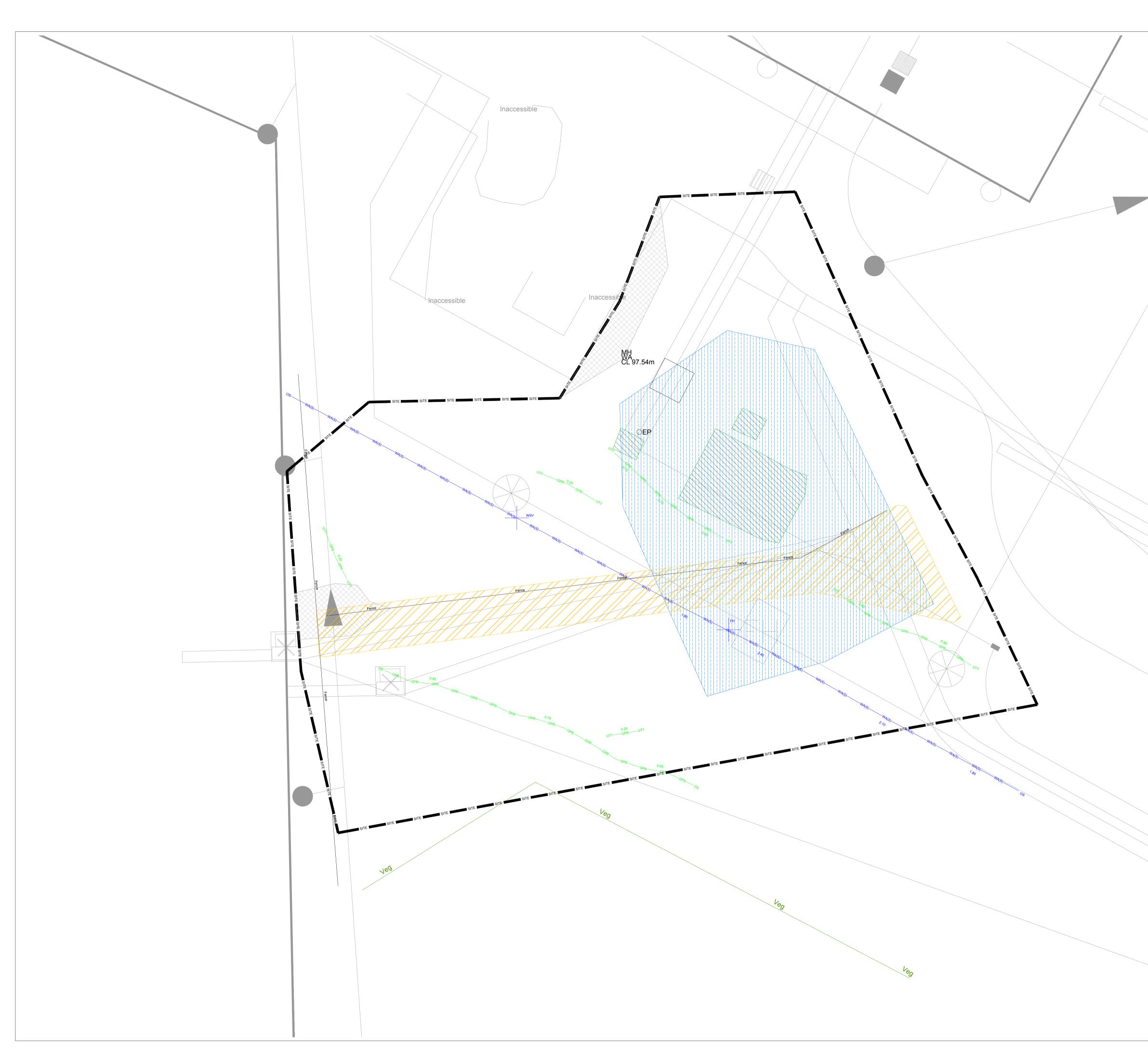
Buried Features

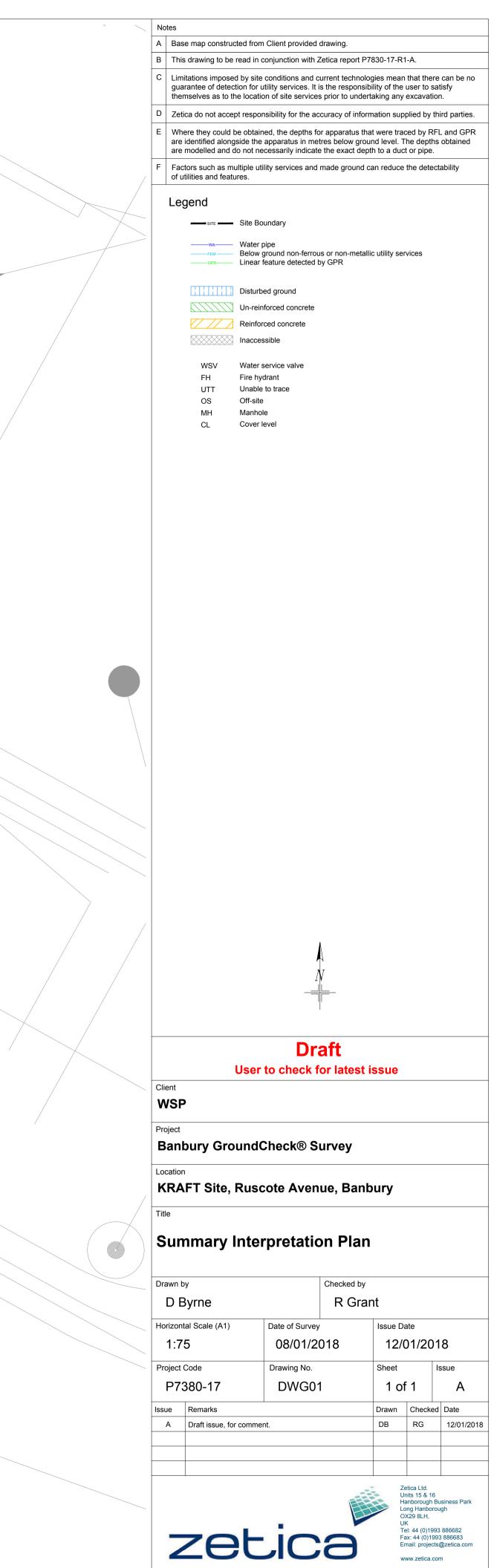
Buried reduites				
Feature	No.	Estimated Depth Range (m)	Comments	
Disturbed ground	1	-	An approximately 10m x 14m area of disturbed ground has been identified within the Site. The area corresponds to the anticipated location of the UST. There is no evidence of a UST being present in this area.	
Water pipe	1	1.80-2.40m		
Linear GPR feature	6	0.20-0.85m	These features are interpreted as utility services.	
Reinforced concrete	1	0.04-0.10m	A reinforced concrete footpath was identified running through the Site.	

