

FLOOD RISK ASSESSMENT Land East of Claydon Road, Cropredy

Prepared for: Obsidian Strategic Asset Management Limited Ref: 016_8210439_SM_Flood_Risk_Assessment Issue 5: 16 August 2023

Document History

Issue	Date	Description	Prepared By	Checked By
1	23 Mar 23	First issue to client	B Wheeler / S McNair	J Birch
2	4 April 23	Updated site layout	S McNair	J Birch
3	11 April 23	Final version for submission	S McNair	J Birch
4	11 Aug 23	Updated following EA comments	A Quigley	J Birch
5	16 Aug 23	Section 5 updated	A Quigley	J Birch

Glanville

Glanville Consultants is a multi-disciplinary engineering, design and surveying consultancy with the following expertise:

Structural Engineering | Transport and Highways Civil Engineering | Geomatics | Building Surveying

Cornerstone House 62 Foxhall Road Didcot Oxfordshire OX11 7AD

Offices also at:

3 Grovelands Business Centre Boundary Way Hemel Hempstead Hertfordshire HP2 7TE

Telephone: 01235 515550

Telephone: 01442 835999

postbox@glanvillegroup.com www.glanvillegroup.com

© Glanville Consultants Ltd. All rights reserved.

This report contains confidential information intended solely for the recipient. No part of this report may be copied, reproduced or stored electronically without prior written permission from Glanville Consultants Ltd. This report has been prepared in accordance with the commissioning brief and is for the client's exclusive use unless otherwise agreed in writing. Glanville Consultants Ltd does not accept liability for any use of this report, other than for the purposes for which it is was originally prepared and provided. Third parties should not use or rely on the contents of this report without written permission from Glanville Consultants Ltd.

Contents

1.0	Introduction	.1
2.0	Site Description and Development Proposals	.2
3.0	Planning Policy and Guidance	.5
4.0	Source of Potential Flooding	.7
5.0	Flood Risk Assessment	.9
6.0	Surface Water Drainage	11
7.0	Foul Water Drainage	15
8.0	Summary and Conclusion	17

Appendices

Appendix A:	Site Location Plan
Appendix B:	Topographical Survey
Appendix C:	Geological Mapping Extracts
Appendix D:	Proposed Site Layout
Appendix E:	Environment Agency Flood Map for Planning Extract
Appendix F:	Thames Water Sewer Records
Appendix G:	Topographical Survey & Flood Zones Overlay
Appendix H:	Proposed Drainage Strategy

Appendix I: MicroDrainage Calculations

1.0 Introduction

1.1 This Flood Risk Assessment has been prepared by Glanville Consultants on behalf of Obsidian Strategic Asset Management to accompany an Outline planning application for a proposed development of up to 60 dwellings and a community facility on land east of Claydon Road, Cropredy, Oxfordshire, OX17 1JP, herein referred to as 'the site'. The description of development is as follows:

Outline planning application (except for access) for residential development of up to 60 dwellings (Use Class C3) including a community facility, new vehicular and pedestrian access off Claydon Road, public open space and associated landscaping, earthworks, parking, engineering works and infrastructure.

- 1.2 The purpose of this document is to assess the existing level of flood risk to the site and its surroundings within the context of the development proposals and to demonstrate suitable strategies for the disposal of surface water run-off and foul water effluent from the development can be provided.
- 1.3 This assessment has been prepared in accordance with the National Planning Policy Framework (NPPF) and the Planning Practice Guidance (PPG) to the NPPF. Local policy concerning flood risk and drainage has been considered, in compliance with the guidance set out in the Cherwell District Council Strategic Flood Risk Assessment, published in May 2017.
- 1.4 This assessment has been undertaken with reference to information provided and/or published by the following bodies:
 - Ordnance Survey;
 - British Geological Survey;
 - Oxfordshire County Council;
 - Cherwell District Council; and
 - Environment Agency.
- 1.5 This report concludes that the proposed development is not at risk of flooding and that the site can be developed safely without increasing flood risk elsewhere. The development proposals therefore comply with relevant planning policy concerning flood risk. The report also demonstrates that suitable arrangements for the disposal of surface water run-off and foul water effluent from the development can be provided.

2.0 Site Description and Development Proposals

Site Description

- 2.1 The site is located in the village of Cropredy, 6.4km to the north of Banbury. The site is currently used for agricultural purposes, with a field access from Clayton Road in its south-western corner. A site location plan is provided at Appendix A.
- 2.2 The site extends to approximately 5Ha in area and is bound to the east by the Oxford Canal, to the south by residential properties in Cropredy, to the west by Claydon Road and to the north by Cropredy Marina and further agricultural land.

Topographical Survey

- 2.3 A topographical survey of the site and surrounding land was carried out by Greenhatch Group in March 2022. A copy of the topographical survey is included in Appendix B. Levels on-site were found to fall sharply from the highpoint in the southwestern corner in a general north-easterly direction towards Cropredy Marina and the Oxford Canal. A highpoint of 109.99m Above Ordnance Datum (AOD) was recorded at the existing field access in the south-west corner of the site, with a low point of 100.59m AOD noted adjacent to the canal.
- 2.4 The survey also recorded the presence of an existing ditch running through the east of the site. This ditch runs beyond the application boundary and across the entire western edge of the Cropredy Marina. Both 150mm diameter and 300mm diameter pipes were noted within the ditch to the north of the site. It is believed that the 150mm pipe is a land drain from the site and agricultural field, while the 300mm pipe is an outfall from the ditch to the marina.
- 2.5 The western boundary of the site with Claydon Road is formed by a hedgerow and ditch, with ditches shown on both the eastern and western sides of the highway.

Geological Mapping

- 2.6 Geological maps published by the British Geological Survey (BGS) indicate that the site is entirely underlain by bedrock geology comprising mudstone from the Charmouth Mudstone Formation. The BGS mapping shows no superficial deposits underlying the vast majority of the site, with superficial deposits of alluvium, consisting of clay, silt, sand and gravel, shown to potentially underlie a narrow strip along the site's eastern boundary with the Oxford Canal. An extract of the BGS mapping is included in Appendix C.
- 2.7 Soilscapes mapping published by Cranfield University on behalf of DEFRA shows that the proposed development falls mostly on HOST soil class 18, characterised as slowly permeable, seasonally wet, slightly acid but base-rich loamy and clayey soils. The drainage of these soils described as impeded with run-off draining towards ditch networks. The possible alluvium soils along the eastern edge of the site are indicated to fall on HOST soil class 20, characterised as loamy and clayey floodplain soils with naturally high groundwater. The use of infiltration drainage on-site is therefore not considered to be feasible. An extract from the Soilscapes mapping is also included in Appendix C.

Hydrological and Hydrogeological Context

- 2.8 The closest watercourse designated as a main river by the Environment Agency (EA) is Highfurlong Brook, which is located beyond the Oxford Canal and approximately 75m to the east of the site.
- 2.9 An unnamed, ordinary watercourse is located approximately 210m north of the site. The watercourse runs from east to west around the agricultural land and discharges to the Oxford Canal. This watercourse is fed by multiple watercourses, with the ditches along Claydon Road and a series of field ditches to the north-east of the site discharging to the canal via this watercourse. The watercourse can also be seen on the topographical survey in Appendix B, with two 650mm diameter culverts beneath Claydon Road also shown.
- 2.10 The Oxford Canal is linked to the Cropredy Marina, which is formed of three artificial basins built within the past decade. The most recent of which was constructed as part of works approved by Cherwell District Council (CDC) under planning application reference 16/01119/F. Furthermore, the site is located downstream of Clattercote, Wormleighton and Boddington Reservoirs which are approximately 2km, 4.5km and 5.75km respectively from site.
- 2.11 The EA defines Source Protection Zones (SPZs) for groundwater sources such as wells, boreholes and springs used for public drinking water supply. These zones show the risk of contamination from any activities that might cause pollution in the area. The SPZs mapping indicates that the site is not located within an SPZ.
- 2.12 A Nitrate Vulnerable Zone (NVZ) is a conservative designation for areas of land that drain to nitrate polluted waters or waters which could become polluted by nitrates. The NVZs mapping indicates that the site is located within surface water and groundwater NVZs.
- 2.13 The EA defines Drinking Water Safeguard Zones (SgZs) and Drinking Water Protected Areas (DWPAs) for water sources used for public drinking water supply. SgZs define areas where pollution control measures are needed to avoid deterioration in water quality. DWPAs are areas where water sources need to be protected to prevent pollution. The majority of site is not located within a DWPA, however a small area to the south-east is located within a surface water DWPA. Additionally, the entirety of the site is located within a surface water SgZ.
- 2.14 Groundwater vulnerability mapping published by the EA indicates the risk to groundwater from any potential pollutants on-site reaching the underlying aquifer. The mapping shows the majority of the site within an area of medium groundwater vulnerability, with an area in the south-east of the site shown in an area of low vulnerability.
- 2.15 The Bedrock Aquifer Designation Map published by the EA indicates that the bedrock underlying the site is classed as a Secondary (undifferentiated) Aquifer. Secondary (undifferentiated) Aquifers have variable characteristics of rock layers or drift deposits, meaning that they cannot be attributed to a category A or B Secondary Aquifer. Therefore, water permeability and storage vary across the deposits.

3

2.16 None of the above designations are considered an issue that would prevent the development of the site. However, given the DWPA, SgZ and NVZ designations, careful consideration will be required to the surface water drainage strategy and pollution control measures.

Development Proposals

2.17 Outline planning with all matters reserved, except for access, is sought for a development of up to 60 dwellings (Use Class C3) including a community facility, new vehicular and pedestrian access off Claydon Road, public open space and associated landscaping, earthworks, parking, engineering works and infrastructure. An illustrative masterplan is provided at Appendix D.

3.0 Planning Policy and Guidance

3.1 Set out below is a summary of the national and local planning policy and guidance relating to flood risk and surface water management that are relevant to the site and any future developments.

National Policy

- 3.2 At a national level, the National Planning Policy Framework (NPPF) and the Planning Practice Guidance (PPG) to the NPPF ensure flood risk is taken into account at all stages of the planning process, to avoid inappropriate development in areas at risk of flooding and to direct development towards areas at lowest flood risk. The NPPF retains a riskbased approach to the planning process and defines four Flood Zones to be used as the basis for applying the sequential test, as well as Flood Risk Vulnerability Classifications, which define the type of development that is considered appropriate within each zone.
- 3.3 The NPPF establishes the Flood Zones as the starting point for assessment with the overarching aim to steer new development to areas with the lowest probability of flooding. The Flood Zones are defined as follows:
 - Flood Zone 1 (Low Probability) comprises land assessed as having a less than 1 in 1,000 annual probability of river or sea flooding (<0.1%)
 - Flood Zone 2 (Medium Probability) comprises land assessed as having between a 1 in 100 and 1 in 1,000 annual probability of river flooding (1% 0.1%), or between a 1 in 200 and 1 in 1,000 annual probability of sea flooding (0.5% 0.1%) in any year.
 - Flood Zone 3a (High Probability) comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%), or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.
 - Flood Zone 3b (The Functional Floodplain) comprises land where water has to flow or be stored in times of flood. Cherwell District Council, as Local Planning Authority, is responsible for identifying the extents of the functional floodplain.

Local Policy and Guidance

Cherwell District Council (CDC) Strategic Flood Risk Assessment (SFRA), May 2017

- 3.4 The CDC Level 1 SFRA provides a reference and policy document to advise and inform developers of their obligations under the NPPF and local policies. The mapping and accompanying report provide guidance and a sound framework enabling consistent and sustainable choices to be made when making future planning decisions.
- 3.5 The SFRA includes summaries and mapping of the assessed flood risk, as well as historic events, for CDCs entire administrative area. The report has considered flooding from all sources including fluvial, pluvial, groundwater and sewers and provides to planners and developers on producing site specific Flood Risk Assessments and drainage proposals.

Oxfordshire County Council (OCC) Local Standards and Guidance for Surface Water Drainage on Major Development in Oxfordshire, (V1.2) December 2021

3.6 This guidance document provides advice from OCC in its role as Lead Local Flood Authority (LLFA) and statutory consultee on planning applications on the implementation of Sustainable Drainage systems within developments, as well as setting out specific standards and policies to be applied in Oxfordshire.

4.0 Source of Potential Flooding

4.1 Flood risk to the site is considered from all likely sources of flooding, as defined in the NPPF and the PPG to the NPPF. These include tidal/coastal, fluvial, surface water, artificial sources, groundwater, and sewer. The following paragraphs consider flood risk to the site from all these sources.

Tidal/Coastal

4.2 The watercourses referenced in Section 2 are not subject to tidal influences. The site is therefore not at risk from tidal or coastal flooding.

Fluvial

- 4.3 The EA publishes flood zone mapping on the GOV.UK website which shows the modelled extents of fluvial flooding. An extract from the EA's Flood Map for Planning is included in Appendix E. The flood zone mapping indicates that the vast majority of the site is located within Flood Zone 1, which is land at the lowest risk of fluvial flooding (<1 in 1,000 year return period).
- 4.4 The eastern boundary of the site is located adjacent to the Oxford Canal and is shown to be in a combination of Flood Zone 2 (between 1 in 1,000 and 1 in 100 annual probability of river flooding), and Flood Zone 3 (1 in 100 or greater annual probability of river flooding). However, the area at risk of fluvial flooding covers a very small area.

Surface Water

- 4.5 The EA publishes a Flood Risk from Surface Water map on the GOV.UK website which indicates the predicted risk of surface water flooding if rainwater does not drain away through normal drainage systems or soak into the ground. The mapping indicates that the vast majority of the site is shown to be at "very low" risk of surface water flooding, with an annual probability of flooding of less than 1 in 1,000.
- 4.6 The mapping also shows two areas at "low" risk of flooding, which is land with an annual probability of flooding between 1 in 1,000 and 1 in 100. These two areas are consistent with the ditches along the site's western boundary with Claydon Road and the ditch through the east of the site. These ditches will remain unchanged with the development, so it is considered that the site is at very low risk of flooding from surface water and no mitigation measures are necessary.

Artificial Sources

Reservoir

- 4.7 The EA publishes Reservoir Flood Risk mapping on the GOV.UK website which shows the maximum extent of flooding that may result from the failure of engineering installations such as flood defence, land drainage pumps, sluice gates and floodgates.
- 4.8 The mapping shows the maximum extent of flooding from reservoir failure is beyond the site boundary within the Oxford Canal and land to the north of the site. The site is therefore at very low risk of reservoir flooding.

Oxford Canal

- 4.9 The site is bound to the east by Cropredy Marina and the Oxford Canal. The CDC SFRA states that any development sites adjacent to the Oxford Canal should assess the residual risk of an overtopping or breach event. Historic mapping of recorded instances of canal overtopping shows no incidents along the site boundary, however there are instances recorded both upstream and downstream of the site at nearby locks.
- 4.10 The water level in the canal is higher than Highfurlong Brook due to Cropredy Lock to the south-east of the site. Should water levels in the canal rise above the design level, water is allowed to overflow in the first instance via weirs to the adjacent Highfurlong Brook. Given the site rises sharply from the canal, and the general topography of the local area, the risk of water encroaching onto the site following a canal breach is not considered to present any greater risk than flooding from fluvial or surface water sources. As such, no additional measures are considered necessary to mitigate against this risk. The risk of flooding from the Oxford Canal is therefore considered to be low.

Groundwater

4.11 The Level 1 SFRA includes the EA's Areas Susceptible to Groundwater Flooding (AStGWF) map for the Cherwell area. This mapping indicates most of the site is not susceptible to groundwater emergence, with the northern part of the site having a susceptibility of 0-25%. Given the expected impermeability of the underlying soils and general topography, the risk of groundwater emergence on-site is not considered to be an issue which should constrain or prevent the proposed development.

Sewer

- 4.12 As sewerage undertaker for the area, the SFRA includes a map of the Historical Sewer Flooding Events in CDCs administrative area reported to Thames Water in their DG5 Sewer Flooding Incident Register. This mapping indicates that the site is located within a postcode area with 0 to 5 sewer flooding incidents registered. These records do not necessarily indicate the current or future sewer flood risk situation as maintenance work or upgrades to the network may have been undertaken since the flooding incidents were registered.
- 4.13 Sewer records obtained from Thames Water indicate there to be no foul or surface water sewers within the development site's boundaries, with the closest sewer being a surface water sewer outfall to the ditch located on the western side of Claydon Road. While anecdotal evidence from consultation with the local community suggests flooding from sewers may have occurred elsewhere within Cropredy, these are understood not to have occurred on or near the site itself. Given the absence of sewers on-site, the proposed development is therefore considered to be at low risk of sewer flooding. Sewer records for the area are included in Appendix F.

Summary

4.14 The site is located within Flood Zone 1, which is land at the lowest risk of fluvial flooding and is considered to be at a negligible to low risk of flooding from all sources identified.

