F	lyd	rock			ww	/W	.hyd	rock.	com	=	Percussion w ore Follow-o		В	ehole No BH04 eet 2 of 3	
Proj	ect Name	: Kraft P	hase 2							Co-ords:	445043E, 241538N		Но	le Type: NP+RC	
Loca	tion:	Banbu	ry						ject No. 161279	Ground Level:	97.90m OD			Scale: 1:50	
Clie	nt:	db syn	nmetry							Date (s):	06/06/16 - 08/06/1	6		Diamet 10mm	er:
Well	Water Strikes	R Depth (m)	otary C		RQD	FI	Depth (m)	Level (m OD)	Legend		Stratum Descriptio	n			
		10.00-11. 50	100	100	100	0	11.30	86.60		limestone liti Weak grey thinl	50m bgl and 11.00m bgl: horelicts / concretions. y laminated MUDSTON ARMOUTH MUDSTONI	IE with so	me sh	ell	11.0
		11.50-13. 00	100	100	100	0									13.0
		13.00-14. 50	100	100	100	0									14.0
		14.50-16. 00	100	100	100	0									15.0 — - - - - - - - - - - -
	•	16.00-17. 50	100	100	100	0									16.0
		17.50-19. 00	77	77	77	0									18.0
		19.00-20. 00	100	100	100	0	19.80	78.10		Strong grey LIM	ESTONE with abundan Continued on Next Shee		nd foss	sils.	19.0 —
Rema		5.50m bgl, 50/160mn 50/160mn SPT at 20.0	32. SP n, SPT a n, SPT a Om bgl,	T at 7 at 11.5 at 16.0 50/45	.00m b 50m bg 0m bgl,	ogl, 5 gl, 50 , 49/	50/280m 0/190mn 125mm,	m. SPT at n, SPT at 1 SPT at 17	8.50m bg L3.0m bgl, 7.50m bgl,	, 50/160mm. SPT a 50/160mm, SPT at		B = Bulk Sample D = Disturbed Sai U = Undisturbed UT = Undisturbed ES = Environment W = Water Samp PID = Photoionizz SPT = Standard Pi AB = Asbestos Bu	Sample if Sample (The tal Sample le ation Detecte enetration To lk Sample	or (ppm) est	
Groun	ndwater:	None enco	ountere	d.								Logged:	NT	Checked	d: SC

	lyd ect Name	rock :: Kraft P			ww	/W	.hydı	ock.	com	-	Percussion w Core Follow-o	n	BH04 Sheet 3 of 3 Hole Type:	3
Loca	tion:	Banbu	ry						oject No. 161279	Ground Level:	97.90m OD		Scale: 1:50	
Clier	nt:	db sym	nmetry						1012/3	Date (s):	06/06/16 - 08/06/1	6	Hole Diamet	er:
Well	Water		otary C	1			Depth	Level	Legend		Stratum Descriptio	on .	110111111	
	Strikes	Depth (m)	TCR	SCR	RQD	FI	(m) 20.07	(m OD)		(CHARMOUTH I	MUDSTONE FORMATIO			-
							20.07	//.83			End of Borehole at 20.09			22.0 —
														25.0 —
														27.0 —
														28.0
														29.0
Rema	irks:	5.50m bgl, 50/160mm	32. SP n, SPT a n, SPT a Om bgl,	T at 7. it 11.5 it 16.0 50/45	.00m b .0m bg .0m bgl,	gl, 5 l, 50 49/	50/280m 0/190mm 125mm,	m. SPT a n, SPT at SPT at 1	t 8.50m bg 13.0m bgl, 7.50m bgl,	l, 50/160mm. SPT a 50/160mm, SPT at		ES = Environmer W = Water Samp	ample 1 Sample 1 Sample (Thin Wall) ntal Sample ple per	d: sc

Hyd	rock		www	ı.hydı	rock.c	com	Window	less Sample		
Project Name		hase 2					Co-ords:	445189E, 241374N	Sheet 1 of Hole Type	
Location:	Banbu	ry				ject No:	Ground Level:	95.75m OD	WLS Scale:	
Client:	db sym	nmetry			C1	161279	Date(s):	07/06/16	1:25 Hole Diame	ter:
Water	Sample	and In S	Situ Testing	Depth	Level	Lagand		Stuatum Dagavintian	110mm	
Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend	ASPHALT. (MAD	Stratum Description E GROUND)		
	0.40	ES		0.32	95.43			slightly sandy fine to co tone and sandstone GR		
	1.00 1.20 1.20-1.65 1.20-1.90	ES SPT D B	N=4 (2,1/0,1,1,2)	1.10	94.65		Firm locally soft and a very mild	bgl: More clayey. grey CLAY with some re organic odour. Rare fine oal gravel. (ALLUVIUM)	subrounded	1.0
	2.00 2.00-2.45 2.00-3.00	SPT D B	N=6 (1,0/1,2,1,2)	2.00	93.75			Om bgl and 2.0m bgl: Sand blueish grey CLAY with . (ALLUVIUM)		2.0
	3.00 3.00-3.45	SPT D	N=14 (1,2/2,3,4,5)							3.0
	4.00 4.00-4.45	SPT D	N=21 (2,3/4,5,5,7)	3.50	92.25			y laminated grey MUDST (CHARMOUTH MUDST		4.0
Remarks:	5.00 5.00-5.45	SPT D	N=22 (2,3/4,6,6,6)	Groundw	ater and s	vas monito	ring nine installed t		3 = Bulk Sample	5.0
Groundwater:		een 1.0ı	m and 5.0m bg		ater and E	ous moille	g pipe ilistalied t	L E V F S	D= Disturbed Sample J= Undisturbed Sample JT= Undisturbed Sample (Thin Wall) S= Environmental Sample N= Water Sample PiD= Photolonization Detector (ppm) PFT= Standard Penetration Test AB = Asbestos Bulk Sample Logged: NT Checke	d:

H	lyd	rock		www	.hyd	rock.c	com	Window	rless Sampl	er	٧	vS01		
Proj	ect Name	: Kraft P	hase 2					Co-ords:	445189E, 241374N			le Type: WLS		
Loca	tion:	Banbu	ry				ject No: .61279	Ground Level:	95.75m OD			Scale: 1:25		
Clie	nt:	db sym	nmetry					Date(s):	07/06/16			Diamet 10mm	er: 	
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Description	n				
					5.45	90.30			End of Borehole at 5.45	n			7.C	
Rema	ırks:			1.20m bgl. 2) (m and 5.0m bg		ater and g	gas monito	ring pipe installed t	to 5.0m bgl. Response	B = Bulk Sample D = Disturbed Sar U = Undisturbed UT = Undisturbed ES = Environment W = Water Sampl PID = Photoioniza SPT = Standard Pe AB = Asbestos Bu	Sample Sample (Thal Sample Sample End of the sample Sample Sample	or (ppm)		
Grou	ndwater:	None enco	untere	d.						Logged:	NT	Checked	d:	SC

Hydı	rock		14/14/14	, hvd	rock.c	com	Window	less Sample	Borehole N WS03	
Hyui	OCK		VV VV V	/.iiyu	IOCK.	JOIII		•	Sheet 1 of	2
Project Name	: Kraft P	hase 2					Co-ords:	445205E, 241383N	Hole Type WLS	e:
Location:	Banbu	ry				ject No: 161279	Ground Level:	95.63m OD	Scale: 1:25	
Client:	db sym	nmetry			[61	101273	Date(s):	07/06/16	Hole Diame	ter:
Water	Sample	and In S	itu Testing	Depth	Level	Legend		Stratum Description		
Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legenu				1
	0.20	ES		0.30	95.33		subangular to su (MADE GROUND		nt and brick.	
	0.50	50		0.50	33.33			ravelly CLAY. Gravel is fi ngular brick, sandstone))		
	0.60	ES								
	0.80-1.50	В		0.80	94.83			blueish grey slightly gra subangular to angular E GROUND)		1.0
	1.20	SPT	N=6 (1,1/1,1,2,2)							
	1.20-1.65	D	(,,,,,,							
	1.70-2.40	В		1.70	93.93			ey CLAY with some rem d organic odour and rar		
	2.00	SPT	N=11					avel. (ALLUVIUM)	e subrounded to	2.0
	2.00-2.45	D	(1,2/2,2,3,4)				At 2.10m bgl:	Soft		2.0
	2.00 2.13						At 2.10m byi.	30jt.		
	2.60	D		2.50	93.13			range slightly gravelly sa subangular to subround ITS)		
	3.00	SPT	N=25	3.00	92.63		Orange slightly o	layey gravelly SAND. Gr	ravel is subrounded	3.0
	3.00-3.45	D	(3,6/7,6,6,6)					(RIVER TERRACE DEPC		
				3.80	91.83			soft CLAY with some sh	-	
	4.00	SPT	N=5 (2,1/0,1,1,3)				(CHAKIVIOUTH IV	1UDSTONE FORMATION	N <i>)</i>	4.0
:	4.00-4.45	D								
				4.50	91.13		Very stiff arou Cl	.AY with some shell frag	aments	-
	4.60	D						AY WITH SOME SHEILTRAG		
	5.00	SPT	N=28							5.0
	5.00-5.45	D	(3,4/5,7,8,8)					Continued on Next Sheet		3.0
emarks:	1) Hand du		1.20m bgl. 2) m and 5.0m bg		ater and g	gas monito	ring pipe installed to	o 3.0111 bgr. Nesponse	B = Bulk Sample D = Disturbed Sample U = Undisturbed Sample (Thin Wall) ES = Environmental Sample W = Water Sample PID = Photionization Detector (ppm) SPT = Standard Penetration Test AB = Asbestos Bulk Sample	
roundwater:	None enco	untered	l.						Logged: NT Checke	d:

	lyd ect Name	rock :: Kraft P		www	.hyd	rock.	com	Window Co-ords:	rless Sample 445205E, 241383N	er WS Sheet Hole	5 03 2 of 2 Type:
Loca	tion:	Banbu	ry				oject No: 161279	Ground Level:	95.63m OD	Sca 1::	ıle:
Clier	nt:	db sym	nmetry				101279	Date(s):	07/06/16	Hole Dia	ameter:
Well	Water Strikes	Sample Depth (m)	and In S	itu Testing	Depth (m)	Level (m OD)	Legend		Stratum Descriptio	<u> </u>	111111
					5.45	90.18			End of Borehole at 5.45r	n	6.0
Rema	orks:		een 2.0r	m and 5.0m bg		ater and	gas monito	ring pipe installed 1	o 5.0m bgl. Response	B = Bulk Sample D = Disturbed Sample U = Undisturbed Sample UT = Undisturbed Sample (Thin Wa ES = Environmental Sample W = Water Sample PID = Photoionization Detector (pp SPT = Standard Penetration Test AB = Asbestos Bulk Sample	

Hyd	drock		www	.hyd	rock.	com	Window	less Sample	Sheet 1 of	1
Project Na	me: Kraft P	hase 2					Co-ords:	445255E, 241432N	Hole Type WLS	:
Location:	Banbu	ıry				oject No: 161279	Ground Level:	95.63m OD	Scale: 1:25	
Client:	db syn	nmetry			•		Date(s):	07/06/16	Hole Diamet	ter:
Wate Strike			itu Testing	Depth (m)	Level (m OD)	Legend		Stratum Description		
Strike	Depth (m)	Туре	Results	("")	(III OD)		CONCRETE. (MA	ADE GROUND)		
	0.30 0.60 0.70	ES ES D		0.21	95.42		Soft greenish gre (MADE GROUNE	ey CLAY with occasional b	brick gravel.	-
				0.90	94.73			End of Borehole at 0.90m		1.0
										2.0 -
										3.0 -
										4.0 -
										5.0 -
Remarks:		ug pit ter		J 90m bgl c	on concre	I te. 2) Back	filled with arisings.	D - U UT ES W PIC SPP AB	Bulk Sample Disturbed Sample Undisturbed Sample Undisturbed Sample Indisturbed Sample Sample Environmental Sample Water Sample Power Sample Power Sample Power Sample Power Sample Sample Power Sample Power Sample Ogged: NT Checke	d: SC

								Borehole No	o.
Hydı	rock		www	ı.hvd	rock.	com	Windowless Sampler	WS05	
,								Sheet 1 of 2 Hole Type:	
Project Name	: Kraft P	hase 2					Co-ords: 445167E, 241361N	WLS	
Location:	Banbu	ry				ject No: 161279	Ground Level: 96.14m OD	Scale: 1:25	
Client:	db syn	nmetry					Date(s): 08/06/16	Hole Diamete	er:
Water	Sample	and In S	itu Testing	Depth	Level		Charles Daniel Mar	110111111	
Vell Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend	Stratum Description		
	0.10 0.20	ES D					Soft orangish brown with pockets of grey g CLAY. Gravel is fine to coarse, subangular to sandstone, rare concrete and coal. (MADI	o angular	
	0.50	ES		0.40	95.74		Firm friable orangish brown slightly sandy CLAY. Gravel is fine to coarse, subrounded sandstone, mudstone and quartz. (RIVER TDEPOSITS)	to rounded	
	1.00	ES SPT	N=14						1.0 -
	1.20-1.65	D D	(2,1/2,3,3,6)	1.30	94.84		Firm greenish grey slightly sandy slightly gr Gravel is fine to coarse, subrounded to rou and mudstone with a mild organic odour.	nded quartz,	
	2.00	SPT	N=4	1.80	94.34		Firm orange mottled grey slightly sandy slightly clay. Gravel is coarse, subrounded to roun		2.0
	2.00-2.45 2.20	D D	(1,1/1,1,1,1)	2.20	93.94		and quartz. (RIVER TERRACE DEPOSITS) Soft orange mottled grey sandy CLAY. (RIVI DEPOSITS)	ER TERRACE	
				2.80	93.34		Between 2.70m bgl and 2.80m bgl: Very so very soft. Very loose to loose blueish grey slightly cla		
	3.00 3.00-3.45	SPT D	N=4 (1,0/0,2,1,1)	3.20	92.94		(RIVER TERRACE DEPOSITS)		3.0
							Soft blueish grey CLAY. (CHARMOUTH MUI FORMATION)	JSTONE	
	3.80 4.00 4.00-4.45	D SPT D	N=7 (1,3/3,1,2,1)						4.0
				4.30	91.84		Very weak blueish grey MUDSTONE with so fragments. (CHARMOUTH MUDSTONE FO		
	5.00	SPT	N=15				Continued on Next Sheet		5.0
			(4,2/2,3,4,6)						
emarks:	1) Hand du	ug pit to	1.20m bgl. 2)	Casing re	fusal at 4.	50m bgl. 3	Denote the second secon	k Sample turbed Sample disturbed Sample disturbed Sample (Thin Wall) wironmental Sample ater Sample ater Sample hotolonization Detector (ppm) tandard Penetration Test bestos Bulk Sample	
roundwater:	None enco	ountered	l.				Log	ged: NT Checked	1:

H	lyd	rock		www	.hyd	rock.c	com	Window	less Sampl	er	٧	vS05		
Proj	ect Name	: Kraft P	hase 2					Co-ords:	445167E, 241361N			le Type: WLS		
Loca	tion:	Banbu	ry				ject No: .61279	Ground Level:	96.14m OD			Scale: 1:25		
Clie	nt:	db sym	nmetry					Date(s):	08/06/16			Diamet 10mm	er: 	
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Descriptio	n				
					5.45	90.69			End of Borehole at 5.45r	n			7.C	
Rema					Casing re	fusal at 4.!	50m bgl. 3) Backfilled with ari	sings on completion.	B = Bulk Sample D = Disturbed Sar U = Undisturbed UT = Undisturbed ES = Environment W = Water Sampl PID = Photoioniza SPT = Standard Pc AB = Asbestos Bu	Sample I Sample (Thal Sample e tion Detectenetration T Ik Sample	or (ppm) est		
Grour	ndwater:	None enco	untere	d.						Logged:	NT	Checked	1:	SC

Hydrock Windowless Sampler Co-ords: 445098; 241550N Hole Project Name: Krall Phase 2 Co-ords: 445098; 241550N Hole Project Not Co-ords: 97.38m DO Scale Ground Level: 97.38m DO Lovel: 1/2 Mole Diameter Lovel: 1/2 Mole Diameter Lovel: 1/2 Mole Diameter Well Strake: Depth (m) Vype Results Lovel: 1/2 Mole Diameter Lovel: 1/2 Mole Diameter Lovel: 1/2 Mole Diameter Soft orangish brown sandy slightly gravelly CLMX. Gravel is fine to coasse, subrounded to subanquish right. (TOPSOIL) Soft brown sandy CLAY with some fine coal fragments. (RIVER TERRACE DEPOSITS) Soft yellowish brown sandy. CLAY with some fine coal fragments. (RIVER TERRACE DEPOSITS) Firm orange locally grey mottled CLAY with some iron slabining. (RIVER TERRACE DEPOSITS) Soft yellowish brown sandy. CLAY. (RIVER TERRACE DEPOSITS) Soft yellowish brown sandy. CLAY. (RIVER TERRACE DEPOSITS) Firm orange locally grey mottled CLAY with some iron slabining. (RIVER TERRACE DEPOSITS) Soft yellowish brown sandy. CLAY. (RIVER TERRACE DEPOSITS) Soft yellowish brown sandy. CLAY. (RIVER TERRACE DEPOSITS) Firm orange locally grey mottled CLAY with some iron slabining. (RIVER TERRACE DEPOSITS) Soft yellowish brown sandy. CLAY. (RIVER TERRACE DEPOSITS) Soft yellowish brown sandy. CLAY. (RIVER TERRACE DEPOSITS) Firm orange locally grey mottled CLAY with some iron slabining. (RIVER TERRACE DEPOSITS) Soft yellowish brown sandy. CLAY. (RI									Borehole No).
Note Project Name Note Project Name Note Project Name Note Not	Hvd	rock		www	ı.hyd	rock.	com	Windowless Sampler	WS07	
Description								Co-ords: 445069E, 241356N	Hole Type:	
Cilent: Cibeyments Cibeyments Cibeyments							-	,	Scale:	
Water Strikes Depth (m) Type Results Depth (m) Depth (m) Depth (m) Type Results Depth (m) Depth (m) Type Results Depth (m) Depth (m) Type Results Depth (m) De	Client:	db syn	nmetry				101273	Date(s): 08/06/16	Hole Diamete	er:
Soft orangish brown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft orange slightly gravelly CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line submitted and submitted line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TERRACE DEPOSITS) Soft prown sandy CLAY with some line to coal fragments. (RIVER TER	Water	Sample	and In S	Situ Testing	Depth	Level	Lagand	Street une Description	110mm	
1.00 0.30	Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend		0.00	
1.00 96.38 1.10 95.38 1.10 96.38 1.10 96.38 1.10 96.38 1.10 95.38 1.20 597 8-6 1.20 2.27.3.8.49 2.20 4.5 D (0.07.0.0.0) 3.00 597 8-0										
Soft yellowish brown sandy CLAY with some fine coal fragments. (RIVER TERRACE DEPOSITS) 1.50 95.88 1.50 95.88 Firm orange locally grey mottled CLAY with some iron staining. (RIVER TERRACE DEPOSITS) 2.50 D 2.50 SFT N-12 (2.272.3.3.4) 3.50 SFT (0.00(0.00(0.0.0.0)) 3.50 SFT (0.00(0.00(0.0.0.0)) 3.50 D 3.5					0.30	97.08		subangular quartz, and mudstone gravel. (
1.10					1.00	06.29				1.0
Firm orange locally grey mottled CLAY with some iron staining. (RIVER TERRACE DEPOSITS) 2.00 SPT N=12 (2.2/2.3.3.4) 3.00 SPT N=0 (0.0/0.0.0.0) 3.00-3.45 D 4.00 SPT N=12 (2.2/2.3.4.4) 4.		1.20	SPT		1.00	90.38			e fine coal	1.0
2.00-2.45 D D (2,2/2,3,3,4) 2.50 D D (2,2/2,3,3,4) 3.00 SFT N=0 (0,0/0,0,0,0) 3.10 94.28 Very soft grey very sandy CLAY. (RIVER TERRACE DEPOSITS) 3.50 D D (0,0/0,0,0,0) 3.50 SFT (2,2/1,3,4,4) 4.00 SFT (2,2/1,3,4,4) 4.50 92.88 End of Borehole at 4.50m Between 2.70m bgl and 3.10m bgl: Very sandy and soft. Orange slightly gravelly clayey SAND. Gravel is fine to coarse, subangular to angular quartz. (RIVER TERRACE DEPOSITS) emarks: 1) Hand dug pit to 1.20m bgl. 2) Casing refusal at 4.50m bgl, no recovery assumed, mudstone. 3) Backfilled with arisings on completion.		1.70	D		1.50	95.88			some iron	
Between 2.70m bgl and 3.10m bgl: Very sandy and soft. 3.00 SPT N=0 (0.0/(0.0.0)) 3.00-3.45 D Very soft grey very sandy CLAY. (RIVER TERRACE DEPOSITS) 3.50 D Orange slightly gravelly clayey SAND. Gravel is fine to coarse, subangular to angular quartz. (RIVER TERRACE DEPOSITS) 4.00 SPT N-12 (2.27/1.3.4.4) 4.50 92.88 End of Borehole at 4.50m Emarks: 1) Hand dug pit to 1.20m bgl. 2) Casing refusal at 4.50m bgl, no recovery assumed, mudstone. 3) Backfilled with arisings on completion.										2.0
soft. 3.00 SPT N=0 (0.0/0.0.0.0) 3.00 3.45 D 4.00 SPT (2.2/1,3,4,4) 4.00-4.45 D A.50 92.88 End of Borehole at 4.50m Backfilled with arisings on completion.			D							
Pemarks: 1) Hand dug pit to 1.20m bgl. 2) Casing refusal at 4.50m bgl, no recovery assumed, mudstone. 3) Backfilled with arisings on completion. 2 Very soft grey very sandy CLAY. (RIVER TERRACE DEPOSITS) Orange slightly gravelly clayey SAND. Gravel is fine to coarse, subangular to angular quartz. (RIVER TERRACE DEPOSITS) Pemarks: 1) Hand dug pit to 1.20m bgl. 2) Casing refusal at 4.50m bgl, no recovery assumed, mudstone. 3) Backfilled with arisings on completion.									ndy and	
### August of the sample of th					3.10	94.28			RACE	3.0
A.00 SPT N=12 (2,2/1,3,4,4) A.00-4.45 D Orange slightly gravelly clayey SAND. Gravel is fine to coarse, subangular to angular quartz. (RIVER TERRACE DEPOSITS) Emarks: 1) Hand dug pit to 1.20m bgl. 2) Casing refusal at 4.50m bgl, no recovery assumed, mudstone. 3) Backfilled with arisings on completion. Backfilled with arisings on completion.		3.50	D							
End of Borehole at 4.50m End of Borehole at 4.50m B = Bulk Sample D = Disturbed Sample UT = Undisturbed Sample UT = Undistur					3.90	93.48		coarse, subangular to angular quartz. (RIVE		4.0
Backfilled with arisings on completion. D = Disturbed Sample U = Undisturbed Sample U = U					4.50	92.88		End of Borehole at 4.50m		
Backfilled with arisings on completion. D = Disturbed Sample U = Undisturbed Sample U = U										5.0
SFI – Santauto Ferication less. A B – Abbesto Bulk Sample	emarks:					fusal at 4.		D = Distributed, ITHURSTOTIE. 3) D = Distributed	urbed Sample isturbed Sample disturbed Sample disturbed Sample ironmental Sample ter Sample otoionization Detector (ppm) andard Penetration Test	

	lyd	rock :: Kraft P	Phase 2	www	/.hyd	rock.	com	Window Co-ords:	vless Sample	Borehole N WS08 Sheet 1 of Hole Type WLS	1
Locat	tion:	Banbu	ry				ject No:	Ground Level:	95.95m OD	Scale:	
Clien	t:	db syn	nmetry			C	161279	Date(s):	08/06/16	1:25 Hole Diamet 110mm	ter:
Well	Water		and In	Situ Testing	Depth	Level	Legend		Stratum Description	-	
	Strikes	Depth (m)	Туре	Results	(m)	(m OD)	zegena	ASPHALT. (MAD			1
		0.30	ES		0.20	95.75		Yellow clayey sa	ndy fine to coarse, suba andstone GRAVEL. (MA		
					0.50	95.45			End of Borehole at 0.50m		1.0 -
											-
											2.0 -
											3.0 -
											-
											4.0 -
											5.0 -
Remai	rks:	1) Hand du	l ug pit te	rminated at 0.5	50m bgl c	ue to refu	l usal. 2) Bad	kfilled with arisings	U U E V P	3 = Bulk Sample) = Disturbed Sample J = Undisturbed Sample J = Undisturbed Sample (Thin Wall) S5 = Environmental Sample W = Water Sample D1 = Photolonization Detector (ppm) PT = Standard Penetration Test Ms = Asbestos Bulk Sample	
iroun	dwater:	None enco	ountere	d						Logged: NT Checke	d: So

	yd ct Name	rock Kraft P		www	.hydı	rock.	com	Window Co-ords:	less Sample	Sheet 1 of Hole Type	2
Locat		Banbu	ry				ject No:	Ground Level:	96.50m OD	WLS Scale:	
Clien	t:	db sym				C1	161279	Date(s):	08/06/16	1:25 Hole Diamet	ter:
/ell	Water	Sample	and In	Situ Testing	Depth	Level	Legend		Stratum Description	110mm	
/eii	Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legenu	CONCRETE. (MA			
		0.20	ES		0.18	96.32		Grey slightly san	dy fine to coarse, suban ne and sandstone GRAV		
	•	1.00 1.00-2.00 1.10 1.20-1.65	SPT B ES D	N=21 (2,2/4,5,6,6)	1.00	95.50		Stiff grey thinly land	aminated CLAY. (CHARN MATION)	MOUTH	1.
		1.70	D		1.60	94.90			laminated grey MUDST		
		2.00 2.00-2.45	SPT D	N=35 (5,8/12,10,7,6)				At 2.00m bgl:	Abundant shell fragments	5.	2
		3.00 3.00-3.45	SPT D	N=35 (3,5/6,8,9,12)							3
		4.00 4.00-4.45	SPT D	N=41 (3,7/9,10,10,12)							4
	rke:	5.00 5.00-5.45	SPT D	N≥50 (6,9/50 for 240mm)	Sac and a	roundwa	tar manita	ring pipo inctalled to	Continued on Next Sheet	i = Bulk Sample	- 5
mar	rks: dwater:	Response 2	zone be	o 1.20m bgl. 2) Getween 1.0m bgl	and 5.0	m bgl.	ier monito	ring pipe installed to	U E V P S S	- Book Sample - Book Sample - Book Sample - Book Sample - Book Sample - Common - Comm	d.

Project Name: Kroff Phase 2	H	lyd	rock		www	.hyd	rock.c	com	Window	less Sample	er	٧	SO9 et 2 of		
Color Surface Project Not Cis 2.79 Cig Cis C	Proj	ect Name	: Kraft P	hase 2					Co-ords:	445014E, 241457N		Но	le Type		
More Strikes Depth (m) Type Results Substitute Results Substitute Results Substitute Results Substitute Substitute Results Substitute Substitu	Loca	tion:	Banbu	ry					Ground Level:	96.50m OD			Scale: 1:25	or.	
Remarks: Strikes Depth (m) Type Results Min Min	Clie	nt:							Date(s):	08/06/16				EI.	
Remarks: 1) Hand diag pit to 1, 20m bgl, 2) Case and groundwater monitoring pipe installed to 5.0m bgl. Response zone between 1.0m bgl and 5.0m bgl. 11. Livings 12. Livings 13. Livings 14. Livings 15. Livings 16. Livings 17. Livings 18. Livin	Well							Legend		Stratum Description	ı				
Remarks: 1) Hand dug pit to 1.20m bgl. 2) Gas and groundwater monitoring pipe installed to 5.0m bgl. Response zone between 1.0m bgl and 5.0m bgl. B = Bulk Sample D = Disturbed Sample UT = Undisturbed Sample UT = Und				Туре	RESUITS					End of Borehole at 5.39m				7.	
Programment of Charles Broad a Water Charles at U. John Del.			Response 2	D = Disturbed San U = Undisturbed S UT = Undisturbed ES = Environment W = Water Sample PID = Photoionizat SPT = Standard Pe	ample Sample (Th al Sample e tion Detecti netration To k Sample	or (ppm) est	d:	SC							

									Bore	hole No.
Hvd	rock		www	.hvd	rock.	com	Window	less Sample	er w	/ \$11
										et 1 of 1 e Type:
Project Name	: Kraft F	Phase 2			Dro	ject No:	Co-ords:	445200E, 241435N	,	WLS cale:
Location:	Banbu	ıry				161279	Ground Level:	96.86m OD		1:25
Client:	db syn	nmetry					Date(s):	02/06/16		Diameter: LOmm
Water			Situ Testing	Depth	Level	Legend		Stratum Description	1	
Strikes	Depth (m)	Туре	Results	(m)	(m OD)		CONCRETE. (MA			
								·		
	0.40	ES		0.30	96.56			ne to coarse, angular to		
							mudstone, conc GROUND)	rete and sandstone GRA	AVEL. (MADE	
				0.60	96.26		Firm orange san	dy gravelly CLAY. Gravel		
	0.80	ES					GROUND)	ngular ironstone and sa	nastone. (IVIAL)E
										1.0
	1.20	SPT	N=35							
	1.20-1.65	D	(4,10/7,8,8,12)							
	2.00	SPT	N=27							2.0
	2.00-2.45	D	(5,7/8,8,6,5)							
				2.60	94.26		Firm grey gravel	y CLAY with a mild orga	anic odour. Grav	vel .
	2.70	D		2.80	94.06			n, subangular to angula		
	3.00	SPT	N=12				Firm orange grav	velly CLAY. Gravel is fine		3.0
	3.00-3.45	D	(1,1/2,3,3,4)				subangular to ar (ALLUVIUM)	ngular sandstone with s	ome iron staini	ng.
				3.90	92.96		Soft grey sandy (CLAY with rare remnant	reeds/grass/ro	ots.
77778				4.00	92.86		(ALLUVIUM)	End of Borehole at 4.00m		4.0
										5.0
Remarks:	1) Hand di on comple		1.20m bgl. 2) (Collpase	oetween :] 3.50m bgl t	to 4.00m bgl. 3) Bad	Milled With drisings	B = Bulk Sample D = Disturbed Sample U = Undisturbed Sample UT = Undisturbed Sample (Thir ES = Environmental Sample W = Water Sample PID = Photoionization Detector SPT = Standard Penetration Tes	(ppm)
iroundwater:	None enco	ountere	d.						AB = Asbestos Bulk Sample Logged: NT (Checked: S

Hyd	rock		www	.hyd	rock.	com	Window	less Sample	ws12 Sheet 1 of	
Project Name	: Kraft P	hase 2					Co-ords:	445132E, 241444N	Hole Type WLS	e:
Location:	Banbu	ry				ject No: 161279	Ground Level:	96.86m OD	Scale: 1:25	
Client:	db syn	nmetry					Date(s):	03/06/16	Hole Diame	
/ell Water			itu Testing	Depth	Level	Legend		Stratum Description		
Strikes	Depth (m)	Туре	Results	(m)	(m OD)		CONCRETE. (MA	·		
				0.20	96.66					
	0.30	ES						clayey sandy fine to coa ne and rare concrete GR		
	0.50-1.30	В		0.50	96.36		GROUND)			
	0.60	ES						orangish brown sandy sl gular to angular limesto		
	0.80	D						EL. (MADE GROUND)	ne, canacene ana	
	0.00									
	1.00	SPT	N=14 (3,3/3,4,3,4)							1.0
	1.00-1.45	D								
				1.30	95.56		Firm greenish gr	rey CLAY with a mild org	anic odour and	
	1.40	D				====		ootlets. (ALLUVIUM)		
	1.70	D		1.80	95.06					
				1.00	95.06		i contract of the contract of	range locally grey mottl	ed sandy CLAY.	
	2.00	SPT	N=11 (2,3/3,2,3,3)				(ALLUVIUM) Between 1.8	Om and 2.10m bgl: Rare fli	nt gravel.	2.0
	2.00-2.45	D	(2,3,3,2,3,3,							
	3.00	SPT	N=6 (1,1/1,1,2,2)							3.0
	3.00-3.45	D	(1,1,1,1,2,2)	3.10	93.76		Soft light grey sl	ightly sandy CLAY. (ALLU	JVIUM)	
				3.40	93.46		Very soft light g	rey CLAY. (ALLUVIUM)		
						====				
	4.00	SPT	N=3							4.0
	4.00-4.45	D	(0,0/0,0,0,3)							
				4.60	92.26					
								ravelly SAND. Gravel is f ngular quartz. (RIVER TI		
				4.80	92.06		Very soft grey C	LAY. (CHARMOUTH MU		
	5.00	SPT	N=15			F	FORMATION)	Continued on Next Sheet		5.0
	5.00-5.45	D	(1,0/2,3,4,6)							
emarks:	1) Hand du	g pit to	0.70m bgl. 2)	Cased to	5.00m bg	I. 3) Backfil	led with arisings or	E V	I = Bulk Sample J = Disturbed Sample J = Undisturbed Sample IT = Undisturbed Sample (Thin Wall) S = Environmental Sample V = Water Sample UD = Photoionization Detector (ppm) PT = Standard Penetration Test	

Hvdr	Hydrock www.hydro						Window	less Sample	Borehole I	
									Sheet 2 o	
Project Name:	Kraft Pha	ise 2					Co-ords:	445132E, 241444N	WLS	
Location:	Banbury					ject No: 161279	Ground Level:	96.86m OD	Scale: 1:25	
Client:	db symm	netry			,		Date(s):	03/06/16	Hole Diame	
Water Strikes	Sample an Depth (m) T	nd In Sit	Results	Depth (m)	Level (m OD)	Legend		Stratum Description		
				5.10	91.76			vith some silt sized seleni MUDSTONE FORMATION) End of Borehole at 5.45m		7.0 -
										10.0
							led with arisings or	U - UT ES W PIEI SP AB	Bulk Sample Disturbed Sample Undisturbed Sample = Undisturbed Sample (Thin Wall) = Environmental Sample = Water Sample > Water Sample > Photoionization Detector (ppm) T - Standard Penetration Test = Asbestos Bulk Sample Ogged: NT Check	ed:

пуи	VO CIA		2012011	المياما ،	ماء م	00100	Window	less Sample	r WS13	,
	rock		www	ı.nyaı	OCK.	com			Sheet 1 of	
roject Nam	e: Kraft P	hase 2					Co-ords:	445174E, 241491N	Hole Type WLS	:
ocation:	Banbu	ry				ject No: 161279	Ground Level:	98.86m OD	Scale: 1:25	
lient:	db syn	nmetry			1		Date(s):	02/06/16	Hole Diamet	ter:
ell Water Strikes			Situ Testing	Depth (m)	Level (m OD)	Legend		Stratum Description	·	
)	Depth (m)	Туре	Results		(00)		CONCRETE. (MA	ADE GROUND)		Τ
	0.20-0.40	B ES		0.20	98.66			clayey sandy fine to coa ne and sandstone GRAVE		
	0.60	ES								
	0.80-1.20	В		0.80	98.06		coarse, subangu	sh brown sandy slightly o lar to angular limestone, EL. (MADE GROUND)		1.
	1.20	SPT	N=24 (4,4/6,6,6,6)							
	1.50	D								
• •	2.00	SPT	N=10	2.00	96.86		Soft to firm dark	grey slightly sandy CLAY	with some	- 2
	2.10	D	(1,2/2,2,3,3)					s and a mild organic odo		
				2.30	96.56		•	orangish brown locally g CLAY. Gravel is fine, angu	•	
	3.00	SPT	N=11 (2,1/2,2,3,4)							3
	3.30	D								
				3.60 3.70	95.26 95.16			AND. (ALLUVIUM) CLAY. (ALLUVIUM)		
	4.00	SPT	N=3 (2,2/0,1,1,1)	3.90 4.00	94.96 94.86		GRAVEL. (RIVER	ne to medium, angular to TERRACE DEPOSITS) AND. (RIVER TERRACE D		4
***************************************	4.30	D		4.20	94.66		Very soft grey Cl	LAY with rare subrounder ERRACE DEPOSITS)		
	4.90 5.00	D SPT	N=19 (2,2/3,5,5,6)	4.80	94.06			vith some silt sized seleni MUDSTONE FORMATION) Continued on Next Sheet		
marks:							nd groundwater pip	e installed to 3.00m o.	Bulk Sample Disturbed Sample Undisturbed Sample Undisturbed Sample (Thin Wall) Environmental Sample Water Sample) Photoionization Detector (ppm) T Standard Penetration Test	

	lyd ect Name	rock : Kraft P		www	.hyd	rock.	com	Window Co-ords:	vless Sample	Borehold Sheet 2 Hole Ty WLS	of 2
Loca	tion:	Banbu	ry				ject No: 161279	Ground Level:	98.86m OD	Scale 1:25	:
Clien	nt:	db sym	nmetry			L.	1612/9	Date(s):	02/06/16	Hole Dian	neter:
Well	Water Strikes		and In S	itu Testing	Depth (m)	Level (m OD)	Legend		Stratum Description	<u> </u>	111
		Depth (m)	Type		5.45	93.41			End of Borehole at 5.45n	n	7.0 -
Rema	rks:			1.20m bgl. 2) between 2.0				nd groundwater pip	e instaneu to 3.00m	B = Bulk Sample D = Disturbed Sample U = Undisturbed Sample UT = Undisturbed Sample (Thin Wall) ES = Environmental Sample W = Water Sample PID = Photoionization Detector (ppm) SPT = Standard Penetration Test AB = Asbestos Bulk Sample	10.0 -

	المدرا	ا م حاد			المساما	اء ما		Windowless Sampler	WS14	
П	ıya	rock		www	/.nyai	OCK.	com	TT a o tt i coo o a pi c.	Sheet 1 of	
roje	ect Name	: Kraft P	hase 2					Co-ords: 445103E, 241472N	Hole Type WLS	
oca	tion:	Banbu	ry				ject No: .61279	Ground Level: 98.86m OD	Scale: 1:25	
lien	t:	db sym	nmetry					Date(s): 03/06/16	Hole Diamet	ter
ell	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend	Stratum Description		
	Jennes	Depth (III)	туре	Results	(,	(05)		CONCRETE. (MADE GROUND)		
					0.17	98.69		ASPHALT. (MADE GROUND)		+
					0.27	98.59		Light brown slightly clayey slightly sandy coal limestone and sandstone GRAVEL. (MADE C		
					0.80	98.06		Stiff, brownish orange locally iron stained an	d grey	
		0.90 1.00	ES SPT	N=17				mottled CLAY with rare fine to coarse suban		
•		1.00-1.45	D	(3,3/3,4,5,5)				gravel. (ALLUVIUM)		
		1.20 1.20-2.00	ES B							
•										
		2.00	SPT	N=12						
•		2.00-2.45	D	(1,2/3,3,2,4)				From 2.10m bgl: Firm.		
•										
		2.50	D							
					2.80	96.06		Firm grey locally iron stained CLAY. (CHARM	OUTH	
•		3.00	SPT	N=23				MUDSTONE FORMATION)		
•		3.00-3.45	D	(2,3/4,5,6,8)						
					3.50	95.36		Very weak locally iron stained MUDSTONE w		
:		3.70	D					sized selenite crystals and rare shell frageme (CHARMOUTH MUDSTONE FORMATION)	ents.	
		4.00	SPT	N=25 (2,3/5,5,7,8)						
		4.00-4.45	D	, ,-, 2,3,,,01						
•										
لئا		5.00	SPT	N=29 (4,4/5,6,9,9)				Continued on Next Sheet		- !
	rko:	5.00-5.45	D D		Casasi	round	for manife	ring pipe installed to 5 00m bgl	ample	
ma	rks:			0.70m bgl. 2) tween 1.0m bย			er monito	D = Distruction D = D = Distruction D = D = D = D = D = D = D = D = D = D	bed Sample turbed Sample isturbed Sample (Thin Wall) onmental Sample	
oun	dwater:	None enco	untered	 d.				Logg		d:

H	lyd	rock		www	.hyd	rock.c	com	Window	rless Sample	er	٧	ehole No		
Proj	ect Name	: Kraft P	hase 2					Co-ords:	445103E, 241472N		Но	le Type: WLS		
Loca	tion:	Banbu	ry				ject No: .61279	Ground Level:	98.86m OD			Scale: 1:25 Diamet		
Clie	nt:	db sym						Date(s):	03/06/16			10mm	er:	
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Description	n				
					5.45	93.41			End of Borehole at 5.45m	1			7.0 8.0	
Rema		Response 2	zone be	o 3.oom bgi.	B = Bulk Sample D = Disturbed San U = Undisturbed S UT = Undisturbed ES = Environment W = Water Sampl PID = Photoioniza SPT = Standard Pe AB = Asbestos Bul	ample Sample (Th al Sample e tion Detecti netration To k Sample	or (ppm) est							
Grour	ndwater:	None enco	untere	d.						Logged:	NT	Checked	2 : t	зC

									Borehole N	0.
Hyd	rock		www	,hvd	rock.c	com	Windowless Samp	oler	WS15	
ilya	OCK			, iii y Gi					Sheet 1 of	
Project Name	: Kraft P	hase 2					Co-ords: 445089E, 24152	7N	Hole Type WLS	:
Location:	Banbu	ry				ject No: 161279	Ground Level: 98.86m OD		Scale: 1:25	
Client:	db syn	nmetry					Date(s): 06/06/16		Hole Diamet	er:
/ell Water		and In S	Situ Testing	Depth	Level	Legend	Stratum Descrip	tion		
Strikes	Depth (m)	Туре	Results	(m)	(m OD)	g	CONCRETE. (MADE GROUND)			
				0.22	00.64		CONTRACTE: (IMINDE GROOND)			
	0.30	ES		0.22	98.64		Brown sandy fine to coarse, subang limestone and concrete GRAVEL. (N			
	0.60	ES		0.50	98.36		Orangish brown gravelly SAND. Grav			
	0.00						subangular to angular mudstone an TERRACE DEPOSITS)	d sandsto	ne (RIVER	
				0.90	97.96		Firm grey locally iron stained CLAY.	(CHARMC	DUTH	-
	1.00 1.00-1.45	SPT D	N=8 (1,2/1,2,2,3)				MUDSTONE FORMATION)			1.0
	1.00 1.43									
	1.60	D								
	2.00	SPT	N=9			====				2.0
	2.00-2.45	D	(1,1/1,2,2,4)							2.0
	2.00-2.43					F====				
	2.40	D		2.30	96.56		Stiff grey thinly laminated CLAY. (CF	HARMOUT	Н	1
						====	MUDSTONE FORMATION)			
						F====				
				2.80	96.06		Very weak grey MUDSTONE with so	ma chall fi	ragmonts	-
							(CHARMOUTH MUDSTONE FORMAT		agments.	
	3.00	SPT	N=11 (2,1/2,2,3,4)							3.0
	3.00-3.45	D								
	4.00	SPT	N=12 (1,2/2,2,4,4)							4.0
	4.00-4.45	D								
	5.00	SPT	N=21 (2,2/4,4,6,7)				Continued on Next S	iheet		5.0
amarke:	5.00-5.45	D Ig nit to	0.65m bgl. 2)	 	with aria	ings on cor	nnletion	B = Bulk Sam	ple	
emarks:	ı, Hand di	ag hir 10	v.03111 Bgl. 2)	DaCKIIIIeC	i with aris	irigs on cor	πριετίστι.	D = Disturbed U = Undisturb UT = Undisturb ES = Environn W = Water Sa PID = Photoic	I Sample sed Sample thed Sample (Thin Wall) mental Sample imple inization Detector (ppm) rd Penetration Test	
oundwater:	None enco	ountered	d.					Logge	d: NT Checke	d:

H	lyd	rock		www	.hyd	rock.c	com	Window	rless Sample	er	٧	ehole No		
Proj	ect Name	: Kraft P	hase 2					Co-ords:	445089E, 241527N			le Type: WLS		
Loca	tion:	Banbu	ry				ject No: .61279	Ground Level:	98.86m OD			Scale: 1:25		
Clie	nt:	db sym	nmetry					Date(s):	06/06/16			Diamet 10mm	er:	
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Description	n				
					5.45	93.41			End of Borehole at 5.45n	1			7.0 8.0	
Rema				0.65m bgl. 2) E		B = Bulk Sample D = Disturbed Sar U = Undisturbed UT = Undisturbed ES = Environment W = Water Sampl PID = Photoioniza SPT = Standard Pc AB = Asbestos Bu	sample Sample (Ti al Sample e tion Detect netration 1 k Sample	or (ppm) est						
Grour	ndwater:	None enco	untere	d.						Logged:	NT	Checked	2 : t	C

									Borehole N	о.
Н	lyd	rock		WWW	.hyd	rock.	com	Windowless Sampler	WS16	
								Canada 4450445 241457N	Sheet 1 of Hole Type	
Proje	ect Name	:: Kraπ P	hase 2				*	Co-ords: 445044E, 241457N	WLS	
Loca	tion:	Banbu	ry				ject No: 161279	Ground Level: 98.86m OD	Scale: 1:25	
Clien	t:	db sym	nmetry					Date(s): 03/06/16	Hole Diamet	ter:
Well	Water	Sample	and In	Situ Testing	Depth	Level	Legend	Stratum Description	110111111	
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legenu	-		
								CONCRETE. (MADE GROUND)		
		0.30	ES		0.26	98.60		Brown clayey slightly sandy fine to coarse, su	ıbangular to	-
								angular limestone, sandstone and rare brick		
					0.55	98.31		(MADE GROUND) Stiff grey CLAY with some silt sized selenite of	muctale	-
		0.70	ES				<u> </u>	Stiff grey CLAY with some sift sized seienite of (CHARMOUTH MUDSTONE FORMATION)	rystais.	
		0.80	D							
		1.00	SPT	N=15			F===			1.0
		1.00-1.45	D	(2,2/3,3,4,5)	1.10	97.76		At 1.00m bgl: Mudstone lithorelic with pyrite fractures.	e along	1.0
		1.00 1.43						Very weak thinly laminated grey MUDSTONE		
								shell fragments. (CHARMOUTH MUDSTONE	FORMATION)	
		2.00	SPT	N=16 (2,1/2,4,4,6)						2.0
		2.00-2.45	D							
		3.00	SPT	N=26 (4,4/6,6,7,7)						3.0
		3.00-3.45	D	(4,4/0,0,7,7)						
		4.00	SPT	N=26						4.0
		4.00-4.45	D	(3,3/5,6,6,9)						
		5.00	SPT	N-20						5.0
		5.00	SP1 D	N=39 (4,6/7,9,11,12)				Continued on Next Sheet		3.0
Rema	rks:			0.50m bgl. 2)	Backfilled	with aris	ings on co		oed Sample	1
								U = Undis UT = Undis ES = Envir W = Water PID = Prof SPT = Stan	urbed Sample sturbed Sample (Thin Wall) onmental Sample	
iroun	dwater:	None enco	untere	d.				Logg	ed: NT Checke	d: S

H	lyd	rock		www	.hyd	rock.c	com	Window	rless Sample	er	٧	ehole November 12 of 2		
Proj	ect Name	: Kraft P	hase 2					Co-ords:	445044E, 241457N			le Type WLS		
Loca	tion:	Banbu	ry				ject No: .61279	Ground Level:	98.86m OD			Scale: 1:25 Diamet	~ "	
Clie	nt:	db sym						Date(s):	03/06/16			.10mm	er:	
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Description	n				
					5.45	93.41			End of Borehole at 5.45n	1			7.0 8.0	
Rema				0.50m bgl. 2) E	Backfilled	mpletion.		B = Bulk Sample D = Disturbed Sar U = Undisturbed Suff = Undisturbed Suff = Environment W = Water Sampl PID = Photoioniza SPT = Standard Pe AB = Asbestos Bul	sample Sample (Ti al Sample e tion Detect netration 1 k Sample	or (ppm) est				
Grour	ndwater:	None enco	untere	d.						Logged:	NT	Checke	d: 9	ŝС

Hyd	rock		www	ı.hydı	rock.c	com	Window	less Sample	Borehole N WS18	
Project Name							Co-ords:	445096E, 241545N	Sheet 1 of Hole Type WLS	
Location:	Banbu	ry				ject No: 161279	Ground Level:	96.69m OD	Scale: 1:25	
Client:	db sym	nmetry			(1	101273	Date(s):	09/06/16	Hole Diame	ter:
/ell Water	Sample	and In S	Situ Testing	Depth	Level	Legend		Stratum Description	 	
Strikes	Depth (m) 0.30	Type ES	Results	(m)	(m OD)	Legend	coarse, subangu	sandy gravelly CLAY. Gr. lar to subrounded chall MADE GROUND)	avel is fine to	
				0.35	96.34		coarse, subangu	sandy gravelly CLAY. Gr lar to subrounded chall bgl: Becoming very sandy.	k. (ALLUVIUM)	1.0
	1.20	SPT D	N=4 (0,0/1,1,1,1)	1.20	95.49			brown mottled grey CL sstone gravel. (RIVER TI		
	2.00	SPT	N=11 (1,2/3,2,3,3)	1.85	94.84		gravelly. Stiff grey mottle	5m bgl and 1.75m bgl: Bed d brown gravelly CLAY. (to subangular mudston RMATION)	Gravel is fine to	2
2.00	2.60	D					Between 2.3	Om and 2.40m: Very grave	rlly CLAY.	
	3.00	SPT	N=20 (2,2/4,4,5,7)							3
	3.60	D		3.55	93.14			hered grey mottled bro HARMOUTH MUDSTON		
	4.00	SPT	N=20 (2,3/4,4,6,6)							4
	4.60	D								
	5.00	SPT	N=21 (2,2/4,5,6,6)					Continued on Next Sheet	:	5
emarks:			1.20m bgl. 2) tween 1.0m bg			l ter monito	ring pipe installed t		B = Bulk Sample D = Disturbed Sample U = Undisturbed Sample U = Undisturbed Sample (Thin Wall) ES = Environmental Sample W = Water Sample PID = Photoionization Detector (ppm) SPI = Standard Penetration Test AB = Asbestos Bulk Sample	
oundwater:	None enco	untered	d.						Logged: WS Checke	٩٠

H	lyd	rock		www	.hyd	rock.c	com	Window	rless Sample	er	٧	ehole No		
Proj	ect Name	: Kraft P	hase 2					Co-ords:	445096E, 241545N		Но	le Type: WLS		
Loca	tion:	Banbu	ry				ject No: .61279	Ground Level:	96.69m OD			Scale: 1:25 Diamete	or:	_
Clie	nt:	db sym						Date(s):	09/06/16			10mm	er.	
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Description	n				
					5.45	91.24			End of Borehole at 5.45m	1			6.0 - 7.0 - 9.0 -	
Rema		1) Hand dug pit to 1.20m bgl. 2) Gas and groundwater monitoring pipe installed to 5.0m bgl. Response zone between 1.0m bgl and 5.0m bgl. University of the pipe installed to 5.0m bgl. Bar: None encountered. L											ا <u>.</u> .	
Grour	ndwater:	ivone enco	untere	u.						Logged:	VVS	Checked	1:1 PC	-

Hv	,d	rock		www	, hvd:	rock 4	nom	Window	less Sampler	Borehole N WS19	_
ııy	/UI	OCK		VV VV VI	/.iiyui	OCK.	COIII		•	Sheet 1 of	2
Project I	Name	: Kraft P	hase 2					Co-ords:	445047E, 241576N	Hole Type WLS	::
Location		Banbu	n.			Pro	ject No:	Ground Level:	97.32m OD	Scale:	
LOCALIOI		Dalibu	ıy			C	161279	Ground Level.	97.32111 OD	1:25	
Client:		db sym	nmetry					Date(s):	09/06/16	Hole Diamet	ter:
ا الم <i>ا</i>	ater rikes			Situ Testing	Depth (m)	Level (m OD)	Legend		Stratum Description		
	incs	Depth (m) 0.00-4.00	Type B	Results	(,	(111 00)		Firm friable brov	wn very sandy gravelly CLAY	' with	Τ
		0.30 0.30	D ES					abundant rootle	ts. Gravel is fine to coarse, crete, flint, occasional brick	angular to	
		0.40-1.00 0.50 0.50	B D ES		0.40	96.92			brown mottled grey sandy coarse, angular to subroun		
		1.00	D								1.
- :		1.00	ES								1
		1.20	SPT	N=13 (1,2/3,3,3,4)	1.20	96.12			ntly sandy CLAY with some i	relic rootlets.	1
		1.50	Mottled red along rootlets. (ALLUVIUM Between 1.60m bgl and 1.70m bgl: Bed								
					1.80	95.52		Between 1.60 predominant		ng	
					1.80	95.52		soft locally very soft brown mottled grey ve slightly gravelly CLAY. (ALLUVIUM)		ry sandy	
		2.00	SPT	N=3 (0,0/1,1,0,1)							2
		2.50	D								
					2.80	94.52					
		3.00	SPT	N=11 (1,2/1,2,4,4)				angular, fine to	nottled brown gravelly CLAY coarse, angular weak muds MUDSTONE FORMATION)		3
		3.50	D		3.55	93.77			ery gravelly CLAY. Gravel is fudstone. (CHARMOUTH M		
		3.90	D					FORMATION)			
		4.00	SPT	N=20 (2,3/4,4,5,7)							4
1 1		5.00	SPT	N=32					Control of the contro		- 5
		3.00	J	(4,5/6,8,9,9)					Continued on Next Sheet		
marks:	:			1.20m bgl. 2) tween 1.0m bք			ter monito	ring pipe installed t	U = Und UT = Und ES = En: W = Wa PID = PF SPT = St	urbed Sample isturbed Sample isturbed Sample (Thin Wall) ironmental Sample ter Sample otolonization Detector (ppm) andard Penetration Test	
nundu.	ater:	Groundwa	ter enco	ountered at 5.0	00m bgl.					pestos Bulk Sample	ч. —

	Hydrock www.hydrock.com oject Name: Kraft Phase 2							Window Co-ords:	vless Sample	Borehole I WS19 Sheet 2 of Hole Type WLS) f 2
Loca	tion:	Banbu	ry				ject No:	Ground Level:	97.32m OD	Scale:	
Clier	nt:	db sym	nmetry			C1	161279	Date(s):	09/06/16	1:25 Hole Diame	
Well	Water Strikes		and In S	itu Testing	Depth (m)	Level (m OD)	Legend		Stratum Description	•	l
		Depth (m)	Type	Results	5.45	91.87			End of Borehole at 5.45m		6.0 — 7.0 — 8.0 —
Rema	rks:			1.20m bgl. 2) (ween 1.0m bg			ter monito	ring pipe installed t	U U E S W Pl	= Bulk Sample = Disturbed Sample = Undisturbed Sample To Undisturbed Sample (Thin Wall) = Environmental Sample /= Watter Sample Do = Photoionization Detector (ppm) PT = Standard Penetration Test B = Asbestos Bulk Sample	10.0 -