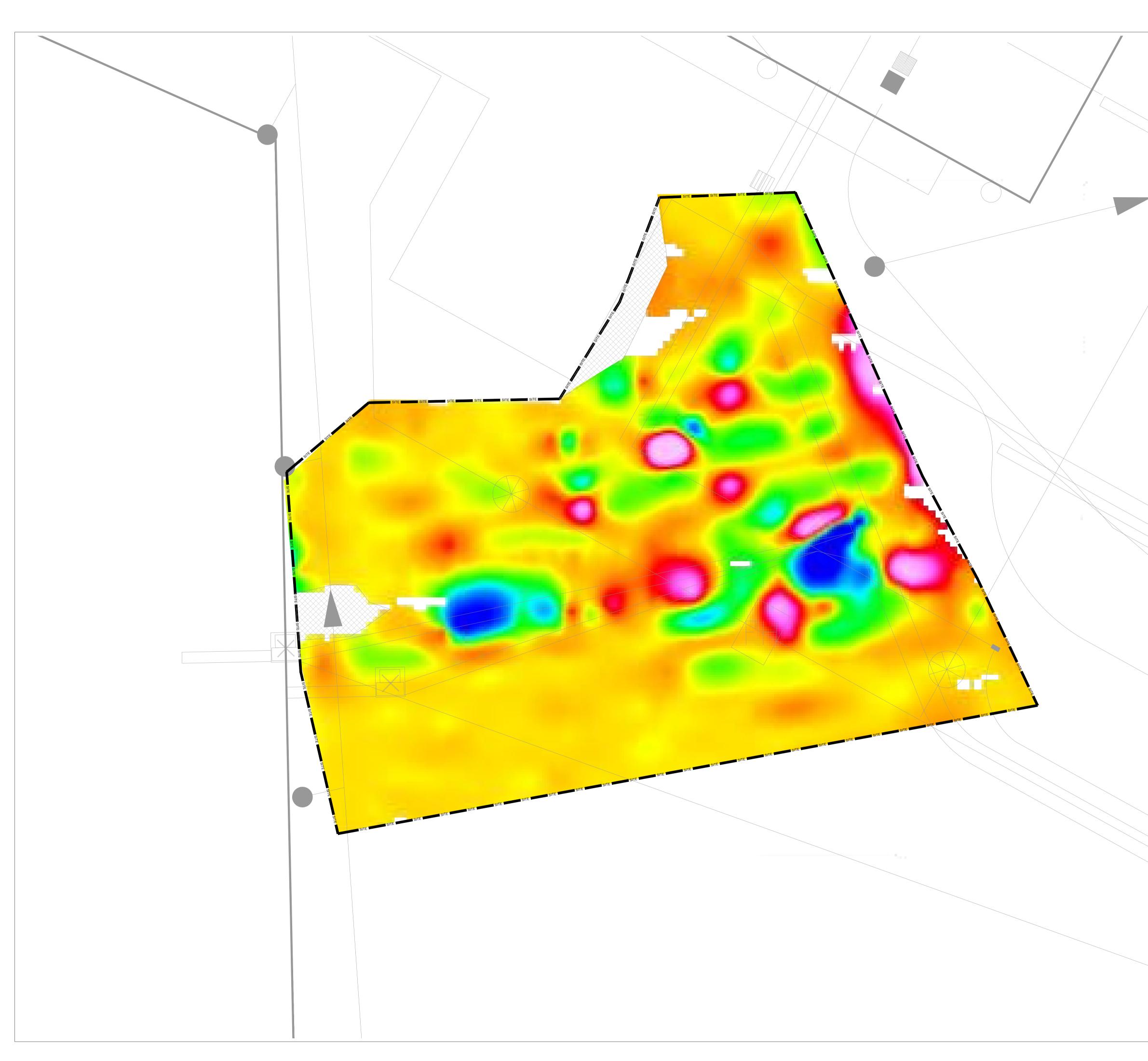
5. SUMMARY	
Summary	The GroundCheck [®] survey has identified an area of disturbed ground across the anticipated location of the UST. There is no evidence of a UST being present in this area.
	The survey has also identified a number of utility services and a section of reinforced concrete.
	The survey results are summarised on Zetica Drawing P7380-17-DWG01-A (Summary Interpretation Plan).