5.0 Flood Risk Assessment

- 5.1 The NPPF encourages a sequential, risk-based approach to determine the suitability of land for development. This document advises that the development of sites within Flood Zone 1 should be given preference where available.
- 5.2 Table 2 of the PPG to the NPPF categorises different types of development into five flood risk vulnerability classifications:
 - Essential Infrastructure;
 - Highly Vulnerable;
 - More Vulnerable;
 - Less Vulnerable;
 - and Water Compatible Development.
- 5.3 The NPPF classifies the proposed residential use of the site as being 'More Vulnerable' with the proposed community use classed as 'Less Vulnerable'. Table 3 of the PPG states that 'More Vulnerable' development is compatible with Flood Zones 1 and 2, with 'Less Vulnerable' development compatible even in Flood Zone 3a, both without the need to apply the Exception Test.
- 5.4 As discussed in Section 4 of this report, the vast majority of the site is located within Flood Zone 1. The eastern boundary of the site is shown to be in a combination of Flood Zones 2 and 3. However, the part of the site at risk of fluvial flooding is to be an area of public open space associated with the development and is at a much lower level than the built development.
- 5.5 Notwithstanding this, a more detailed assessment of flood risk has been carried out that includes the future effect of climate change.
- 5.6 Flood levels associated with the extent of Flood Zones 2 and 3, as well as ground levels on the site have been derived using data obtained from the topographical survey of the site and surrounding land that is included at Appendix B.
- 5.7 An overlay of the flood extents from the EA's Flood Map for Planning on the topographical survey is provided at Appendix G. Flood Zones 2 and 3 correlate very closely to the same extent, indicating that flood levels would not be very different during these flood events. On this basis, to provide a robust assessment, it has been concluded that flood levels that define the extent of Flood Zones 2 and 3, adjacent to the eastern site boundary, would peak at a level no higher than 101.0m AOD.
- 5.8 The built development is located some 130m to the west of the extent of Flood Zones 2 and 3 and a much higher level. The overlay drawing at Appendic G shows that built development will be located at a minimum ground level of approximately 103.5m AOD, which is no less than 2.5m above the anticipated Flood Zone 2/3 level. As such, built development is conclusively to be located within Flood Zone 1 and will not be at risk of fluvial flooding.

Climate Change

- 5.9 The future effect of climate change in so far as it impacts on fluvial flooding has been considered in accordance with the Environment Agency's latest guidance Thames Area Climate Change Guidance v1.1 (Feb 2019).
- 5.10 In this case, in the absence of modelled flood levels, a basic approach to technical assessment is considered appropriate whereby an allowance is added to the 'design flood' (i.e. 1% AEP) peak levels to account for potential climate change impacts.
- 5.11 In July 2021 the EA updated its guidance on the application of climate change allowances in flood risk assessments¹. This guidance provides contingency allowances for potential increases in peak river flows based on percentiles. The allowances are also subject to the vulnerability classification of the proposed use.
- 5.12 The updated EA guidance advises that the Central climate change allowance should be considered for both Less and More Vulnerable developments in Flood Zones 2 and 3a and a local allowance for potential climate change impacts has been considered for the proposed development.
- 5.13 The EA's Thames Area Climate Change Guidance suggests an allowance of 500mm for the 'Central' local allowance category. On this basis, considering a 500mm allowance for the potential climate change impacts associated with the 'Central' category for the Oxford Canal, would result in a maximum 1% AEP plus climate change flood level of 101.5m AOD (i.e. 101.0m AOD + 500mm).
- 5.14 It can be seen from the drawing provided at Appendix G that the flood outline defined by the 101.5m AOD contour is still located within the proposed public open space area, well away from the built development on site. The built development is located approximately 2.0m above the maximum 1% AEP plus climate change flood level. As such, when considering the potential climate change impacts, the proposed built development is not at risk of fluvial flooding.
- 5.15 Table 3 of the PPG states that all uses are appropriate for Flood Zone 1. Therefore, the residential and community use proposed is compatible with the flood zone of the site and developing the site for its intended purpose is considered appropriate in terms of flood risk. As such, no mitigation measures are required in respect of fluvial flooding, and the Sequential and Exception Tests do not need to be applied to this development.
- 5.16 The site is at very low risk from all other sources of flooding. As such, flood risk is not a constraint to development.

¹ <u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances</u>

6.0 Surface Water Drainage

6.1 This section outlines the proposals for the surface water drainage strategy for the development. This will be designed in-line with all relevant national and local standards and guidance, including CIRIA C753 (The SuDS Manual), Oxfordshire County Council's Local Standards and Guidance for Surface Water Drainage, and Defra's Non-Statutory Technical Standards for Sustainable Drainage Systems.

Sustainable Drainage

- 6.2 The PPG recommends that priority should be given to the use of sustainable drainage systems (SuDS) as they are designed to control surface water run-off where it falls and mimic natural drainage as closely as possible. SuDS also provide opportunities for the following:
 - reduce the causes and impacts of flooding;
 - remove pollutants from urban run-off at source; and
 - combine water management with green space with benefits for amenity, recreation and wildlife.
- 6.3 SuDS encompass a wide range of drainage techniques intended to minimise the rate of discharge, volume and environmental impact of run-off. Infiltration based techniques are high up in the hierarchy of techniques available due to the ability for close to source dispersion of surface water. These techniques are considered the closest solution to mimic the natural drainage of undeveloped sites.
- 6.4 The Building Regulations part H3 stipulates that rainwater from roofs and paved areas is carried away from surface to discharge to one of the following, listed in order of priority:
 - a) an adequate soakaway or some other adequate infiltration system; or, where that is not practical;
 - b) a watercourse; or, where that is not practical
 - c) a sewer.

Surface Water Drainage Strategy

- 6.5 As discussed in Section 2, infiltration drainage on-site is not considered practicable due to ground conditions. An intrusive site investigation will be carried out at the appropriate design stage which will, amongst other things, include infiltration testing to confirm the lack of soakage on-site and this could be secured by a suitably worded planning condition.
- 6.6 The proposed surface water drainage strategy seeks to mimic the existing drainage regime as closely as possible. The existing ditch in the east of the site currently intercepts run-off from the agricultural land and directs it via an outfall to the north of the application site to the Cropredy Marina. The proposed strategy will therefore retain the existing ditch in place and attenuate surface water run-off and provide storage on on-site that will discharge at a restricted rate to the ditch.

- 6.7 The site location plan in Appendix A shows the extent of land controlled by Obsidian Strategic Asset Management outlined in blue. This plan confirms that whilst the drainage outfall falls outside of the application red boundary, it is located within the ownership boundary and therefore does not cross third party land.
- 6.8 The proposed strategy strives to utilise sustainable drainage techniques in accordance with the guidance described in CIRIA document C753 "Ths SuDS Manual" (2015) to accommodate run-off from all rainfall events up to and including the 1 in 100 year event, with a 40% allowance for the future effects of climate change.
- 6.9 Attenuation will be provided within ponds in the north- and south-east of the site, with a flow control restricting flows from the north-eastern pond to the ditch down to the QBAR value for the development area on-site, which has been calculated at 21.8 l/s. Greenfield run-off rate calculations have been included at Appendix I.
- 6.10 Individual and private drives on-site will be constructed using permeable paving to provide additional attenuation and interception of flows on-site as well as water quality treatment. However, in the interests of providing a robust strategy (given their possible removal by future residents), these permeable paved areas have only been shown illustratively and are not included within the strategy calculations at this stage.
- 6.11 The community facility will provide attenuation on-plot and will utilise permeable paving within car parking areas, with additional storage provided by geocellular crates.
 Discharge from the community facility to the wider surface water network will be via flow control at the QBAR value for the catchment.
- 6.12 Permeable paving proposed within the community facility parking area has been utilised for surface water treatment and conveyance to the attenuation tank. At the appropriate design stage sub-base depths will be confirmed and the attenuation volume provided by the voids in the sub-base of the permeable paving will be utilised to subsequently resize the attenuation tank.
- 6.13 MicroDrainage calculations provided within Appendix I show the proposed SuDS features have been sized to accommodate run-off from all storms up to, and including, the 1 in 100 +40% climate change allowance storm event without flooding from surface water, with FEH rainfall data utilised to calculate storage volumes.
- 6.14 Given the illustrative nature of the site layout at this stage, contributing impermeable areas have included the highway network as drawn, as well as the proposed community facility and associated car park. The developable areas designated for residential development have assumed an impermeable area of 60%, with an additional allowance for urban creep of 10%. This is therefore considered a suitably robust and conservative approach, with exact contributing areas and catchments to be confirmed at the appropriate stage, most likely when an application is submitted for the approval of Reserved Matters.

Pollution Control Measures

6.15 Pollution control measures are designed to minimise the transmittal of any pollutants collected by run-off flowing over hard paved areas to the receiving attenuation features.

- 6.16 Table 26.2 of 'The SuDS Manual' indicates the minimum treatment indices for contributing pollution hazards for different land use classifications. The treatment indices for the proposed land uses are shown in Table 1, overleaf.
- 6.17 The pollution indices in Table 1 should be compared with the mitigation indices in Table 2 (both overleaf) and the following formulae applied.

Total SuDS Mitigation Index ≥ Pollution Hazards Index (for each contaminant type)

Total SuDS Mitigation Index = 1st Stage Mitigation Index + 0.5 (2nd Stage Mitigation Index)

6.18 Run-off from the proposed highway network will drain via the pond in the north-east of the site, with surface water from the proposed community facility draining via permeable paving before being discharged to the pond in the north-east of the site. These features, in combination with catchpits upstream, will be effective at removing pollutants, such as hydrocarbons and sediment, from surface water. Table 2 shows that the mitigation indices for the proposed SuDS exceed the individual hazard indices in Table 1, therefore it is considered that adequate pollution control can be provided on-site.

	Pollution	Pollution Hazard Indices		
Land Use	Hazard Level	Suspended Solids	Metals	Hydro- carbons
Individual property driveways, residential car parks, low traffic roads (e.g. cul-de-sacs, home zones and general access roads) and non-residential car parking with infrequent change (e.g. schools, offices)	Low	0.5	0.4	0.4
Residential Roofs	Very Low	0.2	0.2	0.05
Commercial/Industrial Roofs	Low	0.3	0.2	0.05

Table 1: Pollution Hazard Indices for Different Land Use Classifications (Table 26.2, CIRIA C753)

Table 2: SuDS Mitigation Indices (Table 26.3, CIRIA C753)

SuDS Component	Altigation Indices		
Sobs Component	Suspended Solids	Metals	Hydrocarbons
Permeable Paving	0.7	0.6	0.7
Pond	0.7	0.7	0.5

Maintenance and Adoption

6.19 All new surface water infrastructure will be designed in accordance with current Building Regulations, Appendix C of the Sewerage Sector Guidance, and current best practice, as appropriate. Thames Water, as sewerage undertaker, do not currently adopt SuDS features such as ponds, therefore the proposed SuDS features will remain under private ownership and be maintained by a management company. The on-site surface water sewer network could nonetheless be offered to Thames Water for adoption, with gullies serving the adoptable highway to be maintained by Oxfordshire County Council as highway authority.

6.20 Suitable adoption and maintenance regimes for drainage features, incorporating advice from system manufacturers and installers, will be developed by the site management company and implemented prior to occupation of the development. A summary of typical items to be included within a maintenance schedule is given in Table 3.

Drainage Feature	Inspection and Maintenance	Frequency
	Brushing and vacuuming of surface to remove detrimental materials such as debris, dirt and sediment	Annually
	Stabilise / mow adjacent verges and remove weeds from pavement surface	Occasional (as required)
Permeable pavements	Ensure paving dewaters after rain and between storms: check joints for sedimentation; mechanically clean or jet wash and sweep surface free from silt, etc; refill joints with sealing grit	As required
	Inspect and repair any rutting and cracked or broken blocks and replace lost jointing material	Occasional (as required)
	Rehabilitate surface and upper substructure	Occasional (as required)
	Inspect for signs of clogging and remove any litter / debris found	
	Inspect and clear inlets and outlets of any blockages	
Pond	Inspect banksides for evidence of physical damage and repair as appropriate	Annually, or as required
	Check sediment level and remove any excess from forebay	
	Cut vegetated areas/aquatic planting back	
Hardstanding areas	Sweep regularly to prevent silt being washed off the surface	Regularly, as required
Gullies	Inspect and remove any sediment / debris	Annually
	Inspect and remove any sediment / debris	Annually
Flow control structure (Hydrobrake or similar)*	Inspect flows controls and repair as necessary	Annually (as required)
	Inspect for evidence of uneven surfacing or erosion and relevel/repair as appropriate	Annually

Table 3: SuDS Maintenance Schedule

* Refer to manufacturer's guidance for specific maintenance instructions

7.0 Foul Water Drainage

7.1 This section identifies the existing foul water drainage infrastructure on and in the vicinity of the site to assess the impact of the development on the existing infrastructure, and how the development could dispose of foul effluent.

Existing Foul Water Drainage

- 7.2 Thames Water is the statutory sewerage undertaker for Cropredy. As noted in Section 4, sewer records obtained from Thames Water do not show any foul water infrastructure on or in the immediate vicinity of the site, with the closest foul water sewer being in Claydon Road at the junction with Kyetts Corner, to the south of the site.
- 7.3 The records show only those sewers that are known to be maintained by Thames Water. Other privately-owned sewers may be present within the vicinity of the site that are not shown on public records, such as those owned by the neighbouring dwellings or those which were vested into Thames Water's control but have yet to be mapped following the 2011 Transfer of Private Sewers to sewerage undertakers.

Foul Water Drainage Strategy

- 7.4 Thames Water's records provide cover and invert levels for certain manholes shown on the mapping. Based on this information, it is anticipated that a gravity connection from the south-western corner of the site to manhole 7892 at Kyetts Corner will be feasible.
- 7.5 Given the topography of the site is generally lower than Claydon Road and falls towards the north-east, a pumped solution will be required on-site. Flows from individual dwellings will therefore drain via a gravity network to a new pump station, with a rising main discharging pumped flows through the site to the point at which a gravity connection to the Thames Water sewer can be made. A pump station compound, sized and located in accordance with Thames Water's local standards for pump stations, has been shown on the proposed site layout and highlighted within the drainage strategy drawing included in Appendix H.
- 7.6 A pre-planning enquiry has been submitted to Thames Water to establish if there is capacity available in the local sewerage network to accommodate flows from the development. While a response is awaited at the time of writing, it is understood from preliminary discussions with Thames Water that capacity within the local sewerage network may be limited and that upgrades, or reinforcement work may be required to accommodate flows from the development.
- 7.7 Notwithstanding the above, current infrastructure charging arrangements mean that Thames Water, as sewerage undertaker, is obliged to accept foul water flows generated by committed development and fund any network improvements that may be required to provide the necessary capacity via infrastructure charges received from the developer. As such, foul water capacity will not ultimately be a constraint to development, although the timing of any network improvement may influence the development programme.

Maintenance and Adoption

- 7.8 All new foul water infrastructure constructed to serve the development will be designed in accordance with Building Regulations Part H, Appendix C of the Sewerage Sector Guidance and current best practice, as appropriate. The foul water network serving multiple dwellings, including the foul water pump station, and rising main, will be designed with the intention to offer it for adoption by Thames Water. All foul water drainage serving a single property and located within private areas will be responsibility of the property owner.
- 7.9 A typical management and maintenance plan detailing the type and frequency of maintenance activities for the drainage features is provided below. A more detailed plan incorporating advise from system manufacturers and installers will be developed at the appropriate design stage.

Schedule	Maintenance Activity	Inspection Frequency
		Three interim visits,
Monitoring /	Inspection by supplier. Maintenance activities	followed by annual
Maintenance	to be identified and carried out by supplier	inspections, or as
		required
Remedial	Remedial work and/or replacement of pump	As required
Actions	or tank units or supporting infrastructure	Astequied

Table 4: Pump Station* – Typical Maintenance Activities

*Maintenance to be in accordance with the specifications of the pump supplier.

Schedule	Maintenance Activity	Inspection Frequency
Regular Maintenance	CCTV survey to inspect pipework for blockages, root ingress, displaced joints, or other signs of differential settlement	As required
Remedial Actions	Clear pipework of blockages, root ingress, repair joints or repair other signs of differential settlement	As required
	Replacement of pipe system	As required

Table 5: Conventional Pipe Network – Typical Mair	ntenance Activities
---	---------------------

8.0 Summary and Conclusion

Summary

- 8.1 This Flood Risk Assessment has been prepared by Glanville Consultants to accompany an Outline planning application for a development of up to 60 dwellings and a community facility, on land east of Claydon Road on land East of Claydon Road, Cropredy, Oxfordshire, OX17 1 JP.
- 8.2 This assessment has been prepared in accordance with the requirement of National Planning Policy Framework, Planning Practice Guidance, and with reference to the relevant Strategic Flood Risk Assessment and national and local drainage standards.
- 8.3 The vast majority of the site is located within Flood Zone 1. The eastern boundary of the site is shown to be in a combination of Flood Zones 2 and 3. However, the part of the site at risk of fluvial flooding is to be an area of public open space associated with the development and is at a much lower level than the built development. As such, the proposed development is at low risk from all sources of flooding, including allowance for the potential effects of climate change. Flood risk to the site and surrounding area will not increase as a result of the development.
- 8.4 Given the underlying geological context of the site, infiltration drainage techniques are not considered feasible. As such, a surface water drainage strategy has been prepared which proposes the discharge of run-off generated by the proposed development to an existing watercourse at a restricted rate with attenuation storage provided on-site through multiple SuDS features.
- 8.5 The proposed SuDS features have been sized to accommodate all flows up to the 1 in 100 year +40 % climate change storm event without flooding from surface water. Appropriate pollution control and maintenance measures have also been proposed.
- 8.6 Foul water flows generated by the proposed development will discharge via an on-site pump station to the existing Thames Water network in Claydon Road. Thames Water is obliged to accept foul water flows generated by committed development and fund any network improvements that may be required to provide the necessary capacity via infrastructure charges received from the developer.