Hvo	lrock		www	v.hyd	rock.	com	Windowless Sampler	Borehole No. WS20	
Project Nan		hase 2					Co-ords: 445021E, 241585N	Sheet 1 of 2 Hole Type: WLS	
Location:	Banbu	ıry				ject No: 161279	Ground Level: 97.98m OD	Scale: 1:25	
Client:	db syn	nmetry				2012/0	Date(s): 09/06/16	Hole Diameter:	
Vell Water			itu Testing	Depth	Level	Legend	Stratum Description	I	
Strikes	Depth (m)	Туре	Results	(m)	(m OD)	X//X//X	Firm friable brown sandy gravelly CLAY with	rootlets.	
	0.25	ES		0.30	97.68		Gravel is fine to coarse, angular to subround (TOPSOIL)		
	0.40	ES		0.50	97.08		Firm friable light brown slightly sandy gravel is fine to coarse, subangular to subrounded		
	0.50	50		0.50	97.48		(ALLUVIUM)		
	0.60	ES					Firm friable slightly sandy dark grey mottled (ALLUVIUM)	brown CLAY.	
	0.90	ES							
								1	
	1.20	SPT	N=9						
			(0,1/2,2,2,3)						
				1.40	96.58		Firm greenish greck locally speckled black CI	.AY with a	
							mild organic odour. (ALLUVIUM)		
	1.70	D							
							<u>생물</u> <u>조물</u> 음료		
	2.00	SPT	N=5 (0,1/1,1,2,1)	2.00	95.98		Firm dark brown mottled grey locally speckle	ed black sandy 2	
							CLAY. (ALLUVIUM)		
				2.50	95.48		Soft light grey CLAY. (ALLUVIUM)		
				2.60	95.38		Firm light brown mottled grey slightly silty C	LAY.	
							(CHARMOUTH MUDSTONE FORMATION)		
	3.00	SPT	N=9 (1,1/2,2,2,3)					3	
						====			
							Between 3.50 and 3.90m bql: Weak mudstor	ne aravel.	
	3.60	D							
	4.00	SPT	N=21	3.90	94.08		Stiff dark grey very gravelly CLAY. Gravel is fir		
	4.50		(2,3/3,5,6,7)				angular, very weak mudstone. (CHARMOUT FORMATION)	H MUDSTONE	
							TOMMATION		
	4.60	D							
	5.00	SPT	N=27				Continued on Next Sheet	5	
		(2,5/5,7,7,8)			<u> </u>		annia.		
emarks:	1) Hand du	ug pit to	1.20m bgl. 2)	Backfilled	I with aris	ings on cor	U = Undist U = Vndist E = Enviro W = Wate PID = Photo SPT = Stan	bed Sample urbed Sample Sturbed Sample (Thin Wall) Denmental Sample Sample Solonization Detector (ppm) dard Penetration Test	
roundwater	r: None enco	ountoroc	1					stos Bulk Sample	

	Hydrock www.hydrock.com ject Name: Kraft Phase 2 Project Name: Project							Window Co-ords:	vless Sample	Borehole N WS20 Sheet 2 of Hole Type WLS) f 2
Loca	tion:	Banbu	ry				ject No: 161279	Ground Level:	97.98m OD	Scale: 1:25	
Clier	nt:	db sym	nmetry			C	101273	Date(s):	09/06/16	Hole Diame	
Well	Water Strikes	Sample Depth (m)	and In S	itu Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Description	110111111	
					5.45	92.53			End of Borehole at 5.45m		6.0 — 7.0 — 8.0 — 9.0 — 9.0 —
Rema	rks:	1) Hand du		1.20m bgl. 2) l	Backfilled	with aris	ings on cor	mpletion.	D U UI II ES W PII PI AE	= Bulk Sample = Disturbed Sample = Undisturbed Sample = Undisturbed Sample (Thin Wall) = Environmental Sample > ENvironmental Sample > Photolonization Detector (ppm) 7 = Sandard Peneration Test B = Asbestos Bulk Sample Logged: WS Checkee	10.0 -

	lyd	rock :: Kraft P		www	.hyd	rock.	com	Window Co-ords:	/less Sample	Borehole N WS21 Sheet 1 of Hole Type	2	
Locat		Banbu				Pro	ject No:	Ground Level:	98.76m OD	WLS Scale:		
						C1	161279			1:25 Hole Diamet	ter:	
Clien			nmetry	Situ Testing	D			Date(s):	09/06/16	110mm		
Well	Water Strikes	Depth (m)	Туре	Results	Depth (m)	Level (m OD)	Legend		Stratum Description			
		0.30	ES		0.40	98.36		coarse, subangu	wn sandy gravelly CLAY. Ilar to subrounded flint.	(TOPSOIL)		
		0.70	ES		0.80	97.96		coarse, subangu DEPOSITS) Between 0.4	vn sandy gravelly CLAY. (ular to subrounded flint. Om bgl and 0.80m bgl: Roo rick fragments and concret	(RIVER TERRACE		
		1.00	ES					Firm light brown	n mottled light grey sand coarse, angular to subro	dy gravelly CLAY.	1.0	
		1.20	SPT	N=7 (1,1/2,1,2,2)	1.20	97.56		Firm grey mottle	ed brown slightly sandy ine to coarse, angular to			
		1.50	D		1.80	96.96		ironstone. (RIVER TERRACE DEPOSITS) From 1.30m bgl: Relic roots present. From 1.50m bgl: Fine to medium shell fragments present. From 1.60m bgl: Becoming slightly sandy. Stiff friable grey CLAY. (CHARMOUTH MUDSTONE				
		2.00	SPT	N=7 (1,1/1,2,2,2)				Stiff friable grey CLAY. (CHARMOUTH MUDSTONE FORMATION) Between 1.80m bgl and 2.50m bgl: Soft.			2.0	
		2.40	D									
		3.00	SPT	N=20 (2,2/4,5,5,6)							3.0	
		3.65	D					From 3.30m	bgl: Becoming stiff and gre	ey.		
		4.00	SPT	N=16 (2,2/2,4,4,6)							4.0	
		4.80	D									
		5.00	SPT	N=19 (2,3/3,5,5,6)			<u> </u>		Continued on Next Sheet		5.0	
Rema	rks:	1) Hand du	g pit to	1.20m bgl. 2)	 Backfilled	with aris	 ings on col	mpletion.	C L E V P S S	al = Bulk Sample D = Disturbed Sample J = Undisturbed Sample J = Undisturbed Sample (Thin Wall) S = Environmental Sample W = Water Sample ID = Photolonization Detector (ppm) PT = Standard Penetration Test AB = Asbestos Bulk Sample		

	Hydrock www.hydrock.com							Window Co-ords:	rless Sample	Sheet 2 of Hole Type WLS	f 2
Location	on:	Banbu	ry				oject No: 161279	Ground Level:	98.76m OD	Scale: 1:25	
Client:	:	db sym	nmetry				1012/9	Date(s):	09/06/16	Hole Diame	
	Water		and In S	itu Testing	Depth	Level	Legend		Stratum Description	110mm	
	Strikes	Depth (m)	Type	Results	(m) 5.45	93.31			End of Borehole at 5.45m		6.0
											10.0 -
Remark	ks:	1) Hand du	ug pit to	1.20m bgl. 2) (Backfilled	l with aris	ings on co	mpletion.	D U U ES W P!	= Bulk Sample = Disturbed Sample = Undisturbed Sample = Undisturbed Sample (Thin Wall) = Environmental Sample = Water Sample D = Photolonization Detector (ppm) T = Standard Penetration Test B = Asbestos Bulk Sample	

									Borehole N	о.
Hy	/di	rock		WWW	.hyd	rock.c	com	Windowless Sampler	WS22	
								Co. and a. 4450025, 244522N	Sheet 1 of Hole Type	
Project I	wame	: Kraft P	nase z			Dro	ject No:	Co-ords: 445003E, 241523N	WLS Scale:	
Location	ո։	Banbui	ry				L61279	Ground Level: 99.72m OD	1:25	
Client:		db sym	metry					Date(s): 06/06/16	Hole Diamet 110mm	ter:
\/\/_II	ater			Situ Testing	Depth	Level	Legend	Stratum Description		
Str	rikes	Depth (m)	Туре	Results	(m)	(m OD)		ASPHALT. (MADE GROUND)		T
					0.05	99.67 99.42		Yellowish slightly sandy fine to coarse, suba angular sandstone and concrete GRAVEL. (I GROUND)		
		0.40	ES					Firm orange locally grey mottled CLAY with staining. (RIVER TERRACE DEPOSITS)	some iron	
		0.70	ES					From 0.80m bgl: Stiff.		1.0 -
		1.20	SPT	N=17						
		1.20-1.65	D	(2,2/3,4,5,5)						
		1.80	D		1.80	97.92		Very stiff grey CLAY with abundant iron stair	ning and cilt	
		2.00	SPT	N=24				sized selenite crystals. (CHARMOUTH MUD		2.0
		2.00-2.45	D	(2,4/5,6,7,6)				FORMATION)		
		2.40	D		2.65	07.07				
					2.65	97.07		Very weak thinly laminated grey MUDSTON shell fragments. (CHARMOUTH MUDSTONE		
		3.00 3.00-3.45	SPT D	N=16 (2,2/3,4,4,5)						3.0
X		3.90 4.00	D SPT	N=27						4.0
		4.00-4.45	D	(3,2/4,6,5,12)						
		5.00	SPT	N=21				Continued on Next Sheet		5.0
		5.00-5.45	D	(2,2/4,5,5,7)						
Remarks:		1) Hand du	ıg pit to	1.20m bgl. 2)	Backfilled	with arisi	ings on coi	U = Undi UT = Unc ES = Envi W = Wat PID = Pih SPT = Sta	sample thed Sample sturbed Sample sturbed Sample (Thin Wall) romental Sample er Sample tolonization Detector (ppm) dndard Penetration Test estos Bulk Sample	
Groundwa	ater:	Groundwa	ter enc	ountered at 4.0	00m bgl.		_	Logg	ged: NT Checke	d: S

H	lyd	rock		www	.hyd	rock.c	com	Window	rless Samplo	er	٧	ehole November 12 of 2		
Proj	ect Name	: Kraft P	hase 2					Co-ords:	445003E, 241523N			le Type WLS		
Loca	tion:	Banbu	ry				ject No: .61279	Ground Level:	99.72m OD			Scale: 1:25 Diamet	or:	
Clie	nt:	db sym						Date(s):	06/06/16			.10mm	er:	
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Description	n				
			• • • • • • • • • • • • • • • • • • • •		5.45	94.27			End of Borehole at 5.45n	1			7.0 8.0	
Rema		1) Hand dug pit to 1.20m bgl. 2) Backfilled with arisings on completion. B = Bulk Sample D = Disturbed Sample UT = Undisturbed Sample UT = Undisturbed Sample UT = Undisturbed Sample FID = Photoionization Detects SPT = Standard Penetration T AB = Asbestos Bulk Sample											. 1	
Grour	ndwater:	Groundwa	ter enc	ountered at 4.0	Um bgl.					Logged:	NT	Checke	d: S	ر,C

Hydı	rock		www	ı.hyd	rock.c	com	Window	less Sample		3
Project Name:							Co-ords:	444987E, 241467N	Sheet 1 of Hole Type WLS	
Location:	Banbu	ry				ject No: .61279	Ground Level:	101.65m OD	Scale: 1:25	
Client:	db syn	nmetry			01	.01279	Date(s):	06/06/16	Hole Diame	ter:
Water	Sample	and In S	itu Testing	Depth	Level	Legend		Stratum Description	·	
Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend	ASPHALT. (MAD			
	0.20	ES		0.05	101.60		Yellowish brown	sandy fine to coarse, so ne and concrete GRAVE		
	0.70	ES		0.90	100.75		Firm grey mottle	ed orange CLAY with son	ne iron staining.	
							(RIVER TERRACE	DEPOSITS)		1.0
	1.20	SPT	N=17 (2,3/3,5,4,5)							
	1.20-1.65	D								
	1.50	D								
	2.00	SPT	N=27							2.0
	2.00-2.45	D	(2,4/5,6,7,9)				Between 2.0i staining.	m bgl and 2.20m bgl: Abur	idant iron	
	2.50	D								
				2.70	98.95			ocally iron stained with s		
	3.00	SPT	N=27			<u> </u>	nagments. (Cn/	ANNOUTHWODSTONE	PORIVIATION)	3.0
	3.00-3.45	D	(4,7/6,7,7,7)							3.0
	3.50	D								
	3.30									
	4.00	CDT	N. 24							4.0
	4.00 4.00-4.45	SPT D	N=21 (2,2/4,4,6,7)							4.0
				4.50 97.15 Very weak grey MUDSTONE with some shell fragment: (CHARMOUTH MUDSTONE FORMATION)						
							(CHANIVIOUTH N	NODSTONE FORWARION	''	
	5.00	SPT D	N=28 (3,5/6,6,7,9)					Continued on Next Sheet		5.0
Remarks:	5.00-5.45 1) Hand du		1.20m bgl. 2)	L Backfilled	I I with arisi	ngs on coi	mpletion.	E L L E V P	is = Bulk Sample j = Disturbed Sample j = Undisturbed Sample Tr = Undisturbed Sample (Thin Wall) S = Environmental Sample Y = Water Sample ID = Photoionization Detector (ppm) PT = Standard Penetration Test B = Asbestos Bulk Sample	
iroundwater:	None enco	untered	l		_				Logged: NT Checke	ed: S

H	lyd	rock		www	.hyd	rock.c	com	Window	less Sampl	er	٧	ehole No		
Proj	ect Name	: Kraft P	hase 2					Co-ords:	444987E, 241467N			le Type: WLS		
Loca	tion:	Banbu	ry				ject No: .61279	Ground Level:	101.65m OD			Scale: 1:25 Diamet	~ "	
Clie	nt:	db sym						Date(s):	06/06/16			10mm	er.	
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Description	n				
					5.45	96.20			End of Borehole at 5.45n	n			7.0	
Rema	ırks:	1) Hand dug pit to 1.20m bgl. 2) Backfilled with arisings on completion. B = Bulk Sample D = Disturbed Sample UT - Undisturbed Sample E = Environmental Sam W = Water Sample PID = Photoionization De SPT - Standard Penetrati AB - Asbestos Bulk Sam												
Grour	ndwater:	None enco	untere	d.						Logged:	NT	Checked	2 :k	SC.

Hyd	rock		www	ı.hvd	rock.c	com	Window	less Sample	Borehole N WS25	
Project Name		hase 2					Co-ords:	444943E, 241473N	Sheet 1 of Hole Type WLS	
Location:	Banbu	ry				ject No: 161279	Ground Level:	102.68m OD	Scale: 1:25	
Client:	db sym	nmetry			01	101273	Date(s):	07/06/16	Hole Diame	ter:
Vell Water		and In S	Situ Testing	Depth	Level	Legend		Stratum Description		
Strikes	0.10	Type ES	Results	(m)	(m OD)	8		SAND. Gravel is fine to co	oarse, subangular	
	0.30-0.80 0.40	B ES		0.30	102.38		Brownish orang coarse, subangu	e sandy gravelly CLAY. Go llar to angular quartz, sa ER TERRACE DEPOSITS)	andstone and	
	1.20	SPT	N=10	0.80	101.88			ally grey mottled CLAY we mudstone gravel. (RIV		1.
	1.20-1.65 1.20-2.00 1.40	D B D	(1,2/2,2,3,3)							
	2.00 2.00-2.45 2.00-3.00	SPT D B	N=13 (2,1/2,3,4,4)	2.10	100.58		(CHARMOUTH N	y CLAY with some iron st MUDSTONE FORMATION Om bgl and 2.70m bgl: Abu	١)	2
	2.80 3.00 3.00-3.45 3.00-4.00	D SPT D B	N=21 (3,4/5,4,6,6)	2.90	99.78			MUDSTONE with abund MUDSTONE FORMATION		3.
	4.00 4.00-4.45 4.00-5.00	SPT D B	N=30 (3,5/6,7,8,9)	3.90	98.78			MUDSTONE with some s		4.
	5.00 5.00-5.45	SPT D	N=30 (3,4/6,6,8,10)					Continued on Next Sheet		- 5
emarks:		zone be	tween 1.0m bg			ter monito	ring pipe installed t	L L V P	B = Bulk Sample D = Disturbed Sample UT = Undisturbed Sample UT = Undisturbed Sample (Thin Wall) ES = Environmental Sample W = Water Sample PID = Photoionization Detector (ppm) SPT = Standard Penetration Test AB = Asbestos Bulk Sample	

H	lyd	rock		www	.hyd	rock.	com	Window	less Sampl	er	٧	ehole No		
Proj	ect Name	: Kraft P	hase 2					Co-ords:	444943E, 241473N		Но	le Type: WLS		
Loca	tion:	Banbu	ry				ject No: .61279	Ground Level:	102.68m OD			Scale: 1:25		
Clie	nt:	db sym						Date(s):	07/06/16			Diamet 10mm	er:	
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Description	n				
					5.45	97.23			End of Borehole at 5.45n	n			7.0 8.0	
Rema	irks:	1) Hand dug pit to 1.20m bgl. 2) Gas and gorundwater monitoring pipe installed to 5.0m bgl. Response zone between 1.0m bgl and 5.0m bgl. B = Bulk Sample U = Undisturbed Sample UT = Undisturbed Sample UT = Undisturbed Sample U =												
Grout	iuwater:	None enco	untere	u.						Logged:	1 181	CHECKE(د ۱۰	,_

Hyd	rock		www	ı.hyd	rock.c	com	Window	less Sample		5
Project Name		hase 2					Co-ords:	445008E, 241406N	Sheet 1 of	
Location:	Banbu	ry				ject No:	Ground Level:	100.15m OD	Scale:	
Client:	db syn	nmetry			CI	161279	Date(s):	06/06/16	1:25 Hole Diame	
, Water	Sample	and In S	Situ Testing	Depth	Level				110mm	
/ell Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend		Stratum Description		
	0.20	ES		0.05	100.10		angular sandsto	ne GROUND) In sandy fine to coarse, sul Ine and concrete GRAVEL		1
	0.40-0.60 0.50	B ES		0.40	99.75		staining and ver	orange mottled CLAY wi y rare limestone gravel.		
	0.80 0.80-1.00	D B					DEPOSITS)			
										1.0
	1.20 1.20-1.65	SPT D	N=9 (2,1/2,1,3,3)							
	1.20-2.00	В								
•	2.00	SPT D	N=15 (2,1/2,4,4,5)							2
 	2.00-2.45									
	3.00 3.00-3.45	SPT D	N=22 (3,4/5,5,5,7)							3.
	5.00 5.15									
	4.00 4.00-4.45	SPT D	N=8 (2,2/2,1,2,3)							4
	4.00 4.43			4.20	95.95		Very weak grey	MUDSTONE with some si	ilt sized selenite	+
							crystals. (CHAR	MOUTH MUDSTONE FOR	RMATION)	
•										
•	4.80	D								
1.	5.00	SPT	N=31					Continued on Next Sheet		_ 5
	5.00-5.45	D	(2,3/6,6,8,11)							
marks:			1.20m bgl. 2) tween 1.0m bg			ter monito	ring pipe installed t	U = UT ES W Pilo SPI	Bulk Sample Disturbed Sample Undisturbed Sample Undisturbed Sample (Thin Wall) Environmental Sample Water Sample De Photoionization Detector (ppm) He Standard Penetration Test E-Asbestos Bulk Sample	
oundwater:	None enco	untere	d.						ogged: NT Checke	-d·

H	lyd	rock		www	.hyd	rock.c	com	Window	less Sampl	er	٧	/S26 et 2 of 2	
Proj	ect Name	: Kraft P	hase 2					Co-ords:	445008E, 241406N		Но	le Type: WLS	
Loca	tion:	Banbu	ry				ject No: .61279	Ground Level:	100.15m OD		:	Scale: 1:25	
Clie	nt:	db sym	nmetry			1		Date(s):	06/06/16			Diamete 10mm	er:
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend		Stratum Description	n			
					5.45	94.70			End of Borehole at 5.45n	n			7.0 — 8.0 — 9.0 — 10.0 —
Rema	nrks:	1) Hand dug pit to 1.20m bgl. 2) Gas and groundwater monitoring pipe installed to 5.0m bgl. Response zone between 1.0m bgl and 5.0m bgl. B = Bulk Sample D = Disturbed Sample U = Undisturbed Sample U = Undisturbed Sample U = Environmental Sample U = Sample PiD = Photoionization Detector (ppm) SPT = Standard Penetration Test AB = Advestor Bulk Sample PiD = Photoionization Detector (ppm) SPT = Standard Penetration Test AB = Advestor Bulk Sample PiD = Photoionization Detector (ppm) SPT = Standard Penetration Test Set: None encountered.							1: SC				

Appendix C

Geotechnical Test Results and SPT Depth plots

Determination of Moisture Content

Tested in Accordance with BS 1377-2:1990: Clause 3.2

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:

Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park

Holdenby Road

Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given

C161279 Client Reference:

Job Number: 16-20746 Date Sampled: 02,07,08/06/2016

Date Received: 21/06/2016 07/05/2016 Date Tested:

Sampled By: Not Given

Test results

Laboratory Reference	Sample Reference	Location	Depth Top [m]	Depth Base [m]	Sample Type	Description	Moisture Content [%]
591033	В	WS01	1.2	1.9	В	Yellowish brown slightly gravelly CLAY	20
591034	D	WS01	3	3.45	D	Greyish brown silty CLAY	24
591036	D	WS03	4	4.45	D	Greyish brown slightly gravelly CLAY	25
591037	D	WS05	2.2	Not Given	D	Yellowish brown to grey slightly gravelly slightly sandy silty CLAY	25
591038	В	WS07	0.3	1	В	Brown slightly gravelly sandy CLAY	17
591039	В	WS07	2	3	В	Yellowish brown slightly sandy silty CLAY	22
591040	D	WS07	3.5	Not Given	D	Yellowish brown to grey silty CLAY	29
591041	В	WS09	1.2	2	В	Greyish brown CLAY	19
591042	D	WS11	1.2	1.65	В	Orange slightly gravelly slightly sandy CLAY	22
591043	D	WS11	2.7	Not Given	D	Yellowish brown to grey slightly gravelly CLAY	34

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa Myther

Signed:

Terry Stafford Geotechnical Manager

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

Page 1 of 1 GF 099.6

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Moisture Content

Tested in Accordance with BS 1377-2:1990: Clause 3.2

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:

Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park

Holdenby Road

Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

C161279 Client Reference: Job Number: 16-20746

Date Sampled: 02,03,06/06/2016

Date Received: 21/06/2016

30/06/2016 Date Tested:

Sampled By: Not Given

Test results

Laboratory Reference	Sample Reference	Location	Depth Top [m]	Depth Base [m]	Sample Type	Description	Moisture Content [%]
591044	D	WS12	2	2.45	D	Yellowish brown to grey slightly sandy CLAY	21
591045	D	WS12	3	3.45	D	Yellowish brown sandy CLAY	16
591047	D	WS13	3.3	Not Given	D	Yellowish brown to grey slightly gravelly CLAY	17
591048	D	WS13	4.9	Not Given	D	Brownish grey silty CLAY	25
591049	В	WS14	1.2	2	В	Yellowish brown slightly gravelly slightly sandy CLAY	20
591050	D	WS14	2.5	Not Given	D	Yellowish brown slightly gravelly CLAY	21
591051	D	WS20	4	4.45	D	Greyish brown silty CLAY	20
591052	D	WS15	1	1.45	D	Yellowish brown to grey CLAY	22
591053	D	WS15	2	2.45	D	Yellowish brown to brownish grey silty CLAY	29
591054	D	WS25	4	4.45	D	Greyish brown CLAY	20

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa Myther

Signed:

Terry Stafford Geotechnical Manager

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

Page 1 of 1 GF 099.6

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

UKAS TESTING

TEST CERTIFICATE

Determination of Moisture Content

Tested in Accordance with BS 1377-2:1990: Clause 3.2

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:

Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park

Holdenby Road

Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2
Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746

Date Sampled: 03,06,09/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016

Sampled By: Not Given

Test results

Laboratory Reference	Sample Reference	Location	Depth Top [m]	Depth Base [m]	Sample Type	Description	Moisture Content [%]
591055	D	WS16	0.8	Not Given	D	Brownish grey slightly gravelly silty CLAY	24
591056	D	WS16	3	3.45	D	Greyish brown CLAY	22
591057	D	WS18	1.6	Not Given	D	Yellowish brown to brown slightly gravelly silty CLAY	25
591058	D	WS19	1.5	Not Given	D	Yellowish brown CLAY	30
591059	D	WS19	2.5	Not Given	DD	Yellowish brown slightly sandy silty CLAY	33
591060	D	WS20	1.7	Not Given	D	Yellowish brown to grey CLAY	27
591061	D	WS20	3.6	Not Given	D	Yellowish brown to grey CLAY	27
591062	D	WS21	1.5	Not Given	D	Orange slightly gravelly CLAY	36
591063	D	WS22	1.2	1.65	D	Yellowish brown to grey slightly gravelly silty CLAY	25
591064	D	WS22	2	2.45	D	Brownish grey CLAY	24

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa Myther

Signed:

Terry Stafford Geotechnical Manager

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **GF 099.6**

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Moisture Content

Tested in Accordance with BS 1377-2:1990: Clause 3.2

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park Holdenby Road

Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

C161279 Client Reference:

> Job Number: 16-20746

Date Sampled: 31/05,02,06,07/06/2016

Date Received: 21/06/2016

30/06, 05/07/2016 Date Tested:

Sampled By: Not Given

Test results

Laboratory Reference	Sample Reference	Location	Depth Top [m]	Depth Base [m]	Sample Type	Description	Moisture Content [%]
591065	D	WS23	1.2	1.65	D	Yellowish brown to grey slightly sandy CLAY	24
591066	D	WS23	2.5	Not Given	D	Yellowish brown to grey CLAY	29
591078	D	BH02	1.3	Not Given	D	Brown slightly sandy CLAY with roottlets	37
591085	В	BH02	0.5	0.8	В	Brown gravelly sandy CLAY	28
591089	В	вноз	8	8.4	В	Grey CLAY	22
591093	В	BH04	0.7	Not Given	В	Brown gravelly slightly sandy silty CLAY	23
591094	В	BH04	1.2	Not Given	В	Yellowish brown to grey silty CLAY	29
591095	U	BH04	2	2.45	U	Yellowish brown to grey silty CLAY	27
591096	U	BH04	4	4.45	U	Greyish brown silty CLAY	21
591097	С	BH04	6	6.3	U	Greyish brown CLAY	19

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa Myther

Signed:

Terry Stafford Geotechnical Manager

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

GF 099.6 Page 1 of 1

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Moisture Content

Tested in Accordance with BS 1377-2:1990: Clause 3.2

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:

Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

NNC OLD

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2
Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746

Date Sampled: 06/06/2016

Date Received: 21/06/2016

Date Tested: 30/06, 05/07/2016

Sampled By: Not Given

Test results

Laboratory Reference	Sample Reference	Location	Depth Top [m]	Depth Base [m]	Sample Type	Description	Moisture Content [%]
591098	С	BH04	9	9.4	U	Greyish brown CLAY	21
591099	С	BH04	12	12.4	U	Greyish brown silty CLAY	17
591100	С	BH04	14	14.3	U	Greyish brown silty CLAY	13

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Minonawa My 45

Signed:

Terry Stafford Geotechnical Manager

Mirosława Pytlik

PL Head of Geotechnical section
Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **GF 099.6**

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746 Date Sampled: 07/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

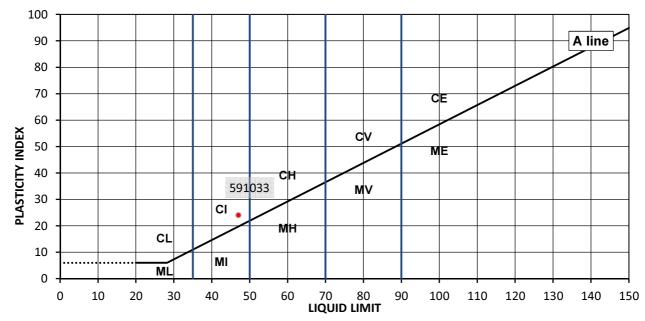
TEST RESULTS

Sample Preparation:

Laboratory Reference: 591033

> Sample Reference: В

Description: Yellowish brown slightly gravelly CLAY WS01 Location: Tested after >425um removed by hand


В Sample Type:

1.2

Depth Base [m]: 1.9

Depth Top [m]:

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve
20	47	23	24	96

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clay L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa Byther

Mirosława Pytlik

PL Head of Geotechnical section 12/07/2016 Date Reported:

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

TEST RESULTS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

Holdenby Road Spratton, Northampton

NN6 8LD

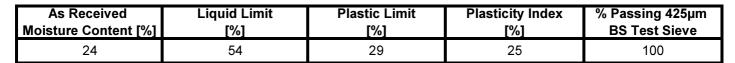
Nathan Thompson / Adam Cheers Contact:

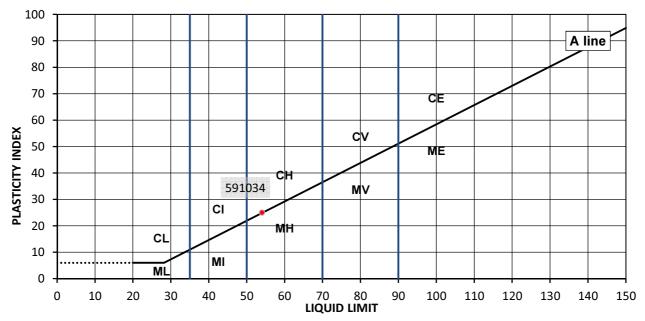
Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746 07/06/2016 Date Sampled:

21/06/2016 Date Received:


Date Tested: 30/06/2016 Sampled By: Not Given


Laboratory Reference: 591034

Sample Reference: D

D Description: Greyish brown silty CLAY Sample Type: WS01 Location: Depth Top [m]: 3

Tested in natural condition Sample Preparation: Depth Base [m]: 3.45

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 Very high V 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mirosława Pytlik

Date Reported:

Minonawa Byther

PL Head of Geotechnical section

12/07/2016

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

UKAS TESTING

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

2-4 Hawthorne Park Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given Client Reference: C161279

Job Number: 16-20746 Date Sampled: 07/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016

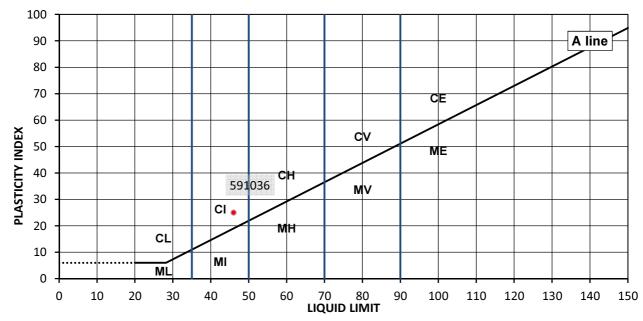
Depth Base [m]:

Sampled By: Not Given

TEST RESULTS

Laboratory Reference: 591036

Sample Reference: D


Description: Greyish brown slightly gravelly CLAY Location: WS03

Sample Type: D
Depth Top [m]: 4

4.45

Sample Preparation: Tested after >425um removed by hand

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve
25	46	21	25	97

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Minonawa Myther

Signed:

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016 Terry Stafford
Geotechnical Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

UKAS TESTING

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given Client Reference: C161279

Job Number: 16-20746 Date Sampled: 08/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

TEST RESULTS

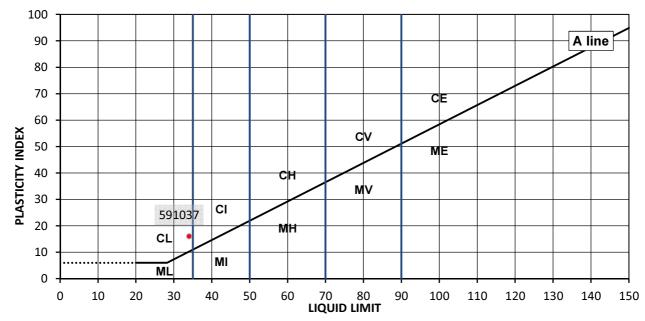
Sample Preparation:

Description:

Laboratory Reference: 591037

Sample Reference: D

Yellowish brown to grey slightly gravelly slightly sandy silty CLAY


Location: WS05

Tested after >425um removed by hand

Sample Type: D

Depth Top [m]: 2.2 Depth Base [m]: Not Given

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve
25	34	18	16	95

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Minonawa Mytis

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016 Signed:

Terry Stafford
Geotechnical Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

> Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

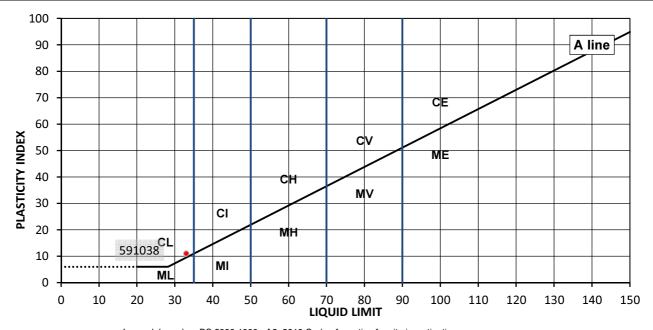
Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746 Date Sampled: 08/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given


TEST RESULTS

Laboratory Reference: 591038

Sample Reference: В

В Description: Brown slightly gravelly sandy CLAY Sample Type: WS07 Location: Depth Top [m]: 0.3 Tested after >425um removed by hand Sample Preparation: Depth Base [m]: 1

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm	
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve	
17	33	22	11	77	

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clay L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa Byther

Signed:

Mirosława Pytlik PL Head of Geotechnical section Date Reported:

12/07/2016

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

> Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Date Tested:

Job Number: 16-20746 08/06/2016 Date Sampled:

Date Received: 21/06/2016

Sampled By: Not Given

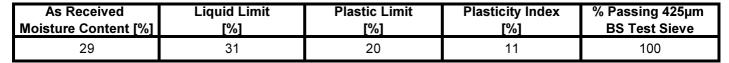
TEST RESULTS

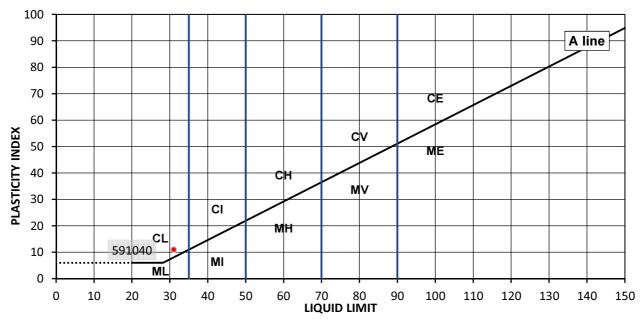
Location:

Laboratory Reference: 591040

Sample Reference: D

Description: Yellowish brown to grey silty CLAY WS07


Tested in natural condition Sample Preparation:


D Sample Type:

30/06/2016

Depth Top [m]: Depth Base [m]: Not Given

3.5

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 Very high V 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Minonawa Byther

Signed:

Terry Stafford Geotechnical Manager

Mirosława Pytlik

PL Head of Geotechnical section 12/07/2016 Date Reported:

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

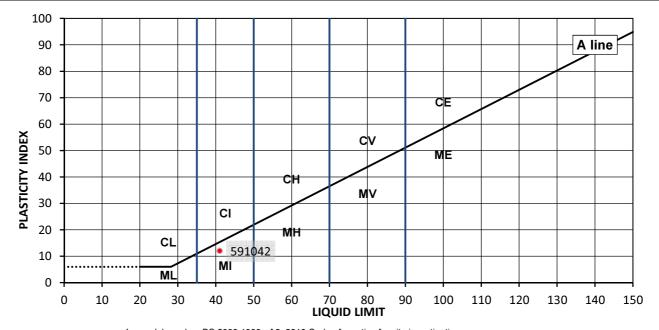
Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746 Date Sampled: 02/06/2016

Date Received: 21/06/2016 Date Tested: 30/06/2016

Sampled By: Not Given


TEST RESULTS

Laboratory Reference: 591042

> Sample Reference: D

В Description: Orange slightly gravelly slightly sandy CLAY Sample Type: WS11 Location: Depth Top [m]: 1.2 Tested after >425um removed by hand Sample Preparation: Depth Base [m]: 1.65

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve
22	41	29	12	62

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clay L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Signed:

Mirosława Pytlik

PL Head of Geotechnical section 12/07/2016 Date Reported:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Mi nonawa Byther

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

> Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746 Date Sampled: 02/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

TEST RESULTS

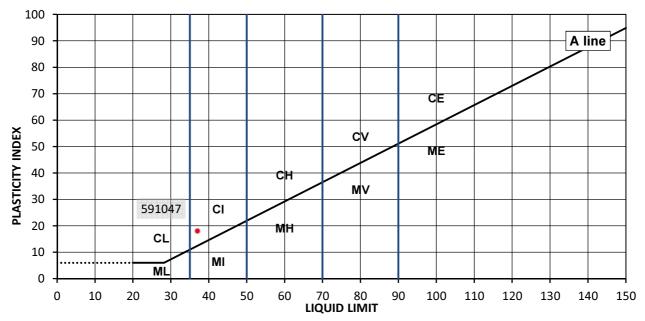
Location:

Laboratory Reference: 591047

Sample Reference: D

Description: Yellowish brown to grey slightly gravelly CLAY

Tested in natural condition Sample Preparation:


WS13

D Sample Type:

Depth Top [m]: Depth Base [m]: Not Given

3.3

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve
17	37	19	18	100

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa Byther

Mirosława Pytlik PL Head of Geotechnical section 12/07/2016 Date Reported:

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Address:

Client:

Hydrock Consultants Ltd 2-4 Hawthorne Park

> Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client Reference: C161279

Job Number: Date Sampled:

16-20746 02/06/2016

Date Received:

21/06/2016

Date Tested:

30/06/2016

Sampled By:

Not Given

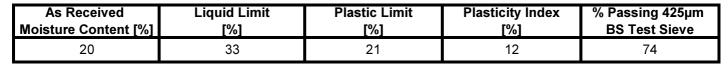
TEST RESULTS

Description:

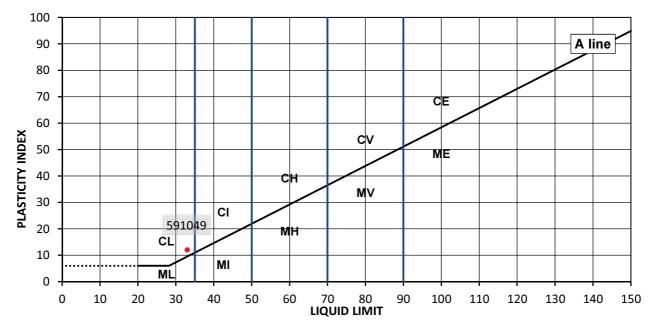
Laboratory Reference:

Sample Reference: В

Yellowish brown slightly gravelly slightly sandy CLAY


WS14 Location:

Sample Preparation:


Tested after >425um removed by hand

В Sample Type: Depth Top [m]: 1.2

Depth Base [m]: 2

591049

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav Τ Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 Very high V 70 to 90 Е Extremely high exceeding 90

Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Signed:

Mirosława Pytlik

Minonawa Byther

Terry Stafford Geotechnical Manager

PL Head of Geotechnical section 12/07/2016 Date Reported:

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

TEST RESULTS

Description:

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

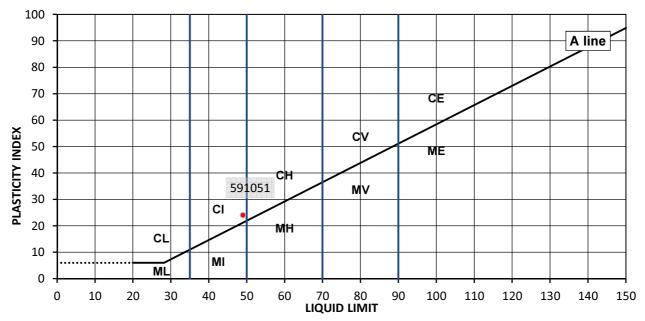
Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746 Date Sampled: 03/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given


Laboratory Reference: 591051

Sample Reference: D

D Greyish brown silty CLAY Sample Type:

WS20 Location: Depth Top [m]: 4 Tested in natural condition Sample Preparation: Depth Base [m]: 4.45

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve
20	49	25	24	100

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clay L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa Byther Mirosława Pytlik

PL Head of Geotechnical section 12/07/2016 Date Reported:

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

> Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746 Date Sampled: 06/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

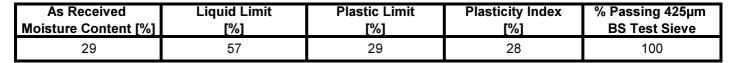
TEST RESULTS

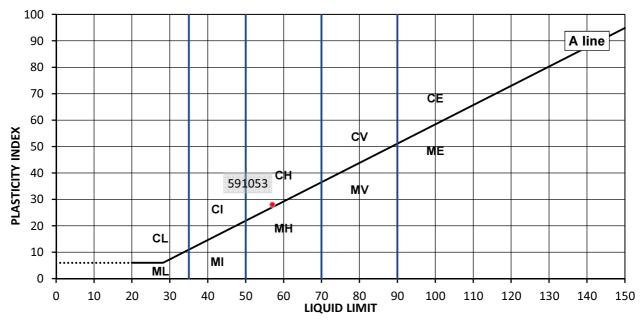
Location:

Laboratory Reference: 591053

Sample Reference: D

Description: Yellowish brown to brownish grey silty CLAY WS15


Tested in natural condition Sample Preparation:


D Sample Type:

2

Depth Base [m]: 2.45

Depth Top [m]:

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 Very high V 70 to 90 Е Extremely high exceeding 90

Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Minonawa Byther

Signed:

Terry Stafford Geotechnical Manager

Mirosława Pytlik

PL Head of Geotechnical section 12/07/2016 Date Reported:

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

> Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Date Tested:

Job Number: 16-20746 Date Sampled: 03/06/2016

Date Received: 21/06/2016

Sampled By: Not Given

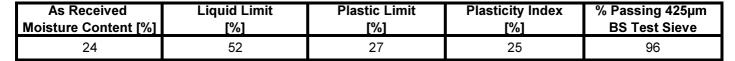
TEST RESULTS

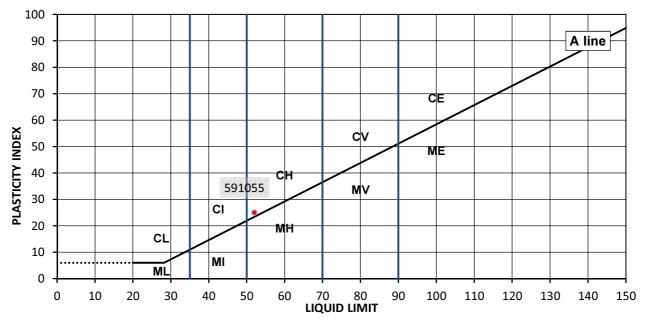
Laboratory Reference: 591055

> Sample Reference: D

Description: Brownish grey slightly gravelly silty CLAY WS16 Location:

Tested after >425um removed by hand Sample Preparation:


D Sample Type:


8.0

30/06/2016

Depth Base [m]: Not Given

Depth Top [m]:

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav Τ Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 Very high V 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Signed:

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Minonawa Byther

Terry Stafford Geotechnical Manager

Mirosława Pytlik

PL Head of Geotechnical section 12/07/2016 Date Reported:

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

C161279

16-20746

09/06/2016

21/06/2016

30/06/2016

Not Given

Client Reference:

Date Tested:

Sampled By:

TEST RESULTS

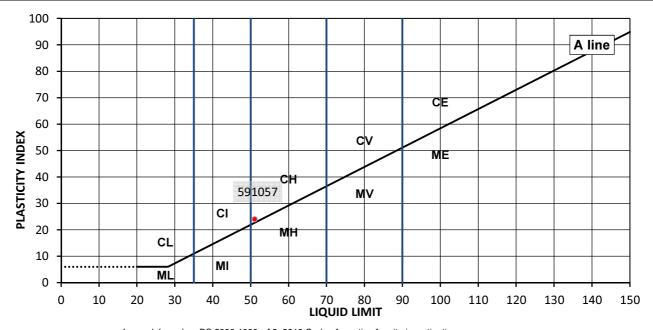
Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

Job Number: Holdenby Road Date Sampled: Spratton, Northampton Date Received:

NN6 8LD

Nathan Thompson / Adam Cheers Contact:


Site Name: Kraft Phase 2 Site Address: Not Given

> Laboratory Reference: 591057

Sample Reference: D

D Description: Yellowish brown to brown slightly gravelly silty CLAY Sample Type: **WS18** Location: Depth Top [m]: 1.6 Tested after washing to remove >425um Sample Preparation: Depth Base [m]: Not Given

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve
25	51	27	24	73

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Signed:

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mirosława Pytlik

Date Reported:

Mi nonawa Byther PL Head of Geotechnical section

12/07/2016

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

Sample Preparation:

Client Reference: C161279

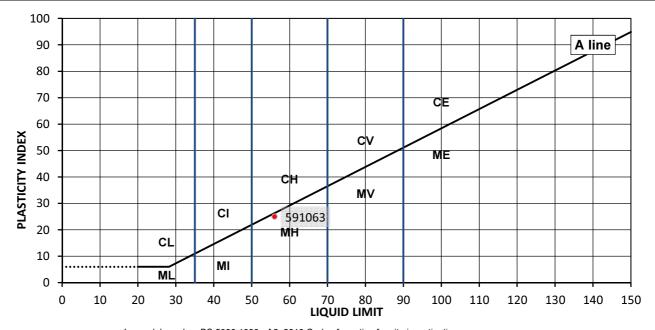
Job Number: 16-20746 Date Sampled: 06/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

Depth Base [m]:

1.65


TEST RESULTS Laboratory Reference: 591063

> Sample Reference: D

D Yellowish brown to grey slightly gravelly silty CLAY Sample Type:

Description: **WS22** Location: Depth Top [m]: 1.2 Tested after >425um removed by hand

As Received Liquid Limit		Plastic Limit	Plasticity Index	% Passing 425µm	
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve	
25	56	31	25	98	

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clay L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Signed:

Mirosława Pytlik

PL Head of Geotechnical section 12/07/2016 Date Reported:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Mi nonawa Byther

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

> Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Date Tested:

Job Number: 16-20746 Date Sampled: 31/05/2016

Date Received: 21/06/2016

Sampled By: Not Given

TEST RESULTS

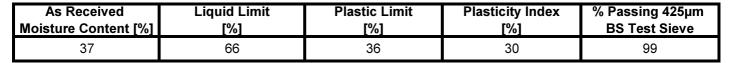
Location:

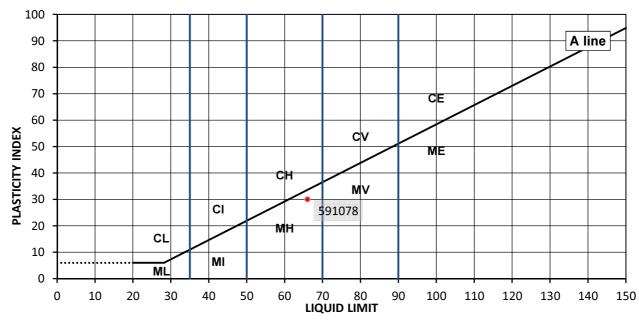
Laboratory Reference: 591078

Sample Reference: D

Description: Brown slightly sandy CLAY with roottlets

BH02 Tested after >425um removed by hand Sample Preparation:


D Sample Type:


Depth Top [m]:

30/06/2016

Depth Base [m]: Not Given

1.3

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 Very high V 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Minonawa Byther

Mirosława Pytlik PL Head of Geotechnical section 12/07/2016 Date Reported:

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

C161279

Client Reference:

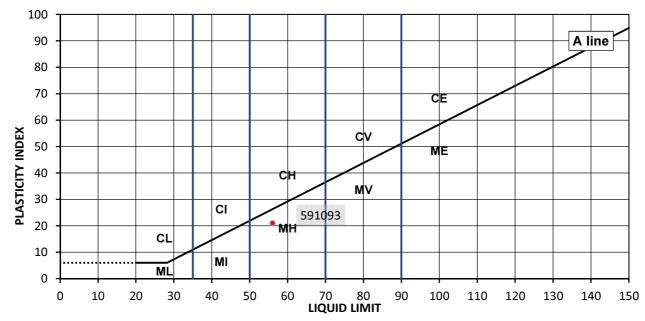
Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

Job Number: 16-20746 Holdenby Road Date Sampled: 06/06/2016 Spratton, Northampton Date Received: 21/06/2016

NN6 8LD

Nathan Thompson / Adam Cheers Date Tested: 30/06/2016 Contact: Sampled By: Not Given


Site Name: Kraft Phase 2 Site Address: Not Given

TEST RESULTS Laboratory Reference: 591093

> Sample Reference: В

В Description: Brown gravelly slightly sandy silty CLAY Sample Type: **BH04** Location: Depth Top [m]: 0.7 Tested after >425um removed by hand Sample Preparation: Depth Base [m]: Not Given

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve
23	56	35	21	79

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clay L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

O

Approved:

Mi nonawa Byther

Organic

Mirosława Pytlik PL Head of Geotechnical section 12/07/2016 Date Reported:

Signed:

Terry Stafford Geotechnical Manager

append to classification for organic material (eg CHO)

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

> Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746 Date Sampled: 06/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016

Sampled By: Not Given

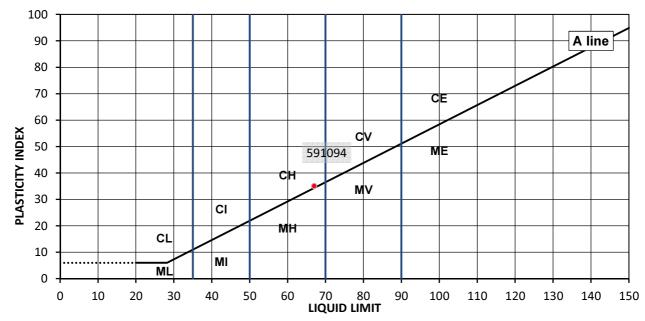
TEST RESULTS

Sample Preparation:

Laboratory Reference: 591094

Sample Reference: В

Description: Yellowish brown to grey silty CLAY **BH04** Location:


Tested in natural condition

В Sample Type:

Depth Top [m]: Depth Base [m]: Not Given

1.2

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve
29	67	32	35	100

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clay L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa Byther

Signed:

Terry Stafford Geotechnical Manager

Mirosława Pytlik PL Head of Geotechnical section

Date Reported:

12/07/2016

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

UKAS TESTING

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Client Address:

Client:

Hydrock Consultants Ltd 2-4 Hawthorne Park

Holdenby Road

Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given Client Reference: C161279

Job Number: 16-20746 Date Sampled: 06/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

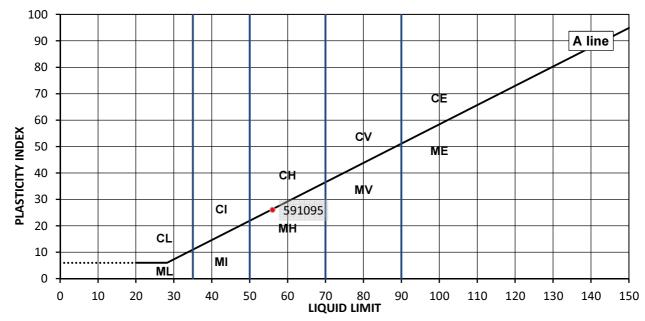
TEST RESULTS

Description:

Laboratory Reference:

e: 591095

Sample Reference: U


Yellowish brown to grey silty CLAY

Sample Type: U

Location: BH04 Depth Top [m]: 2
Sample Preparation: Tested in natural condition Depth Base [m]: 2.45

As Received Liquid Limit Plastic Limit Plasticity Index % Passing 425µm Moisture Content [%] [%] [%] BS Test Sieve

27 56 30 26 100

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 Very high V 70 to 90 Е Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Signed:

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016 Terry Stafford
Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Minonawa Byther

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279

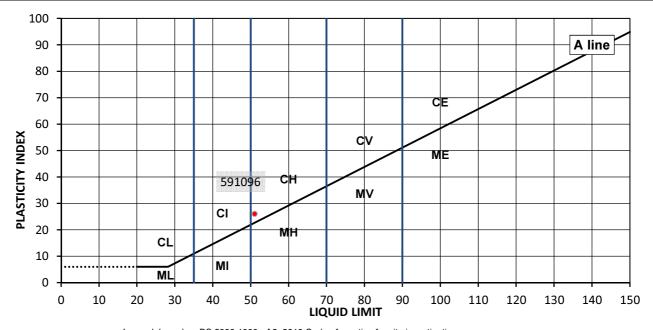
Job Number: 16-20746 Date Sampled: 06/06/2016 Date Received: 21/06/2016

Date Tested: 30/06/2016

Sampled By: Not Given

TEST RESULTS

Laboratory Reference: 591096


Sample Reference: U

Description: Greyish brown silty CLAY

U Sample Type:

BH04 4 Location: Depth Top [m]: Tested in natural condition Sample Preparation: Depth Base [m]: 4.45

As Received	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Moisture Content [%]	[%]	[%]	[%]	BS Test Sieve
21	51	25	26	100

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clay L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 V Very high 70 to 90 Е Extremely high exceeding 90

O Organic append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Signed:

Mirosława Pytlik

PL Head of Geotechnical section 12/07/2016 Date Reported:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Mi nonawa Byther

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

UKAS TESTING

TEST CERTIFICATE

Determination of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

U

100

4041

Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park Holdenby Road

Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given Client Reference: C161279

Job Number: 16-20746 Date Sampled: 06/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

Sample Type:

27

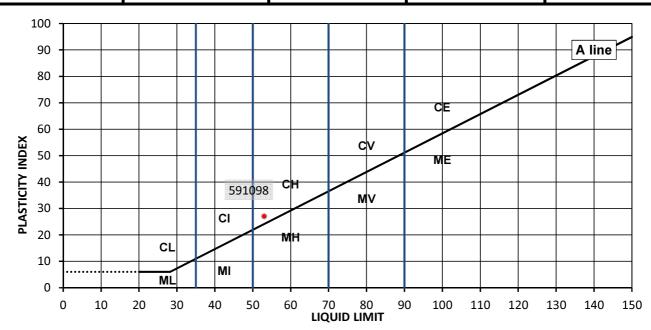
TEST RESULTS

21

Description:

Laboratory Reference: 591098

Sample Reference: C


Greyish brown CLAY

53

Location:BH04Depth Top [m]:9Sample Preparation:Tested in natural conditionDepth Base [m]:9.4

As Received Liquid Limit Plastic Limit Plasticity Index % Passing 425µm
Moisture Content [%] [%] [%] BS Test Sieve

26

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit C Clav L Iow below 35 Silt Medium 35 to 50 Н High 50 to 70 Very high V 70 to 90 Е Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Comments:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa Bythis

Mirosława Pytlik
PL Head of Geotechnical section
Date Reported: 12/07/2016

Signed:

Terry Stafford
Geotechnical Manager

for and on behalf of i2 Analytical Ltd

[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Summary of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clauses 4.4 & 5: One Point Method

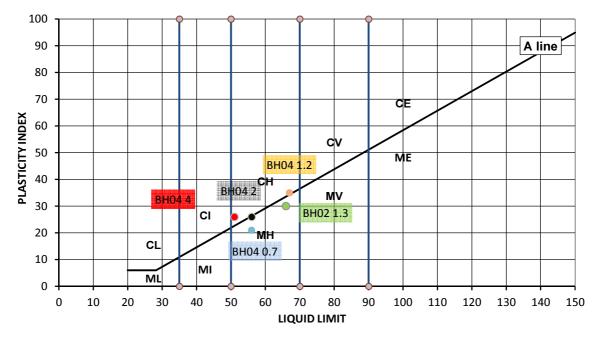
Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park
Holdenby Road

Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given Client Reference: C161279 Job Number: 16-20746


Date Sampled: 31/05,06/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

TEST RESULTS

Location	Depth [m]	As Received Moisture Content [%]	Liquid Limit [%]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425μm BS Test Sieve
BH02	1.3	37	66	36	30	99
BH04	0.7	23	56	35	21	79
BH04	1.2	29	67	32	35	100
BH04	2	27	56	30	26	100
BH04	4	21	51	25	26	100

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit Clay below 35 Low M Silt Medium 35 to 50 Н 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved: Mirosława Pytlik

PL Head of Geotechnical section

al section / Minomawa hyth

Signed: Terry Stafford

Geotechnical Manager

Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1 GF 121.4

Summary of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clauses 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address: Holdenby Road

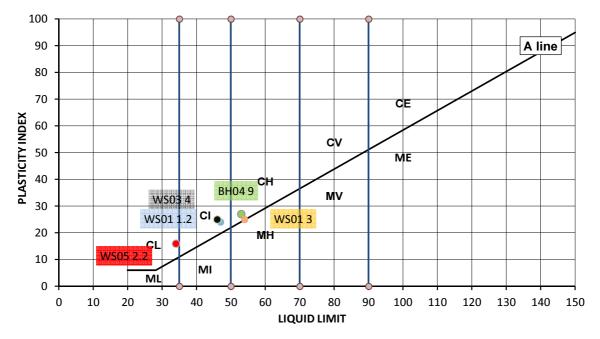
Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Kraft Phase 2 Site Name: Site Address: Not Given

Client Reference: C161279 16-20746 Job Number:


06,07,08/06/2016 Date Sampled:

21/06/2016 Date Received:

30/06/2016 Date Tested: Not Given Sampled By:

TEST RESULTS

Location	Depth [m]	As Received Moisture Content [%]	Liquid Limit [%]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425μm BS Test Sieve
BH04	9	21	53	26	27	100
WS01	1.2	20	47	23	24	96
WS01	3	24	54	29	25	100
WS03	4	25	46	21	25	97
WS05	2.2	25	34	18	16	95

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit Clay below 35 Low M Silt Medium 35 to 50 Н 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic append to classification for organic material (eg CHO)

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved: Mirosława Pytlik

PL Head of Geotechnical section

Signed: Terry Stafford

Geotechnical Manager

Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1 GF 121.4

Summary of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clauses 4.4 & 5: One Point Method

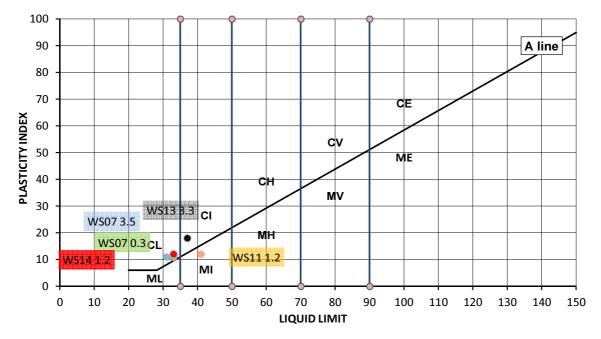
Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park
Holdenby Road

Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given Client Reference: C161279 Job Number: 16-20746


Date Sampled: 02,08/06/2016 Date Received: 21/06/2016

Date Tested: 30/06/2016

Sampled By: Not Given

TEST RESULTS

Location	Depth [m]	As Received Moisture Content [%]	Liquid Limit [%]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425μm BS Test Sieve
WS07	0.3	17	33	22	11	77
WS07	3.5	29	31	20	11	100
WS11	1.2	22	41	29	12	62
WS13	3.3	17	37	19	18	100
WS14	1.2	20	33	21	12	74

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit Clay below 35 Low M Silt Medium 35 to 50 Н 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved: Mirosława Pytlik

PL Head of Geotechnical section

Minonawa Byther

Signed: Terry Stafford

Geotechnical Manager

Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1 GF 121.4

Summary of Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377-2: 1990: Clauses 4.4 & 5: One Point Method

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

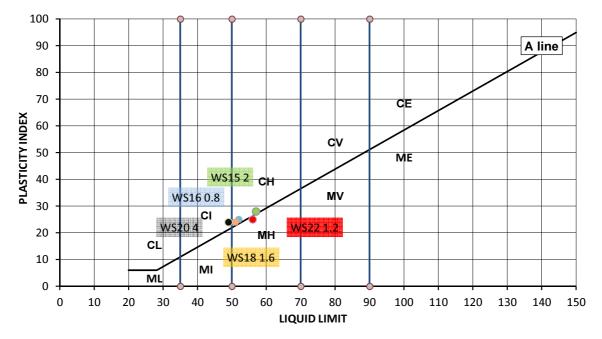
Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given Client Reference: C161279
Job Number: 16-20746

Date Sampled: 03,06,09/06/2016


Date Received: 21/06/2016

Date Tested: 30/06/2016

Sampled By: Not Given

TEST RESULTS

Location	Depth [m]	As Received Moisture Content [%]	Liquid Limit [%]	Plastic Limit [%]	Plasticity Index [%]	% Passing 425μm BS Test Sieve
WS15	2	29	57	29	28	100
WS16	8.0	24	52	27	25	96
WS18	1.6	25	51	27	24	73
WS20	4	20	49	25	24	100
WS22	1.2	25	56	31	25	98

Legend, based on BS 5930:1999 +A2: 2010 Code of practice for site investigations

Plasticity Liquid Limit Clay below 35 Low M Silt Medium 35 to 50 Н 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved: Mirosława Pytlik

PL Head of Geotechnical section

Minonawa Byther

Signed: Terry Stafford

Geotechnical Manager

Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1 GF 121.4

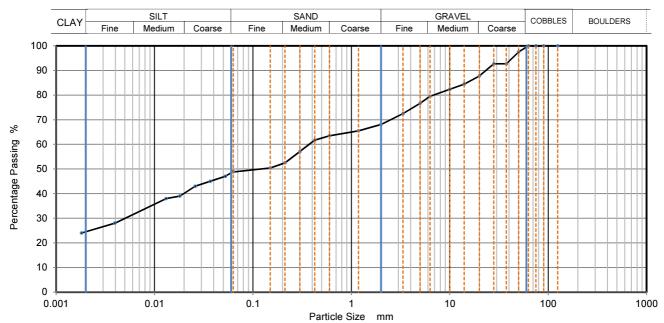
Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Hydrock Consultants Ltd Client: 2-4 Hawthorne Park Client Address:

> Holdenby Road Spratton, Northampton


NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279 16-20746 Job Number: 07/06/2016 Date Sampled: 21/06/2016 Date Received: Date Tested: 30/06/2016 Sampled By: Not Given

TEST RESULTS Sample Reference: В Laboratory Reference: 591033 Sample description: Yellowish brown slightly gravelly CLAY Sample Type: В Location: WS01 1.2 Depth Top [m]: Not Given Depth Base [m]: 1.9 Supplier:

Sie	ving	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	49	
90	100	0.0524	47	
75	100	0.0368	45	
63	100	0.0259	43	
50	98	0.0181	39	
37.5	93	0.0131	38	
28	93	0.0039	28	
20	88	0.0018	24	
14	85			
10	82			
6.3	80			
5	77			
3.35	73			
2	68			
1.18	66			
0.6	64	Particle density	(assumed)	
0.425	62	2.65	Mg/m3	
0.3	57			
0.212	53	1		
0.15	50	1		
0.063	49	1		

3681 Dry Mass of sample [g]:

Sample Proportions	% dry mass		
Very coarse	0.00		
Gravel	31.90		
Sand	19.30		
Silt	23.90		
Clay	24.90		

Grading Analysis		
D100	mm	63
D60	mm	0.374
D30	mm	0.005
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below Insufficient material supplied to be representative in accordance with BS1377 requirements

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Minonawa Mythis Mirosława Pytlik PL Head of Geotechnical section

Date Reported: 12/07/2016 Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

GF 100.7 Page 1 of 1

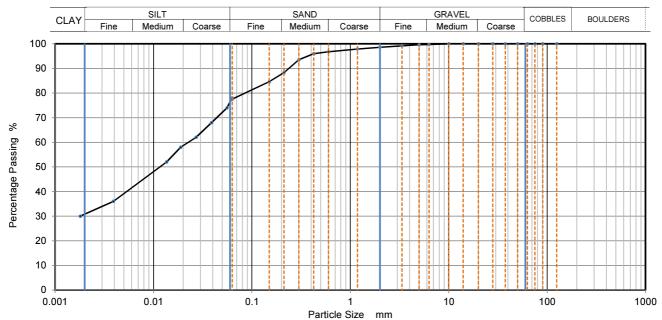
Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Hydrock Consultants Ltd Client: 2-4 Hawthorne Park Client Address:

> Holdenby Road Spratton, Northampton


NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279 16-20746 Job Number: 08/06/2016 Date Sampled: 21/06/2016 Date Received: Date Tested: 30/06/2016 Sampled By: Not Given

TEST RESULTS 591039 Sample Reference: В Laboratory Reference: Sample description: Yellowish brown slightly sandy silty CLAY Sample Type: В Location: WS07 2 Depth Top [m]: Not Given Supplier: Depth Base [m]: 3

Sie	ving	Sedimentation		
Particle Size	% Passing	Particle Size	% Passing	
mm	70 1 dooning	mm	70 1 dooning	
125	100	0.0630	78	
90	100	0.0558	74	
75	100	0.0389	68	
63	100	0.0271	62	
50	100	0.0189	58	
37.5	100	0.0136	52	
28	100	0.0039	36	
20	100	0.0018	30	
14	100			
10	100			
6.3	100			
5	100			
3.35	99			
2	99			
1.18	98			
0.6	97	Particle density	(assumed)	
0.425	96	2.65	Mg/m3	
0.3	94			
0.212	88			
0.15	85			
0.063	78			

1057 Dry Mass of sample [g]:

Sample Proportions	% dry mass		
Very coarse	0.00		
Gravel	1.40		
Sand	21.10		
Silt	46.90		
Clay	30.60		

Grading Analysis		
D100	mm	10
D60	mm	0.0234
D30	mm	0.00185
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Minonawa Mythis Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

GF 100.7 Page 1 of 1

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2
Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746

Date Sampled: 02/06/2016

Date Received: 02/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

TEST RESULTS

Laboratory Reference: 591046

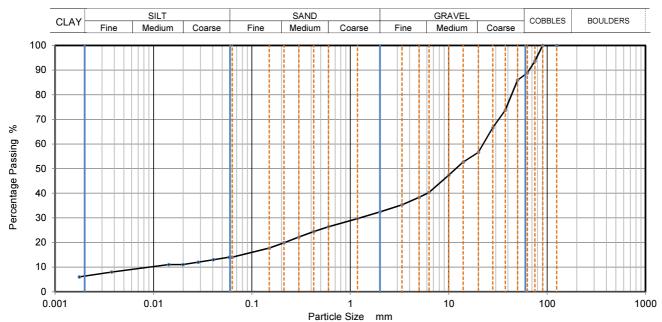
Yellowish brown sandy clayey fine to coarse

Sample Reference: B

Sample description:

GRAVEL

Sample Type:


B

Depth Top [m]:

0.5

 Location:
 WS13
 Depth Top [m]:
 0.5

 Supplier:
 Not Given
 Depth Base [m]:
 1.3

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	14
90	100	0.0585	14
75	94	0.0406	13
63	89	0.0284	12
50	86	0.0199	11
37.5	74	0.0143	11
28	67	0.0038	8
20	57	0.0018	6
14	53		
10	47		
6.3	40		
5	38		
3.35	35		
2	32		
1.18	30		
0.6	26	Particle density	(assumed)
0.425	24	2.65	Mg/m3
0.3	22		
0.212	20		
0.15	18		
0.063	14		

Dry Mass of sample [g]: 9192

Sample Proportions	% dry mass
Very coarse	11.10
Gravel	56.40
Sand	18.40
Silt	8.00
Clay	6.10

Grading Analysis		
D100	mm	90
D60	mm	22.4
D30	mm	1.25
D10	mm	0.0114
Uniformity Coefficient		2000
Curvature Coefficient		6.1

Remarks

Preparation and testing in accordance with BS1377 unless noted below Insufficient material supplied to be representative in accordance with BS1377 requirements

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mirosława Pytlik

PL Head of Geotechnical section
Date Reported: 12/07/2016

Signed:

Terry Stafford
Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

Minonawa Bythe

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Client: Hydrock Consultants Ltd Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Kraft Phase 2 Site Name: Site Address: Not Given

591049 Laboratory Reference:

Yellowish brown slightly gravelly slightly sandy

Sample description:

Location: WS14 Supplier: Not Given

TEST RESULTS

Sample Reference:

Client Reference:

Job Number:

Date Sampled:

Date Received:

Date Tested:

Sampled By:

Sample Type: В

C161279

16-20746

02/06/2016

21/06/2016

30/06/2016

В

Not Given

Depth Top [m]: 1.2 Depth Base [m]: 2

	CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS
	CLAT	Fine M	ledium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	0022220	DOCEDENO
10	0											
9	0											
8	0											
7 و	0											
6 22 5	0											
5	0											
4	0			مسد								
3	0		•••••									
2	0											
1	0											
	0		1		Щ.							
	0.001	C	0.01		0.1	Parti	1 cle Size r	nm	10		100	100

O'autaa		Cadimantatian			
Siev	/ing	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100	0.0630	38		
90	100	0.0550	36		
75	100	0.0387	35		
63	100	0.0271	32		
50	100	0.0189	30		
37.5	100	0.0137	29		
28	100	0.0037	22		
20	100	0.0017	18		
14	99				
10	96				
6.3	93				
5	89				
3.35	83				
2	76				
1.18	69				
0.6	64	Particle density	(assumed)		
0.425	61	2.65	Mg/m3		
0.3	56		-		
0.212	49				
0.15	43				
0.063	38				

Dry Mass of sample [g]: 1159

Sample Proportions	% dry mass	
Very coarse	0.00	
Gravel	24.50	
Sand	37.80	
Silt	19.10	
Clay	18.60	

Grading Analysis		
D100	mm	20
D60	mm	0.393
D30	mm	0.0169
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

Munonawa

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2
Site Address: Not Given

TEST RESULTS

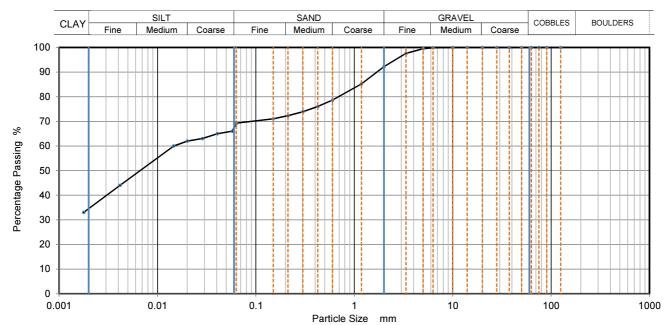
Sample description:

 Client Reference:
 C161279

 Job Number:
 16-20746

 Date Sampled:
 07/06/2016

 Date Received:
 21/06/2016


Date Tested: 07/01/2016 Sampled By: Not Given

Laboratory Reference: 591067 Sample Reference: D

Yelloiwsh brown slightly gravelly slightly sandy CLAY Sample Type: D

 Location:
 WS25
 Depth Top [m]:
 1

 Supplier:
 Not Given
 Depth Base [m]:
 2

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	69
90	100	0.0577	66
75	100	0.0406	65
63	100	0.0286	63
50	100	0.0201	62
37.5	100	0.0146	60
28	100	0.0042	44
20	100	0.0018	33
14	100		
10	100		
6.3	100		
5	100		
3.35	98		
2	92		
1.18	85		
0.6	79	Particle density	(assumed)
0.425	76	2.65	Mg/m3
0.3	74		
0.212	72		
0.15	71		
0.063	69		

Dry Mass of sample [g]: 754

Sample Proportions	% dry mass	
Very coarse	0.00	
Gravel	7.80	
Sand	22.90	
Silt	34.70	
Clay	34.60	

Grading Analysis		
D100	mm	10
D60	mm	0.0143
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mirosława Pytlik

PL Head of Geotechnical section
Date Reported: 12/07/2016

Signed:

Terry Stafford
Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

Mi nonawa My

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Siaska, Poland

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

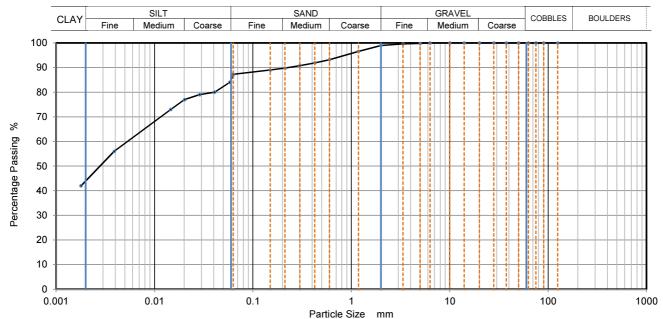
Site Name: Kraft Phase 2
Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746

Job Number: 16-20746

Date Sampled: 07/06/2016


Date Received: 21/06/2016

Date Tested: 30/06/2016

Sampled By: Not Given

TEST RESULTSLaboratory Reference:591068Sample Reference:BSample description:Greyish brown slightly sandy CLAYSample Type:B

Location: WS25 Depth Top [m]: 2
Supplier: Not Given Depth Base [m]: 3

Sieving		Sedime	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	87	
90	100	0.0583	84	
75	100	0.0408	80	
63	100	0.0287	79	
50	100	0.0202	77	
37.5	100	0.0146	73	
28	100	0.0039	56	
20	100	0.0018	42	
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	99			
1.18	97			
0.6	93	Particle density	(assumed)	
0.425	92	2.65	Mg/m3	
0.3	91			
0.212	90			
0.15	89			
0.063	87			

Dry Mass of sample [g]:	926

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	1.00
Sand	11.70
Silt	43.40
Clay	43.90

Grading Analysis		
D100	mm	6.3
D60	mm	0.00533
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mirosława Pytlik

PL Head of Geotechnical section
Date Reported: 12/07/2016

Signed:

Terry Stafford
Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

Mi nonawa Py

 $This \ report \ may \ not \ be \ reproduced \ other \ than \ in \ full \ without \ the \ prior \ written \ approval \ of \ the \ issuing \ laboratory.$

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Hydrock Consultants Ltd Client: 2-4 Hawthorne Park Client Address:

Holdenby Road Spratton, Northampton

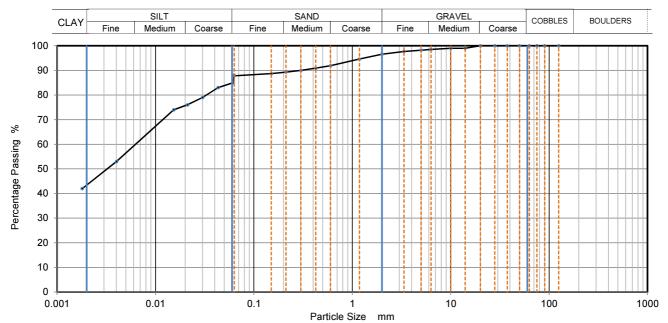
NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Kraft Phase 2 Site Name: Site Address: Not Given

Client Reference: C161279 16-20746 Job Number: 06/06/2016 Date Sampled:

> 21/06/2016 Date Received: Date Tested: 30/06/2016


Sampled By: Not Given

TEST RESULTS Laboratory Reference: 591069 Sample Reference: В

> Greyish brown CLAY with thin laminae of orangish Sample Type:

Sample description: В 3

Location: WS25 Depth Top [m]: Supplier: Not Given Depth Base [m]: 4

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	88
90	100	0.0613	85
75	100	0.0432	83
63	100	0.0301	79
50	100	0.0211	76
37.5	100	0.0153	74
28	100	0.0040	53
20	100	0.0018	42
14	99		
10	99		
6.3	99		
5	98		
3.35	98		
2	97		
1.18	95		
0.6	92	Particle density	(assumed)
0.425	91	2.65	Mg/m3
0.3	90		
0.212	89		
0.15	89		
0.063	88		

Dry Mass of sample [g]: 886

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	3.40
Sand	8.80
Silt	44.00
Clay	43.80

Grading Analysis		
D100	mm	20
D60	mm	0.00627
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mi nonawa h Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Hydrock Consultants Ltd Client: 2-4 Hawthorne Park Client Address:

> Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given

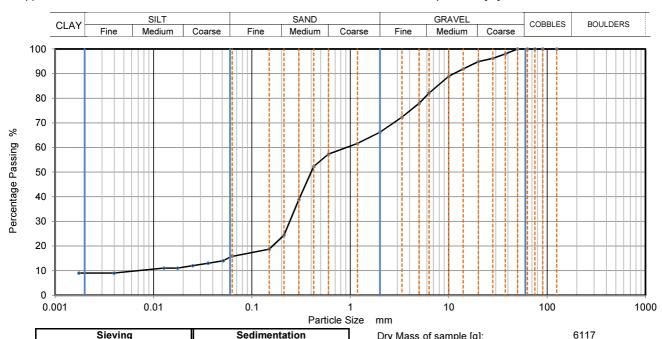
Sample description:

Client Reference: C161279 16-20746 Job Number:

Sample Type:

Date Sampled: 31/05/2016 Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given


В

TEST RESULTS 591081 Sample Reference: В Laboratory Reference:

Yellowish brown very gravelly clayey fine to

coarse SAND

Location: BH02 Depth Top [m]: 3.2 Not Given Depth Base [m]: 3 7 Supplier:

Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	16
90	100	0.0513	14
75	100	0.0358	13
63	100	0.0250	12
50	100	0.0176	11
37.5	98	0.0127	11
28	96	0.0040	9
20	95	0.0017	9
14	92		
10	89		
6.2	02		

mm	% Passing	mm	% Passing
mm		mm	
125	100	0.0630	16
90	100	0.0513	14
75	100	0.0358	13
63	100	0.0250	12
50	100	0.0176	11
37.5	98	0.0127	11
28	96	0.0040	9
20	95	0.0017	9
14	92		
10	89		
6.3	82		
5	78		
3.35	72		
2	66		
1.18	62		
0.6	57	Particle density	(assumed)
0.425	52	2.65	Mg/m3
0.3	39		
0.212	24		
0.15	19		

6117 Dry Mass of sample [g]:

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	33.80
Sand	50.40
Silt	7.10
Clay	8.70

Grading Analysis		
D100	mm	50
D60	mm	0.915
D30	mm	0.243
D10	mm	0.00795
Uniformity Coefficient		120
Curvature Coefficient		8.1

Preparation and testing in accordance with BS1377 unless noted below

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mirosława Pytlik

0.063

PL Head of Geotechnical section Date Reported: 12/07/2016

Sieving

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

Mi nonawa Byther

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Hydrock Consultants Ltd Client: 2-4 Hawthorne Park Client Address:

Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Site Name: Kraft Phase 2 Site Address: Not Given

TEST RESULTS

Sample description:

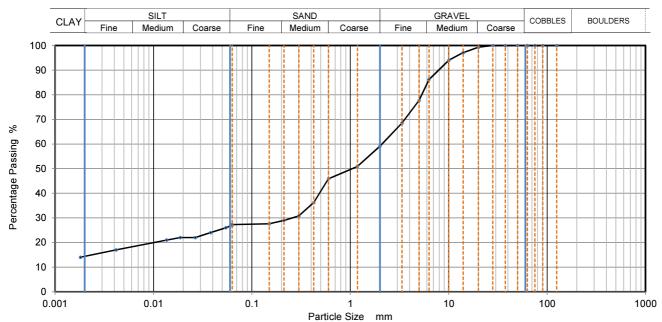
Client Reference: C161279

16-20746 Job Number: 02/06/2016

Date Sampled: Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

В


В

Laboratory Reference: 591088 Sample Reference:

Yellowish brown very sandy clayey fine to coarse

Sample Type: **GRAVEL**

Location: BH03 Depth Top [m]: 5.8 Not Given Depth Base [m]: 6.5 Supplier:

Sie	ving	Sodime	entation
	villy		T
Particle Size	% Passing	Particle Size	% Passing
mm	70 . doog	mm	/0 : doog
125	100	0.0630	27
90	100	0.0544	26
75	100	0.0381	24
63	100	0.0266	22
50	100	0.0187	22
37.5	100	0.0136	21
28	100	0.0042	17
20	99	0.0018	14
14	97		
10	94		
6.3	86		
5	78		
3.35	69		
2	59		
1.18	51		
0.6	46	Particle density	(assumed)
0.425	36	2.65	Mg/m3
0.3	31		
0.212	29		
0.15	28		
0.063	27		

4075 Dry Mass of sample [g]:

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	40.90
Sand	31.80
Silt	12.60
Clav	14.70

Grading Analysis		
D100	mm	28
D60	mm	2.1
D30	mm	0.257
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Preparation and testing in accordance with BS1377 unless noted below

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016

Signed:

Terry Stafford Geotechnical Manager

for and on behalf of i2 Analytical Ltd

 $Opinions\ and\ interpretations\ expressed\ herein\ are\ outside\ of\ the\ scope\ of\ the\ UKAS\ Accreditation.$

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of Particle Size Distribution

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

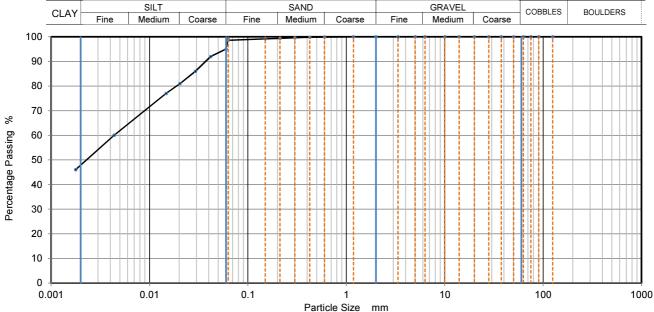
Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Hydrock Consultants Ltd Client: 2-4 Hawthorne Park Client Address:

Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers


Site Name: Kraft Phase 2 Site Address Not Given

Client Reference: C161279 16-20746 Job Number: 02/06/2016 Date Sampled: 21/06/2016 Date Received: Date Tested: 30/06/2016 Sampled By:

Sample Reference: В Sample Type: В 8 Depth Top [m]:

Not Given

TEST RESULTS Laboratory Reference: 591089 Sample description: **Grey CLAY** Location: **BH03** Not Given Supplier: Depth Base [m]: 8.4 SILT SAND GRAVEL

Sieving		Sedimentation		
Particle Size	% Passing	Particle Size	% Passing	
mm	70 1 d33111g	mm	70 1 assing	
125	100	0.0630	99	
90	100	0.0598	95	
75	100	0.0419	92	
63	100	0.0292	86	
50	100	0.0204	81	
37.5	100	0.0148	77	
28	100	0.0044	60	
20	100	0.0018	46	
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	100	Particle density	(assumed)	
0.425	100	2.65	Mg/m3	
0.3	100			
0.212	99			
0.15	99			
0.063	99			

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	0.00
Sand	1 40

1281

Silt 51.00 Clay 47 60

Grading Analysis		
D100	mm	2
D60	mm	0.0044
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Dry Mass of sample [g]:

Preparation and testing in accordance with BS1377 unless noted below

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Approved:

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016

Signed: Terry Stafford

Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client Address: 2-4 Hawthorne Park

Holdenby Road

Spratton, Northampton

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given

Job Number: 16-20746 Date Sampled: 07/06/2016 Date Received: 21/06/2016

Client Reference:

Date Tested: 30/06/2016 Sampled By: Not Given

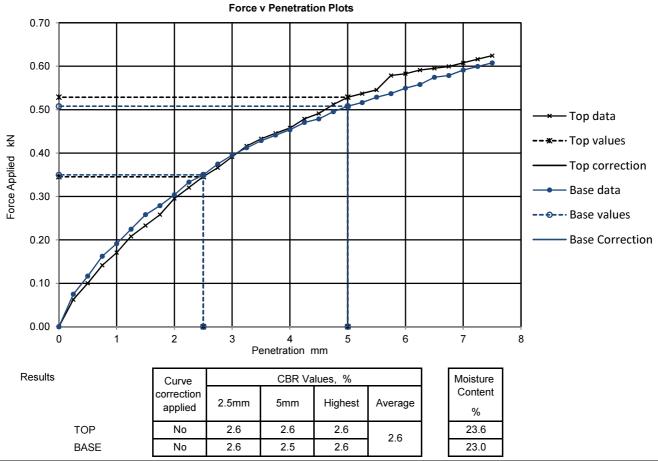
C161279

591035 **Test Results:** Laboratory Reference: В Sample Type:

В Sample Reference: 0.8 Depth Top [m]: WS03 Location: Depth Base [m]: 1.5

Specimen Preparation

Condition Remoulded Soaking details Not soaked


Details Period of soaking Recompacted with specified standard effort using 2.5kg days Time to surface days

Brown gravelly sandy CLAY with rootlets Amount of swell recorded Sample Description: mm Material retained on 20mm sieve removed Dry density after soaking Mq/m3

Initial Specimen details Bulk density 2.02 Mg/m3 Surcharge applied 8 kg

Dry density 1.63 Mg/m3 4.85 kPa

Moisture content 24.1

General Remarks:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Test/ Specimen

Aproved:

Signed:

Terry Stafford

specific remarks

Mirosława Pytlik PL Head of Geotechnical section 12/07/2016 Date Reported:

Geotechnical Manager

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

GF 108.6 Page 1 of 1

for and on behalf of i2 Analytical Ltd

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

C161279

16-20746

08/06/2016

21/06/2016

30/06/2016

Not Given

Client Reference:

Job Number:

Date Tested:

Sampled By:

Date Sampled:

Date Received:

Tested in Accordance with BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client Address: 2-4 Hawthorne Park

Holdenby Road

Spratton, Northampton

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given

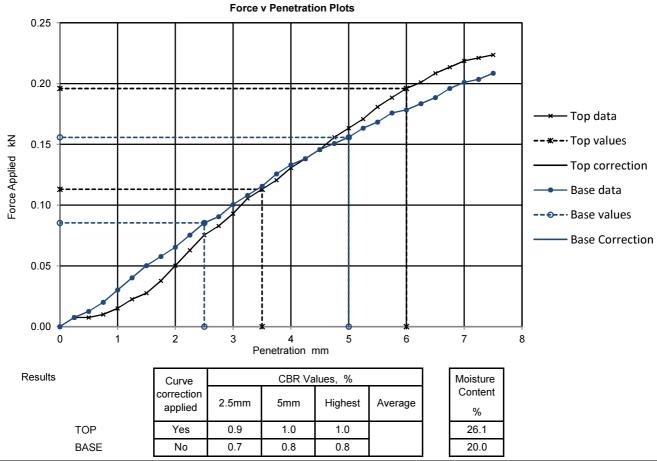
> 591038 Laboratory Reference: В Sample Type:

В Sample Reference: 0.3 Depth Top [m]: WS07 Location: Depth Base [m]: 1

Specimen Preparation

Test Results:

Condition Remoulded Soaking details Not soaked


Details Period of soaking days Recompacted with specified standard effort using 2.5kg

Time to surface days Brown slightly gravelly sandy CLAY Amount of swell recorded Sample Description: mm

Material retained on 20mm sieve removed 5 Dry density after soaking Mq/m3

Initial Specimen details Bulk density 2.02 Mg/m3 Surcharge applied 8 kg 1.64 4.86 kPa

Mg/m3 Dry density Moisture content 23.1

General Remarks:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Test/ Specimen

Aproved:

Date Reported:

12/07/2016

Signed:

Terry Stafford Geotechnical Manager

specific remarks

Mirosława Pytlik PL Head of Geotechnical section

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

C161279

16-20746

08/06/2016

21/06/2016

30/06/2016

Not Given

Client Reference:

Job Number:

Date Sampled:

Date Tested:

Sampled By:

Date Received:

Mq/m3

Tested in Accordance with BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client Address: 2-4 Hawthorne Park

Holdenby Road

Spratton, Northampton

Contact: Nathan Thompson / Adam Cheers Site Name:

Kraft Phase 2 Site Address: Not Given

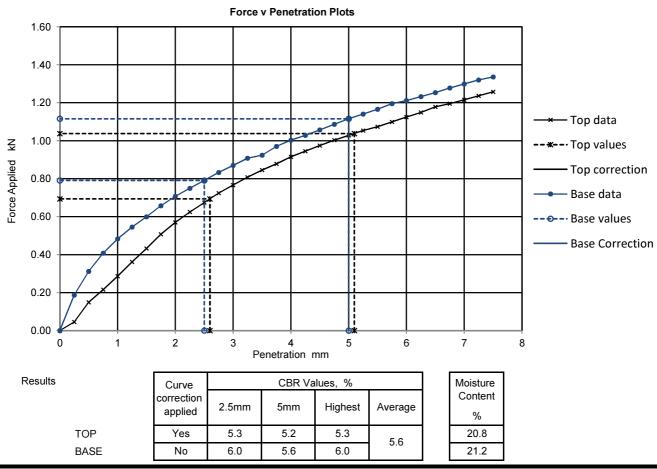
591041 Laboratory Reference: В Sample Type:

В Sample Reference: 1.2 Depth Top [m]: 2

WS09 Location: Depth Base [m]:

Specimen Preparation

Test Results:


Condition Remoulded Soaking details Not soaked

Details Period of soaking Recompacted with specified standard effort using 2.5kg days Time to surface days Greyish brown CLAY Amount of swell recorded Sample Description: mm

Material retained on 20mm sieve removed 2 Dry density after soaking

Initial Specimen details Bulk density 1.98 Mg/m3 Surcharge applied 8 kg 1.68 Mg/m3 4.86 kPa Dry density

Moisture content 17.9

General Remarks:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Test/ Specimen

Aproved:

Signed:

Terry Stafford Geotechnical Manager

specific remarks

Mirosława Pytlik

PL Head of Geotechnical section 12/07/2016 Date Reported:

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client Address:

2-4 Hawthorne Park Holdenby Road

Spratton, Northampton

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address Not Given

591046 **Test Results:** Laboratory Reference:

Sample Reference:

WS13 Location:

Specimen Preparation

Condition Remoulded

Initial Specimen details

Details Recompacted with specified standard effort using 2.5kg

rammer

Yellowish brown sandy clayey fine to coarse GRAVEL Sample Description:

Material retained on 20mm sieve removed

1.46 Bulk density Mg/m3

36

%

1.18 Dry density Mg/m3 24 0 Moisture content %

Client Reference: C161279 Job Number: 16-20746 Date Sampled: 02/06/2016 Date Received: 21/06/2016 Date Tested: 30/06/2016

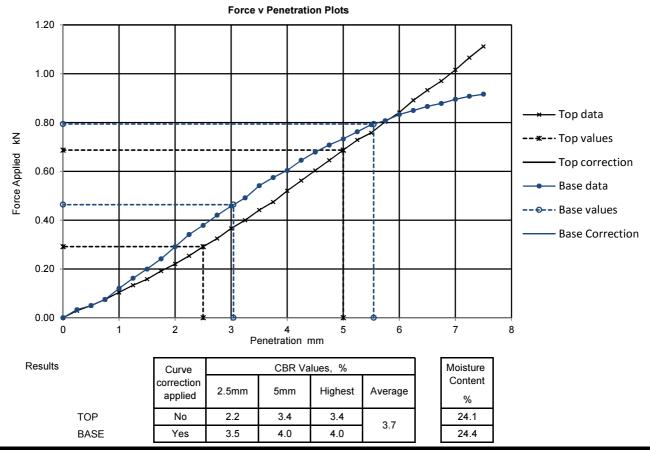
Sample Type:

Depth Top [m]:

Depth Base [m]:

Sampled By: Not Given

Soaking details Not soaked Period of soaking days Time to surface days Amount of swell recorded mm Dry density after soaking Mg/m3


8 Surcharge applied kg

3.26 kPa

В

0.5

1.3

Test carried out with > 25 % retained on 20mm as

per clause 7.2.1.2 General Remarks:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Test/ Specimen specific remarks:

Aproved:

Mi nonawa hother

Signed:

Terry Stafford Geotechnical Manager

Mirosława Pytlik

PL Head of Geotechnical section Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client Address:

2-4 Hawthorne Park Holdenby Road

Spratton, Northampton

Contact: Nathan Thompson / Adam Cheers Site Name:

Kraft Phase 2 Site Address: Not Given

Client Reference: C161279 Job Number: 16-20746

Date Sampled: 02/06/2016 Date Received: 21/06/2016

Date Tested: 30/06/2016 Sampled By: Not Given

591049 **Test Results:** Laboratory Reference: В Sample Type:

В Sample Reference: 1.2 Depth Top [m]: WS14 Location: Depth Base [m]: 2

Specimen Preparation

Condition Remoulded Soaking details Not soaked

Details Period of soaking days Recompacted with specified standard effort using 2.5kg Time to surface days Yellowish brown slightly gravelly slightly sandy CLAY Amount of swell recorded Sample Description: mm Material retained on 20mm sieve removed Dry density after soaking Mq/m3

Initial Specimen details Bulk density 2.09 Mg/m3 Surcharge applied 8 kg 4.86 kPa

Dry density 1.80 Mg/m3 Moisture content 16.1

General Remarks:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Test/ Specimen

Aproved:

Signed:

Terry Stafford Geotechnical Manager

specific remarks

Mirosława Pytlik PL Head of Geotechnical section

Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client Address: 2-4 Hawthorne Park

Holdenby Road

Spratton, Northampton

Contact: Nathan Thompson / Adam Cheers Site Name: Kraft Phase 2

Site Address: Not Given

Job Number: 16-20746 Date Sampled: 07/06/2016 Date Received: 21/06/2016

Client Reference:

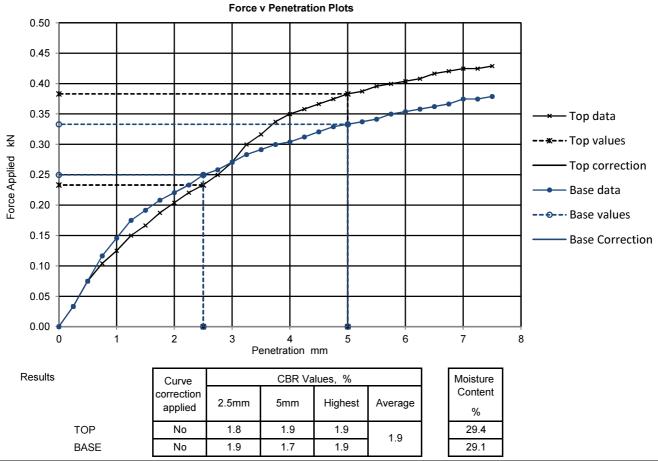
Date Tested: 01/07/2016 Sampled By: Not Given

C161279

591067 **Test Results:** Laboratory Reference: D Sample Type:

D Sample Reference: Depth Top [m]: 1 **WS25** Location: Depth Base [m]: 2

Specimen Preparation


Condition Remoulded Soaking details Not soaked

Details Period of soaking days Recompacted with specified standard effort using 2.5kg Time to surface days Yelloiwsh brown slightly gravelly slightly sandy CLAY Amount of swell recorded Sample Description: mm

Material retained on 20mm sieve removed Dry density after soaking Mq/m3

Initial Specimen details Bulk density 1.92 Mg/m3 Surcharge applied 8 kg 1.53 Mg/m3 4.86 kPa Dry density

> Moisture content 25.4

General Remarks:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Test/ Specimen

Aproved:

Date Reported:

12/07/2016

Signed:

Terry Stafford Geotechnical Manager

specific remarks

Mirosława Pytlik PL Head of Geotechnical section

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

GF 108.6 Page 1 of 1

for and on behalf of i2 Analytical Ltd

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

C161279

16-20746

06/06/2016

21/06/2016

01/07/2016

В

Not Given

Client Reference:

Job Number:

Date Sampled:

Date Tested:

Sampled By:

Date Received:

Tested in Accordance with BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client Address:

2-4 Hawthorne Park Holdenby Road

Spratton, Northampton

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given

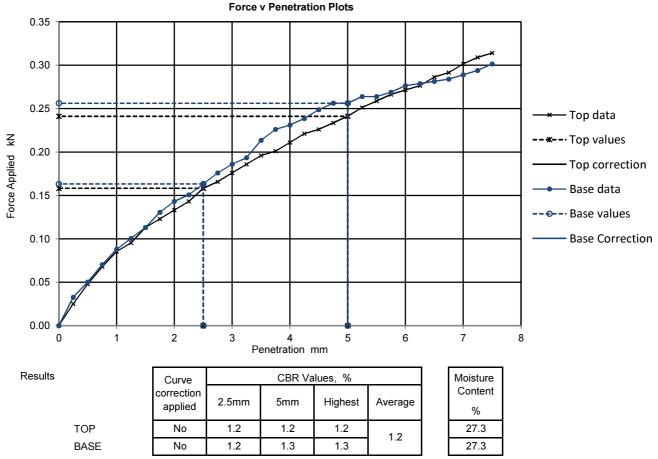
> 591070 Laboratory Reference: Sample Type:

В Sample Reference: 0.4 Depth Top [m]: **WS26** Location: Depth Base [m]: 0.6

Specimen Preparation

Test Results:

Condition Remoulded Soaking details Not soaked


Details Period of soaking Recompacted with specified standard effort using 2.5kg days

Time to surface days Brown gravelly sandy CLAY with rootlets Amount of swell recorded Sample Description: mm

Material retained on 20mm sieve removed Dry density after soaking Mq/m3

Initial Specimen details Bulk density 1.98 Mg/m3 Surcharge applied 8 kg Dry density 1.50 Mg/m3 4.84 kPa

> Moisture content 32.0

General Remarks:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Test/ Specimen

Aproved:

Signed:

Terry Stafford

specific remarks

Mirosława Pytlik PL Head of Geotechnical section Date Reported: 12/07/2016

Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Determination of California Bearing Ratio

i2 Analytical Ltd7 Woodshots MeadowCroxley Green Business ParkWatford Herts WD18 8YS

C161279

16-20746

06/06/2016

21/06/2016

01/07/2016

В

Not Given

Client Reference:

Job Number:

Date Sampled:

Date Tested:

Sampled By:

Date Received:

Tested in Accordance with BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2
Site Address: Not Given

Laboratory Reference: 591071 Sample Type:

 Sample Reference:
 B
 Depth Top [m]:
 0.8

 Location:
 WS26
 Depth Base [m]:
 1

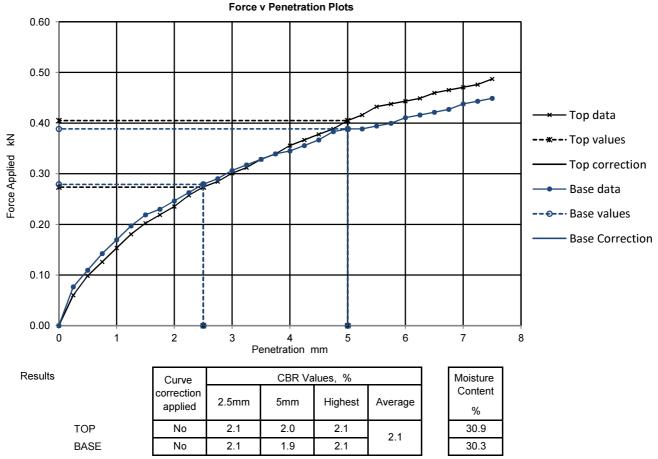
Specimen Preparation

Test Results:

Condition Remoulded Soaking details Not soaked

Details Recompacted with specified standard effort using 2.5kg Period of soaking days

rammer Time to surface days


Sample Description: Yellowish brown sandy CLAY Amount of swell recorded mm

Material retained on 20mm sieve removed 0 % Dry density after soaking Mg/m3

Initial Specimen details Bulk density 1.93 Mg/m3 Surcharge applied 8 kg

s Bulk density 1.93 Mg/m3 Surcharge applied 8 kg
Dry density 1.50 Mg/m3 4.86 kPa

Moisture content 28.3 %

General Remarks:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Test/ Specimen

Aproved:

Minonawa Byther

Signed:

Terry Stafford
Geotechnical Manager

specific remarks

Mirosława Pytlik
PL Head of Geotechnical section
Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

C161279

16-20746

31/05/2016

21/06/2016

Not Given

Client Reference:

Job Number:

Date Sampled:

Date Received:

Sampled By:

Date Tested: 04/07/2016

Tested in Accordance with BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client Address: 2-4 Hawthorne Park

Holdenby Road

Spratton, Northampton

Contact: Nathan Thompson / Adam Cheers Site Name: Kraft Phase 2

Site Address Not Given

> 591080 Laboratory Reference: В Sample Type:

В Sample Reference: Depth Top [m]: 2.6

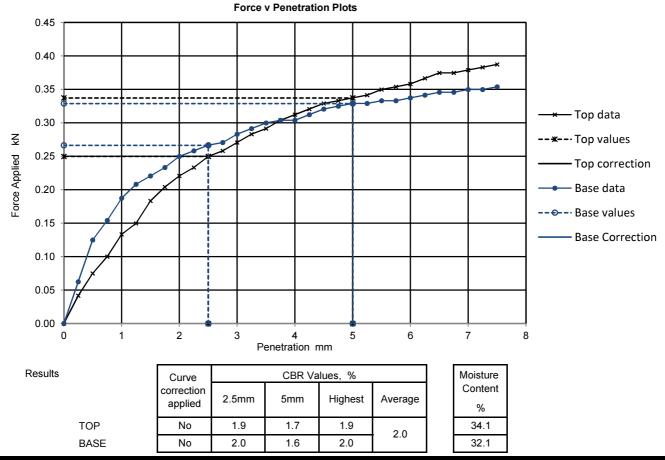
BH02 Location: Depth Base [m]:

Specimen Preparation

Test Results:

Condition Remoulded Not soaked Soaking details

Details Period of soaking days Recompacted with specified standard effort using 2.5kg Time to surface days


Brown slightly gravelly slightly sandy CLAY with thin Sample Description: Amount of swell recorded mm

laminae of grey clay and rootlets 0 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3

Initial Specimen details Bulk density 1.91 Mg/m3 Surcharge applied kg

Dry density 1.42 Mg/m3 4.84 kPa

Moisture content 34 3 %

General Remarks:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Test/ Specimen specific remarks:

Aproved:

Signed:

Terry Stafford Geotechnical Manager

Mirosława Pytlik PL Head of Geotechnical section Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client Address: 2-4 Hawthorne Park

Holdenby Road

Spratton, Northampton

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2 Site Address: Not Given

Client Reference: C161279 Job Number: 16-20746 Date Sampled: 02/06/2016

Date Received: 21/06/2016 Date Tested: 04/07/2016 Sampled By: Not Given

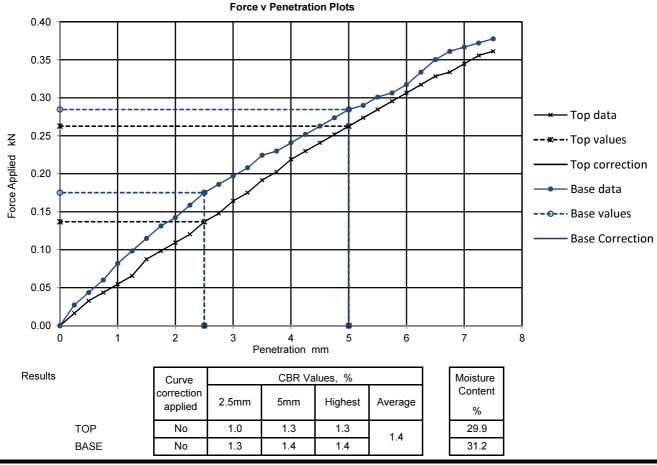
591085 Laboratory Reference: В Sample Type:

В Sample Reference: 0.5 Depth Top [m]: BH02 Location: Depth Base [m]: 0.8

Specimen Preparation

Test Results:

Condition Remoulded Soaking details Not soaked


Details Period of soaking Recompacted with specified standard effort using 2.5kg days

Time to surface days Brown gravelly sandy CLAY Amount of swell recorded Sample Description: mm

Material retained on 20mm sieve removed 2 Dry density after soaking Mq/m3

Initial Specimen details Bulk density 1.89 Mg/m3 Surcharge applied 8 kg Dry density 1.45 Mg/m3 4.86 kPa

> Moisture content 30.5

General Remarks:

Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Test/ Specimen

Aproved:

Mirosława Pytlik

Date Reported:

12/07/2016

PL Head of Geotechnical section

Signed:

Terry Stafford Geotechnical Manager

specific remarks

for and on behalf of i2 Analytical Ltd

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Dry Density / Moisture Content Relationship Light Compaction

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

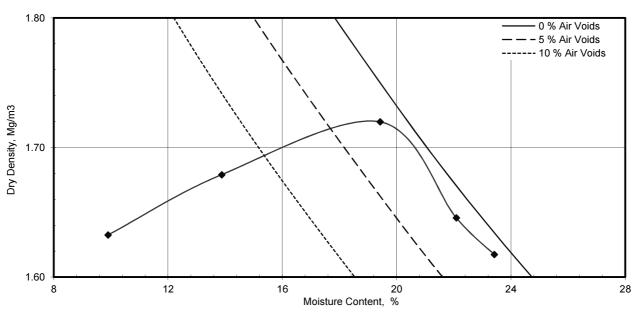
Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:

Kraft Phase 2 Site Name: Not Given Site Address:

Sample Description:


Client Reference: C161279 Job Number: 16-20746 Date Sampled: 08/06/2016

Date Received: 21/06/2016 Date Tested: 30/06/2016 Sampled By: Not Given

TEST RESULTS

Laboratory Reference: 591038 Sample Reference: WS07 Location: Brown slightly gravelly sandy CLAY

0.3 Depth Top [m]: Depth Base [m]: 1 Sample Type: В

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	4
Particle Density -	Mg/m³	2.65

Maximum Dry Density	Mg/m³	1.72	
Optimum Moisture Content	%	19	

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Aproved:

Signed:

Mirosława Pytlik

Terry Stafford

PL Head of Geotechnical section

Geotechnical Manager

Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

Mi nonawa h

 $[&]quot;Opinions \ and \ interpretations \ expressed \ herein \ are \ outside \ of \ the \ scope \ of \ the \ UKAS \ Accreditation$

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

<u>Dry Density / Moisture Content Relationship</u> <u>Light Compaction</u>

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

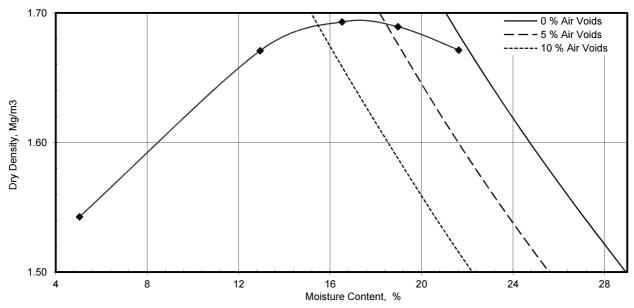
NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2
Site Address: Not Given

Client Reference: C161279
Job Number: 16-20746
Date Sampled: 08/06/2016
Date Received: 21/06/2016
Date Tested: 30/06/2016

Sampled By: Not Given


TEST RESULTS

 Laboratory Reference:
 591041

 Sample Reference:
 B
 Depth Top [m]:
 1.2

 Location:
 WS09
 Depth Base [m]:
 2

 Sample Description:
 Greyish brown CLAY
 Sample Type:
 B

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density -	Mg/m³	2.65

Maximum Dry Density	Mg/m³	1.69	
	-		
Optimum Moisture Content	%	17	

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Aproved:

., Signed:

Mirosława Pytlik

Terry Stafford

PL Head of Geotechnical section

Geotechnical Manager

Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

Mi nonawa h

 $[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS \ Accreditation.\\$

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

<u>Dry Density / Moisture Content Relationship</u> <u>Light Compaction</u>

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2
Site Address: Not Given

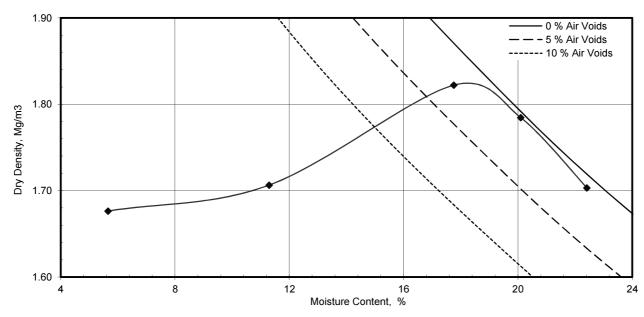
Client Reference: C161279 Job Number: 16-20746

Date Sampled: 02/06/2016

Date Received: 21/06/2016

Date Tested: 30/06/2016

Sampled By: Not Given


TEST RESULTS

 Laboratory Reference:
 591049

 Sample Reference:
 B
 Depth Top [m]:
 1.2

 Location:
 WS14
 Depth Base [m]:
 2

 Sample Description:
 Yellowish brown slightly gravelly slightly sandy CLAY
 Sample Type:
 B

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density -	Mg/m³	2.80

Maximum Dry Density	Mg/m³	1.82	
	-		
Optimum Moisture Content	%	18	

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Aproved:

Signed:

Mirosława Pytlik

Terry Stafford

PL Head of Geotechnical section

Geotechnical Manager

Date Reported: 12/07/2016

for and on behalf of i2 Analytical Ltd

Mi nonawa h

 $[&]quot;Opinions \ and \ interpretations \ expressed \ herein \ are \ outside \ of \ the \ scope \ of \ the \ UKAS \ Accreditation.$

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

<u>Dry Density / Moisture Content Relationship</u> <u>Light Compaction</u>

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2
Site Address: Not Given

Client Reference: C161279

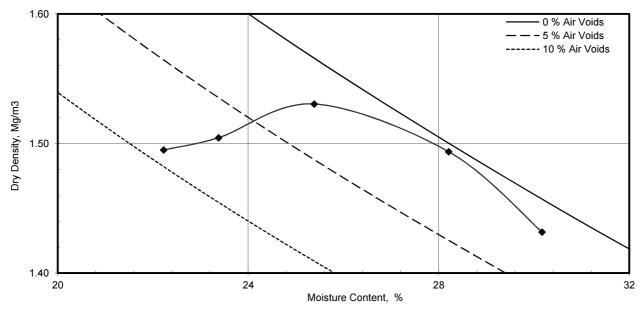
Job Number: 16-20746

Date Sampled: 02/06/2016

Date Received: 21/06/2016

Date Tested: 04/07/2016

Sampled By: Not Given


TEST RESULTS

Laboratory Reference: 591085
Sample Reference: B
Location: BH02

Sample Description: Brown gravelly sandy CLAY

Depth Top [m]: 0.5
Depth Base [m]: 0.8

Sample Type: B

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	2
Particle Density -	Mg/m³	2.60

Maximum Dry Density	Mg/m³	1.53	
	-		
Optimum Moisture Content	%	25	

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Aproved:

Signed:

Mirosława Pytlik

Terry Stafford

PL Head of Geotechnical section

Geotechnical Manager

Date Reported:

Octobrillion ii

 $\hbox{"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.}$

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

12/07/2016

Mi nonawa A

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

for and on behalf of i2 Analytical Ltd

<u>Dry Density / Moisture Content Relationship</u> <u>Light Compaction</u>

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041

Tested in accordance with BS 1377-4:1990: Clause 3.4 using 2.5kg[light] Rammer

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

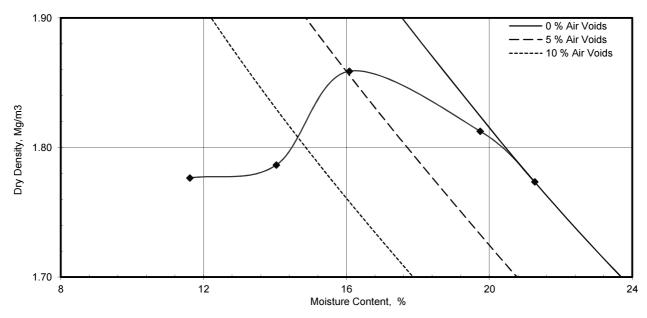
NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2
Site Address: Not Given

Client Reference: C161279

Job Number: 16-20746


Date Sampled: Not Given

Date Received: 21/06/2016

Date Tested: 01/07/2016 Sampled By: Not Given

TEST RESULTS

Laboratory Reference:592608Sample Reference:Not GivenDepth Top [m]:2Location:WS01Depth Base [m]:3Sample Description:Yellowish brown slightly sandy clayey GRAVEL with glassSample Type:B

Preparation		Material used was natural
Mould Type		CBR
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	13
Material Retained on 20.0 mm Sieve	%	11
Particle Density - Assumed	Mg/m³	2.85

Maximum Dry Density	Mg/m³	1.86	
	-		
Optimum Moisture Content	%	16	

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Aproved:

Signed:

Mirosława Pytlik

Terry Stafford

PL Head of Geotechnical section

Geotechnical Manager

Date Reported: 12/07/2016

Mi nonawa h

for and on behalf of i2 Analytical Ltd

 $[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS \ Accreditation.\\$

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

<u>Dry Density / Moisture Content Relationship</u> <u>Light Compaction</u>

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

0.5

1

В

4041

Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park

Holdenby Road Spratton, Northampton

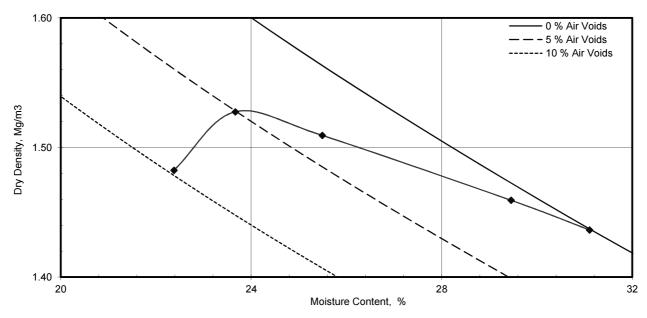
NN6 8LD

Contact: Nathan Thompson / Adam Cheers

Site Name: Kraft Phase 2
Site Address: Not Given

Job Number: 16-20746

Date Sampled: Not Given


Date Received: 21/06/2016

Date Tested: 01/07/2016

Sampled By: Not Given

TEST RESULTS

Laboratory Reference:592609Sample Reference:Not GivenDepth Top [m]:Location:WS18Depth Base [m]:Sample Description:Greyish brown sandy CLAYSample Type:

Preparation	Material used was natural	
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Assumed	Mg/m³	2.60

Maximum Dry Density	Mg/m³	1.53	
	-		
Optimum Moisture Content	%	24	

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Aproved:

Signed:

Mirosława Pytlik

Terry Stafford

PL Head of Geotechnical section

Geotechnical Manager

Date Reported: 12/07/2016

Mi nonawa h

for and on behalf of i2 Analytical Ltd

 $[&]quot;Opinions and interpretations expressed herein are outside of the scope of the UKAS \ Accreditation.\\$

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

Dry Density / Moisture Content Relationship Light Compaction

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

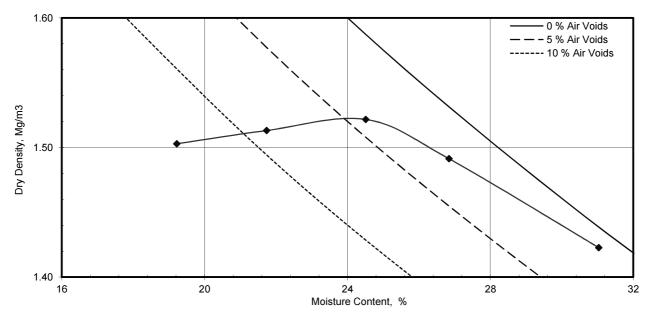
Tested in accordance with BS 1377-4:1990: Clause 3.4 using 2.5kg[light] Rammer

Client: Hydrock Consultants Ltd 2-4 Hawthorne Park Client Address:

Holdenby Road Spratton, Northampton

NN6 8LD

Nathan Thompson / Adam Cheers Contact:


Kraft Phase 2 Site Name: Not Given Site Address:

Client Reference: C161279 Job Number: 16-20746 Date Sampled: Not Given Date Received: 21/06/2016 Date Tested: 01/07/2016

Sampled By: Not Given

TEST RESULTS

Laboratory Reference: 592610 Not Given 0.3 Sample Reference: Depth Top [m]: WS25 Depth Base [m]: 0.85 Location: Brown gravelly sandy CLAY with grass and rootlets Sample Type: В Sample Description:

Preparation	Material used was natural	
Mould Type		CBR
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	1
Material Retained on 20.0 mm Sieve	%	3
Particle Density - Assumed	Mg/m³	2.60

Maximum Dry Density	Mg/m³	1.52	
	-		
Optimum Moisture Content	%	25	

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Aproved:

Signed:

Mirosława Pytlik

Terry Stafford

PL Head of Geotechnical section

Geotechnical Manager

Date Reported:

 $"Opinions \ and \ interpretations \ expressed \ herein \ are \ outside \ of \ the \ scope \ of \ the \ UKAS \ Accreditation$

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

12/07/2016

Mi nonawa h

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

for and on behalf of i2 Analytical Ltd

Unconsolidated Undrained (Single Stage)

Summary Report

Sample Details Depth 2.00-2.45 Description Brown slightly sandy CLAY Type Lο Initial Sample Length 139.6 (mm) Initial Sample Diameter 69.3 Dο (mm) Wο Initial Sample Weight (gr) 971.1 sketch showing specimen (Mg/m3) **Bulk Density** ρο 1.84 location in original sample Particle Density ρs (Mg/m3) 2.65

Initial Conditions			
Initial Cell Pressure	σ3	(kPa)	40
Strain Rate	ms	(mm/min)	2.79220
MembraneThickness	mь	(mm)	0.21
Displacement Input	L IP	(mm)	CH 2
Load Input	N IP	(N)	CH 1
Initial Moisture	ω _i %	(%)	23
Initial Dry Density	ρ d0	(Mg/m3)	1.49
Initial Voids Ratio	eo		0.77
Initial Degree of Saturation	So	(%)	80

Final Conditions			
Max Deviator Stress	(01-03)f	(kPa)	152
MembraneCorrection	m c	(kPa)	1.145
Strain At Max Stress	٤ ۴%	(%)	13.95
Shear Strength	CU	(kPa)	76
Final Moisture	ω f%	(%)	23
Final Dry Density	ρdf	(Mg/m3)	1.49
Final Voids Ratio	e f		0.77
Final Degree of Saturation	Sf	(%)	80.3
Notes			
	Max Deviator Stress MembraneCorrection Strain At Max Stress Shear Strength Final Moisture Final Dry Density Final Voids Ratio Final Degree of Saturation	Max Deviator Stress (♂ 1 - ♂ 3) f MembraneCorrection m c Strain At Max Stress ₺ f % Shear Strength c U Final Moisture ₺ f % Final Dry Density ₺ df Final Voids Ratio ₺ f Final Degree of Saturation S f	Max Deviator Stress (♂ 1 - ♂ 3) f (kPa) MembraneCorrection m c (kPa) Strain At Max Stress ₺ f % (%) Shear Strength ₺ U (kPa) Final Moisture ₺ f % (%) Final Dry Density ₺ df (Mg/m3) Final Voids Ratio ₺ f (%) Final Degree of Saturation ₺ f (%)

Teg Teg	Test Method Database: .\SQ	BS1377-7 : 1 LEXPRESS \ 6171	900 Clause 8 -l2 Analytical		Test Name Test Date	591079 02/07/2016	
Analytic	Site Reference Jobfile	Kraft Phase : 16-20746	2		Borehole Sample	BH02 591079	
	Client	Hydrock Cor	sultants		Depth	2.00-2.45	
Environmental Science	Operator	bielatowiczs	Checked	pytli	km	Approved	pytlikm

Unconsolidated Undrained (Single Stage)

Summary Report

Sample Details sketch showing specimen

location in original sample

Depth Description Type	2.00-2.40 Yellowish U	brown silty CLA	ΑΥ
Initial Sample Length	Lo	(mm)	139.9
Initial Sample Diameter	Do	(mm)	68.9
Initial Sample Weight	W o	(gr)	1112.0
Bulk Density	ρο	(Mg/m3)	2.13
Particle Density	ρs	(Mg/m3)	

Initial Conditions			
Initial Cell Pressure	σ3	(kPa)	40
Strain Rate	ms	(mm/min)	2.79700
MembraneThickness	mь	(mm)	0.28
Displacement Input	L IP	(mm)	CH 2
Load Input	N IP	(N)	CH 4
Initial Moisture	ω _i %	(%)	30
Initial Dry Density	ρ d0	(Mg/m3)	1.64
Initial Voids Ratio	eo		0.62
Initial Degree of Saturation	So	(%)	100

Final Conditions			
Max Deviator Stress	(σ1-σ3)f	(kPa)	168
MembraneCorrection	mс	(kPa)	1.536
Strain At Max Stress	ε _f %	(%)	18.25
Shear Strength	CU	(kPa)	84
Final Moisture	ω f%	(%)	30
Final Dry Density	ρdf	(Mg/m3)	1.64
Final Voids Ratio	ef		0.62
Final Degree of Saturation	Sf	(%)	100.0
Notes			

To To	Test Method Database: .\SQ	BS1377-7 : 1 LEXPRESS \ 6171	900 Clause 8 -l2 Analytical		Test Name Test Date	591086 04/07/2016	
Analytic	Site Reference Jobfile	Kraft Phase : 16-20746	2		Borehole Sample	BH03 591086	
	Client	Hydrock Cor	sultants		Depth	2.00-2.40	
Environmental Science	Operator	bielatowiczs	Checked	pytli	km	Approved	pytlikm

Unconsolidated Undrained (Single Stage)

Summary Report

Sample Details Depth 4.00-4.40 Description Yellowish brown CLAY Type Lο Initial Sample Length 139.2 (mm) Initial Sample Diameter 69.1 Dο (mm) Wο Initial Sample Weight (gr) 1053.3 sketch showing specimen (Mg/m3) **Bulk Density** ρο 2.02 location in original sample Particle Density ρs (Mg/m3) 2.65

Initial Conditions			
Initial Cell Pressure	σ3	(kPa)	80
Strain Rate	ms	(mm/min)	2.78320
MembraneThickness	mь	(mm)	0.28
Displacement Input	L IP	(mm)	CH 2
Load Input	N IP	(N)	CH 4
Initial Moisture	ω _i %	(%)	25
Initial Dry Density	ρ d0	(Mg/m3)	1.61
Initial Voids Ratio	eo		0.64
Initial Degree of Saturation	So	(%)	100

Final Conditions			
Max Deviator Stress	(σ1-σ3)f	(kPa)	74
MembraneCorrection	m c	(kPa)	1.532
Strain At Max Stress	ε f%	(%)	19.95
Shear Strength	CU	(kPa)	37
Final Moisture	ω f%	(%)	25
Final Dry Density	ρdf	(Mg/m3)	1.61
Final Voids Ratio	ef		0.64
Final Degree of Saturation	Sf	(%)	100.0
Notes			

Te T	Test Method Database: .\SQ	BS1377-7 : 1 LEXPRESS \ 6171			Test Name 591087 Test Date 04/07/2016					
Z Analytic	Site Reference Jobfile Client	Kraft Phase 2 16-20746 Hydrock Con	_		Borehole Sample Depth	BH03 591087 4.00-4.40				
Environmental Science	Operator	bielatowiczs	Checked	pytli	km	Approved	pytlikm			

Unconsolidated Undrained (Single Stage)

Summary Report

Sample Details Depth Description Type Initial Sample Length Initial Sample Diameter Initial Sample Weight Bulk Density Particle Density

Depth Description Type	2.00-2.4 Yellowis U	Yellowish brown to grey silty CLAY								
Initial Sample Length Initial Sample Diameter Initial Sample Weight	Lo	(mm)	139.7							
	Do	(mm)	69.6							
	Wo	(gr)	1032.7							
Bulk Density Particle Density	ρο	(Mg/m3)	1.94							
	ρs	(Mg/m3)	2.65							

Initial Conditions			
Initial Cell Pressure	σ3	(kPa)	40
Strain Rate	ms	(mm/min)	2.79480
MembraneThickness	mь	(mm)	0.25
Displacement Input	L IP	(mm)	CH 2
Load Input	N IP	(N)	CH 4
Initial Moisture	ω _i %	(%)	27
Initial Dry Density	ρ d0	(Mg/m3)	1.52
Initial Voids Ratio	eo		0.74
Initial Degree of Saturation	S.	(%)	99

	final Conditions			
N	Max Deviator Stress	(01-03)f	(kPa)	169
I	MembraneCorrection	m c	(kPa)	0.932
5	Strain At Max Stress	ε _f %	(%)	9.31
5	Shear Strength	CU	(kPa)	85
F	Final Moisture	ω f%	(%)	27
F	Final Dry Density	ρdf	(Mg/m3)	1.52
F	Final Voids Ratio	ef		0.74
F	Final Degree of Saturation	Sf	(%)	98.5
1	lotes			

Failure Sketch (surface inclination)

	Test Method	BS1377-7 : 1	900 Clause 8		Test Name	591095	
夏	Database: .\SQ	LEXPRESS \ 6171	-l2 Analytical		Test Date	04/07/2016	
alytic all	Site Reference	Kraft Phase	2		Borehole	BH04	
\$	Jobfile	16-20746			Sample	591095	
	Client	Hydrock Con	sultants		Depth	2.00-2.45	
Environmental Science	Operator	bielatowiczs	Checked	pytli	km	Approved	pytlikm

Unconsolidated Undrained (Single Stage)

Summary Report

Sample Details Depth 4.00-4.45 Description Greyish brown silty CLAY Type Lο Initial Sample Length 141.0 (mm) Initial Sample Diameter 69.0 Dο (mm) Wο Initial Sample Weight (gr) 1103.0 sketch showing specimen (Mg/m3) **Bulk Density** ρο 2.09 location in original sample Particle Density ρs (Mg/m3) 2.65

Initial Conditions			
Initial Cell Pressure	σ3	(kPa)	80
Strain Rate	ms	(mm/min)	2.81980
MembraneThickness	mь	(mm)	0.31
Displacement Input	L IP	(mm)	CH 2
Load Input	N IP	(N)	CH 1
Initial Moisture	ω _i %	(%)	21
Initial Dry Density	₽ d O	(Mg/m3)	1.73
Initial Voids Ratio	eo		0.53
Initial Degree of Saturation	So	(%)	100

Final Conditions			
Max Deviator Stress	(01-03)f	(kPa)	331
MembraneCorrection	m c	(kPa)	1.697
Strain At Max Stress	ε f%	(%)	10.48
Shear Strength	CU	(kPa)	166
Final Moisture	ω f%	(%)	21
Final Dry Density	ρdf	(Mg/m3)	1.73
Final Voids Ratio	ef		0.53
Final Degree of Saturation	Sf	(%)	100.0
Notes			

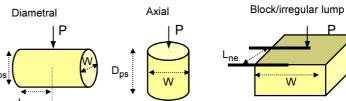
Failure Sketch
(surface inclination)

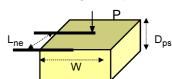
	Test Method	BS1377-7 : 1	900 Clause 8		Test Name	591096	
<u> </u>	Database: .\SQ	LEXPRESS \ 6171	-l2 Analytical		Test Date	04/07/2016	
Atic	Site Reference	Kraft Phase	2		Borehole	BH04	
¥ C	Jobfile	16-20746			Sample	591096	
	Client	Hydrock Cor	sultants		Depth	4.00-4.45	
Environmental Science	Operator	bielatowiczs	Checked	pytli	km	Approved	pytlikm

	b				Point Load Strength Index Tests Summary of Results													
Project No.				Proje	Project Name													
	16-20746				Kraft Phase 2													
Borehole	Sample		Spe	ecimen	Rock Type and		Test Type see ISRM		Dimensions			Force P	Equivalent diameter, De	Point Load Strength Index		Remarks (including water		
No.	Depth	Ref.	Туре	Ref.	Depth	Test condition	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid	Lne	8	Dps	Dps'		Eq diar	Is	Is(50)	content if measured)
	m	Щ.	<u> </u>	<u> </u>	m		(r			mm	mm	mm	mm	kN	mm	MPa	MPa	
BH01	7.8-8.1	В	В	1		Greyish brown silty CLAY	D	U	YES	55.0	86.0	86.0	68.0	0.2	76.5	0.03	0.04	591073
BH01	11.7-12.0	С	В	1		Greyish brown silty CLAY	D	U	YES	85.0	89.0	89.0	81.0	9.1	84.9	1.26	1.60	591074; stiff sample
BH01	12.9-13.3	С	U	1		Greyish brown silty CLAY	D	U	YES	150.0	86.0	86.0	70.0	0.6	77.6	0.10	0.12	591075
BH01	15.5-15.8	С	U	1		Greyish brown silty CLAY	D	U	YES	85.0	87.0	87.0	70.0	0.5	78.0	0.08	0.10	591076
BH01	17.3-17.8	С	U	1		Greyish brown silty CLAY	D	U	YES	80.0	90.0	90.0	72.0	0.7	80.5	0.11	0.13	591077
BH02	8.0-8.4	С	U	1		Greyish brown silty CLAY	D	U	YES	50.0	90.0	90.0	75.0	0.3	82.2	0.04	0.06	591082
BH02	13.5-13.7	С	U	1		Greyish brown silty CLAY	D	U	YES	70.0	87.0	87.0	74.0	0.4	80.2	0.06	0.08	591083
BH02	17.0-17.3	С	U	1		Greyish brown silty CLAY	D	U	YES	105.0	92.0	92.0	59.0	0.7	73.7	0.13	0.15	591084
BH03	9.0-9.5	С	U	1		Greyish brown gravelly silty CLAY	D	U	YES	50.0	80.0	80.0	52.0	0.1	64.5	0.02	0.03	591090
BH03	13.9-14.2	С	U	1		Greyish brown silty CLAY	D	U	YES	110.0	86.0	86.0	75.0	0.6	80.3	0.09	0.12	591091

Test Type

D - Diametral, A - Axial, I - Irregular Lump, B - Block


Direction


- L parallel to planes of weakness
- P perpendicular to planes of weakness
- U unknown or random

Dimensions

Dps - Distance between platens (platen separation)

- Dps' at failure (see ISRM note 6)
- Lne Length from platens to nearest free end
- W Width of shortest dimension perpendicular to load, P

Test performed in accordance with ISRM Suggested Methods: 2007, unless noted otherwise

Detailed legend for test and dimensions, based on ISRM, is shown above.

Size factor, F = (De/50)0.45 for all tests.

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Mi nonawa Byther

Approved: Mirosława Pytlik

PL Head of Geotechnical section

Signed:

Terry Stafford

Geotechnical Manager

for and on behalf of i2 Analytical Ltd

Date Reported: 12/07/2016 "Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Page 1 of 1 GF134.2

Ener	<u>L</u>						F	Poin				igth of Re		x Te	sts			
Project No.	16-20746			Proje	Project Name Kraft Phase 2													
Borehole	Sample		Spe	ecimen	Rock Type	Test Type see ISRM		lid (Y/N)	Dimensions			Force P	Equivalent diameter, De	Point Load Strength Index		Remarks (including water		
No.	Depth m	Ref.	Туре	Ref.	Depth m	and Test condition	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	W	Dps mm	Dps'	kN	з Еqı З dian	Is MPa	Is(50)	content if measured)
BH03	17.2-17.5	С	U	1		Greyish brown silty CLAY	D	U	YES	80.0	86.0	86.0	69.0	0.6	77.0	0.10	0.12	591092
BH04	6.0-6.3	С	U	1		Greyish brown CLAY	D	U	YES	120.0	87.0	87.0	59.0	0.4	71.6	0.08	0.09	591097
BH04	9.0-9.4	С	U	1		Greyish brown CLAY	D	U	YES	90.0	87.0	87.0	63.0	0.3	74.0	0.05	0.07	591098
BH04	12.0-12.4	С	U	1		Greyish brown silty CLAY	D	U	YES	110.0	88.0	88.0	64.0	0.3	75.0	0.05	0.06	591099
BH04	14.0-14.3	С	U	1		Greyish brown silty CLAY	D	U	YES	80.0	88.0	88.0	63.0	0.6	74.5	0.11	0.13	591100

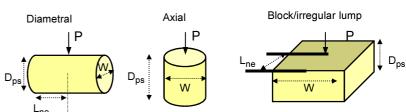
Test Type

D - Diametral, A - Axial, I - Irregular Lump, B - Block

Direction

- L parallel to planes of weakness
- P perpendicular to planes of weakness
- U unknown or random

Dimensions


Date Reported:

Dps - Distance between platens (platen separation)

Dps' - at failure (see ISRM note 6)

Lne - Length from platens to nearest free end

W - Width of shortest dimension perpendicular to load, P

Test performed in accordance with ISRM Suggested Methods : 2007, unless noted otherwise

Detailed legend for test and dimensions, based on ISRM, is shown above.

Size factor, F = (De/50)0.45 for all tests.

Comments: Re-issue 1 - Format of Point Load Strength Index results changed as per client request

Mi nonawa Bythes

Approved: Mirosława Pytlik

PL Head of Geotechnical section 12/07/2016

Signed:

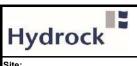
Terry Stafford

Geotechnical Manager

for and on behalf of i2 Analytical Ltd

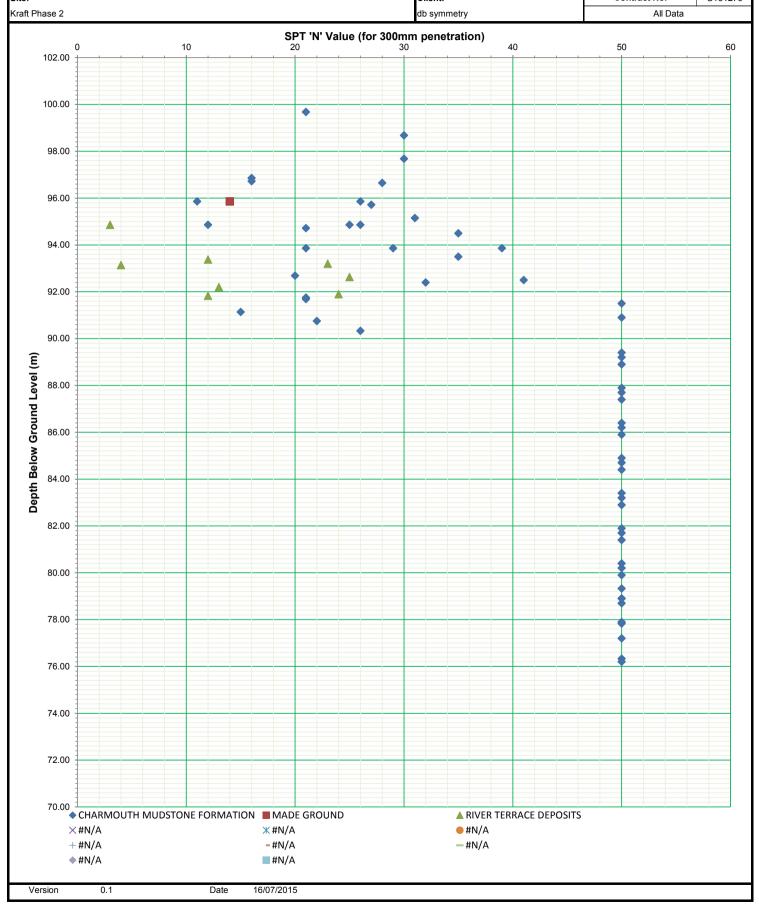
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.


The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

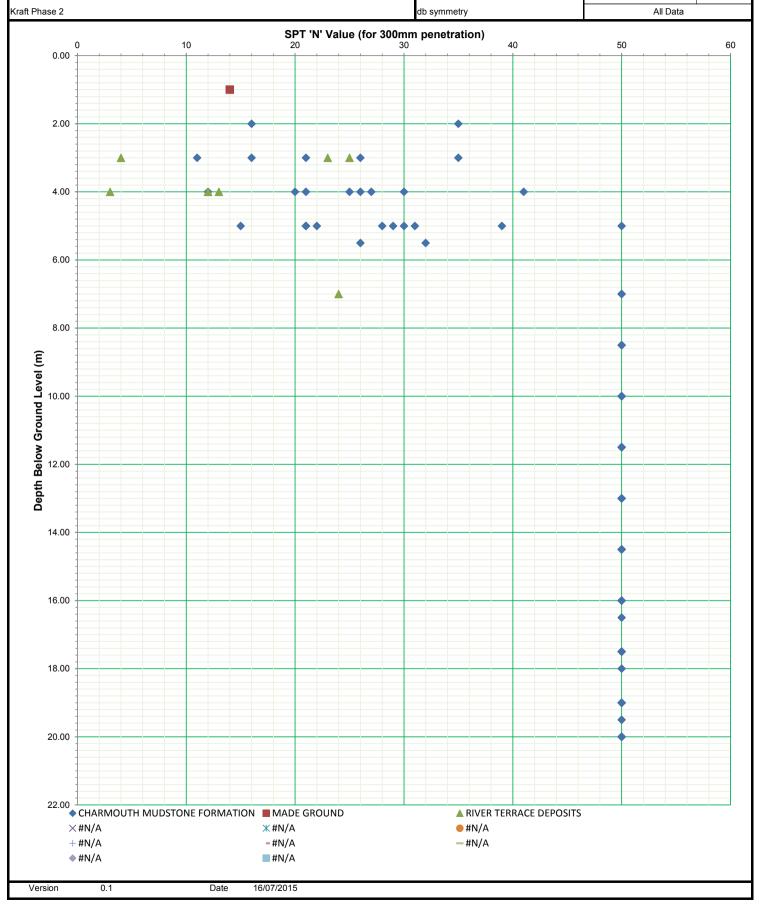
Page 1 of 1 GF134.2


_							Client:			Contra		C1
hase 2							db symm				All Data	
0		10			SPT 'N' \ 20	/alue (for 30	0mm penet 30	ration))	50		
104.00												
102.00												
		×										
			×	×								
100.00						×						
		X		×								
98.00	*			× ^								
	*				×							
96.00	AXV	X										
30.00	•× ×		×		" - "			A				
	×		A XI									
94.00		×	• •					_				
	•×		×		_ ×	×		•				
92.00			X			× ^						
					-					<u> </u>		
90.00												
88.00												
86.00												
80.00												
84.00												
82.00												
80.00												
78.00												
76.00												
74.00												
72.00												
70.00												
70.00 → AL	LUVIUM					H MUDSTONE	ORMATION	▲ MADE GRO	UND	, ,		
× KI	VER TERRACE DE	POSITS	5	≭#N				• #N/A				
+#N ◆#N				-#N ■#N				-#N/A				

ydro											Clien					Contract No.	C1
hase 2							_					mmetry				All Data	
0			10			\$	SPT 'I 20	N' Va	lue (f	or 300n	nm per 0	netrati	ion)	40		50	
0.00																	
1		* *															
1		***	**		X	X						A					
2.00	→ ×	**=		*	$\leftarrow \times$					*		-					
		. •×						—	V .				•				
1									×								
4.00	*	-	×				-		-88					-	-		
1																	
1			×		-	_											
6.00																	
1																	
1								>	×							•	
8.00																	
1																	
10.00 horaco																	
e c																	
10.00																	
																•	
2 <u>*</u>																	
12.00																•	
3																	
14.00																	
1																	
16.00																	
1																	
‡																	
18.00																	
10.00																	
}																•	
1																	
20.00																	
1																	
1																	
22.00 A	LLUVIUM	1				■ CH4	ARMO	UTH I	MUDS	TONE FC	RMATI	ON 🔺	MADE	GROI	ND		
\times R	IVER TER		EPOSITS	5		*#N/	'A					• i	#N/A				
	N/A N/A					-#N/ ■#N/						-;	#N/A				
* #1	14/73					- #IN/	~										

SPT 'N' VALUES vs LEVEL **GRANULAR STRATA**

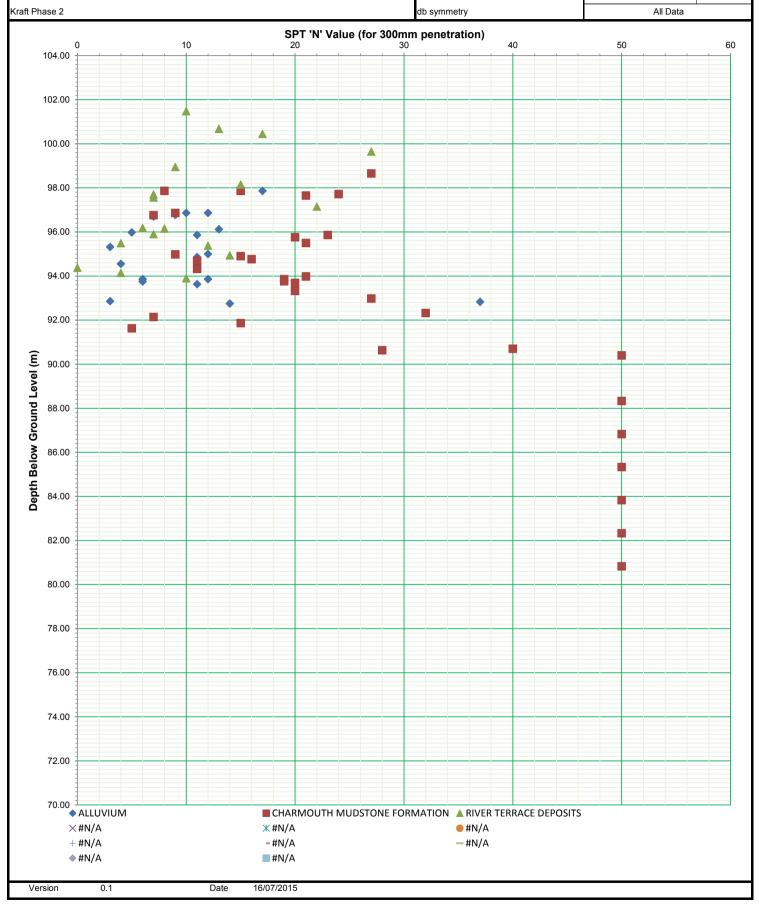
Contract No. Site: Client: C161279

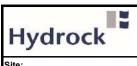

SPT 'N' VALUES vs DEPTH GRANULAR STRATA

Site: Client: Contract No. C161279

Kraft Phase 2

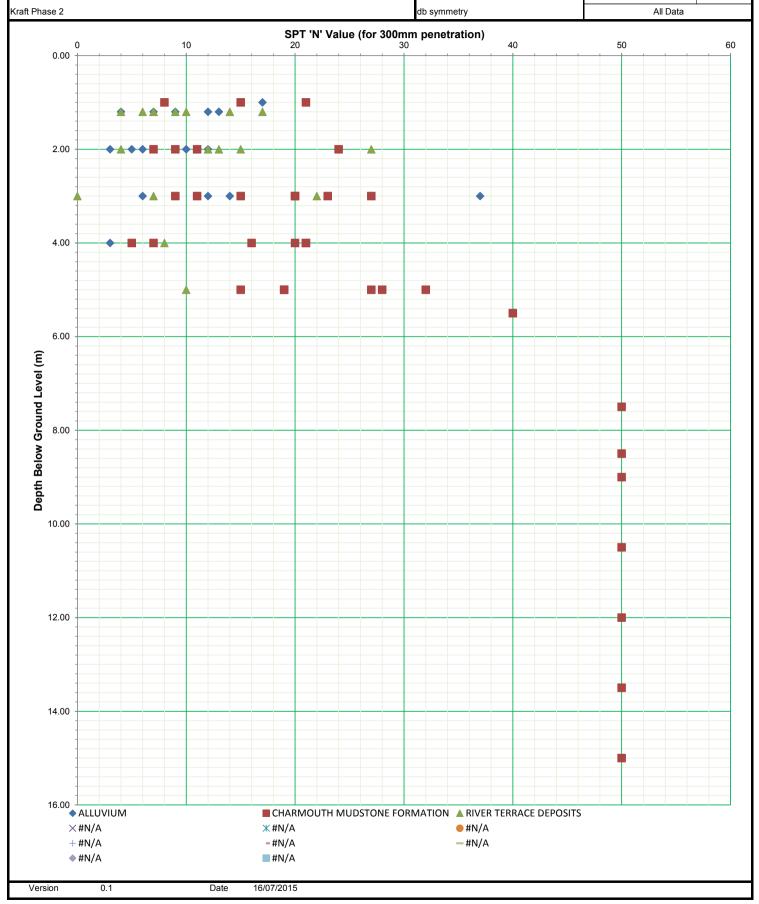
dh symmetry


All Data



Hydrock	(

SPT 'N' VALUES vs LEVEL COHESIVE STRATA


Site: Client: Contract No. C161279

SPT 'N' VALUES vs DEPTH **COHESIVE STRATA**

Contract No. Site: Client: C161279

Client **Db Symmetry** Location or material to which this assessment applies River Terrace Deposits Project **Kraft Phase 2** Job number C161279 Concrete in aggressive ground After BRE Special Digest 1, 2005 Soil data Water (Adjusted) water Total potential soluble soluble sulfate sulfate magnesium (mg/l) (%) (mg/l) Number of tests 4 No. tests in 20% data set No. tests with suspected pyrite 0 Maximum value 28.9 Mean of highest two values 23 Mean of highest 20% Characteristic Value 28.9 [no pyrite] [pyrite suspected] **DS Class** DS-1 If pyrite suspected, DS Class limited to Is pyrite assumed to be present? No Adopted DS Class = DS-1 Water data (Adjusted) soluble Soluble sulfate magnesium (mg/l) (mg/l) **Characteristic Value** 0 0 (Maximum Level) DS Class pH data Soil Water Number of tests 4 0 No. tests in 20% data set 1 Lowest pH 7.4 Mean of lowest 20% 7.4 Characteristic value 7.4 Design value 7.4 Number of soil pH results less than 5.5 **DS Class design value** ACEC Class design value Natural ground Based on higher of soil and water data DS-1 Mobile groundwater * increase to AC-2z in flowing water (pure or with >15mg/l carbon dioxide)

Client **Db symmetry Itd** Location or material to which this assessment applies Project Made Ground **Kraft Phase 2** Job number C161279 Concrete in aggressive ground After BRE Special Digest 1, 2005 Soil data Water (Adjusted) water Total potential soluble soluble sulfate sulfate magnesium (mg/l) (%) (mg/l) Number of tests No. tests in 20% data set 0 No. tests with suspected pyrite 0 Maximum value 42.4 Mean of highest two values 42 Mean of highest 20% Characteristic Value 42.4 Mg not required [no pyrite] [pyrite suspected] **DS Class** DS-1 If pyrite suspected, DS Class limited to Is pyrite assumed to be present? No Adopted DS Class = DS-1 Water data (Adjusted) soluble Soluble sulfate magnesium (mg/l) (mg/l) **Characteristic Value** 0 (Maximum Level) Mg not required DS Class pH data Soil Water Number of tests 1 No. tests in 20% data set 0 Lowest pH 7.4 Mean of lowest 20% Characteristic value 7.4 Design value 7.4 Number of soil pH results less than 5.5 **DS Class design value ACEC Class design value** Brownfield Based on higher of soil and water data DS-1 Mobile groundwater

mmetry		Location or materia	I to which this assessment applies
ct		Charmouth Mudstone	
Phase 2 umber		_	
279			
	aggressive	around	After BRE Special Digest 1, 2005
	<u></u>	9	, itto Bite opedia Bigeot 1, 2000
Soil data			
			Water
	(Adjusted) water	Total potential	soluble
	soluble sulfate	sulfate	magnesium
	(mg/l)	(%)	(mg/l)
Number of tests	4	4	0
No. tests in 20% data set	1	1	
tests with suspected pyrite		2	
Maximum value	394	0.5	
Mean of highest two values	337	1	
Mean of highest 20%			
Characteristic Value	394	0.5	
	[no pyrite]	[pyrite suspected]	
DS Class	DS-1	DS-2	_
			= -
If pyrite suspected, D	S Class limited to	DS-2	_
Is pyrite assumed to	be present? Yes	Adopted DS Class	= DS-2
	be present? Yes	Adopted DS Class	= DS-2
	be present? Yes	Adopted DS Class	= DS-2
Is pyrite assumed to			= DS-2
Is pyrite assumed to	(Adjusted) soluble	Adopted DS Class Soluble	= DS-2
Is pyrite assumed to			= DS-2
Is pyrite assumed to	(Adjusted) soluble	Soluble	= DS-2
ls pyrite assumed to	(Adjusted) soluble sulfate	Soluble magnesium	= DS-2
Is pyrite assumed to Water data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-2
Spyrite assumed to Water data Characteristic Value (Maximum Level) DS Class	(Adjusted) soluble sulfate (mg/l) 100	Soluble magnesium (mg/l)	= DS-2
Is pyrite assumed to Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l) 100 DS-1	Soluble magnesium (mg/l)	= DS-2
Characteristic Value (Maximum Level) DS Class pH data	(Adjusted) soluble sulfate (mg/l) 100 DS-1 Soil	Soluble magnesium (mg/l) 0	= DS-2
Characteristic Value (Maximum Level) DS Class PH data Number of tests	(Adjusted) soluble sulfate (mg/l) 100 DS-1 Soil 4	Soluble magnesium (mg/l) 0	= DS-2
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set	(Adjusted) soluble sulfate (mg/l) 100 DS-1 Soil 4 1	Soluble magnesium (mg/l) 0 Water 5 1	= DS-2
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) 100 DS-1 Soil 4 1 4.9	Soluble magnesium (mg/l) 0 Water 5 1 7.4	= DS-2
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) 100 DS-1 Soil 4 1 4.9 4.9	Soluble magnesium (mg/l) 0 Water 5 1 7.4 7.4	= DS-2
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) 100 DS-1 Soil 4 1 4.9	Soluble magnesium (mg/l) 0 Water 5 1 7.4	= DS-2
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) 100 DS-1 Soil 4 1 4.9 4.9	Soluble magnesium (mg/l) 0 Water 5 1 7.4 7.4	= DS-2
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) 100 DS-1 Soil 4 1 4.9 4.9 4.9 4.9	Soluble magnesium (mg/l) 0 Water 5 1 7.4 7.4	= DS-2
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	(Adjusted) soluble sulfate (mg/l) 100 DS-1 Soil 4 1 4.9 4.9 4.9 4.9	Soluble magnesium (mg/l) 0 Water 5 1 7.4 7.4	ACEC Class design value Natural ground

Client Db Symme	ntm.		L coation or motorial	to which this accessment applies
Project	etry		Alluvium	to which this assessment applies
Kraft Phas				
Job numb C161279	er			
	Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
	Soil data			
				Water
		(Adjusted) water	Total potential	soluble
ĺ		soluble sulfate	sulfate	magnesium
		(mg/l)	(%)	(mg/l)
	Number of tests	3	0	0
	. tests in 20% data set	1	_	
No. tests	s with suspected pyrite		0	
	Maximum value	50.9		
Mear	of highest two values	37		
	Mean of highest 20%			
	Characteristic Value	50.9		
		[no pyrite]	[pyrite suspected]	
	DS Class	DS-1		- =
	If pyrite suspected, D	S Class limited to		_
	ii pyrite suspecteu, b	o olass illilited to		=
	Is pyrite assumed to	be present? No	Adopted DS Class =	DS-1
	18 . 4 . 1 . 4			
	Water data			
		(Adjusted) soluble	Soluble	
		sulfate	magnesium	
		(mg/l)	(mg/l)	
	Characteristic Value	0	0	
	(Maximum Level)	U	U	
	DO Olaca			
	DS Class			
	pH data			
		Soil	Water	
	Number of tests	3	0	
No	. tests in 20% data set	1		
	Lowest pH	6.8		
	Mean of lowest 20%	6.8		
	Characteristic value	6.8		
	Design value	6.8		
	=			
Number of	soil pH results less than 5.5	0		
Number of	soil pH results less than 5.5			ACEC Class design value
Number of	soil pH results less than 5.5 DS Class desig			ACEC Class design value
Number of		n value	DS-1	ACEC Class design value Natural ground Mobile groundwater AC-1 *
Number of	DS Class desig	n value		Natural ground

Appendix D

Site Monitoring Data

Site: Kraft, Banbury	Notes on site conditions:
Job number: C 161279	16.06.2016 Weather conditions = Frequent rain showers, occassionally heavy.
Client: DB Symmetry	23.06.2016 Weather conditions = Fine drizzle
Gas analyser: GFM435 No. 11874	30.06.2016 Weather conditions = Cloudy but dry
Equipment check OK: Y	07.07.2016 Weather conditions = Fine, clear morning
Service in date: Y	14.07.2016 Weather conditions = Bright sunny day with some cloud
Calibration check OK: Y	21.07.2016 Weather conditions = Fine sunny day.
Name of person monitoring: Rod Langley	

Notes: LEL = lower explosive limit = 5%v/v. * where the flow is less than the limit of detection of the instrument, the detection limit is reported. GSVs are rounded to 3 places.

Monitorin	round			Boreho	alo dot	aile				re and flo	•		Gas concentrations				GSV Local conditions									
Monitoring	ground			borenc				PI	_	e and ne	l I						Gas C	l	ations						SV	Local colluitions
Date	Time	Borehole	Single or dual	Response zone	Depth to water or dry (r	D denotes	Volume of headspace in BH (wel pipie & filter pack) (m³)	Atmospheric pr	Atm pressure falling	Relative BH pre	Gas flow*	Gas flow* (absolu	flow * (as ppm usi) CH4 CH4 H2S CO (ppm) (%v/v) (%v/v) C		Notes on condition of borehole and surrounding ground											
	, L	ole	al gas tap	depth (m)	depth of hole if m)	:	ace in BH (well pack) (m³)	pressure (hPa)	falling / rising / steady	ssure (hPa)	(I/hr)	te value) (l/hr)	using PID)	Initial	Steady	Initial	Steady			Initial	Steady	Initial	Steady	ue (CH ₄) (l/hr)	ue (CO ₂) (I/hr)	
16.06.2016	am	WS 01	S		1.10		0.05mØ x 5.04m	983	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.2	0.2	20.5	20.5	0.0001	0.0002	BH in good condition. Nothing to report
16.06.2016	am	WS 03	S		3.01		0.05mØ x 5.01m	983	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.6	1.6	17.8	17.8	0.0001	0.0016	BH in good condition. Nothing to report
16.06.2016	am	WS 09	S		0.33		0.05mØ x 5.01m	982	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.2	0.2	19.7	19.7	0.0001	0.0002	BH in good condition. Nothing to report
16.06.2016	am	WS 13	S		3.48		0.05mØ x 5.03m	982	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	2.1	2.1	17.9	17.9	0.0001		BH in good condition. Nothing to report
16.06.2016	am	WS 14	S		3.76		0.05mØ x 5.04m	982	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.3	1.3	18.0	18.0	0.0001	+	BH in good condition. Nothing to report
16.06.2016	am	WS 18	S		1.27	_	0.05mØ x 5.06m	983	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.9	0.9	18.3	18.3	0.0001	1	BH in good condition. Nothing to report
16.06.2016	am	WS 19	S		1.82		0.05mØ x 4.86m	983	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	3.9	3.9	15.5	15.5	0.0001	1	BH in good condition. Nothing to report
16.06.2016	am	WS 25	S		0.78	_	0.05mØ x 5.06m	983	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.2	1.2	19.9	19.9	0.0001	i	BH in good condition. Nothing to report
16.06.2016	am	WS 26	S		1.51		0.05mØ x 5.05m	983	F	0	0.1	0.1	_	0.1	0.1	0.1	0.1	1	1	0.9	0.9	16.7	16.7	0.0001	0.0009	BH in good condition. Nothing to report
23.06.2016	am	WS 01	S		1.23		0.05mØ x 5.04m	997	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.4	0.4	20.0	20.0	0.0001	0.0004	BH in good condition. Nothing to report
23.06.2016	am	WS 03	S		2.94		0.05mØ x 5.01m	997	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.8	0.8	18.9	18.9	0.0001	0.0008	BH in good condition. Nothing to report
23.06.2016	am	WS 09	S		0.32		0.05mØ x 5.01m	998	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.1	0.1	16.9	16.9	0.0001	0.0001	BH in good condition. Nothing to report
23.06.2016	am	WS 13	S		3.49		0.05mØ x 5.03m	997	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	2.1	2.1	17.9	17.9	0.0001	0.0021	BH in good condition. Nothing to report
23.06.2016	am	WS 14	S		3.03		0.05mØ x 5.04m	997	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.4	1.4	18.8	18.8	0.0001	0.0014	BH in good condition. Nothing to report
23.06.2016	am	WS 18	S		1.34		0.05mØ x 5.06m	998	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.9	0.9	18.2	18.2	0.0001	0.0009	BH in good condition. Nothing to report
23.06.2016	am	WS 19	S		1.66		0.05mØ x 4.86m	998	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	3.2	3.2	15.9	15.9	0.0001	0.0032	BH in good condition. Nothing to report
23.06.2016	am	WS 25	S		0.84	_	0.05mØ x 5.06m	999	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.4	0.4	20.4	20.4	0.0001		BH in good condition. Nothing to report
23.06.2016	am	WS 26	S		1.24		0.05mØ x 5.05m	999	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.1	0.1	20.7	20.7	0.0001	0.0001	BH in good condition. Nothing to report
30.06.2016	am	WS 01	S		1.39		0.05mØ x 5.04m	991	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.8	0.8	19.4	19.4	0.0001	0.0008	BH in good condition. Nothing to report
30.06.2016	am	WS 03	S		2.96		0.05mØ x 5.01m	991	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.8	0.8	19.3	19.3	0.0001	0.0008	BH in good condition. Nothing to report
30.06.2016	am	WS 09	S		0.37		0.05mØ x 5.01m	991	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.1	0.1	17.8	17.8	0.0001	0.0001	BH in good condition. Nothing to report
30.06.2016	am	WS 13	S		3.48		0.05mØ x 5.03m	990	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	2.0	2.0	18.1	18.1	0.0001		BH in good condition. Nothing to report
30.06.2016	am	WS 14	S		2.51		0.05mØ x 5.04m	990	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.3	1.3	19.8	19.8	0.0001	0.0013	BH in good condition. Nothing to report
30.06.2016	am	WS 18	S		1.70		0.05mØ x 5.06m	992	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.2	1.2	18.2	18.2	0.0001	0.0012	BH in good condition. Nothing to report
30.06.2016	am	WS 19	S		1.88		0.05mØ x 4.86m	993	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	4.4	4.4	15.2	15.2	0.0001	0.0044	BH in good condition. Nothing to report
30.06.2016	am	WS 25	S		0.98		0.05mØ x 5.06m	990	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.2	0.2	20.8	20.8	0.0001	0.0002	BH in good condition. Nothing to report
30.06.2016	am	WS 26	S		1.61		0.05mØ x 5.05m	990	F	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.7	0.7	20.6	20.6	0.0001	0.0007	BH in good condition. Nothing to report
07.07.2016	am	WS 01	S		1.67		0.05mØ x 5.04m	999	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.8	0.8	19.5	19.5	0.0001	0.0008	BH in good condition. Nothing to report
07.07.2016	am	WS 03	S		3.02		0.05mØ x 5.01m	999	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	2.6	2.6	15.5	15.5	0.0001	1	BH in good condition. Nothing to report
07.07.2016	am	WS 09	S		0.39		0.05mØ x 5.01m	1000	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.1	0.1	19.6	19.6	0.0001		BH in good condition. Nothing to report
07.07.2016	am	WS 13	S		3.51		0.05mØ x 5.03m	999	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.9	1.9	18.5	18.5	0.0001		BH in good condition. Nothing to report
07.07.2016	am	WS 14	S		2.16		0.05mØ x 5.04m	999	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.2	1.2	19.9	19.9	0.0001	0.0012	BH in good condition. Nothing to report
07.07.2016	am	WS 18	S		1.61		0.05mØ x 5.06m	1001	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.9	0.9	19.6	19.6	0.0001	0.0009	BH in good condition. Nothing to report
07.07.2016	am	WS 19	S		2.07		0.05mØ x 4.86m	1002	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	4.7	4.7	15.3	15.3	0.0001	0.0047	BH in good condition. Nothing to report

Monitoring	g round			Boreho	ole deta	ils		Pr	essur	e and fl	ow						Gas co	oncentra	ations					G	SV	Local conditions		
Da	Time	Bore	Single or d	Response zo	Depth to water o	D denote:	Volume of headspa pipie & filter p	Atmospheric p	Atm pressure falling	Relative BH pı	Gas flow*	Gas flow* (absolute	VOC (as ppn		H₄ //v)		H₄ LEL)	H2S (ppm)	CO (ppm)	C) (%)	O₂ v/v)		O₂ v/v)	Gas Screening V	Gas Screening Va	Notes on condition of horehole and surrounding ground		
ite	ne	hole	dual gas tap	ne depth (m)	or depth of hole if (m)	s dry hole	space in BH (well r pack) (m³)	oressure (hPa)	ng / rising / steady	ressure (hPa)	v* (I/hr)	lute value) (I/hr)	n using PID)	Initial	Steady	Initial	Steady			Initial	Steady	Initial	Steady	alue (CH ₄) (l/hr)	alue (CO ₂) (I/hr)	Notes on condition of borehole and surrounding ground		
07.07.2016	am	WS 25	S		1.17		0.05mØ x 5.06m	998	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.3	0.3	20.7	20.7	0.0001	0.0003	BH in good condition. Nothing to report		
07.07.2016	am	WS 26	S		1.70		0.05mø x 5.05m	998	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.5	0.5	20.6	20.6	0.0001	0.0005	BH in good condition. Nothing to report		
14.07.2016	am	WS 01	s		1.84		0.05mø x 5.04m	1005	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.3	0.3	20.6	20.6	0.0001	0.0003	BH in good condition. Nothing to report		
14.07.2016	am	WS 03	S		3.08		0.05mØ x 5.01m	1005	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.9	0.9	18.3	18.3	0.0001	0.0009	BH in good condition. Nothing to report		
14.07.2016	am	WS 09	S		0.42		0.05mø x 5.01m	1005	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.1	0.1	14.4	14.4	0.0001	0.0001	BH in good condition. Nothing to report		
14.07.2016	am	WS 13	S		3.54		0.05mø x 5.03m	1004	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.1	0.1	20.8	20.8	0.0001	0.0001	BH in good condition. Nothing to report		
14.07.2016	am	WS 14	S		1.96		0.05mØ x 5.04m	1004	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.3	1.3	19.9	19.9	0.0001	+	BH in good condition. Nothing to report		
14.07.2016	am	WS 18	S		1.55		0.05mØ x 5.06m	1006	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.3	1.3	20.2	20.2	0.0001		BH in good condition. Nothing to report		
14.07.2016	am	WS 19	S		2.20		0.05mø x 4.86m	1007	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	4.9	4.9	16.0	16.0	0.0001		BH in good condition. Nothing to report		
14.07.2016	am	WS 25	S		1.28		0.05mø x 5.06m	1003	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	1.1	1.1	19.7	19.7	0.0001		BH in good condition. Nothing to report		
14.07.2016	am	WS 26	S		1.82	_	0.05mØ x 5.05m	1003	S	0	0.1	0.1		0.1	0.1	0.1	0.1	1	1	0.6	0.6	20.5	20.5	0.0001	0.0006	0.0006 BH in good condition. Nothing to report		

Ground Gas Risk Assessment

Job Number C 161279

Job Name Kraft, Banbury

Client DB Symmetry

Data All Data

	Max CH4	Max C02	Worst Case Flow		Worst Case GSV CO ₂
ı	0.1	5.4	0.1	0.0001	0.0054

Number of Readings	54
Number of Monitoring Rounds	6
Number of Readings with Flow Rate	54

CIRIA C6	65 Asse	ssment		
	Meth	ane	Carbon	Dioxide
	Max Value	GSV	Max Value	GSV
CS1	54	54	53	54
CS2	0	0	1	0
CS3	N/A	0	N/A	0
CS4	N/A	0	N/A	0
CS5	N/A	0	N/A	0
CS6	N/A	0	N/A	0

	Pressure		Relative	Flow Rate	Atmos.	CH₄ (% vol)	ol) (%LEL)		L) CO ₂ (% vol)			% vol)	GSV - CHA	201 22
Location	Trend	Date	Pressure	(l/hr)	Pressure									GSV - CH4	GSV - CO ₂
14/0.04			(mb)	` '	(m.bar)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	0.0004	0.0000
WS 01	S	07.07.2016	0.00	0.1	999	0.1	0.1	0.1	0.1	0.8	0.8	19.5	19.5	0.0001	0.0008 0.0026
WS 03 WS 09	S S	07.07.2016	0.00	0.1	999 1000	0.1 0.1	0.1	0.1	0.1	2.6	2.6 0.1	15.5	15.5 19.6	0.0001	0.0026
WS 13	S	07.07.2016 07.07.2016	0.00	0.1	999	0.1	0.1	0.1	0.1	0.1 1.9	1.9	19.6 18.5	18.5	0.0001	0.0001
WS 13	S	07.07.2016	0.00	0.1	999	0.1	0.1	0.1	0.1	1.9	1.9	19.9	19.9	0.0001	0.0019
WS 18	S	07.07.2016	0.00	0.1	1001	0.1	0.1	0.1	0.1	0.9	0.9	19.6	19.6	0.0001	0.0012
WS 19	S	07.07.2016	0.00	0.1	1001	0.1	0.1	0.1	0.1	4.7	4.7	15.3	15.3	0.0001	0.0047
WS 25	S	07.07.2016	0.00	0.1	998	0.1	0.1	0.1	0.1	0.3	0.3	20.7	20.7	0.0001	0.0003
WS 26	S	07.07.2016	0.00	0.1	998	0.1	0.1	0.1	0.1	0.5	0.5	20.6	20.6	0.0001	0.0005
WS 01	S	14.07.2016	0.00	0.1	1005	0.1	0.1	0.1	0.1	0.3	0.3	20.6	20.6	0.0001	0.0003
WS 03	S	14.07.2016	0.00	0.1	1005	0.1	0.1	0.1	0.1	0.9	0.9	18.3	18.3	0.0001	0.0009
WS 09	S	14.07.2016	0.00	0.1	1005	0.1	0.1	0.1	0.1	0.1	0.1	14.4	14.4	0.0001	0.0001
WS 13	S	14.07.2016	0.00	0.1	1004	0.1	0.1	0.1	0.1	0.1	0.1	20.8	20.8	0.0001	0.0001
WS 14	S	14.07.2016	0.00	0.1	1004	0.1	0.1	0.1	0.1	1.3	1.3	19.9	19.9	0.0001	0.0013
WS 18	S	14.07.2016	0.00	0.1	1006	0.1	0.1	0.1	0.1	1.3	1.3	20.2	20.2	0.0001	0.0013
WS 19	S	14.07.2016	0.00	0.1	1007	0.1	0.1	0.1	0.1	4.9	4.9	16.0	16.0	0.0001	0.0049
WS 25	S	14.07.2016	0.00	0.1	1003	0.1	0.1	0.1	0.1	1.1	1.1	19.7	19.7	0.0001	0.0011
WS 26	S	14.07.2016	0.00	0.1	1003	0.1	0.1	0.1	0.1	0.6	0.6	20.5	20.5	0.0001	0.0006
WS 01	F	16.06.2016	0.00	0.1	983	0.1	0.1	0.1	0.1	0.2	0.2	20.5	20.5	0.0001	0.0002
WS 03	F	16.06.2016	0.00	0.1	983	0.1	0.1	0.1	0.1	1.6	1.6	17.8	17.8	0.0001	0.0016
WS 09	F	16.06.2016	0.00	0.1	982	0.1	0.1	0.1	0.1	0.2	0.2	19.7	19.7	0.0001	0.0002
WS 13	F	16.06.2016	0.00	0.1	982	0.1	0.1	0.1	0.1	2.1	2.1	17.9	17.9	0.0001	0.0021
WS 14	F	16.06.2016	0.00	0.1	982	0.1	0.1	0.1	0.1	1.3	1.3	18.0	18.0	0.0001	0.0013
WS 18	F	16.06.2016	0.00	0.1	983	0.1	0.1	0.1	0.1	0.9	0.9	18.3	18.3	0.0001	0.0009
WS 19	F	16.06.2016	0.00	0.1	983	0.1	0.1	0.1	0.1	3.9	3.9	15.5	15.5	0.0001	0.0039
WS 25	F	16.06.2016	0.00	0.1	983	0.1	0.1	0.1	0.1	1.2	1.2	19.9	19.9	0.0001	0.0012
WS 26	F	16.06.2016	0.00	0.1	983	0.1	0.1	0.1	0.1	0.9	0.9	16.7	16.7	0.0001	0.0009
WS 01	S	23.06.2016	0.00	0.1	997	0.1	0.1	0.1	0.1	0.4	0.4	20.0	20.0	0.0001	0.0004
WS 03	S	23.06.2016	0.00	0.1	997	0.1	0.1	0.1	0.1	0.8	0.8	18.9	18.9	0.0001	0.0008
WS 09	S	23.06.2016	0.00	0.1	998	0.1	0.1	0.1	0.1	0.1	0.1	16.9	16.9	0.0001	0.0001
WS 13	S	23.06.2016	0.00	0.1	997	0.1	0.1	0.1	0.1	2.1	2.1	17.9	17.9	0.0001	0.0021
WS 14	S	23.06.2016	0.00	0.1	997	0.1	0.1	0.1	0.1	1.4	1.4	18.8	18.8	0.0001	0.0014
WS 18	S	23.06.2016	0.00	0.1	998	0.1	0.1	0.1	0.1	0.9	0.9	18.2	18.2	0.0001	0.0009
WS 19	S	23.06.2016	0.00	0.1	998	0.1	0.1	0.1	0.1	3.2	3.2	15.9	15.9	0.0001	0.0032
WS 25	S	23.06.2016	0.00	0.1	999	0.1	0.1	0.1	0.1	0.4	0.4	20.4	20.4	0.0001	0.0004
WS 26	S	23.06.2016	0.00	0.1	999	0.1	0.1	0.1	0.1	0.1	0.1	20.7	20.7	0.0001	0.0001
WS 01	F	30.06.2016	0.00	0.1	991	0.1	0.1	0.1	0.1	8.0	8.0	19.4	19.4	0.0001	0.0008
WS 03	F	30.06.2016	0.00	0.1	991	0.1	0.1	0.1	0.1	8.0	8.0	19.3	19.3	0.0001	0.0008
WS 09	F	30.06.2016	0.00	0.1	991	0.1	0.1	0.1	0.1	0.1	0.1	17.8	17.8	0.0001	0.0001
WS 13	F	30.06.2016	0.00	0.1	990	0.1	0.1	0.1	0.1	2.0	2.0	18.1	18.1	0.0001	0.0020
WS 14	F	30.06.2016	0.00	0.1	990	0.1	0.1	0.1	0.1	1.3	1.3	19.8	19.8	0.0001	0.0013
WS 18	F	30.06.2016	0.00	0.1	992	0.1	0.1	0.1	0.1	1.2	1.2	18.2	18.2	0.0001	0.0012
WS 19	F	30.06.2016	0.00	0.1	993	0.1	0.1	0.1	0.1	4.4	4.4	15.2	15.2	0.0001	0.0044
WS 25	F	30.06.2016	0.00	0.1	990	0.1	0.1	0.1	0.1	0.2	0.2	20.8	20.8	0.0001	0.0002
WS 26	F	30.06.2016	0.00	0.1	990	0.1	0.1	0.1	0.1	0.7	0.7	20.6	20.6	0.0001	0.0007
WS 01	S	21.07.2016	0.00	0.1	1003	0.1	0.1	0.1	0.1	0.1	0.1	20.9	20.9	0.0001	0.0001
WS 03	S	21.07.2016	0.00	0.1	1003	0.1	0.1	0.1	0.1	2.3	2.3	16.7	16.7	0.0001	0.0023
WS 09	S	21.07.2016	0.00	0.1	1003	0.1	0.1	0.1	0.1	0.2	0.2	19.6	19.6	0.0001	0.0002
WS 13	S	21.07.2016	0.00	0.1	1003	0.1	0.1	0.1	0.1	1.7	1.7	18.6	18.6	0.0001	0.0017
WS 14	S	21.07.2016	0.00	0.1	1003	0.1	0.1	0.1	0.1	1.6	1.6	19.7	19.7	0.0001	0.0016
WS 18	S	21.07.2016	0.00	0.1	1003	0.1	0.1	0.1	0.1	1.5	1.5	19.2	19.2	0.0001	0.0015
WS 19	S	21.07.2016	0.00	0.1	1003	0.1	0.1	0.1	0.1	5.4	5.4	15.9	15.9	0.0001	0.0054
WS 25	S	21.07.2016	0.00	0.1	1001	0.1	0.1	0.1	0.1	2.4	2.4	19.1	19.1	0.0001	0.0024
WS 26	S	21.07.2016	0.00	0.1	1001	0.1	0.1	0.1	0.1	0.8	0.8	20.7	20.7	0.0001	0.0008

Appendix E

Hydrock Methodology

Hydrock Report Appendix on Hydrock Methodology, version 25 updated 01-12-15 applies to this report.