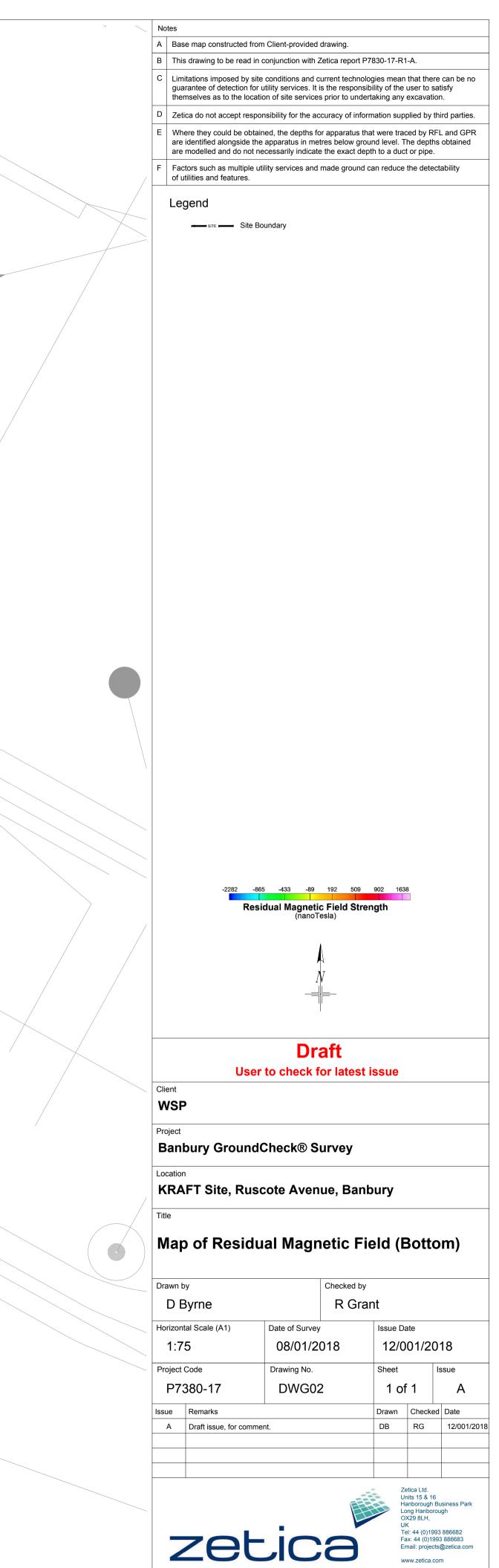
Appendix 1: General Notes

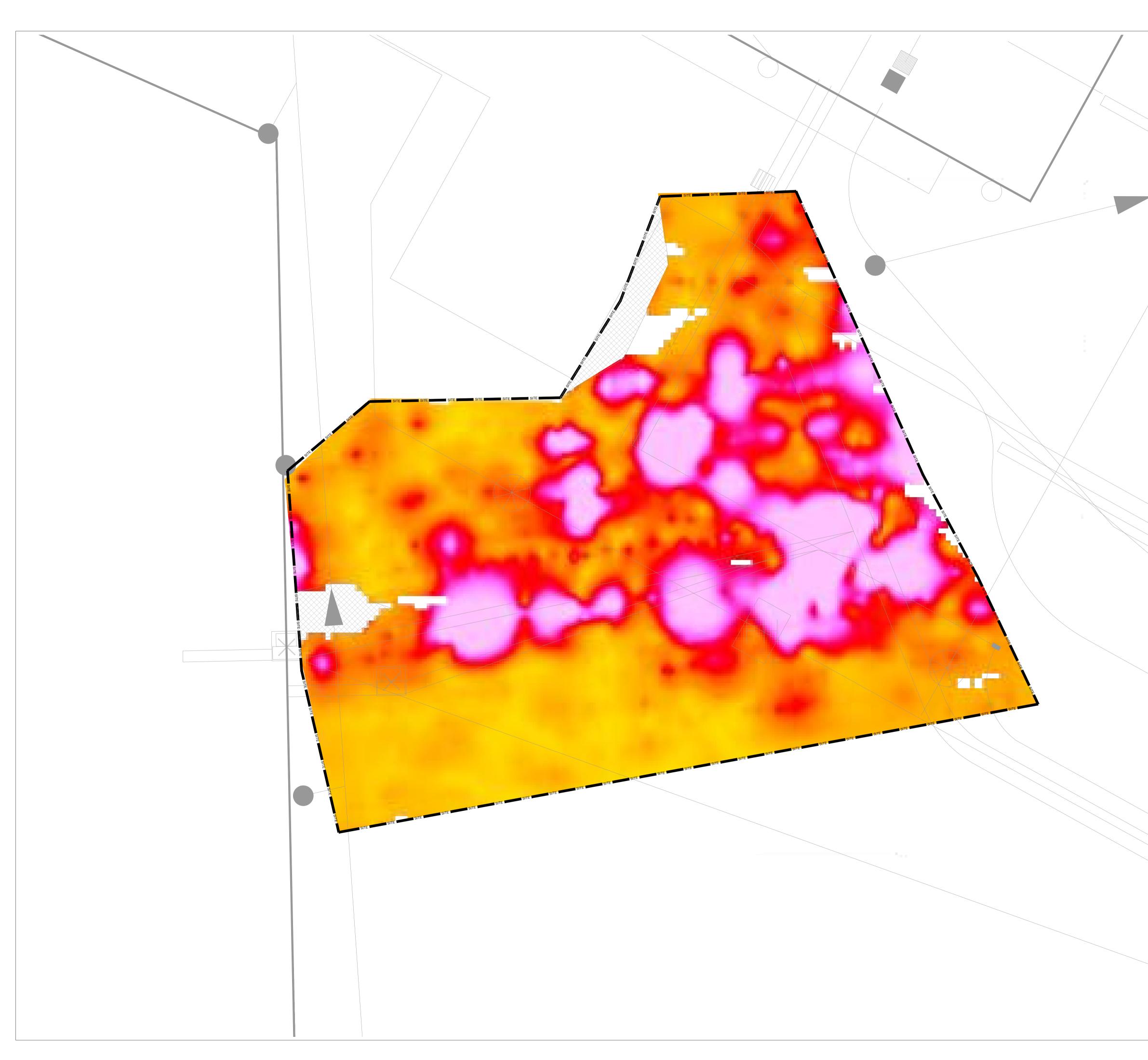
- 1. This report has been prepared in relation to the specific requirement of the contract or commission. The report should not be used by third parties without prior consultation with Zetica Ltd. Any advice, recommendations, or statements within the report should be addressed only in the context of the report as a whole.
- 2. The copyright for this report remains with Zetica Ltd. No part of this report may be reproduced, published or amended without prior written consent from Zetica Ltd.
- 3. The report refers to the conditions of the Property at the time of investigation. Zetica Ltd cannot accept liability for subsequent changes of Property conditions.
- 4. Zetica Ltd may have relied on externally provided information. Under no circumstances does Zetica Ltd accept responsibility for the accuracy of such information or data supplied.
- 5. By their nature, exploratory points, such as boreholes or trial pits, can only provide information on a relatively limited area or volume of a Property. In general, the conditions encountered may vary between exploratory points.
- 6. It should be noted that the detection performance is dependent on a sufficient physical (e.g. Magnetic) contrast between the item for detection and host materials. Where significant noise is present (e.g. an abundance of other Magnetic features in the host material), sufficient detection may not be possible.
- 7. Interpretation relies largely on experience of similar conditions. Site-specific conditions can create variations that may not be detectable by non-intrusive investigation techniques. It should be noted that the detail of an interpretation might vary from that identified by later intrusive investigation, although the general identification of a feature should not vary.
- 8. The report has been written in line with relevant guidance and legislation in use at the time of report compilation Subsequent improvement in techniques, changes in legislation, or changes in Site conditions, may render parts of this report obsolete. If the report is used after such changes have occurred, or at a time in excess of 1 year of the issue date, it would be prudent to contact Zetica Ltd to reassess the report under a new contract.