Conclusion

- 8.7 In conclusion, this report has demonstrated that the proposed development:
 - is in accordance with the National Planning Policy Framework;
 - will not be at an unacceptable risk from surface water flooding or other sources;
 - will not increase flood risk elsewhere;
 - will employ a surface water drainage strategy based on the principles of sustainable drainage;
 - will employ a suitable foul water drainage strategy.
- 8.8 The proposals are therefore considered to fully comply with national, regional and local planning policy.

Appendices

Appendix A

Site Location Plan

PROJECT TITLE OBSIDIAN STRATEGIC LAND AT CROPREDY MARINA

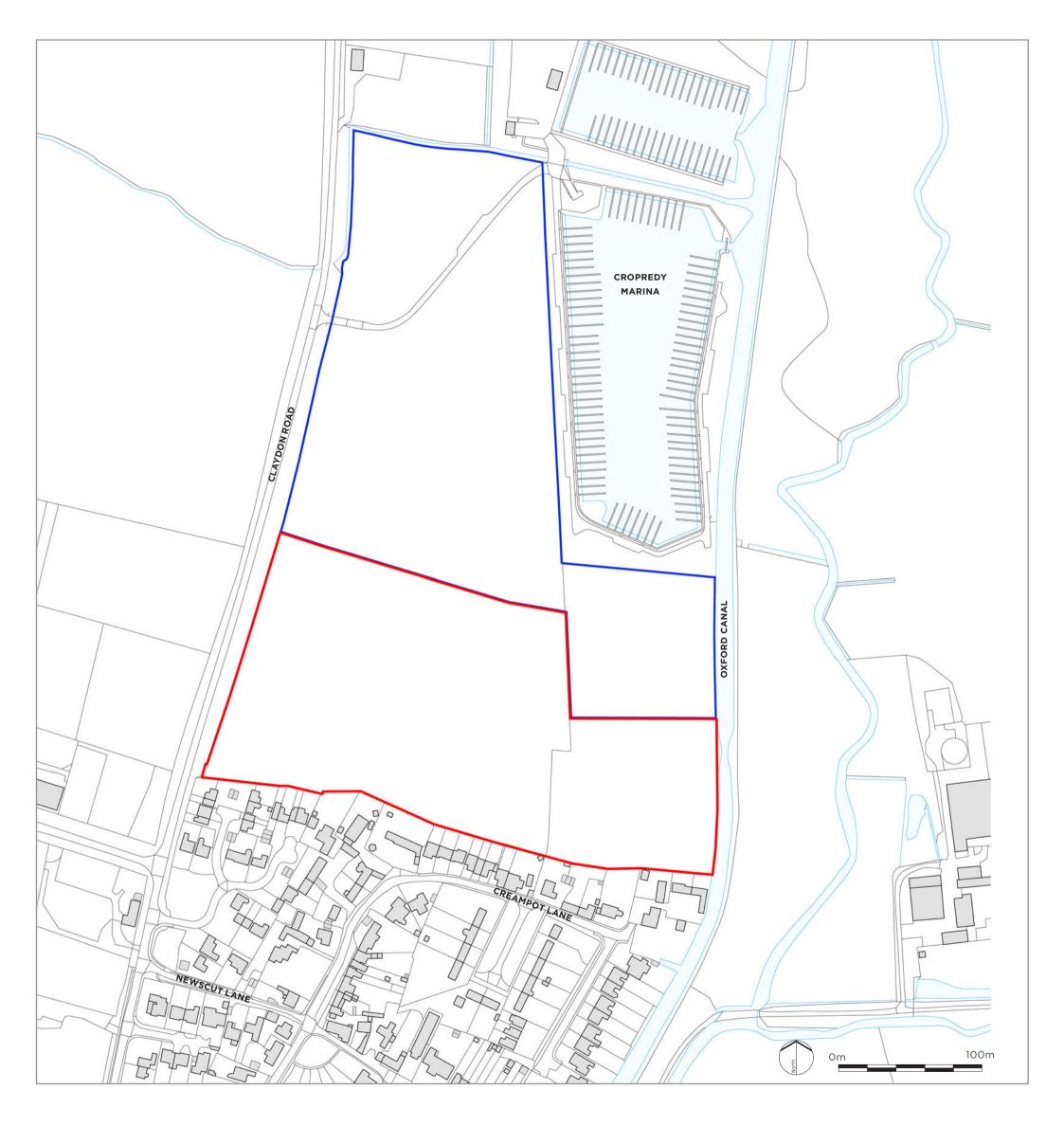
DRAWING TITLE

RED AND BLUE LINE LOCATION PLAN

DWG. NO. J0043785_009

ISSUED BY DATE London July 2023 SCALE@A3 I:2500 Draft

Т: 020 7016 0720 **DRAWN** МН **CHECKED** JC **АРРROVED** JC OBSIDIAN


Carter Jonas

This drawing may contain: Ordnance Survey material by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationery Office © Crown Copyright 2012. All rights reserved. Reference number 100022432.

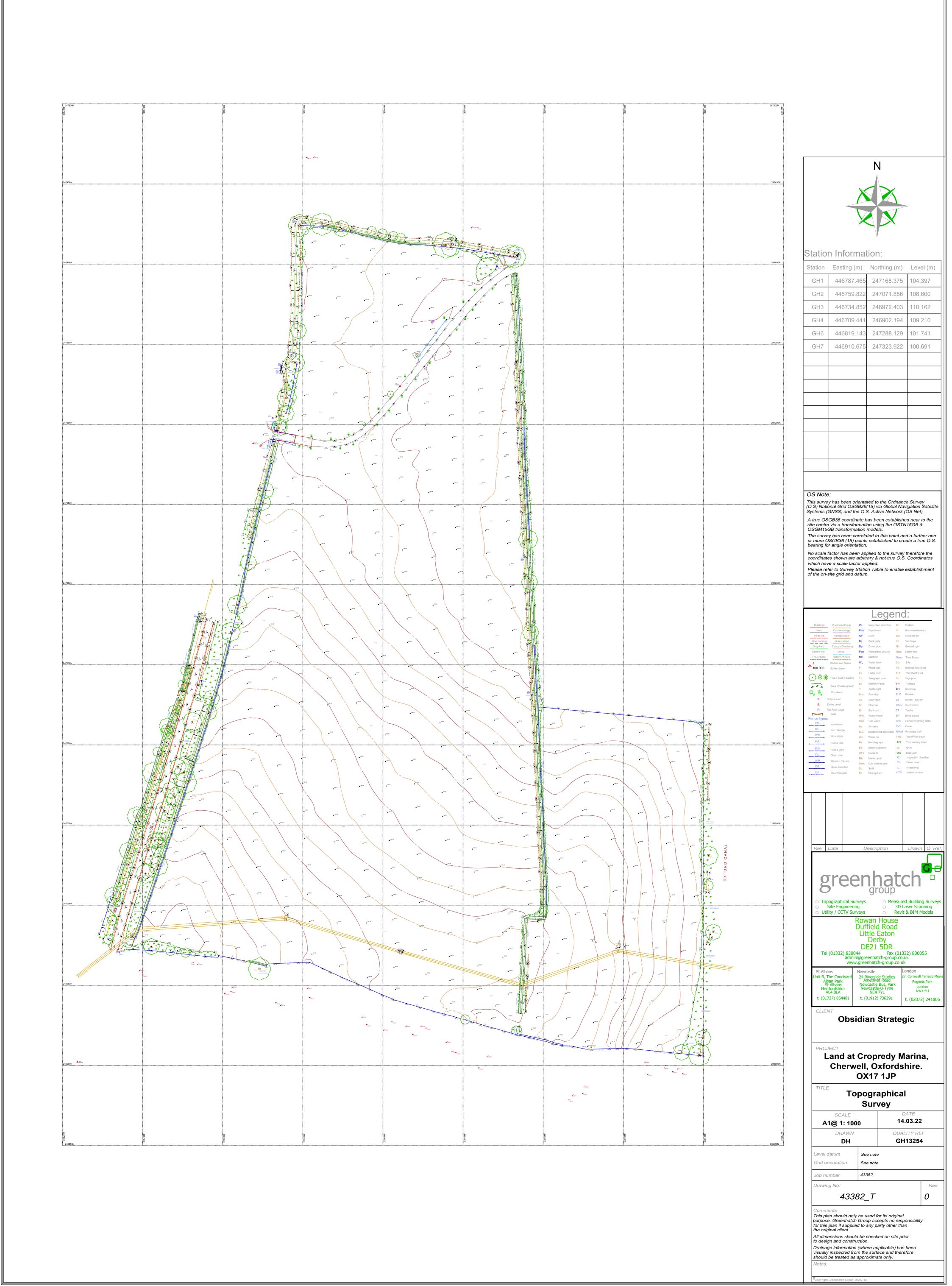
No dimensions are to be scaled from this drawing. All dimensions are to be checked on site. Area measurements for indicative purposes only.

© Carter Jonas. Quality Assured to BS EN ISO 9001: 2008

Source: Ordnance Survey

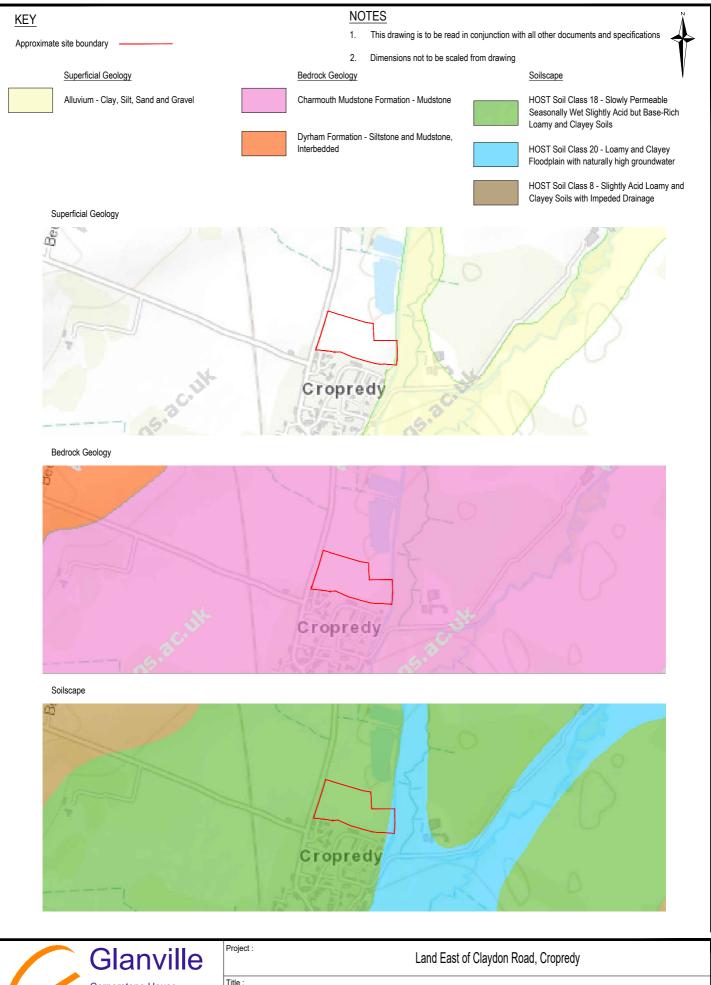
LEGEND

Site boundary (4.96 Ha)



Land in client's ownership

Appendix B


Topographical Survey

Appendix C

Geological Mapping Extracts

Cornerstone House	1100.
62 Foxhall Road, Didcot	
Oxon, OX11 7AD	
Tel: (01235) 515550 Fax: (01235) 817799	Project Engine
postbox@glanvillegroup.com www.glanvillegroup.com	Project Directo

Geological Mapping Extracts ineer : S McNair Scale : NTS ctor : J Birch Date : March 2023 Drawing No. 8210439 - SK02 Rev

Appendix D

Proposed Site Layout

This drawing may contain: Ordnance Survey material by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationery Office © Crown Copyright 2020. All rights reserved. Reference number 100022432.

1

2

3

4

5

6

7

8

9

(10)

Site boundary (4.96 Ha)

Vehicular access

Pedestrian access

Proposed community facility and associated car parking

- Primary tree-lined street
- Drainage basin location
- Recreational walking trail
- Local Equipped Area of Play (LEAP)
- Local Area of Play (LAP)
- 10m tree buffer
- Pumping station location
- Public open space
- Community orchard
- NB1: The layout illustrates a proposed housing development of 60 homes at a net density of 30 DpH
- NB2: Policy compliant housing mix meeting or exceeding Nationally Described Space Standards

Carter Jonas

PROJECT TITLE

OBSIDIAN STRATEGIC LAND AT CROPREDY MARINA

DRAWING TITLE

ILLUSTRATIVE PLAN, 60 UNITS

ISSUED BY London DATE SCALE@A3 1:1250 STATUS

April 2023 Planning

T: 020 7016 0720

DRAWN ΜН CHECKED JC APPROVED JC

DWG.NO. J0050867_008A

No dimensions are to be scaled from this drawing. All dimensions are to be checked on site. Area measurements for indicative purposes only.

© Carter Jonas. Quality Assured to BS EN ISO 9001 : 2008

Source: Ordnance Survey

Appendix E

Environment Agency Flood Map for Planning Extract

Flood map for planning

Your reference <Unspecified>

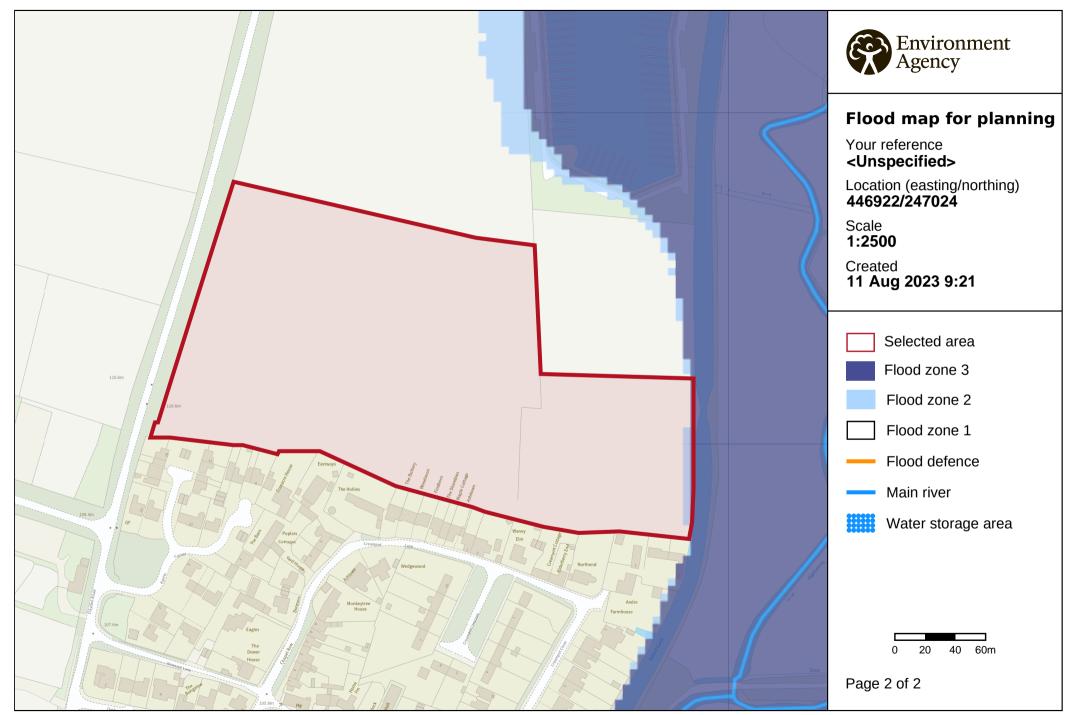
Location (easting/northing)
446922/247024

Created **11 Aug 2023 9:21**

Your selected location is in flood zone 3, an area with a high probability of flooding.