This appendix may not be included in the printed report to reduce the document size, but is included in the digital version. Alternatively, it can be supplied on request by quoting the version number and date.

Appendix F

Contamination Test Results and Statistical Analysis

Nathan Thompson

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 **f:** 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 16-21443

Project / Site name: Kraft, Banbury **Samples received on:** 29/06/2016

Your job number: C161279 Samples instructed on: 29/06/2016

Your order number: N9251-C161279 Analysis completed by: 06/07/2016

Report Issue Number: 1 Report issued on: 06/07/2016

Samples Analysed: 5 water samples

Signed:

Dr Irma Doyle Senior Account Manager

For & on behalf of i2 Analytical Ltd.

Signed:

Emma Winter Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				594978	594979	594980	594981	594982
Sample Reference				WS 01	WS 09	WS 13	WS 18	WS 26
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				23/06/2016	23/06/2016	23/06/2016	23/06/2016	23/06/2016
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.9	7.8	7.4	7.7	7.9
Electrical Conductivity	μS/cm	10	NONE	1500	610	790	530	1000
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Free Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Sulphate as SO ₄	μg/l	45	ISO 17025	110000	84500	69500	52000	8700
Chloride	mg/l	0.15	ISO 17025	220	25	41	8.8	51
Fluoride	μg/l	50	ISO 17025	570	950	420	390	440
Ammonium as NH₄	μg/l	15	ISO 17025	< 15	< 15	< 15	130	< 15
Nitrate as N	mg/l	0.01	ISO 17025	1.92	0.71	0.83	2.06	1.90
Nitrate as NO ₃	mg/l	0.05	ISO 17025	8.50	3.14	3.67	9.14	8.40
Nitrite as N	μg/l	1	ISO 17025	76	9.6	27	96	30
Nitrite as NO ₂	μg/l	5	ISO 17025	250	31	89	320	99
Hardness - Total	mgCaCO3/I	1	ISO 17025	212	189	377	218	5.8
Bromate (Subcontracted)	μg/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenois			1					
Total Phenols	μg/l	0.5	NONE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Speciated PAHs		0.01	I	0.01	0.01	0.01	0.01	0.01
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene Benzo(b)fluoranthene	μg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01				
Benzo(k)fluoranthene Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/I μg/l	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.01
Benzo(ghi)perylene	μg/l	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PAH Sums	μg/i	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sum of Benzo(b)fluoranthene &		0.02	NONE	~ 0.02	< 0.02	< 0.02	< 0.02	< 0.03
Benzo(k)fluoranthene Sum of Benzo(ghi)fluoranthene & Indeno(1,2,3-	μg/l	0.02	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
cd)pyrene Sum of Benzo(b)fluoranthene, Benzo(k)fluoranthene,	μg/l	0.002	NONE	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Benzo(ghi)fluoranthene & Indeno(1,2,3-cd)pyrene	μg/l	0.022	NONE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02

Your Order No: N9251-C161279								
Lab Sample Number				594978	594979	594980	594981	594982
Sample Reference				WS 01	WS 09	WS 13	WS 18	WS 26
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				23/06/2016	23/06/2016	23/06/2016	23/06/2016	23/06/2016
Time Taken	1	1	_	None Supplied				
		_ ـو	Accreditation Status					
Analytical Parameter	Units	Limit of detection	Sta					
(Water Analysis)	퍊	CT: CT	lita					
		3 3	v €					
Heavy Metals / Metalloids			_					
Boron (dissolved)	μg/l	10	ISO 17025	64	380	100	330	< 10
Chromium (hexavalent)	μg/l μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	μg/l	1	NONE	2.6	< 1.0	< 1.0	< 1.0	< 1.0
Iron (dissolved)	mg/l	0.004	ISO 17025	0.59	0.057	0.74	0.019	0.60
Mercury (dissolved) CV-AFS	ug/l	0.005	NONE	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Calcium (dissolved)	mg/l	0.012	ISO 17025	66	49	130	66	1.8
Magnesium (dissolved)	mg/l	0.005	ISO 17025	12	16	12	13	0.35
Sodium (dissolved) Zinc (total)	mg/l	0.01	ISO 17025 ISO 17025	270 130	58 8.9	20 37	32 24	10 370
Aluminium (dissolved)	μg/l mg/l	0.5	ISO 17025	0.878	0.0884	0.0141	0.0056	0.371
Antimony (dissolved)	mg/l µg/l	0.001	ISO 17025	1.6	0.0884	1.3	2.7	1.5
Arsenic (dissolved)	μg/l	0.15	ISO 17025	0.91	0.64	2.16	< 0.15	1.61
Barium (dissolved)	μg/l	0.15	ISO 17025	65	5.8	10	9.9	51
Boron (dissolved)	μg/l	10	ISO 17025	64	380	100	330	< 10
Cadmium (dissolved)	μg/l	0.02	ISO 17025	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (III)	μg/l	1	NONE	2.6	< 1.0	< 1.0	< 1.0	< 1.0
Chromium (dissolved)	μg/l	0.2	ISO 17025	2.6	0.3	< 0.2	< 0.2	0.9
Cobalt (dissolved)	μg/l	0.2	ISO 17025	0.6	0.7	1.9	< 0.2	2.5
Copper (dissolved)	μg/l	0.5	ISO 17025	3.0	< 0.5	< 0.5	1.7	4.6
Lead (dissolved)	μg/l	0.2	ISO 17025	0.6	0.3	< 0.2	< 0.2	< 0.2
Manganese (dissolved) Molybdenum (dissolved)	μg/l	0.05 0.05	ISO 17025 ISO 17025	6.3 3.9	77 1.1	270	11 1.4	50 7.9
Nickel (dissolved)	μg/l	0.05	ISO 17025 ISO 17025	5.8	2.5	1.8 1.5	1.4	8.2
Selenium (dissolved)	μg/l μg/l	0.5	ISO 17025	18	< 0.6	< 0.6	3.4	51
Silver (dissolved)	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tin (dissolved)	μg/l	0.2	ISO 17025	0.25	0.21	< 0.20	0.44	0.45
Vanadium (dissolved)	μg/l	0.2	ISO 17025	7.9	1.3	0.2	0.6	11
Zinc (dissolved)	μg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	1.0	6.2
Management								
Monoaromatics		1	ISO 17025	. 1.0	. 1.0	.10	.10	.10
Benzene Toluene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0				
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TRU CMC Alimberia CF CC		10	NONE	. 10	. 10	. 10	. 10	. 10
TPH-CWG - Aliphatic > C5 - C6	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C6 - C8 TPH-CWG - Aliphatic >C8 - C10	μg/l μg/l	10 10	NONE NONE	< 10 < 10				
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic > C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TRU CIVIC Assessed CF CF		- 10			- 10	- 10	- 10	- 10
TPH-CWG - Aromatic > C5 - C7	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > C7 - C8	μg/l	10 10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C8 - C10 TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE NONE	< 10 < 10				
TPH-CWG - Aromatic >C10 - C12 TPH-CWG - Aromatic >C12 - C16	μg/l μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 TPH-CWG - Aromatic >C16 - C21	μg/I μg/I	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > C35 - C44	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
		-	_				•	

Your Order No: N9251-C161279

Tour Order No. NJ251 C101275								
Lab Sample Number				594978	594979	594980	594981	594982
Sample Reference				WS 01	WS 09	WS 13	WS 18	WS 26
Sample Number				None Supplied				
Depth (m)	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Date Sampled	23/06/2016	23/06/2016	23/06/2016	23/06/2016	23/06/2016			
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					

VOCs								
Chloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	μq/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.1.2-Trichloro 1.2.2-Trifluoroethane	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane		1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-dichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	μg/l							
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene		1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/l μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	μg/I μg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0
		1	ISO 17025		< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene N. Propulhenzene	μg/l	1		< 1.0 < 1.0	< 1.0	< 1.0		< 1.0
N-Propylbenzene	μg/l		ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	
2-Chlorotoluene	μg/l	1					< 1.0	< 1.0
4-Chlorotoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
P-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-dichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Butylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \hspace{0.5cm} \mbox{I/S} = \mbox{Insufficient Sample}$

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

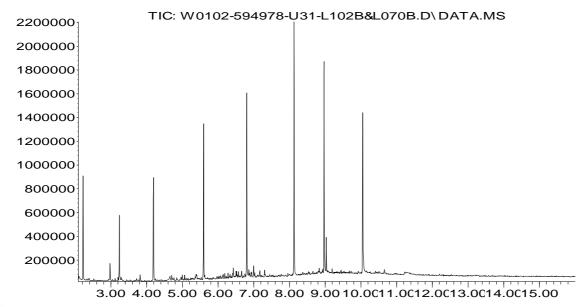
	1				1
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in water	Determination of Ammonium/Ammonia/Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Bromate in Water	Determination of Bromate by colorimetry	In house method based on Standard Methods for the examination of water and waste water,		W	NONE
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chloride in water	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082 B	W	ISO 17025
Cr (III) in water	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Electrical conductivity of water	Determination of electrical conductivity in water by electrometric measurement.	In-house method	L031-PL	W	NONE
Fluoride in water	Determination of fluoride in water by 1:1 ratio with a buffer solution followed by Ion Selective Electrode. Accredited matrices: SW, PW, GW.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033-PL	W	ISO 17025
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Mercury Low Level (Dissolved) in Water	Mercury in water by millennium merlin AFS analyser	In-house method based on USEPA method 1631	L085-PL	W	NONE
Metals in water by ICP-MS (dissolved)	•	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	NONE
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Nitrate as N in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrate in water	Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08,	L078-PL	W	ISO 17025
Nitrite in water	Determination of nitrite in water by addition of sulphanilamide and NED followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L077-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
					I

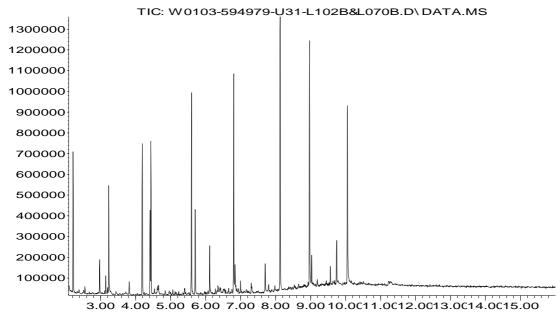
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

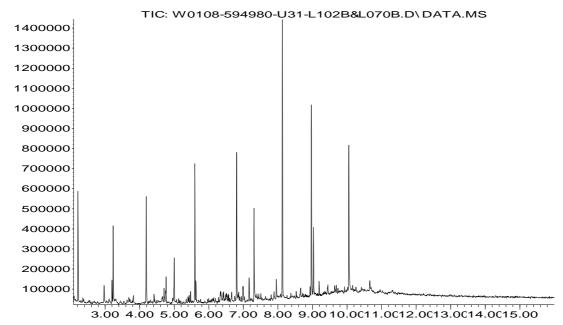
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Phenols, speciated, in water, by GCMS	Determination of speciated phenols in water by extraction in hexane followed by GC-MS.	In-house method based on USEPA 8270	L070-PL	W	NONE
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L0102B-PL	W	ISO 17025
Speciated EPA-16 PAHs in water (LOW LEVEL Dets)	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L070-PL	W	NONE
Specific PAH sums in water	Determination of PAH compounds in water by extraction in hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L070-PL	W	NONE
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
TPH Chromatogram	TPH Chromatogram.	In-house method	L070-PL	W	NONE
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

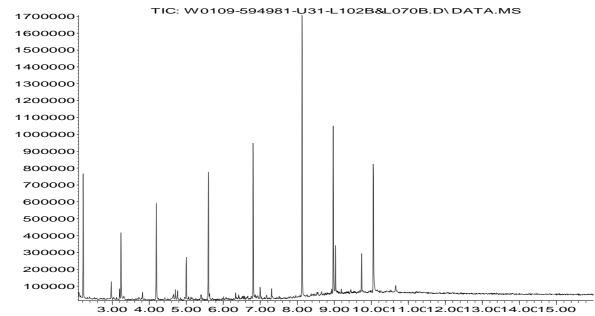
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

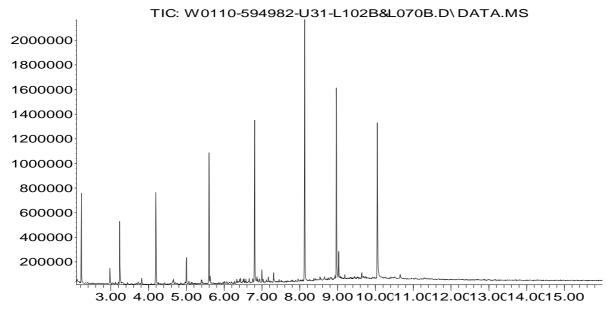
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.


Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.




Sample ID	Other_ID	Sample Type			Sample Deviation Code		test_ref
WS 01		W	16-21443	594978		Ammoniacal Nitrogen as N in water	L082-PL
WS 01		W	16-21443	594978	С	Ammonium as NH4 in water	L082-PL
WS 01		W	16-21443	594978	С	Electrical conductivity of water	L031-PL
WS 01		W	16-21443	594978	С	Nitrate as N in water	L078-PL
WS 01		W	16-21443	594978		Nitrate in water	L078-PL
WS 01		W	16-21443	594978	С	Nitrite as N in water	L077-PI
WS 01		W	16-21443	594978	С	Nitrite in water	L077-PL
WS 01		W	16-21443	594978	С	pH in water	L005-PL
WS 09		W	16-21443	594979	С	Ammoniacal Nitrogen as N in water	L082-PL
WS 09		W	16-21443	594979	С	Ammonium as NH4 in water	L082-PL
WS 09		W	16-21443	594979	С	Electrical conductivity of water	L031-PL
WS 09		W	16-21443	594979	С	Nitrate as N in water	L078-PL
WS 09		W	16-21443	594979	С	Nitrate in water	L078-PL
WS 09		W	16-21443	594979	С	Nitrite as N in water	L077-PI
WS 09		W	16-21443	594979	С	Nitrite in water	L077-PL
WS 09		W	16-21443	594979	С	pH in water	L005-PL
WS 13		W	16-21443	594980	С	Ammoniacal Nitrogen as N in water	L082-PL
WS 13		W	16-21443	594980	С	Ammonium as NH4 in water	L082-PL
WS 13		W	16-21443	594980	С	Electrical conductivity of water	L031-PL
WS 13		W	16-21443	594980	С	Nitrate as N in water	L078-PL
WS 13		W	16-21443	594980	С	Nitrate in water	L078-PL
WS 13		W	16-21443	594980	С	Nitrite as N in water	L077-PI
WS 13		W	16-21443	594980	С	Nitrite in water	L077-PL
WS 13		W	16-21443	594980	С	pH in water	L005-PL
WS 18		W	16-21443	594981	С	Ammoniacal Nitrogen as N in water	L082-PL
WS 18		W	16-21443	594981	С	Ammonium as NH4 in water	L082-PL
WS 18		W	16-21443	594981	С	Electrical conductivity of water	L031-PL
WS 18		W	16-21443	594981	С	Nitrate as N in water	L078-PL
WS 18		W	16-21443	594981	С	Nitrate in water	L078-PL
WS 18		W	16-21443	594981	С	Nitrite as N in water	L077-PI
WS 18		W	16-21443	594981	С	Nitrite in water	L077-PL
WS 18		W	16-21443	594981	С	pH in water	L005-PL
WS 26		W	16-21443	594982	С	Ammoniacal Nitrogen as N in water	L082-PL
WS 26		W	16-21443	594982	С	Ammonium as NH4 in water	L082-PL
WS 26		W	16-21443	594982	С	Electrical conductivity of water	L031-PL
WS 26		W	16-21443	594982		Nitrate as N in water	L078-PL
WS 26		W	16-21443	594982		Nitrate in water	L078-PL
WS 26		W	16-21443	594982		Nitrite as N in water	L077-PI
WS 26		W	16-21443	594982		Nitrite in water	L077-PL
WS 26		W	16-21443	594982		pH in water	L005-PL




Test Deviation code
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
c c
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 **f:** 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 16-20400

Replaces Analytical Report Number: 16-20400, issue no. 1

Project / Site name: Kraft Phase 2 Samples received on: 10/06/2016

Your job number: C161279 Samples instructed on: 17/06/2016

Your order number: N9203-C161279 Analysis completed by: 29/06/2016

Report Issue Number: 2 **Report issued on:** 29/06/2016

Samples Analysed: 38 soil samples

Signed: Signed:

Rexona Rahman Reporting Manager

For & on behalf of i2 Analytical Ltd.

Emma Winter Assistant Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Environmental Science

Lab Sample Number		589308	589309	589310	589311	589312		
Sample Reference				BH01	BH01	BH02	BH02	BH03
Sample Number				None Supplied				
Depth (m)				0.10	0.40	0.10	0.50	0.60
Date Sampled				26/05/2016	26/05/2016	31/05/2016	31/05/2016	02/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	21	13	16	16	13
Total mass of sample received	kg	0.001	NONE	0.44	0.41	0.44	0.52	0.49
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	Amosite	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	< 0.001	-
General Inorganics								
pH	pH Units	N/A	MCERTS	7.9	8.3	8.3	8.4	8.2
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0099	0.013	0.027	0.054	0.013
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	9.9	13.2	26.7	54.3	13.4
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.023	0.0042	0.015	0.0056	0.012
Total Phenols Total Phenols (monohydric)		1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenois (mononyunc)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	0.67	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	0.76	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	6.0	0.53	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	1.4	0.12	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	11	1.2	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	8.6	0.93	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	6.6	0.79	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	5.0	0.70	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	7.7	1.2	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	2.9	0.44	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	5.0	0.80	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	3.2	0.41	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	0.76	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	3.4	0.52	< 0.05
Total PAH								-
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	63.2	7.63	< 1.60

Lab Sample Number				589308	589309	589310	589311	589312
Sample Reference				BH01	BH01	BH02	BH02	BH03
Sample Number				None Supplied				
Depth (m)				0.10	0.40	0.10	0.50	0.60
Date Sampled				26/05/2016	26/05/2016	31/05/2016	31/05/2016	02/06/2016
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	33	33	41	35	36
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	1.5	0.84	1.4	1.3
Boron (water soluble)	mg/kg	0.2	MCERTS	1.5	0.8	0.7	0.9	1.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	64	62	38	53	63
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	64	62	38	53	63
Copper (aqua regia extractable)	mg/kg	1	MCERTS	8.8	5.4	15	12	25
Lead (aqua regia extractable)	mg/kg	1	MCERTS	52	34	28	23	73
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	35	40	18	43	35
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.7	< 1.0	< 1.0	1.2	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	87	98	71	92	98
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	100	89	75	93	92
Monoaromatics								
Benzene	ug/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	-	-	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	-	-	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	< 0.1	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	6.2	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	11	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	35	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	NONE	-	-	46	< 10	< 10
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	-	-	29	< 8.4	< 8.4
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	-	-	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	-	-	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	< 0.1	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	8.4	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	76	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	210	39	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	-	-	120	31	< 8.4

Lab Sample Number		589308	589309	589310	589311	589312		
Sample Reference				BH01	BH01	BH02	BH02	BH03
Sample Number				None Supplied				
Depth (m)				0.10	0.40	0.10	0.50	0.60
Date Sampled				26/05/2016	26/05/2016	31/05/2016	31/05/2016	02/06/2016
Time Taken				None Supplied				
			Ac					
Analytical Parameter	⊆	Limit of detection	creditat Status					
(Soil Analysis)	Units	ČĖ Ė	dita					
		3 4	Accreditation Status					
VOCe			_					
VOCs Chloromethane	μg/kg	1	ISO 17025	-	_	_	_	_
Chloroethane	μg/kg μg/kg	1	ISO 17025		-	-	-	
Bromomethane	µg/kg	1	ISO 17025	-	-	-	-	-
Vinyl Chloride	μg/kg	1	ISO 17025	-	-	-	-	-
Trichlorofluoromethane	μg/kg	1	ISO 17025	-	-	-	-	-
1,1-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	11	ISO 17025	-	-	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether) 1,1-dichloroethane	μg/kg μg/kg	1	MCERTS MCERTS	-	-	-	-	-
2,2-Dichloropropane	μg/kg μg/kg	1	NONE	-	-	-	-	-
Trichloromethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	_	_	_	_
1,2-dichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,1-Dichloropropene	μg/kg	1	NONE	-	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-	-
1,2-dichloropropane	μg/kg	1	MCERTS	-	-	-	-	-
Trichloroethene	μg/kg	1	MCERTS	-	-	-	-	-
Dibromomethane Bromodichloromethane	μg/kg	1	MCERTS NONE	-	-	-	-	-
Cis-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	-
Trans-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	
Toluene	μg/kg	1	MCERTS	-	_	_	_	_
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-	-
Tetrachloroethene	μg/kg	1	MCERTS	-	-	-	-	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	-
Chlorobenzene	μg/kg 	1	MCERTS	-	-	-	-	-
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg μg/kg	1	NONE MCERTS	-	-	-	<u>-</u>	-
p & m-xylene	μg/kg μg/kg	1	MCERTS	-			-	
Styrene	μg/kg μg/kg	1	MCERTS	_	-	_	_	_
Tribromomethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	-
Isopropylbenzene	μg/kg	1	NONE	-	-	-	-	-
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	-
N-Propylbenzene	μg/kg 	1	ISO 17025	-	-	-	-	-
2-Chlorotoluene	μg/kg	1	NONE	-	-	-	-	-
4-Chlorotoluene	μg/kg	1	NONE	-	-	-	-	-
1,3,5-Trimethylbenzene Tert-Butylbenzene	μg/kg μg/kg	1	ISO 17025 NONE	-	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	-
Sec-Butylbenzene	μg/kg μg/kg	1	NONE	-	-	-	-	-
1,3-dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	-
P-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	-
1,2-dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
1,4-dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Butylbenzene	μg/kg	1	NONE	-	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	-
Hexachlorobutadiene	μg/kg	1	NONE	-	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	NONE	-				•

Lab Sample Number				589308	589309	589310	589311	589312
Sample Reference				BH01	BH01	BH02	BH02	BH03
Sample Number				None Supplied				
Depth (m)	0.10	0.40	0.10	0.50	0.60			
Date Sampled				26/05/2016	26/05/2016	31/05/2016	31/05/2016	02/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
Total PCBs	mg/kg	0.007	MCERTS	< 0.007	< 0.007	-	-	-

Lab Sample Number		589313	589314	589315	589316	589317		
Sample Reference				BH03	BH04	BH04	WS01	WS01
Sample Number				None Supplied				
Depth (m)				1.00	0.60	1.10	0.40	1.00
Date Sampled				02/06/2016	06/06/2016	06/06/2016	07/06/2016	07/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	19	22	21	20	9.6
Total mass of sample received	kg	0.001	NONE	0.46	0.54	0.54	0.15	0.59
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	1	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics	_	_		-		-		
pH	pH Units	N/A	MCERTS	8.0	7.4	8.3	8.2	8.8
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.016	0.055	0.040	0.050	0.031
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	16.4	55.2	39.8	49.6	31.0
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0059	0.024	0.0027	0.0021	< 0.0010
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	0.39	< 0.10	< 0.10	1.2	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	0.21	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	0.49	< 0.10	< 0.10	2.7	< 0.10
Pyrene	mg/kg	0.1	MCERTS	0.38	< 0.10	< 0.10	1.9	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	1.3	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.3	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	1.2	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	1.1	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	0.76	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	0.50	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.60	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	12.9	< 1.60

Lab Sample Number	ample Number				589314	589315	589316	589317
Sample Reference				BH03	BH04	BH04	WS01	WS01
Sample Number				None Supplied				
Depth (m)				1.00	0.60	1.10	0.40	1.00
Date Sampled				02/06/2016	06/06/2016	06/06/2016	07/06/2016	07/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	32	23	18	94	23
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	1.1	1.3	3.0	0.42
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	3.1	1.3	0.6	0.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	61	59	41	170	25
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	61	59	41	170	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.4	41	10	< 1.0	< 1.0
Lead (aqua regia extractable)	mg/kg	1	MCERTS	32	72	14	8.7	9.1
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	36	29	32	63	12
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	83	88	70	270	50
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	89	98	75	160	27
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
The decree	"	-	140555	. 1 0			. 1 0	. 1 0

Benzene	ug/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	-	< 8.0	20
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	NONE	< 10	-	-	< 10	20
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	-	-	< 8.4	29
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	-	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	-	-	< 10	44
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	-	-	< 8.4	60

Lab Sample Number				589313	589314	589315	589316	589317
Sample Reference				BH03	BH04	BH04	WS01	WS01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.60	1.10	0.40	1.00
Date Sampled				02/06/2016	06/06/2016	06/06/2016	07/06/2016	07/06/2016
Time Taken	-	-		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
MOCe			_					
VOCs Chloromethane	μg/kg	1	ISO 17025	-	_	-	< 1.0	< 1.0
Chloroethane	μg/kg	1	ISO 17025	-		-	< 1.0	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	_	_	< 1.0	< 1.0
Vinyl Chloride	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Trichlorofluoromethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
1,1-dichloroethene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,1-dichloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
2,2-Dichloropropane	μg/kg	1	NONE MCERTS	-	-	-	< 1.0	< 1.0
Trichloromethane 1.1.1-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0 < 1.0	< 1.0 < 1.0
1,2-dichloroethane	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,1-Dichloropropene	μg/kg	1	NONE	-	_	_	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	_	_	< 1.0	< 1.0
Benzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,2-dichloropropane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Bromodichloromethane	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025 ISO 17025	-	-	-	< 1.0	< 1.0
Trans-1,3-dichloropropene Toluene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0 < 1.0	< 1.0 < 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	_	_	< 1.0	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Tetrachloroethene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
Ethylbenzene p & m-xylene	μg/kg 	1	MCERTS	-	-	-	< 1.0	< 1.0
p & m-xylene Styrene	μg/kg	1	MCERTS MCERTS	-	-	-	< 1.0 < 1.0	< 1.0 < 1.0
Tribromomethane	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
o-xylene	μg/kg μg/kg	1	MCERTS	-	_	_	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS	-	_	_	< 1.0	< 1.0
Isopropylbenzene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
N-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
2-Chlorotoluene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
4-Chlorotoluene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Tert-Butylbenzene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Sec-Butylbenzene 1,3-dichlorobenzene	μg/kg μg/kg	1	NONE ISO 17025	-	-	-	< 1.0 < 1.0	< 1.0 < 1.0
P-Isopropyltoluene	μg/kg μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
1,2-dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,4-dichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Butylbenzene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Hexachlorobutadiene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0

Lab Sample Number	ab Sample Number					589315	589316	589317
Sample Reference				BH03	BH04	BH04	WS01	WS01
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	1.00	0.60	1.10	0.40	1.00			
Date Sampled	02/06/2016	06/06/2016	06/06/2016	07/06/2016	07/06/2016			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	< 0.001	< 0.001
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	< 0.007	< 0.007

Environmental Science

Lab Sample Number				589318	589319	589320	589321	589322
Sample Reference				WS03	WS03	WS04	WS05	WS05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.60	0.30	0.10	0.50
Date Sampled				07/06/2016	07/06/2016	07/06/2016	08/06/2016	08/06/2016
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	12	17	12	16
Total mass of sample received	kg	0.001	NONE	0.46	0.52	0.52	0.49	0.48
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile & Amosite	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	0.076	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	0.076	-	-	-
General Inorganics								
pH	pH Units	N/A	MCERTS	8.2	8.5	8.4	8.6	8.0
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.016	0.053	0.081	0.034	0.023
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	15.7	52.5	81.3	33.7	22.9
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.011	0.016	0.0074	0.0072	0.0062
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs Naphthalene		0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.10	< 0.05	< 0.10	< 0.05	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	0.32	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	0.15	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	1.3	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	1.3	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	1.4	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	1.5	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	4.8	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	2.6	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	5.1	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	3.2	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	0.77	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	5.5	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	27.9	< 1.60	< 1.60	< 1.60
Speciated Total LFA-10 FALIS	ing/kg	1.0	INCELLIO	< 1.00	21.3	< 1.00	< 1.00	< 1.00

Lab Sample Number	b Sample Number				589319	589320	589321	589322
Sample Reference				WS03	WS03	WS04	WS05	WS05
Sample Number				None Supplied				
Depth (m)				0.20	0.60	0.30	0.10	0.50
Date Sampled				07/06/2016	07/06/2016	07/06/2016	08/06/2016	08/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	54	29	41	22	26
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	1.2	1.4	1.2	1.3
Boron (water soluble)	mg/kg	0.2	MCERTS	1.3	1.3	1.3	0.9	1.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	75	67	67	36	50
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	75	67	67	36	50
Copper (aqua regia extractable)	mg/kg	1	MCERTS	10	6.2	6.4	11	7.8
Lead (aqua regia extractable)	mg/kg	1	MCERTS	34	39	25	15	24
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	0.4
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	48	28	38	36	38
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.8	< 1.0	1.2	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	150	100	100	69	93
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	100	90	77	84
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-

Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	1.4	1.8	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	5.2	59	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	25	100	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	250	75	-	-
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	NONE	< 10	270	180	-	-
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	180	24	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	7.0	26	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	33	82	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	480	65	-	-
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	470	20	-	-

Lab Sample Number		589318	589319	589320	589321	589322		
Sample Reference				WS03	WS03	WS04	WS05	WS05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.60	0.30	0.10	0.50
Date Sampled				07/06/2016	07/06/2016	07/06/2016	08/06/2016	08/06/2016
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
(Soli Allalysis)	v	of on	ation IS					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	-	-
Chloroethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	-	-
Bromomethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	-	-
Vinyl Chloride	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	-	-
Trichlorofluoromethane 1,1-dichloroethene	μg/kg μg/kg	1	ISO 17025 MCERTS	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0		-
Cis-1,2-dichloroethene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	_
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
1,1-dichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
2,2-Dichloropropane	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	-	-
Trichloromethane	μg/kg "	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
1,2-dichloroethane 1,1-Dichloropropene	μg/kg μg/kg	1	MCERTS NONE	< 1.0 < 1.0	< 1.0	< 1.0	-	-
Trans-1,2-dichloroethene	μg/kg μg/kg	1	NONE	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	-	-
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	_
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
1,2-dichloropropane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Trichloroethene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Dibromomethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Bromodichloromethane	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	-	-
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025 ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	-	-
Toluene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	-	-
Tetrachloroethene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
1,2-Dibromoethane Chlorobenzene	μg/kg μg/kg	1	ISO 17025 MCERTS	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	-	-
1,1,1,2-Tetrachloroethane	μg/kg μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	-	-
Ethylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	_
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Styrene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Tribromomethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Isopropylbenzene Bromobenzene	μg/kg μg/kg	1	NONE MCERTS	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	-	-
N-Propylbenzene	μg/kg μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	-	-
2-Chlorotoluene	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	-	-
4-Chlorotoluene	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	-	-
Tert-Butylbenzene	μg/kg 	1	NONE	< 1.0	< 1.0	< 1.0	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	-	-
Sec-Butylbenzene 1,3-dichlorobenzene	μg/kg	1	NONE ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	-	-
1,3-aichiorobenzene P-Isopropyltoluene	μg/kg μg/kg	1	ISO 17025	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	-	-
1,2-dichlorobenzene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
1,4-dichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Butylbenzene	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	-	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Hexachlorobutadiene	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	-	-
1,2,3-Trichlorobenzene	μg/kg	1	NONE	< 1.0	< 1.0	< 1.0	-	-

Lab Sample Number				589318	589319	589320	589321	589322
Sample Reference				WS03	WS03	WS04	WS05	WS05
Sample Number				None Supplied				
Depth (m)	Depth (m)					0.30	0.10	0.50
Date Sampled	07/06/2016	07/06/2016	07/06/2016	08/06/2016	08/06/2016			
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

Lab Sample Number				589323	589324	589325	589326	589327
Sample Reference				WS07	WS07	WS08	WS09	WS11
Sample Number				None Supplied				
Depth (m)				0.10	0.40	0.30	1.10	0.40
Date Sampled				08/06/2016	08/06/2016	08/06/2016	08/06/2016	02/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	20	13	26	19	15
Total mass of sample received	kg	0.001	NONE	0.48	0.32	0.13	0.55	0.48
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
рН	pH Units	N/A	MCERTS	7.4	7.8	8.5	8.1	8.3
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble Sulphate (2:1 Leachate Equivalent)	q/I	0.00125	MCERTS	0.0091	0.0082	0.015	0.29	0.038
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	9.1	8.2	15.1	291	38.0
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.011	0.0049	< 0.0010	0.011	0.0017
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs	•							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	0.51	0.71	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	0.39	0.55	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	0.25	0.39	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.20	0.36	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	0.40	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	0.30	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	0.34	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	3.05	< 1.60

Lab Sample Number				589323	589324	589325	589326	589327
Sample Reference				WS07	WS07	WS08	WS09	WS11
Sample Number				None Supplied				
Depth (m)				0.10	0.40	0.30	1.10	0.40
Date Sampled				08/06/2016	08/06/2016	08/06/2016	08/06/2016	02/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	45	39	25	23	120
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	1.2	0.12	1.2	3.3
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	0.6	0.5	1.0	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	55	37	6.0	52	170
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	55	37	6.0	52	170
Copper (aqua regia extractable)	mg/kg	1	MCERTS	10	5.9	5.1	18	< 1.0
Lead (aqua regia extractable)	mg/kg	1	MCERTS	81	31	4.6	10	9.4
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.5	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	31	25	4.9	55	80
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	94	70	20	74	350
Zinc (agua regia extractable)	mg/kg	1	MCERTS	97	65	20	100	140

Benzene	ug/kg	1	MCERTS	-	-	-	< 1.0	-
Toluene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
o-xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	< 1.0	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	< 8.0	-
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	NONE	-	-	-	< 10	-
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	-	-	-	< 8.4	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	< 10	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	29	-
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	-	-	-	64	-

Lab Sample Number						589325	589326	589327
Sample Reference				589323 WS07	589324 WS07	WS08	WS09	WS11
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.40	0.30	1.10	0.40
Date Sampled				08/06/2016	08/06/2016	08/06/2016	08/06/2016	02/06/2016
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		de	Accreditation Status					
Analytical Parameter	Units	Limit of detection	creditat Status					
(Soil Analysis)	ß	tio of	us lati					
		_	9					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-	-	_	< 1.0
Chloroethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Vinyl Chloride	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Trichlorofluoromethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,1-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1-dichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
2,2-Dichloropropane	μg/kg	1	NONE	-	-	-	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1-Trichloroethane 1,2-dichloroethane	μg/kg	1	MCERTS MCERTS	-	-	-	- -	< 1.0
1,1-Dichloropropene	μg/kg	1	NONE	-				< 1.0
Trans-1,2-dichloroethene	μg/kg μg/kg	1	NONE	<u>-</u>	-	-	-	< 1.0 < 1.0
Benzene	μg/kg μg/kg	1	MCERTS	_	-			< 1.0
Tetrachloromethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-dichloropropane	μg/kg	1	MCERTS	_	_	_	_	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	-	_	_	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	-	_	_	< 1.0
Bromodichloromethane	μg/kg	1	NONE	-	-	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Tetrachloroethene	μg/kg 	1	MCERTS	-	-	-	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	NONE	-	-	-	-	< 1.0
Ethylbenzene p & m-xylene	μg/kg μα/ka	1	MCERTS MCERTS		-	-	-	< 1.0 < 1.0
Styrene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0 < 1.0
Tribromomethane	μg/kg μg/kg	1	MCERTS	-	-	<u> </u>	<u> </u>	< 1.0
o-xvlene	μg/kg μg/kg	1	MCERTS	_	-	-	_	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
Isopropylbenzene	μg/kg	1	NONE	-	-	-	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
N-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
2-Chlorotoluene	μg/kg	1	NONE	-	-	-	-	< 1.0
4-Chlorotoluene	μg/kg	1	NONE	-	-	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Tert-Butylbenzene	μg/kg	1	NONE	-	-	-	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Sec-Butylbenzene	μg/kg	1	NONE	-	-	-	-	< 1.0
1,3-dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
P-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2-dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,4-dichlorobenzene	μg/kg	1	MCERTS	<u>-</u> -	-	-	-	< 1.0
Butylbenzene 1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	NONE ISO 17025	-	-	-	-	< 1.0 < 1.0
1,2,4-Trichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0 < 1.0
Hexachlorobutadiene	μg/kg μg/kg	1	NONE	-	-	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg μg/kg	1	NONE	-	-	-	-	< 1.0
Z/Z/SGIIOTODENZENE	P9/N9		INDIAL					, 1.0

Lab Sample Number				589323	589324	589325	589326	589327
Sample Reference				WS07	WS07	WS08	WS09	WS11
Sample Number				None Supplied				
Depth (m)	Depth (m)					0.30	1.10	0.40
Date Sampled	08/06/2016	08/06/2016	08/06/2016	08/06/2016	02/06/2016			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

Lab Sample Number	Sample Number						589331	589332
Sample Reference				WS11	WS12	WS12	WS13	WS13
Sample Number				None Supplied				
Depth (m)				0.80	0.30	0.60	0.30	0.60
Date Sampled				02/06/2016	03/06/2016	03/06/2016	02/06/2016	02/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	16	13	9.3	10
Total mass of sample received	kg	0.001	NONE	0.45	1.0	0.43	1.0	0.46
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	1	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
pH	pH Units	N/A	MCERTS	8.0	8.0	8.2	8.5	8.2
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.043	0.042	0.034	0.057	0.053
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	43.2	42.0	33.7	57.3	52.5
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0017	< 0.0010	0.0018	< 0.0010	0.0014
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60	< 1.60	< 1.60

Lab Sample Number				589328	589329	589330	589331	589332
Sample Reference				WS11	WS12	WS12	WS13	WS13
Sample Number				None Supplied				
Depth (m)				0.80	0.30	0.60	0.30	0.60
Date Sampled				02/06/2016	03/06/2016	03/06/2016	02/06/2016	02/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	190	120	170	23	54
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	6.1	4.5	4.9	0.33	1.3
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	0.6	0.7	0.3	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	330	260	280	11	78
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	330	260	280	11	78
Copper (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	8.0	< 1.0
Lead (aqua regia extractable)	mg/kg	1	MCERTS	10	6.7	7.7	5.5	5.2
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	130	120	130	13	30
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	2.4	1.3	2.3	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	680	480	600	34	130
Zinc (agua regia extractable)	mg/kg	1	MCERTS	220	150	210	28	57

Petroleum Hydrocarbons

o-xylene MTBE (Methyl Tertiary Butyl Ether)

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	NONE	-	-	-	< 10	< 10
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	-	-	-	< 8.4	< 8.4
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	-	-	-	< 8.4	< 8.4

MCERTS

μg/kg

< 1.0

< 1.0

Environmental Science

Lab Sample Number			589328	589329	589330	589331	589332	
Sample Reference				WS11	WS12	WS12	WS13	WS13
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.80	0.30	0.60	0.30	0.60
Date Sampled				02/06/2016	03/06/2016	03/06/2016	02/06/2016	02/06/2016
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			Ac					
Analytical Parameter	⊆	Limit of detection	Accreditation Status					
(Soil Analysis)	Units	nit o	creditat Status					
()		g of	tion					
V00-								
VOCs Chloromethane	//	1	TCO 1702F	. 1.0			. 1.0	. 1.0
Chloroethane	μg/kg μg/kg	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-	-	< 1.0 < 1.0	< 1.0 < 1.0
Bromomethane	μg/kg μg/kg	1	ISO 17025	< 1.0	-		< 1.0	< 1.0
Vinyl Chloride	µg/kg	1	ISO 17025	< 1.0	-	_	< 1.0	< 1.0
Trichlorofluoromethane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	< 1.0
1,1-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
1,1-dichloroethane 2,2-Dichloropropane	μg/kg	1	MCERTS NONE	< 1.0 < 1.0	-	-	< 1.0	< 1.0
Z,Z-Dicnioropropane Trichloromethane	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0	-	-	< 1.0 < 1.0	< 1.0 < 1.0
1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0	-		< 1.0	< 1.0
1,2-dichloroethane	μg/kg	1	MCERTS	< 1.0	_	_	< 1.0	< 1.0
1,1-Dichloropropene	μg/kg	1	NONE	< 1.0	-	-	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	-	-	< 1.0	< 1.0
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
1,2-dichloropropane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Dibromomethane Promodichly comethans	μg/kg	1	MCERTS NONE	< 1.0 < 1.0	-	-	< 1.0	< 1.0
Bromodichloromethane Cis-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0 < 1.0	< 1.0 < 1.0
Trans-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	< 1.0	_	_	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	< 1.0
Tetrachloroethene	μg/kg 	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	< 1.0 < 1.0	-	-	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg μg/kg	1	NONE MCERTS	< 1.0	-	-	< 1.0 < 1.0	< 1.0 < 1.0
p & m-xylene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Styrene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Tribromomethane	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Isopropylbenzene	μg/kg	1	NONE	< 1.0	-	-	< 1.0	< 1.0
Bromobenzene	μg/kg 	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
N-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	< 1.0
2-Chlorotoluene 4-Chlorotoluene	μg/kg μg/kg	1	NONE NONE	< 1.0 < 1.0	-	-	< 1.0 < 1.0	< 1.0 < 1.0
1,3,5-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	< 1.0
Tert-Butylbenzene	μg/kg μg/kg	1	NONE	< 1.0	-	_	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	< 1.0
Sec-Butylbenzene	μg/kg	1	NONE	< 1.0	-	-	< 1.0	< 1.0
1,3-dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	< 1.0
P-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0	< 1.0
1,2-dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
1,4-dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Butylbenzene	μg/kg μα/ka	1	NONE ISO 17025	< 1.0 < 1.0	-	-	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	< 1.0 < 1.0	< 1.0 < 1.0
Hexachlorobutadiene	μg/kg μg/kg	1	NONE	< 1.0	-	-	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/kg μg/kg	1	NONE	< 1.0	-	-	< 1.0	< 1.0
	E'' IE'I					•		

Lab Sample Number				589328	589329	589330	589331	589332
Sample Reference				WS11	WS12	WS12	WS13	WS13
Sample Number				None Supplied				
Depth (m)	0.80	0.30	0.60	0.30	0.60			
Date Sampled	02/06/2016	03/06/2016	03/06/2016	02/06/2016	02/06/2016			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis) Accreditation Status Units								
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

Lab Sample Number				589333	589334	589335	589336	589337
Sample Reference				WS15	WS15	WS16	WS16	WS18
Sample Number				None Supplied				
Depth (m)				0.30	0.60	0.30	0.70	0.30
Date Sampled				06/06/2016	06/06/2016	03/06/2016	03/06/2016	09/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	5.4	11	10	18	20
Total mass of sample received	kg	0.001	NONE	0.49	0.44	0.58	0.42	0.50
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	1	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
рН	pH Units	N/A	MCERTS	8.7	8.3	8.6	7.5	8.1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble Sulphate (2:1 Leachate Equivalent)	q/l	0.00125	MCERTS	0.056	0.077	0.12	0.47	0.010
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	56.3	77.2	119	471	10.2
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	< 0.0010	0.0029	< 0.0010	0.013	0.014
Total Phenois				1.0	1.0	1.0	1.0	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	0.51	< 0.10	1.0	< 0.10
Fluorene	mg/kg	0.1	MCERTS	< 0.10	0.28	< 0.10	0.90	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	0.21	8.0	0.65	2.1	< 0.10
Anthracene	mg/kg	0.1	MCERTS	< 0.10	2.2	0.13	0.24	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	0.64	31	0.92	0.42	< 0.10
Pyrene	mg/kg	0.1	MCERTS	0.48	22	0.67	0.27	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	0.34	14	0.50	0.12	< 0.10
Chrysene	mg/kg	0.05	MCERTS	0.33	14	0.44	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	0.24	11	0.60	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	0.22	11	0.24	< 0.10	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	0.17	9.9	0.35	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	6.4	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	< 0.10	1.7	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	7.3	< 0.05	< 0.05	< 0.05
Total PAH								
		_						

Lab Sample Number				589333	589334	589335	589336	589337
Sample Reference				WS15	WS15	WS16	WS16	WS18
Sample Number				None Supplied				
Depth (m)				0.30	0.60	0.30	0.70	0.30
Date Sampled				06/06/2016	06/06/2016	03/06/2016	03/06/2016	09/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.9	120	25	14	37
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.12	3.5	0.77	1.4	1.4
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	0.6	0.5	1.2	1.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	3.8	170	42	46	50
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	3.8	170	42	46	50
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	< 1.0	< 1.0	24	17
Lead (aqua regia extractable)	mg/kg	1	MCERTS	2.7	8.0	4.9	14	81
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	0.5	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	4.8	69	22	64	32
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.9	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	23	340	78	69	95
Zinc (agua regia extractable)	mg/kg	1	MCERTS	11	110	39	120	90

Benzene	ug/kg	1	MCERTS	-	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
o-xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	< 8.0
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	NONE	-	-	-	-	< 10
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	-	-	-	-	< 8.4
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	-	-	-	-	< 8.4

						-		
Lab Sample Number				589333	589334	589335	589336	589337
Sample Reference				WS15	WS15	WS16	WS16	WS18
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.60	0.30	0.70	0.30
Date Sampled				06/06/2016	06/06/2016	03/06/2016	03/06/2016	09/06/2016
Time Taken	1	1	T .	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Chloroethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Vinyl Chloride	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Trichlorofluoromethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
1,1-dichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS MCERTS	-	< 1.0	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether) 1,1-dichloroethane	μg/kg μg/kg	1	MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	-
2,2-Dichloropropane	μg/kg μg/kg	1	NONE	-	< 1.0 < 1.0	-	< 1.0 < 1.0	-
Trichloromethane	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	_
1,2-dichloroethane	μg/kg	1	MCERTS	-	< 1.0	=	< 1.0	-
1,1-Dichloropropene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
Benzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Tetrachloromethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,2-dichloropropane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Trichloroethene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Dibromomethane	μg/kg 	1	MCERTS	-	< 1.0	-	< 1.0	-
Bromodichloromethane	μg/kg	1	NONE ISO 17025	-	< 1.0	-	< 1.0	-
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Toluene	μg/kg μg/kg	1	MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	_	< 1.0		< 1.0	_
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	_
Dibromochloromethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Tetrachloroethene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	< 1.0	1	< 1.0	-
Chlorobenzene	μg/kg	1	MCERTS	-	< 1.0	ī	< 1.0	-
1,1,1,2-Tetrachloroethane	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Styrene	μg/kg 	1	MCERTS	-	< 1.0	-	< 1.0	-
Tribromomethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
o-xylene 1,1,2,2-Tetrachloroethane	μg/kg μα/kα	1	MCERTS MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	-
Isopropylbenzene	μg/kg μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
Bromobenzene	μg/kg	1	MCERTS	_	< 1.0	-	< 1.0	_
N-Propylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
2-Chlorotoluene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
4-Chlorotoluene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Tert-Butylbenzene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
Sec-Butylbenzene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
1,3-dichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
P-Isopropyltoluene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
1,2-dichlorobenzene 1,4-dichlorobenzene	μg/kg μg/kg	1	MCERTS MCERTS	-	< 1.0 < 1.0	-	< 1.0 < 1.0	-
Butylbenzene	μg/kg μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	_	< 1.0	-	< 1.0	_
Hexachlorobutadiene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	-
1,2,3-Trichlorobenzene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	
-								

Lab Sample Number				589333	589334	589335	589336	589337
Sample Reference				WS15	WS15	WS16	WS16	WS18
Sample Number				None Supplied				
Depth (m)	0.30	0.60	0.30	0.70	0.30			
Date Sampled	06/06/2016	06/06/2016	03/06/2016	03/06/2016	09/06/2016			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis) Accreditation Status Units								
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

Environmental Science

Lab Sample Number				589338	589339	589340	589341	589342
Sample Reference				WS19	WS20	WS21	WS23	WS23
Sample Number				None Supplied				
Depth (m)				0.30	0.25	0.70	0.20	0.70
Date Sampled				09/06/2016	09/06/2016	09/06/2016	06/06/2016	06/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	15	17	8.7	13
Total mass of sample received	kg	0.001	NONE	0.49	0.52	0.46	0.47	0.62
Total mass of sample received	ĸg	0.001	NONE	0.15	0.52	0.10	0.17	0.02
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics	_	•	•					
pH	pH Units	N/A	MCERTS	-	7.3	8.0	10.2	8.6
Free Cyanide	mg/kg	1	MCERTS	-	< 1	< 1	< 1	< 1
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.0081	0.033	0.41	0.12
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	8.1	32.5	405	120
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	-	0.013	0.011	0.0016	0.0024
Total Discosts								
Total Phenols Total Phenols (monohydric)		1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Total Prienois (mononyuric)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.1	MCERTS	-	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	mg/kg	0.1	MCERTS	-	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.1	MCERTS	-	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	-	< 0.10	0.29	0.32	< 0.10
Anthracene	mg/kg	0.1	MCERTS	-	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	-	< 0.10	0.52	0.76	< 0.10
Pyrene	mg/kg	0.1	MCERTS	-	< 0.10	0.44	0.59	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	-	< 0.10	0.34	0.36	< 0.10
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	0.25	0.31	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	-	< 0.10	0.21	0.39	< 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	-	< 0.10	0.20	0.25	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	-	< 0.10	0.18	0.23	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	-	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	-	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	-	< 1.60	2.43	3.21	< 1.60