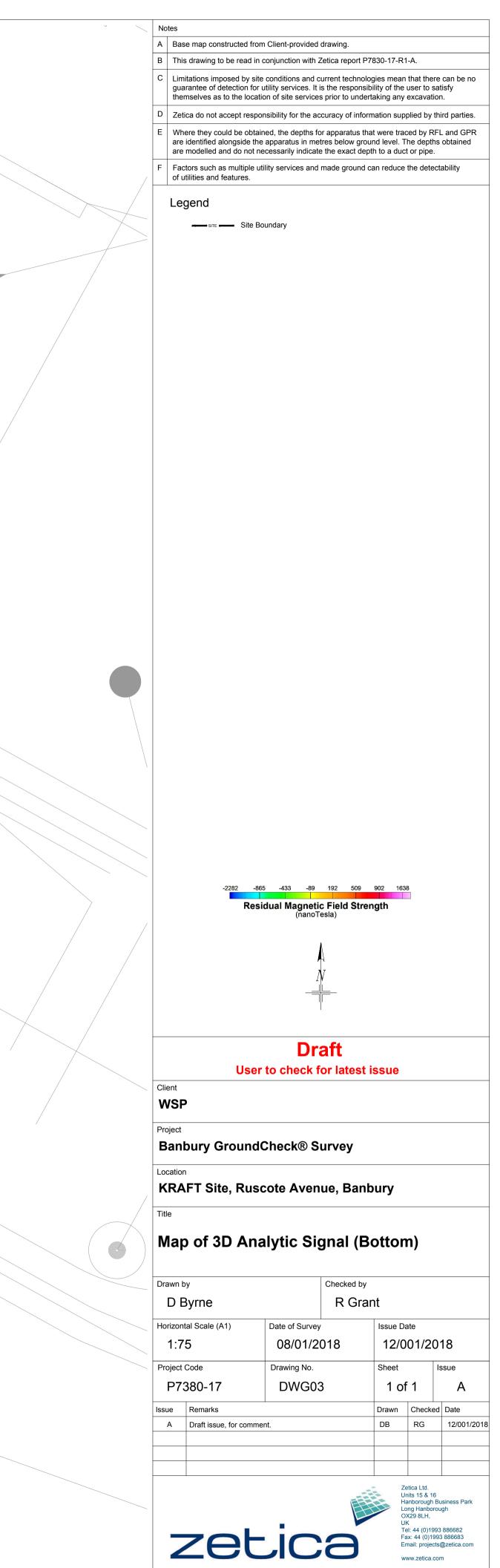

Established for over 26 years, Zetica's services include

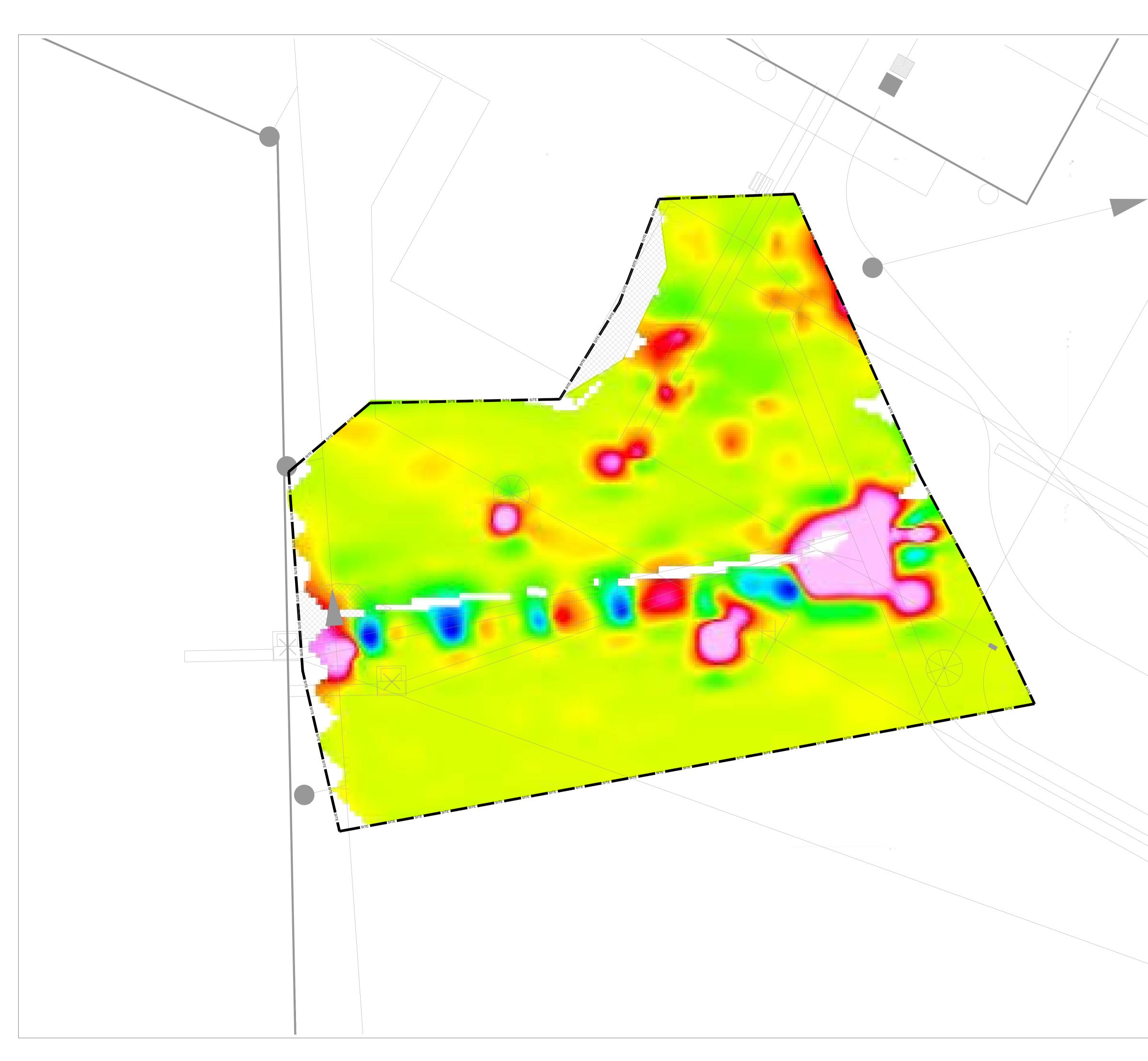

- Desk studies
- Unexploded ordnance risk assessments and risk mitigation
- Topographic surveys
- Utility services detection
- Archaeological Geophysics
- Environmental and engineering geophysical surveys
- Fransport infrastructure surveys
- Pipeline & cable route surveys
- Intrusive ground investigations

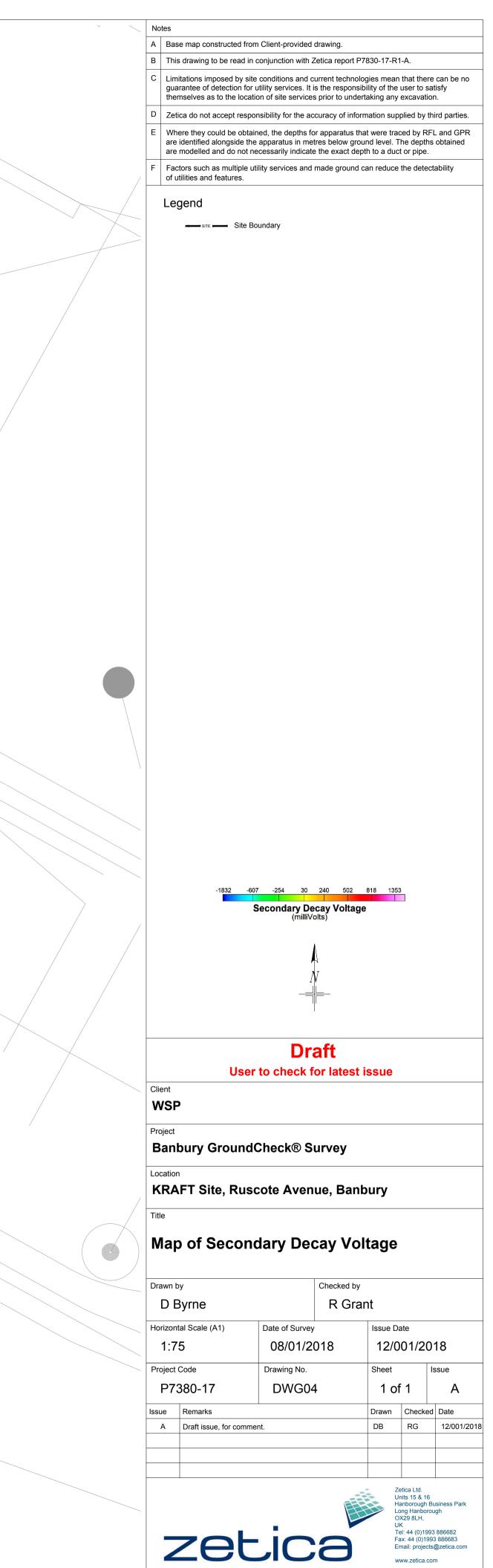

More details are available at


www.zetica.com









The Victoria 150-182 The Quays Salford M50 3SP

wsp.com

Head Office

Arden House Arden Road Heartlands Birmingham B8 1DE

Tel 0121 322 2225 Email info@dsmgroup.info Web www.dsmgroup.info

Contents

0.0 DOCUMENT STATUS

- 0.1 Document Authorisation
- 0.2 Document History
- **1.0 DOCUMENT OUTLINE**
- 2.0 HEALTH AND SAFETY FILE INFORMATION
- 2.1 Outline Description of the Works Undertaken
- 2.2 Contract Dates
- 2.3 Contract Directory
- 2.4 Services
- 2.5 Other Known Residual Hazards
- 2.6 Details of Plant and Equipment Left on Site
- 2.7 Test Results for Materials Left or Imported onto Site
- **3.0 WASTE SUMMARY DETAILS**
- 3.1 Summary of Wastes
- 3.2 Waste Tickets
- 4.0 IMPORTED MATERIALS
- **5.0 LEGAL NOTIFICATIONS**
- 6.0 SITE ENVIRONMENTAL MONITORING