This means:

- you must complete a flood risk assessment for development in this area
- you should follow the Environment Agency's standing advice for carrying out a flood risk assessment (see www.gov.uk/guidance/flood-risk-assessment-standing-advice)

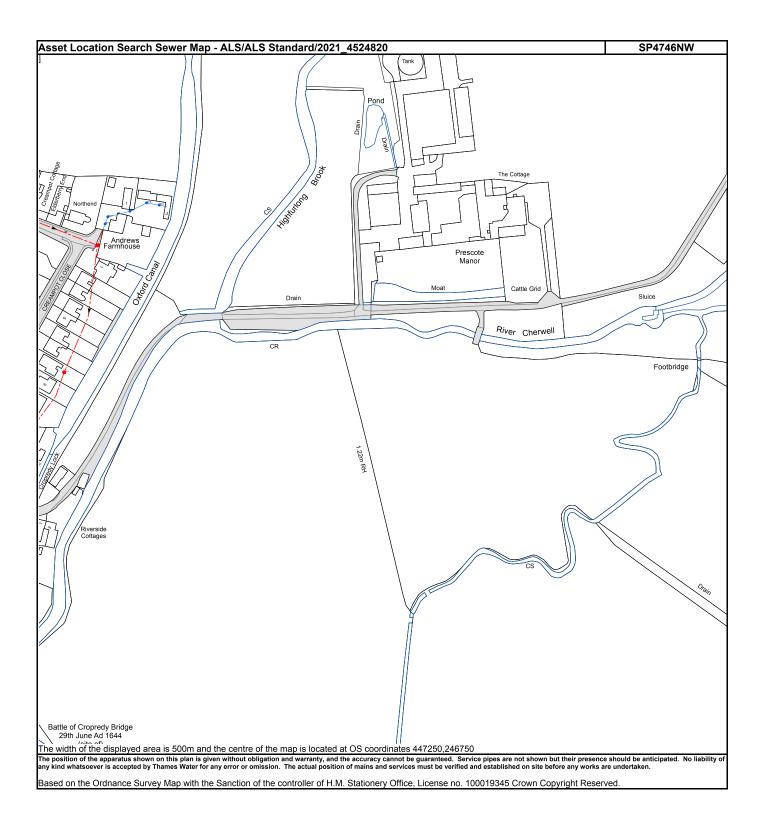

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

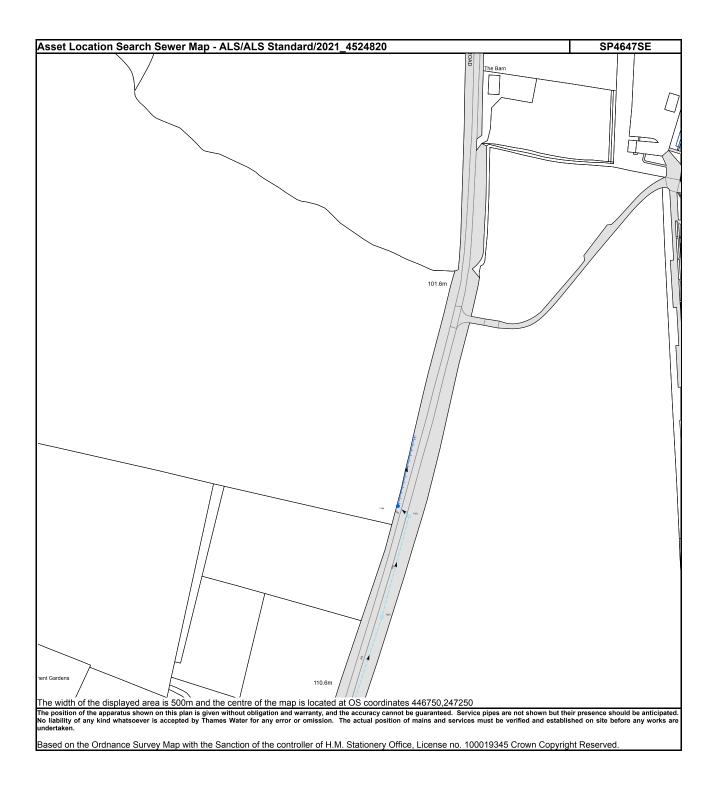
This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence which sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms



© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

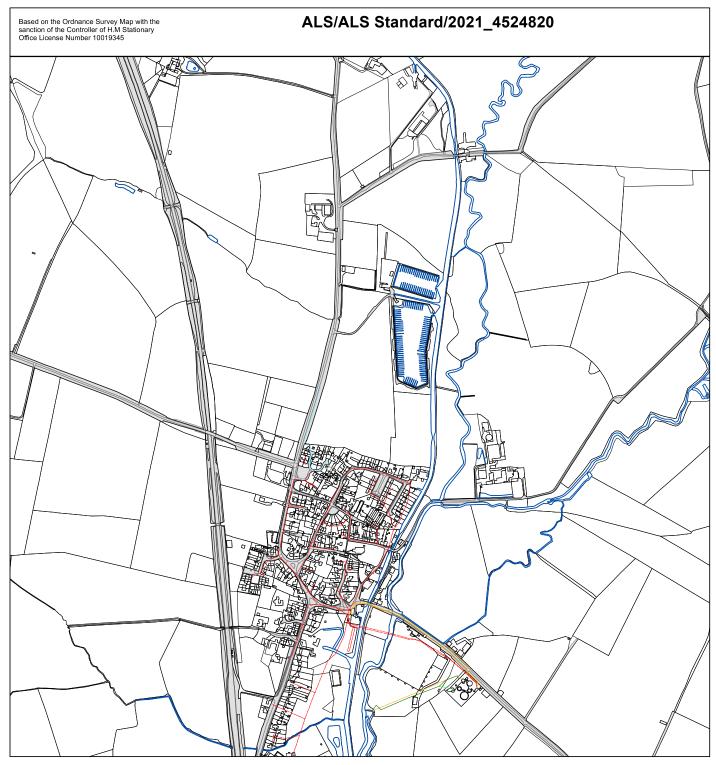

Appendix F

Thames Water Sewer Records

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

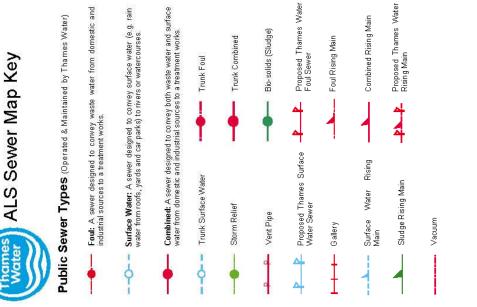
Manhole Reference	Manhole Cover Level	Manhole Invert Level
0801	100.58	99.91
081E	n/a	n/a
081D	n/a	n/a
081C	n/a	n/a
081A	n/a	n/a
081B	n/a	n/a
0791	n/a	n/a
shown but their presence should be antici		d the accuracy cannot be guaranteed. Service pipes are not y Thames Water for any error or omission. The actual position

Manhole Reference	Manhole Cover Level	Manhole Invert Level
7001	109.28	104.93
7104	105.05	103.82
7101	105.22	103.93
	is given without obligation and warranty, and the ac- liability of any kind whatsoever is accepted by Thames ned on site before any works are undertaken.	



Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
8703	105.34	103.96
8751	105.33	104.48
9791 9705	n/a 101.96	n/a 101.22
8702	105.63	104.16
9704	103.88	102.22
9802	104.33	102.39
9803	105.03	102.7
9806	105.32	103.28
9804	104.43	102.61
9807	105.36	103.41
9811	104.32	102.72
9805	104.14	102.97
9808 8802	105.43 105.34	103.88 103.93
9809	105.44	104.04
9810	105.24	104.48
8801	105.44	104.09
9801	103.3	101.85
9901	104.33	102.98
8901	105.48	103.77
9605	99.97	97.94
8605	103.32	101.82
8608	103.61	102.39
8607	103.71	102.56
8604	103.52 103.99	102.1 102.91
8606 9604	103.99	102.91 98.08
8603	104.59	103.52
8602	104.93	103.9
8601	104.93	104.03
9603	100.6	98.45
9602	102.39	100.76
9601	103.41	101.34
8609	104.74	103.25
871E	n/a	n/a
871D 9703	n/a 104.09	n/a 102.04
871J	n/a	n/a
871C	n/a	n/a
9792	n/a	n/a
9702	104.01	102.7
8711	n/a	n/a
871H	n/a	n/a
9701	103.77	103.07
871G	n/a	n/a
871K 8554	n/a 99.31	n/a 98.55
8553	99.76	99.05
8507	99.87	98.96
8505	99.81	98.63
8552	100.57	99.61
8504	100.62	99.24
8503	100.86	99.42
8506	100.77	99.51
8502	101.4	99.87
951C	n/a	n/a 97 57
9501 8501	99.52 102.15	97.57 100.69
8551	102.15	101.21
951B	n/a	n/a
961A	n/a	n/a
951A	99.63	98.4
8610	105.18	103.88
7601	104.28	102.44
6601	104.84	103.48
761H	n/a	n/a n/a
761A 7702	n/a 105.01	n/a 102.97
871F	n/a	n/a
871B	n/a	n/a
771B	n/a	n/a
7701	107.4	106.27
6701	106.76	105.4
8701	105.51	103.5
6801	106.78	105.38
7891	107.3	105.59
	n/a	n/a n/a
781D	n/a	n/a
781D 781C	n/a n/a	n/a
781D 781C 781A	n/a	n/a n/a
781D 781C 781A 781F	n/a n/a	n/a
781D 781C 781A	n/a	
781D 781C 781A 781F 781B	n/a n/a n/a	n/a n/a
781D 781C 781A 781F 781B 7893	n/a n/a n/a 108.98	n/a n/a 106.12
781D 781C 781A 781F 781B 7893 7897 7892 7898	n/a n/a 108.98 109.03 108.35 108.51	n/a n/a 106.12 106.94 105.85 107.22
781D 781C 781A 781F 781B 7893 7897 7892 7898 7894	n/a n/a 108.98 109.03 108.35 108.51 108.89	n/a n/a 106.12 106.94 105.85 107.22 106.39
781D 781C 781A 781F 781B 7893 7897 7892 7898 7898 7894 7895	n/a n/a 108.98 109.03 108.35 108.51 108.51 108.68	n/a n/a 106.12 106.94 105.85 107.22 106.39 106.88
781D 781C 781A 781F 781B 7893 7897 7892 7898 7894	n/a n/a 108.98 109.03 108.35 108.51 108.89	n/a n/a 106.12 106.94 105.85 107.22 106.39


Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL 1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk | www.thameswater-propertysearches.co.uk

Manhole Reference	Manhole Cover Level	Manhole Invert Level
8903	108.22	107.25
8508	99.4	97.47
7503	100.28	98.42
7504	101.59	98.7
7502	101.59	99.23
751F	n/a	n/a
751G	n/a	n/a
751E	n/a	n/a
5501	103.37	102.53
6501	104.95	103.12
7552	103.09	101.35
7551	103.11	101.46
7501	103.14	101.18
6604	104.21	102.49
761G	n/a	n/a
761F	n/a	n/a
6603	104.05	102.24
761C	n/a	n/a
761D	n/a	n/a
761B	n/a	n/a
761E	n/a	n/a
7602	103.72	101.82
6602	104.59	101.75
7651	104.43	102.93
7908	110.06	105.5
791D	n/a	n/a
791C	n/a	n/a
7902	109.08	106.16
7903	109.36	n/a
7904	110.18	105.77
7906	109.47	107.4
7905	109.25	107.47
8902	108.46	107.13
shown but their presence should be anticipa		d the accuracy cannot be guaranteed. Service pipes are not y Thames Water for any error or omission. The actual position

0 45 90 180 270 360 Meters

Scale:	1:7161	Comments:
Width:	2000m	
Printed By:	Rveldhur	
Print Date:	19/10/2021	
Map Centre:	446899,247080	
Grid Reference:	SP4647SE	

Notes:

- All levels associated with the plans are to Ordnance Datum Newlyn.
 - All measurements on the plans are metric.
- Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
 - Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
 - 5) 'na' or '0' on a manhole level indicates that data is unavailable

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Air Valve	Dam Chase	Fitting	Meter	Vent Column	

W 0

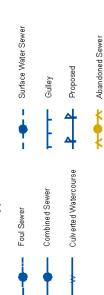
Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

- Control Valve Drop Pipe ÷ M
 - Ancillary
 - Weir [四])

End Items

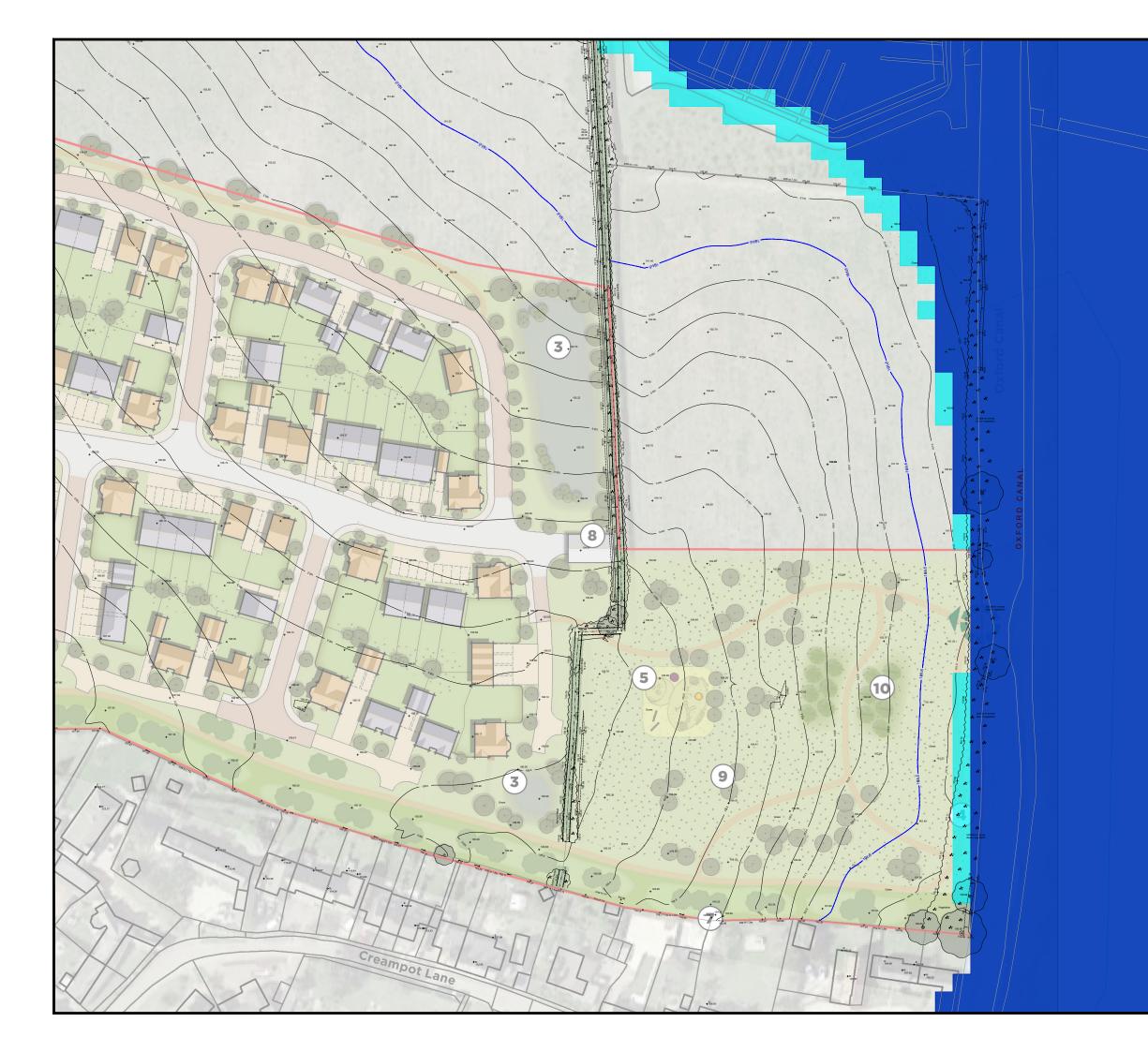
End symbols appear at the start or end of a sever pipe. Examples: an Undefined End at the start of a sever indicates that Tharmane Water has no knowledge of the position of the sever upstream of that symbol. Outfall on a surface water sever indicates that the pipe discharges into a stream or river.

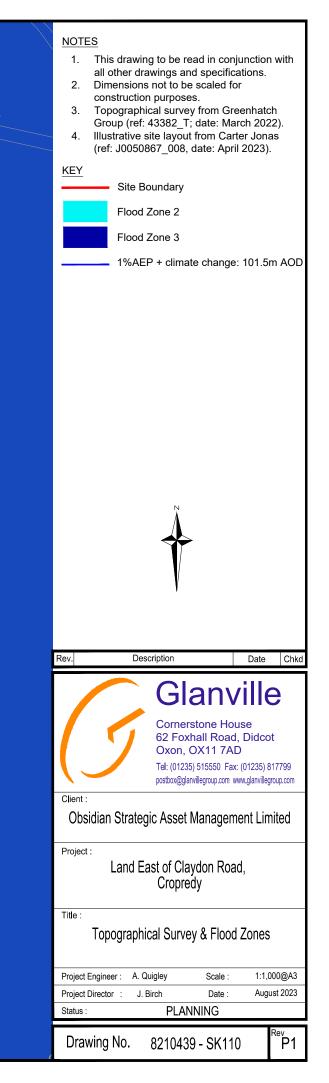

Undefined End Outfall ļ シ

Inlet E b) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Searches on 0800 009 4540.