Lab Sample Number				589338	589339	589340	589341	589342
Sample Reference				WS19	WS20	WS21	WS23	WS23
Sample Number				None Supplied				
Depth (m)				0.30	0.25	0.70	0.20	0.70
Date Sampled				09/06/2016	09/06/2016	09/06/2016	06/06/2016	06/06/2016
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	42	39	33	170
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	1.6	1.6	1.4	3.9
Boron (water soluble)	mg/kg	0.2	MCERTS	-	1.1	1.0	2.7	0.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	-	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	-	65	66	39	120
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	65	66	40	120
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	13	18	< 1.0	< 1.0
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	40	37	14	23
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	42	40	23	98
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	1.6	2.7
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	110	93	84	220
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	110	110	53	230
Vanadium (aqua regia extractable)	mg/kg		MCERTS	-	110	93	84	220
Toluene	μg/kg	1	MCERTS	< 1.0	_	_	_	_
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	_		_	_
	μg/ N g		PICLICIS	` 1.0	-		-	ł

Petroleum Hydrocarbons

MTBE (Methyl Tertiary Butyl Ether)

p & m-xylene

o-xylene

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	NONE	< 10	-	-	-	-
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	-	-	-	-

MCERTS

MCERTS

MCERTS

μg/kg

µg/kg

μg/kg

< 1.0

< 1.0

< 1.0

Lab Sample Number		589338	589339	589340	589341	589342		
Sample Reference				WS19	WS20	WS21	WS23	WS23
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.25	0.70	0.20	0.70
Date Sampled				09/06/2016	09/06/2016	09/06/2016	06/06/2016	06/06/2016
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		0 _	Accreditation Status					
Analytical Parameter	Units	Limit of detection	creditat Status					
(Soil Analysis)	its.	tio	tus					
		3 "	9					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	< 1.0	_	_	-	-
Chloroethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Vinyl Chloride	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Trichlorofluoromethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,1-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether)	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	-	-	-
1,1-dichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0		-	-	-
2,2-Dichloropropane	μg/kg	1	NONE	< 1.0	_	_	_	_
Trichloromethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-dichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1-Dichloropropene	μg/kg	1	NONE	< 1.0	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	-	-	-	-
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS MCERTS	< 1.0	-	-	-	-
1,2-dichloropropane Trichloroethene	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0	-	-	-	-
Dibromomethane	μg/kg μg/kg	1	MCERTS	< 1.0				-
Bromodichloromethane	μg/kg	1	NONE	< 1.0	-	-	-	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,3-Dichloropropane	μg/kg "	1	ISO 17025	< 1.0	-	-	-	-
Dibromochloromethane Tetrachloroethene	μg/kg	1	ISO 17025 MCERTS	< 1.0 < 1.0	-	-	-	-
1,2-Dibromoethane	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Chlorobenzene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,1,2-Tetrachloroethane	μg/kg	1	NONE	< 1.0	_	_	_	_
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Styrene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Tribromomethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
o-xylene	μg/kg 	1	MCERTS	< 1.0	-	-	-	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Isopropylbenzene Bromobenzene	μg/kg μg/kg	1	NONE MCERTS	< 1.0 < 1.0	-	-	-	-
N-Propylbenzene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	-	-
2-Chlorotoluene	μg/kg μg/kg	1	NONE	< 1.0	-	-	-	-
4-Chlorotoluene	μg/kg	1	NONE	< 1.0	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Tert-Butylbenzene	μg/kg	1	NONE	< 1.0	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Sec-Butylbenzene	μg/kg	1	NONE	< 1.0	-	-	-	-
1,3-dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
P-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,2-dichlorobenzene 1,4-dichlorobenzene	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	-	-	-
Butylbenzene	µg/кд µg/kg	1	NONE	< 1.0	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Hexachlorobutadiene	μg/kg	1	NONE	< 1.0	-	-	-	-
1,2,3-Trichlorobenzene	μg/kg	1	NONE	< 1.0	-	-	-	-

Lab Sample Number				589338	589339	589340	589341	589342
Sample Reference				WS19	WS20	WS21	WS23	WS23
Sample Number				None Supplied				
Depth (m)	0.30	0.25	0.70	0.20	0.70			
Date Sampled	09/06/2016	09/06/2016	09/06/2016	06/06/2016	06/06/2016			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

Lab Sample Number				589343	589344	589345		
Sample Reference				WS21	WS26	WS26		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				0.30	0.20	0.50	ĺ	
Date Sampled		07/06/2016	06/06/2016	06/06/2016	Ì			
Time Taken				None Supplied	None Supplied	None Supplied	Ì	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	13	7.5	20		
Total mass of sample received	kg	0.001	NONE	0.51	0.53	0.52		
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-		
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-		
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-]	
General Inorganics								
pH	pH Units	N/A	MCERTS	8.0	9.0	7.8	i i	
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	İ	
Water Soluble Sulphate (2:1 Leachate Equivalent)	q/l	0.00125	MCERTS	0.0099	0.13	0.021	İ	
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	9.9	133	20.9	İ	
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.010	0.0024	0.0046		
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Total Friendis (Indilottydric)	Hig/kg		MCLKIS	< 1.0	< 1.0	₹ 1.0		
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Phenanthrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(a)anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10		
Dibenz(a,h)anthracene mg/kg 0.1 MCERTS		< 0.10	< 0.10	< 0.10				
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05		
Total PAH	1						,	
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.60	< 1.60	< 1.60		

Lab Sample Number				589343	589344	589345	
Sample Reference				WS21	WS26	WS26	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)		0.30	0.20	0.50			
Date Sampled				07/06/2016	06/06/2016	06/06/2016	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	41	8.4	20	
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.6	0.31	1.0	
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	0.5	1.2	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	
Chromium (III)	mg/kg	1	NONE	59	11	50	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	59	11	51	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.0	3.4	9.2	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	29	6.5	22	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	39	7.0	24	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	1.1	
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	110	20	76	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	19	59	
Monoaromatics	тід/кд		PICERTS	110	13	33	
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	 Ī
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
o valono	//	- 1	MCEDIC	- 10	- 1.0	- 1.0	

Petroleum Hydrocarbons

o-xylene MTBE (Methyl Tertiary Butyl Ether)

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	40	< 8.0	
TPH-CWG - Aliphatic >EC16 - EC35	mg/kg	10	NONE	< 10	40	< 10	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	97	< 8.4	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	45	< 10	
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	170	< 8.4	

< 1.0 < 1.0

MCERTS

μg/kg

< 1.0 < 1.0

< 1.0

Sample Reference	Lab Sample Number	589343	589344	589345					
Sample Number									
Dogst Company Dogst Do									
Date Sampled			0.30		0.50				
Analytical Parameter (Soil Analysis) VOCs Chorometiane July 1 1 50 17025 Chorometiane July 2 1 1 50 17025 Chorometiane July 3 1 1 50 17025 Chorometiane July 4 1 1 50 17025 Chorometiane July 5 1 1 50 17025 Chorometiane July 6 1 1 50 17025 Chorometiane July 7 1 1 50 17025 Chorometiane July 8 1 1 50 17025 Little Chorometiane July 9 1 1 50 17025 Chorometiane July 9 1 1 50 17025 Chorometiane July 9 1 1 50 17025 Chorometiane July 9 1 1 50 17025 Chorometiane July 9 1 1 50 17025 Chorometiane July 9 1 1 50 17025 Chorometiane July 9 1 1 50 17025 July 1 50 17025 Chorometiane July 9 1 1 50 17025 July 1 50 17025 Chorometiane July 9 1 1 50 17025 July 1 5			07/06/2016	06/06/2016	06/06/2016				
VOCA	Time Taken				None Supplied	None Supplied	None Supplied		
VOCA				Ac					
VOCA	Analytical Parameter	_	eg ⊑i	St					
VOCA	-	nits	ecti i	atu					
VOCA	(Son Analysis)	V 1	9 9	s atio					
Chloromethane				3					
Chloresthane						1	1	I	1
Bronnombane									
Varie Vari									
Tinchioroflucomethane									
1.1-dichiorochene	•								
1.1,2-Trichiron 1,2,2-Trifluorechane sucha 1 Sto 1705									
GS-1,2-dichloroethene					-	-	-		
1.1-dichrorethane	Cis-1,2-dichloroethene		1		-	-	-		
1 NONE	MTBE (Methyl Tertiary Butyl Ether)	μg/kg			-	-	-		
Trichloromethane						-	-		
1.1-1.Trichforethane	7								
1,2-dichloropene									
1.1-Dichloropropene									
Trans-12-dichloroethene									
Benzene									
Tetrachloromethane	,								
12-dicinforpropane					-	_			
Dibromoethane				MCERTS	-	-			
Bromodichloromethane µg/kg 1 NONE - - Cis-1,3-dichloropropene µg/kg 1 ISO 17025 - - Trans-1,3-dichloropropene µg/kg 1 ISO 17025 - - Toluene µg/kg 1 MCERTS - - - 1,3-Dichloropropane µg/kg 1 MCERTS - - - 1,3-Dichloropropane µg/kg 1 ISO 17025 - - - - Dibromochtoromethane µg/kg 1 ISO 17025 - <td< td=""><td>Trichloroethene</td><td>μg/kg</td><td>1</td><td>MCERTS</td><td>-</td><td>-</td><td>-</td><td></td><td></td></td<>	Trichloroethene	μg/kg	1	MCERTS	-	-	-		
Gs-1,3-dichloropropene µg/kg 1 ISO 17025 -		μg/kg	1	MCERTS	-	-	-		
Trans-1,3-dichloropropene µg/kg 1 ISO 17025						-	-		
Тоluene						-	-		
1,1,2-Trichloroethane µg/kg 1 MCERTS - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1,3-Dichloropropane µg/kg 1 ISO 17025 - - - - Dibromochloromethane µg/kg 1 ISO 17025 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Dibromochloromethane µg/kg 1 ISO 17025 - - - Tetrachloroethene µg/kg 1 MCERTS - - - 1,2-Dibromoethane µg/kg 1 ISO 17025 - - - Chlorobenzene µg/kg 1 MCERTS - - - L1,1,2-Tetrachloroethane µg/kg 1 MCERTS - - - - Ethylbenzene µg/kg 1 MCERTS - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Tetrachloroethene									
1,2-Dibromoethane µg/kg 1 ISO 17025 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Chlorobenzene					-	-			
Ethylbenzene μg/kg 1 MCERTS - - - p & m-xylene μg/kg 1 MCERTS - - - Styrene μg/kg 1 MCERTS - - - Tribromomethane μg/kg 1 MCERTS - - - σ-xylene μg/kg 1 MCERTS - - - 1,1,2,2-Tetrachloroethane μg/kg 1 MCERTS - - - 1,20/2-Tetrachloroethane μg/kg 1 MCERTS - - - 1,20/2-Tetrachloroethane μg/kg 1 MCERTS - - - 1,20/2-Tetrachloroethane μg/kg 1 MCERTS - - - - Bromobenzene μg/kg 1 MCERTS - - - - - Bromobenzene μg/kg 1 ISO 17025 - - - - - -			1	MCERTS	-	-	-		
p & m-xylene µg/kg 1 мСЕRTS -	1,1,1,2-Tetrachloroethane	μg/kg	1	NONE	-	-	-		
Styrene	Ethylbenzene	μg/kg	1	MCERTS	-	-	-		
Tribromomethane µg/kg 1 мсектs - <td>•</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td>	•				-	-	-		
0-xylene µg/kg 1 MCERTS - - - 1,1,2,2-Tetrachloroethane µg/kg 1 MCERTS - - - Isopropylbenzene µg/kg 1 NONE - - - Bromobenzene µg/kg 1 MCERTS - - - - N-Propylbenzene µg/kg 1 MCERTS -	,								
1,1,2,2-Tetrachloroethane µg/kg 1 MCERTS -									
Isopropylbenzene µg/kg 1 NONE - <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•								
Bromobenzene μg/kg 1 MCERTS - - - N-Propylbenzene μg/kg 1 ISO 17025 - - - 2-Chlorotoluene μg/kg 1 NONE - - - 4-Chlorotoluene μg/kg 1 NONE - - - 4-Chlorotoluene μg/kg 1 NONE - - - 4-Chlorotoluene μg/kg 1 ISO 17025 - - - 1-2,3-5-Trimethylbenzene μg/kg 1 ISO 17025 - - - - 1,2,4-Trimethylbenzene μg/kg 1 ISO 17025 -									
N-Propylbenzene									
2-Chlorotoluene μg/kg 1 NONE - - - 4-Chlorotoluene μg/kg 1 NONE - - - 1,3,5-Trimethylbenzene μg/kg 1 ISO 17025 - - - Tert-Butylbenzene μg/kg 1 NONE - - - - 1,2,4-Trimethylbenzene μg/kg 1 ISO 17025 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
4-Chlorotoluene μg/kg 1 NONE - - - 1,3,5-Trimethylbenzene μg/kg 1 ISO 17025 - - - Tert-Butylbenzene μg/kg 1 NONE - - - 1,2,4-Trimethylbenzene μg/kg 1 ISO 17025 - - - Sec-Butylbenzene μg/kg 1 NONE - - - - 1,3-dichlorobenzene μg/kg 1 ISO 17025 - - - - - P-Isopropyltoluene μg/kg 1 ISO 17025 -	1,					-			
1,3,5-Trimethylbenzene µg/kg 1 ISO 17025 -					-		-		
1,2,4-Trimethylbenzene µg/kg 1 ISO 17025 -			1		-	-	-		
Sec-Butylbenzene μg/kg 1 NONE - - - - 1,3-dichlorobenzene μg/kg 1 ISO 17025 -					-	-			
1,3-dichlorobenzene µg/kg 1 ISO 17025 -									
P-Isopropyltoluene μg/kg 1 ISO 17025 - - - - 1 1,2-dichlorobenzene μg/kg 1 MCERTS -									
1,2-dichlorobenzene μg/kg 1 MCERTS - - - 1,4-dichlorobenzene μg/kg 1 MCERTS - - - Butylbenzene μg/kg 1 NONE - - - 1,2-Dibromo-3-chloropropane μg/kg 1 ISO 17025 - - - 1,2,4-Trichlorobenzene μg/kg 1 MCERTS - - -									
1,4-dichlorobenzene μg/kg 1 MCERTS - - - Butylbenzene μg/kg 1 NONE - - - 1,2-Dibromo-3-chloropropane μg/kg 1 ISO 17025 - - - 1,2,4-Trichlorobenzene μg/kg 1 MCERTS - - -									
Butylbenzene μg/kg 1 NONE - - - - 1,2-Dibromo-3-chloropropane μg/kg 1 ISO 17025 - - - - 1,2,4-Trichlorobenzene μg/kg 1 MCERTS - - - -	,								
1,2-Dibromo-3-chloropropane μg/kg 1 ISO 17025 - - - 1,2,4-Trichlorobenzene μg/kg 1 MCERTS - - -									
1,2,4-Trichlorobenzene µg/kg 1 MCERTS									
		μg/kg				-			
1,2,3-Trichlorobenzene µg/kg 1 NONE									

Lab Sample Number		589343	589344	589345			
Sample Reference		WS21	WS26	WS26			
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.30	0.20	0.50	
Date Sampled				07/06/2016	06/06/2016	06/06/2016	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
PCBs by GC-MS							
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	

Analytical Report Number: 16-20400
Project / Site name: Kraft Phase 2
Your Order No: N9203-C161279

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Saf-HSG 248.

Quantitative Analysis

"The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, w by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with ca

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)
589311	BH02	0.50	117	Loose Fibres	Amosite	< 0.001
589319	WS03	0.60	122	Hard/ Cement Type Material, Loose Fibres, Insulation Lagging	Chrysotile & Amosite	0.076

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

ety Executive in

Development HSG 248. Our ith quantification

ution.

Total %
Asbestos in
Sample

< 0.001

0.076

Analytical Report Number : 16-20400 Project / Site name: Kraft Phase 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
589308	BH01	None Supplied	0.10	Brown loam and clay with gravel.
589309	BH01	None Supplied	0.40	Brown clay and sand.
589310	BH02	None Supplied	0.10	Brown loam and clay with gravel.
589311	BH02	None Supplied	0.50	Brown clay and sand.
589312	BH03	None Supplied	0.60	Brown loam and clay with gravel.
589313	BH03	None Supplied	1.00	Brown clay and sand.
589314	BH04	None Supplied	0.60	Brown loam and clay with gravel.
589315	BH04	None Supplied	1.10	Brown clay and sand.
589316	WS01	None Supplied	0.40	Brown loam and sand with gravel.
589317	WS01	None Supplied	1.00	Brown clay and sand.
589318	WS03	None Supplied	0.20	Brown loam and clay with gravel.
589319	WS03	None Supplied	0.60	Brown loam and clay with gravel.
589320	WS04	None Supplied	0.30	Brown clay and loam with gravel.
589321	WS05	None Supplied	0.10	Brown clay and loam with gravel.
589322	WS05	None Supplied	0.50	Brown clay and sand.
589323	WS07	None Supplied	0.10	Brown loam and clay with gravel.
589324	WS07	None Supplied	0.40	Brown clay and sand.
589325	WS08	None Supplied	0.30	Brown clay and sand.
589326	WS09	None Supplied	1.10	Grey clay.
589327	WS11	None Supplied	0.40	Brown loam and clay with gravel.
589328	WS11	None Supplied	0.80	Brown loam and sand with gravel.
589329	WS12	None Supplied	0.30	Brown loam and sand with gravel.
589330	WS12	None Supplied	0.60	Brown loam and sand with gravel.
589331	WS13	None Supplied	0.30	Brown loam and sand with gravel.
589332	WS13	None Supplied	0.60	Brown loam and sand with gravel.
589333	WS15	None Supplied	0.30	Brown loam and sand with gravel.
589334	WS15	None Supplied	0.60	Brown loam and sand with gravel.
589335	WS16	None Supplied	0.30	Brown loam and clay with gravel.
589336	WS16	None Supplied	0.70	Grey clay.
589337	WS18	None Supplied	0.30	Brown loam and clay with gravel.
589338	WS19	None Supplied	0.30	Brown loam and clay with gravel.
589339	WS20	None Supplied	0.25	Brown loam and clay with gravel.
589340	WS21	None Supplied	0.70	Brown loam and clay with gravel.
589341	WS23	None Supplied	0.20	Brown loam and clay with gravel.
589342	WS23	None Supplied	0.70	Brown loam and clay with gravel.
589343	WS21	None Supplied	0.30	Brown loam and clay with gravel.
589344	WS26	None Supplied	0.20	Brown loam and sand.
589345	WS26	None Supplied	0.50	Brown clay and sand.

Project / Site name: Kraft Phase 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	The analysis was carried out using documented inhouse method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
TPH Chromatogram	TPH Chromatogram.	In-house method	L064-PL	D	NONE

Iss No 16-20400-2 Kraft Phase 2 C161279

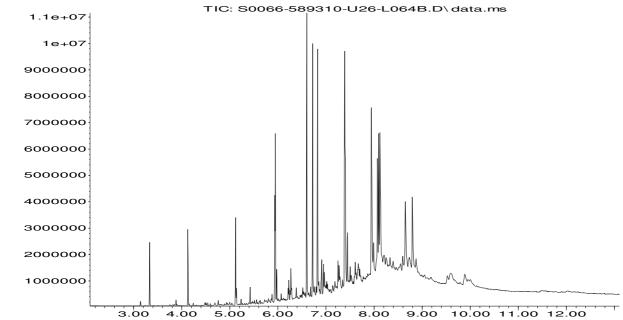
Project / Site name: Kraft Phase 2

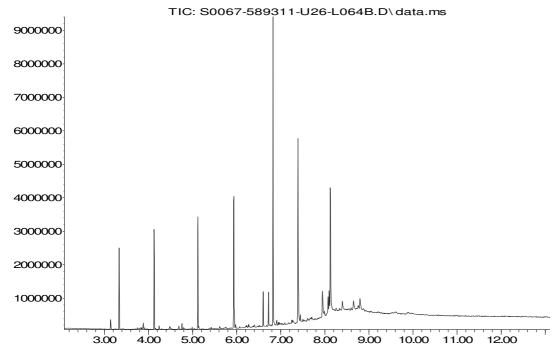
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

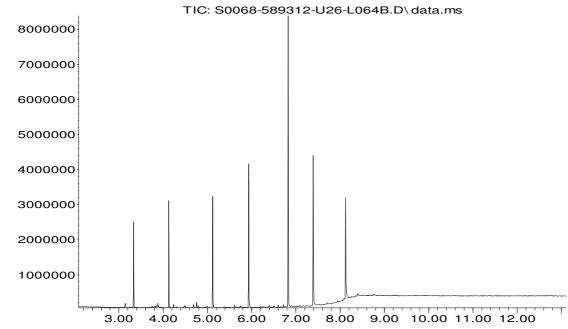
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH in (Soil)	•	In-house method, TPH with carbon banding.	L076-PL	D	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

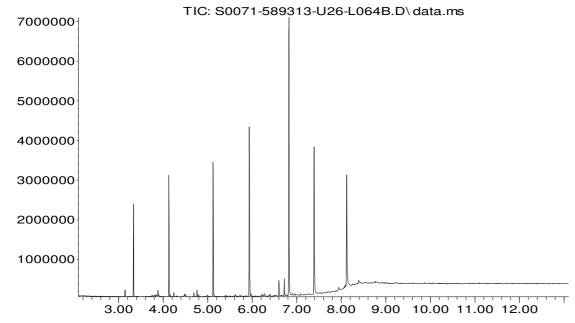
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

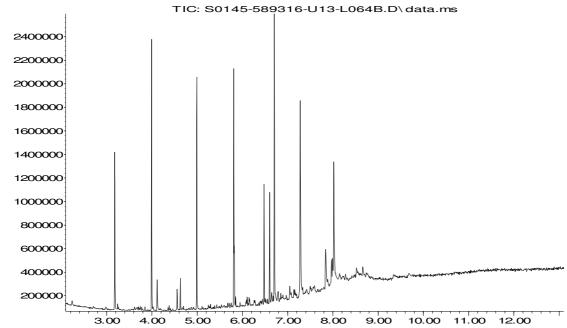
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

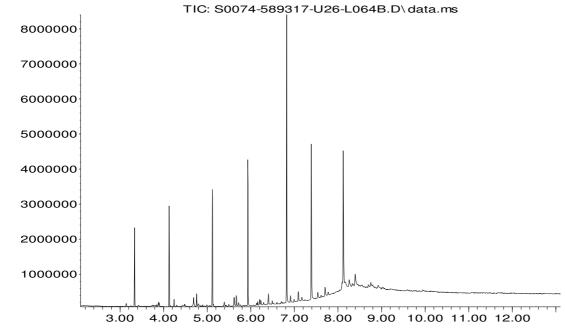

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

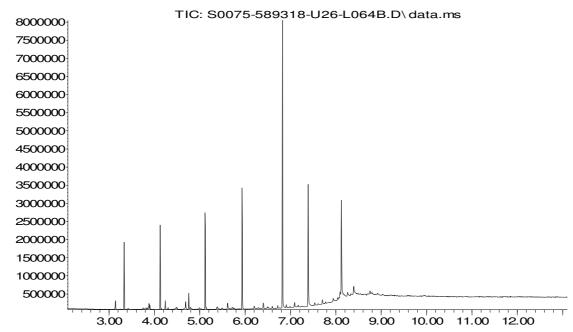


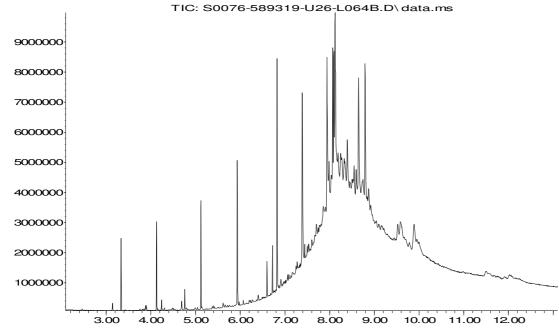

Sample ID	Other_ID	Sample Type		Sample Number	Sample Deviation Code		test_ref
BH01		S	16-20400	589308		Free cyanide in soil	L080-PL
BH01		S	16-20400	589308	С	Monohydric phenols in soil	L080-PL
BH01		S	16-20400	589308	С	Organic matter in soil	L023-PL
BH01		S	16-20400	589308	С	PCB's By GC-MS in soil	L027-PL
BH01		S	16-20400	589308	С	Speciated EPA-16 PAHs in soil	L064-PL
BH01		S	16-20400	589309	С	Free cyanide in soil	L080-PL
BH01		S	16-20400	589309	С	Monohydric phenols in soil	L080-PL
BH01		S	16-20400	589309	С	Organic matter in soil	L023-PL
BH01		S	16-20400	589309	С	PCB's By GC-MS in soil	L027-PL
BH01		S	16-20400	589309	С	Speciated EPA-16 PAHs in soil	L064-PL
BH02		S	16-20400	589310	С	Free cyanide in soil	L080-PL
BH02		S	16-20400	589310	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL
BH02		S	16-20400	589310	С	Organic matter in soil	L023-PL
BH02		S	16-20400	589311	С	Free cyanide in soil	L080-PL
BH02		S	16-20400	589311	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL
BH02		S	16-20400	589311	С	Organic matter in soil	L023-PL
BH03		S	16-20400	589312	С	Free cyanide in soil	L080-PL
BH03		S	16-20400	589312	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL
BH03		S	16-20400	589312	С	Organic matter in soil	L023-PL
BH03		S	16-20400	589313	С	Free cyanide in soil	L080-PL
BH03		S	16-20400	589313	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL
BH03		S	16-20400	589313	С	Organic matter in soil	L023-PL
WS03		S	16-20400	589319	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL
WS03		S	16-20400	589319	b	TPHCWG (Soil)	L076-PL
WS03		S	16-20400	589319	b	Volatile organic compounds in soil	L073B-PL
WS11		S	16-20400	589327	С	Free cyanide in soil	L080-PL
WS11		S	16-20400	589327	С	Organic matter in soil	L023-PL
WS11		S	16-20400	589327	С	Volatile organic compounds in soil	L073B-PL
WS11		S	16-20400	589328	С	Free cyanide in soil	L080-PL
WS11		S	16-20400	589328	С	Organic matter in soil	L023-PL
WS11		S	16-20400	589328	С	Volatile organic compounds in soil	L073B-PL
WS13		S	16-20400	589331	С	Free cyanide in soil	L080-PL
WS13		S	16-20400	589331	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL
WS13		S	16-20400	589331	С	Organic matter in soil	L023-PL
WS13		S	16-20400	589331		Volatile organic compounds in soil	L073B-PL
WS13		S	16-20400	589332		Free cyanide in soil	L080-PL
WS13		S	16-20400	589332	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL
WS13		S	16-20400	589332	С	Organic matter in soil	L023-PL
WS13		S	16-20400	589332	С	Volatile organic compounds in soil	L073B-PL

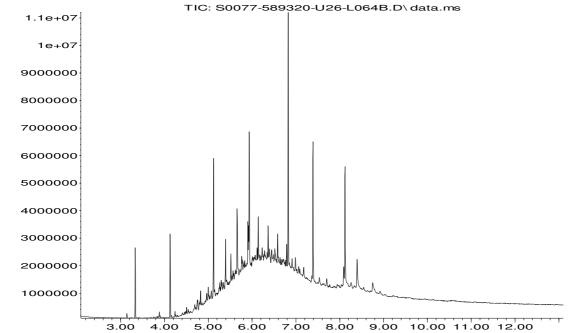


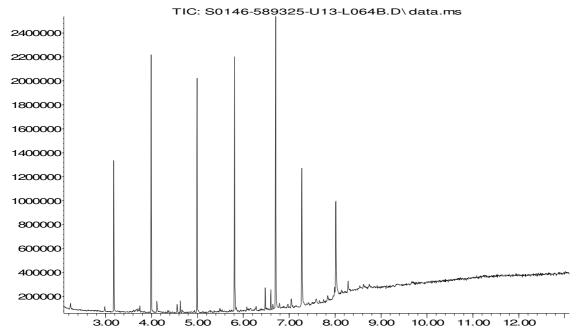

Test Deviation code
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
С
C
С
С
С
С
С
b
b
b
С
С
С
С
C
С
С
c
С
С
С
C C
С
С

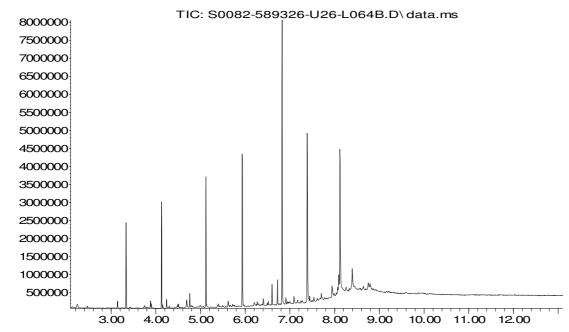


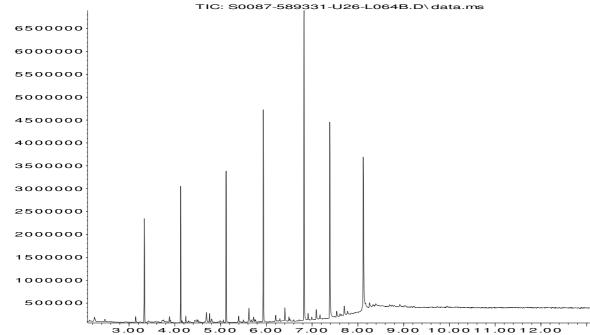


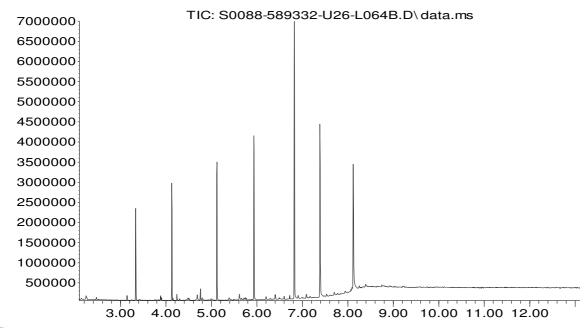


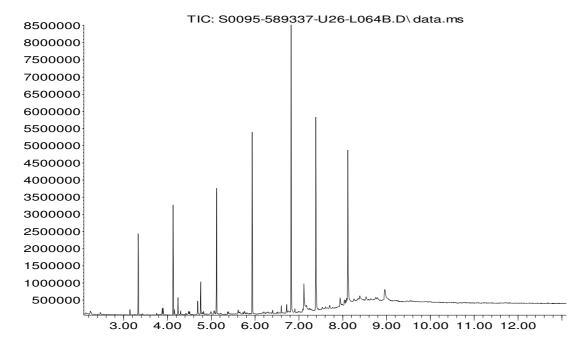


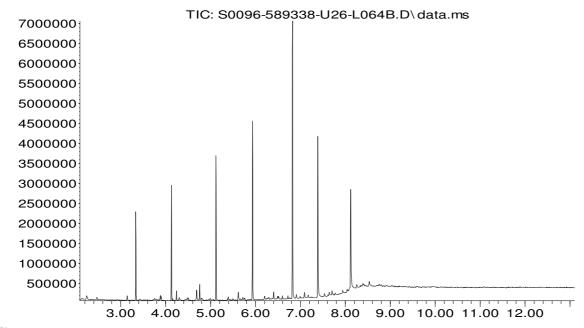


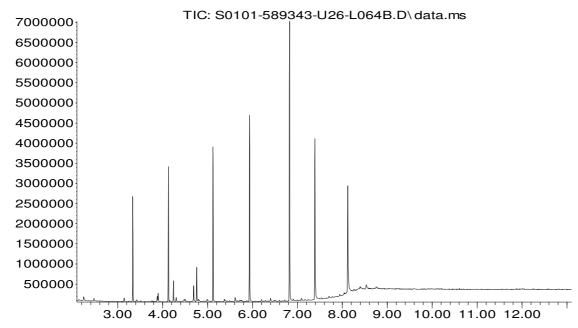


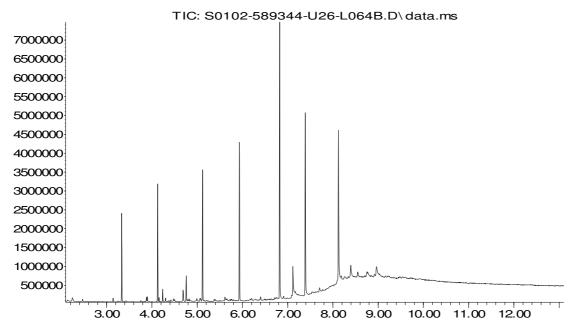


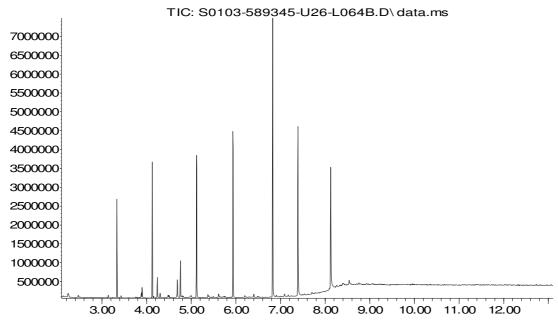












Time-->

Nathan Thompson
Hydrock Consultants Ltd
2-4 Hawthorne Park
Holdenby Road
Spratton
Northamptonshire
NN6 8LD

t: 01604842888 **f:** 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 16-20743

Project / Site name: Kraft Phase 2 Samples received on: 21/06/2016

Your job number: C161279 Samples instructed on: 22/06/2016

Your order number: N9223-C161279 Analysis completed by: 29/06/2016

Report Issue Number: 1 **Report issued on:** 29/06/2016

Samples Analysed: 12 soil samples

hae.

Rexona Rahman Reporting Manager

Signed:

For & on behalf of i2 Analytical Ltd.

Emma Winter Assistant Reporting Manager

Signed:

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Kraft Phase 2 Your Order No: N9223-C161279

Lab Sample Number				591011	591012	591013	591014	591015
Sample Reference				WS03	WS03	WS05	WS07	WS12
Sample Number			D	D	D	D	D	
Depth (m)	h (m)						3.50	1.00-1.45
Date Sampled	Sampled						08/06/2016	03/06/2016
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Accreditation Status Limit of detection Units							
Stone Content	% 0.1 NONE		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	22	17	21	22	16
Total mass of sample received	kg	0.001	NONE	0.52	0.19	0.18	0.17	0.44

General Inorganics

ocheral inorganics								
pH	pH Units	N/A	MCERTS	7.5	7.9	7.4	7.5	7.7
Total Sulphate as SO ₄	mg/kg	50	MCERTS	200	990	160	150	580
Total Sulphate as SO ₄	%	0.005	MCERTS	0.020	0.099	0.016	0.015	0.058
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.029	0.28	0.0092	0.0064	0.036
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	28.9	280	9.2	6.4	35.5
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	24	41	26	12	12
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	12	21	13	5.9	6.2
Total Sulphur	mg/kg	50	NONE	88	1200	54	64	270
Total Sulphur	%	0.005	NONE	0.009	0.122	0.005	0.006	0.027
Ammonium as NH ₄	mg/kg	0.5	MCERTS	< 0.5	0.6	< 0.5	< 0.5	9.0
Ammonium as NH ₄ (leachate equivalent)	mg/l	0.05	MCERTS	< 0.1	0.3	< 0.1	< 0.1	4.5
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	< 2.0	< 2.0	3.0	5.0	< 2.0
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	29	5.3	< 5.0	6.1
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	15	2.6	< 2.5	3.0

Project / Site name: Kraft Phase 2 Your Order No: N9223-C161279

Lab Sample Number				591016	591017	591018	591019	591020
Sample Reference				WS13	WS15	WS25	WS19	WS22
Sample Number	ple Number						D	D
Depth (m)				2.10	1.00-1.45	4.00-4.45	1.50	2.00-2.45
Date Sampled	Sampled						09/06/2016	06/06/2016
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	23	16	13	20	20
Total mass of sample received	kg	0.001	NONE	0.48	0.19	0.18	0.15	0.17

General Inorganics

Contract Entry games								
pH	pH Units	N/A	MCERTS	6.8	7.4	4.9	7.4	5.9
Total Sulphate as SO ₄	mg/kg	50	MCERTS	780	180	1600	440	4200
Total Sulphate as SO ₄	%	0.005	MCERTS	0.078	0.018	0.165	0.044	0.415
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.051	0.042	0.39	0.024	0.028
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	50.9	42.4	394	24.0	27.9
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	11	13	19	85	21
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	5.5	6.3	9.4	43	11
Total Sulphur	mg/kg	50	NONE	410	400	1500	220	1500
Total Sulphur	%	0.005	NONE	0.041	0.040	0.152	0.022	0.155
Ammonium as NH ₄	mg/kg	0.5	MCERTS	33	< 0.5	1.6	< 0.5	< 0.5
Ammonium as NH ₄ (leachate equivalent)	mg/l	0.05	MCERTS	17	< 0.1	0.8	< 0.1	< 0.1
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	< 2.0	< 2.0	< 2.0	6.2	< 2.0
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	7.8	5.6	56	8.8	< 5.0
Magnesium (leachate equivalent)	mg/l	2.5	NONE	3.9	2.8	28	4.4	< 2.5

Project / Site name: Kraft Phase 2 Your Order No: N9223-C161279

Lab Sample Number	Sample Number						
Sample Reference	ple Reference						
Sample Number				В	В		
Depth (m)				3.20-3.70	1.20		
Date Sampled							
Time Taken			None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	% N/A NONE				17		
Total mass of sample received	of sample received kg 0.001 NONE						

General Inorganics

						•	
pH	pH Units	N/A	MCERTS	7.9	7.4		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	240	480		
Total Sulphate as SO₄	%	0.005	MCERTS	0.024	0.048		
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.017	0.023		
Water Soluble Sulphate (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	16.9	22.5		
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	8.1	16		
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	4.1	7.9		
Total Sulphur	mg/kg	50	NONE	81	210		
Total Sulphur	%	0.005	NONE	0.008	0.021		
Ammonium as NH ₄	mg/kg	0.5	MCERTS	< 0.5	8.3		
Ammonium as NH ₄ (leachate equivalent)	mg/l	0.05	MCERTS	< 0.1	4.1		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	< 2.0	< 2.0		
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent	mg/l	5	NONE	< 5.0	< 5.0		

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	< 5.0		
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	< 2.5		

Analytical Report Number : 16-20743 Project / Site name: Kraft Phase 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
591011	WS03	D	2.60	Light brown clay and sand.
591012	WS03	D	4.00-4.45	Grey clay and sand.
591013	WS05	D	2.20	Light brown clay and sand.
591014	WS07	D	3.50	Light brown clay and sand.
591015	WS12	D	1.00-1.45	Light brown clay and sand.
591016	WS13	D	2.10	Grey clay and sand.
591017	WS15	D	1.00-1.45	Grey clay and sand.
591018	WS25	D	4.00-4.45	Grey clay and sand.
591019	WS19	D	1.50	Grey clay and loam.
591020	WS22	D	2.00-2.45	Grey clay and sand.
591021	BH02	В	3.20-3.70	Grey sandy clay.
591022	BH04	В	1.20	Brown loam and clay.

Project / Site name: Kraft Phase 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests. 2:1 extraction.	L082-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Assessment of Chemicals of Potential Concern to Human Health

Soil								Soil Type	RTD	RTD	AL	AL	RTD	TS	RTD	CHM	RTD	CHM	TS	RTD	TS	RTD
1	All values i	n mg/kg unles	ss otherwise	stated			Ī	Location & Depth	BH03	BH03	BH04	BH04	WS05	WS07	WS07	WS09	WS15	WS16	WS20	WS21	WS21	WS26
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.6	1	0.6	1.1	0.5	0.1	0.4	1.1	0.6	0.7	0.25	0.7	0.3	0.5
Arsenic	1	14	14	120	0	640	67.17929	POTENTIALLY SUITABLE FOR USE	36	32	23	18	26	45	39	23	120	14	42	39	41	20
Beryllium	0.06	14	1	3.5	0	390	2.18984	POTENTIALLY SUITABLE FOR USE	1.3	1.2	1.1	1.3	1.3	1.4	1.2	1.2	3.5	1.4	1.6	1.6	1.6	1
Boron	0.2	14	0.6	3.1	0	190000	1.879485	POTENTIALLY SUITABLE FOR USE	1.3	1.1	3.1	1.3	1.2	0.7	0.6	1	0.6	1.2	1.1	1	1.1	1.2
Cadmium	0.2	14	0.2	0.2	0	220	0.2	POTENTIALLY SUITABLE FOR USE	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Chromium (III)	1	14	37	170	0	8400	99.93113	POTENTIALLY SUITABLE FOR USE	63	61	59	41	50	55	37	52	170	46	65	66	59	50
Chromium (VI)	1.2	14	1.2	1.2	0	33	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	1	14	1	41	0	69000	26.27617	POTENTIALLY SUITABLE FOR USE	25	9.4	41	10	7.8	10	5.9	18	1	24	13	18	9	9.2
Lead	2	14	8	81	0	2330	62.85697	POTENTIALLY SUITABLE FOR USE	73	32	72	14	24	81	31	10	8	14	40	37	29	22
Mercury, inorganic	0.3	14	0.3	0.5	0	3600	0.42252	POTENTIALLY SUITABLE FOR USE	0.3	0.3	0.3	0.3	0.4	0.5	0.3	0.3	0.3	0.5	0.3	0.3	0.3	0.3
Nickel	2	14	24	69	0	1700	55.88921	POTENTIALLY SUITABLE FOR USE	35	36	29	32	38	31	25	55	69	64	42	40	39	24
Selenium	1	14	1	1.9	0	13000	1.351048	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1	1	1	1	1.9	1	1	1	1	1.1
Vanadium	1	14	69	340	0	9000	185.3643	POTENTIALLY SUITABLE FOR USE	98	83	88	70	93	94	70	74	340	69	110	93	110	76
Zinc	2	14	59	120	0	670000	115.4472	POTENTIALLY SUITABLE FOR USE	92	89	98	75	84	97	65	100	110	120	110	110	110	59
Cyanide (free)	1	14	1	1	0	16000	1	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Phenol (total)	2	14	1	1	0	760	1	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Acenaphthene	0.05	14	0.1	1	0	84000	0.492499	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.51	1	0.1	0.1	0.1	0.1
Acenaphthylene	0.05	14	0.1	0.1	0	83000	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Anthracene	0.05	14	0.1	2.2	0	520000	0.912097	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2.2	0.24	0.1	0.1	0.1	0.1
Benz(a)anthracene	0.05	14	0.1	14	0	86	5.449262	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.39	14	0.12	0.1	0.34	0.1	0.1
Benzo(a)pyrene	0.05	14	0.1	9.9	0	14	3.868154	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.34	9.9	0.1	0.1	0.18	0.1	0.1
Benzo(b)fluoranthene	0.05	14	0.1	11	0	97	4.293982	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.4	11	0.1	0.1	0.21	0.1	0.1
Benzo(ghi)perylene	0.05	14	0.05	7.3	0	630	2.825714	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	7.3	0.05	0.05	0.05	0.05	0.05
Benzo(k)fluoranthene	0.05	14	0.1	11	0	140	4.288049	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	11	0.1	0.1	0.2	0.1	0.1
Chrysene	0.05	14	0.05	14	0	140	5.416467	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.36	14	0.05	0.05	0.25	0.05	0.05
Dibenz(a,h)anthracene	0.05	14	0.1	1.7	0	12	0.712571	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1.7	0.1	0.1	0.1	0.1	0.1
Fluoranthene	0.05	14	0.1	31	0	23000	12.01599	POTENTIALLY SUITABLE FOR USE	0.1	0.49	0.1	0.1	0.1	0.1	0.1	0.71	31	0.42	0.1	0.52	0.1	0.1
Fluorene	0.05	14	0.1	0.9	0	63000	0.421129	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.28	0.9	0.1	0.1	0.1	0.1
Indeno(1,2,3,cd)pyrene	0.05	14	0.1	6.4	0	58	2.512	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	6.4	0.1	0.1	0.1	0.1	0.1
Naphthalene	0.05	14	0.05	0.05	0	190	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Phenanthrene	0.05	14	0.1	8	0	22000	3.320366	POTENTIALLY SUITABLE FOR USE	0.1	0.39	0.1	0.1	0.1	0.1	0.1	0.1	8	2.1	0.1	0.29	0.1	0.1
Pyrene	0.05	14	0.1	22	0	54000	8.545799	POTENTIALLY SUITABLE FOR USE	0.1	0.38	0.1	0.1	0.1	0.1	0.1	0.55	22	0.27	0.1	0.44	0.1	0.1
Asbestos identified	Y/N								N	N	N	N	N	N	N	N	N	N	N	N	N	N
FOC (dimensionless)	0.009443	(mean)							0.012	0.0059	0.024	0.0027	0.0062	0.011	0.0049	0.011	0.0029	0.013	0.013	0.011	0.01	0.0046
SOM (calculated)	1.63%	(mean)							2.07%	1.02%	4.14%	0.47%	1.07%	1.90%	0.84%	1.90%	0.50%	2.24%	2.24%	1.90%	1.72%	0.79%
pH (su)	7.9	(mean)							8.2	8	7.4	8.3	8	7.4	7.8	8.1	8.3	7.5	7.3	8	8	7.8

Risk parameter: Human health - commercial (1%SOM)

Data set: Natural

Lab. report no(s).: 16-20400

Client: DB Symmetry Limited Site: Kraft Phase 2 Job no.: C161279

Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground NAT denotes natural ground

Assessment of Chemicals of Potential Concern to Human Health

								Soil Type	MG											
		All values in	ma/ka unles	s otherwis	e stated			Location & Depth	BH02	BH02	WS01	WS01	WS03	WS03	WS04	WS13	WS13	WS18	WS19	WS26
			5 5						0.10	0.50	0.40	1.00	0.20	0.60	0.30	0.30	0.60	0.30	0.30	0.20
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test												
Benzene	0.01	12	0.001	0.001	0	27	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Toluene	0.01	12	0.001	0.001	0	870	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Ethylbenzene	0.01	12	0.001	0.001	0	520	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Xylene, o-	0.01	12	0.001	0.001	0	480	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Xylene, m- & p-	0.01	12	0.001	0.001	0	580	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
MTBE	0.01	12	0.001	0.001	0	7500	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Iso-propylbenzene	0.01	0	0	0	0	390														
Propylbenzene	0.01	0	0	0	0	400														
1,2,4-Trimethylbenzene	0.01	0	0	0	0	39														
Bromobenzene	0.01	0	0	0	0	92														
Chlorobenzene	0.01	0	0	0	0	56														
1,2-Dichlorobenzene	0.01	0	0	0	0	570														
1,3-Dichlorobenzene	0.01	0	0	0	0	30														
1,4-Dichlorobenzene	0.01	0	0	0	0	230														
Hexachlorobenzene	0.01	0	0	0	0	0.2														
Pentachlorobenzene	0.01	0	0	0	0	640														
1,2,3-trichlorobenzene	0.01	0	0	0	0	100														
1,2,4-trichlorobenzene	0.01	0	0	0	0	220														
1,3,5-trichlorobenzene	0.01	0	0	0	0	23														
1,2,3,4-tetrachlorobenzene	0.01	0	0	0	0	120														
1,2,3,5-tetrachlorobenzene	0.01	0	0	0	0	39														
1,2,4,5-tetrachlorobenzene	0.01	0	0	0	0	20														

Risk parameter: Human health - commercial (1%SOM)

Data set: MG

Lab. report no(s).: 16-20400

Client: Db Symmetry Limited Site: Kraft Phase 2 Job no.: C161279 Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground NAT denotes natural ground

							L	Soil Type	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG
		All values in	mg/kg unle	ss otherwise	e stated			Location & Depth	BH02	BH02	WS01	WS01	WS03	WS03	WS04	WS13	WS13	WS18	WS19	WS26
hemical of Potential oncern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.10	0.50	0.40	1.00	0.20	0.60	0.30	0.30	0.60	0.30	0.30	0.20
liphatics EC5-EC6	0.01	12	0.1	0.1	0	300	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
liphatics >EC6-EC8	0.01	12	0.1	0.1	0	140	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
liphatics >EC8-EC10	0.01	12	0.1	0.1	0	78	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
liphatics >EC10-EC12	0.01	12	1	1.8	0	48	1.412935	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1	1.4	1.8	1	1	1	1	1
liphatics >EC12-EC16	0.1	12	2	59	1	24	15.83011	POTENTIALLY SUITABLE FOR USE	6.2	2	2	2	2	5.2	59	2	2	2	2	2
liphatics >EC16-EC35	0.1	12	10	270	0	1000000	157.7845	POTENTIALLY SUITABLE FOR USE	46	10	10	20	10	270	180	10	10	10	10	40
liphatics >EC35-EC44	0.1	12	8.4	180	0	1000000	100.562	POTENTIALLY SUITABLE FOR USE	29	8.4	8.4	29	8.4	180	24	8.4	8.4	8.4	8.4	97
romatics EC5-EC7 romatics >EC7-EC8	0.01	12 12	0.1	0.1	0	1200 870	0.1	POTENTIALLY SUITABLE FOR USE POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1 0.1	0.1	0.1	0.1 0.1	0.1 0.1	0.1	0.1 0.1
omatics >EC8-EC10	0.01	12	0.1	0.1	0	610	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
romatics >EC10-EC12	0.01	12	1	1	0	360	1	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1	1	1	1	1	1	1	1
romatics >EC12-EC16	0.1	12	2	26	0	36000	13.74834	POTENTIALLY SUITABLE FOR USE	8.4	2	2	2	2	7	26	2	2	2	2	2
romatics >EC16-EC21	0.1	12	10	82	0	28000	57.16544	POTENTIALLY SUITABLE FOR USE	76	10	10	10	10	33	82	10	10	10	10	10
romatics >EC21-EC35	0.1	12	10	480	0	28000	252.778	POTENTIALLY SUITABLE FOR USE	210	39	10	44	10	480	65	10	10	10	10	45
romatics >EC35-EC44	0.1	12	8.4	470	0	28000	246.0016	POTENTIALLY SUITABLE FOR USE	120	31	8.4	60	8.4	470	20	8.4	8.4	8.4	8.4	170
					ADDITIVIT	Y CHECK			HAZARD (QUOTIENTS	FOR EACH	FRACTIO	N							
								Aliphatics EC5-EC6	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
								Aliphatics >EC6-EC8	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
								Aliphatics >EC8-EC10	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Consider	red additive				Aliphatics >EC10-EC12	0.021	0.021	0.021	0.021	0.021	0.029	0.038	0.021	0.021	0.021	0.021	0.021
								Aliphatics >EC12-EC16	0.258	0.083	0.083	0.083	0.083	0.217	2.458	0.083	0.083	0.083	0.083	0.083
								Aliphatics >EC16-EC35	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
								Aliphatics >EC35-EC44	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
								Aromatics EC5-EC7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
								Aromatics >EC7-EC8	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
								Aromatics >EC8-EC10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Consider	red additive				Aromatics >EC10-EC12	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
								Aromatics >EC12-EC16	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
								Aromatics >EC16-EC21	0.003	0.000	0.000	0.000	0.000	0.001	0.003	0.000	0.000	0.000	0.000	0.000
			Consider	red additive	!			Aromatics >EC21-EC35	0.008	0.001	0.000	0.002	0.000	0.017	0.002	0.000	0.000	0.000	0.000	0.002
								Aromatics >EC35-EC44	0.004	0.001	0.000	0.002	0.000	0.017	0.001	0.000	0.000	0.000	0.000	0.006
								Hazard Index for ali>C8-C16	0.280	0.105	0.105	0.105	0.105	0.247	2.497	0.105	0.105	0.105	0.105	0.105
								Hazard Index for aro>C8-C16	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.003	0.003	0.003	0.003	0.003
								Hazard Index for aro>C16-C35	0.010	0.002	0.001	0.002	0.001	0.018	0.005	0.001	0.001	0.001	0.001	0.002
											Hazard Ind	ex table - HI	or HQ grea	ter than 1 hi	ghlighted wi	ith yellow sh	ading.			
Risk parameter:	Human I	nealth - co	mmercia	ıl (1%SO	M)					Legend:	Main table	values in blu	ue are at or	below the la	boratory rep	orting limit (where a sing	gle value is i	indicated) a	nd are
Data set:	MG										considered	as being at	the detection	n limit for th	e purposes	of statistical	analysis, as	s a conserva	ative estima	te.
Client:	Db Symr	netry Limite	ed								Main table	alues in red	are equal to	o, or greater	than, the ge	eneric asses	sment criteri	ion (GAC).		
Site:	Kraft Pha	ase 2									MG denote	s Made Gro	und							

C161279 MG Kraft Phase 2 stats03 - TPH Level 2 (Ver 10)1, Summary Human Health

Job no.: C161279

Lab. report no(s).: 16-20400

NAT denotes natural ground

Assessment of Chemicals of Potential Concern to Plant Life

								Soil Type	MG														
	All values	in mg/kg unle	ss otherwise	stated				Location & Depth	BH01	BH01	BH02	BH02	WS01	WS01	WS03	WS03	WS04	WS05	WS08	WS11	WS11	WS12	WS12
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.1	0.4	0.1	0.5	0.4	1	0.2	0.6	0.3	0.1	0.3	0.4	0.8	0.3	0.6
Arsenic	1	23	6.9	190	0	250	110.3619	POTENTIALLY SUITABLE FOR USE	33	33	41	35	94	23	54	29	41	22	25	120	190	120	170
Boron	0.2	23	0.2	2.7	0	3	1.379209	POTENTIALLY SUITABLE FOR USE	1.5	0.8	0.7	0.9	0.6	0.3	1.3	1.3	1.3	0.9	0.5	0.7	0.6	0.6	0.7
Chromium (III)	1	23	3.8	330	0	400	172.5817	POTENTIALLY SUITABLE FOR USE	64	62	38	53	170	25	75	67	67	36	6	170	330	260	280
Chromium (VI)	1.2	23	1.2	1.2	0	25	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	1	23	1	17	0	135	10.25202	POTENTIALLY SUITABLE FOR USE	8.8	5.4	15	12	1	1	10	6.2	6.4	11	5.1	1	1	1	1
Nickel	2	23	4.8	130	5	75	81.58099	FURTHER ASSESSMENT REQUIRED	35	40	18	43	63	12	48	28	38	36	4.9	80	130	120	130
Zinc	2	23	11	230	0	300	153.7134	POTENTIALLY SUITABLE FOR USE	100	89	75	93	160	27	110	100	90	77	20	140	220	150	210
	Mean																						
pH (su)	8.5								7.9	8.3	8.3	8.4	8.2	8.8	8.2	8.5	8.4	8.6	8.5	8.3	8	8	8.2