0.0 Document Status

0.1 Document Authorisation:

	Author	Approved
Name	Victoria McMahon	Robert Cooke
Position	Asst. Project Co Ordinator	Quality & Environmental Manager
Signature		

Note: Electronic versions of this document do not contain signatures

0.2 Document History:

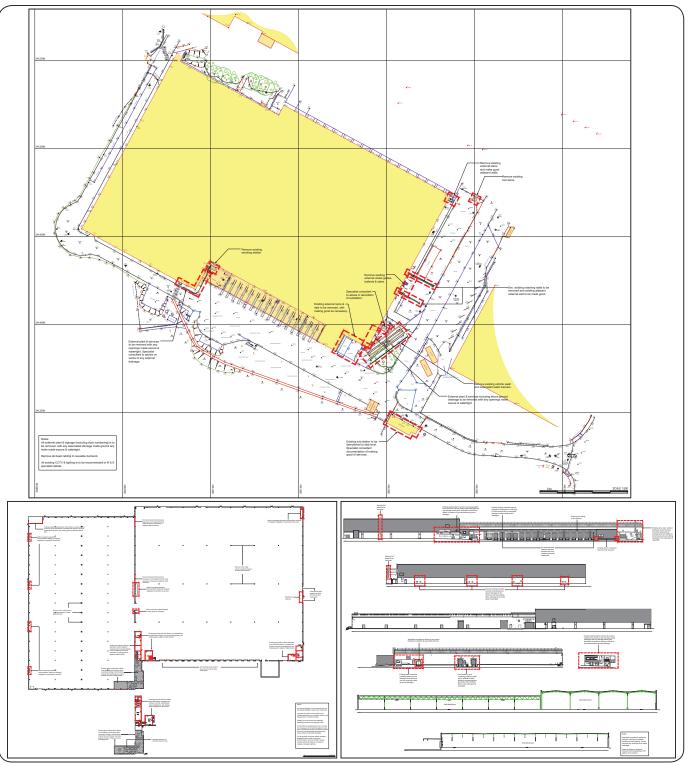
Review Date	Version No.	Section	Comment / Amendments	Initials
04 Feb 2019	1		Initial Issue	VMc

1.0 Document Outline

This document contains the contract information relating to the works undertaken on site. It is divided into sections, detailed below, that group together the available information into sections for use by interested parties as required.

- Section Two Health and Safety File Information
- Section Three Waste Summary Details
- Section Four Copies of waste and material transportation notes and tickets
- Section Five Legal Notifications for DSM's Works
- Section Six Site Environmental Monitoring

2.0 Health and Safety File Information


This section contains the information relating to the future use of the site. The information includes that required by the principle designer when preparing the Health and Safety File for the site overall.

2.1 Outline Description of The Works Undertaken

The project works undertaken at the Banbury 200 unit included the internal strip of two warehouse units, identified offices and M&E fittings. The internal rain water items were retained. The identified buildings were cleared of all soft strip, ancillary items and asbestos containing materials. The substation was demolished, and the floor slab and foundations removed up to one meter below ground level.

All waste was removed from site to waste facilities holding a suitable permit.

The following drawing illustrates the scope of works.

SITE LOCATION Address JDE Building, Rus Access off Southa		ue, Ba	anbury		Postcode	OX16 2N	
GENERAL INFORMATIO	N (Astec T	M			-		\neg
Principal Contractor	DSA	1 () others				5
Welfare facilities by	DS/		others				_
Demo works Fencing by	DSA	1	others				
Fencing specification	🛑 hero	15	hoarding	🗋 po	alisade 🔵	other (be	low)
ASBESTOS							
NON-NOTIFIABLE present	YES N	ר ר	Read asbe	stos surv	vey in site pa orks. Do not	commence	
NOTIFIABLE present		n	demolitio	n until cl	earance cert	ification is	
Asbestos removal by	DSA	1 (others				۲ I
SERVICES							
Disconnections by	DS/	М	others	\square			⊃
Status of services di	connecti	ons c	an be found ir	n 'sectior	n 6' of the sit	e pack	
IF YOU DO NOT HAVE			NFIRMATION DER IT TO BE		T IS DISCO	NNECTED	
Any known live or retaine Any known drainage / sew			-				
SPECIFICATION Floorslabs Foundations	offices, ro	n and oller s E, CA	l breakout sla shutters, dock T ladder,signa ames.	leveller,	, column pro	tection, lor	
FINISHES							
Fencing after demo	heras	5	hoarding	pa 🗋	ilisade 🗌	other (be	low)
- fencing notes	N/A						
Ground after demo -finishing notes	levell	ed	🗋 seeded	🗌 tu	rfed 🗌	other (be	low)
Additional comments	Additional comments Rainwater goods to remain in situ throughout. Building to be left secure throughout programme (external doors etc).						
Signed			Drwg No:	C112	0.81	rev	Α
			Project		ilding, Banb		- 1
A Site Issue Drawing	16 08 18	AB	,			-	
rev. revision notes	date	by	Title	Scop	pe of Wo	orks	
date 16/08/18		Arden Arden	House Road				
scale n/a @A3		Heartla Birmin	ands gham		•sn	1 E-i	
drawn Andrew Brain		B8 1D Tel: +4 Tel: +4	E 44 (0) 121 322 222 44 (0) 121 322 222	77	ww.dsmgroup.	info	
checked Tony McGovern		Email:	mail@dsmgroup.ir	nfo de	commission / demo	lish / decontamina	ite

This drawing must not be copied or reproduced without written permission or consent from DSM Demolition Ltd. Only figured dimensions to be taken from this drawing, do not scale. The Author of this drawing does not accept any liability for details or information provided by outside organisations. Boundaries are shown for indicative purposes only, all boundaries are to be confirmed by the legal owner.

2.2 Contract Dates

20th August 2018 – 2nd November 2018

2.3 Contract Directory

The following individuals and organisations were involved with the works DSM undertook on site.

Client	
Astec TM ltd	Contact – Stephen Broadhurst
Brookfield Farm	Tel – 07968 556576
Nuneaton	
Church End	
Ansley	
CV10 0QU	

Principle Designer

Curran Web Ltd	Contact – Jim Curran
Vale Park	Tel – 01386 765189
Enterprise Way	
Evesham	
WR11 1GS	

Contractor

DSM Demolition Limited	Contact – Billy Young
Arden House	Tel – 0121 322 2225
Arden Road	
Heartlands	
Birmingham	
B8 1DE	

2.4 Services

All installations on site were disconnected prior to works commencing by the client.