Other Symbols

Symbols used on maps which do not fall under other general categories Change of characteristic indicator (C. O.C.I.) Lines denoting areas of underground surveys, etc. Public/Private Pumping Station **Operational Site** Conduit Bridge Invert Level Agreement Chamber Summit Tunnel 111 Areas Ŷ * 10


Other Sewer Types (Not Operated or Maintained by Thames Water)



Appendix G

Topographical Survey & Flood Zones Overlay

Appendix H

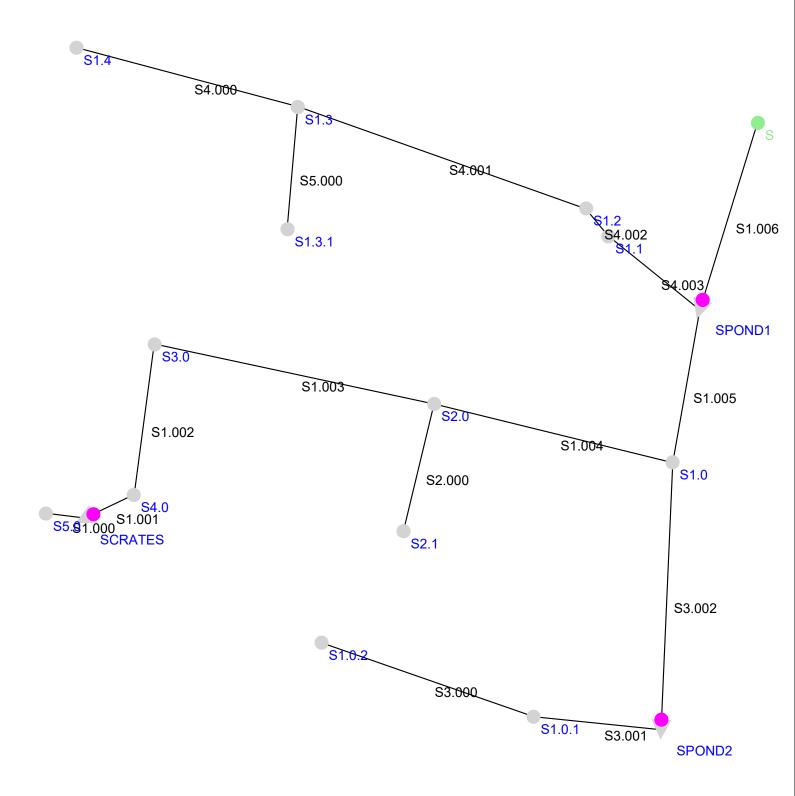
Proposed Drainage Strategy

Appendix I

MicroDrainage Calculations

Glanville Consultants		Page 1
Cornerstone Court		
62 Foxhall Road		
Didcot OX11 7AD		Micro
Date 20/07/2023 13:52	Designed by jdunesby	Drainage
File	Checked by	Diamage
Micro Drainage	Source Control 2020.1.3	

ICP SUDS Mean Annual Flood


Input

Return Period (years) 2 Soil 0.450 Area (ha) 4.960 Urban 0.000 SAAR (mm) 700 Region Number Region 6

Results 1/s

QBAR Rural 21.8 QBAR Urban 21.8 Q2 years 19.2 Q1 year 18.5 Q30 years 49.4

Q100 years 69.5

Glanville Consultants						Page 1
Cornerstone Court	Land 2	At Cro	predy	Marina	a	
52 Foxhall Road	Clayd	on Roa	d, Cro	opredy		
Didcot OX11 7AD	FEH R	ESULTS				— Micro
Date 20/07/2023 14:53	Desig	ned by	J Dur	nesby		
File 8210439 - Land East of .	Check	ed by	J Bird	ch		Drainage
Aicro Drainage	Netwo	rk 202	0.1.3			
<u>STORM SEWER DESIG</u> Desi Pipe Sizes	gn Crite:	<u>cia fo</u>	<u>r Stor</u>	<u>rm</u>		od
	FEH Rainf	all Mod	el			
	eriod (year					100
Maximum Rain Maximum Time of Concentr Foul Sev Volumetric F Add Flow / Climat Minimum Backdro Maximum Backdro Min Design Depth for Opti Min Vel for Auto Desig Min Slope for Optimi	cation (mir wage (l/s/h Runoff Coef PIMP ce Change op Height misation gn only (m/	.con GB (cm) cm) cm) cm) cm) cm) cm) cm) cf. (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)			SP 4710	1999 0 46900 -0.024 0.337 0.356 0.223 0.295 2.505 50 30 0.000 0.900 100 0.200 1.500 1.200 1.00 500
Time	Area Diad	gram fo	or Sto	orm		
	me Area	Time	Area	Time	Area	
(mins) (ha) (mi	ns) (ha)	(mins)	(ha)	(mins)	(ha)	
0-4 0.889	4-8 0.629	8-12	0.114	12-16	0.005	
Total Ar	ea Contrib	uting (ha) =	1 638		
	ca concrib	ucriig (110, .	1.000		
Total	Pipe Volur	ne (m³)	= 46.3	87		
Networ	Design	<u>Tabl</u> e	<u>for</u> S	<u>torm</u>		
« - Ind	icates pip	e capac	ity < :	flow		
PN Length Fall Slope I.Area T (m) (m) (1:X) (ha) (m	.E. Ba ins) Flow	se (l/s) (k Hy (mm) SE			on Type Auto Design
Ne	twork Res	sults '	<u> Table</u>			
	1982-2020	Tanat				

Glanville Consultants		Page 2
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Mirro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Diamada
Micro Drainage	Network 2020.1.3	

Network Design Table for Storm

PN	Rain	T.C.	US/IL Σ	I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)	

Glanvil	Lle Cor	nsulta	ants							Page	e 3
Corners	stone (Court			La	nd At Cr	opredy	Mari	na		
62 Foxt	nall Ro	bad			Cl	aydon Ro	ad, Cr	opred	У		
Didcot	OX11	7AD			FE.	H RESULT	S			Mi	
Date 20)/07/20)23 14	1:53		De	signed b	y J Du	nesby			
File 82	210439	- Lar	nd Eas	t of .	Ch	ecked by	J Bir	ch			ninago
Micro I	Drainag	je			Ne	twork 20	20.1.3				
				Networ	k Desi	gn Table	for S	torm			
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s) (mm)	SECT	(mm)		Design
S1.000	9.769	2.050	4.8	0.000	10.00	0.	0 0.600	0	150	Pipe/Conduit	0
S1.001	13.723	0.090	152.5	0.243	0.00	0.	0 0.600	0	150	Pipe/Conduit	ĕ
S1.002	38.152	0.535	71.3	0.065	0.00	0.	0 0.600	0	150	Pipe/Conduit	ē
S1.003	71.778	0.650	110.4	0.173	0.00	0.	0 0.600	0	375	Pipe/Conduit	
S2.000	32.855	0.220	149.3	0.043	10.00	0.	0 0.600	0	150	Pipe/Conduit	0
S1.004	61.596	0.700	88.0	0.243	0.00	0.	0 0.600	0	375	Pipe/Conduit	0
S3.000	56.380	0.335	168.3	0.059	10.00	0.	0 0.600	0	225	Pipe/Conduit	0
	32.175			0.101	0.00		0 0.600			Pipe/Conduit	
S3.002	67.187	1.325	50.7	0.000	0.00		0 0.600			Pipe/Conduit	ē
s1.005	38.998	2.575	15.1	0.218	0.00	0.	0 0.600	0	375	Pipe/Conduit	•
S4.000	57.517	1.025	56.1	0.131	10.00	0.	0 0.600	0	225	Pipe/Conduit	•
S5.000	30.796	0.375	82.1	0.057	10.00	0.	0 0.600	0	225	Pipe/Conduit	•
	76.761	0.940	81.7	0.128	0.00	0.	0 0.600	0	300	Pipe/Conduit	•
S4.001					0 00	0	0 0 000		275	Pipe/Conduit	
	8.950	0.060	149.2	0.128	0.00	υ.	0 0.600	0	575	Pipe/Conduit	-

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
S1.000	50.00	10.04	107.400	0.000	0.0	0.0	0.0	4.65	82.1	0.0	
S1.001	50.00	10.32	105.350	0.243	0.0	0.0	0.0	0.81	14.3«	39.5	
S1.002	50.00	10.85	105.260	0.308	0.0	0.0	0.0	1.19	21.1«	50.0	
S1.003	50.00	11.54	104.500	0.481	0.0	0.0	0.0	1.72	190.4	78.2	
S2.000	50.00	10.67	104.295	0.043	0.0	0.0	0.0	0.82	14.5	7.0	
S1.004	50.00	12.08	103.850	0.767	0.0	0.0	0.0	1.93	213.4	124.6	
S3.000	50.00	10.94	105.250	0.059	0.0	0.0	0.0	1.00	40.0	9.6	
S3.001	50.00	11.44	104.915	0.160	0.0	0.0	0.0	1.07	42.4	26.0	
S3.002	50.00	12.23	104.700	0.160	0.0	0.0	0.0	1.42	25.0«	26.0	
S1.005	50.00	12.37	103.150	1.145	0.0	0.0	0.0	4.68	516.5	186.1	
S4.000	50.00	10.55	104.000	0.131	0.0	0.0	0.0	1.75	69.6	21.3	
S5.000	50.00	10.36	103.350	0.057	0.0	0.0	0.0	1.44	57.4	9.3	
S4.001	50.00	11.28	102.900	0.316	0.0	0.0	0.0	1.74	123.1	51.3	
S4.002	50.00	11.38	101.885	0.444	0.0	0.0	0.0	1.48	163.6	72.1	
S4.003	50.00	11.51	101.900	0.493	0.0	0.0	0.0	3.75	414.4	80.1	
				©1982-2	020 Innovy	ze					

Cornerstone CourtLand At Cropredy Marina62 Foxhall RoadClaydon Road, CropredyDidect0X11 73D		
Didcot OX11 7AD FEH RESULTS	Mic	(0
Date 20/07/2023 14:53 Designed by J Dunesby		ro inage
File 8210439 - Land East of Checked by J Birch	DIC	maye
Micro Drainage Network 2020.1.3		
Network Design Table for Storm		
PN Length Fall Slope I.Area T.E. Base k HYD DIA Section (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm)	Туре	Auto Design
S1.006 49.050 0.325 150.9 0.000 0.00 0.00 0.0 0.600 o 450 Pipe/Co	nduit	۵
<u>Network Results Table</u>		
PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (m/s) (Cap 1/s)	Flow (l/s)
s1.006 50.00 12.86 100.500 1.638 0.0 0.0 0.0 1.65 26	52.8«	266.2
©1982-2020 Innovyze		

Glanville Consultants		Page 5
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Mirro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Dialitage
Micro Drainage	Network 2020.1.3	1

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	Cont	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Dia	meter (mm)	Backdro (mm)
S5.0	108.000	0.600	Open	Manhole	1200	s1.000	107.400	150					
SCRATES	107.750	2.400	Open	Manhole	1200	S1.001	105.350	150	S1.000	105.350	0	150	
S4.0	107.250	1.990	Open	Manhole	1500	S1.002	105.260	150	S1.001	105.260	0	150	
S3.0	106.100	1.600	Open	Manhole	1500	S1.003	104.500	375	S1.002	104.725	5	150	
S2.1	105.695	1.400	Open	Manhole	1500	s2.000	104.295	150					
S2.0	105.250	1.400	Open	Manhole	1500	S1.004	103.850	375	s1.003	103.850	0	375	
									s2.000	104.075	5	150	
S1.0.2	106.650	1.400	Open	Manhole	1500	S3.000	105.250	225					
S1.0.1	106.315	1.400	Open	Manhole	1500	S3.001	104.915	225	s3.000	104.915	5	225	
SPOND2	105.900	1.200	Open	Manhole	1200	S3.002	104.700	150	s3.001	104.700	0	225	
S1.0	104.750	1.600	Open	Manhole	1500	S1.005	103.150	375	S1.004	103.150	0	375	
									s3.002	103.375	5	150	
S1.4	105.400	1.400	Open	Manhole	1500	S4.000	104.000	225					
S1.3.1	104.750	1.400	Open	Manhole	1500	S5.000	103.350	225					
S1.3	104.300	1.400	Open	Manhole	1500	S4.001	102.900	300	S4.000	102.975	5	225	
									s5.000	102.975	5	225	
S1.2	103.300	1.415	Open	Manhole	1500	S4.002	101.885	375	S4.001	101.960	0	300	
S1.1	103.300	1.475	Open	Manhole	1500	S4.003	101.900	375	S4.002	101.825	5	375	
SPOND1	102.000	1.500	Open	Manhole	1350	S1.006	100.500	450	s1.005	100.575	5	375	
									s4.003	100.650	0	375	-
S	101.000	0.825	Open	Manhole	150		OUTFALL		S1.006	100.175	5	450	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
\$5.0	446821.327	247002.429	446821.327	247002.429	Required	•
SCRATES	446831.019	247001.201	446831.019	247001.201	Required	
S4.0	446843.404	247007.112	446843.404	247007.112	Required	1
S3.0	446848.644	247044.903	446848.644	247044.903	Required	•
S2.1	446911.143	246998.003	446911.143	246998.003	Required	: /

Glanville Consultants		Page 6
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Mirro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Diamage
Micro Drainage	Network 2020.1.3	1

Manhole Schedules for Storm

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S2.0	446918.845	247029.942	446918.845	247029.942	Required	
S1.0.2	446890.549	246970.034	446890.549	246970.034	Required	!
S1.0.1	446943.767	246951.417	446943.767	246951.417	Required	
SPOND2	446975.780	246948.185	446975.780	246948.185	Required	
S1.0	446978.678	247015.310	446978.678	247015.310	Required	
S1.4	446829.029	247119.393	446829.029	247119.393	Required	
s1.3.1	446882.013	247073.833	446882.013	247073.833	Required	-
S1.3	446884.589	247104.521	446884.589	247104.521	Required	-
S1.2	446957.002	247079.053	446957.002	247079.053	Required	-
S1.1	446962.562	247072.039	446962.562	247072.039	Required	
SPOND1	446985.506	247053.705	446985.506	247053.705	Required	\sim
S	447000.115	247100.530			No Entry	•

Glanville Consultants		Page 7
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Micro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Diamada
Micro Drainage	Network 2020.1.3	I

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	150	S5.0	108.000	107.400	0.450	Open Manhole	1200
S1.001	0	150	SCRATES	107.750	105.350	2.250	Open Manhole	1200
S1.002	0	150	S4.0	107.250	105.260	1.840	Open Manhole	1500
S1.003	0	375	S3.0	106.100	104.500	1.225	Open Manhole	1500
S2.000	0	150	S2.1	105.695	104.295	1.250	Open Manhole	1500
S1.004	0	375	S2.0	105.250	103.850	1.025	Open Manhole	1500
s3.000	0	225	S1.0.2	106.650	105.250	1.175	Open Manhole	1500
S3.001	0	225	S1.0.1	106.315	104.915	1.175	Open Manhole	1500
S3.002	0	150	SPOND2	105.900	104.700	1.050	Open Manhole	1200
S1.005	0	375	S1.0	104.750	103.150	1.225	Open Manhole	1500
S4.000	0	225	S1.4	105.400	104.000	1.175	Open Manhole	1500
S5.000	0	225	s1.3.1	104.750	103.350	1.175	Open Manhole	1500
S4.001	0	300		104.300			Open Manhole	
S4.002	0	375	S1.2	103.300	101.885	1.040	Open Manhole	1500

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)
S1.000	9.769	4.8	SCRATES	107.750	105.350	2.250	Open Manhole	1200
S1.001	13.723	152.5	S4.0	107.250	105.260	1.840	Open Manhole	1500
S1.002	38.152	71.3	S3.0	106.100	104.725	1.225	Open Manhole	1500
S1.003	71.778	110.4	S2.0	105.250	103.850	1.025	Open Manhole	1500
S2.000	32.855	149.3	S2.0	105.250	104.075	1.025	Open Manhole	1500
S1.004	61.596	88.0	S1.0	104.750	103.150	1.225	Open Manhole	1500
S3.000	56.380	168.3	S1.0.1	106.315	104.915	1.175	Open Manhole	1500
S3.001	32.175	149.7	SPOND2	105.900	104.700	0.975	Open Manhole	1200
S3.002	67.187	50.7	S1.0	104.750	103.375	1.225	Open Manhole	1500
S1.005	38.998	15.1	SPOND1	102.000	100.575	1.050	Open Manhole	1350
S4.000	57.517	56.1	s1.3	104.300	102.975	1.100	Open Manhole	1500
S5.000	30.796	82.1	S1.3	104.300	102.975	1.100	Open Manhole	1500
S4.001	76.761	81.7	S1.2	103.300	101.960	1.040	Open Manhole	1500
	8.950			103.300			Open Manhole	
				©1982-2	2020 Ini	novyze		