Risk parameter: Plant life pH 7

Data set: Made Ground
Client: DB Symmetry Limited
Site: Kraft Phase 2

Job no.: C161279 Lab. report no(s).: 16-20400 Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are

considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground NAT denotes natural ground

Assessment of Chemicals of Potential Concern to Plant Life

		18
H	ydrock	

								Soil Type	MG								
	All values i	in mg/kg unle	ss otherwise	stated				Location & Depth	WS13	WS13	WS15	WS16	WS18	WS23	WS23	WS26	
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.3	0.6	0.3	0.3	0.3	0.2	0.7	0.2	
Arsenic	1	23	6.9	190	0	250	110.3619	POTENTIALLY SUITABLE FOR USE	23	54	6.9	25	37	33	170	8.4	
Boron	0.2	23	0.2	2.7	0	3	1.379209	POTENTIALLY SUITABLE FOR USE	0.3	0.4	0.2	0.5	1.7	2.7	0.9	0.5	
Chromium (III)	1	23	3.8	330	0	400	172.5817	POTENTIALLY SUITABLE FOR USE	11	78	3.8	42	50	39	120	11	
Chromium (VI)	1.2	23	1.2	1.2	0	25	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	
Copper	1	23	1	17	0	135	10.25202	POTENTIALLY SUITABLE FOR USE	8	1	11	1	17	1	1	3.4	
Nickel	2	23	4.8	130	5	75	81.58099	FURTHER ASSESSMENT REQUIRED	13	30	4.8	22	32	23	98	7	
Zinc	2	23	11	230	0	300	153.7134	POTENTIALLY SUITABLE FOR USE	28	57	11	39	90	53	230	19	
	Mean																
pH (su)	8.5								8.5	8.2	8.7	8.6	8.1	10.2	8.6	9	

Risk parameter: Plant life pH 7
Data set: Made Ground
Client: DB Symmetry Limited
Site: Kraft Phase 2

Job no.: C161279 Lab. report no(s).: 16-20400

Assessment of Chemicals of Potential Concern to Human Health

								Soil Type	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG	MG
	All values	in mg/kg unle	ss otherwise	stated				Location & Depth	BH01	BH01	BH02	BH02	WS01	WS01	WS03	WS03	WS04	WS05	WS08	WS11	WS11	WS12	WS12
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.1	0.4	0.1	0.5	0.4	1	0.2	0.6	0.3	0.1	0.3	0.4	0.8	0.3	0.6
Arsenic	1	23	6.9	190	0	640	110.3619	POTENTIALLY SUITABLE FOR USE	33	33	41	35	94	23	54	29	41	22	25	120	190	120	170
Beryllium	0.06	23	0.12	6.1	0	390	3.332359	POTENTIALLY SUITABLE FOR USE	1.4	1.5	0.84	1.4	3	0.42	1.5	1.2	1.4	1.2	0.12	3.3	6.1	4.5	4.9
Boron	0.2	23	0.2	2.7	0	190000	1.379209	POTENTIALLY SUITABLE FOR USE	1.5	0.8	0.7	0.9	0.6	0.3	1.3	1.3	1.3	0.9	0.5	0.7	0.6	0.6	0.7
Cadmium	0.2	23	0.2	0.2	0	220	0.2	POTENTIALLY SUITABLE FOR USE	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Chromium (III)	1	23	3.8	330	0	8400	172.5817	POTENTIALLY SUITABLE FOR USE	64	62	38	53	170	25	75	67	67	36	6	170	330	260	280
Chromium (VI)	1.2	23	1.2	1.2	0	33	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	1	23	1	17	0	69000	10.25202	POTENTIALLY SUITABLE FOR USE	8.8	5.4	15	12	1	1	10	6.2	6.4	11	5.1	1	1	1	1
Lead	2	23	2.7	81	0	2330	36.66603	POTENTIALLY SUITABLE FOR USE	52	34	28	23	8.7	9.1	34	39	25	15	4.6	9.4	10	6.7	7.7
Mercury, inorganic	0.3	23	0.3	0.3	0	3600	0.3	POTENTIALLY SUITABLE FOR USE	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Nickel	2	23	4.8	130	0	1700	81.58099	POTENTIALLY SUITABLE FOR USE	35	40	18	43	63	12	48	28	38	36	4.9	80	130	120	130
Selenium	1	23	1	2.7	0	13000	1.78568	POTENTIALLY SUITABLE FOR USE	1.7	1	1	1.2	1	1	1.8	1	1.2	1	1	1	2.4	1.3	2.3
Vanadium	1	23	20	680	0	9000	338.2421	POTENTIALLY SUITABLE FOR USE	87	98	71	92	270	50	150	100	100	69	20	350	680	480	600
Zinc	2	23	11	230	0	670000	153.7134	POTENTIALLY SUITABLE FOR USE	100	89	75	93	160	27	110	100	90	77	20	140	220	150	210
Cyanide (free)	1	23	1	1	0	16000	1	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Phenol (total)	2	23	1	1	0	760	1	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Acenaphthene	0.05	23	0.1	0.67	0	84000	0.232835	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.67	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Acenaphthylene	0.05	23	0.1	0.1	0	83000	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Anthracene	0.05	23	0.1	1.4	0	520000	0.411342	POTENTIALLY SUITABLE FOR USE	0.1	0.1	1.4	0.12	0.21	0.1	0.1	0.15	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Benz(a)anthracene	0.05	23	0.1	6.6	0	86	1.810295	POTENTIALLY SUITABLE FOR USE	0.1	0.1	6.6	0.79	1.3	0.1	0.1	1.4	0.1	0.1	0.25	0.1	0.1	0.1	0.1
Benzo(a)pyrene	0.05	23	0.1	5.1	0	14	1.895671	POTENTIALLY SUITABLE FOR USE	0.1	0.1	5	0.8	0.76	0.1	0.1	5.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Benzo(b)fluoranthene	0.05	23	0.1	7.7	0	97	2.41864	POTENTIALLY SUITABLE FOR USE	0.1	0.1	7.7	1.2	1.2	0.1	0.1	4.8	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Benzo(ghi)perylene	0.05	23	0.05	5.5	0	630	1.660019	POTENTIALLY SUITABLE FOR USE	0.05	0.05	3.4	0.52	0.6	0.05	0.05	5.5	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(k)fluoranthene	0.05	23	0.1	2.9	0	140	1.108083	POTENTIALLY SUITABLE FOR USE	0.1	0.1	2.9	0.44	1.1	0.1	0.1	2.6	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Chrysene	0.05	23	0.05	5	0	140	1.428604	POTENTIALLY SUITABLE FOR USE	0.05	0.05	5	0.7	1.3	0.05	0.05	1.5	0.05	0.05	0.2	0.05	0.05	0.05	0.05
Dibenz(a,h)anthracene	0.05	23	0.1	0.77	0	12	0.33201	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.76	0.1	0.1	0.1	0.1	0.77	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Fluoranthene	0.05	23	0.1	11	0	23000	2.974213	POTENTIALLY SUITABLE FOR USE	0.1	0.1	11	1.2	2.7	0.1	0.1	1.3	0.1	0.1	0.51	0.1	0.1	0.1	0.1
Fluorene	0.05	23	0.1	0.76	0	63000	0.253809	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.76	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Indeno(1,2,3,cd)pyrene	0.05	23	0.1	3.2	0	58	1.208948	POTENTIALLY SUITABLE FOR USE	0.1	0.1	3.2	0.41	0.5	0.1	0.1	3.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Naphthalene	0.05	23	0.05	0.05	0	190	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Phenanthrene	0.05	23	0.1	6	0	22000	1.591926	POTENTIALLY SUITABLE FOR USE	0.1	0.1	6	0.53	1.2	0.1	0.1	0.32	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Pyrene	0.05	23	0.1	8.6	0	54000	2.33085	POTENTIALLY SUITABLE FOR USE	0.1	0.1	8.6	0.93	1.9	0.1	0.1	1.3	0.1	0.1	0.39	0.1	0.1	0.1	0.1
Asbestos identified	Y/N								N	N	N	Υ	N	N	N	Υ	N	N	N	N	N	N	N
FOC (dimensionless)	0.005413	(mean)							0.023	0.0042	0.015	0.0056	0.0021	0.001	0.011	0.016	0.0074	0.0072	0.001	0.0017	0.0017	0.001	0.0018
SOM (calculated)	0.93%	(mean)							3.97%	0.72%	2.59%	0.97%	0.36%	0.17%	1.90%	2.76%	1.28%	1.24%	0.17%	0.29%	0.29%	0.17%	0.31%
pH (su)	8.5	(mean)							7.9	8.3	8.3	8.4	8.2	8.8	8.2	8.5	8.4	8.6	8.5	8.3	8	8	8.2

Risk parameter: Human health - commercial (1%SOM)

Data set: Made Ground
Client: DB Symmetry Limited
Site: Kraft Phase 2

Job no.: C161279 Lab. report no(s).: 16-20400 Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground
NAT denotes natural ground

								Soil Type	MG	MG	MG	MG	MG	MG	MG	MG
	All values	in mg/kg unle	ss otherwise	stated				Location & Depth	WS13	WS13	WS15	WS16	WS18	WS23	WS23	WS26
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.3	0.6	0.3	0.3	0.3	0.2	0.7	0.2
Arsenic	1	23	6.9	190	0	640	110.3619	POTENTIALLY SUITABLE FOR USE	23	54	6.9	25	37	33	170	8.4
Beryllium	0.06	23	0.12	6.1	0	390	3.332359	POTENTIALLY SUITABLE FOR USE	0.33	1.3	0.12	0.77	1.4	1.4	3.9	0.31
Boron	0.2	23	0.2	2.7	0	190000	1.379209	POTENTIALLY SUITABLE FOR USE	0.3	0.4	0.2	0.5	1.7	2.7	0.9	0.5
Cadmium	0.2	23	0.2	0.2	0	220	0.2	POTENTIALLY SUITABLE FOR USE	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Chromium (III)	1	23	3.8	330	0	8400	172.5817	POTENTIALLY SUITABLE FOR USE	11	78	3.8	42	50	39	120	11
Chromium (VI)	1.2	23	1.2	1.2	0	33	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	1	23	1	17	0	69000	10.25202	POTENTIALLY SUITABLE FOR USE	8	1	11	1	17	1	1	3.4
Lead	2	23	2.7	81	0	2330	36.66603	POTENTIALLY SUITABLE FOR USE	5.5	5.2	2.7	4.9	81	14	23	6.5
Mercury, inorganic	0.3	23	0.3	0.3	0	3600	0.3	POTENTIALLY SUITABLE FOR USE	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Nickel	2	23	4.8	130	0	1700	81.58099	POTENTIALLY SUITABLE FOR USE	13	30	4.8	22	32	23	98	7
Selenium	1	23	1	2.7	0	13000	1.78568	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1	1.6	2.7	1
Vanadium	1	23	20	680	0	9000	338.2421	POTENTIALLY SUITABLE FOR USE	34	130	23	78	95	84	220	20
Zinc	2	23	11	230	0	670000	153.7134	POTENTIALLY SUITABLE FOR USE	28	57	11	39	90	53	230	19
Cyanide (free)	1	23	1	1	0	16000	1	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1	1	1	1
Phenol (total)	2	23	1	1	0	760	1	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1	1	1	1
Acenaphthene	0.05	23	0.1	0.67	0	84000	0.232835	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Acenaphthylene	0.05	23	0.1	0.1	0	83000	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Anthracene	0.05	23	0.1	1.4	0	520000	0.411342	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.13	0.1	0.1	0.1	0.1
Benz(a)anthracene	0.05	23	0.1	6.6	0	86	1.810295	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.34	0.5	0.1	0.36	0.1	0.1
Benzo(a)pyrene	0.05	23	0.1	5.1	0	14	1.895671	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.17	0.35	0.1	0.23	0.1	0.1
Benzo(b)fluoranthene	0.05	23	0.1	7.7	0	97	2.41864	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.24	0.6	0.1	0.39	0.1	0.1
Benzo(ghi)perylene	0.05	23	0.05	5.5	0	630	1.660019	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(k)fluoranthene	0.05	23	0.1	2.9	0	140	1.108083	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.22	0.24	0.1	0.25	0.1	0.1
Chrysene	0.05	23	0.05	5	0	140	1.428604	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.33	0.44	0.05	0.31	0.05	0.05
Dibenz(a,h)anthracene	0.05	23	0.1	0.77	0	12	0.33201	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Fluoranthene	0.05	23	0.1	11	0	23000	2.974213	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.64	0.92	0.1	0.76	0.1	0.1
Fluorene	0.05	23	0.1	0.76	0	63000	0.253809	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Indeno(1,2,3,cd)pyrene	0.05	23	0.1	3.2	0	58	1.208948	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Naphthalene	0.05	23	0.05	0.05	0	190	0.05	POTENTIALLY SUITABLE FOR USE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Phenanthrene	0.05	23	0.1	6	0	22000	1.591926	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.21	0.65	0.1	0.32	0.1	0.1
Pyrene	0.05	23	0.1	8.6	0	54000	2.33085	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.48	0.67	0.1	0.59	0.1	0.1
Asbestos identified	Y/N								N	N	N	N	N	N	N	N
FOC (dimensionless)	0.005413	(mean)							0.001	0.0014	0.001	0.001	0.014	0.0016	0.0024	0.0024
SOM (calculated)	0.93%	(mean)							0.17%	0.24%	0.17%	0.17%	2.41%	0.28%	0.41%	0.41%
pH (su)	8.5	(mean)							8.5	8.2	8.7	8.6	8.1	10.2	8.6	9

Risk parameter: Human health - commercial (1%SOM)

Data set: Made Ground Client: DB Symmetry Limited Site: Kraft Phase 2

Job no.: C161279 Lab. report no(s).: 16-20400

								Soil Type	RTD	RTD	СНМ	TS	RTD				
		All values in	ma/ka unles	es otherwis	e stated			Location & Depth	BH03	BH03	WS09	WS21	WS26				
		7 til Valdes III	Ingrity unic	S Outer wis	Julia			Location & Depart	0.60	1.00	1.10	0.30	0.50				
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.00			0.00	0.00				ı
Benzene	0.001	5	0.001	0.001	0	27	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001				
Toluene	0.001	5	0.001	0.001	0	870	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001				
Ethylbenzene	0.001	5	0.001	0.001	0	520	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001				
Xylene, o-	0.001	5	0.001	0.001	0	480	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001				
Xylene, m- & p-	0.001	5	0.001	0.001	0	580	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001				
MTBE	0.001	5	0.001	0.001	0	7500	0.001	POTENTIALLY SUITABLE FOR USE	0.001	0.001	0.001	0.001	0.001				
Iso-propylbenzene	0.01	0	0	0	0	390											
Propylbenzene	0.01	0	0	0	0	400											
1,2,4-Trimethylbenzene	0.01	0	0	0	0	39											
Bromobenzene	0.01	0	0	0	0	92											
Chlorobenzene	0.01	0	0	0	0	56											
1,2-Dichlorobenzene	0.01	0	0	0	0	570											
1,3-Dichlorobenzene	0.01	0	0	0	0	30											
1,4-Dichlorobenzene	0.01	0	0	0	0	230											
Hexachlorobenzene	0.01	0	0	0	0	0.2											
Pentachlorobenzene	0.01	0	0	0	0	640											
1,2,3-trichlorobenzene	0.01	0	0	0	0	100											
1,2,4-trichlorobenzene	0.01	0	0	0	0	220											
1,3,5-trichlorobenzene	0.01	0	0	0	0	23											
1,2,3,4-tetrachlorobenzene	0.01	0	0	0	0	120											
1,2,3,5-tetrachlorobenzene	0.01	0	0	0	0	39											
1,2,4,5-tetrachlorobenzene	0.01	0	0	0	0	20											

Risk parameter: Human health - commercial (1%SOM)

Data set: NAT

Lab. report no(s).: 16-20400

Client: Db Symmetry Limited Site: Kraft Phase 2 Job no.: C161279 Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate. Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground NAT denotes natural ground

Chemical of Potential Concern	Lab. RL	All values in	mg/kg unles	no othonuio			F	Soil Type	RTD	RTD	CHM	TS	RTD						
Concern					e stated			Location & Depth	BH03	BH03	WS09	WS21	WS26						
All-Is-Not FOR	Lab. NL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.60	1.00	1.10	0.30	0.50						
Aliphatics EC5-EC6	0.01	5	0.1	0.1	0	300	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1						
Aliphatics >EC6-EC8	0.01	5	0.1	0.1	0	140	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1						
Aliphatics >EC8-EC10	0.01	5	0.1	0.1	0	78	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1						
Aliphatics >EC10-EC12	0.01	5	1	1	0	48	1	POTENTIALLY SUITABLE FOR USE	1	1	1	1	1						
Aliphatics >EC12-EC16	0.1	5	2	2	0	24	2	POTENTIALLY SUITABLE FOR USE	2	2	2	2	2						
Aliphatics >EC16-EC35	0.1	5	10	10	0	1000000	10	POTENTIALLY SUITABLE FOR USE	10	10	10	10	10						
Aliphatics >EC35-EC44	0.1	5	8.4	8.4	0	1000000	8.4	POTENTIALLY SUITABLE FOR USE	8.4	8.4	8.4	8.4	8.4						
Aromatics EC5-EC7	0.01	5	0.1	0.1	0	1200	0.1	POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1						
Aromatics >EC7-EC8 Aromatics >EC8-EC10	0.01 0.01	5 5	0.1	0.1	0	870 610	0.1	POTENTIALLY SUITABLE FOR USE POTENTIALLY SUITABLE FOR USE	0.1	0.1	0.1	0.1	0.1						
Aromatics >EC0-EC10	0.01	5	1	1	0	360	1	POTENTIALLY SUITABLE FOR USE POTENTIALLY SUITABLE FOR USE	1	1	1	1	1						
Aromatics >EC12-EC12	0.01	5	2	2	0	36000	2	POTENTIALLY SUITABLE FOR USE	2	2	2	2	2				1		
Aromatics > EC16-EC21	0.1	5	10	10	0	28000	10	POTENTIALLY SUITABLE FOR USE	10	10	10	10	10						
Aromatics >EC21-EC35	0.1	5	10	29	0	28000	30.368	POTENTIALLY SUITABLE FOR USE	10	10	29	10	10						
Aromatics >EC35-EC44	0.1	5	8.4	64	0	28000	68.0032	POTENTIALLY SUITABLE FOR USE	8.4	8.4	64	8.4	8.4						
					ADDITIVIT	Y CHECK			HAZARD (UOTIENTS	FOR EACH	FRACTIO	V						
					7.55			Aliphatics EC5-EC6		0.000	0.000	0.000	0.000						
								Aliphatics >EC6-EC8		0.000	0.001	0.000	0.001						i
								Aliphatics >EC8-EC10		0.001	0.001	0.001	0.001						
			Consider	ed additive				Aliphatics >EC10-EC12		0.021	0.021	0.021	0.021						
								Aliphatics >EC12-EC16	0.083	0.083	0.083	0.083	0.083						
								Aliphatics >EC16-EC35	0.000	0.000	0.000	0.000	0.000						
								Aliphatics >EC35-EC44	0.000	0.000	0.000	0.000	0.000						
								Aromatics EC5-EC7	0.000	0.000	0.000	0.000	0.000						
								Aromatics >EC7-EC8	0.000	0.000	0.000	0.000	0.000						
								Aromatics >EC8-EC10	0.000	0.000	0.000	0.000	0.000						
			Consider	ed additive				Aromatics >EC10-EC12	0.003	0.003	0.003	0.003	0.003						1
								Aromatics >EC12-EC16	0.000	0.000	0.000	0.000	0.000						1
								Aromatics >EC16-EC21	0.000	0.000	0.000	0.000	0.000						
			Consider	ed additive				Aromatics >EC21-EC35	0.000	0.000	0.001	0.000	0.000						
								Aromatics >EC35-EC44	0.000	0.000	0.002	0.000	0.000						
								Hazard Index for ali>C8-C16		0.105	0.105	0.105	0.105						
								Hazard Index for aro>C8-C16	0.003	0.003	0.003	0.003	0.003						
								Hazard Index for aro>C16-C35		0.001	0.001	0.001	0.001						
	NAT Db Symr Kraft Pha	netry Limito ase 2		ıl (1%SO	M)				0.007		Hazard Ind Main table considered Main table MG denote	ex table - HI values in blu as being at	or HQ greature are at or It the detection are equal to und	elow the lat	ooratory rep e purposes	orting limit of statistica	hading. (where a sing al analysis, as ssment criterio	a conservati	

C161279 NAT Kraft Phase 2 TPH Level 2, Summary Human Health

Lab. report no(s).: 16-20400

1 of 1

Assessment of Chemicals of Potential Concern to Plant Life

								Soil Type	RTD	RTD	AL	AL	RTD	TS	RTD	CHM	RTD	CHM	TS	RTD	TS	RTD
	All values i	in mg/kg unle	ss otherwise	e stated				Location & Depth	BH03	BH03	BH04	BH04	WS05	WS07	WS07	WS09	WS15	WS16	WS20	WS21	WS21	WS26
Chemical of Potential Concern	Lab. RL	No. Samples	Min. Value	Max. Value	No. Samples > or = GAC	GAC	US ₉₅	Result of Significance Test	0.6	1	0.6	1.1	0.5	0.1	0.4	1.1	0.6	0.7	0.25	0.7	0.3	0.5
Arsenic	1	14	14	120	0	250	67.17929	POTENTIALLY SUITABLE FOR USE	36	32	23	18	26	45	39	23	120	14	42	39	41	20
Boron	0.2	14	0.6	3.1	1	3	1.879485	POTENTIALLY SUITABLE FOR USE	1.3	1.1	3.1	1.3	1.2	0.7	0.6	1	0.6	1.2	1.1	1	1.1	1.2
Chromium (III)	1	14	37	170	0	400	99.93113	POTENTIALLY SUITABLE FOR USE	63	61	59	41	50	55	37	52	170	46	65	66	59	50
Chromium (VI)	1.2	14	1.2	1.2	0	25	1.2	POTENTIALLY SUITABLE FOR USE	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Copper	1	14	1	41	0	135	26.27617	POTENTIALLY SUITABLE FOR USE	25	9.4	41	10	7.8	10	5.9	18	1	24	13	18	9	9.2
Nickel	2	14	24	69	0	75	55.88921	POTENTIALLY SUITABLE FOR USE	35	36	29	32	38	31	25	55	69	64	42	40	39	24
Zinc	2	14	59	120	0	300	115.4472	POTENTIALLY SUITABLE FOR USE	92	89	98	75	84	97	65	100	110	120	110	110	110	59
	Mean																					
pH (su)	7.9								8.2	8	7.4	8.3	8	7.4	7.8	8.1	8.3	7.5	7.3	8	8	7.8

Risk parameter: Plant life pH 7

Data set: Natural
Client: DB Symmetry Limited
Site: Kraft Phase 2
Job no.: C161279

Lab. report no(s).: 16-20400

Legend: Values in blue are at or below the laboratory reporting limit (where a single value is indicated) and are considered as being at the detection limit for the purposes of statistical analysis, as a conservative estimate.

Values in red are equal to, or greater than, the generic assessment criterion (GAC).

MG denotes Made Ground NAT denotes natural ground

Scenario B - Summary of Remedial Targets Methodology

RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples

Water body receptor(s): Groundwater and surface water

Secondary receptor(s): Aquatic ecosystem
Data set: Groundwater
Client: DB Symmetry Ltd
Site: Kraft Phase 2
Job no: C161279

2008/105/EC Annex II: [P]= priority substance, [PH] = priority hazardous substances.

000.110						Value Being	Water Oual	lity Target	No. Samples	e, [i Ti] – priority riazardous substances.
		Summ	ary of Sample	Data		Compared to	(Exceede		Exceeding Water	Notes
Chemicals of Potential		Summe	ary or Sample	Dala		Target =	Tex		Quality Target	Notes
Concern		I	I	ı			Inland	α)	Inland	EQS compared to dissolved metals as an initial
(concentrations in μg/l)	No. of	Limit of	Minimum	Maximum	95-%ile	Maximum	Waters		Waters	
	Samples	Detection	Value	Value	Value	Value				screen, with no adjustment for bioavailability or ABC.
Handraga as mar/l CaCO2			200				EQS		EQS	Used with some EQS.
Hardness as mg/l CaCO3	-	-		- 0.05	- 0.05	- 0.05	_		^	Used with some EQS.
Ag (dissolved)	5	0	0.05	0.05	0.05	0.05	0.05		0	
Al (dissolved)	5	0	5.6	878	776.6	878	n/a		0	
As (dissolved)	5	0	0.15	2.16	2.05	2.16	50		0	
B (dissolved)	0	0	0	0		0	2000		0	
Ba (dissolved)	5	0	5.8	65	62.2	65	n/a		0	
Cd (dissolved) [PH]	5	0	0.02	0.02	0.02	0.02	0.25		0	
Co (dissolved)	5	0	0.2	2.5	2.38	2.5	3		0	
Cr (VI) (dissolved)	5	0	5	5	5	5	3.4		5	
Cr (III) (dissolved)	5	0	1	2.6	2.28	2.6	4.7		0	
Cr (total) (dissolved)	5	0	0.2	2.6	2.26	2.6	n/a		0	
Cu (dissolved)	5	0	0.5	4.6	4.28	4.6	1		3	EQS based on bioavailable fraction.
Fe (dissolved)	0	0	0	0		0	1000		0	
Hg (dissolved) [PH]	0	0	0	0		0	0.07		0	
Mn (dissolved)	5	0	6.3	270	231.4	270	123		1	EQS based on bioavailable fraction.
Mo (dissolved)	5	0	1.1	7.9	7.1	7.9	n/a		0	
Na (dissolved)	0	0	0	0		0	n/a		0	
Ni (dissolved) [P]	5	0	1.5	8.2	7.72	8.2	4		2	EQS based on bioavailable fraction.
Pb (dissolved) [P]	5	0	0.2	0.6	0.54	0.6	1.2		0	EQS based on bioavailable fraction.
Sb (dissolved)	5	0	0.7	2.7	2.48	2.7	n/a		0	
Se (dissolved)	5	0	0.6	51	44.4	51	n/a		0	
Sn (dissolved)	5	0	0.2	0.45	0.448	0.45	25		0	
V (dissolved)	5	0	0.2	11	10.38	11	60		0	
Zn (dissolved)			0.2							EQS based on bioavailable fraction and is added to ambient
211 (413301764)	5	0	0.5	6.2	5.16	6.2	10.9		0	background conc
Cyanide (free)	5	0	10	10	10	10	1		5	
Cyanide (total)	5	0	10	10	10	10	n/a		0	
Ammonium (NH4+)	5	0	15	130	107	130	n/a		0	
Bromate (BrO3)	5	0	2	2	2	2	n/a		0	
Chloride (CI-)	5	0	8800	220000	186200	220000	250000		0	
Fluoride (F-)	5	0	390	950	874	950	5000		0	
Nitrate (NO3-)	5	0	3140	9140	9012	9140	n/a		0	
Nitrite (NO2-)	5	0	31	320	306	320	n/a		0	
Sulfate (SO42-)	5	0	8700	110000	104900	110000	400000		0	
pH (min.) (su)	5	0	7.9	7.4	7.9	7.4	6.0		0	Max & Min interchanged to compare min. value.
1 / / /	5	0	7.9	7.4	7.9	7.4	9.0		0	wax a wiiri interchanged to compare min. value.
pH (max.) (su)	5	U	7.4	7.9	7.9	7.9	9.0		U	

Scenario B - Summary of Remedial Targets Methodology

RTM Level 2 - Groundwater Beneath Source Assessment - groundwater samples

Water body receptor(s): Groundwater and surface water

Secondary receptor(s): Aquatic ecosystem
Data set: Groundwater
Client: DB Symmetry Ltd
Site: Kraft Phase 2

Job no: C161279 2008/105/EC Annex II: [P]= priority substance, [PH] = priority hazardous substances.

Chemicals of Potential		Summa	ry of Sample	Data		Value Being Compared to Target =	Water Quality Target (Exceeded if Red Text)	No. Samples Exceeding Water Quality Target	Notes
Concern (concentrations in µg/l)	No. of Samples	Limit of Detection	Minimum Value	Maximum Value	95-%ile Value	Maximum Value	Inland Waters EQS	Inland Waters EQS	EQS compared to dissolved metals as an initial screen, with no adjustment for bioavailability or ABC.
Electrical conductivity (µS/cm)	5	0	530	1500	1400	1500	n/a	0	
Anthracene [PH]	0	0	0	0		0	0.1	0	
Benzo(a)pyrene [PH]	0	0	0	0		0	0.00017	0	
Fluoranthene [P]	0	0	0	0		0	0.0063	0	
Naphthalene [P]	0	0	0	0		0	2	0	
PAHs = sum of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, indeno(1,2,3-									
cd)pyrene [PH]	5	0	0.02	0.02	0.02	0.02	n/a	0	
Phenol	5	0	0.5	0.5	0.5	0.5	7.7	0	

Appendix G

Waste Classification

Nathan Thompson

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 **f:** 01604842666

e: nathanthompson@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 16-20403

Project / Site name: Kraft Phase 2 Samples received on: 10/06/2016

Your job number: C161279 Samples instructed on: 17/06/2016

Your order number: N9203-C161279 Analysis completed by: 23/06/2016

Report Issue Number: 1 **Report issued on:** 23/06/2016

Samples Analysed: 4 wac multi samples

_____Signed:

Rexona Rahman Reporting Manager

Signed:

For & on behalf of i2 Analytical Ltd.

Dr Irma Doyle Senior Account Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical	Results					
Report No:		16-204	13			
				Client:	HYDROCK	
				Chefft.	HIDROCK	
Location		Kraft Pha	se 2			
Lab Reference (Sample Number)				Landfill '	Waste Acceptanc	e Criteria
		589361			Limits	
Sampling Date		31/05/20	16		Stable Non- reactive	
Sample ID Depth (m)		0.10		Inert Waste Landfill	HAZARDOUS waste in non- hazardous	Hazardous Waste Landfill
Solid Waste Analysis					Landfill	
TOC (%)**	1.5			3%	5%	6%
Loss on Ignition (%) **	5.4					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.30			1		
Mineral Oil (mg/kg)	69			500		
Total PAH (WAC-17) (mg/kg)	65			100		
pH (units)**	7.5				>6	
Acid Neutralisation Capacity (mol / kg)	14				To be evaluated	To be evaluated
Eluate Analysis	2:1	8:1	Cumulative 10:1		es for compliance le	
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l mg/l		mg/kg	using BS EN 12457-3 at L/S 10 l/kg (mg/kg		
Arsenic *	< 0.010	< 0.010	< 0.050	0.5	2	25
Barium *	0.048	0.051	0.50	20	100	300
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5
Chromium *	0.0049	0.0038	0.039	0.5	10	70
Copper *	0.016	0.0066	0.080	2	50	100
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum *	0.0048	< 0.0030	< 0.020	0.5	10	30
Nickel *	0.0030	0.0026	0.026	0.4	10	40
Lead *	< 0.0050	< 0.0050	0.039	0.5	10	50
Antimony *	< 0.0050	< 0.0050	< 0.020	0.06	0.7	5
Selenium *	0.011	< 0.010	0.071	0.1	0.5	7
Zinc *	0.0024	0.0076	0.069	4	50	200
Chloride *	< 4.0	< 4.0	< 15	800	4000	25000
Fluoride	2.0	0.70	8.8	10	150	500
Sulphate *	12	2.4	37	1000	20000	50000
TDS	5100	260	9500	4000	60000	100000
Phenol Index (Monhydric Phenols) * DOC	< 0.13	< 0.13 8.3	< 0.50 94	500	800	1000
		3.5	3,	500	500	2000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	0.44					
Dry Matter (%)	84					
Moisture (%)	16					
Stage 1						
Volume Eluate L2 (litres)	0.32					
Filtered Eluate VE1 (litres)	0.25					
	i	1	I	I	1	Ī

vesuus are expressed on a cry weight basis, after correction for missure content where applicable

*= UKAS accredited (liquid eluate analysis only)

** = MCERTS accredited (siquid eluate analysis)

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Report No:	Results	16-2040	3					
				Client:	HYDROCK			
				Cileit	HIDROCK			
Location	Kraft Phase 2							
Lab Reference (Sample Number)		589362		Landfill	Landfill Waste Acceptance Criteria			
Sampling Date		06/06/201	6		Limits Stable Non-			
Sample ID		BH04	0		reactive			
Depth (m)	0.60		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill			
Solid Waste Analysis					Landini			
TOC (%)**	2.4			3%	5%	6%		
Loss on Ignition (%) **	9.0					10%		
BTEX (μg/kg) **	< 10			6000				
Sum of PCBs (mg/kg) **	< 0.30			1				
Mineral Oil (mg/kg)	< 10			500				
Total PAH (WAC-17) (mg/kg)	< 1.6			100				
pH (units)**	7.5				>6			
Acid Neutralisation Capacity (mol / kg)	3.7				To be evaluated	To be evaluated		
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit valu	es for compliance le	eaching test		
•	2.1	6.1	Cumulative 10.1	using BS F	N 12457-3 at I /S 10) l/ka (ma/ka)		
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	mg/kg	using BS EN 12457-3 at L/S 10 l/kg (mg/kg)				
Arsenic *	0.016	< 0.010	0.051	0.5	2	25		
Barium *	0.054	0.026	0.28	20	100	300		
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5		
Chromium *	0.014	0.0041	0.049	0.5	10	70		
Copper *	0.069	0.020	0.24	2	50	100		
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2		
Molybdenum *	0.0096	< 0.0030	0.028	0.5	10	30		
Nickel *	0.013	0.0043	0.051	0.4	10	40		
Lead *	0.037	0.016	0.18	0.5	10	50		
Antimony *	< 0.0050	< 0.0050	< 0.020	0.06	0.7	5 7		
Selenium * Zinc *	< 0.010 0.016	< 0.010 0.0064	< 0.040 0.073	0.1 4	50	200		
Chloride *	30	< 4.0	62	800	4000	25000		
Fluoride	0.96	0.46	5.0	10	150	500		
Sulphate *	44	9.4	130	1000	20000	50000		
TDS	110	70	740	4000	60000	100000		
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	=	=		
DOC	83	17	230	500	800	1000		
Leach Test Information				-				
Leach 1est Illionillation								
Stone Content (%)	< 0.1							
Sample Mass (kg)	0.54			†	1			
Dry Matter (%)	78			†	1			
Moisture (%)	22				1			
Stage 1								
Volume Eluate L2 (litres)	0.31							
Filtered Eluate VE1 (litres)	0.16							

results are expressed on a try weight basis, after control for individue contents

*= UKAS accredited (liquid eluate analysis only)

** = MCERTS accredited

** = MCERTS accredited

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical Report No:	Results	16-20403					
Report No.		10 20 403					
				Client: HYDROCK			
Location		Kraft Phase 2					
Lab Reference (Sample Number)			Landfill Waste Acceptance Criteria				
		589363			Limits		
Sampling Date		08/06/2016			Stable Non-		
Sample ID		WS09		Inert Waste	reactive HAZARDOUS	Hazardous	
Depth (m)	1.10			Landfill	waste in non- hazardous Landfill	Waste Landfill	
Solid Waste Analysis							
TOC (%)**	1.1			3%	5%	6%	
Loss on Ignition (%) **	3.6					10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.30			1			
Mineral Oil (mg/kg)	< 10			500			
Total PAH (WAC-17) (mg/kg)	3.1			100			
pH (units)**	7.1				>6		
Acid Neutralisation Capacity (mol / kg)	1.2				To be evaluated	To be evaluate	
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit value	es for compliance le	eaching test	
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l mg/kg			using BS EN 12457-3 at L/S 10 l/kg (mg/kg)			
Arsenic *	< 0.010	< 0.010	< 0.050	0.5	2	25	
Barium *	0.071	0.048	0.51	20	100	300	
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium *	0.0062	0.0012	0.019	0.5	10	70	
Copper *	0.0074	< 0.0030	0.033	2	50	100	
Mercury *	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum *	0.060	0.0070	0.14	0.5	10	30	
Nickel *	0.021	0.012	0.13	0.4	10	40	
Lead *	< 0.0050	< 0.0050	< 0.020	0.5	10	50	
Antimony *	< 0.0050	< 0.0050	0.023	0.06	0.7	5	
Selenium *	0.026	< 0.010	0.11	0.1	0.5	7	
Zinc *	0.0025	0.0025	0.025	4	50	200	
Chloride *	25	13	140	800	4000	25000	
Fluoride	3.1	0.76	11	10	150	500	
Sulphate *	160	84	950	1000	20000	50000	
TDS	140	80	880	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	5.0	4.1	42	500	800	1000	
Leach Test Information							
.cacii rest Illiorillation							
Stone Content (%)	< 0.1						
Sample Mass (kg)	0.55						
Ory Matter (%)	81						
Moisture (%)	19						
Stage 1							
/olume Eluate L2 (litres)	0.32						
Filtered Eluate VE1 (litres)	0.24						

Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and 12 cannot be held responsible for any discrepencies with current legislation *= UKAS accredited (liquid eluate analysis only) ** = MCERTS accredited

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Waste Acceptance Criteria Analytical Report No:		16-2040	3			
				Cli t.	HVDDOCK	
				Client:	HYDROCK	
Location		Kraft Phas	e 2			
				Landfill	Waste Acceptanc	e Criteria
Lab Reference (Sample Number)		589364			Limits	
Sampling Date		03/06/20:	16		Stable Non-	
Sample ID		WS12		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)	0.30			Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis						
TOC (%)**	< 0.1			3%	5%	6%
Loss on Ignition (%) **	7.4					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.30			1 500		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg) pH (units)**	< 1.6 8.1			100	>6	
Acid Neutralisation Capacity (mol / kg)	16				To be evaluated	To be evaluated
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit value	es for compliance le	eaching test
		5.1	camalacte 1011	using BS EN	I 12457-3 at L/S 10) l/ka (ma/ka)
(BS EN 12457 - 3 preparation utilising end over end leaching procedure)	mg/l	mg/l	mg/kg			, , , , , , , , , , , , , , , , , , ,
					1	
Arsenic *	< 0.010	< 0.010	< 0.050	0.5	2	25
Barium *	0.055	0.015	0.21	20	100	300
Cadmium *	< 0.0005	< 0.0005	< 0.0020	0.04	1	5
Chromium * Copper *	0.0033 0.0057	0.0054 < 0.0030	0.051 0.030	0.5 2	10 50	70 100
Mercury *	0.0037	< 0.0030	< 0.010	0.01	0.2	2
Molybdenum *	< 0.0019	< 0.0013	< 0.020	0.01	10	30
Nickel *	0.0015	0.0018	0.017	0.4	10	40
Lead *	< 0.0050	< 0.0050	< 0.020	0.5	10	50
Antimony *	< 0.0050	< 0.0050	< 0.020	0.06	0.7	5
Selenium *	0.011	< 0.010	0.075	0.1	0.5	7
Zinc *	0.0045	< 0.0010	< 0.020	4	50	200
Chloride *	5.6	< 4.0	< 15	800	4000	25000
Fluoride	1.6	0.78	9.0	10	150	500
Sulphate *	36	4.6	92	1000	20000	50000
TDS	120	80	860	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-
DOC	10	3.5	44	500	800	1000
Leach Test Information						
]	
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.0					
Dry Matter (%)	84					
Moisture (%)	16	<u> </u>				
Stage 1						
Volume Eluate L2 (litres)	0.32			-		
Filtered Eluate VE1 (litres)	0.26					
	1	1		l	1	

^{*=} UKAS accredited (liquid eluate analysis only)

** = MCERTS accredited

Analytical Report Number : 16-20403 Project / Site name: Kraft Phase 2

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
589361	BH02	None Supplied	0.10	Brown loam and clay with gravel.
589362	BH04	None Supplied	0.60	Brown loam and clay with gravel.
589363	WS09	None Supplied	1.10	Grey clay.
589364	WS12	None Supplied	0.30	Brown loam and sand with gravel.

Analytical Report Number : 16-20403 Project / Site name: Kraft Phase 2

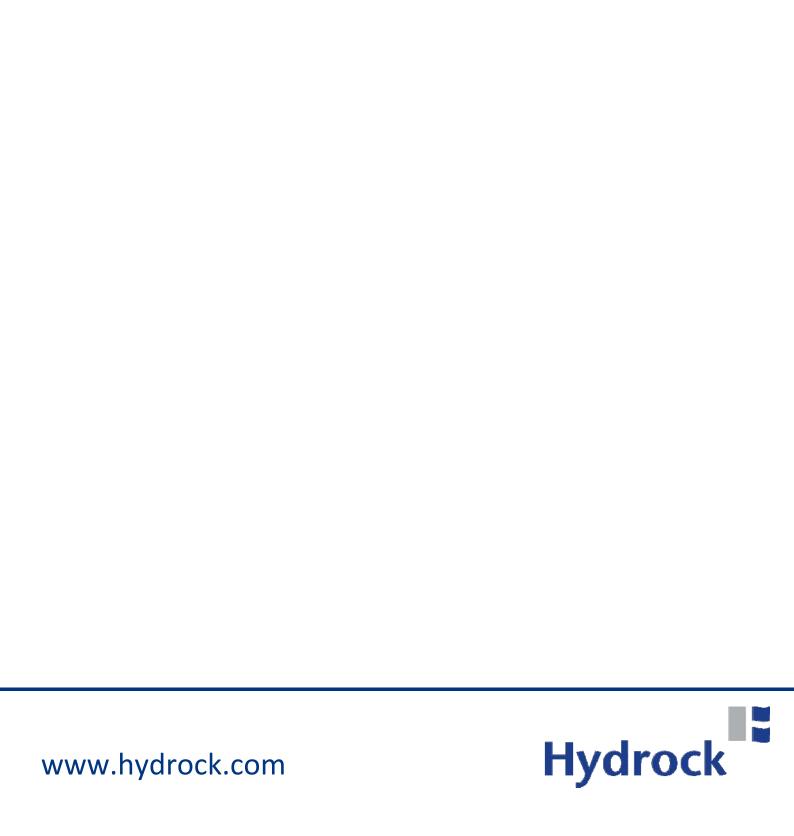
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046-PL	W	NONE
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC- MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457- 3 Prep)	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	W	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS
Metals in WAC leachate (BS EN 12457 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L031-PL	W	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS

Analytical Report Number : 16-20403 Project / Site name: Kraft Phase 2

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------	--


For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH02		M	16-20403	589361	С	BTEX (Sum of BTEX compounds) in soil	L073B-PL	С
BH02		M	16-20403	589361	С	BTEX in soil (Monoaromatics)	L073B-PL	С
BH02		M	16-20403	589361	С	Organic Matter (Raw data) in soil	L023-PL	С

Our Ref: 70038703/TA/Final

20 October 2017

CONFIDENTIAL

Paloma Capital LLP Henry Wood House 2 Riding House Street London W1W 7FA

6 Devonshire Square London EC2M 4YE UK

Tel: +44 (0) 2031 166 000

www.wsp.com

Dear Sirs,

Subject: Re: Kraft, Southam Road, Banbury, Oxfordshire, OX16 2EP ("the site") – High Level Peer Review of Selected Third Party Information

WSP UK Ltd (WSP) was instructed by Paloma Capital LLP (the Client) to conduct a high level peer review of existing third party information, for the above referenced site. The peer review relates to environmental aspects of the site condition; primarily land contamination and flood risk considerations.

The information below has been provided for review by the Client; it should be noted however that WSP cannot warrant the work of others, and takes the following information as being true and representative. Geotechnical considerations are beyond the scope of this assessment.

- Flood Risk Assessment, Southam Road Retail Park, Banbury, by Peter Brett Associates LLP on behalf of Kraft Foods UK Ltd and Barwood Developments Ltd, dated March 2012, Ref. 26004/005
- Ground Conditions Desk Study, Kraft Phase 2, Banbury, by Hydrock on behalf of db symmetry Limited, dated April 2016, Ref: R/161279/001, Final
- **Ground Investigation, Kraft Phase 2, Banbury**, by Hydrock on behalf of db symmetry Limited, dated July 2016, Ref: R/161279/002, Final

Based on information provided to WSP by the Client, it is understood that the site forms the disused southern part of the existing Kraft factory site. Furthermore, that the Client is considering the forwarding funding of the proposed commercial / industrial development of the site (although no specific development proposals have been provided), and ultimate purchase of the freehold interest of the Site which is subject to leasehold interests.

With high level reference to Cherwell (North Oxfordshire) District Council planning portal, the following notable planning application history relating to redevelopment of the subject site has been noted. Only one Condition (18) has been identified relating to potential ground contamination, associated with the most recent May 2015 application (provided below); which concerns unexpected ground contamination that might be identified during redevelopment i.e. no apparent requirement for a desk study, intrusive investigation and remediation strategy/plan as a precursor to development. Aside from standard conditions relating to implementation of appropriate surface and foul drainage associated with the proposed development in May 2015, no conditions relating to flood risk are noted.

Conditionally Approved Planning Application Ref. 05/02370/F, Resubmission of 04/02201/F - Demolition of existing obsolete building and construction of new process building in same area; Kraft Foods UK Ltd Ruscote Avenue Banbury Oxon OX16 2QU, Dec 2005

Conditionally Approved Planning Application Ref. 15/00831/F, Proposed development of a new Waitrose food store with car parking and access arrangement onto Southam Road. Demolition of existing building; Land at Kraft Foods Southam Road Banbury, May 2015

Contaminated Land Condition 18 within associated Decision Notice:

'If, during development, contamination is found to be present at the site then no further development (unless otherwise agreed in writing with the local planning authority) shall be carried out until the developer has submitted a remediation strategy to the local planning authority detailing how this unsuspected contamination shall be dealt with and obtained written approval from the Local Planning Authority. The remediation strategy shall be implemented as approved.

Reason - To ensure that any unexpected contamination encountered during the developments is suitable assessed and dealt with, such that it does not pose an unacceptable risk to ground or surface water.'

SITE DESCRIPTION AND HISTORY

The site occupies an area of c.6.1 hectares and is located off the A361, Southam Road, Banbury. It is currently disused and comprises a warehouse (previously used as a storage area for Kraft), part of the existing Kraft factory (in the centre and north), with a lorry park and wash in the west, a large car park in the east, an electricity sub-station in the south-west, and grassed areas in the south and north-west (see Figure 1).

Bird Brook flows from the west to the east in the north-west corner of the site before being culverted (four pipes) below the warehouse, exiting on the eastern side of the warehouse (from two pipes) before flowing into the River Cherwell approximately 500m to the east. The site slopes slightly down from the west to the east with an approximate 4m drop from the car park to the warehouse.

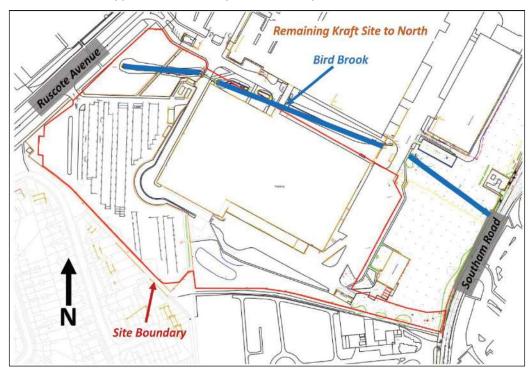


Figure 1 – Approximate Existing Site Layout

Historically, the site is reported to have been fields with Bird Brook in the north-west corner of the site from the earliest available mapping (1881). By 1965, an industrial building (food processing plant) was shown in the centre of the site (part of the larger Kraft factory extending off-site to the north), and a car park in the west by 1984.

The Hydrock desk study assessment identified the following potential key contaminant sources on-site:

- Polychlorinated biphenyls 'PCBs' associated with the electricity sub-station in the south-east of the site;
- Hydrocarbon fuels, lubricant and chlorinated solvents associated with the industrial building;
- Made Ground possibly including metals, metalloids, asbestos, polycyclic aromatic hydrocarbons 'PAHs' and petroleum hydrocarbons; and,
- Ground gases (carbon dioxide and methane) from alluvial soils.

Potential off-site sources of contamination were indicated to be tanks (unspecified) associated with the Kraft factory to the north of the site.

GEOLOGY, HYDROGEOLOGY AND HYDROLOGY

With reference to British Geological Society (BGS) Map Sheet 201, Banbury, the site is indicated to be underlain by Lower Lias Clay bedrock (now referred to as the 'Charmouth Mudstone Formation) which is indicated to comprise dark grey laminated shales and dark, pale and blueish grey mudstones with occasional limestone beds and local concretions, and exhibiting thickness in the order of 75m to 110m.

No superficial deposits are shown to be present on-site, although alluvium deposits (silty clay, with layers of silt, sand, peat and basal gravel) are indicated to be present immediately off-site to the east, beyond Southam Road, associated with the River Cherwell.

Four BGS historical borehole logs do however indicate superficial alluvium deposits (firm silty/sandy clay with rootlets and inclusions gravel, organic material, sand and becoming gravelly at depth) to 2.5m - 4.6m in the eastern site area, underlain by the Lower Lias Clay (very stiff fissured silty clay with occasional gravel).

The Alluvium and Charmouth Mudstone Formation are classed as a Secondary A and Secondary Undifferentiated aquifers, respectively. The site is not shown to lie within a groundwater Source Protection Zone (SPZ) as defined by the EA and there are no licensed abstractions (assumed groundwater and surface water) within 1km.

Bird Brook is present in the north-west of the site flowing west to east, and is culverted beneath the northern parts of the disused warehouse buildings on-site, ultimately discharging to the River Cherwell, approximately 500m to the east of the site. Hydrock reported that existing storm drainage on-site discharged directly into Bird Brook at numerous locations across the site.

The Oxford Canal runs north to south 300m east of the site.

CONTAMINATED LAND PEER REVIEW

NOTABLE DATABASE SEARCH FINDINGS

The following represents a summary of notable Hydrock desk study findings linked to the site:

- There is one discharge consent on-site and one 12m to the north, for trade discharges into Bird Brook.
- A non-specialist Unexploded Ordnance 'UXO' assessment indicated a low bomb risk and no further consideration of UXO is required on-site.
- Made Ground is anticipated locally on-site due to its current/former development.
- The site is in Flood Zone 1 (very low fluvial risk) these are areas shown to be at less than a 0.1% chance of flooding in any year, or a 1:1000 year chance.
- The site is in a Radon Affected Area with recorded radon levels in 1%-3% of homes above the action level. Radon protection measures are not required for new buildings at this location.
- Based on historical land uses and its current operational use, the overall risk from land contamination at the site is considered to be low for the current development, and low to moderate for a redeveloped

site; though Hydrock indicated that this would need to be confirmed by appropriate intrusive investigation/assessment.

It is considered unlikely that the site would be classified as Contaminated Land under Part 2A of the EPA 1990.

HYDROCK INTRUSIVE INVESTIGATION & FINDINGS

- The Hydrock ground investigation comprised the advancement of:
 - o 4no. rotary cored boreholes (BH1-4) to a maximum depth of 20.14m below ground level (bgl);
 - 26no. window sample boreholes (WS1-26) to a maximum depth of 5.45m bgl (see Figure 2), of which 9no. of these boreholes (WS1, 3, 9, 13, 14, 18, 19, 25 & 26) were installed as ground gas and groundwater monitoring wells;
 - o 6no. rounds of ground gas and groundwater monitoring; and,
 - o Chemical analysis of soils and groundwater was also undertaken (discussed below).

Figure 2 – Hydrock Intrusive Exploratory Locations across Site

- Hydrock encountered the following ground conditions beneath the site:
 - Made Ground to between 0.3m and 2.6m below ground level (bgl), comprising asphalt and/or concrete hardstanding upon clayey gravel of ironstone, sandstone, brick and concrete or gravelly clay;
 - Alluvium to between 1.2 and 4.6m bgl, comprising sandy gravelly clay/silt with some rootlets and mild organic odour;
 - River Terrace Deposits to between 0.90m and 8.0m bgl, comprising loose to medium dense sandy gravel, loose to medium dense gravelly sand or gravelly clay;
 - **Charmouth Mudstone Formation** encountered underlying variously the Made Ground, Alluvium and River Terrace Deposits to a maximum proven depth of 20.14m bgl.
- Groundwater was generally encountered during intrusive investigations at the interface between the superficial deposits and the Charmouth Mudstone Formation. Groundwater was recorded post-

intrusive fieldwork at levels between 0.36m - 3.76m bgl. No discussion on groundwater flow directions was provided by Hydrock.

- 38no. soil samples (23no. from Made Ground; most within upper 1m of soil) were obtained from across site for a broad range of chemical analysis including a general inorganics suite, a suite of metals/metalloids, volatile organic compounds 'VOCs' including tentatively identified compounds 'TICs', BTEX¹ compounds, speciated² total petroleum hydrocarbons 'TPH', polychlorinated biphenyls 'PCBs', asbestos screening (and quantification if identified), and waste acceptance criteria 'WAC' testing.
- Hydrock screened soil results using generic assessment criteria (GAC) derived using the CLEA model under a commercial/industrial end use scenario. Given that there are no recognised GACs for lead, Category 4 Screening Levels (C4SL) were used. The screening exercise only revealed a single marginal petroleum hydrocarbons exceedance (aliphatics >EC12-EC16 59mg/kg vs GAC 24mg/kg) in WS03, 0.3m bgl, to the south-east of the site.
- Asbestos was identified in two of the thirty eight samples tested, both Made Ground, in BH02 (0.5m bgl; loose amosite fibres at <0.001%) in the north-east on the boundary line, and WS03 (0.6m bgl; chrysotile/amosite, hard cement type material, loose fibres and insulation lagging at 0.076%) in the south-east.</p>
- 5no. groundwater samples (WS1, 9, 13, 18 & 26) were obtained for chemical analysis including a general inorganics suite, a suite of metals/metalloids, VOCs including TICs, BTEX compounds, phenols, PAHs and speciated TPH.
- For the purpose of initial controlled waters risk assessment, Hydrock considered that groundwater is present in the Alluvium and River Terrace Deposits beneath the site and is likely to provide base flow to Bird Brook. Furthermore, that Bird Brook flows into the River Cherwell 500m east of the site and the surface water abstraction is upstream of Bird Brook. Risks to groundwater and surface water from contaminants on-site were assessed according to the EA (2006) Remedial Targets Methodology (RTM), using relevant threshold values (Water Quality Targets (WQT)) which are linked to the conceptual site model. Acceptable WQT were defined for protection of human health (based on Drinking Water Standards (DWS)) and for protection of aquatic ecosystems (Environmental Quality Standards (EQS)).
- The risk screening assessment only identified marginal exceedances for copper (max 4.6μg/l vs. WQT of 1μg/l), manganese (max 270μg/l vs. WQT of 123μg/l) and nickel (max 8.2 μg/l and WQT 4μg/l). Levels of petroleum hydrocarbons and VOCs in groundwater beneath the site were all below analytical method detection limits.
- Six ground gas monitoring visits were undertaken on-site. Methane was not recorded above the detection limit of the analytical apparatus, and carbon dioxide recorded at typically less than 5%, although on one occasion was monitored at 5.4%. Atmospheric pressure ranged between 982mb and 1,005mb over the monitoring rounds. No ground gas flow rates were detected during monitoring.
- Hydrock stated that there was no relationship between elevated ground gas concentrations and low pressure, nor there a relationship between elevated ground gas concentrations and falling pressure.
- The risks associated with the ground gases were assessed using BS 8485:2015 and guidance from CIRIA Report 665 (Wilson et al 2007). In the calculation of a gas screening value (GSV), as no ground gas flow rates were recorded, Hydrock used the ground gas meters limit of detection (<0.1 l/hr) as the gas flow rate. The worst case GSV was calculated by Hydrock to be 0.0001 l/hr for methane and 0.0054 l/hr for carbon dioxide. Based on these GSVs the site was classified by Hydrock as Characteristic Situation 1 'CS1' (very low risk), where no ground gas protective measures are required in new building structures.
- Based on the investigation findings, the following conclusions/recommendations, all subject to agreement with regulators, were drawn by Hydrock:

¹ BTEX compounds – benzene, toluene, ethylbenzene and xylenes

² Speciated TPH – a total TPH concentration is separated out into its constitute bands of aliphatic and aromatic fractions, allowing for improved characterisation of the type of TPH present

- Soil From a human health perspective, given the nature of the proposed commercial / industrial development with a predominance of building cover and hardstanding, Hydrock did not believe that soil contamination identified at the site, including asbestos locally, represented a significant risk to site users. It was indicated however, that appropriate clean cover would be required in limited soft landscaped areas, and appropriate materials management be implemented during the construction phase of the development to mitigate any risk to ground workers.
- Controlled Waters as no elevated soil or groundwater contamination was identified, no
 indication of ongoing pollution of controlled waters, and conditions following site development
 expected to not be any worse than existing, controlled water liability were considered low.
- Ground gas Low risk from ground gases and CS1 conditions apply. Based on the typically low
 ground gas concentrations and the lack of any relationship between elevated ground gas
 concentrations and pressure, Hydrock did not believe the site required upgrade to a higher ground
 gas classification.
- On the basis of the above, Hydrock considered that and no further soil, groundwater or ground gas assessment was likely required on-site.
- Hydrock proposed the following remedial strategy for redevelopment of the site, subject to relevant regulatory approval:
 - Protectaline pipework for potable water supplies Hydrock considered that as the site was Brownfield, it was likely/or at least best practise, that a barrier pipe be used.
 - Capping of proposed soft landscaped areas with clean soil cover and appropriate materials handling and materials management. Hydrock indicated there to be suitable soils present on-site to be used as the cover system.