- Electrical isolation certificate attached.

						ELECTRICAL CONTRAC
	Isolatio	on Permit	/ Re	port		
Company DSM Group						
Site JDE building					Date	20/08/2018
Location and details of Site audit to check elect outgoing to enable der Note; all complete and	ctrical services already i nolition works.	solated an	d ar	e proved	dead at util	lities incoming and
Method Statement Ref	ference(s) n/a					
Risk Assessments Ref						
	ork must be in possession of rele	vant Method S nd approved b			Risk Assessm	ents. These must have been
Equipment affected by	the withdrawal: all elect	rical servi	ces.			
I hereby authorise the	withdrawal of service of	the equip	nent	describe	d above	
Name Keiron Jones	Signature		Cor	npany DS	SM group	
Electrical Services to	be Isolated					
Service main incomes	Location			Means removed		
Service	Location			Means		
Service	Location			Means		
Authority to commen	ice work					
	stem and equipment ide the work described to p				permit and Date	d am satisfied that it is
-	Name	Signa	ture		Time	Date
Responsible Person (Elec)	Steven day	S.d			8.30am	20/08/2018
Authorised Person						
6. Withdrawal of Perr I have inspected the sy it is safe to remove the	stem and equipment and	l am satisf	ied t	hat the wo	ork is comp	leted or suspended and
	Name	Signat	ture		Time	Date
Responsible Person (Elec)	N/a service made redundant					
Authorised Person						

2.5 Other Known Residual Hazards

This section contains the details any site residual hazards known to DSM, and details of any hazardous materials used by DSM in the course of the works that remain on site. Details of the residual hazards posed by services on site are contained in section 2.4.

No other known residual hazards remain on site.

2.6 Details of Plant and Equipment Left on Site

This section contains the details, operating instructions, maintenance details etc of any equipment installed as part of DSM's works that remains on site.

No plant or equipment was left on site as part of DSM's works.

2.7 Test Results for Materials Left on Site

This section contains the test results for any materials remaining on to site. This includes materials such as site produced 6F2, 6F3, Type One Sub-Base etc.

No materials were left on site.

3.0 Waste Summary Details

Details of all the wastes produced on site and the disposal and treatment routes are contained within this section. For the contract the amount of material recycled, recovered and re-used by weight is calculated [Demolition Index DI] and where appropriate the amount of recycled, recovered and re-used material retained for future site use is calculated [Retained Material Index RMI].

3.1 Summary of Wastes

This section summarises all the wastes produced by the works including waste types; waste carriers used, waste facilities used and details of waste quantities and loads moved.

Site Waste Management Plan - Summary of Produced Waste

C11281

Final

Phase Number Not Applicable Date of Issue 04 Feb 2019

Version Number 1

Overall Achieved Recycling Rates

Parameter	Target	Actual
DI - Demolition Index	98	95
RMI - Retained Material Index	n/a	n/a

Summary of Wastes

Contract Name

Contract Number

Reason For Issue

(Amounts to the nearest whole tonne)

Waste / Material	EWC Code	Operation	Facility	Carrier	Loads		Arisings	(Tonnes)	
Туре	/ Material		Code	Code		Fore	ecast	Act	ual
			Number	Number		Total	RRR'd	Total	RRR'd
Concrete & Brick	17 01 07					500	500	469	400
Concrete & Brick	1/010/	RO	158	2	26	500	500	468 468	468 468
Asbestos Insul.	17 06 01	КÖ	158	Z	20	10	0	408 9	408
	1/ 00 01	W	86	2	2	10	Ū	9	0
Soft Strip	17 09 04			_	_	40	34	34	11
		RO	123	2	2			8	7
		RO	83	2	1			5	4
		W	86	2	6			21	0
Iron & Steel	17 04 05					180	180		
		RO	44	23	28			170	170
Operation Codes				Total	65	730	714	681	649

R S RRR'd On Site W Waste (Landfill) **R O** RRR'd Off Site **R O-F** RRR'd Off Site (as fuel)

Notes

DSM produces waste management plans as part of the process of developing working methods for its contracts. This ensures that the amount and composition of all arisings are taken into account when the works are designed. This ensures that the maximum amount of arisings are diverted from waste and into products that can be re-used.

There is now no legal requirement to produce waste management plans, but DSM still produces them as they ensure the maximum amount of arisings produced are re-used, recycled or recovered. All wastes produced on any contract are reviewed to determine the best disposal route and in all decisions the waste hierarchy is applied.

DSM, as part of its management system, sets a KPI [key performance indicator] for the amount of waste that is re-used, recycled or recovered [RRRR'd]. The nature of our core works produces large quantities of waste due to the legal definition of waste being "materials no longer required or needed by the holder or producer". The KPI use the demolition index [DI] which is defined as the percentage of waste produced that is re-used, recycled or recovered compared to the total amount of waste produced.

DSM also measures the retained material index [RMI] which is defined as the percentage of recovered waste that is left on the production site for future use. DSM does not set a KPI for this index as it is one we have no control over.

All of the planned or used waste carriers have been identified and their registration numbers identified and verified.

All of the planned or used waste facilities, operators and their permits or exemption from the need for a permit (under the Environmental Permitting (England and Wales) Regulations 2007 etc) have been verified as being valid.

As required by section 34 of the Environmental Protection Act 1990 copies of, or references to the written description of all the wastes have been obtained.

We have identified the waste management action proposed for each different waste type, including re-using, recycling, recovery and disposal, and have ensured that all waste from the site is dealt with in accordance with the waste duty of care in section 34 of the Environmental Protection Act 1990(3) and the Environmental Protection (Duty of Care) Regulations 1991(4); and materials will be handled efficiently and waste managed appropriately in accordance with the waste hierarchy as listed below:

Operation	Code	Comments
Reduce / Prevention	~	Not applicable to DSM's core works - client decision
Re-Use	RS RO	Optimal solution where possible eg re-use roof slates
Re-Cycle	RS RO	By mass DSM's principal waste operation (concrete and brick into secondary aggregates)
Recover	R O-F	Typical operation is use of poor quality wood as a fuel
Dispose	W	Limted to disposal of materials normally with specific properties such as asbestos

Site Waste Management Plan - Waste Carriers and Disposal Facilities

Contract NameJDE Building, Banbury, OX16 2NNContract NumberC11281

Phase Number	Not Applicable	Date of Issue	04 Feb 2019	Version Number	1
Reason For Issue	Final				

Registered Waste Carriers

Code	Full Name	Postcode	Registration
Number			
23	European Metal Recycling Ltd	WA5 7NS	CB/ZE5607KJ
2	DSM Demolition Ltd	B8 1DE	CBDU101140

Disposal Facility

Code	Full Name	Postcode	Permit	Recycle
Number				Rate (%)
158	DSM Demolition, Fenny Compton	CV47 2XB	n/a	100
123	Mercian Recycling Ltd	B30 3JJ	100336	85
86	Veolia Ling Hall	CV23 9HH	48116	0
83	Tom White Waste Ltd Coventry	CV6 6AP	101653	85
44	EMR Swindon	SN2 8DZ	86340	100

3.2 Waste Tickets

This section contains copies of all waste duty of care notes and hazardous waste consignment notes for materials taken from site.