Glanville Consultants		Page 8
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Micro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Diamage
Micro Drainage	Network 2020.1.3	1

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S4.003	0	375	S1.1	103.300	101.900	1.025	Open Manhole	1500
S1.006	0	450	SPOND1	102.000	100.500	1.050	Open Manhole	1350

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S4.003	29.370	23.5	SPOND1	102.000	100.650	0.975	Open Manhole	1350
S1.006	49.050	150.9	S	101.000	100.175	0.375	Open Manhole	150

Glanville Consultants						Page 9
Cornerstone Court		Land	At Crop	redy Mar:	ina	
62 Foxhall Road		Clayo	don Road,	, Cropred	dy	
Didcot OX11 7AD		FEH F	RESULTS			Micro
Date 20/07/2023 14:53		Desid	gned by .	J Dunesby	Y	
File 8210439 - Land East o	of		ked by J	-	-	Drainag
Micro Drainage			ork 2020			
				• • • • •		
	Area	Summa	ry for S	torm		
			-			
Pipe PIMP			ross	-	pe Total	
Number Type	Name	(%) Are	a (ha) Ar	ea (ha)	(ha)	
1.000 -	_	100	0.000	0.000	0.000	
1.001 -	-	100	0.243	0.243	0.243	
1.002 -	-	100	0.065	0.065	0.065	
1.003 -	-	100	0.173	0.173	0.173	
2.000 -		100	0.043		0.043	
		100	0.243	0.243	0.243	
3.000 -		100	0.059	0.059	0.059	
3.001 -		100	0.101	0.101	0.101	
3.002 -		100	0.000	0.000	0.000	
1.005 -		100	0.218	0.218	0.218	
4.000 -		100	0.131	0.131	0.131	
5.000 -		100	0.057		0.057	
4.001 - 4.002 -		100	0.128	0.128	0.128	
4.002 - 4.003 -		100 100	0.128 0.049	0.128 0.049	0.128 0.049	
1.006 -		100	0.000	0.049	0.000	
1.000 -		100	0.000	0.000	0.000	
			Total		Total	
			Total 1.638	Total	Total 1.638	
			Total 1.638		Total 1.638	
Free Fl	owing	Outfal	1.638	Total 1.638	1.638	
<u>Free Fl</u>	owing	Outfai	1.638	Total	1.638	
Outfall Ou	ıtfall	C. Leve	1.638 <u>11 Detai</u> 1 I. Leve]	Total 1.638 ls for S L Min	1.638 <u>torm</u> D,L W	
Outfall Ou			1.638 <u>11 Detai</u>	Total 1.638 ls for S L Min I. Level	1.638 <u>torm</u>	
Outfall Ou	ıtfall	C. Leve	1.638 <u>11 Detai</u> 1 I. Leve]	Total 1.638 ls for S L Min	1.638 <u>torm</u> D,L W	
Outfall Ou Pipe Number	ıtfall Name	C. Leve (m)	1.638 11 Detai 1 I. Level (m)	Total 1.638 ls for S L Min I. Level	1.638 torm D,L W (mm) (mm)	
Outfall Ou Pipe Number S S1.006	utfall Name S	C. Leve (m)	1.638 11 Detai 1 I. Level (m) 0 100.175	Total 1.638 <u>ls for S</u> L Min I. Level (m) 5 100.175	1.638 torm D,L W (mm) (mm)	
Outfall Ou Pipe Number S S1.006	utfall Name S	C. Leve (m)	1.638 11 Detai 1 I. Level (m)	Total 1.638 <u>ls for S</u> L Min I. Level (m) 5 100.175	1.638 torm D,L W (mm) (mm)	
Outfall Ou Pipe Number S S1.006	n tfall Name S mulati	C. Leve: (m) 101.00 .on Cri	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fo	Total 1.638 1s for S Min I. Level (m) 5 100.175 or Storm	1.638 torm D,L W (mm) (mm) 150 0	Flow 0.000
Outfall Ou Pipe Number S S1.006 Sin	ntfall Name S mulati	C. Leve: (m) 101.00 .on Cri 0.900	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fo Addition	Total 1.638 1s for S Min I. Level (m) 5 100.175 or Storm al Flow -	1.638 torm D,L W (mm) (mm) 150 0	
Outfall Ou Pipe Number S S1.006 <u>Sin</u> Volumetric Runoff	ntfall Name S mulati Coeff Factor	C. Leve: (m) 101.00 .on Cri 0.900 1.000 0	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fc Addition MADD	Total 1.638 ls for S Min I. Level (m) 5 100.175 or Storm cal Flow - Factor * Inl	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m ³ /ha Stor let Coeffied	rage 2.000 Lent 0.800
Outfall Ou Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve	S mulati Coeff Factor (mins) 1 (mm)	C. Leve: (m) 101.000 <u>.00 Cri</u> 0.900 1.000 0 0 F	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fc Addition MADD	Total 1.638 ls for S Min I. Level (m) 5 100.175 or Storm cal Flow - Factor * Inl	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m ³ /ha Stor Let Coeffiec: Day (1/per/o	rage 2.000 Lent 0.800 day) 0.000
Outfall Ou Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G	S mulati Coeff Factor (mins) 1 (mm) lobal)	C. Level (m) 101.000 <u>0.900</u> 1.000 0 0 F 0.500	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fc Addition MADD	Total 1.638 ls for S Min I. Level (m) 5 100.175 or Storm al Flow - 9 Factor * Inl erson per	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m³/ha Stor Let Coeffiec: Day (1/per/c Run Time (mi	rage 2.000 Lent 0.800 day) 0.000 Lns) 60
Outfall Ou Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve	S mulati Coeff Factor (mins) 1 (mm) lobal)	C. Level (m) 101.000 <u>0.900</u> 1.000 0 0 F 0.500	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fc Addition MADD	Total 1.638 ls for S Min I. Level (m) 5 100.175 or Storm al Flow - 9 Factor * Inl erson per	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m ³ /ha Stor let Coeffiec: Day (1/per/c	rage 2.000 Lent 0.800 day) 0.000 Lns) 60
Outfall Ou Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare	S mulati Coeff Factor (mins) 1 (mm) lobal) (1/s)	C. Level (m) 101.000 0.900 1.000 0 0.500 0.500	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fc Addition MADD Flow per P	Total 1.638 1 for S Min I. Level (m) 5 100.175 5 100.175 5 Torm al Flow - 9 Factor * Inl erson per Output	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m³/ha Stor let Coeffice: Day (1/per/c Run Time (mi Interval (mi	rage 2.000 Lent 0.800 day) 0.000 Lns) 60 Lns) 1
Outfall Ou Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare Number of Input	S mulati Coeff Factor (mins) 1 (mm) lobal) (1/s) Hydrog	C. Leve: (m) 101.000 0.900 1.000 0 F 0.500 0.500 0.000 raphs 0	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fc Addition MADD Flow per P Number of	Total 1.638 1s for S Min I. Level (m) 5 100.175 5 100.175 5 100.175 5 Factor * Inl Person per Output f Storage	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m ³ /ha Stor Let Coeffice: Day (1/per/c Run Time (mi Interval (mi Structures 3	rage 2.000 Lent 0.800 day) 0.000 Lns) 60 Lns) 1
Outfall Ou Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare	S mulati Coeff Factor (mins) 1 (mm) lobal) (1/s) Hydrog ine Con	C. Level (m) 101.000 <u>0.900</u> 1.000 0 F 0.500 0.000 raphs 0 trols 3	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fc Addition MADD Flow per P Number of Number of	Total 1.638 1s for S Min I. Level (m) 5 100.175 5 100.175 5 100.175 5 Torm 0 Factor * Inl Person per Output f Storage f Time/Are	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m ³ /ha Stor let Coeffice: Day (1/per/c Run Time (m: Interval (m: Structures 3 a Diagrams 0	cage 2.000 Lent 0.800 day) 0.000 Lns) 60 Lns) 1
Outfall Ou Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare Number of Input Number of Onli	S mulati Coeff Factor (mins) 1 (mm) lobal) (1/s) Hydrog ine Con	C. Level (m) 101.000 <u>0.900</u> 1.000 0 F 0.500 0.000 raphs 0 trols 3	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fc Addition MADD Flow per P Number of Number of	Total 1.638 1 for S Min I. Level (m) 5 100.175 5 100.175 5 100.175 5 Torm 0 Factor * Inl Person per Output f Storage f Time/Are	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m ³ /ha Stor let Coeffice: Day (1/per/c Run Time (m: Interval (m: Structures 3 a Diagrams 0	cage 2.000 Lent 0.800 day) 0.000 Lns) 60 Lns) 1
Outfall Or Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare Number of Input Number of Onli Number of Offic	S mulati Coeff Factor (mins) l (mm) lobal) (l/s) Hydrog ine Con ine Con	C. Level (m) 101.000 0.900 1.000 0 0 F 0.500 0.000 raphs 0 trols 3 trols 0	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fc Addition MADD Flow per P Number of Number of	Total 1.638 1s for S Min I. Level (m) 5 100.175 5 100.175 5 100.175 5 Torm al Flow - 6 Factor * Inl erson per Output f Storage f Time/Are f Real Tim	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m ³ /ha Stor let Coeffice: Day (1/per/c Run Time (m: Interval (m: Structures 3 a Diagrams 0	cage 2.000 Lent 0.800 day) 0.000 Lns) 60 Lns) 1
Outfall or Fipe Number i S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare Number of Input Number of Onlis	S mulati Coeff Factor (mins) 1 (mm) lobal) (1/s) Hydrog ine Con ine Con Synthe	C. Level (m) 101.000 .000 1.000 0.500 0.500 0.000 raphs 0 trols 3 trols 0 tic Rai	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fo Addition MADD Flow per P Number of Number of Number of	Total 1.638 1s for S Min I. Level (m) 5 100.175 5 100.175 5 100.175 5 Torm al Flow - 6 Factor * Inl erson per Output f Storage f Time/Are f Real Tim	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m³/ha Stor let Coeffiec: Day (1/per/c Run Time (mi Interval (mi Structures 3 a Diagrams 0 e Controls 0	cage 2.000 Lent 0.800 day) 0.000 Lns) 60 Lns) 1
Outfall or Fipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare Number of Input Number of Onli Number of Offli	s mulati Coeff Factor (mins) 1 (mm) lobal) (1/s) Hydrog ine Con ine Con Synthe	C. Level (m) 101.000 .000 Cri 0.900 1.000 0 F 0.500 0.000 raphs 0 trols 3 trols 0 tic Ra	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fo Addition MADD Flow per P Number of Number of Number of	Total 1.638 1s for S Min I. Level (m) 5 100.175 5 100.175 5 100.175 5 Torm al Flow - 6 Factor * Inl erson per Output f Storage f Time/Are f Real Tim	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m ³ /ha Stor let Coeffice: Day (l/per/c Run Time (mi Interval (mi Structures 3 a Diagrams 0 e Controls 0 FEH	cage 2.000 Lent 0.800 day) 0.000 Lns) 60 Lns) 1
Outfall Ou Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare Number of Input Number of Onli Number of Offli	s mulati Coeff Factor (mins) 1 (mm) 1 (bal) (1/s) Hydrog ine Con ine Con Synthe	C. Level (m) 101.000 .000 Cri 0.900 1.000 0 F 0.500 0.000 raphs 0 trols 3 trols 0 tic Rai del rs)	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fo Addition MADD Flow per P Number of Number of Number of	Total 1.638 1s for S Min I. Level (m) 5 100.175 5 100.175 5 100.175 5 Torm al Flow - 6 Factor * Inl erson per Output f Storage f Time/Are f Real Tim	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m ³ /ha Stor let Coeffice: Day (l/per/c Run Time (mi Interval (mi Structures 3 a Diagrams 0 e Controls 0 FEH 100	rage 2.000 Lent 0.800 day) 0.000 Lns) 60 Lns) 1
Outfall or Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare Number of Input Number of Onli Number of Offli	s s mulati Coeff Factor (mins) 1 (mm) 1 (bal) (1/s) Hydrog ine Con ine Con Synthe Call Mod d (year 1 Vers:	C. Level (m) 101.000 .on Cri 0.900 1.000 0 0 0.500 0.000 raphs 0 trols 3 trols 0 tic Ra. del rs) ion	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fo Addition MADD Flow per P Number of Number of Number of Number of Number of Number of	Total 1.638 ls for S Min I. Level (m) 5 100.175 5 100.175 5 Torm al Flow - 0 Factor * Inl terson per Output f Storage f Time/Are f Real Tim etails	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m³/ha Stor let Coeffiec: Day (1/per/c Run Time (mi Interval (mi Structures 3 a Diagrams 0 e Controls 0 FEH 100 1999	rage 2.000 Lent 0.800 day) 0.000 Lns) 60 Lns) 1
Outfall or Pipe Number 1 S1.006 Sin Volumetric Runoff Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (G Foul Sewage per hectare Number of Input Number of Onli Number of Offli	s s mulati Coeff Factor (mins) 1 (mm) 1 (bal) (1/s) Hydrog ine Con ine Con Synthe Call Mod d (year 1 Vers:	C. Level (m) 101.000 .000 1.000 0 0 0.500 0.000 raphs 0 trols 3 trols 0 tic Rai del rs) ion GB 4	1.638 11 Detai 1 I. Level (m) 0 100.175 .teria fo Addition MADD Flow per P Number of Number of Number of Number of Number of Number of Number of	Total 1.638 1s for S Min I. Level (m) 5 100.175 5 100.175 5 100.175 5 Torm al Flow - 6 Factor * Inl erson per Output f Storage f Time/Are f Real Tim	1.638 torm D,L W (mm) (mm) 150 0 % of Total H 10m³/ha Stor let Coeffiec: Day (1/per/c Run Time (mi Interval (mi Structures 3 a Diagrams 0 e Controls 0 FEH 100 1999	cage 2.000 Lent 0.800 day) 0.000 Lns) 60 Lns) 1

Glanville Consultants		Page 10
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Micro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Diamarje
Micro Drainage	Network 2020.1.3	1

Synthetic Rainfall Details

D2 (1km) 0.356 D3 (1km) 0.223 E (1km) 0.295 F (1km) 2.505 Summer Storms Yes Winter Storms Yes Cv (Summer) 0.900 Cv (Winter) 0.840 Storm Duration (mins) 30