WSP OPINION – CONTAMINATED LAND

In the opinion of WSP, the Hydrock desktop and intrusive environmental assessment appear to have provided for a good understanding of the ground conditions beneath the subject site, in addition to the general environmental setting. This includes an appreciation of the type, extent and magnitude of soil and groundwater contamination present, the ground gas regime; in addition to the character of the underlying geology and hydrogeology, and key potential receptors.

WSP considers that the intrusive investigation has generally provided sufficient coverage of the subject site and applied an appropriate soil, groundwater and ground gas sampling and analysis strategy, based on potential historical activities (on and off-site), to target and characterise any residual contamination.

It is noted however, that with reference to a historical plan of the site (*see Figure 3*) identified by WSP on the Local Authority planning portal (associated with a previous site planning application), a fuel station ('DERV³ lubricating oil') is shown in the central south of the site, that was not discussed or apparently targeted by Hydrock assessments or investigations.

Whilst the potential for hydrocarbon ground contamination in this area cannot be completely discounted, no hydrocarbon contamination that would suggest a significant fuel release to ground in this area was identified in a borehole (WS6) located in relatively close proximity, and also in two groundwater monitoring wells (WS1 & WS3) located c. 60m down hydraulic gradient (i.e. no groundwater hydrocarbon impacts).

At present, and until proven otherwise by the Vendor, the potential for underground diesel storage tanks (USTs) and associated infrastructure, in addition to hydrocarbon ground contamination in this area, cannot be discounted.

6/11

³ 'DERV' – alternative historical name for diesel oil

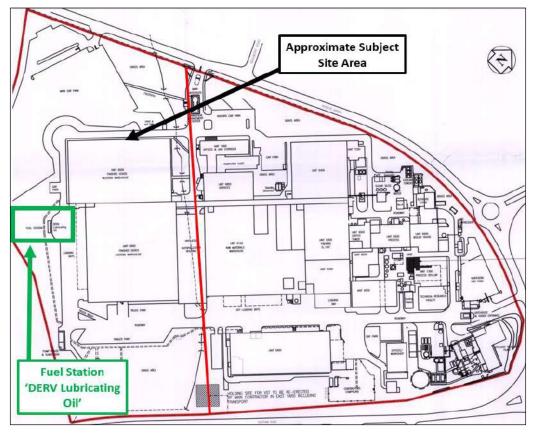


Figure 3 – Former Subject (and adjacent larger Kraft) Site Layout

Notwithstanding the uncertainty regarding the former fuel station area, limited potential contaminative activities have generally been associated with the site history and immediately surrounding area, and this appears to be consistent with an absence of specific contaminated land conditions attached to the planning decision notices for the previous proposed redevelopment of the site. However, WSP has not reviewed the planning application / decision notice (if available) for the most recent proposed commercial / industrial site redevelopment, and therefore the need for further contaminated land investigation as part this planning process cannot be discounted at this stage – certainly given the present uncertainty regarding the former fuel station area.

Soils

Intrusive investigations have, in contrast to the mapped geology, revealed the presence of superficial deposits across site. These deposits thicken towards the east coincident with the fall in the upper surface of the underlying Charmouth Mudstone bedrock. Made Ground also shows a marginal increase in thickness to the east, presumably to facilitate a development platform as part of the original construction of the existing buildings on-site due to fall in ground levels towards the River Cherwell.

Whilst Hydrock refers separately to the Alluvial and River Terrace deposits that form the superficial strata on-site, WSP considers the River Terrace deposits likely representative of an 'alluvial basal gravel' horizon described on geological mapping i.e. therefore both units likely form part of the same superficial 'Alluvium' deposits.

WSP has reviewed chemical soil results obtained as part of the Hydrock investigation against WSP inhouse Human Health Generic Assessment Criteria (GACs), and are in general agreement that no results were detected in exceedance of GAC for a commercial / industrial end use. This is with the exception of some limited TPH results, marginally in exceedance of GAC, which WSP considers to represent relatively low concentrations. Asbestos has also been detected locally within Made Ground.

WSP concurs with Hydrock's view that it is unlikely that any risks to current or proposed site users would transpire based on the soil contamination identified beneath site given the assumed predominance of building cover and hardstanding across the current and proposed development, which should restrict exposure to any such contamination.

Groundwater

Limited discussion was provided by Hydrock on the likely groundwater flow regime beneath the site. With reference to groundwater levels provided by Hydrock and monitoring well casing elevations (allowing adjusted groundwater elevations to be calculated relative to the same reference datum), shallow groundwater flow appears to be eastward, towards the River Cherwell (as one would expect).

Given the apparent predominance of more clay dominated Alluvium in the western site area, there is expected to be a lesser degree of shallow groundwater interconnectivity in this area i.e. the groundwater levels observed here may be more representative of localised disconnected perched groundwater.

WSP considers the main groundwater flow horizon beneath the site to be the basal alluvial gravel horizon upon the lower permeability Charmouth Mudstone bedrock, or 'River Terrace deposits' as referred to by Hydrock. This gravel dominated horizon thickens to the east, and WSP agrees with Hydrock that this horizon likely provides base flow to the River Cherwell. There is also likely to be some degree of hydraulic connection between shallow groundwater on-site and the Bird Brook.

WSP has reviewed groundwater results obtained as part of the Hydrock investigation against relevant Environmental Quality Standards (UK Drinking Water Standards 'UK DWS' and UK Surface Water Standards 'UK SWS'), and concurs with the identified marginal exceedances of copper, manganese and nickel noted by Hydrock. Such concentrations, which may be associated with more diffuse type shallow groundwater conditions across the local area, are not considered to represent a significant risk to identified controlled water receptors. A predominance of building cover and hardstanding across the current and proposed development on-site will also restrict the infiltration of precipitation and mobilisation of any ground contamination (if present).

Ground Gas

WSP considers that the ground gas monitoring performed by Hydrock on-site generally adequate. However, WSP note that two of the monitoring wells in the west of the site (WS9 & WS25) had saturated screen intervals during the monitoring rounds, and therefore their ground gas results not representative of that within the unsaturated horizon.

However, the remaining seven monitoring wells still appear to provide relatively good site coverage and in particular provide ground gas results for the thicker Made Ground horizons in the east of the site (considered a key potential ground gas generating source).

WSP concurs with Hydrock that generally low ground gas concentrations were noted across site during monitoring and there was a lack of a relationship between the more elevated ground gas concentrations and atmospheric pressure. For these reasons, WSP agrees with Hydrock that the ground gas regime beneath the site is likely best characterised as a CS1 (very low risk), even though one marginally elevated carbon dioxide concentration was detected above the 5% v/v threshold (5.4% v/v WS9), that can tip a sites ground gas classification from a CS1 to CS2 (low risk).

On this basis, the need for ground gas protective measures in new building structures on-site as part of the proposed commercial / industrial development does not appear necessary.

CONCLUSIONS AND RECOMMENDATIONS - CONTAMINATED LAND

On the basis of the review of the Hydrock environmental reports provided by the Client, and with due regard to the proposed commercial / industrial use of the site with a predominance of building cover and hardstanding, WSP considers that the site represents a **low/medium** risk with respect to potential contaminated land liabilities. This risk rating assumes that appropriate (validated) clean cover fill will be incorporated into proposed unsurfaced landscaped areas of the site as part of its redevelopment, to

mitigate any potential human health exposure risks due to areas of localised soil contamination, if present (primarily linked to potential asbestos in soils).

The medium element of the risk rating principally relates to the uncertainty over the former fuel station area on-site and the potential for unrecognised refuelling infrastructure (including USTs) and hydrocarbon ground contamination, although a significant fuel release to ground in this area is not suggested by available Hydrock investigation findings.

On this basis, it is recommended that the Vendor be asked to provide any documentary evidence to confirm the absence/presence of such former refuelling infrastructure in this area, and if present, provision of appropriate decommissioning documentation.

Should such information not be available, consideration should be made towards the more targeted intrusive investigation of this former fuel station area on-site to reduce the uncertainty, whether as a precursor to, or during proposed site redevelopment construction phase. This will ensure any potential in ground structures and possible hydrocarbon contamination can be delineated and appropriately removed.

It is recommended that the Client seeks reliance on the Hydrock reports which form the basis of this peer review.

FLOOD RISK ASSESSMENT PEER REVIEW

PETER BRETT ASSOCIATES FLOOD RISK ASSESSMENT FRA OVERVIEW

- The 2012 Peter Brett Associates LLP (PBA) Flood Risk Assessment (FRA) was written in line with Planning Policy 25: Development and Flood Risk (PPS25) and was to accompany an outline planning application for a 5,574m² (60,000 sq ft) foodstore, petrol filling station and up to 7, 432m² (80,000 sq ft) of non-food retail and associated car parking.
- PBA states that the site is not at risk from tidal/coastal flooding, groundwater flooding, surface water flooding and foul water flooding but fluvial flood risk was considered further.
- PBA describe that the River Cherwell flows in a south easterly direction approximately 600m to the east of the site. The EA provided modelled flood levels from the Cherwell (Banbury) Flood Study (February 2011) and comparison of ground levels to modelled flood levels confirmed that there was a very low probability of flooding from the River Cherwell and that the site was located in Flood Zone 1.
- PBA describes that the Birds Brook, a tributary of the River Cherwell, flows in open and culverted sections through the north of the site. It is classed as a public sewer upstream and downstream of the site and is owned and maintained by Kraft within the site boundary. PBA estimates the maximum inflow to the western end of the Birds Brook to be 2.23m³/s using the HR Wallingford hydraulic design tables (8th edition) and that the two stage channel capacity can accommodate a flow of greater than 10m³/s. PBA concludes that there is a low probability of flooding at the site even taking into account a 20% increase in flows due to climate change.
- PBA state that there is no requirement to apply the Sequential Test or Exception Test.
- PBA confirms the development proposals include realignment and deculverting of some sections of the Birds Brook with the potential for some channel improvements. They also recommend minimum finished floor levels, a buffer zone and regular maintenance of the watercourse.
- PBA stated that infiltration drainage has not been considered as the site is located on unproductive strata and has a history of industrial and commercial use. Should site investigation indicate suitable conditions the drainage strategy could be revised.
- PBA stated that surface water runoff currently drains, unattenuated, to the Birds Brook.
- PBA's proposed drainage scheme is to continue to discharge into the Birds Brook, 3.2ha unattenuated and the remainder at the Greenfield runoff rate. Attenuation is to be provided to achieve this in shallow sub base replacement storage beneath the car park.
- PBA highlights long term management, exceedance and pollution control as requiring consideration.

PBA concludes that the proposed development is appropriate for the site on the basis of flood risk. Furthermore, the suitable flood risk mitigation measures and a surface water management strategy be incorporated into the scheme to ensure that the proposed development does not result in an adverse impact elsewhere on the basis of flood risk.

WSP OPINION - FLOOD RISK ASSESSMENT

- WSP agrees with PBA that:
 - The site is located in Flood Zone 1 on the Environment Agency's Flood Map for Planning and access and egress should not be affected by fluvial flooding.
 - Flood risk from the River Cherwell is low.
 - Flood risk from the Birds Brook is likely to be low but to have a greater confidence, more detailed hydraulic modelling could be undertaken, especially as culvert realignment and opening is included in the proposed masterplan.
 - Flood risk from tidal / coastal, groundwater and foul water sources is low.
- PBA state under surface water flooding that "Thames Water has confirmed that the site has not been affected by surface water flooding" but it does not reference any other sources of information.
- On the EA's Flood Risk from Surface Water Map for the existing scenario, the site is shown to be at low to high risk from surface water flooding (it should be noted that these maps have been made available since the date of publication). It shows the following:
 - High Risk Scenario depths are up to 900 mm and velocity is over 0.25 m/s;
 - o Medium Risk Scenario depths are up to 900 mm and velocity is over 0.25 m/s; and
 - Low Risk Scenario depths are locally over 900 mm and velocity is over 0.25 m/s.
- The site is not shown to be at risk from reservoir flooding on the EA's Flood Risk from Reservoirs map.
- WSP concur that there is no requirement for the Sequential or Exceptions test.

CONCLUSIONS AND RECOMMENDATIONS - FLOOD RISK ASSESSMENT

- Planning policy has been updated since the production of this report and any revision to the Flood Risk Assessment will now need to be undertaken in accordance with NPPF, rather than PPS25.
- New climate change guidance issued by the Environment Agency in 2016 and updated in 2017 will also need to be incorporated into any revised FRA. This recommends that for the Thames River Basin, the central allowance should be used for development in Flood Zone 1 which represents a 25% increase in peak river flows up to 2080. This is slightly higher than the 20% increase included as part of PBA's FRA.
- If the condition of the culverts is not known, it is recommended that a CCTV survey be undertaken to ensure that they are structurally sound to minimise the risk of any culvert collapse.
- To minimise the risk of culvert blockage, trash screens could be placed on culvert entrances.
- The proposed drainage strategy is not in line with current guidance and if the FRA is to be updated, there will be a requirement to further restrict the proposed surface water flows. Typically, surface water runoff will need to be reduced by at least 30% compared to the existing situation and may need to be restricted to the Greenfield runoff rate. This will require a greater amount of on-site attenuation storage.
- In addition, EA climate change guidance recommends a range of 20%-40% increase in peak rainfall intensity, which again, is likely to increase the amount of attenuation storage on-site.
- Surface water flooding can be mitigated against by careful design of the drainage system and site levels and the incorporation of minimum finished floor levels.

It is recommended that the Client seeks reliance on the PBA FRA report which forms the basis of this peer review.

We trust the above information meets with your current requirements. However, should you require any further assistance please do not hesitate to contact us.

Yours sincerely,

Thomas Allewell Principal Consultant

Tel: 0788 126 7812 E: tom.allewell@wsp.com

Paloma Capital LLP

KRAFT, SOUTHAM ROAD

Tank Investigation

Paloma Capital LLP

KRAFT, SOUTHAM ROAD

Tank Investigation

TYPE OF DOCUMENT (VERSION) CONFIDENTIAL

PROJECT NO. 70041591 OUR REF. NO. 10954

DATE: JANUARY 2018

WSP The Victoria 150-182 The Quays Salford M50 3SP

Phone: +44 161 886 2400 Fax: +44 161 886 2401

WSP.com

QUALITY CONTROL

Issue/revision	First issue	Revision 1
Remarks	-	
Date	05/01/17	
Prepared by	Stephen Jones	
Signature		
Checked by	Martin Lucass	
Signature		
Authorised by	Andy McCusker	
Signature		
Project number	70041591	
Report number	10954	

CONTENTS

1	INTRODUCTION	1
1.1	AUTHORISATION	1
1.2	CONTEXT AND OBJECTIVES	1
1.3	SCOPE OF WORKS	1
1.4	LIMITATIONS	1
2	SUMMARY OF EXISTING INFORMATION	2
3	SITE INVESTIGATION STRATEGY	4
3.1	INVESTIGATION STRATEGY AND FIELDWORK	4
3.2	LABORATORY TESTING	5
4	SITE INVESTIGATION - RESULTS	6
4.1	NON-INTRUSIVE GROUND CHECK SURVEY	6
4.2	GROUND CONDITIONS	6
4.3	FIELD SCREENING	7
4.4	GROUNDWATER DATA AND HYDROGEOLOGICAL CONDITIONS	7
4.5	QUALITATIVE REVIEW OF SOIL AND GROUNDWATER ANALYTICAL DATA	8
5	GENERIC QUANTITATIVE RISK ASSESSMENT	9
5.1	INTRODUCTION	9
5.2	HUMAN HEALTH RISK ASSESSMENT	9
5.3	CONTROLLED WATERS RISK ASSESSMENT	9
5.4	CONCEPTUAL SITE MODEL SUMMARY	10
6	SUMMARY AND RECOMMENDATIONS	12
6.1	CONTAMINATION	12
6.2	ABOVE GROUND AND BELOWGROUND TANKS	12

APPENDICES

Appendix A - Figures

Appendix B - Borehole Logs

Appendix C - Laboratory Results

Appendix D - Human Health GAC Derivation

Appendix E - Screening Tables

Appendix F - Zetica Reports

1 INTRODUCTION

1.1 AUTHORISATION

WSP was commissioned by Paloma Capital LLP to undertake a Phase 2 site investigation of a historical hydrocarbon storage area, henceforth referred to as the site at the Kraft site, Southam Road, Banbury. A location plan is included as Figure 1 in Appendix A.

The work was undertaken in accordance with our proposal (70041591, 21 November 2017) and following instruction from Paloma Capital LLP (via email on 21 November 2017).

1.2 CONTEXT AND OBJECTIVES

The site occupies an area approximately 0.1 hectares and is located in the south west of the wider Kraft factory site, located off the A361, Southam Road, Banbury. The site is currently disused and comprises areas of hard standing and a grassed embankment. A path runs through part of the site for pedestrian access.

WSP undertook a high level peer review of existing third party information for the wider Kraft site (70038703/TA/Final) in October 2017. The review identified the potential for onsite underground fuel storage tanks (USTs) or above ground storage tanks (ASTs) and associated infrastructure that had not been investigated as part of a previous phase of ground investigation. It is understood that the site is to be redeveloped for commercial use with hardstanding cover and no buildings.

WSP were commissioned to undertake a site investigation to establish the following:

- The presence or absence of any USTs or ASTs; and
- The potential for hydrocarbon contamination associated with the tanks, fuel lines and pumps.

1.3 SCOPE OF WORKS

To achieve the defined objectives, the following scope of works was completed:

- Utility Clearance to identify underground services;
- Formation of four shallow window sample boreholes with combined ground gas and groundwater monitoring installations in three of these;
- Representative soil sampling and screening:
- One round of ground gas and groundwater monitoring;
- Laboratory analysis of soil and groundwater samples;
- Non-intrusive geophysics (groundcheck) survey to establish presence of USTs; and
- Provision of factual and interpretive reporting, referencing the data obtained and providing a generic quantitative risk assessment for human health and controlled waters, produced in accordance with published guidance.

1.4 LIMITATIONS

WSP has undertaken the works detailed in this report in accordance with the agreement dated 21 November 2017. The report may be relied upon by Paloma Capital LLP, as "the Client" with the meaning given to that phrase within the agreement and subject to terms and conditions contained therein.

This report has been completed with regard to generally accepted consulting practices and may not be relied upon by any other party without the explicit written agreement of WSP. No other third party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.

Unless WSP has actual knowledge to the contrary, WSP shall assume the correctness and completeness of, and shall have no liability in respect of any inaccuracy, defect or omission in any information or materials provided, anecdotally or otherwise, by the Client or any other third party to WSP. WSP does not assume any liability for misrepresentation of information or for items not visible, accessible, present or supplied at the time of the study.

Kraft, Southam Road

Paloma Capital LLP

Project No.: 70041591 | Our Ref No.: 10954

2 SUMMARY OF EXISTING INFORMATION

WSP has previously produced the following high level peer review on behalf of the client:

Kraft, Southam Road, Banbury, Oxfordshire, OX16 2EP—High Level Peer Review of Selected Third Party Information, by WSP on behalf of Paloma Capital LLP, October 2017, Ref: 70038703/TA/Final

This document reviewed the following third party reports on the larger Kraft site:

- Flood Risk Assessment, Southam Road Retail Park, Banbury, by Peter Brett Associates LLP on behalf of Kraft Foods UK Ltd and Barwood Developments Ltd, March 2012, Ref.26004/005;
- Ground Conditions Desk Study, Kraft Phase 1, Banbury, by Hydrock on behalf of db symmetry Limited, April 2016, Ref: R/161279/001, Final; and
- Ground Investigation, Kraft Phase 2, Banbury, by Hydrock on behalf of db symmetry Limited, July 2016, Ref: R/161279/002, Final.

This high level peer review reported that previous ground investigation provided a good understanding of the ground conditions and the general environmental setting of the wider Kraft site. WSP considered that the ground investigation provided sufficient coverage of the wider Kraft site, with the exception of a historical fuel station, (DERV3 lubricating oil) which was not mentioned in the 2016 Hydrock Phase 1 or targeted in the following site investigation. No information regarding the presence of USTs/ASTs or hydrocarbon contamination was previously reported.

A WSP consultant visited the site on 30 November and conducted an interview with Adrian Everett of JDE Coffee regarding the historical fuel infrastructure on site. From this interview, the approximate locations of historical fuel pumps, USTs and ASTs were noted. The locations of these features are shown on Figure 3 in Appendix A. It was confirmed that an AST was present in southeast of the site and was removed. It was unclear if the USTs in the western part of the site were removed, still present or backfilled.

This report should be read in conjunction with the High Level Peer Review produced by WSP in October 2017. A brief summary of the relevant site information from the peer review and the previous reports has been compiled and is presented in Table 2-1 below.

Table 2-1 – Site Information Summary

Site Address	Kraft, Southam Road, Banbury OX16 2QU
National Grid Reference	445070 241421
Site Setting	The site is located approximately 1km to the north of Banbury town centre and comprises an area of hardstanding and embankment located in the south east of the wider Kraft site. To the north of the site, land is occupied by the Kraft factory. Surrounding land uses comprised mixed commercial premises to the west and east, with residential properties with gardens to the south.
Current Site Layout and Features	The site layout is shown on Figure 3 in Appendix A. The following notable features are present: An area which previously contained an AST; An area with potential USTs still in-situ; and Historic filling area. The ground cover comprises approximately 50% asphalt hardstanding and 50% soft landscaping (embankment area).
Site History	Historic mapping from 1881 shows the site as open fields. By 1965, an industrial building (food processing plant) was shown to the north east of the site (part of the larger Kraft factory extending off-site to the north). Anecdotal evidence from site staff suggests that underground storage tanks and associated fuel pumps were present north of the site during the 1980's. An above ground diesel storage tank was reported

	to be present in the southeast of the site from the 1990's to approximately 2012 when it was decommissioned and removed.
Ground Conditions	Made Ground is expected beneath the hardstanding. Depths of Made Ground are likely to vary across the site. Superficial (drift) deposits are expected to comprise either Alluvium (sandy gravelly silt) to between 1.2m and 4.6m bgl and/or River Terrace Deposits (gravely sand) to between 0.9 and 8.0m bgl. Bedrock of the Charmouth Mudstone is expected to underlie the drift deposits, to a maximum proven depth of 20.14m bgl. The Hydrock investigation in 2016 reported mudstone at 4.30m bgl, approximately 60m to the south east of the site.
Hydrology	The nearest surface water feature is Bird Brook, 150m to the north of the site. The brook flows from northwest to southeast and is culverted beneath a warehouse on the wider Kraft site, before flowing into the river Cherwell approximately 500m to the east.
Hydrogeology	The Alluvium and River Terrace Deposits likely to be present on site are designated as Secondary (A) aquifers. The underlying Charmouth Mudstone Formation is categorised as a Secondary undifferentiated aquifer.

It was unclear if an unexploded ordnance report was available for the site. Consequently, this was commissioned prior to commencing intrusive works. It confirmed there to be no readily available records of bombing or other significant military activity on the site. The site is therefore considered to have a low unexploded ordnance (UXO) hazard level. The summary report is included in Appendix F.

3 SITE INVESTIGATION STRATEGY

3.1 INVESTIGATION STRATEGY AND FIELDWORK

An updated utility survey was completed on 30 November 2017 to inform on potential below ground constraints and provide an updated record of below ground utilities prior to the intrusive investigation. A Ground Penetrating Radar (GPR) Survey was also attempted at this stage to establish the presence of any USTs, however the thickness of the vegetation cover in the area prevented the survey from being successful.

Using the updated utility plan and the historical locations of both above ground and below ground storage tanks, four drilling locations were identified. The rationale behind the locations and the final installation details are summarised in Table 3-1 below. Note that 8 potential drilling locations were cleared, WS101 – WS108, with the final drill locations selected as WS202, WS203, WS205 and WS207.

The intrusive works were completed under the full time supervision of a WSP engineer on the 05 December 2017 as described below:

- Each drilling location was reviewed on-site and initiated with hand dug pits to a target depth of 1.5m bgl to minimise the risk of damage to unidentified buried services / utilities;
- Boreholes were subsequently formed using a window sampling technique;
- Whilst logging soils the WSP engineer screened samples from the recovered material for visual and olfactory evidence of hydrocarbons and also used a calibrated Photo Ionisation Detector (PID) at 1m intervals to provide evidence of the presence of volatile organic compounds (VOCs). Details are included on the borehole logs (Appendix B) and are discussed in more detail in Section 4;
- A total of 23 disturbed soil samples from the boreholes were taken during drilling. Of these, ten samples were selected for laboratory chemical analyses and asbestos screening (Made Ground only);
- Three of the four boreholes were installed with 50mm diameter groundwater monitoring wells, which were finished at the surface with flush covers; and
- The newly installed monitoring wells were developed (removal of drilling fluids and sediments) following drilling of the boreholes on the 05 December 2017.

Exploratory hole locations are shown on Figure 2 and detailed borehole logs, including monitoring well installation details are included in Appendix B.

Groundwater sampling was undertaken on 15 December 2017. Representative groundwater samples were collected from WS202, WS205 and WS207, using low flow sampling methodology, which uses the stabilisation of groundwater parameters to indicate representative sampling.

Table 3-1 – Summary of Borehole Location Rationale and Installation Details

Borehole ID	Location and rationale	Total depth (m bgl)	Screened interval (m bgl)
WS202	Located on soft standing approximately 5m to the east of the historical above ground storage tank and downgradient of infrastructure.	4.3	2.0 - 4.0
WS203	Located on soft standing between the USTs and AST.	5	Not Installed
WS205	Located on soft standing approximately 5m to the east of the historical USTs.	5	3.5 - 5.0
WS207	Located on soft standing approximately 5m to the west of the historical USTs.	5	2.0 - 5.0

As the initial GPR survey had been unsuccessful in identifying any USTs, additional vegetation clearance and non-intrusive surveys were scheduled and completed on 04 and 08 January respectively.

WSP
January 2018
Page 4 of 12

Kraft, Southam Road
Project No.: 70041591 | Our Ref No.: 10954
Paloma Capital LLP

3.2 LABORATORY TESTING

All chemical testing was carried out by ALS Environmental (ALS) in Hawarden, Cheshire, a UKAS accredited laboratory. Where available the individual analytical tests were MCERTS accredited. Soil and groundwater samples were tested for a range of analytes, which are summarised in Table 3-2. Soil and Groundwater laboratory certificates are included in Appendix C.

Table 3-2 – Summary of Laboratory Chemical Testing

Determinand	No of soil samples analysed	No of groundwater samples analysed
Total Petroleum Hydrocarbon Criteria Working Group (TPH CWG) and Benzene, Toluene, Ethylbenzene and Xylene (BTEX)	8	3
Heavy Metals	8	3
Hexavalent Chromium	8	3
16 Speciated Polyaromatic Hydrocarbons (PAHs)	8	3
Semi-volatile organic compounds (SVOCs)	2	2
Volatile Organic Compounds (VOCs)	2	2
рН	9	3
Soil Organic Matter	10	N/A
Asbestos Fibre Screen	8	N/A

4 SITE INVESTIGATION - RESULTS

4.1 NON-INTRUSIVE GROUND CHECK SURVEY

WSP attended site on 08 January 2018 with a specialist ground survey and geophysics company Zetica who employed the following techniques to observe the presence or absence of USTs in the embankment:

- Electromagnetic (EML) & Magnetometer;
- Time domain electromagnetic detection (TDEM); and
- 3D Ground Penetrating Radar.

Survey results were made available on 12 January 2018 and confirmed there to be an area of disturbed ground across the anticipated location of the USTs but no evidence of a UST being present. The survey also identified a number of utility services and a section of reinforced concrete. The full survey results are presented in Appendix F.

4.2 GROUND CONDITIONS

A summary of the ground conditions encountered is provided in Table 4-1 below.

Table 4-1 Summary of Ground Conditions Encountered

Strata	Maximum Reported Depth to Base of Strata (m bgl)	Thickness (m)
Made Ground (Granular and Cohesive)	3.4	3.4
Alluvium	3.5	1.6
River Terrace Deposits	4.7	1.3
Charmouth Mudstone	Not proven	Not proven

MADE GROUND

Made Ground was encountered in all locations and comprised:

- Grass over dark brown gravelly fine and medium SAND with occasional rootlets. Gravel is fine and medium angular to subrounded of various lithologies including brick and sandstone;
- Dark brownish orange very clayey gravelly medium and coarse SAND. Gravel is medium and coarse angular to subrounded of various lithologies including brick; and
- Firm dark brownish orange mottled grey sandy slightly gravelly CLAY. Gravel is fine and medium angular to subrounded of flint and coal.

The greatest depth of Made Ground was encountered in WS205, drilled within the embankment surrounding the suspected USTs.

SUPERFICIAL DEPOSITS

Alluvium was encountered in WS207 only, to a maximum depth of 3.5m bgl. The encountered ground comprised:

Very soft dark bluish grey sandy slightly gravelly CLAY. Gravel is fine to coarse subrounded of mudstone and sandstone.

River terrace deposits were encountered in all boreholes to a maximum depth of 4.7 m bgl. The encountered ground comprised:

Dark brownish orange sandy fine and medium subangular to rounded GRAVEL of mudstone, flint and quartz;

WSP January 2018 Page 6 of 12

- Light greyish orange slightly gravelly fine and medium SAND with occasional small shells. Gravel is fine and medium angular of mudstone; and
- Soft light yellowish brown very sandy CLAY.

BEDROCK

Weathered Charmouth Mudstone bedrock was encountered in all boreholes and comprised:

Soft dark bluish grey gravelly CLAY with occasional bivalve fragments. Gravel is fine and medium angular to subrounded of various lithologies including flint and mudstone.

Solid mudstone bedrock was only encountered in WS202 at a depth of 4.25m bgl, where it caused a refusal. The bedrock comprised:

Thinly laminated dark bluish grey MUDSTONE with numerous bivalve shell fragments.

4.3 FIELD SCREENING

Visual and olfactory evidence of hydrocarbon contamination was noted in arisings from WS203 and WS205, as follows:

BH203 - 1-1.5m bgl: Slight black hydrocarbon staining and moderate hydrocarbon odour. PID - 1ppm; and BH205 - 2-2.5m bgl: Slight hydrocarbon odour. PID - <1ppm

Soil arisings were tested using a PID at 0.5m intervals within Made Ground and 1m intervals within natural strata. No marginal (>10ppm) PID readings were recorded.

4.4 GROUNDWATER DATA AND HYDROGEOLOGICAL CONDITIONS GROUNDWATER ELEVATION

Following well development on 05 December 2017 and a period of recovery, depth to resting groundwater level was recorded in advance of groundwater sampling. Groundwater monitoring data and relevant monitoring well details are summarised in Table 4-2 with groundwater elevations. Note that wells were screened into the Charmouth Mudstone Formation as during formation, groundwater strikes were generally within the base of the superficial / top of the bedrock. Groundwater elevations indicate that groundwater flow is towards the east in the direction of the ditch.

Table 4-2 Groundwater Monitoring Data and Monitoring Well Details

Monitoring Well	Screen Interval (m bgl)	Groundwater Depth (m bgl)	Groundwater Elevation (m AOD)	Response Zone	Groundwater Rest level within
WS202	2.0-4.0	1.38	94.74	River Terrace Deposits / Charmouth Mudstone Formation	Cohesive Made Ground
WS205	3.5-5	2.05	95.17	River Terrace Deposits/ Charmouth Mudstone Formation	Cohesive Made Ground
WS207	2-5	1.26	95.16	River Terrace Deposits / Alluvium / Charmouth Mudstone Formation	River Terrace Deposits

Kraft, Southam Road Project No.: 70041591 | Our Ref No.: 10954

Paloma Capital **LLP**

4.5 QUALITATIVE REVIEW OF SOIL AND GROUNDWATER ANALYTICAL DATA

SOILS DATA

The soils data highlighted the presence of low concentrations of petroleum hydrocarbons in all eight of the scheduled samples, with total hydrocarbons reported between 0.92mg/kg (WS205 at 3.5-3.7m bgl) and 156mg/kg (WS203 at 1.0-1.3m bgl).

The hydrocarbons detected were predominantly carbon chain 12 (C12) compounds and above, with only trace concentrations or below the laboratory limit of detection (LOD) for the lighter C5 to C12 compounds in the majority of samples tested.

Concentrations of metals were detected above the LOD in all samples. No notably high concentrations of heavy metals were detected. Asbestos was not identified in any of the samples tested.

Of the eight samples that were tested for Polyaromatic Hydrocarbons (PAH), only one sample returned results above the LOD. A trace concertation of 0.558mg/kg (total PAHs) was detected in sample WS205 at 0.7-1.0m bgl.

GROUNDWATER

No light non-aqueous phase liquid (LNAPL) was encountered in any of the monitoring wells during purging or sampling.

PAH concentrations were not identified above trace concentrations (>1 μ g/l) in any of the samples analysed. However, a low concentration of Fluoranthene (0.0146 μ g/l) was detected in the sample from WS202. This is discussed in Chapter 5.

Two groundwater samples were analysed for Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs). Both samples returned results below the LOD.

Low concentrations of a range of metals, including arsenic, barium, boron, lead, selenium, vanadium and zinc were detected in all samples analysed. None of the concentrations are notably elevated. Results are considered consistent with background conditions rather that highlighting any site specific impact.

WSP January 2018 Page 8 of 12

5 GENERIC QUANTITATIVE RISK ASSESSMENT

5.1 INTRODUCTION

The quantitative risk assessment has been undertaken in general accordance with guidance issued by the Environment Agency and comprises a Generic Quantitative Risk Assessment (GQRA) which screens concentrations against Generic Assessment Criteria (GAC).

5.2 HUMAN HEALTH RISK ASSESSMENT SELECTION OF GAC – HUMAN HEALTH

Based on the intended use of the site for commercial property with hardstanding, the reported soil concentrations were compared against the GAC for commercial use using a soil organic matter (SOM) content of 1% on the basis of the site specific data.

If undisturbed, groundwater beneath a site will normally only present a risk to human health if it contains volatile substances (due to migration into buildings followed by inhalation). WSP has generated a set of human health GAC applicable to selected volatile compounds in groundwater, designed to be protective of human health. The methodology through which the GAC were derived is included in Appendix D.

SOIL ASSESSMENT RESULTS - HUMAN HEALTH

There were no exceedances of the GAC for any of the soil samples tested. Given the absence of GAC exceedances in all of the analysed samples, soil contamination is not considered to represent a risk to human health, based on the planned redevelopment scenario. The soil screening data are presented in full in Appendix E.

GROUNDWATER ASSESSMENT RESULTS – HUMAN HEALTH

Given that the site is proposed for commercial use, concentrations of volatile compounds in groundwater have been compared to the human health groundwater GAC for a commercial end use.

None of the groundwater concentrations exceed the GAC and it is considered that there is no unacceptable risk to human health from vapours as result of volatile compounds present in groundwater.

5.3 CONTROLLED WATERS RISK ASSESSMENT

SELECTION OF GAC – CONTROLLED WATERS

The Environment Agency's Remedial Targets Methodology states that groundwater GAC for Controlled Waters risk assessment should comprise a target concentration compliant with relevant statutory guidance and consistent with the conceptual site model.

The Bird Brook, located approximately 150m to the north of the site is considered to be an appropriate controlled waters receptor. The brook is culverted beneath the Kraft factory to the north, however the closest non culverted section of the brook is located approximately 200m to the north east of the site. The brook flows northwest to southeast, following the topography of the wider Kraft site. Environmental Quality Standards have been adopted as the most appropriate GAC for this receptor. One exceedance was identified.

Underlying groundwater within the Alluvium and River Terrace Deposits (Secondary A Aquifers) is also considered to be an appropriate controlled waters receptor and as such, UK drinking water standards (DWS) have been adopted as the most appropriate GAC, where available. WHO Health Organisation (WHO) criteria have been adopted in the absence of an appropriate DWS. No GAC exceedances were identified when considering groundwater receptors.

GROUNDWATER ASSESSMENT RESULTS – CONTROLLED WATERS

One exceedance of the GAC was recorded in the samples analysed, when considering a surface water receptor. The concentration of fluoranthene exceeded the GAC as shown in Table 5-2.

Kraft, Southam Road Project No.: 70041591 | Our Ref No.: 10954 Paloma Capital **LLP** WSP January 2018 Page 9 of 12

Table 5-2 – Summary of Groundwater Exceedances with Respect to a Surface Water Receptor

Analyte	Concentration (µg/l)		
	Screening Value	WS202	
Fluoranthene	0.0063	0.0146	

CONTROLLED WATER ASSESSMENT DISCUSSION

As groundwater is recorded as sitting within the River Terrace Deposits, there is a viable pathway for contamination to migrate through the permeable sand and gravel strata and reach the surface water receptor over time. Whilst the generic risk screen of the available groundwater data does highlight an exceedance of the assessment criteria for a surface water receptor, the exceedance is considered to be minor.

The overall risk profile with regards to controlled water receptors is considered to be low based on the following factors:

- Given the surface water environments in the vicinity of the site, the GAC used in the assessment is considered to be conservative:
- The contamination identified within WS202 is minor and has not been recorded in the other groundwater samples tested;
- There is minimal evidence of any ongoing source of contamination from the soils data;
- As the contamination migrates, the concentration will reduce due to the following processes:
 - Sorption of the contaminant to the soil;
 - Dispersion of the contaminant; and
 - Degradation of the contaminant.

As such it is considered that the concentration recorded in WS202 does not present a future risk to controlled waters.

5.4 CONCEPTUAL SITE MODEL SUMMARY

A review of the potential contamination linkages is provided in Table 5-3 below.

Table 5-3 Potential Contamination Linkages

Source	Secondary Source	Pathway	Receptor	Potential Risk					
Former Site use – Hydrocarbon storage area	Hydrocarbons and other chemicals within soils.	Leaching to shallow groundwater	Groundwater within the drift deposits	Low Soils data does not indicate the presence of significant hydrocarbon source from former site use.					
and filling area.	WIGHT 30HS.	Direct ingestion, dust inhalation, dermal contact and vapour inhalation (outdoors)	Ground workers / construction workers during redevelopment. Future site users post- redevelopment	Potential risk to ground workers during any excavation works to be managed through work control procedures and PPE. No evidence of ground impact from potential offsite sources.					

Source	Secondary Source	Pathway	Receptor	Potential Risk
		Volatilisation and vapour inhalation (indoors)	On-site workers/future users	Low No evidence of significant concentrations of volatile compounds within soils. No evidence for the presence of putrescible waste material in Made Ground. Potential for soil gas accumulation is low. Future site redevelopment is for hardstanding and no structures.
		Vertical migration in groundwater	Groundwater within superficial deposits (Secondary A aquifers)	Low Whilst there is evidence for minor existing groundwater impact at the site, the hydrocarbon concentrations detected in soils are not considered to be sufficient to drive a significant ongoing risk to groundwater quality.
	Impacted Groundwater	Lateral migration in groundwater	Groundwater within bedrock (Secondary undifferentiated aquifer).	Low Potential risk from dissolved phase hydrocarbons is considered to be low given the relatively low permeability and low sensitivity of the Charmouth Mudstone.
		Volatilisation and vapour inhalation (indoors)	On-site workers/ users and immediate neighbouring properties	Low No evidence of significant volatile compounds in groundwater. Future site redevelopment is for hardstanding and no structures.
		Lateral migration in groundwater	Surface water receptors.	Low The closet surface water receptor is approximately 200m down gradient of the source. Given the GAC exceedance is minor, the risk to the controlled surface water receptor is considered to be low.

In addition to the above it is noted that whilst Made Ground materials were encountered at the site the recovered samples did not identify the presence of asbestos containing materials (ACMs). Notwithstanding this asbestos is frequently encountered in made ground materials even where not encountered during sampling. Consequently, whilst the potential for significant areas of asbestos to be present is considered to be low based on the completed sampling the potential presence of ACMs should be considered during any site works particularly where disturbance of made ground is required.

6 SUMMARY AND RECOMMENDATIONS

6.1 CONTAMINATION

The site is underlain by granular and cohesive Made Ground over superficial river Terrace Deposits and Alluvium. Charmouth Mudstone bedrock is present at approximately 4.2m bgl.

Groundwater is resting within the Made Ground or River Terrace Deposits at depths between 1.26m and 2.05m bgl and is inferred to flow east consistent with topography.

The investigation did not identify the presence of free phase hydrocarbons in the ground or resting on the groundwater (LNAPL) beneath the site.

The analytical results from soil samples was consistent with the field observations, with minor hydrocarbon contamination noted in the shallow soils. Asbestos was not detected in any of the samples analysed.

The analytical results from groundwater samples confirmed the presence of low concentrations of dissolved phase PAHs in one of the three groundwater samples, indicated by a minor GAC exceedance for fluoranthene.

Generic assessment of potential risks to human health and controlled waters receptors confirmed:

- No exceedances of commercial screening criteria protective of human health was recorded;
- A single GAC exceedance in the groundwater data indicate a theoretical risk to the closest surface water receptor (Bird Brook). However the minor exceedance in Fluoranthene is considered low risk to controlled waters given the distance between the contamination source and the surface water receptor and the absence of any ongoing source of contamination, or widespread contamination in the other groundwater samples retrieved.

6.2 ABOVE GROUND AND BELOWGROUND TANKS

The investigation has confirmed that an above ground tank in the southeastern part of the site has been removed. The investigation has also confirmed that there are no underground storage tanks in the western part of the site.

WSP January 2018 Page 12 of 12

Appendix A

FIGURES

Key

Approximate Site Boundary

wsp

TITLE:

Site Location Plan

FIGURE No:

Figure 1

0 50 100 150 200

Map data ©2018 Google

Key

Approximate Site Boundary

Exploratory Hole Location

TITLE:

Site Layout Plan

FIGURE No:

Figure 2

0 5 10 15 20

Map data ©2018 Google Imagery ©2018 ,

DigitalGlobe, Getmapping plc, Infoterra Ltd &
Bluesky

Map data ©2018 Google Imagery ©2018,
iii DigitalGlobe, Getmapping plc, Infoterra Ltd & Bluesky

Key

Approximate Site Boundary

Location of historical tanks and pumps

Bunded area

TITLE:

Site Features Plan

FIGURE No:

Figure 3

0 5 10 15 20

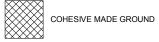
Appendix B

LOGS

WSP					BOREHOLE LOG WS202																			
		SP		F	Project Kraft, Southam Road Tank Investigation											Sheet 1 of 2								
Job No	7004	1591		C	Client Paloma Capital									D	Date 05-12-17 05-12-17									
Contracto	r / Drill Drillin			Meth			Used o Terrie	r	L	ogged By Stepher	n Jones	E	ates (NGR) 445131.987 241384.37		Grou	nd Level		D)						
			279				<u> </u>					STRAT						Install						
Depth	SAMPLES & TESTS Depth Type Test Result Care and Samples Result Care and Sampl		HSV (kN/m2)	P.Pen (kN/m2)	Water	Elev. (mAOD)			Description							Geology	Backfil Dia. mm							
0.00-0.10 0.00-0.00 0.70-1.00	ES EW		0				96.02	-ness) - 0.10/ 	root litho Firn Gra	ss over dark t lets. Gravel is ologies brick an dark brownis vel is fine and OUND)	fine and medi nd sandstone. th orange mot	um angular to (TOPSOIL) tled grey sand	subrounded ly slightly grav	of variou	JS AY.		TS							
- 2.10-2.30	ES		0				94.22	1.90 - - - - - - (0.70)	grav Ligh	o - 1.80 Band o vel of coal nt greyish oran	ge slightly gra	velly fine and	medium SAN	ID with			RT							
2.70-2.90	ES		0			1	93.52	2.60 - (0.60)	Dar	asional small s k brownish ora AVEL of muds	ange sandy fin	e and mediun	n subangular	to round	ed	0 0 0	RT							
3.50-3.70	ES		0			=	92.92 91.87 91.82	- - - - - - - - - - - - - - - - - - -	\ Thir	y stiff dark blui nly laminated c ments.			E with numer	ous biva	lve		CHAM							
Date		Time	1	Borin	ng Pr		ss ng Dpt	Dia. (m	nm)	Water Dpt	Date	Time	Water	Strikes Minu	ites	Standing	Ca	asing						
Date	ilme Der		Ilme Dept		Time Dep		Time Dep		Time Dep			Casi	пу Брі	Dia. (II		water Dpt	05-12-17	Time	3.10	IVIIIIU	illes	Standing		asiiiy
From		Chis To	elling F	lours		Т	ool	Fron		Added To	General Rem Hole terminate contamination	ed at 4.3 m bgl	due to refusal. I	No eviden	ce of olfa	ctory or visu	ıal							
Sca	le 1:62	.5		es: All nual id				etres. Lo	ogs s	hould be read	in accordance	e with the prov	rided Key. De	scription	s are ba	sed on vis	sual and	l 						

	\\'	SP)		BOREHOLE LOG									Hole	Hole No. WS203					
	Tele	phone:			Project Kraft, Southam Road Tank Investigation										Sheet 1 of 2				
Job No	7004	41591			Client Paloma Capital								Date	Date 05-12-17 05-12-17					
Contracto	or / Dri	ller		Metl	hod/l	Plant	Used		Lo	ogged By		Co-Ordina	ates (NGR)		Groun	round Level (m AOD)			
RF	P Drillii	ng Ltd.			I	Dand	o Terrie	r		Stepher	n Jones		445131.981 1241384.377		96.092				
S	AMPL	ES & TE	STS									STRAT	A					Install /	
Depth	Туре	Test Result	PID (ppmV)	HSV (kN/m2)	P.Pen (kN/m2)	Water	Elev. (mAOD)	Depth (Thick -ness)			De	escription				Legend	Geology	, D	okiii Dia. nm
-0.00-0.10	ES		0				95.99		\rootl	lets. Gravel is		um angular to	lium SAND with subrounded of		nal /		TS		
-1.00-1.30	ES		1					(1.65)	Firm Grav	n dark brownis vel is fine and DUND) 1 - 1.50 Slight	sh orange mott medium angu black hydroca	coal. (M	ADE		CMG				
2.10-2.30	ES		0				94.34	(0.65)	Ligh	t greyish oran asional small	ge slightly gra shells. Gravel	velly fine and is fine and m	medium SAND edium angular o	with f mudsto	one.	0	RT		
2.50-2.80	ES		0				93.69		GRA	AVEL of muds	tone flint and o	guartz with ra	n subangular to re small cobbles			0000	RT		
- - - - - - - - - - - - - - - - - - -	ES	sandstone. (RIVER TERRACE GRAVELS) Soft dark bluish grey gravelly CLAY. Gravel is fine and medium a subrounded of various lithologies including flint and mudstone.									m angula e.	ar to							
-	.90-4.10						91.09	5.00									-		
						rogre		·	,		5.	_	Water S			o			
Date	Date Time [Casing Dpt Dia. (mn			,	Water Dpt	Date 05-12-17	Time	Strike 3.10	Minutes		Standing	Ca	asing	3	
From		Chis To	elling F	Hours		Т	ool	From		Added To	General Rem Hole terminate 1.0m - 1.5m b	ed at 5 m bgl di	ue to refusal. Olfac	tory evide	nce of c	contamina	tion noted	d at	
Sc	ale 1:6	2.5	Note	es: A	II dim denti	nensi	ons in m	etres. Lo	ogs sh	hould be read	in accordance	with the pro	vided Key. Desc	riptions a	are bas	ed on vis	sual and	ı	

17 WSP


**	5)					Hole	Hole No. WS205										
	VSP ephone:		Proj	ect	ı	Kraft,	Sou	tham Roa	d Tank Inv	estigation		Shee	Sheet 1 of 2				
Job No 700	41591		Clie	Client Paloma Capital									Date 05-12-17 05-12-17				
Contractor / Dr		М		hod/Plant Used Logged By Co-Ordinates (NGR) Dando Terrier Stephen Jones E 445063.436 N 241383.758									Ground Level (m AOD) 97.223				
	ES & TE	STS						·		STRAT		<u> </u>					
Depth Type	Test	(kN/m2) P.Pen	Water	Elev. (mAOD)	Depth (Thick			Legen	d Geolog	Backfil Dia. mm							
0.00-0.10 ES 0.00-0.00 EW		Old o o			97.02	-ness) - 0.20	rootl lithol Firm occa	Grass over dark brown sandy slightly gravelly CLAY with occasional rootlets. Gravel is fine and medium angular to subrounded of various (ithologies. (TOPSOIL) Firm dark brownish orange mottled grey sandy slightly gravelly CLAY with occasional small cobbles of brick of. Gravel is fine to coarse angular to subrounded of various lithologies including brick. (MADE GROUND)									
2.10-2.30 ES		0				(3.20)	1.80 2.00	- 1.85 Band c - 2.50 Slight	of coarse cond of coarse cond hydrocarbon	erete gravel odour				CMG			
9.50-3.70 ES 9.70-4.00 ES	0 0		93.82 3.40 Dark orangish brown gravelly medium and coarse SAND medium angular to rounded of various lithologies includir and quartz. (RIVER TERRACE GRAVELS) 4.00 - 4.20 No recovery 4.20 - 4.70 Shell fragments							arse SAND. G	Gravel is fin flint, muds	ne and ottone	RT				
-					92.22	5.00											
Date Time Chiselling From To Scale 1:62.5 Not mail		Dep	oth					Water Dpt Added To	Date General Rem	Time	Water Strike	Strikes Minutes	Standing	g (Casing		
From Scale 1:6	2.5	Notes:	All din	S Tool From To General Remarks Hole terminated at 5.0 m bgl. Olfactory evidence of hydrocarbon noted in cohesive ma ground. All dimensions in metres. Logs should be read in accordance with the provided Key. Descriptions are based on visual and identification.													

		BOREHOLE LOG										Hole No. WS207							
		SP hone:			Proje	ect	!	Kraft,	Sou	utham Roa	d Tank Inv	estigation		Sheet	Sheet 1 of 2				
Job No	7004	1591			Client Paloma Capital									Date	Date 05-12-17 05-12-17				
Contracto	r / Drill Drillin			Meth	hod/Plant Used Logged By Co-Ordinates (NGR) Dando Terrier Stephen Jones E 445063.436 N 241383.758									;	Ground Level (m AOD) 96.423				
		ES & TE	272			<u> </u>		•				STRATA	241383.758)		===	Install		
Depth	Туре		Old (Amdd)	HSV (N/m2)	(KM/mZ) Del Elev. (MAOD) (Thic						De	escription	1		Legend	Geology			
0.00-0.10 0.00-0.00 0.40-0.60	ES EW ES		0	=	- =		96.22	-ness) - 0.20	to s	ass over dark g subangular GR ocrete. Gravel is ologies. (MADE	AVEL of of co	ncreté with oc	casional smal	Il cobbles of	ar	GMG	mm		
- 1.10-1.30	ES		0					(1.30)	Gra incl Firn	rk brownish ora evel is medium uding brick. m dark brownis	and coarse and h orange moti	ngular to subr	ounded of var	ious lithologie	」 ₩₩	CMG			
- 2.00-2.20	ES		0				94.52	(0.50)	1.00	gments of brick 0 - 1.50 Becom 0 - 2.00 Becom t light yellowish	ning less sand ning soft with li	y ittle sand				RT			
2.60-2.80	ES		0				94.02	(0.60)		k orangish bro						RT			
3.00-3.20	ES		0				92.92	(0.50) - 3.50	coa	y soft dark blui irse subrounde k greyish brow	d of mudstone n sandy slight	and sandsto	ne. (ALLUVIU	M)	000	ALV			
8.60-3.80 ES 0 1.10-4.30 ES 0					92.32	- 4.10	Ver	AVEL of variou y stiff dark blui- ells. Gravel is c	sh grey slightl	y gravelly CLA	Y with occasi	onal bivalve	0 0 0						
							91.42	5.00								CHAM			
								-											
								- - - - -											
-								-											
-								-											
-																			
								-											
_				Bori	ng Pr	ogre	ss						Water	Strikes					
Date		Time		Depth		Casi	ng Dpt	Dia. (n	nm)	Water Dpt	Date	Time	Strike	Minutes	Standing	Ca	asing		
		Chis	selling	<u> </u>				V	Vater	- Added									
Date		То		Hours	S Tool			Fror	n	То	General Rem Hole terminate	narks ed at 5.0 m bgl.	No visual or olfa	actory evidence	of contaminat	tion.			
Sca	es: A nual i	All dimensions in metres. Logs should be read in accordance with the provided Key. Descriptions are based on visual and identification.											sual and	l 					

LEGEND

GRANULAR MADE GROUND

Clayey SAND

Appendix C

LABORATORY RESULTS

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

WSP PB MLN The Victoria 150-182 The Quays Salford Manchester Lancashire M50 3SP

Attention: Stephen Jones

CERTIFICATE OF ANALYSIS

 Date:
 18 December 2017

 Customer:
 H_WSP_MAN

 Sample Delivery Group (SDG):
 171208-120

 Your Reference:
 70041591

 Location:
 Kraft, Banbury

 Report No:
 437139

We received 23 samples on Friday December 08, 2017 and 10 of these samples were scheduled for analysis which was completed on Monday December 18, 2017. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Approved By:

Sonia McWhan
Operations Manager