DU	ty of cai	RE I	10	ГЕ	5	570)2		6	S		19	
	CARRIER D										0	8 IDE 0010114	0
CARRIER DETAILS	DRIVER'S NAME	Gr	fR	4	H	UR	5	Ĩ					
CAR DET	VEHICLE REG.	SK	62	2	B	Y	T			DA	DATE 09/18		
	JOB NUMBER	С				24				N	o. OF I	loads	6
SITE DETAILS	JOB NAME					B	A	2	BC	r	4		
	TAKEN TO	F	Êe	EN	N	M	(20	in	۱P	To	N	
	MATERIAL Tick appropriate box	1	-					×					п
al details .eted by driver)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	WOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL – CLEAN	SOIL – CONTAM.	OTHER – DETAIL	
MATERIAL	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	10-90	06-05	05-04	05-03		
(TO BE	SIC CODE					43.							
	DESCRIPTION		С	.01	VC	M	ΞT	E					10

	COMPANY NAME	DSM	
IGNEE	LOCATION		
CONSIGNEE (RECEIVED BY)	NAME (print)		р. -
)	SIGNATURE		

DSM_WC1 10/17

 CARRIER DSM Demolition
 Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE

 TELEPHONE
 0121
 322
 2227
 Carrier/Broker Licence No. - CBDU101140

CARRIER DETAILS	DRIVER'S NAME		Gr	Win	2								
CAR	VEHICLE REG.		B	467	L 1	Byr	λ			D	ATE	9/18	3
10	JOB NUMBER	С								N			
SITE DETAILS	JOB NAME	-	TOE		R	AN	BUR	Z					
	TAKEN TO		To	mr	U	HIT	cs		C	NG	VIR	5	
	MATERIAL Tick appropriate box			/									
MATERIAL DETAILS (TO BE COMPLETED BY DRIVER)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	WOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL – CLEAN	SOIL – CONTAM.	OTHER – DETAIL	
MATERI COMPI	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	06-01	06-05	05-04	05-03		
(TO BE	SIC CODE	6				43.							
	DESCRIPTION	D	GM	0	W.	457	E		17	.0	9.0	TA	

(COMPANY NAME		
CONSIGNEE	LOCATION		
CONS	NAME (print)		
)	SIGNATURE		

DSM WC1 10/17

 CARRIER DSM Demolition
 Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE

 TELEPHONE 0121
 322
 2227
 Carrier/Broker Licence No. – CBDU101140

CARRIER DETAILS	DRIVER'S NAME	G	ali	1									
CAR	VEHICLE REG.	K	4G	2	39	M				D	ate 191	19/1	8
	JOB NUMBER	С								N			
SITE DETAILS	JOB NAME	TO	2	BA	M	sur	4		-				
	TAKEN TO	Fe		CL	C	ON	107	an	2				
	MATERIAL Tick appropriate box	/											
letails eted by driver)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	WOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL – CLEAN	SOIL – CONTAM.	OTHER – DETAIL	
MATERIAL I (TO BE COMPLETI	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	06-01	06-05	05-04	05-03		
(TO BE	SIC CODE					43.							
	DESCRIPTION	(-0	NC						×			

(COMPANY NAME		
CONSIGNEE RECEIVED BY)	LOCATION		
	NAME (print)		
)	SIGNATURE		

DSM WC1 10/17

CARRIER DSM Demolition Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE TELEPHONE 0121 322 2225 FAX 0121 322 2227 Carrier/Broker Licence No. – CBDU101140

-													
CARRIER DETAILS	DRIVER'S NAME	C	791	in									
CAR	VEHICLE REG.	P	ME	,2	BY	M				D	ATE 20	- St	18
	JOB NUMBER	С								N			
SITE DETAILS	JOB NAME	5	DE		BA	MB	un	5					
	TAKEN TO		Fe	20	25		Icr	APT	22				
	MATERIAL Tick appropriate box	/							~				-46
MATERIAL DETAILS (TO BE COMPLETED BY DRIVER)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	WOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL – CLEAN	SOIL – CONTAM.	OTHER – DETAIL	
MATERI COMPI	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	06-01	06-05	05-04	05-03		
(TO BE	SIC CODE					43 .							
	DESCRIPTION		IAI	200	ione	60							

	COMPANY NAME		
CONSIGNEE RECEIVED BY	LOCATION		
CONS	NAME (print)		
-	SIGNATURE		

DSM WC1 10/17

CARRIER DSM Demolition Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE TELEPHONE 0121 322 2225 FAX 0121 322 2227 Carrier/Broker Licence No. – CBDU101140

_						_							
CARRIER DETAILS	DRIVER'S NAME	C	TAV	int									
CAR	VEHICLE REG.		BK	62	ê	3411				D,	ATE 20	19/1	8
	JOB NUMBER	С		Ŧ						N	o. OF		
SITE DETAILS	JOB NAME	t	JD6	20	B	AN	BW	24					
	TAKEN TO		Fe	ENT	CL	C		PTI	ŝ				
	MATERIAL Tick appropriate box	/											
MATERIAL DETAILS (TO BE COMPLETED BY DRIVER)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	WOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL – CLEAN	SOIL – CONTAM.	OTHER – DETAIL	
MATERI COMPI	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	06-01	06-05	05-04	05-03	•	
(TO BE						43 .							
	DESCRIPTION	C	and	_									

-			· · · · · · · · · · · · · · · · · · ·	
(COMPANY NAME			
IGNEE				
CONSIGNEE (RECEIVED BY)	NAME (print)			
)	SIGNATURE			-

CARRIER DSM Demolition Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE TELEPHONE 0121 322 2225 FAX 0121 322 2227 Carrier/Broker Licence No. – CBDU101140

-													
CARRIER DETAILS	DRIVER'S NAME	G	PW	C									
CAR	VEHICLE REG.	1	BIL	62	B	M				D		118	
	JOB NUMBER	С								N	0. OF	LOADS	
SITE DETAILS	JOB NAME	-5	TOE	1 	B	ANC	sue	3					
	TAKEN TO	F	EN	YY	C	- ANCE	PT	en	14.11 *				
	MATERIAL Tick appropriate box	/								ł			4
MATERIAL DETAILS (TO BE COMPLETED BY DRIVER)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	MOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL – CLEAN	SOIL – CONTAM.	OTHER – DETAIL	
MATERI COMPI	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	06-01	06-05	05-04	05-03		
(TO BE						43.							
	DESCRIPTION	(a	JC	i.				1				

(COMPANY NAME	
IGNEE /ED BY	LOCATION	
CONSIGNEE (RECEIVED BY)	NAME (print)	-
	SIGNATURE	

DSM WC1 10/17

CARRIER DSM Demolition Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE TELEPHONE 0121 322 2225 FAX 0121 322 2227 Carrier/Broker Licence No. – CBDU101140