ornerstone C	sultants					P	age 11
	ourt		Land At	Cropredy	Marina	[
2 Foxhall Ro	ad		Claydon	Road, Cro	predy		
idcot OX11	7AD		FEH RESU	JLTS			Micro
ate 20/07/20	23 14:53		Designed	l by J Dun	esby		
ile 8210439	- Land Ea	ast of	. Checked	by J Birc	h		Drainag
Micro Drainag	e		Network	2020.1.3			
		<u>Onlin</u>	e Controls	for Stor	<u>n</u>		
<u>Hydro-Brak</u>	<u>e® Optimı</u>	<u>ım Manhole</u>	SCRATES	, DS/PN: S	51.001, V	olume (m	³): 2.9
		IIn	it Reference	MD-SHE-004	9-1200-120	0-1200	
			ign Head (m)		5 1000 100	1.200	
		Desig	n Flow (l/s)			1.2	
			Flush-Flo™			ulated	
				Minimise			
		C 111	Application mp Available		S	urface Yes	
			iameter (mm)			49	
			rt Level (m)		1	05.350	
Ν		tlet Pipe D	iameter (mm)			75	
	Suggested	1 Manhole D	iameter (mm)			1200	
		Control 1	Points	Head (m) F	low (l/s)		
	Des	ign Point (Calculated)		1.2		
			Flush-Flo™		0.9		
	Maa		Kick-Flo® Head Range		0.8 0.9		
Hydro-Brake Og invalidated	ptimum® be	utilised t	hen these st	orage routi.	ng calcula	tions will	be
Depth (m) Flo						pth (m) Fl	low (1/s)
		1.200		3.000		7.000	2.7
	0.9	1.400	1.3	2 600	2.0	7.500	
0.200		1 600		3.500		0 000	2.8
0.300		1.600	1.4	4.000	2.1	8.000 8.500	2.8 2.9
	0.8	1.600 1.800 2.000				8.000 8.500 9.000	2.8
0.300 0.400	0.8	1.800	1.4 1.4	4.000 4.500	2.1 2.2	8.500	2.8 2.9 2.9
0.300 0.400 0.500 0.600 0.800	0.8 0.8 0.9 1.0	1.800 2.000 2.200 2.400	1.4 1.4 1.5 1.6 1.6	4.000 4.500 5.000 5.500 6.000	2.1 2.2 2.3 2.4 2.5	8.500 9.000	2.8 2.9 2.9 3.0
0.300 0.400 0.500 0.600	0.8 0.8 0.9	1.800 2.000 2.200	1.4 1.4 1.5 1.6	4.000 4.500 5.000 5.500	2.1 2.2 2.3 2.4	8.500 9.000	2.8 2.9 2.9 3.0
0.300 0.400 0.500 0.600 0.800	0.8 0.9 1.0 1.1	1.800 2.000 2.200 2.400 2.600	1.4 1.4 1.5 1.6 1.6 1.7	4.000 4.500 5.000 5.500 6.000 6.500	2.1 2.2 2.3 2.4 2.5 2.6	8.500 9.000 9.500	2.8 2.9 2.9 3.0 3.1
0.300 0.400 0.500 0.600 0.800 1.000	0.8 0.9 1.0 1.1	1.800 2.000 2.200 2.400 2.600 um Manhol	1.4 1.4 1.5 1.6 1.6 1.7 e: SPOND2, it Reference	4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: S	2.1 2.2 2.3 2.4 2.5 2.6	8.500 9.000 9.500 9.500	2.8 2.9 3.0 3.1
0.300 0.400 0.500 0.600 0.800 1.000	0.8 0.9 1.0 1.1	1.800 2.000 2.200 2.400 2.600 um Manhol Un Des	1.4 1.4 1.5 1.6 1.6 1.7 e: SPOND2, it Reference ign Head (m)	4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: S	2.1 2.2 2.3 2.4 2.5 2.6	8.500 9.000 9.500 9.500	2.8 2.9 2.9 3.0 3.1
0.300 0.400 0.500 0.600 0.800 1.000	0.8 0.9 1.0 1.1	1.800 2.000 2.200 2.400 2.600 um Manhol Un Des	1.4 1.4 1.5 1.6 1.6 1.7 e: SPOND2, it Reference	4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: S	2.1 2.2 2.3 2.4 2.5 2.6	8.500 9.000 9.500 0lume (m ³ 0-7500 0.900	2.8 2.9 2.9 3.0 3.1
0.300 0.400 0.500 0.600 0.800 1.000	0.8 0.9 1.0 1.1	1.800 2.000 2.200 2.400 2.600 um Manhol Un Des	1.4 1.4 1.5 1.6 1.7 e: SPOND2, it Reference ign Head (m) n Flow (1/s) Flush-Flo™ Objective	4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: S MD-SCU-008	2.1 2.2 2.3 2.4 2.5 2.6	8.500 9.000 9.500 0-7500 0.900 7.5 ulated	2.8 2.9 2.9 3.0 3.1
0.300 0.400 0.500 0.600 0.800 1.000	0.8 0.9 1.0 1.1	1.800 2.000 2.200 2.400 2.600 um Manhol Un Design	1.4 1.4 1.5 1.6 1.7 e: SPOND2, it Reference ign Head (m) n Flow (1/s) Flush-Flo™ Objective Application	4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: S MD-SCU-008	2.1 2.2 2.3 2.4 2.5 2.6 3.002, Vc 8-7500-090 Calc ischarge p	8.500 9.000 9.500 0.100 (m ³ 0-7500 0.900 7.5 ulated rofile urface	2.8 2.9 2.9 3.0 3.1
0.300 0.400 0.500 0.600 0.800 1.000	0.8 0.9 1.0 1.1	1.800 2.000 2.200 2.400 2.600 um Manhol Un Design	1.4 1.4 1.5 1.6 1.6 1.7 e: SPOND2, it Reference ign Head (m) n Flow (1/s) Flush-Flo™ Objective Application mp Available	4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: S MD-SCU-008	2.1 2.2 2.3 2.4 2.5 2.6 3.002, Vc 8-7500-090 Calc ischarge p	8.500 9.000 9.500 0-7500 0.900 7.5 ulated rofile urface Yes	2.8 2.9 2.9 3.0 3.1
0.300 0.400 0.500 0.600 0.800 1.000	0.8 0.9 1.0 1.1	1.800 2.000 2.200 2.400 2.600 um Manhol Un Design Sun Design	1.4 1.4 1.5 1.6 1.7 e: SPOND2, it Reference ign Head (m) n Flow (1/s) Flush-Flo™ Objective Application mp Available iameter (mm)	4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: S MD-SCU-008	2.1 2.2 2.3 2.4 2.5 2.6 3.002, Vc 8-7500-090 Calc ischarge p	8.500 9.000 9.500 0-7500 0.900 7.5 ulated rofile urface Yes 88	2.8 2.9 2.9 3.0 3.1
0.300 0.400 0.500 0.600 0.800 1.000 <u>Hydro-Brak</u>	0.8 0.9 1.0 1.1	1.800 2.000 2.200 2.400 2.600 um Manhol Un Design Su Design Su Inve	1.4 1.4 1.5 1.6 1.6 1.7 e: SPOND2, it Reference ign Head (m) n Flow (1/s) Flush-Flo™ Objective Application mp Available iameter (mm) rt Level (m)	4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: S MD-SCU-008	2.1 2.2 2.3 2.4 2.5 2.6 3.002, Vc 8-7500-090 Calc ischarge p	8.500 9.000 9.500 0-7500 0.900 7.5 ulated rofile urface Yes 88 04.700	2.8 2.9 2.9 3.0 3.1
0.300 0.400 0.500 0.600 0.800 1.000 <u>Hydro-Brak</u>	0.8 0.8 0.9 1.0 1.1 xe® Optim	1.800 2.000 2.200 2.400 2.600 um Manhol Un. Design Sun Design Invested Pipe D	1.4 1.4 1.5 1.6 1.7 e: SPOND2, it Reference ign Head (m) n Flow (1/s) Flush-Flo™ Objective Application mp Available iameter (mm)	4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: S MD-SCU-008	2.1 2.2 2.3 2.4 2.5 2.6 3.002, Vc 8-7500-090 Calc ischarge p	8.500 9.000 9.500 0-7500 0.900 7.5 ulated rofile urface Yes 88	2.8 2.9 2.9 3.0 3.1
0.300 0.400 0.500 0.600 0.800 1.000 <u>Hydro-Brak</u>	0.8 0.8 0.9 1.0 1.1 xe® Optim	1.800 2.000 2.200 2.400 2.600 um Manhol Un. Design Sun Design Invested Pipe D	1.4 1.4 1.5 1.6 1.6 1.7 e: SPOND2, it Reference ign Head (m) n Flow (1/s) Flush-Flo™ Objective Application mp Available iameter (mm) rt Level (m) iameter (mm)	4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: S MD-SCU-008	2.1 2.2 2.3 2.4 2.5 2.6 3.002, Vc 8-7500-090 Calc ischarge p	8.500 9.000 9.500 0-7500 0.900 7.5 ulated rofile urface Yes 88 04.700 100	2.8 2.9 3.0 3.1

Lanvill	e C	onsu	ltant	S									Page	e 12
ornerst	one	Cou	rt			Land At Cropredy Marina								
2 Foxha	11	Road				Claydon Road, Cropredy								
dcot	OX1	1 7A	D				ESULT		-	-			Mid	
ate 20/	07/	2023	14:5	3		Desig	ned b	vЈ	Dune	sbv				cio
				East of		-	ed by	_		-			Uſc	pinag
cro Dr			Lana				rk 202							
<u>Hydrc</u>	<u>)-Br</u>	<u>ake®</u>	<u>) Opt</u> :	lmum Mani	hole:	SPON	D2, DS	<u>S/PN</u>	: S3.	.002,	Volur	<u>ne (</u>	[m³):	2.6
				Contr	ol Po	ints	Hea	ad (r	n) Flc	w (1/s	5)			
			D	esign Poir		lculate		0.90		7. 3.				
						Kick-F		0.13		3.				
			М	ean Flow o	over H	lead Rai	nge		-	5.	.1			
-		-		ulations h							-		-	
				as specifi De utilise										
invalida			Linuing i	Je utilise	ea che	n these	: SLOIA	ge i	oucing	y carc	ulacioi	15 W.	LII De	:
Depth ((m)	Flow	(1/s)	Depth (m)	Flow	7 (l/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)
0.1	100		3.0	1.200)	8.6	3	.000		13.3	7.	.000		19.9
	200		3.7			9.2		.500		14.3		500		20.6
	300		4.5			9.8		.000		15.2		.000		21.3
	400		5.1			10.4		.500		16.1		.500		21.9
0.5	500		5.7	2.000)	10.9	5	.000		17.0	9.	.000		22.5
0.6	600		6.2	2.200)	11.4	5	.500		17.7	9.	.500		23.1
0.8	300		7.1	2.400)	11.9	6	.000		18.5				
1.0	000		7.9	2.600)	12.4	6	.500		19.2				
<u>Hydrc</u>	o-Br	<u>ake@</u>	<u>Opt</u> :	imum Man	hole:	SPON	D1, DS	S/PN	: S1	.006,	Volur	ne ((m³):	9.4
					Unit	Refere	nce MD	-SHE	-0204	-2180-	1175-23	L80		
						n Head						L75		
				De	-	Flow (l					23	L.8		
					-	Flush-F				С	alculat	ced		
						Object	ive M	inim	ise u	ostrea	m stora	age		
					A	pplicat			-		Surfa			
						Availa						les		
						meter (204		
				т		Level					100.5			
		Mir	imum (- Dutlet Pip								225		
				ed Manhol								500		
			55		ol Po			ad (r	N E10	w (1/s	-)			
			_											
			D	esign Poir		lculate lush-Fi		1.17		21. 21.				
					r	Kick-F		0.81						
			М	ean Flow (over H			0.01	_	18. 18.				
Hydro-B:	rake rake	e® Opt e Opti	cimum a	ulations h as specifi pe utilise	ed.	Should	anothe	r ty	pe of	contr	ol devi	Lce (other	than a
Depth ((m)	Flow	(1/s)	Depth (m)	Flow	7 (l/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)
	100		7.0	0.300)	21.6	0	.500		21.5	0.	.800		18.8
0.1							1			21.1	1	.000		20.2
0.1	200		19.4	0.400)	21.8	0	.600		21.1	± ·	.000		20.2
	200		19.4	0.400	J	21.0	0	.600		21.1	1	.000		20.2

Glanville Consultants		Page 13						
Cornerstone Court	Land At Cropredy Marina							
62 Foxhall Road	Claydon Road, Cropredy							
Didcot OX11 7AD	FEH RESULTS	Micro						
Date 20/07/2023 14:53	Designed by J Dunesby							
File 8210439 - Land East of	Checked by J Birch	Drainage						
Micro Drainage Network 2020.1.3								
	: SPOND1, DS/PN: S1.006, Volume (www. (1/s) Depth (m) Flow (1/s) Depth (m)							
1.20022.02.4001.40023.72.6001.60025.33.0001.80026.73.5002.00028.14.0002.20029.44.500	30.75.00043.78.00031.95.50045.88.50034.26.00047.79.00036.86.50049.69.50039.27.00051.441.57.50053.2	56.5 58.1						

Glanville Consultants		Page 14
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	— Micro
Date 20/07/2023 14:53	Designed by J Dunesby	
File 8210439 - Land East of	. Checked by J Birch	Drainago
Micro Drainage	Network 2020.1.3	
Storage	e Structures for Storm	
Cellular Storage	Manhole: SCRATES, DS/PN: S1.00)1
	vert Level (m) 105.350 Safety Factor	
	nt Base (m/hr) 0.00000 Porosity	
Depth (m) Area (m²) Inf. i	Area (m²) Depth (m) Area (m²) Inf. A	rea (m²)
0.000 215.0 1.200 215.0	215.0 1.300 0.0 290.6	290.6
Infiltration Basi	n Manhole: SPOND2, DS/PN: S3.0	02
	vert Level (m) 104.700 Safety Factor ht Base (m/hr) 0.00000 Porosity ht Side (m/hr) 0.00000	
Depth (m) i	Area (m²) Depth (m) Area (m²)	
0.000	44.2 1.200 169.8	
Infiltration Basi	n Manhole: SPOND1, DS/PN: S1.0	<u>06</u>
	vert Level (m) 100.500 Safety Factor ht Base (m/hr) 0.00000 Porosity ht Side (m/hr) 0.00000	
	Depth (m) Area (m²) Depth (m) Area (
0.000 571.0	1.200 1031.9 1.500 116	0.2

Glanville Co:	nsultants						Page	1.5
Cornerstone			Land A	t Cropre	dv Mar	ina		. 10
62 Foxhall R				n Road,	-			
Didcot 0X11			FEH RE		CIOPIE	лу		
	·						Mic	[0]
Date 20/07/2		c	-	ed by J		Y	Dra	inage
File 8210439		oi		d by J H				
Micro Draina	ge		Networ	k 2020.3	1.3			
<u>1 year Retu</u>	rn Period Su	mmary of	<u>Critic</u> for S		<u>lts by</u>	Maximum	<u>Level (R</u>	<u>ank 1)</u>
Manhole H	Hot Start Le eadloss Coeff wage per hecta Number of Inpu	n Factor : t (mins) vel (mm) (Global) (re (l/s) (nt Hydrogr	1.000 0 0.500 Fl 0.000 aphs 0 M	MADD ow per Pe Jumber of	Factor * In rson per Storage	10m³/ha Let Coeff Day (1/g Structur	Storage 2. fiecient 0. per/day) 0. es 3	000 800
	Number of Or Number of Off					2		
				nfall Deta	ils			
	Rair FEH Rainfa	nfall Mode				FEH 1999		
		te Locatio		100 24690	0 SP 471			
		C (1km)			-0.024		
		Dl (lkm)			0.337		
		D2 (1km				0.356		
		D3 (1km				0.223		
		E (1km				0.295		
	C	F (1km Cv (Summer				2.505		
		Cv (Winter				0.950		
Mai	rgin for Flood	Risk Warn Analysis	-		nd Incre	ment (Ev	300.0	
		-	'S Status		nia incre	menc (BA	ON	
			D Status				OFF	
		Inerti	a Status	5			OFF	
Retu:	Prof: Duration(s) rn Period(s) (Climate Chang	years)		180, 240, 2160, 2880	360, 48	0, 600, 5760, 72		
						Water	Surcharged	Flooded
US/MH				Duration		Level	Depth	Volume
PN Name	E	lvent		(mins)	(m)	(m)	(m)	(m³)
s1.000 s5.0	60 minute 1	year Summ	ner I+0%	60	108.000	107.400	-0.150	0.000
S1.001 SCRATES	1440 minute 1	year Summ	ner I+0%	1440	107.750	105.557	0.057	0.000
S1.002 S4.0	60 minute 1	-			107.250		-0.088	0.000
S1.003 S3.0	60 minute 1	-			106.100		-0.283	0.000
S2.000 S2.1	60 minute 1	-			105.695		-0.095	0.000
S1.004 S2.0	60 minute 1	-			105.250		-0.245	0.000
S3.000 S1.0.2	60 minute 1 60 minute 1	-			106.650		-0.169	0.000
S3.001 S1.0.1 S3.002 SPOND2	60 minute 1 120 minute 1	-			106.315		-0.129 0.058	0.000
				Innovyz				0.000
		96 190		11110 v y Z				

Glanville Consultants		Page 16
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Mirro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Diamage
Micro Drainage	Network 2020.1.3	1

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Flow / Cap.	Maximum Vol (m³)	Pipe Flow (l/s)	Status
S1.000	S5.0	0.00	0.000	0.0	OK
S1.001	SCRATES	0.07	42.459	0.9	SURCHARGED
S1.002	S4.0	0.36	0.144	7.3	OK
S1.003	S3.0	0.14	0.154	24.6	OK
S2.000	S2.1	0.29	0.088	4.0	OK
S1.004	S2.0	0.26	0.439	52.2	OK
S3.000	S1.0.2	0.14	0.091	5.4	OK
S3.001	S1.0.1	0.38	0.269	15.1	OK
S3.002	SPOND2	0.15	11.561	3.8	SURCHARGED

Glanville Consultants		Page 17
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Micro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Diamage
Micro Drainage	Network 2020.1.3	

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name]	Event			Duration (mins)	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)
S1.005	S1.0	60	minute	1	year	Summer	I+0%	60	104.750	103.251	-0.274	0.000
S4.000	S1.4	60	minute	1	year	Summer	I+0%	60	105.400	104.064	-0.161	0.000
S5.000	S1.3.1	60	minute	1	year	Summer	I+0%	60	104.750	103.397	-0.178	0.000
S4.001	S1.3	60	minute	1	year	Summer	I+0%	60	104.300	103.002	-0.198	0.000
S4.002	S1.2	60	minute	1	year	Summer	I+0%	60	103.300	102.047	-0.213	0.000
S4.003	S1.1	60	minute	1	year	Summer	I+0%	60	103.300	101.989	-0.286	0.000
S1.006	SPOND1	360	minute	1	year	Summer	I+0%	360	102.000	100.735	-0.215	0.000

US/MH Name	Flow / Cap.	Maximum Vol (m³)	Pipe Flow (l/s)	Status
	-			
S1.0	0.16	0.251	76.9	OK
S1.4	0.18	0.105	12.1	OK
S1.3.1	0.10	0.075	5.3	OK
S1.3	0.25	0.174	29.4	OK
S1.2	0.39	0.346	41.6	OK
S1.1	0.13	0.519	46.4	OK
SPOND1	0.09	144.040	21.0	OK
	Name S1.0 S1.4 S1.3.1 S1.3 S1.2 S1.1	Name Cap. \$1.0 0.16 \$1.4 0.18 \$1.3.1 0.10 \$1.3 0.25 \$1.2 0.39 \$1.1 0.13	Name Cap. Vol (m³) \$1.0 0.16 0.251 \$1.4 0.18 0.105 \$1.3.1 0.10 0.075 \$1.3 0.25 0.174 \$1.2 0.39 0.346 \$1.1 0.13 0.519	US/MH Flow / Maximum Flow Name Cap. Vol (m ³) (1/s) S1.0 0.16 0.251 76.9 S1.4 0.18 0.105 12.1 S1.3.1 0.10 0.075 5.3 S1.3 0.25 0.174 29.4 S1.2 0.39 0.346 41.6 S1.1 0.13 0.519 46.4