	-									_		
CARRIER DETAILS	DRIVER'S NAME	(200	Vin								
CAR	VEHICLE REG.		BI	16	2	By	M			D	ATE	918
	JOB NUMBER	С								N	D. OF	LOADS
SITE DETAILS	JOB NAME JOE BANBURY											
	TAKEN TO	FENNY COMPTON										
	MATERIAL Tick appropriate box	/						4. 4	tă V			
MATERIAL DETAILS (TO BE COMPLETED BY DRIVER)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	MOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL - CLEAN	SOIL - CONTAM.	OTHER – DETAIL
MATERI COMPI	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	06-01	06-05	05-04	05-03	
(TO BE						43.						
DESCRIPTION												

(COMPANY NAM	
BY	LOCATION	
CONSIGN (RECEIVED	NAME (print)	
)	SIGNATURE	

CARRIER DSM Demolition Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE TELEPHONE 0121 322 2225 FAX 0121 322 2227 Carrier/Broker Licence No. – CBDU101140

RIER	DRIVER'S NAME	C	in	VIN										
CARRIER DETAILS	VEHICLE REG.		Bi	162	2	BY	4			DA	DATE 20 9 18			
	JOB NUMBER	С								No	0. OF I	DADS		
SITE DETAILS	JOB NAME	Tr	JDE BANGURY											
	TAKEN TO	F	GNr	2	C	an	Pro	2						
1	MATERIAL Tick appropriate box	1												
MATERIAL DETAILS (TO BE COMPLETED BY DRIVER)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	WOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL - CLEAN	SOIL - CONTAM.	OTHER – DETAIL		
MATERI	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	06-01	06-05	05-04	05-03			
(TO BE	SIC CODE	~				43.	11							
DESCRIPTION														

DECLARATION – Certified that the above particulars are true and relate to the load being conveyed in the vehicle described. Hazardous materials also require a hazardous waste consignment note to be completed, and where appropriate ADR to be complied with. I confirm that I have fulfilled my duty to apply the waste hierarchy as required by Regulation 21 of The Waste (England and Wales) Regulations 2011.

CONSIGNEE RECEIVED BY)	LOCATION	
CONS	NAME (print)	
)	SIGNATURE	

DSM_WC1 10/17

DSM_WC1 10/17

CARRIER DSM Demolition Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE TELEPHONE 0121 322 2225 FAX 0121 322 2227 Carrier/Broker Licence No. – CBDU101140

CARRIER DETAILS	DRIVER'S NAME	G	AV	2								
CAR	VEHICLE REG.	7	SW	.)	Byu	D	DATE 20 9 18					
10	JOB NUMBER C No. OF LOADS											
SITE DETAILS	JOB NAME The Bankury											
	TAKEN TO	Fe	ala	1y	Co	mp	TCA	7				
	MATERIAL Tick appropriate box	/							e			
MATERIAL DETAILS (TO BE COMPLETED BY DRIVER)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	WOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL – CLEAN	SOIL - CONTAM.	OTHER - DETAIL
MATERI COMPI	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	10-90	06-05	05-04	05-03	
(TO BE	SIC CODE					43.						
	DESCRIPTION	C	ONI	с								

6	COMPANY NAME	
CONSIGNEE RECEIVED BY)	LOCATION	
CONS	NAME (print)	
)	SIGNATURE	

DSM_WC1 10/17

DUTY OF CARE NOTE 54736

 CARRIER DSM Demolition
 Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE

 TELEPHONE
 0121
 322
 2227
 Carrier/Broker Licence No. – CBDU101140

CARRIER DETAILS	DRIVER'S NAME	G	TAL	IN								
CAR	VEHICLE REG.	Ĩ	Bu	62	B	411				D		9/18
	JOB NUMBER C											
SITE DETAILS	JOB NAME JOE BANBURY											
	TAKEN TO	lat	GN	NY	(<u>CN</u>	PTO	5				
	MATERIAL Tick appropriate box	1										
MATERIAL DETAILS (TO BE COMPLETED BY DRIVER)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	WOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL - CLEAN	SOIL - CONTAM.	OTHER – DETAIL
MATERI	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	06-01	06-05	05-04	05-03	
(TO BE						43.	11					
DESCRIPTION										1		

	COMPANY NAME		
IGNEE (ED BY)			
CONSIGN (RECEIVED	NAME (print)		
0	SIGNATURE		

CARRIER DSM Demolition Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE TELEPHONE 0121 322 2225 FAX 0121 322 2227 Carrier/Broker Licence No. – CBDU101140

CARRIER DETAILS	DRIVER'S NAME	G	, AVI	2										
CAR	VEHICLE REG.	-	BLCG2 BYU DATE 24918										8	
	JOB NUMBER	JOB NUMBER C												
JOB NAME JOE BANBURS														
	TAKEN TO	F	Gr	12:	3	Cei	NP	ton	7					
	MATERIAL Tick appropriate box	/												
MATERIAL DETAILS (TO BE COMPLETED BY DRIVER)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	WOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL – CLEAN	SOIL – CONTAM.	OTHER – DETAIL		
MATERI	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	06-01	06-05	05-04	05-03			
(TO BE	SIC CODE					43.	11							
	DESCRIPTION	C	Con	SC										

DECLARATION – Certified that the above particulars are true and relate to the load being conveyed in the vehicle described. Hazardous materials also require a hazardous waste consignment note to be completed, and where appropriate ADR to be complied with. I confirm that I have fulfilled my duty to apply the waste hierarchy as required by Regulation 21 of The Waste (England and Wales) Regulations 2011.

0		
CONSIGNEE	LOCATION	
CONS (RECEIV	NAME (print)	
)	SIGNATURE	

DSM_WC1 10/17

 CARRIER DSM Demolition
 Ltd., Arden House, Arden Road, Heartlands, Birmingham B8 IDE

 TELEPHONE 0121
 322
 2225
 FAX 0121
 322
 Carrier/Broker Licence No. - CBDU101140

and the second s													
CARRIER DETAILS	DRIVER'S NAME	G	na V.	L									
CAR	VEHICLE REG.	Bu	(62	LD	yy					D	24 9 18		
	JOB NUMBER	С	No. OF LOADS										
SITE DETAILS	JOB NAME	5	JDE BANBURY										
	TAKEN TO	FENNO COMPTON											
	MATERIAL Tick appropriate box	/											
al details eted by driver)		CONC./BRICK	BITUMINOUS	SOFT STRIP	FERROUS	WOOD	PLASTERBOARD	ASBESTOS FIBROUS	ASBESTOS BONDED	SOIL – CLEAN	SOIL – CONTAM.	OTHER - DETAIL	
MATERIAL (TO BE COMPLET	EWC 17	01-07	03-02	09-04	04-05	02-01	08-02	06-01	06-05	05-04	05-03		
(TO BE	SIC CODE					43.							
	DESCRIPTION	(cn	C									

DECLARATION – Certified that the above particulars are true and relate to the load being conveyed in the vehicle described. Hazardous materials also require a hazardous waste consignment note to be completed, and where appropriate ADR to be complied with. I confirm that I have fulfilled my duty to apply the waste hierarchy as required by Regulation 21 of The Waste (England and Wales) Regulations 2011.

_		
0		
CONSIGNEE RECEIVED BY)	LOCATION	
CONS	NAME (print)	
0	SIGNATURE	

DSM WC1 10/17