Glanville Consultan	ts					Page	18
Cornerstone Court		Land At	ronre	dv Mar	ina	ruge	. ±0
62 Foxhall Road		Claydon 1	-	-			
Didcot OX11 7AD		FEH RESU		crobied	цу		<u>مر به ا</u>
	F 2			D 1		Mic	
Date 20/07/2023 14:		Designed	-		1	Dra	inage
File 8210439 - Land	East of						linge
Micro Drainage		Network	2020.1	.3			
<u>30 year Return Peri</u>	od Summary o	<u>f Critical</u> for Stor		<u>lts by</u>	Maximur	n Level (F	<u>ank 1)</u>
Ho Hot St Manhole Headloss Foul Sewage per Number c	duction Factor t Start (mins) art Level (mm) Coeff (Global) hectare (l/s) of Input Hydrogr	0 0 0.500 Flow 0.000 caphs 0 Numb	itiona MADD 1 per Pe: per of	Factor * Inl rson per Storage	10m ³ /ha et Coeff Day (1/p Structur	Storage 2.(fiecient 0.8 ber/day) 0.(es 3) 0 0 3 0 0
	of Online Cont of Offline Cont				2		
		etic Rainfal	ll Deta	<u>ils</u>			
	Rainfall Mode Rainfall Versio				FEH 1999		
FEH	Site Locatio		24690	0 SP 471			
	C (1km		21000	0 01 1/1	-0.024		
	D1 (1km	n)			0.337		
	D2 (1km	n)			0.356		
	D3 (1km	n)			0.223		
	E (1kn				0.295		
	F (1kn				2.505		
	Cv (Summer Cv (Winter	,			0.950 0.950		
	CV (WINCE	- /			0.950		
Margin for	Flood Risk Warr	-	_			300.0	
	-	Timestep 2.	.5 Seco	nd Incre	ment (Ex		
		IS Status				ON OFF	
		/D Status La Status				OFF	
	INCLU	La Status				OFF	
Return Period		50, 120, 180 1440, 2160		360, 48	0, 600, 5760, 72		
		_			Water	Surcharged	
US/MH PN Name	Event		ration mins)	US/CL (m)	Level (m)	Depth (m)	Volume (m³)
	Avent	()		(111)	(111)	()	()
S1.000 S5.0 60 min	ute 30 year Sum	mer I+0%	60	108.000	107.400	-0.150	0.000
S1.001 SCRATES 960 min	-			107.750		0.414	0.000
	ute 30 year Sum			107.250		-0.021	0.000
	ute 30 year Sum			106.100		-0.208	0.000
	ute 30 year Sum			105.695		-0.050	0.000
	ute 30 year Sum			105.250		-0.125	0.000
	ute 30 year Sum ute 30 year Sum			106.650 106.315		-0.128 0.097	0.000
	ule ou year Sum	UNGT TIANS	n l l		103.23/	0.09/	0.000
\$3.002 SPOND2 60 min	ute 30 vear Win						
S3.002 SPOND2 60 min	ute 30 year Win		60	105.900		0.358	0.000

Glanville Consultants		Page 19
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Mirro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Diamage
Micro Drainage	Network 2020.1.3	L

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Flow / Cap.	Maximum Vol (m³)	Pipe Flow (l/s)	Status
S1.000	S5.0	0.00	0.000	0.0	OK
S1.001	SCRATES	0.07	115.785	0.9	SURCHARGED
S1.002	S4.0	1.00	0.326	20.4	OK
S1.003	S3.0	0.40	0.286	72.5	OK
S2.000	S2.1	0.78	0.168	10.8	OK
S1.004	S2.0	0.77	1.382	153.9	OK
S3.000	S1.0.2	0.38	0.162	14.7	OK
S3.001	S1.0.1	0.95	1.887	37.7	SURCHARGED
S3.002	SPOND2	0.23	34.642	5.7	SURCHARGED

Glanville Consultants		Page 20
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Mirro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Dialitada
Micro Drainage	Network 2020.1.3	L

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name			Е	vent			Duration (mins)	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)
S1.005	S1.0	60	minute	30	year	Summer	I+0%	60	104.750	103.333	-0.192	0.000
S4.000	S1.4	60	minute	30	year	Summer	I+0%	60	105.400	104.112	-0.113	0.000
S5.000	S1.3.1	60	minute	30	year	Summer	I+0%	60	104.750	103.429	-0.146	0.000
S4.001	S1.3	60	minute	30	year	Summer	I+0%	60	104.300	103.086	-0.114	0.000
S4.002	S1.2	60	minute	30	year	Summer	I+0%	60	103.300	102.274	0.014	0.000
S4.003	S1.1	60	minute	30	year	Summer	I+0%	60	103.300	102.056	-0.219	0.000
S1.006	SPOND1	240	minute	30	year	Summer	I+0%	240	102.000	101.110	0.160	0.000

	US/MH	Flow /	Maximum	Pipe Flow	
PN	Name	Cap.	Vol (m³)	(l/s)	Status
S1.005	S1.0	0.48	0.675	223.2	OK
S4.000	S1.4	0.49	0.188	32.9	OK
S5.000	S1.3.1	0.27	0.131	14.3	OK
S4.001	S1.3	0.68	0.451	80.9	OK
S4.002	S1.2	1.09	1.587	116.8	SURCHARGED
S4.003	S1.1	0.36	0.811	130.3	OK
S1.006	SPOND1	0.09	414.553	21.7	SURCHARGED

Glanville Consultants				Page 21
Cornerstone Court		copredy Marina		
52 Foxhall Road	Claydon Ro	oad, Cropredy		
Didcot OX11 7AD	FEH RESULT	rs		Micro
Date 20/07/2023 14:53	Designed b	oy J Dunesby		
File 8210439 - Land East of	f Checked by	y J Birch		Drainag
licro Drainage	Network 20	020.1.3		
100 year Return Period Su	<u>mmary of Critica</u>	<u>l Results by M</u>	<u>laximum L</u>	evel (Rank
	<u>1) for Sto</u>	<u>rm</u>		
	Cimulation Crit	orio		
Areal Reduction F	<u>Simulation Crit</u> actor 1.000 Addit		f Total Fl	ow 0.000
		ADD Factor * 10m		
Hot Start Level		Inlet	Coeffiecie	nt 0.800
Manhole Headloss Coeff (Gl	-	er Person per Day	(l/per/da	y) 0.000
Foul Sewage per hectare	(l/s) 0.000			
Number of Input H	lydrographs 0 Numbe	r of Storage Stru	ictures 3	
-	ne Controls 3 Numbe	-		
Number of Offlir	ne Controls 0 Numbe	r of Real Time Co	ntrols 0	
	Cumthatia Dainfall	Dataila		
Rainfa	<u>Synthetic Rainfall</u> 11 Model	Details	FEH	
FEH Rainfall			1999	
Site 1	Location GB 447100	246900 SP 47100 4	6900	
	C (1km)		.024	
	D1 (1km)		.337	
	D2 (1km)		.356 .223	
	D3 (1km) E (1km)		.295	
	F (1km)		.505	
Cv	(Summer)	C	.950	
Cv	(Winter)	C	.950	
Margin for Flood Ris	ak Marping (mm)		300.	0
5	alysis Timestep 2.5	Second Increment		
	DTS Status			N
	DVD Status		OF	Έ
	Inertia Status		OF	Έ
Profile			er and Win	
Duration(s) (mi		240, 360, 480, 6		
	1440, 2100,	2880, 4320, 5760		080
Return Period(s) (yea	rs)		1, 30,	
Climate Change	(응)		0, 0,	40
			Water	Surcharged
US/MH		Duration US/CI		Depth
PN Name	Event	(mins) (m)	(m)	(m)
S1 000 S5 0 60 minute 1/) a waar Summar T 40	2 EN 100 00	107 400	_0 150
S1.000 S5.0 60 minute 10 S1.001 SCRATES 1440 minute 10)0 year Summer I+40)0 year Winter I+40		107.400	-0.150 1.022
	00 year Winter 1440 00 year Summer I+40		50 106.322 50 106.441	1.022
	00 year Summer I+40		0 105.075	0.200
)0 year Summer I+40		95 105.176	0.731
	00 year Summer I+40		50 104.767	0.542
	00 year Summer I+40		0 106.220	0.745
	00 year Summer I+40		5 106.035	0.895
S3.002 SPOND2 60 minute 10	00 year Winter I+40		0 105.595	0.745
	©1982-2020 Inr			

Glanville Consultants		Page 22
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Micro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Diamage
Micro Drainage	Network 2020.1.3	I

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Flooded Volume (m³)	Flow / Cap.	Maximum Vol (m³)	Pipe Flow (l/s)	Status
S1.000	S5.0	0.000	0.00	0.000	0.0	OK
S1.001	SCRATES	0.000	0.09	240.726	1.2	SURCHARGED
S1.002	S4.0	0.000	1.60	2.296	32.6	SURCHARGED
S1.003	S3.0	0.000	0.69	1.335	124.7	SURCHARGED
S2.000	S2.1	0.000	1.71	1.548	23.9	SURCHARGED
S1.004	S2.0	0.000	1.33	9.767	266.3	SURCHARGED
S3.000	S1.0.2	0.000	0.78	1.706	30.2	SURCHARGED
S3.001	S1.0.1	0.000	1.88	4.153	74.6	FLOOD RISK
S3.002	SPOND2	0.000	0.30	76.838	7.5	SURCHARGED

Glanville Consultants		Page 23
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FEH RESULTS	Micro
Date 20/07/2023 14:53	Designed by J Dunesby	Drainage
File 8210439 - Land East of	Checked by J Birch	Diamage
Micro Drainage	Network 2020.1.3	

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name			E	vent			Duration (mins)	US/CL (m)	Water Level (m)	Surcharged Depth (m)
S1.005	S1.0	60	minute	100	year	Summer	I+40%	60	104.750	103.415	-0.110
S4.000	S1.4	60	minute	100	year	Summer	I+40%	60	105.400	104.724	0.499
S5.000	S1.3.1	60	minute	100	year	Summer	I+40%	60	104.750	103.938	0.363
S4.001	S1.3	60	minute	100	year	Summer	I+40%	60	104.300	103.836	0.636
S4.002	S1.2	60	minute	100	year	Summer	I+40%	60	103.300	102.468	0.208
S4.003	S1.1	60	minute	100	year	Summer	I+40%	60	103.300	102.121	-0.154
S1.006	SPOND1	360	minute	100	year	Winter	I+40%	360	102.000	101.681	0.731

		Flooded			Pipe	
	US/MH	Volume	Flow /	Maximum	Flow	
PN	Name	(m³)	Cap.	Vol (m³)	(l/s)	Status
S1.005	S1.0	0.000	0.83	1.312	388.9	OK
S4.000	S1.4	0.000	0.97	1.271	64.8	SURCHARGED
S5.000	S1.3.1	0.000	0.56	1.030	30.0	SURCHARGED
S4.001	S1.3	0.000	1.21	4.423	143.0	SURCHARGED
S4.002	S1.2	0.000	1.94	3.020	207.8	SURCHARGED
S4.003	S1.1	0.000	0.64	1.103	235.0	OK
S1.006	SPOND1	0.000	0.09	933.563	21.8	SURCHARGED

Glanville Consultants					Page 1
Cornerstone Court	Land At C	ropredy 1	Marina		
62 Foxhall Road	Claydon R	oad, Crop	predy		
Didcot OX11 7AD	FSR RESUL	TS			Micro
Date 20/07/2023 15:04	Designed	by J Dune	esby		
File 8210439 - LAND EAST OF .	Checked b	y J Bircl	n		Drainage
Micro Drainage	Network 2	-			
100 year Return Period Summa Areal Reduction Fact Hot Start (min Hot Start Level (m Manhole Headloss Coeff (Globa Foul Sewage per hectare (1/ Number of Input Hyda Number of Online (Number of Offline (<u>1) for Sto</u> <u>Simulation Cri</u> or 1.000 Addi s) 0 m) 0 1) 0.500 Flow p s) 0.000 rographs 0 Numbe Controls 3 Numbe	<u>rm</u> tional Flo MADD Facto er Person er of Stora er of Time,	w - % of r * 10m³ Inlet C per Day age Struc /Area Dia	Total F /ha Stora oeffiecie (l/per/da ctures 3 agrams 0	low 0.000 age 2.000 ent 0.800
Rainfall Model Region M5-60 (mm) Margin for Flood Risk M Analy Ind	England and Wal 19.8 Warning (mm) sis Timestep 2.9 DTS Status DVD Status ertia Status Profile(s) S	TSR Rat Les Cv (Sur 300 Cv (Win 5 Second In Summer and	nter) 0.9 ncrement Winter	950 950 300 (Extende	
Return Per	tion(s) (mins) iod(s) (years) ate Change (%)	15,	30, 60 100 40		
US/MH		Duration	US/CL	Water Level	Surcharged Depth
PN Name Eve	ent	(mins)	(m)	(m)	- (m)
S1.000 S5.0 15 minute 100 yr S1.001 SCRATES 60 minute 100 yr S1.002 S4.0 15 minute 100 yr S1.003 S3.0 15 minute 100 yr S2.000 S2.1 15 minute 100 yr S1.004 S2.0 15 minute 100 yr S3.000 S1.0.2 15 minute 100 yr S3.001 S1.0.1 15 minute 100 yr S3.002 SPOND2 60 minute 100 yr S1.005 S1.0 15 minute 100 yr S1.005 S1.0 15 minute 100 yr S4.000 S1.4 15 minute 100 yr S4.001 S1.3 15 minute 100 yr S4.001 S1.3 15 minute 100 yr S4.002 S1.2 15 minute 100 yr S1.006 SPOND1 60 minute 100 yr	ear Summer I+409 ear Summer I+409	60 5 5 5 5 5 5 5 5 5 5 5 5 5	108.000 107.750 107.250 106.100 105.695 105.250 106.650 106.315 105.900 104.750 104.750 104.750 104.300 103.300 103.300	105.963 107.197 105.686 105.486 105.245 106.147 106.010 105.484 103.459 104.699 104.086 104.020 102.545 102.144	$\begin{array}{c} -0.150\\ 0.463\\ 1.787\\ 0.811\\ 1.041\\ 1.020\\ 0.672\\ 0.870\\ 0.634\\ -0.066\\ 0.474\\ 0.511\\ 0.820\\ 0.285\\ -0.131\\ 0.405\end{array}$
(01982-2020 In	novyze			

Glanville Consultants	Page 2	
Cornerstone Court	Land At Cropredy Marina	
62 Foxhall Road	Claydon Road, Cropredy	
Didcot OX11 7AD	FSR RESULTS	Micro
Date 20/07/2023 15:04	Designed by J Dunesby	Drainage
File 8210439 - LAND EAST OF	Checked by J Birch	Diamada
Micro Drainage	Network 2020.1.3	1

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Flooded Volume (m³)	Flow / Cap.	Maximum Vol (m³)	Pipe Flow (l/s)	Status
S1.000	S5.0	0.000	0.00	0.000	0.0	OK
S1.001	SCRATES	0.000	0.07	126.002	0.9	SURCHARGED
S1.002	S4.0	0.000	1.78	3.633	36.2	FLOOD RISK
S1.003	S3.0	0.000	0.81	2.734	145.2	SURCHARGED
S2.000	S2.1	0.000	1.94	2.096	27.1	FLOOD RISK
S1.004	S2.0	0.000	1.53	10.772	305.6	FLOOD RISK
S3.000	S1.0.2	0.000	0.87	1.577	33.6	SURCHARGED
S3.001	S1.0.1	0.000	2.11	4.109	84.0	SURCHARGED
S3.002	SPOND2	0.000	0.29	63.049	7.0	SURCHARGED
S1.005	S1.0	0.000	0.99	1.694	461.5	OK
S4.000	S1.4	0.000	1.01	1.227	67.5	SURCHARGED
S5.000	S1.3.1	0.000	0.64	1.291	34.3	SURCHARGED
S4.001	S1.3	0.000	1.23	5.132	145.9	FLOOD RISK
S4.002	S1.2	0.000	2.16	3.594	231.9	SURCHARGED
S4.003	S1.1	0.000	0.73	1.194	267.5	OK
S1.006	SPOND1	0.000	0.09	621.052	21.6	SURCHARGED

Cornerstone House, 62 Foxhall Road Didcot, Oxfordshire OX11 7AD

01235 515550 postbox@glanvillegroup.com www.glanvillegroup.com

- Structural Engineering
- Transport and Highways
- Civil Engineering
- Geomatics
- Building Surveying